WO2017086451A1 - 菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物 - Google Patents

菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物 Download PDF

Info

Publication number
WO2017086451A1
WO2017086451A1 PCT/JP2016/084306 JP2016084306W WO2017086451A1 WO 2017086451 A1 WO2017086451 A1 WO 2017086451A1 JP 2016084306 W JP2016084306 W JP 2016084306W WO 2017086451 A1 WO2017086451 A1 WO 2017086451A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
culture
lactic acid
acid bacteria
germ
Prior art date
Application number
PCT/JP2016/084306
Other languages
English (en)
French (fr)
Inventor
上野 茂典
篤 大橋
聖史 八木
Original Assignee
エバラ食品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エバラ食品工業株式会社 filed Critical エバラ食品工業株式会社
Priority to JP2017551953A priority Critical patent/JPWO2017086451A1/ja
Publication of WO2017086451A1 publication Critical patent/WO2017086451A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to a method for culturing lactic acid bacteria in which the survival ability of the bacteria is induced and expressed so as to increase stress tolerance.
  • Lactic acid bacteria is a general term for a group of bacteria that produce lactic acid in large quantities. In addition to various fermented foods, it has been involved in the production of alcoholic beverages, brewed products, pickles, processed fruit products, etc., and humans have long benefited from lactic acid bacteria. It was.
  • Non-Patent Document 1 lactic acid bacteria have attracted attention for various health functionalities such as intestinal rot-inhibiting action, intestinal regulating action, and immunostimulatory action.
  • Lactic acid bacteria are known to be effective in maintaining human health as an intestinal bacterium together with bifidobacteria.
  • Non-Patent Document 2 In view of the growing interest in preventing lifestyle-related diseases, there is a tendency for better health functionality of foods to be pursued, and further utilization of such probiotics in foods is desired (Non-Patent Document 2).
  • Patent Document 1 A method for culturing Enterococcus faecalis or Enterococcus faecium characterized by the above has been proposed (Patent Document 1).
  • Patent Document 2 a method has been proposed in which filamentous fungi are cultured in plants such as wheat germ, and lactic acid bacteria are cultured using a solid medium supplemented with magnesium carbonate or the like.
  • Lactic acid bacteria are generally prepared by a liquid culture method, but in this case as well, it is important to impart excellent survival ability.
  • the present invention is characterized in that an active cell obtained by breeding lactic acid bacteria by a unique culture method for culturing while applying various stresses in order to induce and express the excellent survival ability inherent to the fungus. It is an object of the present invention to provide a culture method capable of obtaining a body and a solid fermentation product of lactic acid bacteria in which the survival ability inherent to the bacteria obtained by the culture is induced and expressed.
  • the inventors of the present invention have previously developed a method for growing lactic acid bacterial cells that have been induced and expressed by the liquid culture, and called the culture method “strain breeding culture”.
  • the present inventors further utilized a "strain breeding culture” as a core technique, and in a solid fermented product obtained by growing on a solid surface of a polyphenol-containing food mixture, the bacterial cells inducing and expressing the original viability of the fungus
  • the culture conditions for vigorous growth were studied intensively.
  • strain breeding culture which is a liquid culture
  • a stress outside the optimal culture environment with a higher strength than that of the previous culture is applied to induce and express the original survival ability of the fungus.
  • a greater effect was obtained.
  • the present invention has found that a larger effect can be obtained by growing a solid culture on the surface of a solid medium, which is a solid food mixture, by two-stage culture of “solid environmental adaptation” and “lactic acid bacteria solid fermentation”. It came to complete.
  • the method of the present invention combines liquid culture and solid culture, uses a plant containing a polyphenol capable of stressing lactic acid bacteria in a solid medium, and further step by step as each step of liquid culture and solid culture is performed. It is different from the conventional culture method in that a highly viable bacterium is obtained by increasing the stress applied to the cell.
  • a method for producing a lactic acid bacteria solid fermentation product (1) A liquid culture process for culturing lactic acid bacteria using a liquid medium, (2) A solid culture step consisting of one step or a plurality of steps in which the lactic acid bacteria cultured in step (1) is cultured in a solid medium which is a solid food mixture, wherein the solid medium comprises at least carbonate and germ, A solid culture step for growing lactic acid bacteria on the surface of the solid medium, comprising a polyphenol-containing plant and the solid medium used in the final step of the solid culture comprises a polyphenol-containing plant;
  • the lactic acid bacteria solid fermentation product is a lactic acid bacteria solid fermentation product in which the lactic acid bacteria are contained on the surface of the solid medium used in step (2).
  • the solid culture step of step (2) is performed in a plurality of steps, and the content of the polyphenol-containing plant in the solid medium used in the subsequent solid culture step is determined in the solid medium used in the previous solid culture step.
  • the production method of [1] which is greater than the content of the polyphenol-containing plant.
  • the production method of [1] or [2] which is increased.
  • a method for producing a lactic acid bacteria solid fermentation product (1) A liquid culture process for culturing lactic acid bacteria using a liquid medium, (2-i) The lactic acid bacteria cultured in the step (1) are cultured in a solid medium which is a solid food mixture containing at least carbonate and germ, and embryo pods and / or polyphenol-containing plants.
  • the lactic acid bacterium cultured in the step (2-i) is a solid medium that is a solid food mixture containing at least carbonate, germ, and a polyphenol-containing plant, and the content of the polyphenol-containing plant is the step ( Culturing in a solid medium more than the solid medium used in 2-i) and growing lactic acid bacteria on the surface of the solid medium;
  • the solid medium further contains an embryo bud.
  • the liquid culture process of step (1) is performed in a multi-stage culture process, and in any one of the multi-stage culture processes or each of the multi-stage culture processes, at least carbonate, embryo
  • the method according to [7] or [8], wherein the germ buds contained in the liquid medium used in step (1) include one or more of defatted rice germ, defatted wheat germ, and defatted corn germ.
  • the method according to [7] or [8], wherein the carbonate contained in the liquid medium used in the step (1) is a mixture of calcium carbonate and magnesium carbonate.
  • the germ is one or two selected from the group consisting of defatted rice germ, defatted wheat germ, defatted corn germ, defatted germ derived from other grains and germs of other grains, [11] The production method.
  • the method according to [11] or [12], wherein the defatted cereal containing the germ is defatted soybean.
  • the polyphenol-containing plant contained in the solid medium used in the solid culture step is at least one plant selected from the group consisting of fruits, vegetables, cereals, tea leaves, seaweed and spices.
  • Lactic acid bacteria obtained by the liquid culture in the step (1) are inoculated on the surface of the solid medium used in the step (2-i), and further the lactic acid bacteria obtained by the solid culture in the step (2-i).
  • a solid fermented lactic acid bacterium wherein lactic acid bacteria are contained on the surface of a solid food mixture containing at least carbonate, embryo, and polyphenol-containing plant.
  • the lactic acid bacterium solid fermented product according to [21] wherein the solid food mixture further includes embryo buds.
  • the germ is one or two selected from defatted rice germ, defatted wheat germ, defatted corn germ, defatted germ derived from other cereals and other cereal germs, [23] Lactic acid bacteria solid fermented product.
  • the lactic acid bacterium solid fermented product according to any one of [21] to [24], wherein the defatted cereal containing the germ is defatted soybean.
  • lactic acid bacteria solid fermented product that induces and expresses the original survival ability of the bacterium according to the present invention, compared to the number of bacteria per 1 g or 1 ml of fermented food containing viable bacteria such as yogurt, lactic acid bacteria beverage, and Korean kimchi
  • viable bacteria such as yogurt, lactic acid bacteria beverage, and Korean kimchi
  • the finally obtained lactic acid bacteria solid fermented product contains 10 to 100 times or more high density cells, so that the fermented product can be ingested in a small amount with a high bacterial count.
  • the survival ability inherent to the bacteria can be induced and expressed according to the strength of stress applied by the polyphenol and sodium chloride contained in the food material constituting the solid food material mixture used as the solid medium.
  • the obtained lactic acid bacteria solid fermented product not only contains living cells (hereinafter referred to as “active cells”) at a high cell count, but also high-functionality containing bioactive substances derived from food materials such as polyphenols and dietary fibers. It can be used as food. Furthermore, depending on the bacterial species to be used, it can be expected that in addition to biofilm, it contains excellent health functional secretions such as folic acid and ornithine.
  • the lactic acid bacteria solid fermented product produced by the method of the present invention has not only a function as a culture method for producing active bacterial cells inducing and expressing the original survival ability of bacteria, but also functions such as lactic acid bacteria and polyphenols. It also has a function as a fermented product that can be ingested with excellent health functional ingredients.
  • microbial storage is excellent for stress caused by polyphenols and sodium chloride, as well as for microbial damage caused by refrigerated storage, high osmotic pressure, high concentration sodium chloride, freezing / thawing, heating, low pH, bile, or drying. It is expected that resistance is given.
  • a lactic acid bacteria solid fermented product containing active cells produced by the method of the present invention is a biofilm having a stabilizing function comparable to that of a protective agent or stabilizer as a metabolite during solid fermentation. It is presumed that these components are secreted and produced abundantly outside the cells, so that no protective agent or stabilizer is required.
  • polyphenol-rich foods were not considered to be fermented by lactic acid bacteria due to their high antibacterial stress, but according to the method of the present invention, A solid fermented lactic acid bacterium containing high-density bacterial cells by inducing and expressing the residual ability is obtained, and a solid fermented product obtained by a drying treatment such as freeze-drying treatment or warm air can also be provided.
  • FIG. 1 It is a schematic diagram of the state in which each component of the solid culture medium used by the solid culture of this invention is mixing homogeneously. It is a figure which shows the characteristic of each process in the method of 3 processes which perform liquid culture and solid culture of 2 processes. It is a figure which shows the number of bacteria of the microbial cell obtained by culture
  • the present invention is to inoculate a fresh medium environment again with microbial cells that have reached the stationary phase by growing lactic acid bacteria, and to increase the stress intensity to be applied each time it reaches the stationary phase through the logarithmic growth phase.
  • the culture method is characterized by undergoing a liquid culture step and a solid culture step for inducing and expressing the original survival ability of the fungus.
  • the stationary phase means that the number of viable cells in the medium is maintained at a constant level after the logarithmic growth phase, that is, the cell division rate is reduced, the division rate and the death rate reach equilibrium, It means a state where the number of bacteria is constant, also called the stationary phase.
  • the solid culture step may be a single step, but preferably a multi-step solid culture of two or more steps is performed.
  • the survival ability inherent to bacteria refers to the ability of bacteria to survive after a certain period of time under specific conditions.
  • the degree of stress load increases as the liquid culture and the solid culture process are performed, for example, the liquid culture process and the plurality of solid culture processes are performed.
  • the bacteria having high resistance to the stress environment can be obtained.
  • cells with high growth ability can be obtained.
  • the culture method of the present invention it is possible to obtain bacterial cells in which excellent survival ability is induced and expressed. Further, by the culture method of the present invention, lactic acid bacteria grow on the surface of the solid medium, and a “lactic acid bacteria solid fermented product” containing the lactic acid bacteria on the surface of the solid medium can be obtained. Therefore, the method of the present invention is also a method for producing a “lactic acid bacteria solid fermented product”.
  • the stress refers to a culture condition that deviates from the optimum range as a culture environment for lactic acid bacteria species or strains.
  • the culture conditions that can cause stress include pH, osmotic pressure, temperature, and the amount of an assimilating substance contained in the medium. That is, examples of stress applied in the series of culture steps of the present invention include osmotic pressure stress, alkaline pH stress, acidic pH stress, oxidative stress, temperature stress, nutritional stress, and stress caused by polyphenol. The greater the deviation from the optimum range, the higher the intensity of stress applied.
  • alkaline / slightly soluble carbonate used as a medium component in the culture process of the present invention increases the density of cells in the culture and increases the amount of organic acid that is secreted and produced to release carbon dioxide.
  • the ionic strength of the culture solution gradually increases, so that osmotic stress can be applied to the cells, which is necessary for improving the properties of the cells in liquid culture that makes the cells dense.
  • An increase in the ionic strength of the culture solution can be evaluated by measuring electrical conductivity.
  • the release of carbon dioxide from the culture solution has the effect of reducing dissolved oxygen, and the production of hydrogen peroxide can be attenuated.
  • polyphenol-containing plants, grain germs, and germ buds used as components of the medium in the culture process of the present invention contain polyphenols, and the antibacterial action of polyphenols as ionophores stresses lactic acid bacteria. To do. In the present invention, this stress is referred to as “polyphenol stress”.
  • Lactic acid bacteria used for the culture are not limited, and include Lactobacillus plantarum, Lactobacillus rhamonosus, Lactobacillus salivarius, Lactobacillus salivarius, Lactobacillus brevis ( Lactobacillus brevis), Lactobacillus) casei, Lactobacillus gasseri, Lactobacillus delbrueckii, Lactobacillus fermentum chi Lactobacillus fermentum ⁇ ⁇ ⁇ Lactobacillus fermentum ⁇ ⁇ ⁇ Lactobacillus fermentum Bacillus paracasei, Lactococcus lactis, Lactococcus cremoris, Leuconosto mecenteroides (Leuconosto) c mesenteroides), Leuconostoc citreum, Pediococcus acidilactici, Pediococcus pentosaceus and the like.
  • lactic acid bacterium may be used, but two or more kinds of lactic acid bacteria may be included.
  • the liquid culture process is a liquid culture in which lactic acid bacteria are cultured using a liquid medium.
  • the lactic acid bacteria obtained in this liquid culture process are called “liquid species”.
  • the liquid culture step is referred to as “step (1)”.
  • the liquid culture process may further include a plurality of processes.
  • the solid culture step is a step of culturing lactic acid bacteria by solid culture using a solid medium, and is a step of inoculating and cultivating a liquid medium containing lactic acid bacteria obtained in the liquid culture step into the solid medium.
  • Solid culture is a culture that mimics the natural environment, and is a culture in which lactic acid bacteria are grown in an environment close to the original habitat environment of lactic acid bacteria.
  • the solid culture process adapts lactic acid bacteria from a liquid environment to a solid environment.
  • the solid culture process is referred to as an adaptation process from liquid culture to solid culture, or a “solid environment adaptation” process.
  • the solid food mixture is loaded with a higher stress on the lactic acid bacteria than in the liquid culture process, and the survival ability inherent to the bacteria is induced and expressed, and the bacteria having high resistance to the stress environment can be obtained.
  • a solid culture process in which bacteria having high resistance to a stress environment are grown at a high density is called a “lactic acid bacteria solid fermentation” process.
  • the “solid environment adaptation” step and the “lactic acid bacterium solid state fermentation” step for growing bacteria highly resistant to a stress environment are performed in separate steps.
  • lactic acid bacteria are cultured in liquid culture.
  • liquid culture lactic acid bacteria can easily grow if nutrients that diffuse in the culture medium can be taken into the cells.
  • the solid culture of the present invention uses a solid medium containing defatted germ as a main component, it has a lower nutrient environment and a lower moisture environment than liquid culture. The environment of solid culture is closer to the natural environment than liquid culture. Therefore, the expression rate of the genes inherent to the bacteria is increased, and as a result, cells with high survival ability can be obtained.
  • the solid culture step includes one or more steps.
  • the solid culture step includes two steps, step (2-i) and step (2-ii), and step (2-i) is a step of culturing lactic acid bacteria by solid culture using a solid medium,
  • a liquid medium containing lactic acid bacteria obtained by liquid culture in step (1) is inoculated into a solid medium and cultured.
  • lactic acid bacteria are adapted from a liquid environment to a solid environment.
  • the step (2-i) is referred to as an adaptation step from liquid culture to solid culture or a solid environment adaptation step.
  • the bacteria adapted to the solid culture obtained in the step (2-i) are referred to as “solid species”.
  • Step (2-ii) is a step of culturing lactic acid bacteria by solid culture using a solid medium. A part of the solid species obtained by solid culture in step (2-i) is further inoculated into the solid medium and cultured. It is a process to do. In the step (2-ii), a higher stress is applied to the lactic acid bacterium than the stress applied to the lactic acid bacterium in the solid culture of the step (2-i).
  • the step (2-ii) is referred to as a “lactic acid bacteria solid state fermentation” step.
  • Conventional culture of lactic acid bacteria is a liquid culture using a liquid medium, and is a method of growing cells in a liquid medium that is an aqueous solution containing nutrients necessary for growth such as a carbon source, a nitrogen source, and salts. .
  • the water activity (Water Activity) of the growth region where lactic acid bacteria grow is 1.0.
  • the water activity of the growth region refers to the ratio of free water in the culture solution in which lactic acid bacteria are cultured, and the water vapor pressure (P) and the temperature when the liquid medium is placed in a closed culture vessel It is determined by the ratio of pure water vapor pressure (PO) (P / PO).
  • an agar plate culture method used for research purposes to isolate microorganisms is known.
  • the solid culture in the present invention is mixed with ingredients such as plants in a solid state, and 45 to 60% of water is added to the resulting mixture to have a water activity of less than 1.0, preferably A culture method in which cells are grown on the surface of a solid medium in 0.95 to 0.98 solid medium. Water activity can vary depending on the species.
  • Step (1) which is a liquid culture step, can be performed using a known liquid medium used for culturing lactic acid bacteria.
  • a low-selectivity medium that promotes the growth of all types of lactic acid bacteria may be used.
  • the medium composition may be an MRS (de Man, Rogosa, Sharpe) liquid medium that complies with the international standard method NF_ISO 15214.
  • liquid culture performed using a known liquid medium is referred to as “general liquid culture”. This “general liquid culture” is usually performed in one step.
  • the liquid culture in the step (1) may be performed in a plurality of steps. That is, a multi-stage culture is performed from the pre-culture to the pre-culture and the main culture.
  • lactic acid bacteria can be subjected to temperature stress by changing the culture temperature by several degrees Celsius compared to the previous culture, or by gradually reducing the concentration of carbon source and nitrogen source in the medium. Nutrient stress can be applied to lactic acid bacteria. Furthermore, you may set the conditions which raise a citric acid density
  • the culture in which a plurality of stages of culture are performed to increase the stress intensity to be applied is also referred to as “strain breeding culture”.
  • strain breeding culture As a result of applying stress to lactic acid bacteria by “strain breeding culture”, bacterial cells that have induced and expressed the survival ability of the bacteria are selected, and bacterial cells that proliferate vigorously in subsequent solid culture can be obtained.
  • strain breeding culture The method of “strain breeding culture” will be described in detail below.
  • strain breeding culture stress intensity such as undernutrition to cells and changes in culture temperature is set higher while repeating liquid culture in the presence of antibacterial stress-bearing substances such as polyphenols To do. That is, together with carbon source and nitrogen source, etc., polyphenol-containing defatted germ cake obtained by solid culture of Aspergillus oryzae and its extract fraction or defatted germ and dried fruit and tea leaf extract fraction, and poorly soluble calcium carbonate and carbonate
  • polyphenols obtained by solid culture of Aspergillus oryzae and its extract fraction or defatted germ and dried fruit and tea leaf extract fraction
  • poorly soluble calcium carbonate and carbonate When lactic acid bacteria are aerobically cultured with shaking or stirring using a liquid medium characterized by containing magnesium, a plurality of stresses are simultaneously applied to the cells.
  • the culture temperature is changed by 3 to 5 ° C. compared to the previous culture, and a temperature stress is applied.
  • the nutrient stress that lowers the concentration of the carbon source and nitrogen source in the medium is loaded, and the citric acid concentration is increased stepwise.
  • the stress load due to the culture temperature is increased or decreased by 3 to 5 ° C in advance of the pre-culture temperature compared to the temperature of the previous culture. Raise and lower by 5 ° C.
  • the pre-culture glucose concentration is 2.0% by weight / high-new AM concentration is 7.0% by weight. Can be reduced to 1.5% / 4.8% by weight, and in the main culture, 1.0% / 2.5% by weight.
  • the concentration of citric acid in the liquid medium is 24 mM in the pre-culture, 37 mM in the pre-culture, and then the main culture in the pre-culture, pre-culture, and main culture. Each time the culture is repeated with 60 ⁇ mM and a fresh liquid medium, the concentration may be increased by setting a higher concentration.
  • citric acid content By increasing the citric acid content, lactic acid bacteria reduce glucose consumption and assimilate citric acid.
  • the culture temperature in "strain breeding culture” the type and concentration of the carbon source and nitrogen source of the liquid medium, and the concentration of citrate can be appropriately adjusted according to the species and strain used, and the above description is an example It is only what showed.
  • the liquid medium used in the “strain breeding culture” in step (1) is a liquid medium containing at least carbonate, embryo bud, nitrogen source and carbon source. Furthermore, it may contain germ bud extract, yeast dead cells, fatty acids, polysorbates as surfactants, iron, manganese and the like. Examples of fatty acids include animal and vegetable oils and fats containing oleic acid.
  • alkaline / slightly soluble carbonates such as calcium carbonate and magnesium carbonate are preferable, and both calcium carbonate and magnesium carbonate are mixed in order to realize an optimum medium pH, and an appropriate blending ratio is used. Is preferably added to the medium. In liquid culture, both light calcium carbonate and heavy calcium carbonate can be used as the carbonate, but light calcium carbonate is preferably used in terms of solubility.
  • magnesium carbonate is added to the liquid medium alone, the medium pH changes to the alkaline side from the normal medium pH 7.0 to 6.0, which can be tolerated by the majority of lactic acid bacteria.
  • the above-mentioned sustained release process of carbonate also acts to moderately suppress self-cell damage by lactic acid bacteria themselves from a plurality of viewpoints. That is, (A) Carbon dioxide gas is released into the medium, so that the dissolved oxygen in the culture solution decreases.
  • lactic acid bacteria belong to facultative anaerobes, and molecular oxygen (molecular oxygen) cannot be directly used for energy metabolism. Rather, when they come into contact with oxygen, they generate active oxygen such as hydrogen peroxide, superoxide radicals, and hydroxy radicals. Damages the cells.
  • the mixing ratio of the two alkaline and poorly soluble carbonates can be appropriately set according to the optimum pH of the strain, but it is preferable that the magnesium carbonate does not exceed calcium carbonate at least in the amount added on a weight basis. In addition, when only one of them is used, the obtained effect decreases, which is not preferable.
  • the “germ bud” is a potato obtained by inoculating cereal germs with Aspergillus spp. And fermenting it by solid culture. Germ buds contain polyphenols. Plants used as raw materials for “germ lees” can be appropriately selected from grains such as rice, wheat, beans, corn, and defatted germs from which oils and fats have been removed. In view of the problem of fat and oil rancidity, a solid medium composition composed of defatted rice germ, defatted wheat germ, and defatted corn germ, or further defatted soybean is desirable, and 0.5 to 1.0% heavy calcium carbonate may be added. desirable.
  • Aspergillus belonging to the genus Aspergillus that performs solid culture on the surface of defatted germ particles examples include Aspergillus oryzae, Aspergillus oryzae, Aspergillus sojae, and Aspergillus sojae. ), Aspergillus kawakawa, Aspergillus kawachii, Aspergillus awamori, Aspergillus saitoi, Aspergillus glaucus, Aspergillus glaucus, etc.
  • “Sterilization treatment” performed by mixing heavy calcium carbonate and defatted germ is not particularly limited as long as it is autoclave sterilization (121 ° C., 15 minutes or longer) or a treatment condition for sterilization effect corresponding thereto.
  • the “germ bud extract” is an extract of germ bud (50% ethanol fraction, but the extraction method is not limited to this method), and the germ fermentation component of Aspergillus genus belonging to the genus Aspergillus together with the germ bud is the liquid medium of the present invention. Add to. For example, “Rice Germ Ferment Extract-P” from Oriza Oil Chemical Co., Ltd. can be applied.
  • Non-fat dry milk, soy peptide, meat extract, etc. can be used as the nitrogen source.
  • Polypeptone manufactured by Nippon Pharmaceutical Co., Ltd.
  • High New AM and High New DC6 manufactured by Fuji Oil Co., Ltd.
  • Labremuco powder manufactured by Oxoid Co., Ltd.
  • the carbon source has different requirements depending on the strain, but one or more kinds can be selected and mixed from glucose, fructose, trehalose, cellobiose, N-acetylglucosamine, mannose, maltose, lactose, sucrose and the like.
  • High Newt is a separated soybean protein breakdown product.
  • “Fatty acid” is added as a growth promoting factor, and beef fat, fish oil, animal oil and the like can be adopted as “animal and vegetable oils and fats containing oleic acid” in addition to vegetable oils such as olive oil.
  • “Polysorbates as surfactants” are sorbitan fatty acid esters with about 20 molecules of ethylene oxide condensed. Polysorbate 20, polysorbate 60, polysorbate 65, and polysorbate 80 can be used, but unsaturated fatty acids are mainly used. Polysorbate 80 is particularly preferred for emulsifying olive oil by incorporating it into the hydrophobic molecular region of the surfactant, and a combination with polysorbate 20 is preferred when beef tallow is used.
  • iron it is preferable to add heme iron as a growth promoting factor of lactic acid cocci such as Lactococcus.
  • heme iron as a growth promoting factor of lactic acid cocci such as Lactococcus.
  • citric acid, acetic acid, and dry yeast cells or self-preparation of yeast cells
  • dry yeast cells either baker's yeast or beer yeast may be used.
  • commercially available Ebios tablets made by Asahi Food and Healthcare Co., Ltd.
  • frozen yeast cells made by Oriental Yeast Co., Ltd.
  • Pre-culture refers to culture in a small amount of medium performed as a pre-stage of expansion culture.
  • the liquid medium according to the present invention in the “multi-stage culture process”, the effect of improving the properties of the cells can be seen.
  • the high-density liquid culture in addition to performing the main culture expanded using the liquid culture to increase the density of the bacterial cells according to the present invention, by using the high-density liquid culture also in the preparation of the inoculum to inoculate it, depending on the harsh culture conditions It is presumed that bacterial cells having high resistance to stress are selectively cultured, and the stress resistance of the bacterial cells themselves is improved by environmental normal stress.
  • the strain breeding culture that cultivates lactic acid bacteria while applying various stresses is different from the general liquid culture method in that the liquid medium contains polyphenol-containing insoluble food particles and poorly soluble carbonate as a carbon source, nitrogen source, inorganic Although it is included with the salt and polyphenol-containing food extract fractions, it is a liquid culture system, but the medium environment is different from the homogeneous environment in normal liquid culture and is in a heterogeneous state. .
  • the solid culture process is a process of culturing the lactic acid bacteria cultured in the liquid culture process (1) in a solid medium which is a solid food mixture, and consists of one process or a plurality of processes.
  • the solid medium used in the solid culture step includes at least carbonate and embryo, and embryo buds and / or polyphenol-containing plants, and the solid medium used in the final step of the solid culture includes polyphenol-containing plants. That is, the solid medium used in the solid culture step includes one or both of embryo buds and polyphenol-containing plants. In addition, the solid medium used in the final step of the solid culture step always includes a polyphenol-containing plant. When the solid culture step is performed in one step, it is sufficient that the polyphenol-containing plant body is included in the step. When the solid culture process is composed of a plurality of steps, the solid medium used in the final process always contains a polyphenol-containing plant, but the solid medium used in the solid culture process in the previous stage also contains a polyphenol-containing plant. May be. However, in this case, the content of the polyphenol-containing plant in the solid medium used in the solid culture process in the subsequent stage is higher than the polyphenol-containing plant in the solid medium used in the solid culture process in the previous stage.
  • the solid culture step preferably comprises a “solid environment adaptation” step and a “lactic acid bacteria solid fermentation” step for growing a strain resistant to a stress environment.
  • Process (2-i) Solid Environment Adaptation Process
  • Step (2-i) is a solid culture step using a solid medium, and the solid culture of step (2-i) includes at least carbonate and embryo, and further contains an embryo pod and / or a polyphenol-containing plant. Incubate in the prepared solid medium.
  • the content of the solid medium is a substance that can be added to foods. Therefore, the solid medium is referred to as “solid food mixture”.
  • step (2-i) lactic acid bacteria grow on the particle surface of the solid medium.
  • step (2-i) lactic acid bacteria are adapted from a liquid environment to a solid environment.
  • the step (2-i) is referred to as an adaptation step from a liquid culture to a solid culture or a “solid environment adaptation” step.
  • solid environmental adaptation refers to an environmental adaptation in which new phenotypic expression required for vigorous growth on the solid surface is induced.
  • the “carbonate” is preferably an alkaline / slightly soluble carbonate such as calcium carbonate or magnesium carbonate which can be present on the particle surface. Either calcium carbonate or magnesium carbonate may be included, but in order to adjust the pH of the culture environment in solid culture to the optimum pH, both calcium carbonate and magnesium carbonate are mixed at an appropriate mixing ratio to form a solid medium. It is preferable to add.
  • the calcium carbonate used here is preferably heavy calcium carbonate.
  • heavy calcium carbonate means calcium carbonate prepared from natural minerals. For example, heavy calcium carbonate can be obtained by pulverizing and classifying limestone. Heavy calcium carbonate has the characteristics that the particle shape is indefinite and the density is higher than that of light calcium carbonate.
  • light calcium carbonate refers to chemically synthesized calcium carbonate.
  • Carbonates such as calcium carbonate and magnesium carbonate place pH stress on lactic acid bacteria by adjusting the pH of solid culture, particularly the pH of the micro-growth region where lactic acid bacteria grow, to alkalinity.
  • grain (cereal) germ may be used.
  • defatted germs from which fats and oils have been removed are used in order to avoid fat and oil rancidity.
  • Grains are not limited, and examples include rice, wheat, corn, soybeans, barley, oats, rye, straw, straw, oats, and red beans.
  • One or more germs of these cereals preferably defatted germs are used.
  • a whole grain including the germ may be used.
  • defatted grain is preferably used. For example, since it is difficult to obtain only germ for soybeans, whole soybeans may be used.
  • defatted soybeans can be said to be defatted grains containing germs.
  • rice, wheat, corn, and soybean are preferable.
  • defatted soybean can be used in addition to defatted rice germ, defatted wheat germ, and defatted corn germ.
  • the “germ cake” is a cake obtained by sterilizing a mixture of carbonate and grain germ, inoculating a koji mold belonging to the genus Aspergillus, growing the koji mold by solid culture, and fermenting it.
  • the above-mentioned germs can be used, preferably defatted rice germ, defatted wheat germ and defatted corn germ, or defatted rice germ, defatted wheat germ, defatted corn germ and defatted soybean. Since the defatted soybean used here contains germ, it is contained in germ.
  • the above carbonate may be added, and preferably 0.5 to 1.0% heavy calcium carbonate is added.
  • germ bud includes one or more germs, gonococci belonging to the genus Aspergillus and carbonate.
  • Aspergillus spp. Is a strain belonging to the genus Aspergillus used to produce fermented foods such as sake, miso, vinegar, pickles, soy sauce, shochu, awamori, bonito, etc., with yellow koji, white koji, black koji, katsuobushi Aspergillus oryzae (Aspergillus oryzae), Aspergillus sojae (Aspergillus kawachii), Aspergillus kawakawa (Aspergillus kawachii), Aspergillus awamori (Aspergillus awamori) Aspergillus saitoi), and Aspergillus glaucus and the like are mentioned as bonitoobacteria.
  • Polyphenol-containing plants include fruits (blueberries, prunes, grapes, apples, strawberries, strawberries, bananas, raspberries, mulberries, etc.), vegetables (onions, lettuce, broccoli, kale, lettuce, eggplant, sweet potatoes, burdock, etc.) , Grains (rice, wheat, corn, soybeans, etc .; buckwheat, cacao beans, coffee beans, red beans, peanuts, etc.), tea leaves (green tea, matcha, oolong tea, guava tea leaves, etc.), seaweed (brown algae ), And spices (thin, peppermint, perilla, rosemary, chamomile, turmeric, pepper, olive, etc.), among which fruits such as blueberries, apples, grapes, and matcha are preferred. .
  • These plants may be in an undried raw state or a dried plant, but preferably dry plants are used, such as dry roux berry, dry apple, dry raisins, and matcha tea.
  • the grain germ used in the solid medium of the present invention, the whole grain containing the germ, and the germ pod also contain polyphenol.
  • the grain germ, the whole grain containing the germ, the germ bud Apart from that, polyphenol-containing plants are included.
  • the polyphenol-containing plant body may contain one or more species.
  • Polyphenol is defined as a general term for compounds with multiple phenolic hydroxyl groups in the same molecule, and functions as a biological defense substance "Phytoalexin” that protects plants from nature, such as ultraviolet rays, pests and pathogens, and dryness and cold. To do.
  • Compounds belonging to polyphenols are composed of phenylcarboxylic acid, lignan, curcumin, coumarin, and flavonoids.
  • flavonoids with a common structure of diphenylpropane structure include anthocyanidins and their glycosides (anthocyanins).
  • Flavanones and their glycosides Flavanols (catechin, epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, theaflavin, etc.), isoflavones and their glycosides (daidzein, daidzein glycoside) And flavonols and glycosides thereof (quercetin, quercetin glycosides such as rutin, kaempferol, myricetin, etc.) and flavones (apigenin, luteolin, etc.).
  • Polyphenol has antibacterial activity, and for example, in the case of hydroxycinnamic acid, lactic acid bacteria such as Lactobacillus brevis, Escherichia coli, gram-negative bacteria, It has been reported to inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Bacillus cereus, and has a broad antibacterial spectrum ranging from bacteria to mold and yeast fungi It is characterized by that.
  • the action mechanism of the antibacterial activity of polyphenol is an ionophore that penetrates the cell membrane of the test bacterium and makes a hole, releasing components such as nucleic acids and proteins from the cytoplasm inside the bacterium, leading to the death of the bacterium. Squeeze or lead to VBNC.
  • the solid medium used in solid culture can be prepared by mixing the above-mentioned solid medium components and adding water so that the water content is 45 to 60% by weight.
  • the water activity of the hydrated solid medium is less than 1.0, preferably 0.95 to 0.98. Water activity can vary depending on the species.
  • the content of the carbonate, germ, and polyphenol-containing plant that is a component is as follows: carbonate is 1 to 5% by weight, germ is 50 to 90% by weight, polyphenol-containing plant is 2 to 20% by weight, preferably 3% -10% by weight, more preferably 3-7% by weight, and when germ buds are included, germ cocoons are included 15-30% by weight. The total of each component becomes 100%.
  • the carbonate, germ, and polyphenol-containing plant that is a component of the solid medium, or even the germ buds may be contained uniformly in a granular state.
  • being contained in a granular state means that each component is contained as a granular material having a certain size.
  • the germ may be contained as a granular material having an average particle size of about several tens ⁇ m to several thousand ⁇ m, preferably about several hundred ⁇ m to several thousand ⁇ m, and may be used after being pulverized to some extent. It may be included as it is.
  • whole grains containing germs When whole grains containing germs are used, whole grains may be used as they are, or granular grains containing germs having an average particle diameter of several tens to several thousand ⁇ m, preferably several hundreds to several thousand ⁇ m. It may be included as a substance.
  • the germ buds may be contained as a granular material having an average particle diameter of about several tens to several thousand ⁇ m, preferably about several hundred to several thousand ⁇ m.
  • the polyphenol-containing plant may be contained as a granular material having an average particle size of about several tens to several thousand ⁇ m, preferably about several hundred ⁇ m to several thousand ⁇ m.
  • a large fruit or the like may be appropriately cut or pulverized, and processed and contained as a granular material having an average particle diameter of about several tens to several thousand ⁇ m, preferably about several hundred to several thousand ⁇ m. .
  • carbonate is powdery, it is hardly soluble, so it exists in a state of adhering to the surface of germ buds and polyphenol-containing plants.
  • Containing uniformly means that each component is evenly distributed in the solid medium, and the average particle size of each component does not need to be uniform, and the average particle size varies from component to component. There may be.
  • FIG. 1 shows a schematic diagram of a state in which the components of the solid medium are homogeneously mixed.
  • lactic acid bacteria are also shown, but are shown larger than the actual size so that the location of the lactic acid bacteria 1 can be seen.
  • the average diameter of lactic acid bacteria is about 1 ⁇ m to several ⁇ m.
  • a granular polyphenol-containing plant 2 As shown in FIG. 1, a granular polyphenol-containing plant 2, a granular germ 3, a granular germ pod 4, and a powdered carbonate (not shown in the figure) are in contact with each other, and a gap (pore ) Is formed and air permeability is obtained in the deposited layer. Lactic acid bacteria grow and grow in a state of adhering to the surface of each granular component in the gap, but it is assumed that all water-soluble components contained in the solid medium during medium sterilization could be distributed uniformly among the particles. Is done. Therefore, the component to which lactic acid bacteria adhere and grow is not limited, and it is assumed that it can grow at the same growth rate on any surface of granular germs, germ buds, and polyphenol-containing plants.
  • each water-soluble component is homogeneously mixed, but the environment that can grow for lactic acid bacteria to be cultivated is a diverse and varied environment. Moreover, since the gap
  • the water activity of the solid medium is less than 1.0, and there is little free water in the gap between the granular components, but when added, the nutrients of each component dissolve in the water and spread throughout the solid medium, so it is called a nutrient
  • any surface in a diverse surface environment is relatively uniform.
  • lactic acid bacteria grow on the surface of defatted rice germ
  • lactic acid bacteria do not grow depending only on nutrients supplied from defatted rice germ.
  • Nutrients contained in other germs and plants are distributed on the defatted rice germ surface during hydration, so that lactic acid bacteria can grow depending on various nutrients contained in the solid medium.
  • the solid medium is uniform or nearly uniform from the viewpoint of nutrients required by lactic acid bacteria.
  • the above-mentioned solid medium is inoculated with the lactic acid bacteria obtained by the liquid culture in step (1) as a “liquid species”.
