WO2017090379A1 - 異方性導電フィルム - Google Patents

異方性導電フィルム Download PDF

Info

Publication number
WO2017090379A1
WO2017090379A1 PCT/JP2016/082225 JP2016082225W WO2017090379A1 WO 2017090379 A1 WO2017090379 A1 WO 2017090379A1 JP 2016082225 W JP2016082225 W JP 2016082225W WO 2017090379 A1 WO2017090379 A1 WO 2017090379A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive film
defective portion
mark
electronic component
Prior art date
Application number
PCT/JP2016/082225
Other languages
English (en)
French (fr)
Inventor
誠一郎 篠原
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201680066280.3A priority Critical patent/CN108352632A/zh
Priority to KR1020197036934A priority patent/KR102476429B1/ko
Priority to CN202211367096.6A priority patent/CN115719890A/zh
Priority to US15/769,042 priority patent/US10827625B2/en
Priority to KR1020187005823A priority patent/KR20180033292A/ko
Publication of WO2017090379A1 publication Critical patent/WO2017090379A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N2021/8927Defects in a structured web
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/023Hard particles, i.e. particles in conductive adhesive at least partly penetrating an electrode

Definitions

  • the present invention relates to an anisotropic conductive film, an anisotropic conductive film sticking method, and an anisotropic conductive film sticking apparatus.
  • Anisotropic conductive films are widely used when electronic parts such as IC chips are mounted on a substrate.
  • conductive particles are regularly arranged and arranged.
  • the conductive particles are spread on a stretched film, and the film is biaxially stretched to align and arrange the conductive particles in a single layer (Patent Documents 1 and 2).
  • Techniques in which conductive particles are transferred to an adhesive film to make the conductive particles have a predetermined arrangement are known.
  • the present invention has an object to prevent conduction failure and short-circuiting even when an anisotropic conductive film having separation or agglomeration is used for connection of electronic components with respect to a predetermined dispersion state of conductive particles.
  • the inventor inspects the dispersion state of the conductive particles of the anisotropic conductive film, and conducts the conductive particles against a predetermined dispersion state such as a predetermined lattice arrangement, a predetermined parallel arrangement, and a uniform dispersion at a predetermined particle density. If a defect in the dispersed state such as missing or agglomeration is found, make sure that the defective part is known and avoid the defective part when connecting electronic parts using an anisotropic conductive film.
  • a predetermined dispersion state such as a predetermined lattice arrangement, a predetermined parallel arrangement, and a uniform dispersion at a predetermined particle density.
  • the present invention is an anisotropic conductive film having a conductive particle dispersion layer in which conductive particles are dispersed in a predetermined dispersion state in an insulating adhesive, and presents position information of defective portions in the dispersion state of conductive particles.
  • An anisotropic conductive film provided with a location presenting means is provided.
  • an aspect in which a mark is provided on the anisotropic conductive film, or a defective part information holding means in which the position information of the defective part is recorded on the recording medium is used as the anisotropic conductive film.
  • the present invention is a method for attaching the above-described anisotropic conductive film and electronic component, wherein the anisotropic conductive film is non-defective based on the position information of the defective portion obtained from the defective portion presenting means.
  • a method of sticking a portion to an existing region of a terminal or a terminal row of an electronic component to be anisotropically conductively connected is provided.
  • the present invention is a sticking device for sticking the above-mentioned anisotropic conductive film and electronic component, and based on the position information of the defective portion acquired from the defective portion presenting means, the non-defective anisotropic conductive film
  • a bonding device having positioning means for positioning the anisotropic conductive film and the electronic component so that the location and the terminal of the electronic component are connected, and a pressing means for bonding the anisotropic conductive film and the electronic component To do.
  • the anisotropic conductive film of the present invention is provided with a defective part presenting means for presenting positional information of defective parts in a dispersed state of conductive particles, the sticking of the present invention using the anisotropic conductive film of the present invention.
  • the non-defective portion of the anisotropic conductive film that is, the defective portion of the anisotropic conductive film is not included. Only the region is attached to the region of the terminal or terminal row of the electronic component for anisotropic conductive connection, and only the non-defective portion of the anisotropic conductive film can be used for the connection of the terminal of the electronic component. Therefore, the reliability of connection using the anisotropic conductive film can be improved without reducing the yield of the anisotropic conductive film.
  • FIG. 1 is a schematic plan view of an anisotropic conductive film 1A of an example having a mark as a defective part presenting means.
  • FIG. 2 is a schematic plan view of an anisotropic conductive film 1 ⁇ / b> B of an example having a mark as a defective part presenting means.
  • FIG. 3 is a schematic plan view of an anisotropic conductive film 1 ⁇ / b> C of an example having a mark as a defective portion presenting means.
  • FIG. 4 is a schematic plan view of an anisotropic conductive film 1D of an example having a mark as a defective portion presenting means.
  • FIG. 5A is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5A is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5B is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5C is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5D is a process explanatory diagram of a method for attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5E is a process explanatory diagram of a method for attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 5F is a process explanatory diagram of a method for attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 6A is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 6B is a process explanatory diagram of a method for attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 6C is a process explanatory diagram of a method for attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 7A is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 7B is a process explanatory diagram of a method of attaching an anisotropic conductive film having marks to an electronic component.
  • FIG. 8 is an explanatory diagram of the position information of the defective part recorded in the defective part information holding means.
  • FIG. 9 is a schematic configuration diagram of a sticking apparatus for sticking an anisotropic conductive film provided with defective portion information holding means to an electronic component.
  • FIG. 1 is a schematic plan view of an anisotropic conductive film 1A according to an embodiment of the present invention used for FOG and COG.
  • This anisotropic conductive film 1A has a layer structure in which a conductive particle dispersion layer 4 in which conductive particles 3 are dispersed in a predetermined dispersion state in an insulating adhesive 2 and a base film 5 are laminated. More specifically, in the conductive particle dispersion layer 4, the conductive particles 3 are arranged in a square lattice and are located at lattice points that are intersections of lattice lines indicated by broken lines in the drawing.
  • the conductive particles are dispersed in a predetermined dispersion state as long as the conductive particles exist with a predetermined regularity.
  • the conductive particles are not limited to a tetragonal lattice arrangement, and may be arranged in a rectangular lattice, an oblique lattice, a hexagonal lattice, or the like. Further, not only single particles are arranged at lattice points, but also a predetermined number of conductive particles may be arranged in groups.
  • the conductive particles may be aligned in parallel at a predetermined interparticle distance, or may be randomly dispersed while maintaining the predetermined interparticle distance.
  • the actually manufactured anisotropic conductive film has a defective portion where the conductive particles are not in a predetermined dispersion state. There is a case.
  • this defective portion when the conductive particles are intended to be arranged in a lattice shape, the conductive particles are missing on the lattice points, or the conductive particles are aggregated on the lattice points or at other positions.
  • the conductive particles in the COG anisotropic conductive film in which the conductive particles are relatively densely arranged etc. Locations where the particles are densely or aggregated locally, or where the particles are aggregated due to magnetism when the conductive particles are metal, can be mentioned.
  • FIG. 1 shows an example of a defective portion P in which the conductive particles 3 are missing at lattice points in the anisotropic conductive film 1A intended to arrange the conductive particles in a square lattice as an example of the defective portion. .
  • the defective portion P can be found by inspecting the dispersion state of the conductive particles in the anisotropic conductive film 1A by using a combination of an imaging device and an image analysis processing system (for example, Mitani Corporation, WinROOF, etc.).
  • the position can be specified.
  • an imaging apparatus one having a maximum output pixel number (H) ⁇ (V) of 648 ⁇ 494 and a frame rate of 30 to 60 fps can be applied.
  • the anisotropic conductive film 1A of the present embodiment is characterized by having a mark Q as a defective portion presenting means for presenting a defective portion P.
  • This mark Q is formed by changing or modifying (thermosetting) the surface state of the resin constituting the conductive particle dispersion layer 4 by irradiating the anisotropic conductive film 1A with laser light from the conductive particle dispersion layer 4 side. Irradiation trace with a diameter of 0.3 to 1.0 mm.
  • the anisotropic conductive film 1A has a transparent cover film on the conductive particle dispersion layer 4 in order to prevent foreign matter from being mixed, the laser beam irradiation is applied to the conductive particle dispersion layer 4 through the cover film. You may go.
