WO2017086407A1 - 船舶、バラスト水処理装置及びバラスト水処理方法 - Google Patents

船舶、バラスト水処理装置及びバラスト水処理方法 Download PDF

Info

Publication number
WO2017086407A1
WO2017086407A1 PCT/JP2016/084173 JP2016084173W WO2017086407A1 WO 2017086407 A1 WO2017086407 A1 WO 2017086407A1 JP 2016084173 W JP2016084173 W JP 2016084173W WO 2017086407 A1 WO2017086407 A1 WO 2017086407A1
Authority
WO
WIPO (PCT)
Prior art keywords
disinfectant
residue
ship
ballast
ballast water
Prior art date
Application number
PCT/JP2016/084173
Other languages
English (en)
French (fr)
Inventor
潔 宇津木
正夫 松沢
雅則 長藤
和哉 岡井
剛 菅
武 福嶋
久 片岡
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015246442A external-priority patent/JP5924447B1/ja
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to EP20180424.2A priority Critical patent/EP3730397A1/en
Priority to EP16866408.4A priority patent/EP3378837A4/en
Priority to KR1020187017241A priority patent/KR102068920B1/ko
Priority to CN201680067787.0A priority patent/CN108290757A/zh
Priority to KR1020197038326A priority patent/KR102208217B1/ko
Publication of WO2017086407A1 publication Critical patent/WO2017086407A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Definitions

  • the present invention relates to a ship equipped with a ballast water treatment apparatus for sterilizing ballast water contained in a ballast tank of a ship using an aqueous solution of a chlorinated chemical as a disinfectant.
  • the present invention relates to a ship having a function of removing residues out of the ship.
  • the present invention also relates to a ballast water treatment apparatus and a ballast water treatment method for sterilizing ballast water contained in a ballast tank of a ship in a ship using an aqueous solution of a chlorinated chemical as a disinfectant.
  • the present invention relates to a ballast water treatment apparatus having a mechanism for discharging and removing the disinfectant residue from the ship together with seawater circulating in the ship, and a ballast water treatment method having a removal step.
  • a typical example of ballast water treatment that disinfects ship's ballast water with a disinfectant is to filter seawater taken from outside the ship, inject a disinfectant containing an oxidizing substance into the filtered seawater, and then inject the disinfectant Sterilization treatment in which the seawater is stored or submerged in a ballast tank, and a reducing agent containing a reducing agent is injected into the seawater injected with the sterilizing agent taken from the ballast tank, and the seawater after the reducing agent is injected is drained out of the ship.
  • an aqueous solution of a chlorinated chemical containing free active chlorine having oxidizing properties is used as a disinfectant (Patent Documents 1 to 3).
  • the aqueous solution of the chlorinated drug can be prepared by dissolving a solid chlorinated drug in water (Patent Documents 4 and 5).
  • the aqueous solution is usually prepared more frequently than originally required to sterilize the seawater. . This is because in order to inject an aqueous solution of a chlorinated chemical into seawater as a bactericidal agent, at least a pipe for circulating the aqueous solution to the seawater is required, and an extra amount of the aqueous solution is required to reach the inside of the pipe. Because it becomes.
  • aqueous solution of chlorinated chemicals remaining without being used for ballast water treatment and / or components of the chlorinated chemicals are solvents in the piping.
  • concentration of the chlorinated chemicals decreases due to evaporation of water, or when the solubility of the chlorinated chemicals in the water decreases as the temperature of the sterilizing agent residues decreases, the deposits of the chlorinated chemical components may remain in the fungicide residues or It may be generated and deposited in the wetted area between the object and the pipe, and in some cases, the precipitate may be solidified in the pipe.
  • the fear becomes particularly large when the raw material of the chlorine-based disinfectant is a solid chlorine-based agent. This is because, when the raw material is solid, the decrease in the solubility of the raw material in water directly leads to the generation of precipitates of the components of the raw material.
  • the generation, accumulation, and solidification of the above deposits are caused by troubles such as clogging of pipes, increased pressure loss and other distribution troubles, malfunctions of accessories such as mixers, sensors, valves, pumps, etc. attached to the pipes (hereinafter collectively, This is a cause of “operation failure” due to the disinfectant residue, and thus hinders normal execution of the ballast water treatment.
  • the present invention has been made in view of the above problems, and an object of the present invention is to generate an obstacle to the normal execution of ballast water treatment using an aqueous solution obtained by dissolving a chlorine-based chemical in water as a disinfectant. It is providing the ship equipped with the ballast water treatment apparatus which can suppress or prevent this, a ballast water treatment apparatus, and a ballast water treatment method.
  • a ship includes a ballast pump that distributes seawater taken from outside the ship in the ship, a ballast tank that contains the seawater, and the ballast tank that contains the ballast tank.
  • the ballast pump includes a first operation mode in which seawater taken from the outside of the ship is circulated toward the ballast tank and stored or flooded in the ballast tank, and seawater taken from the outside of the ship is sent to the ballast tank. And a second operation mode in which the water is circulated without passing through and drained out of the ship.
  • the ballast water treatment device has a bactericidal agent injection port for injecting a chlorine-based bactericidal agent into seawater flowing toward the ballast tank in the first operation mode, and in the second operation mode.
  • a residue injection port for injecting at least a part of the residue of the chlorinated disinfectant remaining in the seawater in the first operation mode into the seawater circulating toward the outside of the ship. It is characterized by that.
  • the ship according to the second aspect of the present invention is a ship according to the first aspect, characterized in that the second operation mode starts within 3 hours after the end of the first operation mode. To do.
  • the ship according to the third aspect of the present invention is a ship according to the first aspect, wherein the residue injection port uses a pump to urge at least part of the residue of the chlorinated disinfectant, It inject
  • a ship according to a fourth aspect of the present invention is a ship according to the first aspect, wherein the residue inlet is configured to force at least a part of the residue of the chlorinated disinfectant by a pump. It is characterized by being poured into seawater that circulates toward the outside of the ship together with or mixed with water.
  • the water with the momentum may be water that becomes a solvent of an aqueous solution of a chlorine-based disinfectant, and water that has already become a solvent of an aqueous solution of a chlorine-based disinfectant (and therefore, in that case, the chlorine-based disinfectant) May be an aqueous solution itself).
  • a ship according to a fifth aspect of the present invention is a ship according to the fourth aspect, wherein the water is fresh water.
  • a ship according to a sixth aspect of the present invention is the ship according to the fourth aspect, wherein the water is water containing a reducing substance or an alkaline substance.
  • a ship according to a seventh aspect of the present invention is the ship according to the first aspect, wherein the ballast pump circulates the seawater taken from the ballast tank inside the ship and drains it outside the ship.
  • the ballast water treatment device includes a reducing agent inlet for injecting a reducing agent into seawater flowing from the ballast tank toward the outside of the ship when the ballast water treatment device is in the third operation mode. It is characterized by.
  • a ship according to an eighth aspect of the present invention is the ship according to the seventh aspect, wherein the residue injection port replaces at least part of the residue of the chlorine-based disinfectant with part of the reducing agent.
  • the reaction product produced by the reaction is injected into seawater flowing toward the outside of the ship.
  • a ship according to a ninth aspect of the present invention is the ship according to the seventh aspect, wherein the bactericidal agent inlet also serves as the residue inlet, and the reducing agent inlet faces the outside of the ship. It is located downstream of the residue injection port in the direction of the flowing seawater.
  • the ship according to the tenth aspect of the present invention is the ship according to the first aspect, wherein the chlorinated fungicide is an aqueous solution of trichloroisocyanuric acid, sodium dichloroisocyanurate or potassium dichloroisocyanurate, and the aqueous solution thereof.
  • the solvent is fresh water.
  • the ship which concerns on the 11th form of this invention is a ship which follows the 10th form, Comprising:
  • the said fresh water is the clear water which desalinates seawater with the seawater desalination apparatus installed in the ship, It is characterized by.
  • a ballast water treatment apparatus is a ballast water treatment apparatus that is mounted on a ship and sterilizes ballast water contained in a ballast tank provided in the ship.
  • This ballast water treatment apparatus includes a bactericidal agent inlet for injecting a chlorine-based bactericide into ballast water accommodated in a ballast tank, and a bactericide pipe for circulating the chlorine-based bactericide toward the bactericide inlet.
  • a path a tank for storing at least a part of the residue of the chlorinated disinfectant remaining in the disinfectant piping path without being used for the sterilization of the ballast water, and contents stored in the tank And a residue piping path through which at least a part of the material is circulated.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to the twelfth aspect, wherein at least a part of the disinfectant pipe path is at least a part of the residue pipe path. It is characterized by comprising.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to the twelfth or thirteenth aspect, wherein the residue piping path is at least of the contents discharged from the tank. A part is circulated toward the sterilizing agent inlet.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to any one of the twelfth to fourteenth aspects, wherein the disinfectant pipe path is connected to the disinfectant pipe path.
  • a return piping path is provided for returning at least part of the circulated contents from the downstream side to the upstream side of the disinfectant piping path.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to any one of the twelfth to fifteenth aspects, wherein the residue piping path is discharged from the tank.
  • a return path for returning at least a part of the residue of the chlorine-based disinfectant to the tank is provided.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to any one of the twelfth to fourteenth aspects, wherein the disinfectant pipe path is connected to the disinfectant pipe path.