  • a culture solution containing the proliferated lactic acid bacteria obtained by the liquid culture in the step (1) may be added to the solid medium.
  • the addition may be performed by, for example, mixing the culture solution with a solid medium.
  • the liquid medium in step (1) may be added in an amount of 1 to 10% by weight, preferably 1 to 5% by weight, more preferably 1 to 2% by weight based on the solid medium used in step (2-i).
  • it may be mixed well with a spatula or the like to homogenize the distribution of the cells.
  • the mixture is further mixed with a spatula or the like to further homogenize the cell distribution.
  • the components are mixed well with the above content, and deionized water may be added to a final content of 45 to 60% by weight with respect to the weight of the mixture of water and solid medium components. Then sterilize and use. After cooling, a culture solution containing lactic acid bacteria obtained by liquid culture is inoculated, and solid culture is performed. Culturing can be performed at 15 to 42 ° C., but it is preferably performed at the same temperature as the liquid culture process. When the culture temperature is 27 ° C. to 42 ° C., the culture is performed for 10 hours to 30 hours, preferably 20 to 30 hours, more preferably 24 hours. The relative humidity (RH) during culture is preferably around 80%. By culturing under these conditions, the fermented bacteria reach a stationary phase. When the culture temperature is lower than 27 ° C., it is necessary to extend the fermentation time as appropriate, but even in that case, the stationary phase is reached within 40 hours.
  • RH relative humidity
  • composition of the solid medium and the solid culture conditions can be appropriately changed depending on the bacterial species and strains used.
  • step (1) there are active cells in which the survival ability inherent to the bacteria is induced and expressed by stress load and inactive cells induced to VBNC.
  • step (2-i) only active cells having the original survival ability of the bacteria selectively and actively grow. That is, the microbial cells that grow on the surface of the granular component of the solid medium after step (2-i) are microbial cells that are difficult to induce to VBNC by the antimicrobial activity of polyphenols.
  • Step (2-ii) By solid culture in the step (2-i), 1 billion or more, preferably 2 billion or more, more preferably 5 billion or more, particularly preferably 10 billion or more lactic acid bacteria grow per 1 g of the solid medium. That is, it is possible to perform culture with a high cell density by solid culture.
  • Step (2-ii) The step (2-ii) is a solid culture step using a solid medium as in the step (2-i), and the solid culture in the step (2-ii) is a plant containing at least carbonate, germ, and polyphenol. Culture in solid medium containing body. The solid medium may further contain embryo buds.
  • the carbonate, embryo, germ bud, and polyphenol-containing plant are the same as in step (2-i), and in step (2-ii), the content of the solid medium is a substance that can be added to food. Therefore, the solid medium is referred to as “solid food mixture”.
  • the state of the solid medium used in step (2-ii) is the same as that of the solid medium used in step (2-i), and the granular components are homogeneously mixed.
  • the solid medium used in step (2-ii) is also hydrated so that the final water content is 45 to 60% by weight, and the water activity is less than 1.0, preferably 0.95 to 0.98.
  • step (2-ii) When polyphenol-containing plants are included in step (2-i), in step (2-ii), the total content of polyphenols contained in the solid medium is greater than the solid medium used in step (2-i). Set to. By setting the total content of polyphenols to a large value, the lactic acid bacteria are loaded with a greater stress due to polyphenols than in step (2-i), and cells having higher survival ability are selected.
  • the content of the polyphenol-containing plant should be increased.
  • the content of the germ and the germ bud may be increased.
  • the content of the polyphenol-containing plant is increased.
  • sodium chloride may be contained in step (2-ii).
  • Sodium chloride has an antibacterial activity at a high concentration. By containing sodium chloride, sodium chloride stresses lactic acid bacteria, and cells having higher survival ability are selected.
  • Step (2-ii) in contrast to lactic acid bacteria adapted to solid culture while applying stress in step (2-i), in step (2-ii), further stress is applied and polyphenols contained in a solid medium at a high concentration are added.
  • the survival ability inherent to the bacteria is further induced and expressed.
  • Step (2-ii) is characterized by a breeding environment that promotes the induced expression of survival ability inherent to the fungus in accordance with the stress intensity of polyphenol added to the growth environment on the solid surface of the component. is there.
  • Step (2-ii) can be referred to as a “lactic acid bacteria solid state fermentation” step.
  • the contents of the carbonate, embryo and polyphenol-containing plant which are the components are 1 to 5% by weight of carbonate, 50 to 90% by weight of germ, and 5 to 30% by weight of plant containing polyphenol, preferably 10%. In the case where -30% by weight of germ pod is included, 15-30% by weight of germ pod is included. The total of each component becomes 100%.
  • the content of the polyphenol-containing plant needs to be larger than that in the step (2-i).
  • the content may be double to 10 times, preferably 2 to 8 times.
  • sodium chloride when contained in the solid medium in step (2-ii), it may be added in an amount of 0.15 to 0.60% based on the total weight of the solid medium, and may be set higher depending on the bacterial species and strain used. Is possible.
  • the solid medium is inoculated with the lactic acid bacteria obtained by the solid culture in the step (2-i) as a “solid species”.
  • the solid medium containing the proliferated lactic acid bacteria obtained by the solid culture in the step (2-i) may be added to the solid medium used in the step (2-ii).
  • the addition may be performed by mixing the solid medium containing the lactic acid bacteria in step (2-i) well with a spatula or the like, adding the mixture to the solid medium used in step (2-ii), and further mixing well with a spatula or the like.
  • the solid medium in step (2-i) may be added in an amount of 1 to 10% by weight, preferably 2 to 5% by weight, based on the solid medium used in step (2-ii).
  • Cultivation may be performed under the same or approximate conditions as in step (2-i).
  • the growth of lactic acid bacteria may be confirmed by microscopic observation, or by a specific method depending on the bacterial species.
  • the pH of the medium can be measured, and the growth of bacteria can be confirmed using the decrease in pH as an index.
  • Fig. 2 shows the features of step (1), step (2-i) and step (2-ii).
  • the solid culture process is composed of two processes.
  • the solid culture process is cultured in a solid medium containing at least carbonate, germ, and a polyphenol-containing plant. It can be performed under culture conditions that satisfy the condition that embryo buds may be included.
  • the culture may be performed under conditions approximate to those in the step (2-i), or may be performed under conditions approximate to the conditions in the step (2-ii).
  • each step may be performed in a solid medium containing at least carbonate and embryo, and embryo pods and / or polyphenol-containing plants. May be performed under culture conditions that satisfy the condition that a polyphenol-containing plant is always included.
  • the content of the polyphenol-containing plant in the solid medium used in the subsequent solid culture process is earlier than that. It is preferable that the content of the polyphenol-containing plant in the solid medium used in the solid culture step is larger.
  • the polyphenol-containing plant may be contained in the subsequent solid culture step by 1.5 to 10 times, preferably 2 to 8 times, the previous solid culture step.
  • Lactic acid bacteria obtained by the culture method of the present invention First, liquid culture is performed, followed by solid culture, whereby lactic acid bacteria having high heat resistance and high growth ability can be obtained.
  • the liquid culture may be a one-step “general liquid medium” using a known medium such as an MRS liquid medium, or a “strain breeding culture” in which a multi-step liquid culture is performed while increasing the stress load.
  • strain breeding culture each time the culture is repeated, a higher strength stress is applied compared to the previous culture, thereby obtaining a cell body that induces and expresses the original viability of the fungus. It is done.
  • Lactic acid bacteria having higher growth ability can be obtained in the solid culture twice in the “solid environment adaptation” step in the step (2-i) and the subsequent “lactic acid bacteria solid fermentation” in the step (2-ii).
  • lactic acid bacteria obtained in liquid culture are adapted to solid culture and various stresses are applied to the lactic acid bacteria. For this reason, the microbial cell in which the original survival ability of the bacterium is induced and expressed proliferates vigorously.
  • the lactic acid bacteria that grow on the surface of the lactic acid bacteria solid fermented product obtained by the method of the present invention are characterized by high growth ability and high resistance to various stresses.
  • the resistance to various stresses may be determined by culturing under the culture conditions loaded with the stress and measuring the proliferation ability.
  • the evaluation that the survival ability inherent to the bacteria was induced and expressed in the microbial cells contained in the solid fermentation product of the lactic acid bacteria obtained by the culture method of the present invention can be judged from the index obtained by the following method. Examples thereof include growth ability, heat resistance, salt resistance, polyphenol resistance, survival rate after freeze-drying treatment, and the like.
  • the growth capacity is indicated by the number of bacteria contained per gram of the obtained fermented bacterium solid fermented product, and the upper and lower temperature ranges that are non-permissible temperatures for growth in “general liquid culture”. It can be evaluated by the effect of allowing proliferation in The heat resistance is, for example, the survival rate after heat treatment while shaking the serially diluted solution at the time of measuring the number of bacteria at a water bath temperature of 57 ° C for 15 minutes at a speed of 75 rpm. If it is, it can evaluate by setting 57 degreeC to 60 degreeC, and all can be judged by obtaining a numerical value higher than the survival rate of the microbial cell obtained by "general liquid culture”.
  • the salt tolerance is an index of survival rate after treating a serially diluted solution at the time of bacterial count measurement in a solution to which sodium chloride of a constant concentration is added for 1 to 2 hours.
  • Polyphenol resistance can be evaluated using the degree of growth when cultured in an MRS liquid medium supplemented with several percent of dried fruits containing a high amount of polyphenol as an index.
  • the survival rate after the freeze-drying treatment can be determined using the change in the number of bacteria before and after the freeze-drying treatment as an index.
  • Lactic acid bacteria solid fermented product A solid culture containing lactic acid bacteria obtained through the culture process including the liquid culture process and the solid culture process of the present invention is referred to as "lactic acid bacteria solid fermented product".
  • the solid fermented lactic acid bacteria obtained by the culturing method of the present invention can be used by thawing a cryopreserved one, and it is completely free of protective agents and stabilizers such as sugar alcohol, starch and sodium glutamate. Even if it is not added, it can be stored as it is by performing air drying or freeze drying at 45 ° C. as it is.
  • the fermented product is also a solid food mixture containing lactic acid bacteria.
  • the lactic acid bacteria solid fermented product is a lactic acid bacteria solid fermented product containing lactic acid bacteria on the surface of a solid food mixture containing at least carbonate, germ, and polyphenol-containing plant body, and further contains germ buds and sodium chloride. May be.
  • the lactic acid bacteria solid fermented product contains lactic acid bacteria and polyphenols, and further contains lactic acid bacteria exocrine components.
  • Lactic acid bacteria are contained at a high density in a lactic acid bacteria solid fermented product, and are 1 billion or more, preferably 2 billion or more, more preferably 5 billion or more, particularly preferably 10 billion, per 1 g of the solid food mixture as a solid medium.
  • One or more lactic acid bacteria are included.
  • the lactic acid bacteria contained in the lactic acid bacteria solid fermented product are lactic acid bacteria having an excellent function that has been induced to express the survival ability of the bacteria by the culture of the present invention, and the cells themselves exhibit excellent health functionality. . In particular, the health functionality when using a strain belonging to probiotics is remarkable.
  • the beneficial effects of lactic acid bacteria on human health include (1) promotion of intestinal peristalsis and prevention and improvement of constipation, (2) improvement of rough skin, (3) improvement of intestinal microflora and suppression of harmful bacterial growth, (4) Prevention of hay fever, (5) Improvement of atopic dermatitis, (6) Suppression of oral caries bacteria, (7) Improvement of immune function, (8) Suppression of increase in blood glucose level, (9) Prevention of hypertension, (10 ) Improvement of diarrhea associated with antibiotic administration, (11) Antibacterial activity against Helicobacter pylori (H. pylori) causing gastric cancer, (12) Improvement of ulcerative colitis, (13) Folic acid And production of health functional substances such as ornithine.
  • a living microorganism that can be expected to have a health promoting effect on the host is said to be “probiotic”.
  • Polyphenol is a polyphenol contained in polyphenol-containing plants, embryos, and germ buds contained in a solid medium, and has excellent health functionality. Since the phenolic hydroxyl group of polyphenol itself is easily oxidized and has a strong chelating power against metals such as iron, any compound belonging to polyphenol exhibits an antioxidant action.
  • Catechin which is a representative component of polyphenol, is an astringent ingredient contained in, for example, green tea.
  • antioxidant action As its physiological action, (1) antioxidant action, (2) antibacterial action, improvement of intestinal flora, (3) Anti-caries action, (4) Deodorizing action, (5) Reactive oxygen scavenging action, (6) Cholesterol rise inhibitory action, (7) Blood sugar level rise inhibitory action, (8) Blood pressure rise inhibitory action, (9) Antitumor action (10) antiallergic action, (11) platelet aggregation inhibitory action, and (12) ultraviolet ray absorbing action are known. Regarding other components belonging to polyphenols, the intensity of action varies depending on the type of the ingredient, but almost the same action has been reported.
  • exocrine components of lactic acid bacteria include biofilms composed of polysaccharides and glycoproteins.
  • the high molecular weight polysaccharide kefiran secreted and produced by L. kefiranofaciens has a molecular weight of 1 million to 4 million daltons.
  • lactic acid bacteria solid fermented products contain physiologically active substances such as folic acid, ornithine, and vitamins, along with active bacterial cells that induce and express the original survival of bacteria. It also has excellent health functional ingredients.
  • the present invention also includes foods containing the above-mentioned fermented lactic acid bacteria.
  • the food is an excellent functional food rich in nourishment and rich in lactic acid bacteria, polyphenols, grains and the like.
  • the lactic acid bacterium solid fermented product of the present invention can be eaten as a cereal germ itself or as a cereal food containing abundant cereal grains.
  • the food containing the lactic acid bacteria solid fermented product of the present invention includes health food, food for specified health use, nutritional functional food, health supplement food and the like.
  • the food for specified health refers to food that is ingested for the purpose of specific health in the diet and displays that the purpose of the health can be expected by the intake. 4).
  • Breeding method Furthermore, the present invention induces and expresses the original survival ability of bacteria by applying stress to lactic acid bacteria and increasing the stress intensity stepwise by a culture method including a liquid culture process and a solid culture process. A method for breeding lactic acid bacteria or a method for obtaining the lactic acid bacteria is also included.
  • the bacterial count of the cultured strain was measured under the following three conditions: (1) Bacterial count method-I + The MRS culture solution was diluted 100 times in phosphate buffer (pH 6.8) supplemented with 0.5% lyophilized blueberry (polyphenol-containing plant) and 3% sodium chloride, and incubated at 45 ° C. for 10 minutes. Subsequently, the bacterial suspension that had been homogenized 15 times was further diluted serially with a phosphate buffer, and then 0.1 ml of the bacterial suspension was smeared onto an MRS agar medium supplemented with 0.003% of the dye bromothymol blue (BTB). The culture was anaerobically cultured for 1 to 3 days, and the number of villages that appeared was counted.
  • phosphate buffer pH 6.8
  • lyophilized blueberry polyphenol-containing plant
  • sodium chloride 3% sodium chloride
  • the heat resistance of the bacteria was also examined.
  • the heat resistance was expressed as the survival rate (%) after heat-treating the serially diluted solution with shaking at a speed of 75 rpm at a hot water bath temperature of 57 ° C. for 15 minutes.
  • measuring the number of bacteria method -I + and -I -, as well as the number of bacteria of these measurements together with heat resistance and the active cell a substantial amount of the number of bacteria induced to VBNC or bacterial cells during storage of the culture It is a method that can be measured at the same time, and is a method that can evaluate the robustness of the cell membrane of the test bacteria.
  • Bacterial count methods characterized by stress on the cell membrane by polyphenols contained in blueberries-I + and -I - are similarly measured at 45 ° C for 10 minutes, compared to II, which uses polyphenols in the culture environment.
  • the heat resistance by measuring the number of bacteria method -I + can be evaluated, in the cell count assay -I +, since sodium chloride also are added with blueberries may evaluation of salt tolerance.
  • the robustness of the cell membrane can be evaluated by evaluating heat resistance and salt resistance.
  • Step (2-i) Solid culture
  • Table 2 The composition of the solid medium used in step (2-i) is shown in Table 2.
  • Add 14.2 ml of deionized water (14.2 / (14.2 + 15.5) x 100 47.8%) as the amount of water added per 15.5 g of dry weight of the solid medium, and sterilize the growth environment of the particulate matter surface of the solid food mixture was prepared.
  • “2-i / fruit 0%” refers to solid culture in the step (2-i) not including fruit (polyphenol-containing plant), and “2-i / fruit 5 ⁇ ” represents about 5 fruits.
  • DG (-) P has a composition of a solid medium used for the preparation, 0.7 wt% heavy calcium carbonate, 45.1 wt% defatted rice germ, defatted wheat germ 38.9 Wt%, defatted corn germ (edible grade) 15.3 wt%, solid-cultured at 30 ° C for 41 hours, and then air-dried at 50 ° C (DG (-) P: Defatted Grain (-) without MgCO 3, Protease rich Koji).
  • antioxidant activity was examined as one of the properties of the solid medium.
  • Antioxidant activity is performed according to the method for quantifying the total polyphenol content (Toshida Tojiro et al., Journal of the Japan Food Industry Association, 1994, 41 (9): p.611-618.), Ascorbic acid (hereinafter referred to as “ascorbic acid”)
  • the standard curve was prepared by reacting with (Abbreviated asA)), and the measured value was calculated as the equivalent of AsA.
  • this measurement method also reacts with antioxidant amino acids such as monosaccharides having a reducing end and tryptophan contained in a solid medium. Therefore, during solid culture, since the microbial cells assimilate these antioxidant nutrients contained in the growth environment, the antioxidant activity of the lactic acid bacteria solid fermented product is reduced through solid fermentation.
  • step (2-i) freeze dried blueberries was added solid media ⁇ 2-i / fruit 5 - (DG (-) P Kojina addition group) to inoculate the culture medium 1.2ml of MRS liquid medium
  • DG (-) DG (-) P Kojina addition group
  • Step (2-ii) Solid culture: After thoroughly mixing the solid medium with a spatula to homogenize the distribution of the particle components, add 15.4 ml of deionized water as the amount of water to add 15.4 ml of deionized water per 15.5 g of the total weight of the solid food mixture (dry matter). A growth environment was prepared.
  • Aspergillus oryzae's defatted embryo ⁇ UK (UK: UmamiojiKoji) has a solid medium composition (UK-1) used for preparation, 0.7% by weight of heavy calcium carbonate, defatted rice Germ 39.3 wt%, defatted wheat germ 33.0 wt%, defatted corn germ (edible grade) 15.3 wt%, and defatted soybean 11.7 wt%, solid-cultured at 30 ° C, 80% RH for 41 hours, then air dried at 50 ° C This is a cocoon produced by the company.
  • Table 4 shows the composition and antioxidant activity of the solid medium used in step (2-ii).
  • step (2-ii) after melting the active LGG-containing solid fermented product obtained in step (2-i) at ⁇ 20 ° C., 0.90 g of the solid fermented product is shown in Table 4.
  • the solid medium was inoculated and cultured in a constant temperature and humidity chamber set at 39.5 ° C. and 80% RH for 23 hours.
  • Table 5 shows the evaluation results of the obtained active LGG-containing solid fermented product.
  • the active LGG-containing solid fermented product obtained by the solid culture in the step (2-ii) had the following effects in the solid food mixture-I to -VI of the present invention.
  • Effect-1 The degree of decrease in the pH of the medium after 23 hours of solid culture is 1.68 to -2.03, which is larger than the degree of decrease in pH of the solid fermented product in step (2-i) -1.13, and growth on the surface of the food particles It was suggested that there was a possibility that became more mature.
  • Effect-2 The ability to produce lactic acid was +2.07 to +2.76, which was more activated than +1.24 in step (2-i).
  • the acetic acid production ability was +0.16 to +0.009, which was significantly lower than +0.511 in the step (2-i).
  • the acetic acid-producing ability in the control solid medium of step (2-ii) was +1.46 to +0.50, and it was difficult to decrease.
  • the bacterial count and pH of the active LGG-containing solid fermented product in step (2-i) were 270 ⁇ 10 8 cfu / g and pH 6.15 in Table 3 of Example 1, whereas 18 ⁇ 10 8 cfu. / g and pH 6.95, and the growth on the surface of the food particles was insufficient.
  • Step (2-ii) “Solid culture” As step (2-ii), after thawing the -20 ° C. cryopreserved product of the active LGG-containing solid fermentation product obtained in step (2-i), 0.90 g of the solid fermentation product of the present invention shown in Table 4 was obtained. Solid food mixture-IV was inoculated. After solid culture at 40 ° C. and 80% RH for 4 hours, the culture was continued in a thermo-hygrostat set at 80% RH for 24 hours at 39 ° C. The evaluation results of the obtained active LGG-containing solid fermented product are shown in Table 7.
  • step (2-ii) shown in Table 7 is data obtained in the same composition as the result of the solid food mixture-IV of the present invention in Example 1 Table 5, and by comparing both results Thus, the influence on the step (2-ii) due to the qualitative difference of the step (2-i) could be analyzed.
  • the bacterial count and pH of the active LGG-containing solid fermented product in step (2-ii) are 260 ⁇ 10 8 cfu / g in Example 1 Table 5 (Solid medium IV of the present invention) in the method of measuring bacterial cells-II. In Comparative Example 1, it was 130 ⁇ 10 8 cfu / g and pH 5.94. Thus, since the influence of the qualitative difference of the solid species in the step (2-i) was expressed in the step (2-ii), in order to obtain the sufficient effect of the present invention, in the step (2-i) Conditions that made growth more vigorous were necessary.
  • Example 2 Inducible expression of survival ability inherent in bacteria in step (2-ii) by “strain breeding culture”
  • step (1) instead of using MRS liquid culture, which is a general liquid culture, “strain breeding”
  • MRS liquid culture which is a general liquid culture
  • strain breeding The influence on the step (2-ii) when using the liquid species obtained by liquid culture by “culture” was confirmed.
  • 2-1 Process (1) “Liquid culture” In accordance with the liquid culture method previously developed by the present inventors (referred to as “strain breeding culture”), the LGG strain was pre-cultured, pre-cultured, and main-cultured in the three liquid medium compositions shown in Table 8. Each culture step was performed in this order. Table 8 shows the composition of these liquid media.
  • the culture was started in advance using 0.15 ml of the obtained culture solution.
  • Preculture was performed by inoculating 1% of the culture solution obtained in the previous culture, and further inoculating 1% of the culture solution obtained in the preculture. Each culture step was performed for 24 hours, and the culture solution was evaluated. Table 9 shows the evaluation results.
  • the heat resistance of the bacteria obtained from the pre-culture to the pre-culture was low.
  • the main culture solution obtained by “strain breeding culture” (1) improves the heat resistance of the culture to 28%.
  • the degree of decrease in the medium pH is smaller, (3) the amount of lactic acid produced is decreased, the amount of acetic acid produced is significantly increased, and (4) the ability to assimilate citrate is remarkably developed. The feature that was done was recognized.
  • the phenotypic change when the cells adapt to the stress environment of the liquid culture is to secure new ATP energy for the change in the cell structure necessary for the adaptation, for example, acetic acid production while suppressing lactic acid production Increase the amount. Also in this example, the ability to produce acetic acid is remarkably enhanced, which is understood as proof that the bacterium has tried to adapt to the environment. Similarly, since ATP energy is also produced in the citric acid metabolism process, citrate assimilation ability is enhanced, so that ATP energy necessary for imparting excellent survival ability can be generated abundantly and consumption of ATP energy. It becomes possible to respond to the amount increase.
  • Step (2-i) Solid culture
  • step (1) solid medium ⁇ 2-i / fruit 5 - also inoculated with the culture liquid to a solid under the same conditions Culture was performed.
  • Table 10 and Table 11 show the evaluation results of the active LGG-containing solid culture in the raw state (the state before lyophilization) obtained by measuring the medium pH twice in the middle of the culture and also for the maintenance of the solid medium. .
  • Example 2 The results of step (2-i) shown in Table 11 are data obtained using a solid food mixture having the same composition as the results of Step (2-i) shown in Table 1 of Example 1. By comparing the two, the influence on the step (2-i) due to the qualitative difference of the liquid species in the step (1) could be analyzed as shown in the following (A) and (B).
  • the difference in pH at the end of the culture was significantly different from -0.17, and the solid culture that passed through the “strain breeding culture” reached a lower pH. Therefore, when the bacterial cells obtained by “strain breeding culture” are inoculated into the solid food material mixture of step (2-i), the induction period until the resumption of growth is almost zero, and the solid surface thereafter Since the growth in was very vigorous, the stationary phase was reached with a culture time of 6.5 hours. It was suggested that the provision of vigorous growth ability on the surface of food particles was one of the properties that could be modified by “strain breeding culture”.
  • Example 2 When the active LGG solid fermented product described in Table 12 was compared with the solid fermented product described in Example 1 Table 5, all the steps (2-i) (Example 1, solid food mixture ⁇ 2-i / fruits 5 -; example 2, since the set to substantially the same culture conditions in solid food mixture ⁇ 2-i / fruits 5 +) and step (2-ii) (-IV both solid food mixture), the step (1 The effect on the step (2-ii) due to the difference in () was analyzed as shown in (A) and (B) below. (A) The solid culture in the step (2-ii) that has undergone the “strain breeding culture” has a lower pH than the solid culture in the step (2-ii) that has undergone the “general liquid culture”.
  • FIG. 3 shows the number of bacteria and heat resistance of the cells obtained by culturing in each culture step.
  • FIG. 3 shows a table (FIG. 3A) showing the culture conditions of each culture step (test group) 1 to 5 and a graph of the number of bacteria and heat resistance (FIG. 3B).
  • FIG. 3A also shows a table number including data of each condition.
  • Test plots 3 and 4 are test plots satisfying the culture conditions of the present invention. If the medium of the step (2-i) and step (2-ii) of the present invention is used, the number of bacteria is remarkably high, and the heat resistance is not limited. Higher than the test area.
  • Example 3 Active LGG solid fermented product was freeze-dried and storage stability evaluation The lactic acid bacteria solid fermented product in step (2-i) or step (2-ii) was evaluated.
  • the cells are suspended with a protective agent or stabilizer with an appropriate composition before starting these treatments. This is essential, and the original composition of protective agents and stabilizers is an important know-how for manufacturers of lactic acid bacteria.
  • the lactic acid bacteria solid fermented product obtained by the method of the present invention in which the lactic acid bacteria secrete and produce polysaccharides and glycoproteins called biofilms on the particle surface of the solid food mixture, the solid food mixture contains polyphenol. Since it contained a considerable amount and had high antioxidant activity, it seemed that a protective agent and a stabilizer were unnecessary at the time of freeze-drying and freezing preservation of a solid fermented product. Therefore, Table 13 shows the results obtained by lyophilization without adding any protective agent or stabilizer to the LGG activity-containing solid fermented product.
  • FIG. 4 shows the number of surviving bacteria and the heat resistance after freeze-drying of the cells obtained by culturing in each culturing step.
  • FIG. 4 shows a table (FIG. 4A) showing the culture conditions of each culture step (test group) 1 to 5 and a graph of survival cell count and heat resistance (FIG. 4B). High survival cell count and heat resistance after lyophilization were obtained in test sections 3 and 4. In particular, it was good in test section 4.
  • This result shows the effect of the presence of the polyphenol-containing plant in the solid culture step (step (2-i) and step (2-ii)). 2-ii) that it is preferable to be included in both. Moreover, it shows that it is preferable to perform "strain breeding culture" in the liquid culture step.
  • the step (2-ii) (both of the present invention is based on the qualitative difference between the “strain breeding culture” (Example 2) and the “general liquid culture” (Example 1) in the step (1).
  • the impact on the solid food mixture-IV) is that the number of surviving bacteria is 220 x 10 8 cfu / g and heat resistance is 26% when the strain is bred and cultured, and the result is that when the general liquid culture is passed.
  • the number of remaining bacteria was 97 ⁇ 10 8 cfu / g, and the heat resistance was 14%. That is, as an effect obtained through the “strain breeding culture” in the step (1), active cells in which the original survival ability of the fungus was induced and expressed in the solid fermentation of the step (2-ii) were obtained at a higher cell count. .
  • the effect of obtaining a solid fermented lactic acid bacterium containing a high number of active cells inducing and expressing the original survival ability of the bacterium of the present invention is the polyphenol contained in the solid food mixture in the step (2-i).
  • the importance of inoculating step (2-ii) with a solid species imparted with resistance to stress by lyophilization was suggested from the results of freeze-drying. That is, when the solid medium in the step (2-i) does not contain a polyphenol plant, the solid fermentation product of the step (2-ii), solid food mixture-IV shown in Table 7 of Comparative Example 1 is freeze-dried.
  • the number of surviving bacteria was 59 ⁇ 10 8 cfu / g and the heat resistance was as low as 2.0%.
  • the solid medium in the step (2-i) contains a polyphenol-containing plant
  • the solid fermented product of the step (2-ii) solid food mixture-IV shown in Table 13 is freeze-dried.
  • the number of surviving bacteria increased to 97 ⁇ 10 8 cfu / g and heat resistance 14%.
  • step (2-ii) in order to obtain a lactic acid bacterium solid fermented product containing a high number of active cells inducing and expressing the original survival ability of the bacterium, the solid medium of step (2-i) It was suggested that increasing the polyphenol content of the rice by adding dried fruits and / or germ buds is an essential element.
  • the number of surviving bacteria in the solid fermentation product using the solid food mixture-VI of the present invention was 90 ⁇ 10 8 cfu / g. Compared to 200 ⁇ 10 8 cfu / g, it was halved. This phenomenon is due to the fact that, when homogenizing in the bacterial count method-I + , the high concentration polyphenols in the solid fermentation product are combined with the antibacterial activity of blueberry and sodium chloride in the bacterial count evaluation system. It may have been caused by being killed.
  • Example 4 Commonality of Effects Obtained by the Present Invention when Lactobacillus is Changed to Lactococcus 4-1 Step (1)
  • General Liquid Culture and "Strain Breeding Culture”
  • PA strain Pediococcus acidilactici (ATCC25740) strain (hereinafter abbreviated as PA strain) belonging to lactic acid cocci
  • the culture temperature is stepped using MRS liquid medium as "general liquid culture”
  • the liquid culture method previously developed by the present inventors described in Example 2 was used as a “strain breeding culture”, and the culture was pre-cultured and pre-cultured with 33 modified liquid medium composition specifications. And each culture
  • the composition of the liquid medium is shown in Table 15.
  • Preculture was performed by inoculating 1% of the culture solution obtained in the pre-culture, and further, main culture was performed by inoculating 1% of the culture solution obtained in the preculture. Each culture step was performed for 24 hours, and the culture solution was evaluated. The evaluation results of the obtained culture solution are shown in Table 16A and Table 16B.
  • PA strain liquid medium No.1 is the result of simultaneous loading of at least three stress factors, "Cultural breeding culture", in which the culture temperature is increased stepwise, the concentration of carbohydrates and nitrogen sources is decreased, and the concentration of citric acid is increased. In the main culture, proliferation was remarkably suppressed.
  • the medium No. 2 in which the stress element of the increase in citric acid concentration was not applied as compared with the liquid medium No. 1, the medium pH was changed in the same manner as the response in the “strain breeding culture” of the LGG strain in Example 2. The degree of reduction was very small and the amount of lactic acid produced decreased. However, contrary to the LGG strain, the amount of acetic acid produced was significantly reduced, and the ability to assimilate citrate was not induced.
  • step (2-i) Solid culture
  • the solid food mixture having the composition shown in Table 17 was inoculated with 1.2 ml of the culture solution obtained in the main culture in step (1) and set at 42 ° C. and 80% RH.
  • the solid culture was performed in the vessel for 24 hours.
  • the pH of the solid medium was measured twice for maintenance.
  • Table 18 shows the evaluation results of the obtained active PA-containing solid fermented product.
  • the active PA-containing solid fermentation product 2-i (A) obtained in the step (2-i) was greatly inhibited in growth in the main culture medium No. 1 of “Strain breeding culture” From the results of the evaluation of pH and the number of bacteria reached, it was suggested that the growth delay was recovered by 8 hours after the culture and reached the same level as other culture conditions by 24 hours after the culture.
  • the active PA-containing solid fermented product obtained in the step (2-i) has a higher production amount of acetic acid and a smaller amount of citric acid than that of lactic acid, but is secreted and produced. It was different from the solid fermented material containing active LGG obtained in (1).
  • the solid fermented product 2-i (C) of step (2-i) of the PA strain that had passed through the culture condition No. 3 in which the citric acid concentration of the liquid medium was increased in step (1) was slightly reduced in heat resistance. . 4-3 Step (2-ii) “solid culture” using PA strain As step (2-ii), after thawing the -20 ° C.
  • the solid fermentation product of the PA strain obtained in the step (2-ii) had a lower number of bacteria compared to the results described in Table 12 of Example 2 obtained using the LGG strain, but the heat resistance was low. It was significantly higher. It should be noted that the active PA-containing solid fermented product obtained in step (2-ii) has a significantly enhanced lactic acid-producing ability compared to the solid fermented product obtained in step (2-i) of the PA strain. On the other hand, the ability to produce acetic acid was almost halved, and like the LGG strain, the fermentation scene was similar in effect to malolactic lactic acid fermentation.
  • Example 5 Effect of Step (1) on Blow Drying of Active PA-Containing Solid Fermented Product Obtained in Step (2-ii) and Survival of Dry Bacteria Activity Obtained in Step (2-ii)
  • the PA-containing solid fermented product was thinly spread on a filter paper, and air-dried at 45 ° C. for 6 hours in an industrial thermostat VTFH-216-2T (manufactured by Isuzu Seisakusho).
  • VTFH-216-2T manufactured by Isuzu Seisakusho
  • the number of surviving bacteria and heat resistance Sex was evaluated. At that time, the value obtained by dividing the number of surviving bacteria by the number of bacteria obtained immediately after culturing shown in Table 20A and multiplying by the heat resistance (%) is “survival rate ⁇ heat resistance ( %) ”.
  • the reason expressed by “survival rate ⁇ heat resistance (%)” is that PA strain originally showed excellent resistance to blast drying unlike LGG strain, and also has excellent heat resistance. This is because it becomes a scale that can evaluate the state in which the survival ability inherent to the bacteria is induced and expressed with higher sensitivity. In other words, if it was not killed at all by air drying, a survival rate of 100% was obtained, and if the cells dried by air were firmly maintained by air drying, the viable state (before drying) Heat resistance of the same value as the cells in the state) is obtained. Therefore, the higher the value of “survival rate ⁇ heat resistance (%)”, the more stable the cell membrane, and the stabilization effect of the state in which the survival ability inherent to the bacteria is induced and expressed is assumed.
  • Table 21 shows the obtained results.
  • Solid fermented product 2 of step (2-i) obtained by inoculating the liquid species of medium No. 1 in which growth stress was suppressed due to excessive stress in the main culture of “strain breeding culture” in step (1) -As a result of performing solid culture in step (2-ii) using i (A) as a solid species, if there is no sodium chloride added to the solid food mixture, “general liquid of MRS liquid medium in step (1)”
  • the results similar to those of the solid fermented product 2-i MRS inoculated with the liquid species obtained in “Culture”, that is, “survival rate ⁇ heat resistance (%)” are immediately after blow drying and the dried product at 4 ° C. for 18 days.
  • the solid fermented product 2-i (A) in the step (2-i) is used as a solid species.
  • the “survival rate x heat resistance (%)” of 0.3% by weight of the inoculated solid fermented 2-ii sodium chloride is 78% both immediately after blow drying and after storing the dried product at 4 ° C. for 18 days. It was suggested that a solid fermented product in a state in which the survival ability inherent to the bacteria was induced and expressed was obtained, which was as high as 32%.
  • step (1) the liquid medium No. 1 was loaded with both the low nutrition and the stress that gradually increased the culture temperature.
  • step (2-ii) was performed using the solid fermented product 2-i (B) of step (2-i) obtained by inoculating the liquid species of step 2 as a solid species, sodium chloride in terms of dry matter
  • survival rate x heat resistance (%) of 1.2% by weight of solid fermented product 2-ii sodium chloride grown on a solid medium containing 1.2% by weight of It was as high as 42% and 35% after both days of storage.
  • the step (2-i) In the solid culture in the step (2-ii) after passing through the above, it was suggested that when the stress intensity at a high sodium chloride concentration was set higher, the inherent survival ability of the bacterium could be induced and expressed. That is, it was estimated that the sensor for response to load stress may have changed to a “normal type” that is slightly inferior to the above.
  • the step (2-i) obtained by inoculating the microbial cells through the condition in which the malnutrition stress is removed from the above three types of stress stress.
  • 2-iiC sodium chloride ⁇ ⁇ 1.2% by weight obtained by culturing in solid medium supplemented with 1.2% by weight sodium chloride 2-i (C) of “survival rate x heat resistance (%)” ”Was as high as 43% just after drying, but decreased to 23% after the dried product was stored at 4 ° C. for 18 days. It was higher than 11-12% of solid fermented product 2-ii with 0% by weight of sodium chloride.
  • step (1) shows that in the liquid culture of step (1), as many kinds of stress as possible are applied and their resistance is induced and expressed, so that even when solid culture is passed twice, excellent survival ability is induced. This suggests that it is important for obtaining a solid fermented product in an expressed state.
  • FIG. 5 shows the “survival rate ⁇ heat resistance” (%) of the cells obtained by culturing in each culturing step after air drying.
  • FIG. 5 shows a table (FIG. 5A) showing the culture conditions of each culture step (test group) 1 to 5 and a graph (FIG. 5B) of “survival rate ⁇ heat resistance” (%).
  • “Survival rate ⁇ heat resistance” (%) indicates a value after drying by blowing and a value after storage at 4 ° C. for 18 days.
  • test groups 1 to 5 The difference between the test groups 1 to 5 is the sodium chloride concentration in the solid culture step (2-ii) and the culture method (general liquid culture or strain breeding culture) in the liquid culture step (1).
  • the results shown in FIG. 5 indicate that “survival rate ⁇ heat resistance” (%) was better when the strain breeding culture was performed as the liquid culture process and sodium chloride was added in the solid culture process (2-ii). It shows that.
  • Lactic acid bacteria grown by liquid culture are cultured using a solid food mixture containing an appropriate amount of solid foods as a solid medium, thereby inducing and expressing the original survival of the bacteria and containing high-density cells
  • a solid fermented product can be obtained, and a solid fermented product obtained by a drying process such as freeze-drying or hot air can also be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