  • the irradiation condition of the laser beam that forms such an irradiation trace depends on the material of the surface of the anisotropic conductive film 1A that irradiates the laser beam, for example, when it is formed of a thermosetting resin such as PET A YAG laser or a YVO4 laser can be used.
  • a cover film made of transparent PET is laminated on the conductive particle dispersion layer 4
  • laser light is irradiated from the cover film at a wavelength of 1064 nm and an output of 1.3 to 10 W for 100 to 1000 milliseconds.
  • the mark Q can be formed only on the resin forming the conductive particle dispersion layer 4.
  • the thickness of such a cover film can be practically 10 to 50 ⁇ m.
  • the mark Q may be formed on the base film 5. From the point of forming in a short time, it is preferable to modify the curable resin forming the conductive particle dispersion layer 4 to form the mark Q, from the point of not applying unnecessary energy to the resin used for anisotropic conductive connection. Is preferably formed on the base film 5. When the mark Q is formed on the anisotropic conductive film 1A by laser light irradiation, the generation or scattering of foreign matters that hinder the connection using the anisotropic conductive film 1A is prevented.
  • the mark Q is defined as a region that is not used for connecting electronic components in a predetermined range upstream from the mark Q during the connection work using the anisotropic conductive film 1A. Is provided downstream of the defective portion P in the flow direction a of the anisotropic conductive film 1A during the connection work.
  • the mark Q may be formed upstream of the defective portion P in the flow direction a of the anisotropic conductive film 1A. That is, the step of detecting the defective portion P after forming the anisotropic conductive film and forming the mark Q may be performed in any step after the formation of the anisotropic conductive film. It may be provided either upstream or downstream.
  • the distance L1 between the mark Q and the defective portion P in the longitudinal direction of the anisotropic conductive film 1A is such that the anisotropic conductive film is not used for connection due to the productivity of the anisotropic conductive film and the presence of the defective portion P. From the point of reducing the number, it is determined to be a predetermined distance. That is, if the distance L1 is too short, it is necessary to slow down the winding speed of the anisotropic conductive film after forming the mark Q in the manufacturing process of the anisotropic conductive film, and the productivity is reduced. Is preferably 2 mm or more, more preferably 3 mm or more.
  • the distance L1 is not more than half of the length of the anisotropic conductive film required for connecting individual electronic components. Accordingly, the preferred length of the distance L1 varies depending on the length of the electronic component to be connected. For example, when used for COG, the distance L1 is preferably 15 mm or less, more preferably 10 mm or less, and even more preferably 5 mm. The following.
  • the distance L2 between the defective portion P and the center of the mark Q in the short direction (width direction) of the anisotropic conductive film 1A may be zero as illustrated, or regardless of the position of the defective portion P. Alternatively, it may be near the side edge in the longitudinal direction of the anisotropic conductive film 1A. In the latter case, the region where the mark Q is detected when connecting the anisotropic conductive film and the electronic component can be limited to the vicinity of the side edge of the anisotropic conductive film. Also, if the anisotropic conductive film width and the size of the electronic component are not used to connect the electronic component in the vicinity of the side edge in the longitudinal direction of the anisotropic conductive film, the mark Q is anisotropic. By providing in the vicinity of the side edge in the longitudinal direction of the conductive film, it is possible to reduce a region that cannot be used for connecting electronic components due to the mark Q.
  • the mark Q is formed by dispersing a substance that develops or changes color by irradiation of light of a predetermined wavelength in the base film 5 and irradiating light of the wavelength. It may be formed as a colored part, may be formed by printing, or may be formed by sticking a seal.
  • the anisotropic conductive film 1B shown in FIG. 2 is provided with the mark Q for the defective portion P in which a plurality of conductive particles are aggregated at one lattice point in the above-described anisotropic conductive film 1A.
  • the formation position of the mark Q is a predetermined distance L1 between the lattice point where the conductive particles should originally be at the defective portion P and the center of the mark Q, about the short side direction of an anisotropic conductive film, it is set as the side edge vicinity of the longitudinal direction of the anisotropic conductive film 1B.
  • FIG. 3 is a schematic plan view of the anisotropic conductive film 1C of the example for COG.
  • the anisotropic conductive film 1C for COG in the drawing, in the region 7 between the attachment position 6 of the electronic component (chip) and the side of the anisotropic conductive film 1C indicated by the broken line, Corresponding marks Q are preferably formed. The presence of the mark Q in the region 7 can reduce the region that cannot be used for connecting electronic components (chips).
  • the mark Q corresponding to the defective portion P is periodically present in the longitudinal direction of the anisotropic conductive film ( You may form in the non-sticking area
  • anisotropic conductive film having mark Q When the anisotropic conductive film having the mark Q is used for connecting electronic parts, only the non-defective portion of the anisotropic conductive film is anisotropically conductively connected based on the positional information of the defective portion guided by the mark Q. It can be made to stick to the area
  • the present invention includes such a sticking method. In this sticking method, only the non-defective portion of the anisotropic conductive film is attached to the electronic component, and not only the non-defective portion but also the defective portion P and the mark Q are attached to the electronic component.
  • the position where the mark Q is affixed include a position where the anisotropic conductive connection between the electronic components is not hindered.
  • the attachment position of the defective portion P and the mark Q is a position that hinders the anisotropic conductive connection between the electronic components.
  • the former mode a mode in which only non-defective portions of the anisotropic conductive film are attached to an electronic component
  • FIG. 5A to FIG. 5F show one embodiment of such a sticking method
  • the anisotropic conductive film 1 is made of a first electronic component such as an FPC, a rigid substrate, a ceramic substrate, a plastic substrate, a glass substrate, or the like. It is process explanatory drawing of the method of sticking.
  • the predetermined region 11 including the defective portion P is removed from the anisotropic conductive film 1, and the remaining non-defective portions are stuck to the electronic component.
  • the anisotropic conductive film 1 used here has a laminated structure of the conductive particle dispersion layer 4 and the base film 5 as an example, and the mark Q is a predetermined downstream of the film flow direction from the defective portion P. It is assumed that it is provided at a distance.
  • the anisotropic conductive film 1 wound around a reel is unwound, and the mark Q is detected by a mark detection device 10 using a CCD or the like.
  • a mark detection device 10 a CCD, a chromaticity sensor, a device using a laser, or the like can be used.
  • an alignment mark detection device can be used.
  • a half cut 12 is formed on a line defining the region 11 by a half cut forming means.
  • the half cut 12 is preferably formed so as to reach the base film 5 from the conductive particle dispersion layer 4 side of the anisotropic conductive film 1 (FIG. 5B).
  • the adhesive tape 13 is stuck on the area 11 to be removed including the defective portion P (FIG. 5C), the adhesive tape 13 is peeled off, and the conductive particle dispersion layer 4 in the area 11 is transferred to the adhesive tape 13. (FIG. 5D).
  • the edge portion 14 of the conductive particle dispersion layer 4 remaining on the anisotropic conductive film 1 is detected by an edge detection device 15 using a CCD or the like (FIG. 5E).
  • the alignment means (not shown) aligns the anisotropic conductive film 1 and the first electronic component 100 such as an FPC, a rigid substrate, a ceramic substrate, a plastic substrate, or a glass substrate with the edge 14 as a reference. Then, the anisotropic conductive film 1 and the first electronic component 100 are temporarily pressure-bonded using the thermocompression bonding device 16 as the pressing means (FIG. 5F).
  • the base film 5 is peeled and removed from the anisotropic conductive film 1 temporarily bonded to the first electronic component 100 by a conventional method, and overlapped with a second electronic component such as an IC chip, IC module, or FPC. Then, this is crimped.
  • the second electronic components may be anisotropically conductively connected to each other by stacking them similarly on an IC chip or an IC module and stacking them.
  • the present invention also includes a sticking device that sticks an electronic component only to a region having no defective portion P of the anisotropic conductive film based on the positional information of the defective portion P guided from the mark Q in this way.
  • the predetermined region 11 including the defective portion is the base film. 5, the region 11 may be discharged without being used for connection with an electronic component.
  • the mark Q when the mark Q is detected from the anisotropic conductive film 1 unwound from the reel, the mark Q is located at a predetermined distance L3 from the mark center in the upstream direction from the defective portion P.
  • a half-cut 17a is formed at a position, and a half-cut 17b is also formed at a position that defines an attachment position of the electronic component upstream of the half-cut 17a.
  • the region sandwiched between the half-cuts 17 a and 17 b is aligned by alignment means so that the region is attached to the electronic component 100, and is temporarily bonded by the thermocompression bonding device 16.
  • FIG. 6C the conductive particle dispersion layer 4 adhered to the electronic component 100 is peeled off from the base film 5, and the defective portion P is discharged while remaining on the base film 5.
  • the half cuts 17a and 17b are omitted, and the formation position of the half cut 17a is attached to the upstream from this position. It may be set as a reference position for the sticking position to be performed.
  • the predetermined region 11 including the defective portion P is anisotropic.