  • a return path for returning at least a part of the residue to the tank is provided, and at least a part of the return piping path constitutes a part of the return path.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to any one of the twelfth to seventeenth aspects, wherein the tank is a residue of the chlorine-based disinfectant. At least a part is retained at least temporarily or for a short time together with water containing the removal reactive substance, and the removal reactive substance is a reducing substance or an alkaline substance.
  • a ballast water treatment apparatus is a ballast water treatment apparatus that is mounted on a ship and sterilizes ballast water contained in a ballast tank included in the ship.
  • This ballast water treatment apparatus includes a sterilizing agent injection port for injecting a chlorinated sterilizing agent into ballast water accommodated in a ballast tank, and a sterilizing method for circulating the chlorinated sterilizing agent toward the sterilizing agent injection port. And an agent piping path.
  • the ballast water treatment apparatus is configured such that the chlorine-based sterilization remaining in the disinfectant piping path without being used for disinfecting the ballast water by supplying water and / or a removal reactive substance to the disinfectant piping path. At least a part of the residue of the agent is configured to be removed out of the disinfectant piping path, and the removal reactive substance is a reducing substance or an alkaline substance.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to the nineteenth aspect, wherein the disinfectant piping path is at least part of the contents flowing through the disinfectant piping path. Is provided with a return piping path for returning the sterilizing agent from the downstream side to the upstream side of the disinfectant piping path.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to the nineteenth or twentieth aspect, wherein the water is fresh water.
  • a ballast water treatment apparatus is the ballast water treatment apparatus according to any one of the nineteenth to twenty-first aspects, wherein the disinfectant piping path is made of the chlorine-based disinfectant.
  • a piping path for discharging at least a part of the residue into the piping through which the ballast water is circulated is provided.
  • a ballast water treatment apparatus is a ballast water treatment apparatus that is mounted on a ship and sterilizes ballast water contained in a ballast tank provided in the ship.
  • This ballast water treatment apparatus includes a bactericidal agent inlet for injecting a chlorine-based bactericide into ballast water accommodated in a ballast tank, and a bactericide pipe for circulating the chlorine-based bactericide toward the bactericide inlet. And a removal reactive substance injection port for injecting the removal reactive substance at a position upstream of the sterilizing agent injection port of the sterilizing agent piping path or at the position of the sterilizing agent injection port.
  • this ballast water treatment device reacts with the removal reactive substance into which at least a part of the residue of the chlorine-based disinfectant remaining in the disinfectant piping path without being used for disinfecting the ballast water is injected, It is configured to be removed out of the disinfectant piping path, and the removal reactive substance is a reducing substance or an alkaline substance.
  • a ballast water treatment method for sterilizing seawater contained in a ballast tank provided in a ship.
  • This ballast water treatment method includes a sterilizer preparation step for preparing a chlorine-based disinfectant for sterilizing seawater, and a sterilization for disinfecting seawater contained in a ballast tank in the ship using the chlorine-based disinfectant.
  • a treatment step, and at least part of the residue of the chlorine-based disinfectant remaining in the ship without being used for the sterilization of seawater contained in the ballast tank, is injected into the seawater circulating in the ship, And a residue removal step for discharging the seawater to the outside of the ship.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein seawater circulated in the ship is taken from outside the ship and stored in the ballast tank. It is characterized by being distributed in the ship without any problems.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein the residue removing step is not used for sterilization of seawater stored in the ballast tank. And a step of injecting at least a part of the residue of the chlorine-based disinfectant remaining in the ship into seawater circulated in the ship with momentum by a pump.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein the residue removing step is not used for sterilization of seawater stored in the ballast tank. And a step of injecting at least a part of the residue of the chlorinated disinfectant remaining in the ship into the seawater distributed in the ship together with or mixed with water with momentum. To do.
  • a ballast water treatment method according to a twenty-eighth aspect of the present invention is the ballast water treatment method according to the twenty-seventh aspect, wherein the water is fresh water.
  • the ballast water treatment method according to the twenty-ninth aspect of the present invention is the ballast water treatment method according to the twenty-seventh aspect, characterized in that the water contains a reducing substance or an alkaline substance.
  • the ballast water treatment method according to the thirtieth aspect of the present invention is the ballast water treatment method according to the twenty-fourth aspect, wherein the residue removing step is not used for sterilization of seawater stored in the ballast tank.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein the chlorine-based disinfectant is injected into seawater contained in the ballast tank from a disinfectant inlet. And the residue removing step converts the at least part of the residue of the chlorinated disinfectant remaining without being injected into the seawater contained in the ballast tank into the seawater circulating in the ship.
  • a step of injecting from a residue injection port, and the bactericide injection port also serves as the residue injection port.
  • the ballast water treatment method according to the thirty-second aspect of the present invention is the ballast water treatment method according to the thirty-first aspect, wherein at least a part of the chlorine-based disinfectant is injected in the residue removing step.
  • a step of injecting a reducing agent into the seawater is included.
  • the ballast water treatment method according to the thirty-third aspect of the present invention is the ballast water treatment method according to the twenty-fourth aspect, wherein the residue removal step starts within 3 hours after the end of the disinfectant treatment step. It is characterized by.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein the disinfectant treatment step is performed before the ship leaves the first port, and The residue removing step is performed before leaving the first port or before arriving at the second port after leaving the first port.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, wherein the disinfectant treatment step is performed before the ship leaves the first port, and The residue removing step is performed when the vehicle arrives at the second port after leaving the first port or after the arrival at the second port.
  • a ballast water treatment method is the ballast water treatment method according to the twenty-fourth aspect, and is derived from the chlorine-based disinfectant remaining in seawater stored in the ballast tank. It further comprises a reduction treatment step for reducing free available chlorine.
  • the ballast water treatment method for achieving the above object is a ballast water treatment method for sterilizing ballast water stored in a ballast tank provided in a ship in the ship.
  • This ballast water treatment method includes a bactericide preparation step for preparing a chlorine-based disinfectant to sterilize ballast water contained in a ballast tank, and the chlorine-based disinfectant in the ballast water via a piping path.
  • a sterilization treatment step for injecting and sterilizing the ballast water, and removing from the piping path at least part of the residue of the chlorinated disinfectant remaining in the piping path without being used for sterilizing the ballast water And a residue removing step.
  • the residue removing step includes a first step of storing at least a part of the residue of the chlorine-based disinfectant in the tank, and at least a part of the residue of the chlorine-based disinfectant stored in the tank. And a second step of discharging from the tank.
  • a ballast water treatment method is the ballast water treatment method according to the thirty-seventh aspect, wherein the second step of the residue removing step is the chlorine contained in the tank. It is characterized in that at least a part of the residue of the system germicide is discharged into a pipe through which the ballast water is circulated.
  • a ballast water treatment method is the ballast water treatment method according to the thirty-seventh or thirty-eighth aspect, wherein at least one of the residues of the chlorine-based disinfectant contained in the tank. And a step of returning to the tank before removing the portion from the tank and removing it from the piping path.
  • a ballast water treatment method is the ballast water treatment method according to any one of the 37th to 39th aspects, wherein the second step is performed after the first step is performed. Before the reaction, at least a part of the residue of the chlorine-based disinfectant and the removal reactive substance are reacted in the tank, and the removal reactive substance is a reducing substance or an alkaline substance. It is characterized by that.
  • a ballast water treatment method is the ballast water treatment method according to any one of the thirty-seventh to fortieth aspects, wherein the residue removing step And / or supplying a removal reactive substance, wherein the removal reactive substance is a reducing substance or an alkaline substance.
  • the ballast water treatment method for achieving the above object is a ballast water treatment method for sterilizing ballast water stored in a ballast tank provided in a ship in the ship.
  • This ballast water treatment method includes a bactericide preparation step for preparing a chlorine-based disinfectant to disinfect ballast water contained in a ballast tank, and the chlorine-based disinfectant in the ballast water via a disinfectant piping path Sterilizing treatment step of sterilizing the ballast water, and at least part of the residue of the chlorine-based disinfectant remaining in the disinfectant piping path without being used for disinfecting the ballast water And a residue removing step for removing from the piping path.
  • the residue removing step includes a step of supplying water and / or a removal reactive substance to the disinfectant piping path, and the removal reactive substance is a reducing substance or an alkaline substance.
  • a ballast water treatment method is the ballast water treatment method according to the forty-second aspect, wherein the residue removing step is water and / or removal supplied to the disinfectant piping path. And a step of returning the reactive substance from the downstream side to the upstream side of the disinfectant piping path.
  • the ballast water treatment method according to the forty-fourth aspect of the present invention is the ballast water treatment method according to the forty-second or forty-third aspect, wherein the water is fresh water.
  • a ballast water treatment method is the ballast water treatment method according to any one of the forty-second to forty-fourth aspects, wherein the residue removing step is performed using the chlorine-based disinfectant. At least a part of the residue is discharged into a pipe through which the ballast water is circulated.
  • a ballast water treatment method is a ballast water treatment method for sterilizing ballast water stored in a ballast tank provided in a ship in the ship.