乳酸菌本来の優れた生残能を誘導発現させるべく、種々のストレスを賦与しながら培養する独自培養法により乳酸菌を育種し活性菌体とすることを特徴とし、そのような活性菌体を得ることができる培養法、及び培養により得られた菌本来の生残能を誘導発現させた乳酸菌固体発酵物の提供。 乳酸菌固体発酵物の製造方法であって、 (1) 乳酸菌を、液体培地を用いて培養する液体培養工程、 (2) 工程(1)で培養した乳酸菌を固形食材混合物である固体培地で培養する、1工程又は複数工程からなる固体培養工程であって、固体培地は少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含み、固体培養の最終工程で用いる固体培地はポリフェノール含有植物体を含む、乳酸菌を固体培地表面で増殖させる固体培養工程、 を含み、乳酸菌固体発酵物が工程(2)で用いた固体培地表面に前記乳酸菌が含有されている乳酸菌固体発酵物である、製造方法。

Description

菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物
 本発明は、ストレス耐性が大きくなるように、菌本来の生残能を誘導発現させた乳酸菌の培養方法に関する
 乳酸菌は、乳酸を大量に産生する細菌群の総称であり、各種発酵食品の他、酒類、醸造製品、漬物、果実加工品などの製造に関与するなど、古くから人類は乳酸菌の恩恵を受けてきた。
 近年においては、乳酸菌は、腸内腐敗菌の抑制作用や整腸作用、免疫賦活作用など、種々の保健機能性に注目が集まっている(非特許文献1を参照)。
 乳酸菌はビフィズス菌とともに腸内細菌としてヒトの健康維持に有効であることが知られている。腸内フローラを改善して健康に有益な働きをし、安全性も保証された微生物「プロバイオティクス」に関する研究が活発化している。生活習慣病予防に対する関心の高まりから、食品の優れた保健機能性がより追求される傾向にある中、こうしたプロバイオティクスの食品への更なる活用が望まれている(非特許文献2)。
 乳酸菌の培養において現状一般的に用いられる手法として、液体培地に乳酸菌を接種し、培地pHなどを制御しながら培養し、生育の停止した定常期状態に到達後、菌体を培地から分離して回収する回分培養法(バッチ・カルチャー)がある。この方法は、培養中に生ずる培地の栄養素の減少及び乳酸などの分泌物の増加に起因して培地環境が変化するために、乳酸菌の増殖が生育途中で抑制され易く、菌体密度が培養液1ml当たり100億cfu(colony forming units)以上へ到達し難く、更にストレス抵抗力が充分に賦与され難いことが特徴であり、菌体の高密度化と優れた安定性賦与の両課題を同時に改善できる技術が切望されていた(非特許文献3)。
 こうした観点から、炭酸マグネシウム、単糖類又は2糖類、ペプトン、及び麹、麹エキス、胚芽培地、酵母、及び酵母エキスから選ばれる1種又は2種以上を含む混合物を液体培地に用い撹拌培養することを特徴とするエンテロコッカス・フェカーリス又はエンテロコッカス・フェシウムの培養法が提案されている(特許文献1)。
 また、小麦胚芽等の植物体に糸状菌を培養し、さらに炭酸マグネシウム等を添加した固体培地を用いて乳酸菌を培養する方法が提案されている(特許文献2)。
特許第3900484号公報 特許第3868346号公報
Ali AA. et al., Research Journal of Microbiology, 5(12), pp.1213-1221(2010) Naagpal R. et al., FEMS Microbiology Letters,334(1)、pp.1-15(2012) Lacroix C. et al., Current Opinion in Biotechnology, 18, pp.176-183(2007)
 ヒト腸内には細菌が約1000種類、数百兆個もの数量で棲息しているため、乳酸菌の優れた保健機能性の発現は、消費者が一度に摂取する乳酸菌の菌数がより多い程、そして、より旺盛な増殖能を持った菌体である程、より優れた保健機能性を享受できると期待される。
 乳酸菌の保健機能性を更に増強するためには、優れた生残能を菌体に賦与する必要性が重要課題として認識されている。乳酸菌の菌体調製は、一般的には液体培養法によって行われているが、この場合も同様に優れた生残能を賦与することが重要課題となっている。
 本発明は、菌本来の優れた生残能を誘導発現させるべく、種々のストレスを賦与しながら培養する独自培養法により乳酸菌を育種した活性菌体とすることを特徴とし、そのような活性菌体を得ることができる培養法、及び培養により得られた菌本来の生残能を誘導発現させた乳酸菌固体発酵物の提供を目的とする。
 本発明者らは、先に液体培養により菌本来の生残能を誘導発現した乳酸菌菌体を増殖させる方法を開発し、その培養方法を「菌株育種培養」と称した。本発明者らは、さらに、「菌株育種培養」をコア技術として活用し、ポリフェノール含有食材混合物の固体表面で増殖させて得られる固体発酵物において、菌本来の生残能を誘導発現した菌体が旺盛に増殖する培養条件を鋭意検討した。
 その結果、液体培養に引き続いて、固体培養を行うことにより、菌本来の生残能を誘導発現した菌体が旺盛に増殖することを見出した。特に、液体培養である「菌株育種培養」において、培養を繰り返す度に、直前の培養に比べてより高い強度の至適培養環境外のストレスを負荷して菌本来の生残能を誘導発現させた菌体は、一般的なMRS液体培地で培養して得られた菌体をさらに固体培養に供した場合に比較して、より大きな効果が得られた。また、固体培養を「固体環境順応」及び「乳酸菌固体発酵」の2工程の培養により、固形食材混合物である固体培地の表面において増殖させることにより、より大きな効果が得られることを見出し、本発明を完成させるに至った。
 本発明の方法は、液体培養と固体培養を組合せ、固体培地に乳酸菌にストレスを負荷し得るポリフェノールを含有する植物体を用い、さらに、液体培養と固体培養の各段階を経るにつれ段階的に乳酸菌に負荷するストレスをより高くすることにより生残性の高い菌を得るという点で、従来の培養法とは異なる。
 すなわち、本発明は以下のとおりである。
[1] 乳酸菌固体発酵物の製造方法であって、
(1) 乳酸菌を、液体培地を用いて培養する液体培養工程、
(2) 工程(1)で培養した乳酸菌を固形食材混合物である固体培地で培養する、1工程又は複数工程からなる固体培養工程であって、固体培地は少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含み、固体培養の最終工程で用いる固体培地はポリフェノール含有植物体を含む、乳酸菌を固体培地表面で増殖させる固体培養工程、
を含み、乳酸菌固体発酵物が工程(2)で用いた固体培地表面に前記乳酸菌が含有されている乳酸菌固体発酵物である、製造方法。
[2] 工程(2)の固体培養工程を複数の工程で行い、後の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量が、それより前の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量よりも多い、[1]の製造方法。
[3] 工程(1)の液体培養及び工程(2)の固体培養工程を経るにつれ、段階的に強度を高くした複数のストレスを負荷し、それらのストレスに耐性を有する乳酸菌の生残能を増加させる、[1]又は[2]の製造方法。
[4] 乳酸菌固体発酵物の製造方法であって、
(1) 乳酸菌を、液体培地を用いて培養する液体培養工程、
(2-i) 工程(1)で培養した乳酸菌を、少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含む固形食材混合物である固体培地で培養し、乳酸菌を固体培地表面で増殖させる工程、
(2-ii) 工程(2-i)で培養した乳酸菌を、少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固形食材混合物である固体培地であって、ポリフェノール含有植物体の含量が工程(2-i)で用いた固体培地よりも多い固体培地で培養し、乳酸菌を固体培地表面で増殖させる工程、
の3工程を含み、乳酸菌固体発酵物が工程(2-ii)で用いた固体培地表面に前記乳酸菌が含有されている乳酸菌固体発酵物である、[2]の製造方法。
[5] 工程(2-ii)において、固体培地にさらに胚芽麹が含まれる、[4]の製造方法。
[6] 工程(1)、(2-i)及び(2-ii)の工程を経るにつれ、段階的に強度を高くした複数のストレスを負荷し、それらのストレスに耐性を有する乳酸菌の生残能を増加させる、[4]又は[5]の製造方法。
[7] 工程(1)で用いる液体培地が、少なくとも炭酸塩、胚芽麹、窒素源及び炭素源を含む液体培地である、[1]~[6]のいずれかの製造方法。
[8] 工程(1)の液体培養工程が多段階の培養工程で行われ、多段階の培養工程の各段階の工程、又は多段階の培養工程のいずれか1工程において、少なくとも炭酸塩、胚芽麹、窒素源及び炭素源を含む液体培地を用いる、[1]~[7]のいずれかの製造方法。
[9] 工程(1)で用いる液体培地に含まれる胚芽麹が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽の1種又は2種以上を含む、[7]又は[8]の製造方法。
[10] 工程(1)で用いる液体培地に含まれる炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、[7]又は[8]の製造方法。
[11] 固体培養工程で用いる固体培地に含まれる胚芽が、1種又は2種以上の穀物の脱脂胚芽又は胚芽を含む脱脂穀物である、[1]~[10]のいずれかの製造方法。
[12] 胚芽が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽、その他の穀物由来の脱脂胚芽及びその他の穀物の胚芽を含む脱脂穀物からなる群から選択される1種又は2種である、[11]の製造方法。
[13] 胚芽を含む脱脂穀物が脱脂大豆である、[11]又は[12]の製造方法。
[14] 固体培養工程で用いる固体培地に含まれるポリフェノール含有植物体が、果実、野菜、穀類、茶葉、海藻及び香辛料からなる群から選択される1種以上の植物体である、[1]~[13]のいずれかの製造方法。
[15] 固体培養工程で用いる固体培地に含まれる胚芽麹がアスペルギルス属に属する麹菌の脱脂胚芽麹である、[1]~[14]のいずれかの製造方法。
[16] 工程(2-ii)で用いる固体培地に、さらに塩化ナトリウムが含まれる、[4]~[15]のいずれかの製造方法。
[17] 固体培養工程で用いる固体培地に含まれる炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、[1]~[16]のいずれかの製造方法。
[18] 固体培養工程で用いる固体培地が炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体の均質混合物と水との混合固体培地である、[1]~[17]のいずれかの製造方法。
[19] 工程(1)の液体培養により得られた乳酸菌菌体を、工程(2)で用いる固体培地の表面に接種する、[1]~[18]のいずれかの製造方法。
[20] 工程(1)の液体培養により得られた乳酸菌菌体を、工程(2-i)で用いる固体培地の表面に接種し、さらに工程(2-i)の固体培養により得られた乳酸菌菌体を工程(2-ii)で用いる固体培地の表面に接種する、[4]~[19]のいずれかの製造方法。
[21] 少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固形食材混合物の表面に乳酸菌が含有されている、乳酸菌固体発酵物。
[22] さらに、固形食材混合物が胚芽麹を含む、[21]の乳酸菌固体発酵物。
[23] 胚芽が、1種又は2種以上の穀物の脱脂胚芽又は胚芽を含む脱脂穀物である、[21]又は[22]の乳酸菌固体発酵物。
[24] 胚芽が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽、その他の穀物由来の脱脂胚芽及びその他の穀物の胚芽を含む脱脂穀物から選択される1種又は2種である、[23]の乳酸菌固体発酵物。
[25] 胚芽を含む脱脂穀物が脱脂大豆である、[21]~[24]のいずれかの乳酸菌固体発酵物。
[26] ポリフェノール含有植物体が、果実、野菜、穀類、茶葉、海藻及び香辛料からなる群から選択される1種以上の植物体である、[21]~[25]のいずれかの乳酸菌固体発酵物。
[27] 胚芽麹がアスペルギルス属に属する麹菌の脱脂胚芽麹である、[21]~[26]のいずれかの乳酸菌固体発酵物。
[28] 固形食材混合物に、さらに塩化ナトリウムが含まれる、[21]~[27]のいずれかの乳酸菌固体発酵物。
[29] 炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、[21]~[28]のいずれかの乳酸菌固体発酵物。
[30] [21]~[29]のいずれかの乳酸菌固体発酵物を含む、穀物、ポリフェノールを含む植物体及び乳酸菌を含む食品。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-226074号の開示内容を包含する。
 本発明の菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法によれば、ヨーグルトや乳酸菌飲料、韓国産キムチなどの生菌含有発酵食品の1g又は1ml当たりの菌数に比べ、最終的に得られる乳酸菌固体発酵物は10倍~100倍以上の高密度の菌体を含有しており発酵物を少量で高菌数摂取することができる。また、固体培地として用いる固形食材混合物を構成する食材に含有されたポリフェノールや塩化ナトリウムにより負荷されるストレスの強度に応じて、菌本来の生残能を誘導発現できる。さらに、得られた乳酸菌固体発酵物は、生きた菌体(以下、「活性菌体」という)を高菌数で含むだけでなくポリフェノールや食物繊維など食材由来の生理活性物質を含む高機能の食品として利用可能である。更に用いる菌種によっては、バイオフィルム以外に、葉酸やオルニチンなどの優れた保健機能性の分泌物を含有していることも期待できる。
 従って、本発明の方法で製造される乳酸菌固体発酵物は、菌本来の生残能を誘導発現した活性菌体を高菌数に製造する培養法としての機能だけでなく、乳酸菌やポリフェノールなどの優れた保健機能性成分を一緒に摂取できる発酵物としての機能も兼ね備えている。
 本技術の効果として、菌本来の生残能を誘導発現させることが可能になるが、この要因は、菌の表層構造の変化に起因した細胞膜の安定化効果と推定される。従って、冷蔵保存、高浸透圧、高濃度食塩、凍結・融解、加熱、低pH,胆汁、あるいは乾燥に起因した菌体の損傷に対しても、ポリフェノールや塩化ナトリウムによるストレスにも菌本来の優れた抵抗力が賦与されていることを期待される。
 液体培養で得られた菌体を乾燥する場合、適切な組成の保護剤や安定化剤を用いることが必須である。これに対して、本発明の方法により製造された活性菌体を含有する乳酸菌固体発酵物は、固体発酵中に代謝産物として、保護剤や安定化剤に匹敵する安定化機能を有するバイオフィルムなどの成分が菌体外に豊富に分泌産生されていると推定されるため、保護剤や安定化剤が不要になる。従って、発酵食品の一般的な「発酵シーン」においてポリフェノール高含有食材は、その高い抗菌ストレスのために乳酸菌で発酵対象と見做されなかったが、本発明の方法によれば、菌本来の生残能を誘導発現して高密度の菌体を含有した乳酸菌固体発酵物が得られ、凍結乾燥処理や送温風などの乾燥処理によって得られた固体発酵物も提供できる。
本発明の固体培養で用いる固体培地の各成分が均質に混合している状態の模式図である。 液体培養と2工程の固体培養を行う3工程の方法における各工程の特徴を示す図である。 各培養工程で培養して得られた菌体の菌数と耐熱性の結果を示す図である。 各培養工程で培養して得られた菌体の凍結乾燥後の生残菌数及び耐熱性を示す図である。 各培養工程で培養して得られた菌体の送風乾燥後の「生残率×耐熱性」(%)を示す図である。
 以下、本発明を詳細に説明する。
1.培養方法
 本発明は、乳酸菌を増殖させて定常期に至った菌体を再び新鮮な培地環境に接種し、対数増殖期を経て定常期に至らしめる度に、負荷するストレス強度をより高くすることで菌本来の生残能を誘導発現させるための液体培養工程と固体培養工程を経ることを特徴とする培養法である。ここで、定常期とは、対数増殖期を経て、培地中の生菌数が一定の状態を維持しており、すなわち菌体の分裂速度が低下し分裂率と死滅率が平衡に達し、生菌数が一定になった状態をいい、静止期ともいう。固体培養工程は1工程でもよいが、好ましくは2工程以上の複数工程の固体培養を行う。
 ここで、菌本来の生残能とは、特定の条件下で一定期間経過した後に菌が本来有している生き残る能力をいう。本発明の培養法により、液体培養から固体培養を経るほどに、例えば、液体培養工程と複数の固体培養工程を経るほどにストレス負荷の程度が高くなり、菌本来の生残能が誘導発現され、ストレス環境への耐性が高い菌を得ることができる。また、結果的に高い増殖能の菌体を得ることができる。
 本発明の培養法により、優れた生残能が誘導発現された菌体を得ることができる。また、本発明の培養法により、固体培地の表面で乳酸菌が増殖し、固体培地表面に前記乳酸菌が含有されている「乳酸菌固体発酵物」を得ることができる。従って、本発明の方法は、「乳酸菌固体発酵物」を製造する方法でもある。
 本発明の培養法においては、各工程で、培養する乳酸菌にストレスを負荷し、負荷するストレス強度を培養工程が進むにつれ高くする。ここでストレスとは、乳酸菌の菌種又は菌株の培養環境として至適域から外れた培養条件をいう。ストレスとなり得る培養条件とは、pH、浸透圧、温度、培地に含まれる資化物質の量等が挙げられる。すなわち、本発明の一連の培養工程で負荷するストレスとして、浸透圧ストレス、アルカリpHストレス、酸性pHストレス、酸化ストレス、温度ストレス、栄養ストレス、ポリフェノールによるストレス等が挙げられる。至適域からの乖離が大きいほど負荷されるストレスの強度は高い。ストレスを負荷して得られる菌体は、十分なストレス抵抗力を備えた状態へと変化し、安定性がより一層向上する。ストレスの負荷により、十分なストレス抵抗力を備えた状態へ変化することを「菌本来の生残能を誘導発現させる」という。本発明の培養工程においては、これらのストレスのうちの複数のストレスが組み合わされて乳酸菌に負荷されることになる。
 例えば、本発明の培養工程で培地の成分として用いるアルカリ性・難溶性炭酸塩は培養液中の菌体密度の増加に伴い、分泌産生される有機酸の量が増加して、炭酸ガスを放出しながら水溶性塩類に変化する。これに伴い、培養液のイオン強度が徐々に上昇することで、浸透圧ストレスを菌体に与えることができ、菌体を高密度にする液体培養において菌体の性質を改善するために必要な負荷するストレスの種類を増やす効果が期待される。培養液のイオン強度の上昇は、電気伝導度を測定することで評価できる。一方で炭酸ガスが培養液中から放出されることにより溶存酸素を減らす効果が生じ、過酸化水素の生成を減弱できる。このことは、菌体密度が高密度化に至った状態であっても、菌体密度の増加に比例して過酸化水素の産生量も増加するのではなく、濃度が適切に制御された状態であることを意味する。従って、過酸化水素に起因した酸化ストレスの負荷を適度な望ましい状態に維持できる結果、酸化ストレスに対する耐性が賦与されると共に、培養過程における過剰な過酸化水素に起因した自己菌体損傷を抑制することができる。このように培養対象である菌体にとって許容可能な様々なストレス刺激を同時に、培養経過に応じて適切に徐々に負荷することにより、菌体の高密度化が可能になるばかりでなく、MRS液体培地の様な単に栄養素が潤沢な培地で培養した場合よりも優れた菌体安定性及び低温域や高温域における旺盛な増殖能が最大限に賦与された菌体が選択的に培養されることになる。
 さらに、本発明の培養工程で培地の構成成分として用いるポリフェノール含有植物体、穀物胚芽、胚芽麹には、ポリフェノールが含まれており、ポリフェノールの有するイオノホアとしての抗菌作用が乳酸菌に対してストレスを負荷する。本発明においては、このストレスを「ポリフェノールによるストレス」という。
 培養に用いる乳酸菌は限定されないが、乳酸桿菌も乳酸球菌も含み、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・ラムノサス(Lactobacillus rhamonosus)、ラクトバチルス・サリバリウス(Lactobacillus salivarius)、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ガゼリ(Lactobacillus gasseri)、ラクトバチルス・デルブルエキィ(Lactobacillus delbrueckii)、ラクトバチルス・ファーメンタム(Lactobacillus fermentum)ラクトバチルス・キムチ(Lactobacillus kimchii)、ラクトバチルス・パラカゼイ(Lactobacillus paracasei)、ラクトコッカス・ラクチス(Lactococcus lactis)、ラクトコッカス・クレモリス(Lactococcus cremoris)、ロイコノストック・メセンテロイデス(Leuconostoc mesenteroides)、ロイコノストック・シトリウム(Leuconostoc citreum)、ペディオコッカス・アシディラクティシ(Pediococcus acidilactici)、ペディオコッカス・ペントサス(Pediococcus pentosaceus)等が挙げられる。
 また、用いる乳酸菌は1種類でもよいが、乳酸菌の2種類以上を含んでいてもよい。
 液体培養工程は、液体培地を用いて乳酸菌を培養する液体培養である。この液体培養工程で得られた乳酸菌を「液体種」という。また、本発明において、液体培養工程を「工程(1)」という。液体培養工程は、さらに複数の工程を含んでいてもよい。
 固体培養工程は、固体培地を用いて乳酸菌を固体培養により培養する工程であり、液体培養工程で得られた乳酸菌を含む液体種を固体培地に接種し、培養する工程である。固体培養は天然環境を模した培養であり、乳酸菌本来の棲息環境に近い環境で乳酸菌を増殖させる培養である。固体培養工程は、乳酸菌を液体環境から固体環境へ順応させる。この点で、固体培養工程を液体培養から固体培養への順応工程、あるいは「固体環境順応」工程という。また、固体培養工程においては、固形食材混合物に、液体培養工程よりも高いストレスが乳酸菌に負荷され、菌本来の生残能が誘導発現され、ストレス環境への耐性が高い菌を得ることができる。このようにストレス環境への耐性が高い菌を高密度で増殖させる固体培養工程を「乳酸菌固体発酵」工程という。好ましくは、「固体環境順応」工程とストレス環境への耐性が高い菌を増殖させる「乳酸菌固体発酵」工程は別の工程で行う。
 一般的に乳酸菌の培養は液体培養で行われている。液体培養では、培養液中を拡散する栄養素を菌体内に取り込むことができれば乳酸菌は容易に増殖できる。一方、本発明の固体培養は脱脂胚芽等を主成分として含む固体培地を用いるため、液体培養に比べ低栄養環境かつ低水分環境である。固体培養の環境は液体培養よりも天然環境に近い。従って、菌が本来有する遺伝子の発現率が高まり、その結果、生残能の高い菌体を得ることができる。
 固体培養工程は、1つ又は2つ以上の工程を含む。例えば、固体培養工程は工程(2-i)と工程(2-ii)の2つの工程を含み、工程(2-i)は、固体培地を用いて乳酸菌を固体培養により培養する工程であり、工程(1)の液体培養で得られた乳酸菌を含む液体種を固体培地に接種し、培養する工程である。工程(2-i)においては、乳酸菌を液体環境から固体環境へ順応させる。この点で、工程(2-i)を液体培養から固体培養への順応工程、あるいは固体環境順応工程という。また、工程(2-i)で得られた固体培養に順応した菌を「固体種」という。
 工程(2-ii)は、固体培地を用いて乳酸菌を固体培養により培養する工程であり、工程(2-i)の固体培養で得られた固体種の一部をさらに固体培地に接種し培養する工程である。工程(2-ii)においては、工程(2-i)の固体培養で乳酸菌に負荷するストレスより高いストレスが乳酸菌に負荷される。また、工程(2-ii)を「乳酸菌固体発酵」工程という。
 従来の乳酸菌の培養は、液体培地を用いた液体培養であり、炭素源、窒素源、塩類などの生育に必要な栄養素を含んだ水溶液である液体培地中で菌体を増殖させる方法であった。この方法では、乳酸菌が増殖する増殖領域の水分活性(Water Activity)が1.0である。ここで、増殖領域の水分活性とは、乳酸菌を培養している培養液中の自由水の割合をいい、液体培地を密閉した培養容器内に入れた場合の水蒸気圧(P)とその温度における純粋の水蒸気圧(PO)の比(P/PO)で求められる。
 固体培地による培養法として、微生物を分離するため研究目的等で用いられる寒天平板培養法が知られている。本発明における固体培養は、従来の寒天平板培養とは異なり、固形状態の植物体等の食材を混合し、得られた混合物に45~60%の水分を加えて水分活性が1.0未満、好ましくは0.95~0.98の固体培地中で、固体培地の表面において菌体を増殖させる培養法をいう。水分活性は菌種により変えることができる。
 以下、液体培養工程と固体培養工程について詳述する。
1-1.液体培養工程(1)