  • a region that is cut out from the conductive film and does not include the remaining defective portions may be used for connection to the electronic component.
  • the mark Q when the mark Q is detected from the anisotropic conductive film 1 unwound from the reel, the mark center and the position at a predetermined distance L3 are located upstream from the defective portion P. Then, the anisotropic conductive film 1 is cut. In the figure, reference numeral 18 indicates this cutting line. And the remaining anisotropic conductive film 1 (FIG. 7B) which excised the predetermined area
  • a defective part presenting means for presenting position information of the defective part P a defective part information holding unit in which the positional information of the defective part is recorded on the recording medium instead of the mark Q described above. May be provided.
  • position information of the defective portion for example, as shown in FIG. 8, an xy coordinate system having a predetermined position of the anisotropic conductive film 1 as coordinate axes in the short side direction and the long side direction of the anisotropic conductive film is used. .., And the positions of the defective points P1, P2,.
  • the position information of the defective portion is recorded on the memory card 20, and the memory card 20 is attached to the product of the anisotropic conductive film 1.
  • the first, second, or third adhering method described above is performed based on the defective portion information read from the memory card 20.
  • the defective part information holding means for recording the position information of the defective part on the recording medium can be configured using a known information recording medium such as a USB memory in addition to the memory card 20.
  • the position information is recorded on a small IC chip, attached to an anisotropic conductive film by attaching it to a film packing bag or a reel, and the position information is obtained using a short-range wireless communication technology such as NFC. It may be read out.
  • the defective part information holding means in which the position information of the defective part is recorded on the recording medium may be incorporated in a management arithmetic unit 30 for performing quality control, product management, etc. of the anisotropic conductive film.
  • a management arithmetic unit 30 for performing quality control, product management, etc. of the anisotropic conductive film.
  • an identification mark 31 that enables acquisition of defective portion information from the arithmetic device 30 is provided on the product exterior of the anisotropic conductive film 1 or the like.
  • the identification mark 31 can be composed of letters, numbers, symbols, or combinations thereof.
  • the identification mark 31 may be displayed as a two-dimensional code (QR code (registered trademark), barcode, etc.).
  • the defect location information may be taken out from the arithmetic unit 30 and sent separately by e-mail or the like.
  • the adhering device used for adhering is different based on the position information of the defective part as shown in FIG.
  • Edge detecting means 34 of the conductive film 1, edge detecting means for aligning the anisotropic conductive film and the electronic component, thermocompression bonding apparatus 35 for attaching the anisotropic conductive film to the electronic component, and a controller for controlling these operations 36, and the controller 36 and the processing unit 30 for product management of the anisotropic conductive film are connected by a communication line, the information of the identification mark 31 from the controller 36.
  • the controller 36 can stick the non-defective portion of the anisotropic conductive film 1 to the electronic component based on the position information of the defective portion.
  • the position information of the inherent defective portion of the anisotropic conductive film 1 provided with the identification mark 31 is provided from the arithmetic unit 30, a regular anisotropic conductive film product managed as a product, This anisotropic conductive film can be distinguished from an anisotropic conductive film product improperly manufactured by imitating this anisotropic conductive film.
  • a nickel plate having a thickness of 2 mm was prepared, and cylindrical recesses (inner diameter 5 ⁇ m, depth 6 ⁇ m) were formed in a four-way lattice pattern to form a transfer body master (the distance between adjacent recess centers was 8 ⁇ m, and the density of the recesses was 16000. Pieces / mm 2 ). However, defects were formed in the lattice arrangement of the recesses by intentionally not forming the recesses at some lattice points of the tetragonal lattice pattern. (Design value: 14400 pieces / mm 2 )
  • the transfer body is peeled off from the master and wound around a stainless steel roll having a diameter of 20 cm so that the convex part is on the outside, and 70 parts by mass of epoxy resin (jER828, Mitsubishi Chemical Corporation) and phenoxy resin while rotating this roll. (YP-50, Nippon Steel & Sumikin Chemical Co., Ltd.)
  • a fine pressure-sensitive adhesive composition containing 30 parts by mass is brought into contact with a pressure-sensitive adhesive sheet impregnated with a nonwoven fabric, and the fine pressure-sensitive adhesive composition is adhered to the top surface of the convex portion. Then, a fine adhesive layer having a thickness of 1 ⁇ m was formed to obtain a transfer body.
  • conductive particles nickel plating resin particles (AUL704, Sekisui Chemical Co., Ltd.) having an average particle diameter of 4 ⁇ m on the surface of the transfer body, the conductive particles not adhered to the fine adhesion layer are blown. Removed. By appropriately adjusting the number of blowers, the conductive particles were intentionally removed.
  • the transfer body on which the conductive particles are attached is transferred to the insulating adhesive base layer, which is a 5 ⁇ m thick sheet-like thermosetting insulating adhesive film (phenoxy resin (YP-50, Nippon Steel & Sumitomo Chemical) Co.) 60 parts by mass, epoxy resin (jER828, Mitsubishi Chemical Co., Ltd.) 40 parts by mass, cationic curing agent (SI-60L, Sanshin Chemical Co., Ltd.) 2 parts by mass, and silica fine particles (Aerosil RY200, (Nippon Aerosil Co., Ltd.) a film formed from an insulating adhesive composition containing 20 parts by mass) at a temperature of 50 ° C. and a pressure of 0.5 MPa to transfer the conductive particles to the insulating adhesive base layer. It was.
  • insulating adhesive base layer where the conductive particles were transferred On the surface of the obtained insulating adhesive base layer where the conductive particles were transferred, another insulating adhesive film having a thickness of 15 ⁇ m as a transparent insulating adhesive cover layer (phenoxy resin (YP-50, Nippon Steel & Sumikin Chemical Co., Ltd.) )) Insulating adhesive composition containing 60 parts by mass, epoxy resin (jER828, Mitsubishi Chemical Corporation) 40 parts by mass, and cationic curing agent (SI-60L, Sanshin Chemical Co., Ltd.) 2 parts by mass And the film was laminated at a temperature of 60 ° C. and a pressure of 2 MPa. Thereby, an anisotropic conductive film was obtained.
  • phenoxy resin YP-50, Nippon Steel & Sumikin Chemical Co., Ltd.
  • Insulating adhesive composition containing 60 parts by mass, epoxy resin (jER828, Mitsubishi Chemical Corporation) 40 parts by mass, and cationic curing agent (SI-60L, Sanshin Chemical Co.,
  • This laser irradiation trace was formed by irradiating the insulating adhesive cover layer with laser light using a laser marker (ML-7111A) manufactured by AMADA MIYACHI (irradiation condition: 7 W). Further, the laser irradiation trace is formed at the side edge in the longitudinal direction of the anisotropic conductive film, and the anisotropic conductive film is formed between the center of the laser irradiation trace and the defective portion P in which omission or aggregation is observed. The distance in the longitudinal direction was 2 mm.
  • the size of the irradiation trace was about 350 ⁇ m in diameter.
  • the resin reaction rate in the insulating adhesive cover layer was measured before mounting using an infrared spectrophotometer (product number FT / IR-4100 manufactured by JASCO Corporation) at a distance of 300 ⁇ m from the center of the irradiation trace.
  • the IR spectrum after mounting was measured, and it was found to be 40% when calculated by calculating the attenuation amount (%) of the absorption wavelength of the epoxy ring or the attenuation amount (%) of the absorption wavelength of the unsaturated group.
  • the reaction rate at the position where the distance from the center was 700 ⁇ m was similarly determined, it was 0%. From this, when the distance from the center of an irradiation trace was 700 micrometers or more, it has confirmed that the sticking performance of this anisotropic conductive film did not fall, and does not cause trouble in connection performance.
  • anisotropic conductive film having mark and electronic component Each of the two anisotropic conductive films manufactured in (1) is used, and the mark is a black and white camera module (XC-, manufactured by Sony Corporation). HR50) and machine vision lens (MML1-ST65, manufactured by Moritex Co., Ltd.), and an anisotropic conductive film and a substrate (wiring width 15 ⁇ m, space between wirings) so as to avoid a defective portion P guided by the mark And a substrate (an IC chip having a gold bump with a size of 15 ⁇ 100 ⁇ m, a height of 15 ⁇ m, and a space between bumps of 15 ⁇ m) and 180 ° C. and 60 MPa. An anisotropic conductive connection was made under the condition of 5 seconds.
  • connection structure of substrate and electronic component For the two types of connection structures obtained in (3), (a) initial conduction resistance, (b) conduction reliability, and (c) short-circuit occurrence rate are as follows: It was evaluated as follows.
  • connection structure used for the measurement of the initial conduction resistance is put into an aging tester set at a temperature of 85 ° C. and a humidity of 85%, and the conduction resistance after being left for 500 hours is used as the initial conduction resistance. Measured in the same way as resistance.
  • the conduction resistance after the aging test is desirably 5 ⁇ or less.
  • the conduction resistance after the aging test of the two types of connection structures was 5 ⁇ or less, and the conduction reliability was excellent.
  • (C) Short-circuit occurrence rate With respect to two types of connection structures obtained in the same manner as in (3), the occurrence of short-circuit between adjacent wirings was examined. It is desirable that the short-circuit occurrence rate is 50 ppm or less. The occurrence rate of short circuit in the two types of connection structures was 50 ppm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Textile Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Wire Bonding (AREA)
  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Laminated Bodies (AREA)