  • This ballast water treatment method includes a bactericide preparation step for preparing a chlorine-based disinfectant to disinfect ballast water contained in a ballast tank, and the chlorine-based disinfectant in the ballast water via a disinfectant piping path
  • a residue removing step of removing at least a part from the disinfectant piping path.
  • the residue removing step includes a step of supplying a removal reactive substance at a position upstream of the sterilizing agent inlet of the sterilizing agent piping path or a position of the sterilizing agent inlet, and the removal reactive substance Is a reducing substance or an alkaline substance.
  • Chlorine-based drug means a drug capable of releasing free effective chlorine having a bactericidal action or a substance capable of releasing free effective chlorine by disproportionation in an aqueous solution when dissolved in water as a solvent.
  • a drug that produces “Solid” means in a powder, granule or tablet state at room temperature.
  • the “chlorine drug” need not be “solid”.
  • solid chlorinated drugs are trichloroisocyanuric acid, sodium dichloroisocyanurate and hydrates thereof, potassium dichloroisocyanurate, and the like.
  • the “chlorine-based disinfectant” is an agent that sterilizes using the disinfecting action of free effective chlorine, and a typical example thereof is an aqueous solution of a chlorine-based agent.
  • a “reducing substance” is a substance having a property of receiving (that is, reducing) electrons from other substances regardless of whether it is solid or not.
  • the reducing substance related to the chlorine-based disinfectant is a substance having a property of reducing free effective chlorine derived from the chlorine-based disinfectant.
  • a “reducing agent” is a drug used to receive electrons from other substances, whether solid or not.
  • the reducing agent related to the chlorine-based disinfectant is a substance used for reducing free effective chlorine derived from the chlorine-based disinfectant.
  • Typical examples of the reducing agent are sodium sulfite or a hydrate thereof, sodium thiosulfate or a hydrate thereof, or an aqueous solution thereof.
  • An “alkaline substance” is a substance having a property of being dissolved in water and showing basicity (that is, the hydrogen ion exponent (pH) is greater than 7). Typical examples thereof are alkali metal or alkaline earth metal hydroxides (salts) or alkali metal or alkaline earth metal carbonates (salts) that generate hydroxide ions when dissolved in water.
  • “Piping path” includes piping for distributing liquids, mixtures of solids and liquids and other substances, and accessories such as fittings, mixers, valves, pumps and sensors, and buffer tanks attached to the piping. . Even if there are no accessories attached to the pipe, the pipe falls under the “pipe route”. Even if the accessory attached to the pipe is only the valve, the pipe and the valve correspond to the “piping path”.
  • a “container” is an article having a function as a container for storing or storing a liquid, a mixture of a solid and a liquid, and other substances for a long time or temporarily.
  • “Container contents” refers to the substance. Typical examples of the “container” are a tank, a dissolution tank, a tank and a hopper. Piping corresponds to a “container” because it is an article having a function as the vessel. Therefore, the piping route also corresponds to the “container”.
  • “Shimizu” means water that does not contain salt from seawater and is synonymous with fresh water or fresh water. Water after being desalted from seawater by the seawater desalination apparatus also corresponds to fresh water.
  • “Seawater” may be any of fresh water, brackish water, and seawater as long as it is taken from outside the ship by the ballast pump in the first operation mode or the second operation mode. Therefore, the seawater Wo described below is not limited to seawater, and may be fresh water or brackish water.
  • the present invention particularly the ship according to the first aspect of the present invention, at least a part of the disinfectant residue is injected into seawater circulating in the ship and discharged out of the ship together with the seawater. It is possible to suppress or prevent the occurrence of operational troubles such as blockage of containers and piping paths, increased pressure loss and other distribution problems, and malfunctions of appendages constituting the piping paths due to the agent residue.
  • Typical examples of the force for injecting at least part of the disinfectant residue into the seawater circulating in the ship are the negative pressure generated near the residue inlet due to the pressure by the pump, gravity and the circulation of the seawater ( (Suction force to seawater side) or any combination thereof.
  • At least a part of the fungicide residue may be concentrated, and conversely, the chlorine system for water is reduced due to a decrease in the water temperature of the fungicide residue.
  • Drug solubility decreases. For example, if the air conditioning and ventilation function of the engine room of a ship navigating directly under the equator is insufficient, the engine room temperature may be close to 50 degrees Celsius (in some cases over 50 degrees Celsius). In such a ballast water treatment apparatus installed in the engine room, concentration of at least a part of the disinfectant residue proceeds in a short time due to significant evaporation of moisture.
  • ballast water treatment device even when the evaporation of water proceeds slowly, if the ballast water treatment device is left in an inactive state for a long time from the first operation to the second operation, it is little by little. However, the thickening of the disinfectant residue proceeds reliably. On the other hand, if the air conditioning and ventilation function of the engine room of a ship navigating mid-high latitudes is insufficient, the engine room will be less than 30 degrees Celsius, so ballast water treatment installed in such an engine room In the apparatus, the solubility of the chlorinated chemical in water decreases as the temperature of the disinfectant residue decreases.
  • the deposits of the components of the chlorine-based chemicals are treated in the germicide residue or in the disinfectant residue and ballast water treatment It occurs in the wetted area with the components of the equipment (containers, piping systems, etc.), accumulates, and in some cases solidifies, causing malfunctions due to the disinfectant residue and the normal execution of ballast water treatment. It becomes an obstruction factor.
  • the ballast water treatment can be executed normally.
  • the second operation mode is started as soon as possible after the end of the first operation mode, specifically, More preferably, the second operation mode is started within two hours after the end of the first operation mode, and more preferably, the second operation mode is started immediately after the end of the first operation mode.
  • the disinfectant residue easily moves when subjected to pressure. Therefore, according to the ship according to the third embodiment of the present invention, at least a part of the disinfectant residue is energized by the pump, so that it becomes easy to inject it into the seawater circulating toward the outside of the ship. It becomes easy to discharge outboard. In addition, the disinfectant residue easily moves when subjected to water pressure, and becomes fluid when mixed with water or dissolved in water.
  • the ship according to the fourth embodiment of the present invention at least a part of the disinfectant residue is mixed with or mixed with the water that has been activated by the pump. It becomes easy to inject into the circulating seawater, and therefore easily discharge to the outside of the ship (hereinafter, the effects of the ships according to the third and fourth embodiments may be collectively or individually referred to as “water washing removal effect”).
  • the water may be water that becomes a solvent of the aqueous solution of the chlorine-based disinfectant, and water that has already been the solvent of the aqueous solution of the chlorine-based disinfectant (therefore, in that case, the aqueous solution of the chlorine-based disinfectant itself ).
  • chlorinated chemicals generate chlorine-containing gas from an aqueous solution of chlorinated chemicals.
  • chlorinated chemicals For example, in the case of sodium dichloroisocyanurate, chlorine-containing gas is generated from the aqueous solution, and when the solvent of the aqueous solution is seawater, the generation of chlorine-containing gas becomes intense. Even a small amount of chlorine-containing gas often has an irritating odor, which worsens the ship's working environment around the source of the chlorine-containing gas.
  • At least a part of the disinfectant residue is a mixture with fresh water or an aqueous solution using fresh water as a solvent, and from the residue inlet to the outside of the ship. Since it is injected into the seawater that circulates in the direction, it is possible to obtain a water washing removal effect, and at the same time, it is possible to suppress or prevent the generation of chlorine-containing gas when the solvent is seawater, and hence the deterioration of the work environment on board.
  • seawater desalination equipment installed to produce fresh water for use by seafarers' drinking water and other domestic water.
  • the fresh water may be covered with fresh water produced using a seawater desalination device installed on the ship, so a dedicated device for preparing the fresh water is installed in a limited, narrow space on the ship. It can be done without installing.
  • Bactericides having free active chlorine in an aqueous solution of chlorine-based chemicals by reducing the free effective chlorine in the system-based disinfectant) or by making the pH of the aqueous solution higher with an alkaline substance to make it alkaline If the decomposition reaction of the component is promoted, the generation of chlorine-containing gas does not occur or is suppressed.
  • the chlorine-containing gas is generated from the aqueous solution of the chlorinated chemical. Even in cases where there is a concern, the occurrence can be suppressed or prevented (hereinafter, this effect may be referred to as “reaction removal effect”). Moreover, since at least a part of the disinfectant residue is urged by the pump, it is possible to obtain a water removal effect.
  • the ballast water is discharged out of the ship. Can be discharged.
  • a part of the reducing agent used for detoxifying the seawater taken from the ballast tank before discharging it out of the ship is at least a part of the disinfectant residue. Therefore, it is possible to avoid installing a dedicated device for preparing a reducing substance used for the reaction with the disinfectant residue in a limited and narrow space on the ship.
  • the vessel up to the bactericide residue present near the bactericide inlet located at the end of the bactericide piping path is used. Can be discharged outside.
  • the disinfectant residue in the seawater is injected by injecting at least a part of the disinfectant residue into the seawater flowing toward the outside of the ship. Therefore, the free effective chlorine derived from the chlorine-based disinfectant can be more efficiently reduced by the subsequent injection of the reducing agent.
  • the ship concerning the 11th form of the present invention is the fresh water manufactured using the seawater desalination apparatus which installed the solvent of the aqueous solution of trichloroisocyanuric acid, sodium dichloroisocyanurate, or potassium dichloroisocyanurate in the ship. Since it covers, it is possible to avoid installing a dedicated device for preparing fresh water, which is the solvent, in a ship that is not wide.