 液体培養工程である工程(1)は、乳酸菌の培養に用いる公知の液体培地を用いて行うことができる。例えば、すべての種類の乳酸菌の発育を促す選択性の低い培地を用いればよい。培地組成は国際標準法NF_ISO 15214に準拠しているMRS(de Man, Rogosa, Sharpe)液体培地を用いればよい。本発明において、公知の液体培地を用いて行う液体培養を「一般的な液体培養」という。この「一般的な液体培養」は、通常は1工程で行われる。
 また、工程(1)の液体培養を、複数の工程で行ってもよい。すなわち、前々培養から前培養、及び本培養へと複数段階の培養を行う。その都度、培養温度を前回の培養に比べて数℃ずつ変化させることにより乳酸菌に温度ストレスを負荷することができ、あるいは、培地の炭素源と窒素源の各濃度を段階的に低下させることにより栄養素ストレスを乳酸菌に負荷することができる。さらに、クエン酸濃度や塩化ナトリウムを段階的に高める条件を設定してもよい。工程(1)の液体培養において、複数段階の培養を行い、負荷するストレス強度をより高くしていく培養を「菌株育種培養」ともいう。「菌株育種培養」により、乳酸菌にストレスを負荷した結果、菌本来の生残能を誘導発現した菌体が選択され、その後の固体培養で旺盛に増殖する菌体を得ることができる。
 「菌株育種培養」の方法を以下に詳述する。
 「菌株育種培養」においては、ポリフェノール等の抗菌作用を有するストレスを負荷する物質の存在下、液体培養を繰り返しながら、菌体に負荷する低栄養や培養温度の変化などのストレス強度をより高く設定する。すなわち、炭素源及び窒素源などと共に、麹菌を固体培養して得られたポリフェノール含有脱脂胚芽麹及びそのエキス画分あるいは脱脂胚芽及び乾燥果物や茶葉のエキス画分、並びに難溶性の炭酸カルシウム及び炭酸マグネシウムを含むことを特徴とする液体培地を用いて乳酸菌を振盪又は撹拌しながら好気的に培養する際に、菌体に複数のストレスを同時に負荷する。更に「菌株育種培養」においては、前々培養から前培養、本培養へと培養工程を繰り返す度に、培養温度を前回の培養に比べて3~5℃ずつ変化させて温度ストレスを負荷する他、培地の炭素源と窒素源の各濃度を低下させる栄養素ストレスを負荷することや、クエン酸濃度を段階的に高めることを行う。
 培養温度に因るストレス負荷は、前々培養の温度に比較して、前培養の温度を3~5℃ずつ上下させる他、更に前培養の温度に比較して、本培養の温度を3~5℃ずつ上下させる。
 低栄養に因るストレス負荷は、前々培養、前培養、及び本培養において使用する液体培地の炭素源(グルコース)と窒素源(ハイニュートAM、不二製油株式会社製 大豆ペプチド)の各濃度(%)を、液体培養を繰り返す度に、段階的に下げる条件を設定することで可能になる。例えばラクトバチルス・ラムノサス(L. rhamnosus)GG(ATCC53103)株等の乳酸桿菌を培養対象にする場合、前々培養のグルコース濃度6.0重量%/ハイニュートAM濃度3.75重量%を、前培養では2.5重量%/1.8重量%を経て、さらに本培養では1.5重量%/1.6重量%に下げればよい。また、ペディオコッカス・アシディラクティシ(P. acidilactici) ATCC25740株等の乳酸球菌を培養対象にする場合は、前々培養のグルコース濃度2.0重量%/ハイニュートAM濃度7.0重量%を、前培養では1.5重量%/4.8重量%に下げ、さらに本培養では1.0重量%/2.5重量%と、各濃度を段階的に下げればよい。
 液体培地のクエン酸濃度は、前々培養、前培養、及び本培養の各培養工程において使用する液体培地のクエン酸ナトリウムの濃度を前々培養で24 mM、前培養で37 mM、次いで本培養で60 mMと、新鮮な液体培地で培養を繰り返す度に、より高い濃度を設定することにより増加させればよい。クエン酸の含有量を増やすことにより、乳酸菌はグルコース消費量を低下させ、クエン酸を資化するようになる。
 「菌株育種培養」における培養温度、液体培地の炭素源や窒素源の種類と濃度、及びクエン酸塩の濃度は、使用する菌種や菌株によって適宜調整し得るものであり、上の記載は一例を示したものに過ぎない。
 工程(1)の「菌株育種培養」で用いる液体培地は、少なくとも炭酸塩、胚芽麹、窒素源及び炭素源を含む液体培地である。さらに、胚芽麹エキス、酵母死菌体、脂肪酸、界面活性剤としてのポリソルベート類、鉄分やマンガン等を含んでいてもよい。脂肪酸としては、例えば、オレイン酸を含む動植物性油脂が挙げられる。
 「炭酸塩」としては、炭酸カルシウム、炭酸マグネシウムなどのアルカリ性・難溶性炭酸塩が好ましく、かつ至適な培地pHを実現するために炭酸カルシウムと炭酸マグネシウムの双方を混合し、かつ適切な配合比率で培地に加えることが好ましい。液体培養において炭酸塩は軽質炭酸カルシウム、重質炭酸カルシウムいずれも用いることができるが、溶解性の点で好ましくは軽質炭酸カルシウムを用いる。炭酸マグネシウムを液体培地に単独で添加すると、培地pHは大多数の乳酸菌が許容できる通常の培地pH7.0~6.0よりもアルカリ側へ変動する一方、回分式液体培養にとって、培地のpH緩衝能を高めることが望ましく、炭酸塩の添加量を増やす方法が想定されるが、この場合には初発pHがアルカリ側へ高くなるため、アルカリpHに対する耐性力の劣る菌種や菌株にとって非常に厳しい負荷ストレスとなり(アルカリpHストレス)、種菌(seed culture)の調製段階にて旺盛な増殖能が菌体に賦与されていない場合には増殖が不可能な状態に陥る可能性がある。さらに、グルコースを含む糖質と他の培地成分を混合して同時に滅菌した場合、培地褐変化(メイラード反応)の促進に伴い過酸化水素を生成して菌の増殖阻害が見込まれる。そこで、本発明の工程(1)の「菌株育種培養」においては、アルカリ性・難溶性炭酸塩と胚芽麹とを混合し、かつ他の培地成分と分離して高温高圧滅菌処理することにより培地の初発pHを下げられ、かつ炭酸塩が液体培地中に徐放され、急激な培地pH変動を回避し得る。
 なお、これらのアルカリ性・難溶性炭酸塩は、培養が対数増殖期から定常期へと進展するに応じて菌体が産生した乳酸や酢酸などの有機酸濃度が上昇する際、これら有機酸と反応して水溶性塩類に変化するとともに炭酸ガスが培養液中に放出され、培養液のイオン強度が上昇する。これが培養過程における菌に対する浸透圧ストレス負荷となるほか、アルカリpHストレス、酸性pHストレス、酸化ストレス、あるいは温度ストレスといった刺激が更に負荷された結果、得られる菌体は、十分なストレス抵抗力を備えた状態へと変化し、安定性がより一層向上する。
 また、上記炭酸塩の徐放プロセスは、複数の観点において乳酸菌自身による自己菌体損傷を適度に抑制するのにも作用する。すなわち、(A)培地中に炭酸ガスが放出されることにより、培養液の溶存酸素が低下する。例えば、乳酸菌は通性嫌気性菌に属し分子状酸素(molecular oxygen)をエネルギー代謝に直接利用できず、むしろ酸素に接触すると過酸化水素、スーパーオキシドラジカル、ヒドロキシラジカルなどの活性酸素を生成して菌体に損傷を与える。従って培養液の溶存酸素の低下効果により培養過程における過酸化水素等の高濃度化が抑制され、自己菌体損傷を抑制できる。加えて、(B)高密度液体培養を行うことにより有機酸産生能が抑制され、自己菌体損傷が抑制される。更に、(C)アルカリ性・難溶性炭酸塩が乳酸菌の産生する乳酸などの有機酸と反応することに伴い、培養液のpH低下速度を緩和させる。これにより非解離型乳酸の生成割合が上昇し難くなり、自己菌体損傷が抑制される。
 2つのアルカリ性・難溶性炭酸塩の混合比率は菌株の至適pHに応じ適宜設定することができるが、少なくとも重量ベースでの添加量において炭酸マグネシウムが炭酸カルシウムを超えないことが好ましい。又、どちらか一種類だけで用いた場合、得られる効果が減弱するので好ましくない。
 「胚芽麹」は、穀類胚芽にアスペルギルス属に属する麹菌を接種して固体培養により発酵させて得られる麹である。胚芽麹にはポリフェノールが含まれる。「胚芽麹」の原料となる植物体としては米、麦、豆、トウモロコシ等の穀物、あるいはこれらから油脂分を除去した脱脂胚芽の中から適宜選択することができるが、これら原料の保存に伴い油脂の酸敗が生ずる問題を鑑み、脱脂米胚芽、脱脂小麦胚芽、及び脱脂コーン胚芽、あるいはさらに脱脂大豆で構成した固体培地組成が望ましく、更に0.5~1.0%の重質炭酸カルシウムを添加することが望ましい。脱脂胚芽粒子の表面で固体培養を行うアスペルギルス属に属する麹菌として、黄麹菌、白麹菌、黒麹菌、カツオブシ菌が挙げられ、黄麹菌として、アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)、白麹菌としてアスペルギルス・カワチ(Aspergillus kawachii)、黒麹菌としてアスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・サイトイ(Aspergillus saitoi)、カツオブシ菌としてアスペルギルス・グラウカス(Aspergillus glaucus)等が挙げられる。重質炭酸カルシウムと脱脂胚芽とを混合して行う「滅菌処理」としては、オートクレーブ滅菌(121℃、15分以上)、又はこれに相当する滅菌効果の処理条件であれば特段限定されない。
 「胚芽麹エキス」は胚芽麹の抽出物(エタノール50%分画品、ただし抽出方法はこの方法に限らない)であり、胚芽麹とともにアスペルギルス属に属する麹菌の胚芽発酵成分を本発明の液体培地に添加する。例えばオリザ油化株式会社の「米胚芽発酵エキス-P」を適用することができる。
 「窒素源」及び「炭素源」は基礎的エネルギー源として添加する。窒素源としては脱脂粉乳、大豆ペプチド、肉エキスなどを原料とすることができ、市販品としてはポリペプトン(日本製薬株式会社製)、ハイニュートAMやハイニュートDC6(不二製油株式会社製)、ラブレムコ末(オクソイド社製)などを採用することができ、これらを混合して用いることもできる。また炭素源としては菌株によって要求性が異なるが、グルコース、フルクトース、トレハロース、セロビオース、N-アセチルグルコサミン、マンノース、マルトース、ラクトース、スクロース等から1又は複数種を選択して混合することができる。なお、ハイニュートは分離大豆蛋白質分解物である。
 「脂肪酸」は増殖促進因子として添加されるものであり、「オレイン酸を含む動植物性油脂」としてオリーブ油などの植物油のほかに牛脂、魚油、獣油などを採用し得る。「界面活性剤としてのポリソルベート類」とはソルビタン脂肪酸エステルにエチレンオキシドが約20分子縮合したものであり、ポリソルベート20、ポリソルベート60、ポリソルベート65、ポリソルベート80を採用し得るが、不飽和脂肪酸が主であるオリーブ油を界面活性剤の疎水性分子領域に取り込んで乳化するにあたってはポリソルベート80が特に好ましく、牛脂を用いる場合にはポリソルベート20との組合せが好ましい。「鉄分」はラクトコッカス(Lactococcus)属などの乳酸球菌の増殖促進因子としてヘム鉄を添加することが好ましい。その他、乳酸菌の菌種や菌株の中で他の乳酸菌や真菌等と共生する天然生息環境の菌を培養対象とする場合、クエン酸や酢酸、及び乾燥酵母菌体、あるいは酵母菌体の自家調製ペプチド画分FYE等の栄養素を補充した液体培地組成へと適宜工夫する。乾燥酵母菌体としてはパン酵母、ビール酵母いずれでも良く、実施例では市販エビオス錠(アサヒフードアンドヘルスケア株式会社製)を用いたが、例えば凍結酵母菌体(オリエンタル酵母工業株式会社製)でも差し支えない。
 「前培養」とは拡大培養の前段階として行われる少量の培地での培養をいう。また「多段階の培養工程」において本発明に係る液体培地を適用することにより、菌体の性質向上効果がみられる。すなわち本発明に係る菌体を高密度にする液体培養を用いて拡大された本培養を行うほか、それに接種する種菌の調製においても高密度液体培養を用いて行うことにより、過酷な培養条件によるストレスに対する抵抗性の高い菌体が選択的に培養され、環境順応力により菌体自体のストレス抵抗性が向上するものと推察される。なお多段階の培養にあたっては、培養条件の過酷度合いすなわちストレス負荷の度合いを培養段階の進展に伴い順次高めていくことが望ましい。
 この種々のストレスを与えながら乳酸菌を培養する「菌株育種培養」は、一般的な液体培養法と異なり、液体培地がポリフェノールを含有した不溶性食材粒子や難溶性炭酸塩を炭素源、窒素源、無機塩、及びポリフェノール含有食材エキス画分と共に含む為、液体培養系に該当しているものの、培地環境が通常の液体培養における均質的な環境とは異なり、不均質な状態にあることが特徴である。
 該液体培養を繰り返す度に、ポリフェノールの抗菌活性によるストレスや低栄養などの負荷ストレスによって菌本来の生残能を誘導発現させた活性菌体と生きているけれども培養できない状態(viable but non-culturable state:以下、「VBNC」と略す)へ誘導された不活性菌体とが培養液中に混在することが特徴であり、負荷ストレスの種類を段階的に増やし、かつストレス強度を段階的により一層高くする培養条件の設定が菌本来の生残能を誘導発現させる為に必須である。
1-2.固体培養工程
 固体培養工程は、液体培養工程(1)で培養した乳酸菌を固形食材混合物である固体培地で培養する工程であり、1工程又は複数工程からなる。固体培養工程に用いる固体培地は少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含み、固体培養の最終工程で用いる固体培地はポリフェノール含有植物体を含む。すなわち、固体培養工程で用いる固体培地には、胚芽麹及びポリフェノール含有植物体の一方又は両方が含まれる。また、固体培養工程の最終工程で用いる固体培地には、必ずポリフェノール含有植物体が含まれる。固体培養工程が1工程で行われる場合は、その工程にポリフェノール含有植物体が含まれていればよい。固体培養工程が複数工程からなる場合、最終工程で用いる固体培地には、必ずポリフェノール含有植物体が含まれるが、その前段階の固体培養工程で用いる固体培地にもポリフェノール含有植物体が含まれていてもよい。但し、この場合、後の段階の固体培養工程で用いる固体培地のポリフェノール含有植物体の含量は前の段階の固体培養工程で用いる固体培地のポリフェノール含有植物体より多い。
 固体培養工程は、好ましくは、「固体環境順応」工程とストレス環境への耐性が強い菌を増殖させる「乳酸菌固体発酵」工程からなり、以下2つの固体培養工程(2-i)及び(2-ii)からなる固体培養工程について詳述する。
工程(2-i)(固体環境順応工程)
 工程(2-i)は、固体培地を用いた固体培養工程であり、工程(2-i)の固体培養は、少なくとも炭酸塩と胚芽を含み、更に胚芽麹及び/又はポリフェノール含有植物体を添加した固体培地で培養する。固体培地の含有物は食品に添加可能な物質であり、従って、該固体培地を「固形食材混合物」という。固体培養工程において、乳酸菌は固体培地の粒子表面で増殖する。工程(2-i)においては、乳酸菌を液体環境から固体環境へ順応させる。この点で、工程(2-i)を液体培養から固体培養への順応工程、あるいは「固体環境順応」工程という。ここで、固体環境順応とは、固体表面で旺盛に増殖する為に必要な、新たな形質発現を誘導した環境順応をいう。
 「炭酸塩」としては、粒子表面に存在できる炭酸カルシウム、炭酸マグネシウムなどのアルカリ性・難溶性炭酸塩が好ましい。炭酸カルシウム、炭酸マグネシウムの一方が含まれていればよいが、固体培養における培養環境のpHを至適pHに調整するために炭酸カルシウムと炭酸マグネシウムの両方を適切な混合比率で混合し固体培地に添加することが好ましい。また、ここで用いる炭酸カルシウムは重質炭酸カルシウムが好ましい。ここで、重質炭酸カルシウムとは天然鉱物から調製した炭酸カルシウムをいう。例えば、重質炭酸カルシウムは石灰石を粉砕し分級して得ることができる。重質炭酸カルシウムは軽質炭酸カルシウムに比べて粒子形状が不定形であり、密度が大きいという特徴を有する。一方、軽質炭酸カルシウムは化学的に合成した炭酸カルシウムをいう。炭酸カルシウム、炭酸マグネシウムなどの炭酸塩は、固体培養のpH、特に乳酸菌が増殖する微小増殖領域のpHをアルカリに調整することにより乳酸菌にpHストレスを負荷する。
 「胚芽」としては、穀物(シリアル)の胚芽を用いればよい。好ましくは、油脂の酸敗を避けるため油脂分を除いた脱脂胚芽を用いる。穀物は限定されないが、米、小麦、コーン、大豆、大麦、オーツ麦、ライ麦、粟、稗、えん麦、小豆等が挙げられる。これらの穀物の1種又は2種以上の胚芽、好ましくは脱脂胚芽を用いる。また、穀物によっては胚芽部分のみを入手することが困難なものがあり、そのような穀物については胚芽を含む全粒穀物を用いてもよい。全粒穀物を用いる場合も、好ましくは脱脂穀物を用いる。例えば、大豆は胚芽のみの入手が困難であるので、全粒大豆を用いればよい。全粒穀物を用いる場合でも、用いる穀物に胚芽が含まれる限り、本発明においては、穀物の胚芽を用いると良く、例えば、脱脂大豆は、胚芽を含む脱脂穀物であるということができる。上記穀物の中でも、米、小麦、コーン、大豆が好ましく、例えば、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽に加え、脱脂大豆を用いることができる。
 「胚芽麹」は、炭酸塩と穀物胚芽の混合物を滅菌した後、アスペルギルス属に属する麹菌を接種して、固体培養により麹菌を増殖させ、発酵させて得られる麹である。胚芽麹の胚芽としては、上記の胚芽を用いることができ、好ましくは脱脂米胚芽、脱脂小麦胚芽及び脱脂コーン胚芽、あるいは、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽及び脱脂大豆を用いる。ここで用いる脱脂大豆は胚芽を含んでいるので、胚芽に含まれる。胚芽麹を製造するときには、上記の炭酸塩を添加してもよく、好ましくは重質炭酸カルシウムを0.5~1.0%添加する。すなわち、「胚芽麹」は、1種又は2種以上の胚芽、アスペルギルス属に属する麹菌及び炭酸塩を含んでいる。アスペルギルス属に属する麹菌は、日本酒、味噌、食酢、漬物、醤油、焼酎、泡盛、鰹節などの発酵食品を製造するときに用いるアスペルギルス属に属する菌株で、黄麹菌、白麹菌、黒麹菌、カツオブシ菌が挙げられ、黄麹菌として、アスペルギルス・オリゼー(Aspergillus oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)、白麹菌としてアスペルギルス・カワチ(Aspergillus kawachii)、黒麹菌としてアスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・サイトイ(Aspergillus saitoi)、カツオブシ菌としてアスペルギルス・グラウカス(Aspergillus glaucus)等が挙げられる。
 ポリフェノール含有植物体としては、果物(ブルーベリー、プルーン、ブドウ、アップル、イチゴ、柿、バナナ、ラズベリー、桑の実など)、野菜(タマネギ、レタス、ブロッコリー、ケール、レタス、ナス、さつまいも、ゴボウなど)、穀物(米、麦、コーン、大豆などの胚芽画分;そば、カカオ豆、コーヒー豆、小豆、ピーナッツなど)、茶葉(緑茶、抹茶、ウーロン茶、グアバ茶葉など)、海藻(褐藻類コンブ目コンブ科のクロメやカジメなど)、香辛料(薄荷、ペパーミント、シソ、ローズマリー、カモミール、ウコン、胡椒、オリーブなど)などが挙げられ、この中でも果実、例えば、ブルーベリー、アップル、ブドウ、あるいは抹茶等が好ましい。これらの植物体は乾燥していない生の状態でもよいし、乾燥植物体でもよいが、好ましくは乾燥植物体を用い、ドライブルーベリー、ドライアップル、ドライレーズン、抹茶等が好適に用いられる。本発明の固体培地に用いる穀物胚芽、胚芽を含む全粒穀物、胚芽麹にもポリフェノールが含まれるが、本発明の固体培地の成分において、上記の穀物胚芽、胚芽を含む全粒穀物、胚芽麹とは別にポリフェノール含有植物体が含まれる。ポリフェノール含有植物体は、1種又は複数種を含ませればよい。
 ポリフェノールは、同一分子内に複数のフェノール性水酸基を持つ化合物の総称と定義され、自然界の植物などが紫外線、病害虫や病原菌、乾燥や寒さなどから自らを守る生体防御物質「ファイトアレキシン」として機能する。ポリフェノールに属する化合物は、フェニルカルボン酸系、リグナン系、クルクミン系、クマリン系、及びフラボノイド系で構成され、例えばジフェニールプロパン構造を共通構造とするフラボノイド系にはアントシアニジン類とその配糖体(アントシアニンなど)、フラバノン類とその配糖体、フラバノール類(カテキン、エピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレート、テアフラビンなど)、イソフラボン類とその配糖体(ダイゼイン、ダイゼインの配糖体であるダイジン、ゲニステインなど)、フラボノール類とその配糖体(ケルセチン、ケルセチンの配糖体であるルチン、ケンフェロール、ミリセチンなど)、及びフラボン類(アピゲニン、ルテオリンなど)が属する。
 ポリフェノールは抗菌活性を有し、その抗菌活性は、例えばヒドロキシ桂皮酸(hydroxycinnamic acid)の場合、ラクトバチルス・ブレビス(Lactobacillus brevis)などの乳酸菌、グラム陰性細菌のエスシェリィシャ・コリー(Escherichia coli)、グラム陽性細菌のスタフィロコッカス・オーレウス(Staphylococcus aureus)やバシラス・セレウス(Bacillus cereus)、カビの生育を阻害することが報告されており、細菌からカビや酵母の真菌類に及ぶ幅広い抗菌スペクトラムを有することを特徴とする。ポリフェノールの抗菌活性の作用機序は、ポリフェノールが被検菌の細胞膜を貫通して穴を開け、菌体内部の細胞質から核酸やタンパク質などの成分を放出させるイオノホアであり、菌体を死滅に至らしめたり、あるいはVBNCへ誘導する。抗生物質の作用機序がイオノホアである場合、微生物は該抗生物質に対する耐性を獲得し難いことが知られている。本発明においては、ポリフェノール含有植物体を固体培地の成分として用いることにより、抗菌活性の作用機序がイオノホアであるポリフェノールが乳酸菌に対してストレスとして作用し、ポリフェノールによるストレスが負荷される。その結果、菌本来のポリフェノールに対する抵抗力を誘導発現し、ストレス耐性の高い乳酸菌を育種することができる。
 固体培養で用いる固体培地は、上記の固体培地成分を混合し、水分含量が45~60重量%になるように加水して作製することができる。加水した固体培地の水分活性は1.0未満、好ましくは0.95~0.98である。水分活性は菌種により変えることができる。
 含有成分である炭酸塩、胚芽、及びポリフェノール含有植物体の含有量は、炭酸塩が1~5重量%、胚芽が50~90重量%、ポリフェノール含有植物体が2~20重量%、好ましくは3~10重量%、さらに好ましくは3~7重量%であり、胚芽麹が含まれる場合、胚芽麹を15~30重量%含む。各含有成分の合計は100%になる。一例として、炭酸マグネシウム1.6重量%、重質炭酸カルシウム2.66重量%、脱脂胚芽67.98重量%、胚芽を含む脱脂大豆22.66重量%、ポリフェノール含有植物体5.1重量%を含む固体培地、あるいは、炭酸マグネシウム1.6重量%、重質炭酸カルシウム2.6重量%、脱脂胚芽47.68重量%、胚芽を含む脱脂大豆22.66重量%、ポリフェノール含有植物体5.16重量%、胚芽麹20.3重量%を含む固体培地が挙げられる。
 固体培地の含有成分である炭酸塩、胚芽、及びポリフェノール含有植物体、あるいはさらに胚芽麹は、粒状の状態で均質に含まれていればよい。ここで、粒状の状態で含まれているとは、それぞれの成分がある程度の大きさを保有した粒状物質として含まれていることをいう。例えば、胚芽は平均粒径数十μm~数千μm程度、好ましくは数百μm~数千μm程度の粒状物質として含まれていればよく、ある程度粉砕して用いてもよいし、胚芽部分がそのまま含まれていてもよい。また、胚芽を含む全粒穀物を用いる場合、全粒穀物をそのまま用いてもよいし、平均粒径数十μm~数千μm程度、好ましくは数百μm~数千μm程度の胚芽を含む粒状物質として含まれていてもよい。胚芽麹も同様に平均粒径数十μm~数千μm程度、好ましくは数百μm~数千μm程度の粒状物質として含まれていればよい。また、ポリフェノール含有植物体も平均粒径数十μm~数千μm程度、好ましくは数百μm~数千μm程度の粒状物質として含まれていればよく、抹茶等粒径が元々小さいものはそのまま含ませればよいし、果実等大きいものは適宜カット又は粉砕し、平均粒径数十μm~数千μm程度、好ましくは数百μm~数千μm程度の粒状物質として加工して含ませればよい。炭酸塩は粉末状であるが、難溶性であるがゆえに、胚芽麹、及びポリフェノール含有植物体の表面に付着した状態で存在している。
 均質に含まれるとは、固体培地中にそれぞれの成分が偏らずにまんべんなく分布していることをいい、各成分の平均粒径が均一である必要はなく、成分ごとに平均粒径にばらつきがあってもよい。
 図1に、固体培地の各成分が均質に混合している状態の模式図を示す。図1においては、乳酸菌も示されているが、乳酸菌1の存在場所がわかるように実際よりも大きく示している。乳酸菌の平均直径は、1μm~数μm程度である。
 図1に示すように、粒状のポリフェノール含有植物体2、粒状の胚芽3、粒状の胚芽麹4、粉末状の炭酸塩(図には示されていない)が互いに接触し、その間に間隙(ポア)を形成した状態で混合されており、堆積層内に通気性が得られるという特徴を有する。乳酸菌は間隙中で粒状の各成分の表面に付着した状態で増殖し生育するが、培地滅菌中に固体培地に含有された全ての水溶性成分は、各粒子間で均質に分布し得たと想定される。従って、乳酸菌が付着して増殖する成分は限定されず、粒状の胚芽、胚芽麹、及びポリフェノール含有植物体のいずれの表面でも同じ増殖速度で生育し得ると想定される。固体培地においては各水溶性成分が均質に混合しているが、培養する乳酸菌にとって増殖し得る環境は、変化に富んだ多様性のある環境である。また、粒状の成分と成分の間に形成される間隙は空気の通り道になるので、乳酸菌は多様性のある粒状の成分表面において好気的に増殖する。