Abstract

絶縁接着剤(2)に導電粒子(3)が所定の分散状態で分散した導電粒子分散層(4)を有する異方性導電フィルム(1A)は、導電粒子(3)の分散状態の不良箇所(P)の位置情報を提示する不良箇所提示手段(マークQ)を備えている。この異方性導電フィルム(1A)と電子部品(100)を貼着する貼着方法では、不良箇所提示手段(マークQ)から取得した不良箇所(P)の位置情報に基づき、異方性導電フィルム(1A)の非不良箇所を、異方性導電 接続する電子部品の端子又は端子列の存在領域に貼着する。

Description

異方性導電フィルム
 本発明は、異方性導電フィルム、異方性導電フィルムの貼着方法、及び異方性導電フィルムの貼着装置に関する。
 異方性導電フィルムは、ICチップ等の電子部品を基板に実装する際に広く使用されている。近年では、携帯電話、ノートパソコン等の小型電子機器において配線の高密度化が求められており、この高密度化に異方性導電フィルムを対応させる手法として、導電粒子を規則的に整列配置させることが種々検討されている。例えば、延伸フィルム上に導電粒子を敷き詰め、そのフィルムを二軸延伸することにより、導電粒子を単層で整列配置させる技術(特許文献1、2)や、基材に導電粒子を保持させ、その導電粒子を粘着性のフィルムへ転写させることにより導電粒子を所定の配列とする技術(特許文献3、4、5)等が知られている。
特許5147048号公報 特許5147049号公報 特開2007-165056 特開2005-209454 特開2004-335663
 しかしながら、特許文献1、2、3、4、5等に記載されている導電粒子を整列配置させる技術を用いて異方性導電フィルムを製造しても、導電粒子の抜けや凝集を完全になくすことは難しい。一方で、異方性導電フィルムを電子部品の接続に使用するにあたり、導電粒子の抜けや凝集は導通不良やショートの原因となる。
 これに対しては、異方性導電フィルムの出荷前に導電粒子の分散状態を検査し、抜けや凝集のあるものを廃棄することが考えられる。しかしながら、この方法では異方性導電フィルムの歩留まりが低下し、異方性導電フィルムの製造コストが増加してしまう。
 そこで本発明は、導電粒子の所定の分散状態に対し、抜けや凝集がある異方性導電フィルムを電子部品の接続に使用する場合でも、導通不良やショートが引き起こされないようにすることを課題とする。
 本発明者は、異方性導電フィルムの導電粒子の分散状態を検査し、所定の格子配列、所定の並列配置、所定の粒子密度での均等分散等の所定の分散状態に対して導電粒子の抜けや凝集といった分散状態の不良が発見された場合に、その不良箇所がわかるようにしておき、異方性導電フィルムを用いて電子部品を接続するときに不良箇所を回避できるようにしておくと、上述の課題を解決できることを見出し、本発明を想到した。
 即ち、本発明は、絶縁接着剤に導電粒子が所定の分散状態で分散した導電粒子分散層を有する異方性導電フィルムであって、導電粒子の分散状態の不良箇所の位置情報を提示する不良箇所提示手段を備えている異方性導電フィルムを提供する。
 特に、不良箇所の位置情報の提示手段として、異方性導電フィルムにマークが設けられている態様や、不良箇所の位置情報が記録媒体に記録された不良箇所情報保持手段を異方性導電フィルムが備える態様を提供する。
 また、本発明は、上述の異方性導電フィルムと電子部品を貼着する貼着方法であって、不良箇所提示手段から取得した不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所を、異方性導電接続する電子部品の端子又は端子列の存在領域に貼着する方法を提供する。
 さらに、本発明は、上述の異方性導電フィルムと電子部品を貼着する貼着装置であって、不良箇所提示手段から取得した不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所と電子部品の端子が接続されるように異方性導電フィルムと電子部品を位置合わせする位置合わせ手段、及び異方性導電フィルムと電子部品を貼着する押圧手段を有する貼着装置を提供する。
 本発明の異方性導電フィルムは、導電粒子の分散状態の不良箇所の位置情報を提示する不良箇所提示手段を備えているので、本発明の異方性導電フィルムを使用する本発明の貼着方法及び本発明の貼着装置によれば、不良箇所提示手段から取得される不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所、即ち異方性導電フィルムの不良箇所を含まない領域のみを異方性導電接続する電子部品の端子又は端子列の存在領域に貼着し、異方性導電フィルムの非不良箇所のみを電子部品の端子の接続に使用することが可能となる。したがって、異方性導電フィルムの歩留まりを低下させることなく、異方性導電フィルムを用いた接続の信頼性を向上させることができる。
図1は、不良箇所提示手段としてマークを有する実施例の異方性導電フィルム1Aの模式的平面図である。 図2は、不良箇所提示手段としてマークを有する実施例の異方性導電フィルム1Bの模式的平面図である。 図3は、不良箇所提示手段としてマークを有する実施例の異方性導電フィルム1Cの模式的平面図である。 図4は、不良箇所提示手段としてマークを有する実施例の異方性導電フィルム1Dの模式的平面図である。 図5Aは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図5Bは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図5Cは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図5Dは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図5Eは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図5Fは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図6Aは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図6Bは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図6Cは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図7Aは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図7Bは、マークを有する異方性導電フィルムを電子部品と貼着する方法の工程説明図である。 図8は、不良箇所情報保持手段に記録される不良箇所の位置情報の説明図である。 図9は、不良箇所情報保持手段を備えた異方性導電フィルムを電子部品と貼着する貼着装置の概略構成図である。
 以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
<マークを有する異方性導電フィルム>
 図1は、FOGやCOGに使用される本発明の一実施例の異方性導電フィルム1Aの模式的平面図である。この異方性導電フィルム1Aは、絶縁接着剤2に導電粒子3が所定の分散状態で分散した導電粒子分散層4と基材フィルム5が積層した層構成を有する。より具体的には、導電粒子分散層4において導電粒子3は正方格子に配列しており、図中破線で示した格子線同士の交点である格子点に位置する。
 なお、本発明において、導電粒子が所定の分散状態で分散しているとは、導電粒子が所定の規則性をもって存在していればよい。導電粒子は正方格子配列に限らず、長方格子、斜方格子、六方格子等に配列していてもよい。また、格子点に単独の粒子が配置されるだけでなく、所定数の導電粒子が群をなすように配置されていてもよい。導電粒子が、所定の粒子間距離で並列に整列してもよく、所定の粒子間距離を維持しつつランダムに分散してもよい。導電粒子を所定の分散状態に分散させるための方法にも特に制限はなく、例えば、特許文献1、2に記載されているように導電粒子を敷き詰めたフィルムの二軸延伸を利用する方法であってもよく、特許文献3、4、5に記載されているように基材に保持させた導電粒子をフィルムへ転写する方法でもよく、その他公知の転写型を使用する方法であってもよい。一例として、特開2009-152160、特開2010-33793等が挙げられる。
 導電粒子自体の構成や個数密度についても、絶縁接着剤自体の組成についても特に制限はなく、公知の異方性導電フィルムと同様とすることができる。
 導電粒子が所定の分散状態で分散した異方性導電フィルムを製造しようとしても、実際に製造された異方性導電フィルムには、導電粒子が所定の分散状態になっていない不良箇所が存在する場合がある。この不良箇所としては、導電粒子を格子状に配列させることを意図した場合に、格子点上で導電粒子が抜けている箇所、格子点上又はそれ以外の位置で導電粒子が凝集している箇所、格子状配列の有無に関わらず導電粒子を所定の配置密度で均等に分散させる異方性導電フィルムや比較的導電粒子を高密度に配置したCOG用の異方性導電フィルム等において導電粒子が局所的に密集ないし凝集した箇所、導電粒子が金属である場合に磁性により凝集が発生している箇所等を挙げることができる。図1には、不良箇所の一例として、導電粒子を正方格子配列させることを意図した異方性導電フィルム1Aにおいて、格子点で導電粒子3が抜けている不良箇所Pが存在する態様を示した。
 不良箇所Pは、異方性導電フィルム1Aにおける導電粒子の分散状態を撮像装置と画像解析処理システム(例えば三谷商事(株)、WinROOFなど)を組み合わせて用いて検査することにより発見することができ、その位置を特定することができる。なお、撮像装置としては、一例として最大出力画素数(H)×(V)が648×494、フレームレートが30~60fpsのものを適用できる。
 本実施例の異方性導電フィルム1Aは、不良箇所Pを提示する不良箇所提示手段として、マークQを有することを特徴としている。このマークQは異方性導電フィルム1Aの導電粒子分散層4側からレーザー光を照射することにより、導電粒子分散層4を構成する樹脂の表面状態が変化又は変性(熱硬化)することで形成された径0.3~1.0mmの照射跡である。異方性導電フィルム1Aが、異物混入防止のために、導電粒子分散層4上に透明なカバーフィルムを有している場合、レーザー光の照射は、カバーフィルムを介して導電粒子分散層4に行ってもよい。
 このような照射跡を形成するレーザー光の照射条件は、レーザー光を照射する異方性導電フィルム1Aの表面の材質にもよるが、例えば、PETなどの熱硬化性樹脂で形成されている場合、YAGレーザーや、YVO4レーザーを使用することができる。一例として、導電粒子分散層4上に透明PETからなるカバーフィルムが積層されている場合、そのカバーフィルム上から、波長1064nm、出力1.3~10Wで100~1000ミリ秒間でレーザー光を照射することで、導電粒子分散層4を形成する樹脂のみにマークQを形成することができる。このようなカバーフィルムの厚みは、実用上10~50μmとすることができる。