  • the ballast water treatment apparatus contains a tank containing at least a part of a chlorine-based disinfectant residue remaining in the disinfectant piping path without being used for sterilizing ballast water. And a residue piping path through which at least a part of the contents contained in the tank is circulated, the container or piping path is clogged due to the residue of the chlorine-based disinfectant, the pressure loss is increased, and the like.
  • movement malfunctions such as a distribution failure and the malfunction of the accessory which comprises a piping path
  • the tank at least temporarily stores at least a part of the residue of the chlorine-based disinfectant together with water containing the removal reactive substance. Or a tank that is stopped for a short time, and since the removal reactive substance is a reducing substance or an alkaline substance, even if there is a concern that chlorine-containing gas is generated from the residue of the chlorine-based disinfectant, The occurrence can be suppressed or prevented.
  • the tank in the case where heat is generated by the reaction between the residue of the chlorine-based disinfectant and the reducing substance or the alkaline substance, the tank has the residue of the chlorine-based disinfectant.
  • ballast water treatment apparatus of the present invention particularly the nineteenth aspect of the present invention, at least a part of the chlorine-based disinfectant residue remaining in the disinfectant piping path without being used for sterilization of ballast water,
  • the removal reactive substance is a reducing substance or an alkaline substance. Therefore, it is possible to suppress or prevent the occurrence of malfunctions such as clogging of containers and piping paths, increased pressure loss and other distribution problems, and malfunctions of the accessories that make up the piping paths due to the residual chlorine-based disinfectant. be able to.
  • chlorinated chemicals generate chlorine-containing gas from an aqueous solution of chlorinated chemicals.
  • chlorinated sodium isocyanurate chlorine-containing gas is generated from the aqueous solution, and even if the amount of chlorine-containing gas is small, there is often an irritating odor. Deteriorate the environment.
  • the ballast water treatment apparatus according to the twenty-first aspect of the present invention, at least a part of the chlorine-based disinfectant residue remaining in the disinfectant piping path without being used for sterilization of the ballast water, By supplying fresh water to the disinfectant piping path, it is configured to be removed outside the disinfectant piping path, so that it is possible to obtain a water washing removal effect, and at the same time, generation of chlorine-containing gas, and consequently inboard Deterioration of the work environment can be suppressed or prevented.
  • the removal reactive substance is supplied to the sterilizing agent piping route, so that the sterilizing agent piping route is not used for sterilizing the ballast water. Since at least a part of the residue of the chlorine-based disinfectant remaining in is removed outside the disinfectant piping path, the removal reactive substance is a reducing substance or an alkaline substance, Even in cases where there is a concern that chlorine-containing gas is generated from the residue of the chlorine-based disinfectant, the generation can be suppressed or prevented.
  • the removal reactive material is injected at a position upstream of the sterilizing agent inlet of the sterilizing agent piping path or at the position of the sterilizing agent inlet. Since the reactive substance injection port is provided, the residue of the chlorine-based disinfectant is removed and reacted with the reactive substance, and at least a part of the residue of the chlorine-based disinfectant that has been reduced in weight or increased in fluidity is removed. It can be removed outside the disinfectant piping path.
  • the reducing substance should be brought into contact with the residue of the chlorine-based disinfectant If the free effective chlorine in the residue of the chlorine-based disinfectant is reduced by or by bringing an alkaline substance into contact with the residue of the chlorine-based disinfectant, the pH of the residue of the chlorine-based disinfectant is made higher and alkaline Thus, if the decomposition reaction of the disinfectant component having free effective chlorine in the residue of the chlorine-based disinfectant is promoted, generation of chlorine-containing gas does not occur or is suppressed.
  • the removal reactive material is injected at a position upstream of the sterilizing agent inlet of the sterilizing agent piping path or at the position of the sterilizing agent inlet. Because it has a reactive substance injection port, you can remove the residue of the chlorine-based disinfectant and react with the reactive material, and there is a concern that chlorine-containing gas may be generated from the residue of the chlorine-based disinfectant Even so, the occurrence can be suppressed or prevented.
  • ballast water treatment apparatus According to the ballast water treatment apparatus according to the present invention, the effects exhibited by the embodiments of the present invention can be exhibited, whereby the ballast water treatment can be normally executed in the ship. ⁇ Ballast water treatment method>
  • the ballast water treatment method according to the twenty-fourth aspect of the present invention at least a part of the disinfectant residue is injected into the seawater circulating in the ship and discharged together with the seawater to the outside of the ship.
  • the occurrence of operation troubles such as blockage of containers and piping paths, increase in pressure loss and other distribution troubles, and malfunction of appendages constituting the piping paths due to the disinfectant residue.
  • Typical examples of the force for injecting at least part of the disinfectant residue into the seawater circulating in the ship are the negative pressure generated near the residue inlet due to the pressure by the pump, gravity and the circulation of the seawater ( (Suction force to seawater side) or any combination thereof.
  • the ballast water treatment method according to the twenty-sixth aspect of the present invention corresponds to an example including a step of injecting at least a part of the disinfectant residue into seawater circulating in the ship using the pressure of the pump.
  • the disinfectant residue easily moves when subjected to pressure. Therefore, according to the ballast water treatment method according to the twenty-sixth aspect of the present invention, at least a part of the disinfectant residue is urged by the pump, so that it can be easily injected into the seawater circulating toward the outside of the ship. Therefore, it becomes easy to discharge outboard. In addition, the disinfectant residue easily moves when subjected to water pressure, and becomes fluid when mixed with water or dissolved in water.
  • the ballast water treatment method of the twenty-seventh aspect of the present invention at least a part of the disinfectant residue is mixed with or with the momentum of water, so that this is directed to the outside of the ship. And thus easily discharged to the outside of the ship (hereinafter referred to as the “water washing removal effect” collectively or individually by the ballast water treatment method according to the 26th and 27th embodiments) Is).
  • the water may be water that becomes a solvent of the aqueous solution of the chlorine-based disinfectant, and water that has already been the solvent of the aqueous solution of the chlorine-based disinfectant (therefore, in that case, the aqueous solution of the chlorine-based disinfectant itself ).
  • chlorinated chemicals generate chlorine-containing gas from an aqueous solution of chlorinated chemicals.
  • chlorinated chemicals For example, in the case of sodium dichloroisocyanurate, chlorine-containing gas is generated from the aqueous solution, and when the solvent of the aqueous solution is seawater, the generation of chlorine-containing gas becomes intense. Even a small amount of chlorine-containing gas often has an irritating odor, which worsens the ship's working environment around the source of the chlorine-containing gas.
  • the ballast water treatment method according to the twenty-eighth aspect of the present invention, at least a part of the disinfectant residue is made into a mixture with fresh water or an aqueous solution containing fresh water as a solvent, from the residue injection port, Since it is injected into the seawater that circulates toward the outside of the ship, it is possible to obtain a water washing removal effect, and at the same time suppress or prevent generation of chlorine-containing gas when the solvent is seawater, and consequently deterioration of the work environment on board. Can do.
  • seawater desalination equipment installed to produce fresh water for use by seafarers' drinking water and other domestic water.
  • the fresh water may be covered with fresh water produced using a seawater desalination device installed on the ship, so a dedicated device for preparing the fresh water is installed in a limited, narrow space on the ship. It can be done without installing.
  • Bactericides having free active chlorine in an aqueous solution of chlorine-based chemicals by reducing the free effective chlorine in the system-based disinfectant) or by making the pH of the aqueous solution higher with an alkaline substance to make it alkaline If the decomposition reaction of the component is promoted, the generation of chlorine-containing gas does not occur or is suppressed.
  • the ballast water treatment method since the water containing the reducing substance or the alkalinity that has gained momentum is circulated, the chlorine-containing gas is generated from the aqueous solution of the chlorinated chemical. Even in cases where this is a concern, the occurrence can be suppressed or prevented. Moreover, since at least a part of the disinfectant residue is urged by the pump, it is possible to obtain a water removal effect.
  • ballast water treatment method in the case where heat is generated by the reaction between the disinfectant residue and the reducing substance or alkaline substance, both substances are retained in the tank at least temporarily or for a short time. Therefore, the place where heat generation occurs is mainly the tank. Therefore, according to the ballast water treatment method according to the thirtieth embodiment, it is possible to narrow down the targets for which countermeasures against heat generation are to be taken mainly to the tank.
  • the bactericidal agent inlet also serves as a residue inlet, the bactericide residue present near the bactericide inlet located at the end of the bactericide piping path Even things can be discharged out of the ship.
  • At least a part of the disinfectant residue is injected into the seawater flowing inside the ship toward the outside of the ship, whereby the disinfectant remains in the seawater. Since dissolution or more uniform dispersion of substances can be promoted, free effective chlorine derived from a chlorine-based disinfectant can be more efficiently reduced by subsequent injection of a reducing substance.
  • At least a part of the fungicide residue may be concentrated, and conversely, the chlorine system for water is reduced due to a decrease in the water temperature of the fungicide residue.