 固体培地の水分活性は1.0未満であり、粒状の成分と成分の間の間隙に自由水は少ないが、加水したときに各成分の栄養素が水に溶解し、固体培地全体に行き渡るので、栄養素という観点からは、多様性のある表面環境のどの表面でも比較的均一である。例えば、乳酸菌が脱脂米胚芽の表面で増殖する場合、乳酸菌は脱脂米胚芽から供給される栄養素のみに依存して増殖するのではない。加水のときに脱脂米胚芽表面に他の胚芽や植物体に含まれる栄養素が行き渡るので、乳酸菌は固体培地の含有成分の種々の栄養素に依存して増殖することができる。この点で、固体培地は乳酸菌が必要とする栄養素の観点からは均一あるいは均一に近いということができる。
 ただし、固体培養においては、乳酸菌は水分が含有成分である粒状物質中に存在しているという水分活性が1.0未満の環境にさらされる。このため、胚芽やポリフェノール含有植物体に含まれる栄養素が行き渡るとはいっても、栄養素の菌体への取込みは不自由になり、低栄養環境となり、栄養ストレスが負荷される。
 工程(2-i)の培養においては、上記の固体培地に、工程(1)の液体培養により得られた乳酸菌を「液体種」として接種する。接種は、工程(1)の液体培養により得られた増殖した乳酸菌が含まれる培養液を固体培地に添加すればよい。添加は、例えば、培養液を固体培地に混合することにより行えばよい。この際、工程(1)の液体培地を工程(2-i)で用いる固体培地に対して1~10重量%、好ましくは1~5重量%、さらに好ましくは1~2重量%添加すればよい。添加後、スパーテル等でよく混合し、菌体の分布を均質化すればよい。好ましくは、数時間培養した後に、さらにスパーテル等で混合し、菌体の分布をさらに均質化する。
 上記の含有量で含有成分をよく混合し、脱イオン水を水と固体培地成分の混合物の重量に対して最終含量として45~60重量%になるように加水すればよい。その後、滅菌して用いる。冷却した後に、液体培養で得られた乳酸菌を含む培養液を接種し、固体培養を行う。培養は15~42℃で行うことができるが、好ましくは液体培養工程と同じ温度で行う。培養温度が27℃~42℃の場合、10時間~30時間、好ましくは20~30時間、さらに好ましくは24時間培養を行う。培養時の相対湿度(RH)は80%前後が好ましい。この条件で培養を行うことにより発酵菌は定常期に至る。培養温度が27℃より低い場合は、発酵時間を適宜延長する必要があるが、その場合でも40時間以内で定常期に至る。
 なお、固体培地の組成、固体培養の条件は、使用する菌種や菌株により適宜変更することができる。
 工程(1)の培養液には、ストレス負荷により菌本来の生残能を誘導発現させた活性菌体とVBNCへ誘導された不活性菌体が存在する。工程(2-i)以降の培養工程においては、菌本来の生残能を有する活性菌体のみが選択的に旺盛に増殖する。すなわち、工程(2-i)以降の固体培地の粒状成分の表面で増殖する菌体は、ポリフェノールの抗菌活性によってVBNCへ誘導され難い性質を有する菌体である。
 工程(2-i)の固体培養により、固体培地1g当たり、10億個以上、好ましくは20億個以上、さらに好ましくは50億個以上、特に好ましくは100億個以上の乳酸菌が生育する。すなわち、固体培養により高度に菌体高密度化する培養が可能である。
工程(2-ii)
 工程(2-ii)は、工程(2-i)と同様に、固体培地を用いた固体培養工程であり、工程(2-ii)の固体培養は、少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固体培地で培養する。固体培地にさらに胚芽麹が含まれていてもよい。炭酸塩、胚芽、胚芽麹、及びポリフェノール含有植物体は、工程(2-i)と同じであり、工程(2-ii)においても、固体培地の含有物は食品に添加可能な物質であり、したがって、該固体培地を「固形食材混合物」という。工程(2-ii)で用いる固体培地の状態は工程(2-i)で用いる固体培地と同様であり、粒状の含有成分が均質に混合している。また、工程(2-ii)で用いる固体培地も最終水分含量が45~60重量%になるように加水して、水分活性が1.0未満、好ましくは0.95~0.98になるようにして用いる。
 工程(2-i)にポリフェノール含有植物体が含まれる場合、工程(2-ii)においては、固体培地に含まれるポリフェノール総含有量が工程(2-i)で用いる固体培地よりも多くなるように設定する。ポリフェノール総含有量を多く設定することにより乳酸菌に工程(2-i)よりも大きなポリフェノールによるストレスが負荷され、菌本来の生残能がより高い菌体が選別される。
 このためには、ポリフェノール含有植物体の含有量を大きくすればよい。また、胚芽や胚芽麹にもポリフェノールが含まれているので、胚芽や胚芽麹の含有量を大きくしてもよい。好ましくは、ポリフェノール含有植物体の含有量を大きくする。
 さらに工程(2-ii)においては、塩化ナトリウムを含有させてもよい。塩化ナトリウムは、高濃度で抗菌活性を有しており、塩化ナトリウムを含有させることにより、塩化ナトリウムにより乳酸菌にストレスを負荷し、菌本来の生残能がより高い菌体が選別される。
 すなわち、工程(2-i)でストレスを負荷しつつ、固体培養に順応した乳酸菌に対して、工程(2-ii)では、さらにストレスを負荷し、固体培地に高濃度で含有されたポリフェノールや塩化ナトリウムによるストレスに対する環境順応の結果として、菌本来の生残能がさらに誘導発現される。工程(2-ii)は、含有成分の固体表面の増殖環境に添加したポリフェノールなどによるストレス強度に応じて菌本来が備え持つ生残能の誘導発現を促す育種環境となっている点に特徴がある。工程(2-ii)を「乳酸菌固体発酵」工程と呼ぶことができる。
 含有成分である炭酸塩、胚芽、及びポリフェノール含有植物体の含有量は、炭酸塩が1~5重量%、胚芽が50~90重量%、ポリフェノール含有植物体が5~30重量%、好ましくは10~30重量%、胚芽麹が含まれる場合、胚芽麹を15~30重量%含む。各含有成分の合計は100%になる。工程(2-i)にもポリフェノール含有植物体が含まれる場合、ポリフェノール含有植物体の含有量は、工程(2-i)よりも多くすることが必要であり、工程(2-i)の1.5倍~10倍、好ましくは2~8倍含有させればよい。
 また、工程(2-ii)の固体培地に塩化ナトリウムを含有させる場合、固体培地の全重量に対して0.15~0.60%添加すればよく、使用する菌種や菌株によってはこれより高く設定することが可能である。
 工程(2-ii)の培養においては、上記の固体培地に、工程(2-i)の固体培養により得られた乳酸菌を「固体種」として接種する。接種は、工程(2-i)の固体培養により得られた増殖した乳酸菌が含まれる固体培地を工程(2-ii)で用いる固体培地に添加すればよい。例えば、添加は、工程(2-i)の乳酸菌を含む固体培地をスパーテル等でよく混合し、該混合物を工程(2-ii)で用いる固体培地に添加し、さらにスパーテル等でよく混合すればよい。この際、工程(2-i)の固体培地を工程(2-ii)で用いる固体培地に対して1~10重量%、好ましくは2~5重量%添加すればよい。
 培養は、工程(2-i)と同じか、あるいは近似した条件で行えばよい。
 本発明の方法の各工程において、乳酸菌が増殖していることは、顕微鏡観察により菌体の存在を確認してもよいし、菌種に応じて特異的な方法で確認することができる。例えば、培地のpHを測定し、pHが低下していることを指標にして菌の増殖を確認することができる。
 図2に工程(1)、工程(2-i)及び工程(2-ii)の特徴を示す。
 上記例は、固体培養工程が2つの工程からなる場合であるが、固体培養工程が1工程の場合、少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固体培地で培養し、固体培地にさらに胚芽麹が含まれていてもよいという条件を満たす培養条件で行うことができる。例えば、工程(2-i)の条件に近似した条件で培養してもよいし、工程(2-ii)の条件に近似した条件で行ってもよい。また、固体培養工程が3つ以上の工程で行われる場合、各工程は少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含む固体培地で培養すればよく、但し、最終工程には必ずポリフェノール含有植物体が含まれるという条件を満たす培養条件で行えばよい。複数の固体培養工程のうち、複数工程の培養工程に用いる固体培地にポリフェノール含有植物体が含まれる場合、後の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量が、それより前の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量よりも多いことが好ましい。例えば、後の固体培養工程でその前の固体培養工程に対して、1.5倍~10倍、好ましくは2~8倍のポリフェノール含有植物体を含有させればよい。この条件で複数の工程の固体培養を行うことにより、複数の固体培養工程を経るにつれ、段階的に強度を高くした複数のストレスを負荷し、それらのストレスに耐性を有する乳酸菌の生残能を賦与することができる。
2.本発明の培養方法で得られる乳酸菌
 最初に液体培養を行い、次いで固体培養を行うことにより、高い耐熱性を有し、増殖能が高い乳酸菌を得ることができる。液体培養は、MRS液体培地等の公知の培地を用いた1工程の「一般的な液体培地」でも複数工程の液体培養をストレス負荷を大きくしながら行う「菌株育種培養」でもよい。ただし、「菌株育種培養」を行った場合、培養を繰り返す度に、前回の培養に比べてより高い強度のストレスを負荷することにより、菌本来の生残能を誘導発現させた菌体が得られる。この「菌株育種培養」で得られた菌体を用いた場合、「一般の液体培養」で培養して得られた菌体を用いた場合に比べ、後工程である固体培地工程において、例えば、工程(2-i)の「固体環境順応」工程及び、その後の工程(2-ii)の「乳酸菌固体発酵」における2度の固体培養において、より増殖能が高い乳酸菌を得ることができる。
 固体培養においては、液体培養で得られた乳酸菌が固体培養に順応し、かつ乳酸菌に種々のストレスが負荷される。このため、菌本来の生残能が誘導発現された菌体が旺盛に増殖する。
 本発明の方法で得られた乳酸菌固体発酵物の表面で増殖する乳酸菌は、増殖能力が高く、各種ストレスに対する抵抗力が高いという特徴を有する。
 各種ストレスに対する抵抗力は、そのストレスが負荷された培養条件で培養し、増殖能力を測定すればよい。
 本発明の培養法で得られた乳酸菌固体発酵物が含有する菌体に、菌本来の生残能が誘導発現されたことに対する評価は、以下の方法によって得られる指標より判断できる。例えば、増殖能力、耐熱性、耐塩性、ポリフェノール抵抗力、および凍結乾燥処理後の生残率等が挙げられる。
 増殖能力は、例えば、得られた発酵菌固体発酵物1g当たりに含有された菌数が指標となる他、「一般的な液体培養」において生育の非許容温度となる上限と下限の各温度域における増殖が可能になる効果によって評価できる。耐熱性は、例えば、菌数測定時の段階希釈液を湯浴温度57℃で15分間、速度75rpmで振盪しながら熱処理した後の生残率が指標となる他、耐熱性に優れた菌種であれば57℃を60℃に設定することで評価でき、いずれも「一般的な液体培養」で得られた菌体の生残率より高い数値が得られることで判断できる。耐塩性は、耐熱性と同様に、菌数測定時の段階希釈液を一定濃度の塩化ナトリウムを添加した溶液中で1~2時間処理した後の生残率が指標となる。ポリフェノール抵抗力は、ポリフェノールを高含有した乾燥果物を数%添加したMRS液体培地で培養した時の増殖度を指標に評価できる。凍結乾燥処理後の生残率は、凍結乾燥処理の前後における菌数の変化を指標に判断できる。
 「菌株育種培養」を経ることで乳酸産生量に比較して酢酸産生量が顕著に低下した菌体が得られる。これを固体培養に供した場合、固体環境順応で得られる乳酸菌固体発酵物は、乳酸産生量に比較して酢酸産生量を著しくより多く産生してヘテロ乳酸発酵と類似した現象を呈し、さらに、クエン酸も旺盛に資化するという特徴を有する。
3.乳酸菌固体発酵物
 本発明の液体培養工程と固体培養工程を含む培養工程を経て得られる、乳酸菌が含まれる固体培養物を「乳酸菌固体発酵物」という。
 本発明の培養方法で得られた乳酸菌固体発酵物は、小分けして凍結保存したものを融解して用いることができ、また、糖アルコール、デンプン、グルタミン酸ナトリウム等の保護剤や安定化剤を全く添加しなくとも、そのままで45℃送風乾燥又は凍結乾燥することにより機能性を有したまま保存することができる。
 該発酵物は、乳酸菌が含まれる固形食材混合物でもある。乳酸菌固体発酵物は、少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固形食材混合物の表面に乳酸菌が含有されている、乳酸菌固体発酵物であり、さらに、胚芽麹や塩化ナトリウムが含まれていてもよい。
 乳酸菌固体発酵物には、乳酸菌菌体、ポリフェノールが含まれ、さらに乳酸菌菌体外分泌成分が含まれる。
 乳酸菌は、乳酸菌固体発酵物中に高密度で含まれ、固体培地である固形食材混合物1g当たり、10億個以上、好ましくは20億個以上、さらに好ましくは50億個以上、特に好ましくは100億個以上の乳酸菌が含まれる。乳酸菌固体発酵物に含まれる乳酸菌は、本発明の培養により、菌本来の生残能を誘導発現させるようになった優れた機能を有する乳酸菌であり、菌体そのものが優れた保健機能性を示す。特にプロバイオティクスに属する菌株を用いた場合の保健機能性は顕著である。
 例えば、以下の機能を有する。乳酸菌のヒト健康に対する有益な作用として、(1)腸のぜん動運動の促進及び便秘予防と改善、(2)肌荒れ改善、(3)腸内細菌叢の改善と有害菌繁殖の抑制、(4)花粉症予防、(5)アトピー性皮膚炎の改善、(6)口腔内齲蝕菌の抑制、(7)免疫機能の向上、(8)血糖値の上昇抑制、(9)高血圧の予防、(10)抗生物質投与に伴う下痢症の改善、(11)胃癌を惹起する胃内常在性病原菌ヘリコバクター・ピロリ(H.pylori)に対する抗菌活性、(12)潰瘍性大腸炎の改善、(13)葉酸やオルニチンなどの保健機能物質の産生が挙げられる。なお、適量を投与した場合、宿主に健康増進効果を期待できる生きた微生物は「プロバイオティクス」といわれている。
 ポリフェノールは、固体培地に含まれるポリフェノール含有植物体、胚芽、胚芽麹に含まれているポリフェノールであり、優れた保健機能性を持つ。ポリフェノールのフェノール性水酸基は、それ自身が酸化され易く、鉄などの金属に対するキレート力が強い為、ポリフェノールに属する化合物であればいずれも抗酸化作用を示す。ポリフェノールの代表的な成分であるカテキンは、例えば緑茶に含まれる渋み成分であるが、その生理作用として、(1)抗酸化作用、(2)抗菌作用、腸内細菌叢の改善、(3)抗う蝕作用、(4)消臭作用、(5)活性酸素消去作用、(6)コレステロール上昇抑制作用、(7)血糖値上昇抑制作用、(8)血圧上昇抑制作用、(9)抗腫瘍作用、(10)抗アレルギー作用、(11)血小板凝集抑制作用、及び(12)紫外線吸収作用等が知られている。ポリフェノールに属する他の成分に関しても、成分の種類によって作用の強度は異なるが、いずれもほぼ同様の作用が報告されている。一方、ポリフェノールに炭素数5個のイソプレノイド構造単位(プレニル基)が結合すると、疎水性が増して体内動態も変化する結果、元々のポリフェノールでは非常に弱かった生理作用が飛躍的に強くなることが経験的に知られており、この様な活性として、抗腫瘍活性、抗菌活性、抗ウイルス活性、抗酸化活性の外に、女性ホルモン・エストロゲン様活性、免疫増強活性、抗炎症活性、血管増強活性が挙げられる。
 乳酸菌の菌体外分泌成分として、多糖体や糖たんぱく質で構成されたバイオフィルムが挙げられる。例えば、ラクトバチルス・ケフィラノファシエンス(L. kefiranofaciens)が分泌産生した高分子多糖体ケフィランに関して、分子量が100万~400万ダルトンであり、(1)血圧上昇抑制ならびに抗動脈硬化作用、(2)脂質代謝改善作用、(3)血糖値上昇抑制作用、(4)整腸作用、(5)腸内環境改善作用、(6)肝機能改善作用等の多彩な生理作用が知られている。
 また、乳酸菌固体発酵物は菌体が分泌産生したバイオフィルムの他、葉酸やオルニチン、及びビタミン類などの生理活性物質を含有しており、菌本来の生残能を誘導発現した活性菌体と共に優れた保健機能性成分を併せ持っている。
 本発明は、上記の乳酸菌固体発酵物を含む食品も包含する。該食品は、乳酸菌、ポリフェノール、穀物等を豊富に含む滋養に富んだ優れた機能性食品である。本発明の乳酸菌固体発酵物は、穀物の胚芽そのもの、もしくは胚芽を含んだ穀物を豊富に含むシリアル食品として摂食することができる。
 本発明の乳酸菌固体発酵物を含む食品は、健康食品、特定保健用食品、栄養機能食品、健康補助食品等を含む。ここで、特定保健用食品とは、食生活において特定の保健の目的で摂取をし、その摂取により当該保健の目的が期待できる旨の表示をする食品をいう。
4.育種方法
 さらに、本発明は液体培養工程と固体培養工程を含む培養法により、乳酸菌にストレスを負荷し、そのストレス強度を段階的に高くすることにより、菌本来の生残能を誘導発現させた乳酸菌を育種する方法、あるいは該乳酸菌を得る方法も包含する。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1 工程(1)の液体培養として、「一般的な液体培養」を用いた場合の固体培養工程(2-ii)における効果の必須要素の評価
1-1 工程(1)「液体培養」
 乳酸桿菌に属するラクトバチルス・ラムノサス(L. rhamnosus)GG (ATCC53103)株(以下、LGG株と略す)を用い、「一般的な液体培養」としてMRS液体培地を用いて好気的に37℃、100rpmでの振盪培養を24時間行った。得られた培養液のデータを表1に示す。
 培養菌株の菌数測定は以下の3通りの条件で行った:
(1) 菌数測定法―I
 0.5%凍結乾燥ブルーベリー(ポリフェノール含有植物体)及び3%塩化ナトリウムを添加したリン酸バッファ(pH6.8)に上記のMRS培養液を100倍希釈した状態で45℃、10分間インキュベーションした。その後、15回ホモゲナイズした菌懸濁液を更にリン酸バッファで段階希釈した後、菌懸濁液の0.1mlを色素ブロモチモールブルー(BTB)0.003%添加MRS寒天培地に表面塗沫して37℃、1~3日間嫌気的に培養を行い、出現する集落数を計測した。
 なお、菌数測定法―Iに対して、凍結乾燥ブルーベリーを添加し、塩化ナトリウム無添加の条件でホモゲナイズを行い、出現する集落数を計測する菌数測定法を菌数測定法―Iと表示した。
(2) 菌数測定法―II
 上記の菌数測定法―Iに対して、凍結乾燥ブルーベリーと塩化ナトリウムの両方を添加せずにホモゲナイズを行い、出現する集落数を計測した。
(3) 菌数測定法―III
 菌株を培養して得られたMRS培養液をリン酸バッファで直ちに段階希釈した。
 それぞれの菌数測定法において、菌の耐熱性も調べた。耐熱性は、段階希釈液を湯浴温度57℃で15分間、速度75rpmで振盪しながら熱処理した後の生残率(%)で示した。
 なお、菌数測定法―I及び―I、並びにこれらと併用した耐熱性の測定は、培養中又は菌体保存中にVBNCへ誘導された菌数の相当量を活性菌体の菌数と同時に計測できる方法であり、更に被検菌の細胞膜の頑健性を評価し得る方法である。これらの方法は、本発明者らが独自に開発した。
 ブルーベリーに含有されたポリフェノールによる細胞膜へのストレス負荷が特徴の菌数測定法―I及び―Iは、同様に45℃、10分間処理する測定法―IIに比べて、培養環境のポリフェノールによる細胞膜へのストレス負荷が原因でVBNCへ誘導された状態から寒天平板上で菌集落を形成できる活性状態へ速やかに戻す効果を推定している。更に、菌数測定法―Iによって耐熱性が評価できるが、菌数測定法―Iにおいては、ブルーベリーと共に塩化ナトリウムも添加してある為、耐塩性に関する評価もできる。耐熱性と耐塩性の評価により細胞膜の頑健性に対する評価をすることができる。
 本発明では菌数測定法―Iや―Iで得られた結果を菌数測定法―IIの結果と対比しながら、結果の解析を行った。
Figure JPOXMLDOC01-appb-T000001
 表1において、測定法が-IIIから-II、更に-IIから-Iへ変わると、耐熱性が5.9%から11%、更に11%から23%へ向上しており、負荷ストレスが皆無の測定法―IIIに比して、ポリフェノールと塩化ナトリウム、更に45℃加熱処理のストレス負荷の強度を高める程、菌体が菌数測定工程の短時間で環境順応したことが示唆された。なお、菌数測定法―Iと菌数測定法―IIで評価された菌数が同じであったことから、MRS液体培地の37℃振盪培養ではVBNCに至らなかったことが示唆された。
1-2 工程(2-i)「固体培養」
 工程(2-i)で用いた固体培地の組成を表2に示した。固体培地乾物の全重量15.5g当たり、加水量として脱イオン水14.2mlを添加(14.2/(14.2+15.5)×100=47.8%)して、滅菌して固形食材混合物の粒状物質表面の増殖環境を調製した。表2中、「2-i/果物0%」は果実(ポリフェノール含有植物体)を含まない工程(2-i)の固体培養を指し、「2-i/果物5」は果実を約5重量%含み、胚芽麹を含まない工程(2-i)の固体培養を指し、「2-i/果物5」は果実を約5重量%含み、胚芽麹を約20重量%含む(2-i)の固体培養を指す。
Figure JPOXMLDOC01-appb-T000002
 なお、アスペルギルス・オリゼー(A. oryzae)の脱脂胚芽麹DG(-)Pは、調製に用いた固体培地の組成が、重質炭酸カルシウム0.7重量%、脱脂米胚芽45.1重量%、脱脂小麦胚芽38.9重量%、脱脂コーン胚芽(食用グレード)15.3重量%であり、30℃、41時間固体培養した後、50℃送風乾燥した麹である(DG(-)P:Defatted Grain(-)without MgCO3 ,Protease rich Kojiの略)。
 また固体培地の性質の一つとして抗酸化活性を調べた。抗酸化活性は総ポリフェノール量を定量する方法に準拠して行い(津志田藤二郎 他、日本食品工業学会誌、1994,41巻(9号):p.611-618.)、同様にアスコルビン酸(以下、AsAと略す)について反応させて標準曲線を作成し、測定値をAsA相当量として算出した。該測定法は、ポリフェノールの抗酸化活性を評価する以外に、固体培地に含有された還元末端を有する単糖類やトリプトファンの様な抗酸化性アミノ酸とも反応する。従って、固体培養中、増殖環境に含有されたこれらの抗酸化性栄養素を菌体が資化する為、乳酸菌固体発酵物の抗酸化活性は固体発酵を経ることで低下する。
 ここでの工程(2-i)として、凍結乾燥ブルーベリーを添加した固体培地・2-i/果物5(DG(-)P麹無添加区)へMRS液体培地の培養液1.2mlを接種し、39℃、80%相対湿度にセットした恒温恒湿器において、恒温恒湿器において、22時間固体培養を行った。固体培養の途中に2度、培地の手入れを兼ねて培地pHを測定した。得られた活性LGG含有固体発酵物の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
1-3 工程(2-ii) 「固体培養」
 固体培地をスパーテルで十分混合して粒子成分の分布均質化を図った後、加水量として固形食材混合物(乾物)の全重量15.5g当たり脱イオン水15.4mlを添加して滅菌し、食材粒子表面の増殖環境を調製した。
 なお、アスペルギルス・オリゼー(A.oryzae)の脱脂胚芽麹UK(UK:Umami Kojiの略)は、調製に用いた固体培地の組成(UK-1)が、重質炭酸カルシウム0.7重量%、脱脂米胚芽39.3重量%、脱脂小麦胚芽33.0重量%、脱脂コーン胚芽(食用グレード)15.3重量%、及び脱脂大豆11.7重量%であり、30℃、80%RH、41時間固体培養した後、50℃送風乾燥して得られた独自製造した麹である。工程(2-ii)で使用した固体培地の組成及び抗酸化活性を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 また、工程(2-ii)として、工程(2-i)で得られた活性LGG含有固体発酵物の-20℃凍結保存品を融解した後、固体発酵物0.90gを表4に示した組成の固体培地へ接種し、39.5℃、80%RHにセットした恒温恒湿器において23時間培養を行った。
 得られた活性LGG含有固体発酵物の評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 工程(2-ii)の固体培養で得られた活性LGG含有固体発酵物は、本発明の固形食材混合物―I~-VIにおいて、以下の効果が得られた。
効果―1 固体培養23時間後の培地pHの低下度は-1.68~-2.03となり、工程(2-i)の固体発酵物のpH低下度-1.13に比べてより大きくなり、食材粒子表面における増殖がより旺盛化した可能性が示唆された。
効果―2 乳酸産生能は+2.07~+2.76となり、工程(2-i)の+1.24に比べてより活性化した。酢酸産生能は+0.16~+0.009となり、工程(2-i)の+0.511に比べて著しく低下した。一方、工程(2-ii)の対照の固体培地における酢酸産生能は+1.46~+0.50であり、低下し難かった。
 菌が培養環境からストレスが負荷された状態にあると認識した際の応答の一つとして、乳酸産生に比較して、酢酸産生を亢進させる結果、過酷環境に応答して菌体構造を変化するために必要なATPエネルギーをより多く産生する必要が生じる。これに対して、菌体に優れたストレス抵抗力が賦与されていた場合、通常の乳酸産生経路で得られるATPエネルギーで十分と想定される。酢酸産生能の低下、乳酸産生能の上昇は、このストレス応答の菌体状態を示唆している。