 マークQは基材フィルム5に形成してもよい。短時間で形成する点から、導電粒子分散層4を形成する硬化性樹脂を変性させてマークQを形成することが好ましく、異方性導電接続に使用する樹脂に不要なエネルギーを加えない点からは、基材フィルム5に形成することが好ましい。なお、レーザー光の照射により異方性導電フィルム1AにマークQを形成する場合、異方性導電フィルム1Aを用いた接続に支障を引き起こす異物の生成や飛散が生じないようにする。
 本実施例の異方性導電フィルム1Aでは、該異方性導電フィルム1Aを用いた接続作業時にマークQよりも上流の所定の範囲を電子部品の接続に使用しない領域とする点から、マークQは、不良箇所Pよりも、接続作業時の異方性導電フィルム1Aの流れ方向aの下流に設けられている。なお、異方性導電フィルムを用いた接続工程においてマークQが発見された場合に、その近傍にある不良箇所Pが接続に使用されないようにすればよいので、接続工程で使用する装置構成に応じて、マークQは、不良箇所Pよりも異方性導電フィルム1Aの流れ方向aの上流に形成してもよい。即ち、異方性導電フィルムの形成後に不良箇所Pを検出し、マークQを形成する工程は、異方性導電フィルムの形成後のいずれの工程で行ってもよく、マークQは、不良箇所Pの上流、下流のいずれに設けてもよい。
 異方性導電フィルム1Aの長手方向におけるマークQと不良箇所Pとの距離L1は、異方性導電フィルムの生産性と、不良箇所Pが存在することにより接続に使用しなくなる異方性導電フィルムを少なくする点から、所定の距離に定められる。即ち、この距離L1が短すぎると、異方性導電フィルムの製造工程においてマークQを形成後に異方性導電フィルムの巻取速度を遅くすることが必要となり、生産性が低下するので、1mm以上が好ましく、2mm以上がより好ましく、3mm以上がさらに好ましい。一方、距離L1が長すぎると、異方性導電フィルムの接続に使用できる領域が狭くなりすぎるので好ましくない。そのため、距離L1は、個々の電子部品の接続に要する異方性導電フィルムの長さの半分以下とすることが好ましい。したがって、距離L1の好ましい長さは、接続する電子部品の長さによって変わるが、例えば、COGに使用する場合に距離L1を15mm以下にすることが好ましく、より好ましくは10mm以下、さらに好ましくは5mm以下とする。
 また、異方性導電フィルム1Aの短手方向(幅方向)における不良箇所PとマークQの中心との距離L2は、図示したようにゼロとしてもよく、あるいは、不良箇所Pの位置にかかわらず、異方性導電フィルム1Aの長手方向の側縁近傍としてもよい。後者の場合、異方性導電フィルムと電子部品との接続に際してマークQを検出する領域を異方性導電フィルムの側縁近傍に限定することができる。また、異方性導電フィルムのフィルム幅と電子部品の大きさにより、異方性導電フィルムの長手方向の側縁近傍が本来的に電子部品の接続に使用されない場合には、マークQを異方性導電フィルムの長手方向の側縁近傍に設けることにより、マークQがあることで電子部品の接続に使用できなくなる領域を低減させることができる。
 なお、マークQの形成方法は、レーザー照射により照射跡として形成する他、所定の波長の光照射により発色ないし変色する物質を基材フィルム5に分散させておき、該波長の光を照射することで有色部位として形成してもよく、また、印刷により形成してもよく、シールの貼着により形成してもよい。
 図2に示した異方性導電フィルム1Bは、上述の異方性導電フィルム1Aにおいて、一つの格子点に複数の導電粒子が凝集した不良箇所Pに対してマークQを設けたものである。この場合、マークQの形成位置を、異方性導電フィルム1Bの長手方向については、不良箇所Pにおいて本来導電粒子があるべき格子点とマークQの中心との距離を所定の距離L1としており、異方性導電フィルムの短手方向については、異方性導電フィルム1Bの長手方向の側縁近傍としている。
 図3は、COG用の実施例の異方性導電フィルム1Cの模式的平面図である。COG用の異方性導電フィルム1Cでは、図中、破線で示した電子部品(チップ)の貼着位置6と異方性導電フィルム1Cの側辺との間の領域7に、不良箇所Pに対応するマークQを形成することが好ましい。この領域7にマークQがあることで電子部品(チップ)の接続に使用できなくなる領域を低減させることができる。
 また、図4に示したCOG用の実施例の異方性導電フィルム1Dのように、不良箇所Pに対応するマークQを、異方性導電フィルムの長手方向に周期的に存在する電子部品(チップ)の非貼着領域8に形成してもよい。
<マークを有する異方性導電フィルムの貼着方法>
 マークQを有する異方性導電フィルムを電子部品の接続に使用すると、マークQで案内される不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所のみを、異方性導電接続する電子部品の端子又は端子列の存在領域に貼着させることができる。本発明は、このような貼着方法を包含する。この貼着方法は、異方性導電フィルムの非不良箇所のみを電子部品に貼着する態様と、非不良箇所だけでなく不良箇所PとマークQも電子部品に貼着するが、不良箇所PとマークQの貼着位置を電子部品同士の異方性導電接続に支障をきたさない位置とする態様の双方を包含する。後者の態様では、不良箇所PとマークQの貼着位置が電子部品同士の異方性導電接続に支障をきたす位置となるか否かを確認し、支障をきたす位置となる場合に、異方性導電フィルムと電子部品との位置合わせの調整、異方性導電フィルムの送り又は戻しの調整、貼着時に使用する熱圧着ヘッドの大きさの調整等を行う。以下、前者の態様(異方性導電フィルムの非不良箇所のみを電子部品に貼着する態様)について、詳細に説明する。
(第1の貼着方法)
 図5A~図5Fは、このような貼着方法の一態様であって、異方性導電フィルム1を、例えば、FPC、リジッド基板、セラミック基板、プラスチック基板、ガラス基板等の第1の電子部品と貼着する方法の工程説明図である。この貼着方法では、以下に説明するように、異方性導電フィルム1から不良箇所Pを含む所定領域11を除去し、残りの非不良箇所を電子部品と貼着する。
 なお、ここで使用する異方性導電フィルム1は、一例として、導電粒子分散層4と基材フィルム5の積層構造を有し、マークQが不良箇所Pから該フィルムの流れ方向下流の所定の距離に設けられているとした。
 まず、図5Aに示すように、リールに巻き回された異方性導電フィルム1を巻出し、CCD等を用いたマーク検出装置10によりマークQを検出する。マーク検出装置10としては、CCDや、色度センサー、レーザーを利用したものなどを使用することができ、例えば、アライメントマークの検出装置を利用することもできる。
 次に、マークQで案内される不良箇所Pを含む所定領域を除去するために、まず、その領域11を画するラインに、ハーフカット形成手段によりハーフカット12を形成する。このハーフカット12は、異方性導電フィルム1の導電粒子分散層4側から基材フィルム5に達するように形成することが好ましい(図5B)。
 次に、不良箇所Pを含む除去すべき領域11上に粘着テープ13を貼着し(図5C)、その粘着テープ13を剥がし、領域11の導電粒子分散層4を粘着テープ13に転着させる(図5D)。
 こうして領域11の導電粒子分散層4が除去されたあとに異方性導電フィルム1に残存する導電粒子分散層4のエッジ部分14を、CCD等を用いたエッジ検出装置15で検出し(図5E)、位置合わせ手段(図示せず)でエッジ14を基準として異方性導電フィルム1と、FPC、リジッド基板、セラミック基板、プラスチック基板、ガラス基板等の第1の電子部品100とを位置合わせし、押圧手段として熱圧着装置16を使用して異方性導電フィルム1と第1の電子部品100とを仮圧着する(図5F)。
 その後、常法により、第1の電子部品100と仮圧着している異方性導電フィルム1から基材フィルム5を剥離除去し、ICチップ、ICモジュール、FPC等の第2の電子部品と重ね、本圧着する。また、ICチップやICモジュールに同様に貼着し、これらをスタックすることで、第2の電子部品同士を異方性導電接続してもよい。
 こうして、不良箇所Pを有する異方性導電フィルム1であっても、不良箇所Pのない領域のみを使用して電子部品を接続することが可能となる。本発明は、このようにマークQから案内される不良箇所Pの位置情報に基づき、異方性導電フィルムの不良箇所Pのない領域のみと電子部品を貼着する貼着装置も包含する。
(第2の貼着方法)
 マークQで案内される不良箇所の位置情報に基づき、異方性導電フィルムの不良箇所Pを含まない領域のみを電子部品に貼着させる方法としては、不良箇所を含む所定領域11を基材フィルム5上に残存させたまま、その領域11が電子部品との接続に使用されることなく排出されるようにしてもよい。
 例えば、図6Aに示すように、リールから巻き出された異方性導電フィルム1からマークQが検出されると、マークQから不良箇所Pよりも上流方向へ、マーク中心と所定距離L3にある位置にハーフカット17aを形成し、さらにそのハーフカット17aよりも上流で電子部品の貼着位置を画する位置にもハーフカット17bを形成する。次に、図6Bに示すように、ハーフカット17a、17bで挟まれた領域が電子部品100と貼着とされるように位置合わせ手段で位置合わせし、熱圧着装置16で仮圧着する。これにより、図6Cに示すように、電子部品100と貼着した導電粒子分散層4は基材フィルム5から剥離し、不良箇所Pは基材フィルム5に残存したまま排出される。
 なお、このように不良箇所Pを基材フィルム5に残存した状態で排出させる場合に、ハーフカット17a、17bを省略し、ハーフカット17aの形成位置を、この位置から上流に電子部品を貼着するという貼着位置の基準位置として設定してもよい。
(第3の貼着方法)
 マークQで案内される不良箇所の位置情報に基づき、異方性導電フィルムの不良箇所Pを含まない領域のみを電子部品に貼着させる方法としては、不良箇所Pを含む所定領域11を異方性導電フィルムから切除し、残りの不良箇所を含まない領域を電子部品との接続に使用してもよい。
 例えば、図7Aに示すように、リールから巻き出された異方性導電フィルム1からマークQが検出されると、マークQから不良箇所Pよりも上流方向へ、マーク中心と所定距離L3の位置で異方性導電フィルム1を切断する。図中、符号18はこの切断線を示している。そして、不良箇所Pを含む所定領域11を切除した残りの異方性導電フィルム1(図7B)と電子部品を位置合わせして貼着する。
<不良箇所情報が記録された記録媒体を備える異方性導電フィルム>
 本発明の異方性導電フィルムにおいては、不良箇所Pの位置情報を提示する不良箇所提示手段として、上述のマークQに代えて、不良箇所の位置情報を記録媒体に記録した不良箇所情報保持手段を備えていてもよい。ここで、不良箇所の位置情報としては、例えば図8に示すように、異方性導電フィルム1の所定の位置を、異方性導電フィルムの短手方向と長手方向を座標軸とするxy座標系の原点Oとし、不良箇所P1、P2、…の位置をこのxy座標で表したものとする。この不良箇所の位置情報をメモリーカード20に記録し、メモリーカード20を異方性導電フィルム1の製品に付帯させる。
 異方性導電フィルム1と電子部品100を貼着する貼着装置では、このメモリーカード20から読み出される不良箇所情報に基づき、上述の第1、第2又は第3の貼着方法を行う。