  • Drug solubility decreases. For example, if the air conditioning and ventilation function of the engine room of a ship navigating directly under the equator is insufficient, the engine room temperature may be close to 50 degrees Celsius (in some cases over 50 degrees Celsius). In such a ballast water treatment apparatus installed in the engine room, concentration of at least a part of the disinfectant residue proceeds in a short time due to significant evaporation of moisture.
  • ballast water treatment device even when the evaporation of water proceeds slowly, if the ballast water treatment device is left in an inactive state for a long time from the first operation to the second operation, it is little by little. However, the thickening of the disinfectant residue proceeds reliably. On the other hand, if the air conditioning and ventilation function of the engine room of a ship navigating mid-high latitudes is insufficient, the engine room will be less than 30 degrees Celsius, so ballast water treatment installed in such an engine room In the apparatus, the solubility of the chlorinated chemical in water decreases as the temperature of the disinfectant residue decreases.
  • the deposits of the components of the chlorine-based chemicals are treated in the germicide residue or in the disinfectant residue and ballast water treatment It occurs in the wetted area with the components of the equipment (containers, piping systems, etc.), accumulates, and in some cases solidifies, causing malfunctions due to the disinfectant residue and the normal execution of ballast water treatment. It becomes an obstruction factor.
  • the residue removal step is started within 3 hours after the end of the disinfectant treatment step.
  • production of a malfunction can be suppressed or prevented, and a ballast water process can be normally performed by extension.
  • the residue removal process should be started as soon as possible after the disinfectant treatment process, specifically, the disinfectant More preferably, the residue removal step is started within 2 hours after the completion of the treatment step, and more preferably, the residue removal step is started immediately after the end of the disinfectant treatment step.
  • the time difference between the end of the disinfectant treatment process and the start of the residue removal process may exceed 3 hours as long as there is an effect of suppressing or preventing the occurrence of malfunction due to the disinfectant residue.
  • the disinfectant treatment step is performed before the ship leaves the first port, and the port leaves the first port.
  • the residue removal step may be performed before arriving or after leaving the port and before arriving at the second port.
  • the disinfectant treatment step is executed before the ship leaves the first port, and after the ship leaves the first port, The residue removal step may be performed when or after the arrival at the second port.
  • the ballast Water can be discharged out of the ship.
  • a residue removing step for removing is provided.
  • the residue removing step includes a first step of storing at least a part of the chlorine-based disinfectant residue in the tank, and discharging at least a part of the chlorine-based disinfectant residue stored in the tank from the tank.
  • the second step of causing the operation to fail such as clogging of containers and piping paths, increased pressure loss and other flow problems, and malfunctions in the accessories that make up the piping paths due to the residue of the chlorine-based disinfectant Can be suppressed or prevented.
  • water is supplied to the process or piping path for reacting at least a part of the residue of the chlorine-based disinfectant with the removal reactive substance in the tank. And / or supplying a removal reactive substance to react the removal reactive substance with at least a portion of the chlorine-based disinfectant residue in the piping path in the piping path, and the removal reactive substance is reducible Since it is a substance or an alkaline substance, even if there is a concern that chlorine-containing gas is generated from the residue of the chlorine-based disinfectant, the generation can be suppressed or prevented.
  • ballast water treatment method in the case where heat is generated due to the reaction between the residue of the chlorine-based disinfectant and the reducing substance or the alkaline substance, both substances are placed in the tank at least temporarily or shortly. Since it is stopped for a time, the place where heat generation occurs is mainly the tank. Therefore, according to the ballast water treatment method according to the fortieth embodiment, it is possible to narrow down the targets for which measures for heat generation are to be taken mainly to the tank.
  • the ballast water treatment method of the present invention particularly the forty-second embodiment of the present invention, at least part of the residue of the chlorine-based disinfectant remaining in the piping path without being used for sterilizing the ballast water is removed from the piping path.
  • a residue removing step for removing is provided.
  • the residue removing step includes a step of supplying water and / or a removal reactive substance to the disinfectant piping path, and the removal reactive substance is a reducing substance or an alkaline substance. It is possible to suppress or prevent the occurrence of malfunctions such as blockage of containers and piping paths, increased pressure loss and other flow problems, and malfunctions of appendages constituting the piping paths due to the residue.
  • chlorinated chemicals generate chlorine-containing gas from an aqueous solution of chlorinated chemicals.
  • chlorinated sodium isocyanurate chlorine-containing gas is generated from the aqueous solution, and even if the amount of chlorine-containing gas is small, there is often an irritating odor. Deteriorate the environment.
  • At least a part of the chlorine-based disinfectant residue remaining in the disinfectant piping path without being used for disinfecting the ballast water is A residue removing step for removing from the piping route, and the residue removing step supplies fresh water to the disinfectant piping route, so that a water washing removal effect can be obtained, and at the same time, generation of chlorine-containing gas, and consequently inboard Deterioration of the work environment can be suppressed or prevented.
  • a residue removing step for removing from the piping path wherein the residue removing step includes a step of supplying a removing reactive substance to the disinfectant piping path, and the removing reactive substance is a reducing substance; Or since it is an alkaline substance, even if it is a case where it is concerned about generation
  • the removal reactive substance is injected at a position upstream of the sterilant inlet of the sterilant pipe path or at the position of the sterilant inlet. Since the reactive substance injection port is provided, the residue of the chlorine-based disinfectant is removed and reacted with the reactive substance, and at least a part of the residue of the chlorine-based disinfectant that has been reduced in weight or increased in fluidity is removed. It can be removed outside the disinfectant piping path.
  • the reducing substance should be brought into contact with the residue of the chlorine-based disinfectant If the free effective chlorine in the residue of the chlorine-based disinfectant is reduced by or by bringing an alkaline substance into contact with the residue of the chlorine-based disinfectant, the pH of the residue of the chlorine-based disinfectant is made higher and alkaline Thus, if the decomposition reaction of the disinfectant component having free effective chlorine in the residue of the chlorine-based disinfectant is promoted, generation of chlorine-containing gas does not occur or is suppressed.
  • the removal reactive substance is injected at a position upstream of the sterilant inlet of the sterilant pipe path or at the position of the sterilant inlet. Because it has a reactive substance injection port, you can remove the residue of the chlorine-based disinfectant and react with the reactive material, and there is a concern that chlorine-containing gas may be generated from the residue of the chlorine-based disinfectant Even so, the occurrence can be suppressed or prevented.
  • the effects of the embodiments of the present invention can be exhibited, whereby the ballast water treatment can be normally executed in the ship.
  • FIG. 1 is an explanatory diagram of a basic configuration of a first embodiment of a ship according to the present invention and a ship to which the ballast water treatment method according to the present invention is applied (hereinafter referred to as “ship VSL”).
  • shipment VSL a ship to which the ballast water treatment method according to the present invention is applied
  • the ship VSL includes a water intake or sea chest IT, a ballast pump Pm, a ballast tank T, and a drain outlet DO, and includes the sea chest IT, the ballast pump Pm, and the ballast tank T.
  • Seawater Wo taken from outside the ship through the intake IT is circulated toward the ballast tank T, and chlorine-based disinfectant As is injected along the way to make seawater Ws into which chlorine-based disinfectant As has been injected.
  • the ballast water intake piping path Lf discharged to the ballast tank T is connected to the ballast tank T, the ballast pump Pm, and the drain DO, and the ballast water Wt taken from the ballast tank T is circulated toward the drain DO.
  • a sterilizing agent supply device S including a sterilizing agent inlet Is for injecting a chlorine-based sterilizing agent As into the water piping path Lf is provided.
  • the ship VSL further includes a reducing agent supply device N having a reducing agent inlet In that injects a reducing agent An into the ballast water drainage piping path Lr, and a ballast tank in the middle of the ballast water drainage piping path Lr.
  • the reducing agent An is injected into the ballast water Wt taken from T to make the ballast water Wn into which the reducing agent An is injected, and the ballast water Wn into which the reducing agent An is injected is discharged outside the ship through the drain DO. It is possible.
  • the ship VSL further distributes the seawater Wo taken from outside the ship through the intake IT to the drain DO without passing through the ballast tank T, and in the middle of the seawater in the piping path Ls of the disinfectant supply device S At least a part of the disinfectant residue Re is injected into Wo, and as the seawater Wd into which the disinfectant residue Re is injected, a residue discharge piping path Ld is provided that discharges out of the ship through the drain port DO.
  • the residue discharge piping path Ld may include a piping path ⁇ Ld1> that bypasses the filter device F or a non-bypassing piping path ⁇ Ld2>.
  • the disinfectant residue Re is unused chlorine-based disinfectant As remaining in the tank Ts and the disinfectant piping path Ls provided in the disinfectant supply device S, but at least a part thereof is concentrated. It contains at least one of a substance, a chlorine-based chemical agent ms that is a raw material of the chlorine-based disinfectant As, and a mixture Cs that is formed by mixing a chlorine-based chemical agent ms and water ws that is a solvent thereof.
  • the mixture Cs includes an aqueous solution formed by dissolving the chlorinated drug ms in water ws.
  • ⁇ A check valve Vcm is installed on the discharge side of the ballast pump Pm to prevent backflow that may occur when the pump stops or fails.
  • the ballast pump Pm has at least three operation modes (first to third operation modes described later).