比較例1「一般的な液体培養」の後の工程(2-i)の質的相違(ポリフェノール植物体を含まない固体培地での培養)による工程(2-ii)への影響
 ポリフェノール含有植物体である果物(凍結乾燥ブルーベリー)を添加しない固形食材混合物-0%に工程(1)で得られた液体種を接種して固体培養を行った後、得られた固体種を工程(2-ii)へ接種して固体培養を行うことで、工程(2-ii)への影響を確認した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 工程(2-i)の活性LGG含有固体発酵物の菌数とpHは、実施例1表3の270×10cfu/gとpH6.15であったのに対して、18×10cfu/gとpH6.95となり、食材粒子表面における増殖が不十分な結果であった。
 増殖が不十分であった本比較例1の方が、乳酸と酢酸の両方において産生能がより亢進した。従って、実施例1の工程(2-i)は、固体培地にブルーベリーを添加したことに因り、増殖が顕著に旺盛化したことが示唆された。
1-3 工程(2-ii) 「固体培養」
 工程(2-ii)として、工程(2-i)で得られた活性LGG含有固体発酵物の-20℃凍結保存品を融解した後、固体発酵物0.90gを表4に示した本発明の固形食材混合物―IVへ接種した。40℃、80%RHで4時間固体培養した後、39℃で24時間に至るまで、引き続き80%RHにセットした恒温恒湿器で培養を続けた。得られた活性LGG含有固体発酵物の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示した工程(2-ii)の結果は、実施例1表5における本発明の固形食材混合物―IVの結果と同じ組成において得られたデータであり、両方の結果を比較することで、工程(2-i)の質的な相違による工程(2-ii)への影響を解析できた。
 すなわち、工程(2-ii)の活性LGG含有固体発酵物の菌数とpHは、実施例1表5(本発明の固体培地IV)が菌体測定法-IIにおいて260×10cfu/gとpH5.28であったのに対して、比較例1では130×10cfu/gとpH5.94であった。この様に、工程(2-i)の固体種の質的相違による影響は工程(2-ii)において発現した為、本発明の十分な効果を得る為には、工程(2-i)における増殖をより旺盛化させた条件が必要であった。
実施例2 「菌株育種培養」による工程(2-ii)における菌本来の生残能の誘導発現
 工程(1)において、一般的な液体培養であるMRS液体培養を用いるのではなく、「菌株育種培養」による液体培養にて得られた液体種を用いた際の、工程(2-ii)への影響を確認した。
2-1 工程(1) 「液体培養」
 先に本発明者が開発した液体培養法(「菌株育種培養」と称す)に準拠して、LGG株を表8に示す3通りの液体培地組成で前々培養、前培養、及び本培養の各培養工程をこの順序で行った。これらの液体培地の組成を表8に示す。なお、BTBを0.003%添加したMRS寒天培地で37℃一夜培養して形成された菌集落の一白金耳を1%軽質炭酸カルシウム添加MRS液体培地10mlへ接種して、37℃一夜静置培養を行い、得られた培養液0.15mlを用いて前々培養を開始した。
Figure JPOXMLDOC01-appb-T000008
 前々培養で得られた培養液を1%接種して前培養を行い、さらに、前培養で得られた培養液1%接種して本培養を行った。各培養工程を各々24時間行い、培養液を評価した。
評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 前々培養から前培養で得られた菌の耐熱性は低かった。しかしながら、本培養へ培養を繰り返す度に菌体への負荷ストレスをより高めた結果、「菌株育種培養」によって得られた本培養液は、(1)培養菌の耐熱性が28%へ向上する効果が見出された他、(2)培地pHの低下度がより小さく、更に、(3)乳酸産生量が減少、酢酸産生量が顕著に増加、(4)クエン酸資化能が著しく発達したという特徴が認められた。
 菌体が液体培養のストレス環境に順応する時の形質変化は、順応に必要な菌体構造の変化に費やす分のATPエネルギーを新たに確保するため、例えば、乳酸産生量を抑えつつ、酢酸産生量を増加させる。本実施例においても、酢酸産生能が著しく亢進しており、これは菌が環境順応に努めた証しと理解される。同様に、クエン酸代謝過程においてもATPエネルギーの産生を伴うため、クエン酸資化能も亢進することで、優れた生残能の賦与に必要なATPエネルギーを潤沢に生成でき、ATPエネルギーの消費量増加に応答することが可能となる。なお、増加した酢酸産生能がこの後の固体培養工程(2-ii)において低下した場合、菌体は優れた生残能を獲得できたと理解され、有機酸産生とリンクしない他の代謝経路を誘導発現した可能性が考えられる。
2-2 工程(2-i) 「固体培養」
 工程(2-i)として、ポリフェノール含有植物体である凍結乾燥ブルーベリーを5.2重量%及び脱脂胚芽麹DG(-)Pを20.3重量%含有した固体培地・2-i/果物5へ工程(1)で得られた本培養液1.2mlを接種し、39℃、80%RHにセットした恒温恒湿器において、24時間固体培養を行った。
 更に、工程(1)の質的相違による工程(2-i)への影響を考察する為、固体培地・2-i/果物5に対しても本培養液を接種し、同条件で固体培養を行った。培養の途中に2度、固体培地の手入れを兼ねて培地pHを測定し、得られた生状態(凍結乾燥前の状態)の活性LGG含有固体培養物の評価結果を表10及び表11に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例2表11に示した工程(2-i)の結果は、実施例1表3に示した工程(2-i)の結果と同じ組成の固形食材混合物を用いて得られたデータであり、両者を比較することで、工程(1)の液体種の質的相違による工程(2-i)への影響を以下の(A)及び(B)のように解析できた。
(A) 「菌株育種培養」で得られた液体種を固形食材混合物へ接種して固体培養を行った場合、「一般的な液体培養」の液体種を接種した固体培養に比べて、培養開始から2.5時間で培地pHの低下度が-0.26に至った他、培養6.5時間目のpHが培養22時間目とほぼ同水準に至った。しかも、培養終了時のpHの両者の相違が-0.17と大きく相違しており、「菌株育種培養」を経た固体培養の方がより低いpHに至った。従って、「菌株育種培養」によって得られた菌体は、工程(2-i)の固形食材混合物へ接種された際、増殖再開までの誘導期の時間がほとんどゼロに近く、更にその後の固体表面における増殖が極めて旺盛であった為、6.5時間の培養時間で定常期に到達した。食材粒子表面における旺盛な増殖能の賦与が「菌株育種培養」によって改変できた性質の一つと示唆された。ちなみに、液体培地のクエン酸ナトリウムの濃度をより高く設定した場合、その濃度に依存して、培地のグルコース消費量を低下、乳酸産生量を低下、酢酸産生量を増加、グルコース消費量当たりの菌体量を増加、そしてATP産生量当たりの菌体量増加がラクトコッカス・ラクチス(Lactococcus lactis)CRL264株で報告されている(Sanchez C. et al., Applied and Environmental Microbiology, 2008 Feb.,74巻(4号):p.1136-1144.)。したがって、液体培地に含有されたクエン酸を資化して旺盛に代謝する活性を工程(1)において十分学習させておくことが上記の結果につながった可能性が考えられる。
(B) 「菌株育種培養」を経た工程(2-i)の固体培養は、「一般的な液体培養」を経た工程(2-i)の固体培養に比べて、クエン酸資化量が同等であったが、乳酸産生量の49%に相当する酢酸産生量を呈しており、「一般的な液体培養」を経た場合の41%に比べて、酢酸産生が若干旺盛化した。したがって、「菌株育種培養」を経た菌体の方が工程(2-i)の固体培養で順応に必要なATPエネルギーがより多く産生された結果、より充分に構造変化ができた可能性が示唆された。
2-3 工程(2-ii) 「固体培養」
 工程(2-ii)として、固形食材混合物・2-i/果物5を用いて得られた工程(2-i)の活性LGG含有固体発酵物の-20℃凍結保存品を融解した後、固体発酵物0.90gを表4に示した本発明の固形食材混合物―IV及び―VIIへ接種した。40℃で4時間固体培養した後、39℃で24時間に至るまで、80%RHにセットした恒温恒湿器で培養を続けた。得られた活性LGG含有固体培養物の評価結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 実施例2表12に記載の活性LGG固体発酵物を、実施例1表5に記載した固体発酵物と比較すると、いずれも工程(2-i)(実施例1、固形食材混合物・2-i/果物5;実施例2、固形食材混合物・2-i/果物5)及び工程(2-ii)(両方とも固形食材混合物―IV)においてほぼ同じ培養条件に設定した為、工程(1)の相違が及ぼす工程(2-ii)への影響を以下の(A)及び(B)のように解析できた。
(A) 「菌株育種培養」を経た工程(2-ii)の固体培養は、「一般的な液体培養」を経た工程(2-ii)の固体培養に比較して、固形食材混合物のpH低下速度、到達菌数、耐熱性、固体発酵に伴う乳酸及び酢酸産生量の変化、乳酸及び酢酸の産生能がいずれもほぼ同水準であった。
(B) しかしながら、「菌株育種培養」を経た工程(2-i)の固体発酵物と同様、「菌株育種培養」を経た場合、引き続き工程(2-ii)においてもクエン酸を資化した。これらの特異的な変化は、菌本来の生残能の誘導発現した効果と関連している可能性が示唆された(実施例3で詳細を示す)。
 図3に、各培養工程で培養して得られた菌体の菌数と耐熱性を示す。図3には、各培養工程(試験区)1~5の培養条件を示す表(図3A)及び菌数及び耐熱性のグラフ(図3B)を示す。図3Aには、各条件のデータが含まれる表番号も記載してある。試験区3及び4が本発明の培養条件を満たす試験区であり、本発明の工程(2-i)及び工程(2-ii)の培地を用いれば、菌数も著しく高く、耐熱性も他の試験区に比べ高い。
実施例3 活性LGG固体発酵物を凍結乾燥、及び保存安定性評価
 工程(2-i)又は工程(2-ii)における乳酸菌固体発酵物の評価を行った。
3-1 凍結乾燥
 活性LGG含有固体発酵物に対して、保護剤や安定化剤を全く添加せず、固体培養して得られたそのままの状態で、棚式凍結乾燥機FD-550P(東京理化器械株式会社製)を用いて凍結乾燥を24時間行った。一般的に液体培養で得られた乳酸菌の菌体を凍結乾燥、噴霧乾燥、又は凍結保存する場合、適切な組成の保護剤や安定化剤で菌体を懸濁してからこれ等の処理を開始することが必須であり、乳酸菌の各メーカーにとって保護剤や安定化剤の独自組成は重要なノウハウとなっている。
 これに対して、本発明の方法で得られる乳酸菌固体発酵物は、乳酸菌が固形食材混合物の粒子表面にバイオフィルムと呼ばれる多糖体や糖タンパク質を分泌産生している他、固形食材混合物がポリフェノールを著量含有しており、高い抗酸化活性を有しているので、固体発酵物を凍結乾燥や凍結保存する上で、保護剤や安定化剤が全く不要と思われた。したがって、LGG活性含有固体発酵物に保護剤や安定化剤をまったく添加せず、凍結乾燥して得られた結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
 図4に各培養工程で培養して得られた菌体の凍結乾燥後の生残菌数及び耐熱性を示す。図4には、各培養工程(試験区)1~5の培養条件を示す表(図4A)及び生残菌数及び耐熱性のグラフ(図4B)を示す。凍結乾燥後の高い生残菌数及び耐熱性は試験区3及び4において得られた。特に試験区4で良好であった。この結果は、固体培養工程(工程(2-i)及び工程(2-ii))において、ポリフェノール含有植物体が存在することの効果を示す他、胚芽麹が工程(2-i)及び工程(2-ii)の両方に含まれることが好ましいことを示す。また、液体培養工程において「菌株育種培養」を行うことが好ましいことを示す。
 凍結乾燥の結果、工程(1)における「菌株育種培養」(実施例2)と「一般的な液体培養」(実施例1)の質的違いによる工程(2-ii)(いずれも本発明の固形食材混合物―IV)への影響は、「菌株育種培養」を経た場合が生残菌数220×10cfu/g、耐熱性26%となり、「一般的な液体培養」を経た場合が生残菌数97×10cfu/g,耐熱性14%となった。すなわち、工程(1)において「菌株育種培養」を経た効果として、工程(2-ii)の固体発酵において菌本来の生残能が誘導発現された活性菌体がより高菌数で得られた。
 更に、本発明の菌本来の生残能を誘導発現した活性菌体を高菌数で含有した乳酸菌固体発酵物が得られる効果は、工程(2-i)における固形食材混合物に含有されたポリフェノールによるストレスに対する抵抗力の賦与された固体種を工程(2-ii)に接種することの重要性が、凍結乾燥の結果から示唆された。つまり、工程(2-i)における固体培地がポリフェノール植物体を含まなかった場合、比較例1表7に示した工程(2-ii)、固形食材混合物-IVの固体発酵物は、凍結乾燥を経た結果、表13に示したように、生残菌数59×108cfu/g、及び耐熱性2.0%と低かった。これに対して工程(2-i)における固体培地がポリフェノール含有植物体を含んでいた場合、表13に示した工程(2-ii)、固形食材混合物-IVの固体発酵物は、凍結乾燥を経た結果、生残菌数97×108cfu/g、及び耐熱性14%と上昇した。この結果より工程(2-ii)において、菌本来の生残能を誘導発現した活性菌体を高菌数で含有する乳酸菌固体発酵物を得る為には、工程(2-i)の固体培地のポリフェノール含有量をドライフルーツ及び/又は胚芽麹の添加によって増やすことが必須要素であることが示唆された。
 一方、表13の菌数測定法―Iにおいて、本発明の固形食材混合物―VIを用いた固体発酵物の生残菌数が90×10cfu/gとなり、菌数測定法―IIの200×10cfu/gに比べて半減した。この現象は、菌数測定法―Iにおいてホモゲナイズする際、固体発酵物の高濃度ポリフェノールが菌数評価系のブルーベリー及び塩化ナトリウムの抗菌活性と合わさった結果、更により強いストレスが菌体に負荷されて死滅したことに起因した可能性がある。
3-2 凍結乾燥物の保存安定性
 評価系のポリフェノールや塩化ナトリウムによる細胞膜へのダメージによって、膜の頑健性を評価できる菌数測定法―Iを用いて、活性LGG含有固体発酵物の凍結乾燥品を4℃で42日間保存した後の菌数及び耐熱性を評価した。得られた結果を表14A及び比較例を表14Bに示す。
Figure JPOXMLDOC01-appb-T000014
 この結果、表14Aでは、固体発酵物の凍結乾燥品を4℃で42日間保存した後でも高い生残菌数及び耐熱性はほぼ同水準が維持されており、著しく菌体が不安定化した表14Bと比較して、菌本来の生残能を誘導発現する効果が示された。
実施例4 乳酸桿菌を乳酸球菌に変更した場合の本発明で得られる効果の共通性
4-1  PA株を用いた工程(1)(「一般的な液体培養」及び「菌株育種培養」)
 乳酸球菌に属するペディオコッカス・アシディラクティシ(Pediococcus acidilactici)(ATCC25740)株(以下、PA株と略す)を用い、「一般的な液体培養」として、MRS液体培地を用いて培養温度を段階的に高めた他、実施例2に記載の本発明者らが先に開発した液体培養法に準拠して「菌株育種培養」として33通りの液体培地組成の改変仕様で前々培養、前培養及び本培養の各培養工程をこの順序で行った。液体培地の組成を表15に示す。BTBを0.003%添加したMRS寒天培地で37℃一夜培養して形成された菌集落の一白金耳を1%軽質炭酸カルシウム添加MRS液体培地10mlへ接種して、37℃一夜静置培養を行い、得られた培養液0.15mlを用いて前々培養を開始した。
Figure JPOXMLDOC01-appb-T000015
 前々培養で得られた培養液を1%接種して前培養を行い、更に、前培養で得られた培養液を1%接種して本培養を行った。各培養工程を各々24時間行い、培養液を評価した。得られた培養液の評価結果を表16A及び表16Bに示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 PA株の液体培地No.1は、「菌株育種培養」において、段階的に培養温度を上昇、糖質と窒素源の濃度を低下、クエン酸濃度上昇の少なくとも3つのストレス要素を同時に負荷した結果、本培養において増殖が著しく抑制された。液体培地No.1に比較して、クエン酸濃度上昇のストレス要素を負荷しなかった培地No.2の場合、実施例2におけるLGG株の「菌株育種培養」における応答と同様に、培地pHの低下度が非常に小さく、そして乳酸産生量が減少した。しかしながら、LGG株と逆に、酢酸産生量も著しく減少した他、クエン酸資化能が誘導発現しなかった。一方、液体培地No.1に比較して糖質と窒素源の濃度低下のストレスを負荷しなかった液体培地No.3の場合、実施例2におけるLGG株の「菌株育種培養」における応答とは逆に、到達菌数が若干増加した他、酢酸産生量の低下が少なく、そしてクエン酸資化能が誘導発現しなかった。以上、工程(1)の「菌株育種培養」において、PA株とLGG株は著しく相違した応答を呈した。
4-2 PA株を用いた工程(2-i)「固体培養」
 工程(2-i)として、表17に示した組成の固形食材混合物へ工程(1)の本培養で得られた培養液1.2mlを接種し、42℃、80%RHにセットした恒温恒湿器において、24時間固体培養を行った。固体培養の途中に2度、手入れを兼ねて固体培地のpHを測定した。得られた活性PA含有固体発酵物の評価結果を表18に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 工程(2-i)で得られた活性PA含有固体発酵物の2-i(A)は、「菌株育種培養」の本培養培地No.1において増殖が非常に抑制されていたにもかかわらず、培養8時間以降、培養24時間までに増殖の遅れを取り戻して他の培養条件レベルとほぼ同程度に至ったことがpHや到達菌数の評価結果から示唆された。
 工程(2-i)で得られた活性PA含有固体発酵物は、乳酸産生量に比べて酢酸産生量がより多く、クエン酸が量的に少ないものの分泌産生された点が工程(2-i)で得られた活性LGG含有固体発酵物と相違した。工程(1)において液体培地のクエン酸濃度を増加させた培養条件のNo.3を経たPA株の工程(2-i)の固体発酵物2-i(C)は、耐熱性が若干低下した。
4-3 PA株を用いた工程(2-ii)「固体培養」
 工程(2-ii)として、工程(2-i)で得られた活性PA含有固体発酵物の-20℃凍結保存品を融解した後、固体発酵物0.90gを表19に示した組成の固体培地2-ii塩化ナトリウム0~1.2重量%へ接種した。42℃で24時間、80%RHにセットした恒温恒湿器で固体培養を行った。得られた生状態(乾燥前の状態)の活性PA含有固体発酵物の評価結果を表20A及び、表20Bに示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 工程(2-ii)で得られたPA株の固体発酵物は、LGG株を用いて得られた実施例2の表12に記載した結果と比べて、菌数が低かったが、耐熱性が著しく高かった。特筆される点は、PA株の工程(2-i)で得られた固体発酵物に比べて、工程(2-ii)で得られた活性PA含有固体発酵物は、乳酸産生能が著しく亢進し、逆に酢酸産生能がほぼ半減しており、LGG株と同様にマロラクティック乳酸発酵に類似した効果の発酵シーンの様相を呈した。
実施例5 工程(2-ii)で得られた活性PA含有固体発酵物の送風乾燥、及び乾燥菌体の生残能に及ぼす工程(1)の影響
 工程(2-ii)で得られた活性PA含有固体発酵物を濾紙の上に薄く広げ、産業恒温器VTFH-216-2T(株式会社いすゞ製作所製)において、45℃、6時間送風乾燥を行った。得られた乾燥物の生残菌数及び耐熱性を菌数測定法―IIで評価した他、乾燥物を密栓ガラス瓶に入れ、4℃、18日間経過した後、同様に生残菌数及び耐熱性を評価した。その際、表20Aに示した培養直後に得られた菌数で各々の生残菌数を割り算して得られた数値に耐熱性(%)を掛け算した数値を「生残率×耐熱性(%)」で表現した。
 なお、「生残率×耐熱性(%)」で表現した理由は、PA株はLGG株と異なり元々送風乾燥に優れた抵抗性を示し、更に耐熱性においても優れている為、両方のパラメーターを掛け合わせることで、菌本来の生残能が誘導発現されている状態をより高感度に評価できる尺度となるからである。すなわち、送風乾燥に伴い、全く死滅しなかった場合、生残率100%が得られ、送風乾燥した菌体が、送風乾燥に伴い、細胞膜が頑健に維持できた場合、生状態(乾燥前の状態)の菌体と同じ数値の耐熱性が得られる。従って、「生残率×耐熱性(%)」は、その数値がより高くなる程、細胞膜が頑健であり、菌本来の生残能が誘導発現された状態の安定化効果が想定される。
Figure JPOXMLDOC01-appb-T000023
 得られた結果を表21に示す。工程(1)の「菌株育種培養」の本培養において負荷ストレスが高過ぎて増殖の抑制された培地No.1の液体種を接種して得られた工程(2-i)の固体発酵物2-i(A)を固体種として工程(2-ii)の固体培養を行った結果、固形食材混合物に塩化ナトリウム添加量が皆無の場合、工程(1)でMRS液体培地の「一般的な液体培養」で得られた液体種を接種した固体発酵物2-i MRSと同様の結果、すなわち「生残率×耐熱性(%)」は送風乾燥の直後、及び乾燥物を4℃、18日間保存した後の両方において、21~34%及び、11~12%といずれも低かった。ところが、工程(2-ii)の本発明の固形食材混合物に乾物換算で塩化ナトリウムを0.3重量%添加した固体において、工程(2-i)の固体発酵物2-i(A)を固体種として接種した固体発酵物2-ii 塩化ナトリウム0.3重量%の「生残率×耐熱性(%)」は、送風乾燥の直後、及び乾燥物を4℃、18日間保存した後の両方において78%及び32%と高く、菌本来の生残能が誘導発現された状態の固体発酵物が得られたことが示唆された。
 一方、工程(1)の「菌株育種培養」で低栄養及び培養温度を段階的に高める両方のストレスを負荷した液体培地No.2の液体種を接種して得られた工程(2-i)の固体発酵物2-i(B)を固体種として工程(2-ii)の固体培養を行った場合、乾物換算で塩化ナトリウムを1.2重量%添加した固体培地で増殖させた固体発酵物2-ii 塩化ナトリウム 1.2重量%の「生残率×耐熱性(%)」は、送風乾燥の直後、及び乾燥物を4℃、18日間保存した後の両方において42%及び35%と高かった。
 上記の結果は、工程(1)の「菌株育種培養」において、負荷ストレスの強度が非常に強く、本培養では増殖が抑制される程のストレス負荷を経た菌体は、固体培養工程(2-ii)において、塩化ナトリウムによるストレスの負荷強度が若干低くても、菌本来の生残能を誘導発現できた。即ち、負荷ストレスに対する応答のセンサーが「敏感型」へ変化した可能性が想定された。
 一方、工程(1)の「菌株育種培養」において、上記の負荷ストレスの中からクエン酸濃度の段階的増加を削除した液体培地No.2の液体種を接種した場合、工程(2-i)を経た後の、工程(2-ii)の固体培養では、高い塩化ナトリウム濃度のストレス強度をより高く設定した場合に菌本来の生残能を誘導発現できる可能性が示唆された。即ち、負荷ストレスに対する応答のセンサーが上記と比較してやや劣った「普通型」へ変化した可能性が推定された。
 これに対して、工程(1)の「菌株育種培養」において、上記の3種類の負荷ストレスの中から低栄養ストレスを削除した条件を経た菌体を接種して得られた工程(2-i)の固体発酵物2-i(C)を塩化ナトリウム1.2重量%添加した固体培地で培養して得られた固体発酵物2-ii 塩化ナトリウム 1.2重量%の「生残率×耐熱性(%)」は、乾燥直後だけが43%と高かったものの、乾燥物を4℃、18日間保存した後では23%に低下した。塩化ナトリウム0重量%の固体発酵物2-iiの11~12%に比べて高かった。この知見は、工程(1)の液体培養において、できるだけ多種類のストレスを負荷し、それらの抵抗力を誘導発現させておくことが、固体培養を2回経たときでも優れた生残能が誘導発現された状態の固体発酵物を得るためには重要であることを示唆する。
 図5に各培養工程で培養して得られた菌体の送風乾燥後の「生残率×耐熱性」(%)を示す。図5には、各培養工程(試験区)1~5の培養条件を示す表(図5A)及び「生残率×耐熱性」(%)のグラフ(図5B)を示す。「生残率×耐熱性」(%)は送風乾燥後の値と4℃、18日間保存後の値を示す。
 試験区1~5の違いは、固体培養工程(2-ii)における塩化ナトリウム濃度及び液体培養工程(1)の培養法(一般的な液体培養又は菌株育種培養)である。図5の結果は、液体培養工程として菌株育種培養を行い、固体培養工程(2-ii)において、塩化ナトリウムを添加した場合に、より「生残率×耐熱性」(%)が良好であったことを示している。
 液体培養により増殖させた乳酸菌を、さらに固形食材を適量含有した固形食材混合物を固体培地として用いて培養することにより、菌本来の生残能を誘導発現して高密度の菌体を含有した乳酸菌固体発酵物が得られ、凍結乾燥処理や送温風などの乾燥処理によって得られた固体発酵物も提供できる。
1 乳酸菌
2 粒状のポリフェノール含有植物体
3 粒状の胚芽
4 粒状の胚芽麹
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (30)