 本発明において、不良箇所の位置情報を記録媒体に記録した不良箇所情報保持手段は、メモリーカード20の他、USBメモリなどの公知の情報記録媒体等を用いて構成することができる。また、小型のICチップに位置情報を記録し、これをフィルム梱包袋やリールなどに取り付けるなどして異方性導電フィルムに付帯させ、NFCなどの近距離無線通信技術を利用して位置情報が読み出されるようにしてもよい。
 また、図9に示すように、不良箇所の位置情報を記録媒体に記録した不良箇所情報保持手段を、異方性導電フィルムの品質管理、製品管理等を行う管理用演算装置30に組み込んでも良い。この場合、例えば、異方性導電フィルム1の製品外装等に、演算装置30から不良箇所情報を取得することを可能とする識別マーク31を設けておく。この識別マーク31は、文字、数字、記号又はこれらの組み合わせ等で構成することができる。識別マーク31を二次元コード(QRコード(登録商標)、バーコード等)で表示してもよい。また、異方性導電フィルム1の製品ロット番号に基づき、演算装置30から不良箇所情報が取り出され、別途電子メールなどで送付されるようにしてもよい。
 なお、不良箇所の位置情報を記録しておく演算装置30には、その位置情報を使用して実際に電子部品を使用したときの接続の良否に関する情報を書き込めるようにしてもよい。これを異方性導電フィルムの出荷先に返送することで、品質管理の向上とその対応の効率化を図る効果が期待できる。
 識別マーク31を有する異方性導電フィルム1と電子部品100の貼着方法としては、例えば、その貼着に使用する貼着装置が、図9に示すように不良箇所の位置情報に基づいて異方性導電フィルムにハーフカットを形成するハーフカット形成手段32、不良箇所Pを含む所定領域を転着させる粘着テープの貼着手段33、不良箇所Pを含む所定領域を除去した後の異方性導電フィルム1のエッジ検出手段34、エッジ検出した異方性導電フィルムと電子部品との位置合わせ手段、異方性導電フィルムを電子部品に貼着する熱圧着装置35、これらの動作を制御するコントローラ36を有し、コントローラ36と異方性導電フィルムの製品管理用の演算装置30とが通信回線で接続される場合に、コントローラ36から識別マーク31の情報が演算装置30に送信され、演算装置30から当該識別マーク31に対応する不良箇所の位置情報がコントローラ36に送信されるようにする。これにより、コントローラ36は、不良箇所の位置情報に基づき、異方性導電フィルム1の非不良箇所を電子部品に貼着することが可能となる。
 この方法によれば、識別マーク31を備えた異方性導電フィルム1の固有の不良箇所の位置情報が演算装置30から提供されるので、製品管理された正規の異方性導電フィルム製品と、この異方性導電フィルムを真似て不正規に製造された異方性導電フィルム製品との識別も可能となる。
 以下、実施例により本発明を具体的に説明する。
(1)異方性導電フィルムの作成
(1-1)導電粒子の配列に抜けを有する異方性導電フィルムの作製
 導電粒子が4方格子に配列しているが、一部の格子点で導電粒子が抜けている異方性導電フィルムを次のように作成した。
 厚さ2mmのニッケルプレートを用意し、4方格子パターンで円柱状の凹部(内径5μm、深さ6μm)を形成し、転写体原盤とした(隣接凹部中心間距離は8μm、凹部の密度は16000個/mm2)。ただし、4方格子パターンの一部の格子点では意図的に凹部を形成しないことにより、凹部の格子配列に欠陥を形成した。(設計値14400個/mm2
 得られた転写体原盤に、フェノキシ樹脂(YP-50、新日鉄住金化学(株))60質量部、アクリレート樹脂(M208、東亞合成(株))29質量部、光重合開始剤(IRGACURE184、BASFジャパン(株))2質量部を含有する光重合性樹脂組成物を、乾燥厚みが30μmとなるようにPETフィルム上に塗布し、80℃で5分間乾燥後、高圧水銀ランプにて1000mJ光照射することにより転写体を作成した。
 転写体を原盤から引き剥がし、凸部が外側になるように直径20cmのステンレス製のロールに巻き付け、このロールを、回転させながらエポキシ樹脂(jER828、三菱化学(株))70質量部とフェノキシ樹脂(YP-50、新日鉄住金化学(株))30質量部を含有する微粘着剤組成物を、不織布に含浸させた粘着シートに接触させ、凸部の天面に微粘着剤組成物を付着させ、厚さ1μmの微粘着層を形成して転写体を得た。
 この転写体の表面に、平均粒子径4μmの導電粒子(ニッケルメッキ樹脂粒子(AUL704、積水化学工業(株)))を散布した後、ブロアすることにより微粘着層に付着していない導電粒子を除去した。このブロア回数を適宜調整して、意図的に導電粒子の抜けが発生するようにした。
 導電粒子が付着した転写体を、その導電粒子付着面から、絶縁性接着ベース層である厚さ5μmのシート状の熱硬化型の絶縁性接着フィルム(フェノキシ樹脂(YP-50、新日鉄住金化学(株))60質量部、エポキシ樹脂(jER828、三菱化学(株))40質量部、カチオン系硬化剤(SI-60L、三新化学工業(株))2質量部、及びシリカ微粒子(アエロジルRY200、日本アエロジル(株))20質量部を含有する絶縁性接着組成物から形成したフィルム)に対し、温度50℃、圧力0.5MPaで押圧することにより、絶縁性接着ベース層に導電粒子を転写させた。
 得られた絶縁性接着ベース層の導電粒子転着面に、透明な絶縁性接着カバー層として厚さ15μmのシート状の別の絶縁性接着フィルム(フェノキシ樹脂(YP-50、新日鉄住金化学(株))60質量部、エポキシ樹脂(jER828、三菱化学(株))40質量部、及びカチオン系硬化剤(SI-60L、三新化学工業(株))2質量部を含有する絶縁性接着組成物から形成されたフィルム)を重ね、温度60℃、圧力2MPaで積層した。これにより異方性導電フィルムが得られた。
(1-2)導電粒子の配列に導電粒子の凝集がある異方性導電フィルムの作製
 転写体原盤の凹部の深さを4.4μm、凹部の内径を4.8μm、隣接凹部中心間距離を5.6μmとし、凹部の密度を32000個/mm2と増加させることで、導電粒子の凝集が起こりやすい転写体原盤とした。ただし、凹部の格子配列に意図的に欠陥を形成することはしなかった。
 この転写体原盤を使用し、ブロア回数を(1-1)より少なくした以外は(1-1)を繰り返すことにより異方性導電フィルムを得た。
(2)マークの形成
 (1-1)、(1-2)で作製した異方性導電フィルムにおける導電粒子の配列状態を絶縁性接着カバー層側から光学顕微鏡(MX50、オリンパス(株))で観察したところ、(1-1)の異方性導電フィルムには全格子点の32%に抜けが観察され、(1-2)の異方性導電フィルムには全格子点の26%に凝集が観察された。本実施例では、隣接する10個以上の格子点に導電粒子が存在しない箇所を「抜け」と評価し、4個以上の導電粒子が接触して存在する箇所を「凝集」と評価した。
 抜け又は凝集という不良箇所Pが観察された場合に、不良箇所提示手段としてレーザー照射跡からなるマークを異方性導電フィルムに形成した。
 このレーザー照射跡は、(株)アマダミヤチ製レーザーマーカ(ML-7111A)を用いてレーザー光を絶縁性接着カバー層に照射することにより形成した(照射条件:7W)。また、レーザー照射跡の形成位置は、異方性導電フィルムの長手方向の側縁部であって、レーザー照射跡の中心と、抜け又は凝集が観察された不良箇所Pとの異方性導電フィルム長手方向の距離が2mmの位置とした。
 照射跡の大きさは直径約350μmであった。
 絶縁性接着カバー層における樹脂の反応率を、照射跡の中心からの距離が300μmの位置で赤外分光光度計(日本分光(株)製、品番FT/IR-4100)を用いて実装前と実装後のIRスペクトルを計測し、エポキシ環の吸収波長の減衰量(%)または、不飽和基の吸収波長の減衰量(%)を算出することにより求めたところ40%であり、照射跡の中心からの距離が700μmの位置における反応率を同様に求めたところ0%であった。このことから、照射跡の中心からの距離が700μm以上であると、この異方性導電フィルムの貼着性能は低下しておらず、接続性能に支障をきたさないことが確認できた。
(3)マークを有する異方性導電フィルムと電子部品との接続
 (1)で製造した2種の異方性導電フィルムをそれぞれ使用し、マークを白黒カメラモジュール(ソニー(株)製、XC-HR50)とマシンビジョンレンズ((株)モリテックス製、MML1-ST65)を用いて検出し、マークで案内される不良箇所Pを避けるように異方性導電フィルムと基板(配線幅15μm、配線間スペース15μmの配線が設けられたガラス基板)とを貼着し、さらにその基板とチップ(大きさ15×100μm、高さ15μm、バンプ間スペース15μmの金バンプを有するICチップ)とを180℃、60MPa、5秒という条件で異方性導電接続した。
(4)基板と電子部品の接続構造体の評価
 (3)で得た2種の接続構造体について、(a)初期導通抵抗、(b)導通信頼性、(c)ショート発生率を次のように評価した。
(a)初期導通抵抗
 抵抗測定器(デジタルマルチメーター7565、横河電機(株))を用いて接続構造体の初期導通抵抗を測定した。初期導通抵抗は0.5Ω以下であれば良好と評価できる。2種の接続構造体の初期導通抵抗はいずれも0.5Ω以下であった。
(b)導通信頼性
 初期導通抵抗の測定に使用した接続構造体を、温度85℃、湿度85%に設定されたエージング試験器中に投入し、500時間放置した後の導通抵抗を、初期導通抵抗と同様に測定した。このエージング試験後の導通抵抗は5Ω以下であることが望まれる。2種の接続構造体のエージング試験後の導通抵抗はいずれも5Ω以下であり、導通信頼性に優れていた。
(c)ショート発生率
 (3)と同様にして得た2種の接続構造体について、隣接する配線間のショートの発生の有無を調べた。ショート発生率は50ppm以下であることが望まれる。2種の接続構造体のショート発生率はいずれも50ppm以下であった。
 以上により、導電粒子の抜けによる導通不良や、導電粒子の凝集によるショートの発生が無いことが確認された。
 1、1A、1B、1C、1D  異方性導電フィルム
 2  絶縁接着剤
 3  導電粒子
 4  導電粒子分散層
 5  基材フィルム
 6  チップの貼着位置
 7  チップの貼着位置と異方性導電フィルムの側辺との間の領域
 8  チップの非貼着領域
10  マーク検出装置
11  除去する領域
12  ハーフカット
13  粘着テープ
14  エッジ部分
15  エッジ検出装置
16  熱圧着装置
17a、17b  ハーフカット
18  切断線
20  メモリーカード
30  演算装置
31  識別マーク
32  ハーフカット形成手段
33  粘着テープの貼着手段
34  エッジ検出手段
35  熱圧着装置
36  コントローラ
100  電子部品
 P、P1、P2  不良箇所
 Q  マーク
 a  異方性導電フィルムの接続時の流れ方向
 L1 異方性導電フィルムの長手方向における不良箇所とマーク中心との距離
 L2 異方性導電フィルムの短手方向における不良箇所とマーク中心との距離
 L3 貼り合わせの基準位置とマーク中心との距離