  • any of the ballast water intake piping path Lf, the ballast water drainage piping path Lr, and the residue discharging piping path Ld (residue discharging piping path ⁇ Ld1> and residue discharging piping path ⁇ Ld2>)
  • Setting of opening / closing of multiple open / close valves to select one of them, changing from a set piping route to another piping route, and switching the operation mode of the ballast pump Pm are performed according to the setting, changing and switching operations. Except for the case where a part or the whole is manually performed, the process is automatically performed according to a control program preinstalled in the control device PLC.
  • the control device PLC receives and records the output Sm of the measuring device provided in any or all of the ballast water intake piping route Lf, the ballast water draining piping route Lr and the residue discharging piping route Ld, Even if it is a monitoring control device having a function of monitoring and generating a control signal Sa for controlling any other device / apparatus etc. based on the output Sm and transmitting it to the device / apparatus etc. Good.
  • the output Sm is, for example, the output F (i) of the flow meter and the output Sn (j) of the TRO measurement device, and may be the output of a water temperature meter or other measurement device not shown.
  • the control signal Sa is, for example, a motor control signal V (k) for changing the opening / closing or opening degree of each valve, a motor control signal P (l) for driving a pump device including the ballast pump Pm, It may be a signal for controlling the operation of other equipment / devices.
  • control device PLC When the operation of the device / device is directly controlled based on the output of the measuring device, the control of the operation by the control device PLC is not performed.
  • FIG. 2 is an explanatory view of a first operation mode of the ballast pump in the first embodiment of the ship shown in FIG. 1
  • FIG. 3 is a view of the ship shown in FIG. It is explanatory drawing of the 3rd operation mode of the ballast pump in 1st Embodiment.
  • 4 to 7 are explanatory views of A type to D type of the second operation mode of the ballast pump in the first embodiment of the ship shown in FIG. 1, respectively. 2 to 7 are drawn in the open / close state of the valve corresponding to each operation mode.
  • the open / close valve setting corresponding to each of the ballast water intake pipe path Lf, the ballast water drain pipe path Lr, and the residue discharge pipe path Ld is as shown in Table 1.
  • the ballast water intake piping route Lf is a piping route drawn in bold in FIG. 2, and the seawater Wo taken from the outside of the ship and the chlorine-based sterilization downstream of the bactericide inlet Is and upstream of the ballast tank T. It has a mixer Mxs to promote mixing with the agent As, IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ Q4 ⁇ V2 ⁇ F ⁇ Q5 ⁇ Is ⁇ Mxs ⁇ V3 ⁇ Qt ⁇ V5 ⁇ Sn1 ⁇ Ft ⁇ In the path of T, a check valve Vcm and a plurality of open valves (V1, V2, VV3, V5) are provided.
  • the piping path Lr for ballast water drainage is a piping path drawn in bold in FIG. 3, T ⁇ Ft ⁇ Sn1 ⁇ V5 ⁇ Qt ⁇ V4 ⁇ In ⁇ Mxn ⁇ Q1 ⁇ V6 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ A check valve Vcm and a plurality of open valves (V4, V5, V6, V7) are provided in the route of Q3 ⁇ Q4 ⁇ V7 ⁇ Q2 ⁇ Sn2 ⁇ DO.
  • residue discharge piping path Ld There are two types of residue discharge piping path Ld, one that passes through the filter device F and one that does not.
  • the residue discharge piping path ⁇ Ld1> that does not pass through the filter device F is a piping path drawn in bold in FIGS. 4 and 6, and IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ V9 ⁇ Q5 ⁇ Id ⁇ Mxs ⁇ V3 ⁇ Qt ⁇ V4 ⁇ In ⁇ Mxn ⁇ Q1 ⁇ V8 ⁇ Q2 ⁇ Sn2 ⁇ DO
  • Check valve Vcm and multiple open valves (V1, V3, V4, V8, V9 ).
  • the residue discharge piping path ⁇ Ld2> passing through the filter device F is a piping path drawn in bold in FIGS. 5 and 7, and IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ Q4 ⁇ V2 ⁇ F ⁇ Q5 ⁇ Id ⁇ Mxs ⁇ V3 ⁇ Qt ⁇ V4 ⁇ In ⁇ Mxn ⁇ Q1 ⁇ V8 ⁇ Q2 ⁇ Sn2 ⁇ DO check valve Vcm and multiple open valves (V1, V2, V3) , V4, V8).
  • the position Q1 is downstream of the mixer Mxn and upstream of the valve V8, and the position Q2 is downstream of the valve V8 and upstream of the drain port DO.
  • the position Q4 is between the valve V7 and the valve V2, and the position Q3 is downstream of the ballast pump Pm and upstream of the position Q4.
  • Position Q5 is downstream of filter device F and upstream of residue inlet Id.
  • the valve V8 is in the piping path from Q1 to Q2 that does not pass through the ballast pump Pm
  • the valve V9 is in the piping path from Q3 to Q5 that does not pass through the filter device F.
  • the position Q6 is located downstream of the valve V1, upstream of the ballast pump Pm, and located between the valve V1 and the valve V6.
  • the position Qt is downstream of the valve V3 and upstream of the valve V5 in the case of the ballast water intake piping route Lf, and is located downstream of the valve V5 and upstream of the valve V4 in the case of the ballast water drainage piping route Lr. .
  • Both the residue discharge piping path ⁇ Ld1> and the residue discharge piping path ⁇ Ld2> have a residue injection port Id in the piping path.
  • the residue inlet Id is configured to supply at least a part of the sterilizing agent residue Re remaining in the piping path Ls provided in the sterilizing agent supply apparatus S to the seawater Wo taken from the outside of the ship through the residue discharging piping path Ld.
  • the injection port for injection may be the same injection port as the bactericidal agent injection port Is, and may be arranged upstream or downstream of the bactericide injection port Is.
  • Typical examples of the inlet are a discharge nozzle and a discharge opening.
  • the ballast water intake piping path Lf has multiple sensors (TRO measuring instrument Sn1, flow meter Ft), and the ballast water drainage piping route Lr has multiple sensors (TRO measuring device Sn1, Sn2, flow meter Ft).
  • the residue discharge piping path Ld includes the TRO measuring device Sn2, but these are merely examples. Each piping path may be provided with other devices / devices not shown.
  • Each piping path may further include a check valve other than the check valve Vcm and a manual valve for maintenance and inspection, which are not shown.
  • Disinfectant supply device S 3.1) Basic configuration As shown in FIG. 1, the disinfectant supply device S is injected with water ws as a solvent for the chlorine-based chemical agent ms and the chlorine-based chemical agent ms, and contains the tank Ts for storing both, and the sterilization. And a bactericide pipe path Ls that connects the tank Ts and the bactericide inlet Is.
  • the disinfectant injection port Is is an injection port such as a discharge nozzle and a discharge opening for injecting the chlorine-based disinfectant As into the seawater Wo taken from outside the ship through the ballast water intake piping path Lf.
  • the disinfectant piping path Ls includes a pump Ps downstream of the tank Ts, upstream of the disinfectant inlet Is, and a valve Vs downstream of the pump Ps and upstream of the disinfectant inlet Is, Ts ⁇ Ps ⁇ Fs ⁇ Vs ⁇ Is piping route.
  • the sterilizing agent supply device S further includes a tank Ts, a residue injection port Id, and a residue piping path Ls * that connects the tank Ts and the residue injection port Id.
  • the residue piping path Ls * includes a pump Ps downstream of the tank Ts and upstream of the residue inlet Id, a valve Vd downstream of the position Qs between the pump Ps and the valve Vs, and upstream of the residue inlet Id.
  • the residue piping path Ls * is the same as the disinfectant piping path Ls from the tank Ts to the position Qs, and is branched from the position Qs and connected to the residue inlet Id.
  • the disinfectant supply device S is configured so that the distance between the position Qs and the disinfectant injection port Is and the distance between the position Qs and the valve Vs are as small as possible, and thereby the position Qs and the disinfectant injection port Is. It is designed and manufactured so that the amount of disinfectant residue Re that can remain in between is reduced.
  • the tank Ts may include a stirrer Sts (not shown) for promoting the mixing of the chlorinated drug ms with the water ws and the dissolution in the water ws.
  • a typical example of the stirrer is an impeller stirrer.
  • Switching between the sterilizer piping path Ls and the residue piping path Ls * is performed by switching between opening and closing of the valves Vs and Vd.
  • the valve Vs When the disinfectant piping path Ls is selected, the valve Vs is opened and the valve Vd is closed.
  • the residue piping path Ls * When the residue piping path Ls * is selected, the valve Vs is closed and the valve Vd is opened.
  • Such switching of the opening and closing of the valves Vs and Vd is a control that is installed in advance in the control device PLC or other control device not shown, except when part or all of the switching operation is performed manually. Automatically according to the program.
  • the disinfectant supply device S includes a flow meter Fs in the disinfectant piping path Ls, but the TRO measuring instrument and other devices / devices not shown in the disinfectant piping path Ls and the residue piping path Ls * May be provided. Further, the disinfectant supply device S includes a check valve Vcs (not shown) for preventing a back flow that may occur when the pump Ps stops or malfunctions, on the discharge side of the pump Ps, upstream of the position Qs. Alternatively, a check valve other than the check valve Vcs or a manual valve for maintenance and inspection, which is not illustrated in the disinfectant piping path Ls and the residue piping path Ls *, may be provided.