  1.  乳酸菌固体発酵物の製造方法であって、
    (1) 乳酸菌を、液体培地を用いて培養する液体培養工程、
    (2) 工程(1)で培養した乳酸菌を固形食材混合物である固体培地で培養する、1工程又は複数工程からなる固体培養工程であって、固体培地は少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含み、固体培養の最終工程で用いる固体培地はポリフェノール含有植物体を含む、乳酸菌を固体培地表面で増殖させる固体培養工程、
    を含み、乳酸菌固体発酵物が工程(2)で用いた固体培地表面に前記乳酸菌が含有されている乳酸菌固体発酵物である、製造方法。
  2.  工程(2)の固体培養工程を複数の工程で行い、後の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量が、それより前の固体培養工程で用いる固体培地中のポリフェノール含有植物体の含有量よりも多い、請求項1記載の製造方法。
  3.  工程(1)の液体培養及び工程(2)の固体培養工程を経るにつれ、段階的に強度を高くした複数のストレスを負荷し、それらのストレスに耐性を有する乳酸菌の生残率を増加させる、請求項1又は2に記載の製造方法。
  4.  乳酸菌固体発酵物の製造方法であって、
    (1) 乳酸菌を、液体培地を用いて培養する液体培養工程、
    (2-i) 工程(1)で培養した乳酸菌を、少なくとも炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体を含む固形食材混合物である固体培地で培養し、乳酸菌を固体培地表面で増殖させる工程、
    (2-ii) 工程(2-i)で培養した乳酸菌を、少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固形食材混合物である固体培地であって、ポリフェノール含有植物体の含量が工程(2-i)で用いた固体培地よりも多い固体培地で培養し、乳酸菌を固体培地表面で増殖させる工程、
    の3工程を含み、乳酸菌固体発酵物が工程(2-ii)で用いた固体培地表面に前記乳酸菌が含有されている乳酸菌固体発酵物である、請求項2記載の製造方法。
  5.  工程(2-ii)において、固体培地にさらに胚芽麹が含まれる、請求項4記載の製造方法。
  6.  工程(1)、(2-i)及び(2-ii)の工程を経るにつれ、段階的に強度を高くした複数のストレスを負荷し、それらのストレスに耐性を有する乳酸菌の生残率を増加させる、請求項4又は5に記載の製造方法。
  7.  工程(1)で用いる液体培地が、少なくとも炭酸塩、胚芽麹、窒素源及び炭素源を含む液体培地である、請求項1~6のいずれか1項に記載の製造方法。
  8.  工程(1)の液体培養工程が多段階の培養工程で行われ、多段階の培養工程の各段階の工程、又は多段階の培養工程のいずれか1工程において、少なくとも炭酸塩、胚芽麹、窒素源及び炭素源を含む液体培地を用いる、請求項1~7のいずれか1項に記載の製造方法。
  9.  工程(1)で用いる液体培地に含まれる胚芽麹が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽の1種又は2種以上を含む、請求項7又は8に記載の製造方法。
  10.  工程(1)で用いる液体培地に含まれる炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、請求項7又は8に記載の製造方法。
  11.  固体培養工程で用いる固体培地に含まれる胚芽が、1種又は2種以上の穀物の脱脂胚芽又は胚芽を含む脱脂穀物である、請求項1~10のいずれか1項に記載の製造方法。
  12.  胚芽が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽、その他の穀物由来の脱脂胚芽及びその他の穀物の胚芽を含む脱脂穀物からなる群から選択される1種又は2種である、請求項11記載の製造方法。
  13.  胚芽を含む脱脂穀物が脱脂大豆である、請求項11又は12に記載の製造方法。
  14.  固体培養工程で用いる固体培地に含まれるポリフェノール含有植物体が、果実、野菜、穀類、茶葉、海藻及び香辛料からなる群から選択される1種以上の植物体である、請求項1~13のいずれか1項に記載の製造方法。
  15.  固体培養工程で用いる固体培地に含まれる胚芽麹がアスペルギルス属に属する麹菌の脱脂胚芽麹である、請求項1~14のいずれか1項に記載の製造方法。
  16.  工程(2-ii)で用いる固体培地に、さらに塩化ナトリウムが含まれる、請求項4~15のいずれか1項に記載の製造方法。
  17.  固体培養工程で用いる固体培地に含まれる炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、請求項1~16のいずれか1項に記載の製造方法。
  18.  固体培養工程で用いる固体培地が炭酸塩及び胚芽、並びに胚芽麹及び/又はポリフェノール含有植物体の均質混合物と水との混合固体培地である、請求項1~17のいずれか1項に記載の製造方法。
  19.  工程(1)の液体培養により得られた乳酸菌菌体を、工程(2)で用いる固体培地の表面に接種する、請求項1~18のいずれか1項に記載の製造方法。
  20.  工程(1)の液体培養により得られた乳酸菌菌体を、工程(2-i)で用いる固体培地の表面に接種し、さらに工程(2-i)の固体培養により得られた乳酸菌菌体を工程(2-ii)で用いる固体培地の表面に接種する、請求項4~19のいずれか1項に記載の製造方法。
  21.  少なくとも炭酸塩、胚芽、及びポリフェノール含有植物体を含む固形食材混合物の表面に発酵菌が含有されている、乳酸菌固体発酵物。
  22.  さらに、固形食材混合物が胚芽麹を含む、請求項21に記載の乳酸菌固体発酵物。
  23.  胚芽が、1種又は2種以上の穀物の脱脂胚芽又は胚芽を含む脱脂穀物である、請求項21又は22に記載の乳酸菌固体発酵物。
  24.  胚芽が、脱脂米胚芽、脱脂小麦胚芽、脱脂コーン胚芽、その他の穀物由来の脱脂胚芽及びその他の穀物の胚芽を含む脱脂穀物から選択される1種又は2種である、請求項23記載の乳酸菌固体発酵物。
  25.  胚芽を含む脱脂穀物が脱脂大豆である、請求項21~24のいずれか1項に記載の乳酸菌固体発酵物。
  26.  ポリフェノール含有植物体が、果実、野菜、穀類、茶葉、海藻及び香辛料からなる群から選択される1種以上の植物体である、請求項21~25のいずれか1項に記載の乳酸菌固体発酵物。
  27.  胚芽麹がアスペルギルス属に属する麹菌の脱脂胚芽麹である、請求項21~26のいずれか1項に記載の乳酸菌固体発酵物。
  28.  固形食材混合物に、さらに塩化ナトリウムが含まれる、請求項21~27のいずれか1項に記載の乳酸菌固体発酵物。
  29.  炭酸塩が、炭酸カルシウム及び炭酸マグネシウムの混合物である、請求項21~28のいずれか1項に記載の乳酸菌固体発酵物。
  30.  請求項21~29のいずれか1項に記載の乳酸菌固体発酵物を含む、穀物、ポリフェノールを含む植物体及び乳酸菌を含む食品。
PCT/JP2016/084306 2015-11-18 2016-11-18 菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物 WO2017086451A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017551953A JPWO2017086451A1 (ja) 2015-11-18 2016-11-18 菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226074 2015-11-18
JP2015-226074 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086451A1 true WO2017086451A1 (ja) 2017-05-26