Claims (18)

  1.  絶縁接着剤に導電粒子が所定の分散状態で分散した導電粒子分散層を有する異方性導電フィルムであって、導電粒子の分散状態の不良箇所の位置情報を提示する不良箇所提示手段を備えている異方性導電フィルム。
  2.  前記不良箇所提示手段として、異方性導電フィルムにマークが設けられている請求項1記載の異方性導電フィルム。
  3.  前記マークが不良箇所から所定の距離に設けられている請求項2記載の異方性導電フィルム。
  4.  前記マークと不良箇所との異方性導電フィルムの長手方向の距離が5mm以内である請求項1又は2記載の異方性導電フィルム。
  5.  前記マークが異方性導電フィルムの長手方向の側縁近傍に設けられている請求項2~4のいずれかに記載の異方性導電フィルム。
  6.  前記マークが導電粒子分散層に設けられている請求項2~5いずれかに記載の異方性導電フィルム。
  7.  異方性導電フィルムが基材フィルムを有し、該基材フィルムに前記マークが設けられている請求項2~5いずれかに記載の異方性導電フィルム。
  8.  前記マークがレーザー照射跡である請求項2から7のいずれかに記載の異方性導電フィルム。
  9.  不良箇所提示手段として、不良箇所の位置情報が記録媒体に記録されている不良箇所情報保持手段を備える請求項1記載の異方性導電フィルム。
  10.  不良箇所情報保持手段として、不良箇所情報が記録された記録媒体が異方性導電フィルムに付帯されている請求項9記載の異方性導電フィルム。
  11.  不良箇所情報保持手段として、異方性導電フィルムの管理用演算装置を備え、該演算装置から不良箇所情報を取得することを可能とする識別マークが異方性導電フィルムに設けられている請求項9記載の異方性導電フィルム。
  12.  請求項1~11のいずれかに記載の異方性導電フィルムと電子部品を貼着する貼着方法であって、不良箇所提示手段から取得した不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所を、異方性導電接続する電子部品の端子又は端子列の存在領域に貼着する方法。
  13.  異方性導電フィルムが基材フィルムを有する場合に、不良箇所の位置情報に基づき、導電粒子分散層から不良箇所を含む所定領域を除去し、残りの非不良箇所を電子部品と貼着する請求項12記載の貼着方法。
  14.  不良箇所の位置情報に基づき、不良箇所を含む所定領域が排出されるように送り出し、残りの非不良箇所を電子部品と貼着する請求項12記載の貼着方法。
  15.  不良箇所の位置情報に基づき、異方性導電フィルムの不良箇所を含む所定領域を切除し、残りの非不良箇所を電子部品と貼着する請求項12記載の貼着方法。
  16.  識別マークの情報を管理用演算装置に送信することにより管理用演算装置から不良箇所情報を取得し、該不良箇所情報を使用する請求項12~15のいずれかに記載の貼着方法。
  17.  請求項1~11のいずれかに記載の異方性導電フィルムと電子部品を貼着する貼着装置であって、不良箇所提示手段から取得した不良箇所の位置情報に基づき、異方性導電フィルムの非不良箇所と電子部品の端子が接続されるように異方性導電フィルムと電子部品とを位置合わせする位置合わせ手段、及び異方性導電フィルムと電子部品を貼着する押圧手段を有する貼着装置。
  18.  請求項2~8のいずれかに記載の異方性導電フィルム用の貼着装置であって、マーク検出装置を有する請求項17記載の貼着装置。
PCT/JP2016/082225 2015-11-26 2016-10-31 異方性導電フィルム WO2017090379A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680066280.3A CN108352632A (zh) 2015-11-26 2016-10-31 各向异性导电膜
KR1020197036934A KR102476429B1 (ko) 2015-11-26 2016-10-31 이방성 도전 필름
CN202211367096.6A CN115719890A (zh) 2015-11-26 2016-10-31 各向异性导电膜
US15/769,042 US10827625B2 (en) 2015-11-26 2016-10-31 Anisotropic conductive film
KR1020187005823A KR20180033292A (ko) 2015-11-26 2016-10-31 이방성 도전 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230149A JP6661997B2 (ja) 2015-11-26 2015-11-26 異方性導電フィルム
JP2015-230149 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090379A1 true WO2017090379A1 (ja) 2017-06-01