  • the disinfectant piping path Ls is connected to the disinfectant inlet Is downstream of the valve Vs.
  • a sterilizing agent injection pump Pis (not shown) may be provided upstream, and when the sterilizing agent injection pump Pis (not shown) is provided, downstream of the sterilizing agent injection pump Pis (discharge port side).
  • a back pressure valve may be provided upstream of the bactericidal agent inlet Is.
  • the residue piping path Ls * is downstream of the valve Vd, the residue inlet Id May be provided with a residue injection pump Pid (not shown) upstream of the residue injection pump Pid downstream (discharge port side), upstream of the residue injection port Id Good.
  • the sterilizing agent injection pump Pis when the valve Vs is open and the valve Vd is closed, the sterilizing agent injection pump Pis is in the operating state, the residue injection pump Pid is in the inoperative state, and the valve Vs is closed and the valve Vd is When it is open, the sterilizing agent injection pump Pis is switched off and the residue injection pump Pid is switched on.
  • Such switching of the operating state of the pump is performed in accordance with a control program installed in advance in the control device PLC or other control device not shown, except when part or all of the switching operation is manually performed. It is done automatically.
  • the disinfectant piping path Ls causes a part or all of the contents Cs to be transferred from a position Qs0 (not shown) downstream of the pump Ps to a position Qs1 (not shown) upstream of the pump Ps. May be provided with a return piping path Lsr (not shown) for returning a part or all of the.
  • the position Qs0 is a position downstream of the pump Ps and upstream of the position Qs or the position Qs.
  • the position Qs1 is a position downstream of the tank Ts or the tank Ts and upstream of the pump Ps.
  • An example of the return piping path Lsr is that at the position Qs0, the return piping path Lsr branches off from the bactericide pipe path Ls in a branch shape, and at least a part of the contents Cs flowing through the bactericide pipe path Ls is always the return pipe path Lsr. It is the piping path comprised so that it may flow through.
  • Another example of the return piping path Lsr includes a solid-liquid separation device typified by a liquid cyclone at the position Qs0, and is configured so that undissolved chlorinated chemical ms flows along with the water ws to the return piping path Lsr. It is a certain piping route.
  • all of the contents Cs are returned to the position Qs1 by the return piping path Lsr by closing the valve Vs and the valve Vd, and the position Qs1 is adjusted by adjusting the opening degree of the valve Vs and the valve Vd.
  • the amount of contents Cs to return to is determined.
  • Chlorine disinfectant Typical examples of the chlorine agent ms, which is the raw material of the chlorine disinfectant As, are solid chlorine agents, and typical examples of solid chlorine agents are trichloroisocyanuric acid and dichloroisocyanuric. Sodium chloride and its hydrate, potassium dichloroisocyanurate, and the like, and a typical example of the chlorinated fungicide As is an aqueous solution of sodium dichloroisocyanurate.
  • the solubility of solid chlorinated drugs ms in water is low, it takes time to dissolve the solid chlorinated drugs ms in water ws. Problems such as not being able to fully fulfill the role as the agent As arise.
  • the temperature of the water ws or the temperature of the mixture Cs formed by mixing the solid chlorinated chemical ms with the water ws is increased using an appropriate heating device, or the mixture is mixed using an appropriate stirring device. By stirring Cs more strongly, a necessary amount of an aqueous solution An having a free effective chlorine concentration necessary as a disinfectant is prepared.
  • the disinfectant supply path S equipped with the return line Lsr in the disinfectant line Lsr is adopted, and the number of times the mixture Cs is vigorously stirred by the pump Ps is increased to dissolve the solid chlorine-based chemical ms in the water ws. May be promoted.
  • the water ws may be seawater or non-seawater. However, when the chlorine-based chemical ms or the disinfectant residue Re becomes a source of generation of chlorine-containing gas by contact with seawater, the water ws is assumed to be fresh water.
  • the fresh water When fresh water is used as water ws, the fresh water may be fresh water stored in advance in a dedicated storage tank onboard from outside the ship, and is produced using a seawater desalination device installed on the ship. However, the latter is more preferable because a dedicated storage tank like the former need not be installed in the ship. Therefore, when the chlorinated drug ms is trichloroisocyanuric acid, sodium dichloroisocyanurate and its hydrate, potassium dichloroisocyanurate, the water ws is fresh water.
  • the water temperature of the water ws and the temperature of the mixture of the disinfectant residue Re and the water ws are within the heat resistant temperature range of the residue piping path Ls *, and It may be increased as long as it can cope with generation of chlorine-containing gas.
  • the valves Vs and Vd are temporarily used. To close the water ws from the position Qs0 to the position Qs1 or circulate between the position Qs0 and the position Qs1, thereby improving the fluidity of the disinfectant residue Re remaining in the return piping path Lsr. It is improved by the momentum of water ws and / or by mixing or dissolving with water ws. Thereafter, the valve Vs is closed and the valve Vd is opened, and at least a part of the disinfectant residue Re may be injected into the seawater Wo taken from the outside of the ship through the residue inlet Id.
  • FIG. 8 is an explanatory diagram of a modified example of the removal of the bactericide residue.
  • a reducing substance or an alkaline substance An * (hereinafter sometimes referred to as “removable reactive substance An *”) from the position Qn.
  • the position Qn is at least one of a position upstream of the tank Ts in the piping path for supplying the water ws, a position downstream of the tank Ts and the tank Ts, and a position in the middle of the residue piping path Ls *.
  • FIG. 8 is an explanatory diagram of a modified example of the removal of the bactericide residue.
  • the position Qn is (c1) a position upstream of the tank Ts in the piping path for supplying the water ws, but not limited to this, (c2) the position of the tank Ts and (c3 ) It may be a position (not shown) downstream of the tank Ts and in the middle of the residue piping path Ls *, or may be a plurality of these three positions, that is, (c1) to (c3). .
  • the amount of the disinfectant residue Re with the increase in reaction products is The fluidity of the disinfectant residue Re that decreases and possibly remains is increased.
  • Seawater Wo in which at least a part of the sterilizing agent residue Re whose amount has been reduced or whose flowability has been increased is taken from the residue injection port Id together with the reaction product from outside the ship through the residue discharge piping route Ld Inject and remove.
  • the germicide residue Re becomes a source of chlorine-containing gas, it contains the germicide residue Re by reduction of free effective chlorine in the germicide residue Re by a reducing substance or by an alkaline substance.
  • the generation of chlorine-containing gas is suppressed or prevented by increasing the pH of the system and promoting the decomposition reaction of the disinfectant component having free effective chlorine in the disinfectant residual substance Re as an alkaline atmosphere.
  • the chlorinated drug ms is sodium dichloroisocyanurate
  • the form of isocyanuric acid is changed to cyanuric acid by increasing the pH of the system containing the disinfectant residue Re with an alkaline substance to form an alkaline atmosphere.
  • the reaction of hypochlorous acid, a disinfectant component having free effective chlorine, from sodium acid and water proceeds, and the generated hypochlorous acid generates hydrochloric acid and oxygen by a decomposition reaction to lose effective chlorine and contain chlorine Generation of gas is suppressed or prevented.
  • an alkali metal or alkaline earth metal hydroxide (salt) or an alkali metal or alkaline earth metal carbonate (salt) is used as the alkaline substance.
  • sodium hydroxide or sodium carbonate is used.
  • the removal reaction is performed at a position upstream of the disinfectant inlet Is of the disinfectant piping path Ls or at the position of the disinfectant inlet Is.
  • a removal reactive substance injection port for injecting the reactive substance An * may be provided. Reduces the amount of chlorine-based disinfectant residue by reacting at least a portion of the chlorine-based disinfectant residue that is not used for ballast water disinfection and remains in the disinfectant piping path with the removed reactive material Thus, the fluidity of the chlorine-based disinfectant residue can be increased, and at least a part of the chlorine-based disinfectant residue can be removed outside the disinfectant piping path.
  • the removal-reactive substance is supplied from the removal-reactive substance injection port.
  • the free effective chlorine in the residue of the chlorine-based disinfectant is reduced by bringing the reducing agent into contact with the residue of the chlorine-based disinfectant, or the alkaline material is brought into contact with the residue of the chlorine-based disinfectant.
  • the decomposition reaction of the disinfectant component having free effective chlorine in the residue of the chlorine-based disinfectant is promoted to generate chlorine-containing gas. Can be suppressed.
  • the disinfectant residue Re may be removed by a combination of the above-described reaction removal effect using the removal reactive substance An * and the above-described use of the water washing removal effect (B).
  • the removal reactive substance An * is an aqueous solution
  • the aqueous solution of the removal reactive substance An * is urged by the pump Ps and circulated through the residue piping path Ls *, thereby sterilizing by using both effects.
  • the agent residue Re can be removed.
  • the water Ws is removed from the tank Ts by the pump Ps while continuing to inject the water ws not containing the removal reactive substance An * into the tank Ts. If it is made to discharge
  • removal reactive substance An * is a reducing substance, it may be the same substance as the reducing agent An described later or a different substance.
  • the reducing agent An taken out from the tank Tn included in the reducing agent supply device N may be used as the removal reactive substance An * as it is or after being diluted as necessary (see FIGS. 20 and 21).