Family

ID=58719292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084306 WO2017086451A1 (ja) 2015-11-18 2016-11-18 菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物

Country Status (2)

Country Link
JP (1) JPWO2017086451A1 (ja)
WO (1) WO2017086451A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210517A (zh) * 2020-10-28 2021-01-12 内蒙古农业大学 干酪乳杆菌Zhang的VBNC态的诱导以及VBNC态细胞脂肪酸的检测方法
CN113995072A (zh) * 2021-11-17 2022-02-01 四川大学 一种大米胚芽发酵饮料加工方法
CN114287633A (zh) * 2021-12-28 2022-04-08 广州能靓生物技术有限公司 含蔓越莓的益生菌组合物及其在抗幽门螺旋杆菌中的应用
KR102499346B1 (ko) * 2022-01-24 2023-02-14 (주)제이비 바이오 천연복합발효액과 이를 이용하여 활성성분을 증대시키고 체내흡수율을 개선시킨 고상발효 초미세분말

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240293A (ja) * 1985-08-16 1987-02-21 Meiji Seika Kaisha Ltd 新規抗生物質sf−2381a物質及びsf−2381b物質ならびにそれらの製造法
JP2004057020A (ja) * 2002-07-25 2004-02-26 Wakamoto Pharmaceut Co Ltd 乳酸菌の製造法
JP2004057021A (ja) * 2002-07-25 2004-02-26 Wakamoto Pharmaceut Co Ltd 乳酸菌麹の製造法
JP2012224551A (ja) * 2011-04-15 2012-11-15 Morishita Jintan Co Ltd ビフィズス菌または乳酸菌の生存維持用組成物
WO2015174407A1 (ja) * 2014-05-15 2015-11-19 エバラ食品工業株式会社 乳酸菌培地の製造方法、及びこれを用いた乳酸菌の培養方法並びに当該培養方法で得られる乳酸菌を用いた乳酸菌末
WO2016103699A1 (ja) * 2014-12-26 2016-06-30 株式会社明治 有機酸の産生促進剤、並びに炎症性腸疾患の予防及び/又は改善剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240293A (ja) * 1985-08-16 1987-02-21 Meiji Seika Kaisha Ltd 新規抗生物質sf−2381a物質及びsf−2381b物質ならびにそれらの製造法
JP2004057020A (ja) * 2002-07-25 2004-02-26 Wakamoto Pharmaceut Co Ltd 乳酸菌の製造法
JP2004057021A (ja) * 2002-07-25 2004-02-26 Wakamoto Pharmaceut Co Ltd 乳酸菌麹の製造法
JP2012224551A (ja) * 2011-04-15 2012-11-15 Morishita Jintan Co Ltd ビフィズス菌または乳酸菌の生存維持用組成物
WO2015174407A1 (ja) * 2014-05-15 2015-11-19 エバラ食品工業株式会社 乳酸菌培地の製造方法、及びこれを用いた乳酸菌の培養方法並びに当該培養方法で得られる乳酸菌を用いた乳酸菌末
WO2016103699A1 (ja) * 2014-12-26 2016-06-30 株式会社明治 有機酸の産生促進剤、並びに炎症性腸疾患の予防及び/又は改善剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HERVERT-HERNANDEZ D. ET AL.: "Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth", INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, vol. 136, 2009, pages 119 - 122, XP026719007, DOI: doi:10.1016/j.ijfoodmicro.2009.09.016 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210517A (zh) * 2020-10-28 2021-01-12 内蒙古农业大学 干酪乳杆菌Zhang的VBNC态的诱导以及VBNC态细胞脂肪酸的检测方法
CN112210517B (zh) * 2020-10-28 2024-05-03 内蒙古农业大学 干酪乳杆菌Zhang的VBNC态的诱导以及VBNC态细胞脂肪酸的检测方法
CN113995072A (zh) * 2021-11-17 2022-02-01 四川大学 一种大米胚芽发酵饮料加工方法
CN114287633A (zh) * 2021-12-28 2022-04-08 广州能靓生物技术有限公司 含蔓越莓的益生菌组合物及其在抗幽门螺旋杆菌中的应用
CN114287633B (zh) * 2021-12-28 2024-01-30 广州能靓生物技术有限公司 含蔓越莓的益生菌组合物及其在抗幽门螺旋杆菌中的应用
KR102499346B1 (ko) * 2022-01-24 2023-02-14 (주)제이비 바이오 천연복합발효액과 이를 이용하여 활성성분을 증대시키고 체내흡수율을 개선시킨 고상발효 초미세분말

Also Published As

Publication number Publication date
JPWO2017086451A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
Khodaei et al. Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries
Guimaraes et al. Edible films and coatings as carriers of living microorganisms: A new strategy towards biopreservation and healthier foods
El-Sayed et al. Development of eco-friendly probiotic edible coatings based on chitosan, alginate and carboxymethyl cellulose for improving the shelf life of UF soft cheese
Dinkçi et al. Survival of probiotics in functional foods during shelf life
Peres et al. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria–with an emphasis on table olives
Admassie A review on food fermentation and the biotechnology of lactic acid bacteria
CA3041869C (en) Probiotic grain-based compositions
WO2017086451A1 (ja) 菌本来の生残能を誘導発現させた乳酸菌固体発酵物の製造方法、及び該方法により製造した乳酸菌固体発酵物
US20210268047A1 (en) Microbiological process for the production of bee bread
Sharafi et al. The potential of postbiotics as a novel approach in food packaging and biopreservation: a systematic review of the latest developments
Alamoudi et al. Upgrading the physiochemical and sensory quality of yogurt by incorporating polyphenol-enriched citrus pomaces with antioxidant, antimicrobial, and antitumor activities
JP6302054B2 (ja) 乳酸菌培地の製造方法、及びこれを用いた乳酸菌の培養方法並びに当該培養方法で得られる乳酸菌を用いた乳酸菌末
Łopusiewicz et al. The development of novel probiotic fermented plant milk alternative from flaxseed oil cake using Lactobacillus rhamnosus GG acting as a preservative agent against pathogenic bacteria during short-term refrigerated storage
Elvan et al. Microencapsulation of a potential probiotic Lactiplantibacillus pentosus and its impregnation onto table olives
KR101836365B1 (ko) 류코노스톡 메센테로이드 WiKim32를 첨가한 김치 양념소 및 이를 이용한 김치의 제조방법
KR101837455B1 (ko) 발효된 선복화 추출물을 포함하는 항균용 조성물, 이의 제조방법 및 이를 이용한 식품의 보존방법
Mishra et al. Postbiotics: the new horizons of microbial functional bioactive compounds in food preservation and security
Fatemeh et al. Optimization of a cryoprotective medium and survival of freeze-dried Bifidobacterium infantis 20088 throughout storage, rehydration and gastrointestinal tract transit for infant formula probiotic applications
Marino et al. Main technological challenges associated with the incorporation of probiotic cultures into foods
KR20100076540A (ko) 식물성 배지, 식물성 부형제 조성물 및 이를 이용한 식물성유산균 발효 분말의 제조방법
KR20190072923A (ko) 식용꽃 추출물의 유산균 발효액을 유효성분으로 함유하는 항산화 및 면역활성 증진 기능성 음료 및 식품 조성물 및 그 제조방법
Mechmeche Dried tomato slices: An approach to increase safety and shelf-Life of by the use of Lactobacillus plantarum
Thakur et al. Probiotics in Fruits and Vegetables: Challenges, Legislation Issues, and Potential Health Benefits
Karnwal et al. Food Microbial Sustainability: Integration of Food Production and Food Safety
Sahoo et al. Fermented Foods in Health and Disease Prevention

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866451

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017551953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866451

Country of ref document: EP

Kind code of ref document: A1