Family

ID=58763138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082225 WO2017090379A1 (ja) 2015-11-26 2016-10-31 異方性導電フィルム

Country Status (6)

Country Link
US (1) US10827625B2 (ja)
JP (1) JP6661997B2 (ja)
KR (2) KR20180033292A (ja)
CN (2) CN108352632A (ja)
TW (2) TWI829437B (ja)
WO (1) WO2017090379A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191779A1 (ja) 2016-05-05 2017-11-09 デクセリアルズ株式会社 異方性導電フィルム
JP2020095922A (ja) * 2018-12-14 2020-06-18 デクセリアルズ株式会社 異方性導電フィルム
JP7481800B2 (ja) * 2018-12-17 2024-05-13 株式会社トッパンTomoegawaオプティカルフィルム フィルム及びマーカーの印字方法
CN110396379A (zh) * 2019-07-16 2019-11-01 湖北锂诺新能源科技有限公司 一种可进行激光喷码的锂离子电池保护胶带
DE102021123510A1 (de) * 2021-09-10 2023-03-16 Schmidt & Heinzmann Gmbh & Co Kg Produktionsvorrichtung, insbesondere SMC-Produktionsvorrichtung, zu einer Herstellung von duroplastischen Halbzeugen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251337A (ja) * 2010-08-05 2010-11-04 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法並びに接続構造体
JP2010257983A (ja) * 2005-08-04 2010-11-11 Hitachi Chem Co Ltd 異方導電フィルム巻重体
JP2014071067A (ja) * 2012-10-01 2014-04-21 Dac Engineering Co Ltd 巻き替え検品方法、巻き替え検品装置及び巻き替え検品システム

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1245824A (en) 1967-11-30 1971-09-08 Philips Electronic An Associat Improvements in or relating to optical deflection systems
US3564905A (en) 1968-03-06 1971-02-23 Holotron Corp Ultrasonic imaging technique
CN1146030C (zh) * 1998-07-28 2004-04-14 精工爱普生株式会社 半导体装置及其制造方法、半导体模块、电路基板以及电子装置
JP3508683B2 (ja) 2000-03-07 2004-03-22 日本電気株式会社 半導体装置及びその製造方法
JP2002075580A (ja) * 2000-09-04 2002-03-15 Sekisui Chem Co Ltd 異方導電フィルムの製造方法
JP4343456B2 (ja) * 2001-04-03 2009-10-14 大日本印刷株式会社 シート状製品の欠陥マーキング方法および装置
JP4190763B2 (ja) * 2001-04-27 2008-12-03 旭化成株式会社 異方性を有する導電性接着シートおよびその製造方法
JP2003222584A (ja) 2002-01-31 2003-08-08 Hitachi Chem Co Ltd フィルム中の微細粒子数測定方法及びその装置
JP2004235227A (ja) 2003-01-28 2004-08-19 Mitsui Mining & Smelting Co Ltd 電子部品実装用フィルムキャリアテープ、および電子部品実装用フィルムキャリアテープの最終不良マーキング方法
JP2004335663A (ja) 2003-05-06 2004-11-25 Sumitomo Bakelite Co Ltd 異方導電フィルムの製造方法
JP2005209454A (ja) 2004-01-21 2005-08-04 Sumitomo Bakelite Co Ltd 異方導電フィルムの製造方法
JP2006194721A (ja) * 2005-01-13 2006-07-27 Nagase & Co Ltd 欠陥マーキング装置
KR100549470B1 (ko) * 2005-10-04 2006-02-07 (주)글로벌링크 이방성 도전 필름용 압흔 검사장치
JP2007115560A (ja) * 2005-10-21 2007-05-10 Sumitomo Bakelite Co Ltd 異方導電フィルム及びその製造方法
JP2007165056A (ja) 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd 異方導電性フィルムの製造方法および異方導電性フィルム
KR100882735B1 (ko) * 2007-03-19 2009-02-06 도레이새한 주식회사 이방성 전도필름 및 이의 접착방법
JP5147049B2 (ja) 2007-07-25 2013-02-20 旭化成イーマテリアルズ株式会社 異方性導電フィルム
JP5147048B2 (ja) 2007-07-25 2013-02-20 旭化成イーマテリアルズ株式会社 異方導電性フィルム
WO2009037964A1 (ja) * 2007-09-20 2009-03-26 Sony Chemical & Information Device Corporation 異方性導電膜及びその製造方法、並びに、該異方性導電膜を用いた接合体
JP2008028426A (ja) 2007-10-15 2008-02-07 Renesas Technology Corp 半導体装置の製造方法
JP2009152160A (ja) 2007-12-25 2009-07-09 Tokai Rubber Ind Ltd 粒子転写型およびその製造方法、粒子転写膜の製造方法ならびに異方性導電膜
JP2010033793A (ja) 2008-07-28 2010-02-12 Tokai Rubber Ind Ltd 粒子転写膜の製造方法
US20100162865A1 (en) 2008-12-31 2010-07-01 E.I. Du Pont De Nemours And Company Defect-containing strip and method for detecting such defects
JP2013205091A (ja) * 2012-03-27 2013-10-07 Dainippon Printing Co Ltd フィルム検査システム、フィルム検査方法
KR20210082571A (ko) * 2012-08-29 2021-07-05 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름 및 그 제조 방법
KR20150078860A (ko) * 2013-12-31 2015-07-08 (주)엔에스 불량 마크의 마킹 장치 및 방법
JP2015197985A (ja) 2014-03-31 2015-11-09 株式会社カネカ 透明電極付きフィルム基板の製造方法
TWM555970U (zh) * 2017-11-16 2018-02-21 Liang Zhen Sheng 分段式液體溫度控制系統

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257983A (ja) * 2005-08-04 2010-11-11 Hitachi Chem Co Ltd 異方導電フィルム巻重体
JP2010251337A (ja) * 2010-08-05 2010-11-04 Sony Chemical & Information Device Corp 異方性導電膜及びその製造方法並びに接続構造体
JP2014071067A (ja) * 2012-10-01 2014-04-21 Dac Engineering Co Ltd 巻き替え検品方法、巻き替え検品装置及び巻き替え検品システム

Also Published As

Publication number Publication date
KR20180033292A (ko) 2018-04-02
TW202310502A (zh) 2023-03-01
TW201740623A (zh) 2017-11-16
KR102476429B1 (ko) 2022-12-09
JP2017098126A (ja) 2017-06-01
US20190090354A1 (en) 2019-03-21
US10827625B2 (en) 2020-11-03
CN108352632A (zh) 2018-07-31
CN115719890A (zh) 2023-02-28
JP6661997B2 (ja) 2020-03-11
KR20190141266A (ko) 2019-12-23
TWI829437B (zh) 2024-01-11
TWI787157B (zh) 2022-12-21

Similar Documents

Publication Publication Date Title
WO2017090379A1 (ja) 異方性導電フィルム
US8456307B2 (en) Method for producing sheet with IC tags, apparatus for producing sheet with IC tags, sheet with IC tags, method for fixing IC chips, apparatus for fixing IC chips, and IC tag
US20210005520A1 (en) Method and apparatus for manufacturing array device
US8649896B2 (en) Manufacturing method of semiconductor device
TWI430375B (zh) 液晶顯示裝置之製造設備及其製造方法
US10714444B2 (en) Anisotropic conductive film
JP2014142729A (ja) 半導体装置の製造方法
JP2017098126A5 (ja)
KR101981173B1 (ko) 표시 장치용 본딩 장치 및 그 방법
JP2004031868A (ja) 実装方法および実装装置
JP2019036516A (ja) 異方性導電フィルム
JP2006186179A (ja) 電子部品圧着装置、電子部品圧着検査装置及び電子部品圧着検査方法
KR102621211B1 (ko) 이방성 도전 필름
JP2006339211A (ja) 半導体装置ダイの選別方法及び半導体基板
JP2013225545A (ja) Fpdモジュール組立装置、および、圧着ヘッド制御方法
JP2012104543A (ja) Fpdモジュールに搭載される部材の端部検出装置、端部検出方法及びacf貼付け装置
TWI763750B (zh) 異向性導電膜
JP2001291738A (ja) テープキャリアパッケージ、及びこれを用いる平面表示装置の製造方法
TW202246049A (zh) 連接膜、及連接結構體之製造方法
JP2005183691A (ja) 半導体チップの製造方法
JP2013004936A (ja) インターポーザ、インターポーザシート、インターポーザの判定方法とインターポーザの実装方法
JP2007180151A (ja) 連続配線基板
JP2004014683A (ja) 実装基板の不良部マーキング方法および装置
JP2011089777A (ja) Tcpハンドリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868328

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20187005823

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868328

Country of ref document: EP

Kind code of ref document: A1