  • the concentration of the removal reactive substance An * is lowered so as to suppress the amount of heat generated by the reaction between the disinfectant residue Re and the removal reactive substance An *.
  • the amount of water ws injected into the tank Ts is increased as compared with the case where the chlorine-based disinfectant As is produced, and the concentration of the removal reactive substance An * in the tank Ts is kept low.
  • FIG. 9 is an explanatory view of another modification of the bactericide supply apparatus S shown in FIG. With reference to FIG. 9, the countermeasure of the above (e3) is illustrated.
  • the disinfectant piping path Ls is a piping path of Ts ⁇ Qsa ⁇ Vs2 ⁇ Qsb ⁇ Ps ⁇ Fs ⁇ Qs ⁇ Vs ⁇ Is
  • the residual piping path Ls * is Ts ⁇ Qsa ⁇ Vs2 ⁇ Qsb.
  • ⁇ Ps ⁇ Fs ⁇ Qs ⁇ Vd ⁇ Qsc ⁇ Vs4 ⁇ Id piping route which is basically the same as the disinfectant piping route Ls and the residue piping route Ls * in FIG.
  • This modification further includes a residue piping path Ldr that passes through the tank Tsm.
  • the residue piping path Ldr is a piping path of Ts ⁇ Qsa ⁇ Vs1 ⁇ Tsm ⁇ Vs3 ⁇ Qsb ⁇ Ps ⁇ Fs ⁇ Qs ⁇ Vd ⁇ Qsc ⁇ Vs4 ⁇ Id.
  • the residue piping path Ldr may be a residue piping path Ldr * including a return path (Qsc ⁇ Vs5 ⁇ Tsm) that branches from the position Qsc and returns to the tank Tsm.
  • the position Qsa is a branch point of the piping path from the tank Ts to the pump Ps without going through the tank Tsm and the piping path from the tank Ts to the tank Tsm
  • the position Qsb is the downstream of the position Qsa, the pump Ps. Is a connection point between a piping path from the position Qsa to the pump Ps without passing through the tank Tsm and a piping path from the tank Tsm to the pump Ps.
  • the valve Vs1 is an open / close valve downstream of the position Qsa and upstream of the tank Tsm
  • the valve Vs2 is an open / close valve downstream of the position Qsa and upstream of the position Qsb
  • the valve Vs3 is downstream of the tank Tsm. Open / close valve upstream of Qsb.
  • Position Qsc is a position downstream of the valve Vd and upstream of the residue inlet Id.
  • the valve Vs4 is an open / close valve downstream of the position Qsc and upstream of the residue inlet Id
  • the valve Vs5 is downstream of the position Qsc and is a return path (Qsc) of the residue piping path Ldr * branched from the position Qsc.
  • ⁇ Vs5 ⁇ Tsm) is an open / close valve.
  • the disinfectant piping path Ls is set by opening the valves Vs2 and Vs and closing the valves Vs1, Vs3 and Vd.
  • the residue piping path Ls * is opened by opening the valves Vs2, Vd and Vs4, and the valve Vs1. , Vs3, Vs and Vs5 are closed.
  • Residue piping path Ldr is set by opening valves Vs1, Vs3, Vd and Vs4 and closing valves Vs2, Vs and Vs5.
  • Residue piping path Ldr * is set by valves Vs1, Vs3, Vd and Vs5. Set by opening and closing valves Vs2, Vs, and Vs4.
  • Switching between the disinfectant piping path Ls, the residue piping path Ls *, the residue piping path Ldr, and the residue piping path Ldr * is performed by the control device PLC or the PLC, except when part or all of the switching operation is performed manually. This is automatically performed according to a control program installed in advance in another control device (not shown).
  • At least a part of the disinfectant residue Re is stored in the tank Tsm along the residue piping path Ldr * together with the water ws and circulated along the return path (Qsc ⁇ Vs5 ⁇ Tsm), and the circulation is repeated a predetermined number of times.
  • automatic switching is performed so that the residue is switched to the residue piping route Ldr and injected from the residue injection port Id into the seawater Wo taken from outside the ship through the residue discharge piping route Ld.
  • at least a part of the disinfectant residue Re is first circulated along the residue piping path Ls * together with the water ws, and injected into the seawater Wo taken from outside the ship through the residue injection port Id.
  • the movement of the contents of the tank Ts from the tank Ts to the tank Tsm is performed by a pump (not shown) downstream of the position Qsa and upstream of the tank Tsm. Or it is performed by the action of gravity.
  • the valve Vs3 When the valve Vs3 is open, the movement may be performed by a negative pressure generated by the force of the pump Ps.
  • the tank Tsm has a structure (for example, a deep bottom structure) in which the disinfectant residue Re stays at least temporarily or for a short time together with the water ws containing the removal reactive substance An *. Therefore, heat generated by the reaction between the disinfectant residue Re and the removal reactive substance An * is likely to proceed in the tank Tsm. Moreover, at least a part of the contents of the tank Ts is discharged by the pump Ps, and further, at least a part of the contents of the tank Tsm is discharged, and vigorously distributed to the residue piping path Ldr, more than the tank Tsm.
  • the heat generation occurs.
  • the place is mainly the tank Tsm. Therefore, the countermeasure against the heat generation may be mainly taken for the tank Tsm.
  • the water Ps that does not contain the removal reactive substance An * is continuously injected into the tank Ts while the water ws is supplied to the tank Ts by the pump Ps. If it is discharged from the wastewater and circulated through the residue piping path Ls *, the heat generation can be suppressed by the cooling action of the water ws as described above (e2), and the water washing removal effect can be reduced. Since the disinfectant residue Re can be removed by use, and the heat generation can be suppressed by this, it is more preferable.
  • the tank Tsm may be provided with a stirring device (not shown) for stirring the contents.
  • valve Vs is closed and the valve Vd is opened, and at least a part of the disinfectant residue Re may be injected into the seawater Wo taken from the outside of the ship through the residue inlet Id.
  • F2 First, the valve Vs and the valve Vd are temporarily closed, and the water ws containing the removal reactive substance An * is returned from the position Qs0 to the position Qs1, or between the position Qs0 and the position Qs1.
  • the disinfectant supply device S shown in FIG. 10 opens the valve Vs, and the pump Ps causes the disinfectant inlet / residue inlet Is / Id to supply the chlorine-based disinfectant As. Since it can be injected into the seawater Wo taken from the outside of the ship that flows through the ballast water intake piping path Lf, it is inferior to the disinfectant supply device S shown in FIG. Rather, the internal structure can be simplified, and the disinfectant residue remaining between the position Qs and the disinfectant inlet Is when the disinfectant inlet Is and the residue inlet Id are separated.
  • a removal reactive substance inlet for injecting the removal reactive substance may be provided at a position upstream of the sterilizing agent inlet of the piping path or at a position of the sterilizing agent inlet.
  • the position Qn is at least one of a position upstream of the tank Ts in the piping path for supplying the water ws, a position downstream of the tank Ts and the tank Ts, and a position in the middle of the disinfectant piping path Ls.
  • the position Qn for injecting the removal reactive substance An * indicates (c1) the upstream position of the tank Ts of the piping path for supplying the water ws, but not limited to this, (c2) the tank At the position of Ts, (c3) downstream of the tank Ts, in the middle of the disinfectant pipe path Ls (position upstream of the disinfectant inlet of the disinfectant pipe path) or (c4) at the position of the disinfectant inlet Is There may be two or more of these four positions, that is, (c1) to (c4).
  • the fluidity of the chlorine-based disinfectant residue can be increased, and at least a part of the chlorine-based disinfectant residue can be removed outside the disinfectant piping path. Even if chlorine-containing gas is generated from the residue of the chlorine-based disinfectant and there is a concern about the deterioration of the ship's work environment due to the chlorine-containing gas, the removal-reactive substance is supplied from the removal-reactive substance injection port.
  • the free effective chlorine in the residue of the chlorine-based disinfectant is reduced by bringing the reducing agent into contact with the residue of the chlorine-based disinfectant, or the alkaline material is brought into contact with the residue of the chlorine-based disinfectant.
  • the decomposition reaction of the disinfectant component having free effective chlorine in the residue of the chlorine-based disinfectant is promoted to generate chlorine-containing gas. Can be suppressed.
  • the sterilizing agent inlet / residue inlet Is / Id can also be employed in the sterilizing agent supply device S shown in FIG. 9 as shown in FIG.
  • the sterilizing agent supply device S shown in FIG. 11 is the sterilizing agent shown in FIG. 9 except for the adoption of the sterilizing agent inlet / residue inlet Is / Id and the deformation required for the adoption. It is the same as the agent supply device.
  • the adoption of the sterilant inlet / residue inlet Is / Id makes the valve Vd and the valve Vs4 useless, and the position Qs and the position Qsc can be identified, and the sterilant piping path Ls Is also used as the residual pipe route Ls * (Ts ⁇ Qsa ⁇ Vs2 ⁇ Qsb ⁇ Ps ⁇ Fs ⁇ Qs ⁇ Vs ⁇ Is / Id), and the residual pipe route Ldr is Ts ⁇ Qsa ⁇ Vs1 ⁇ Tsm ⁇ Vs3 ⁇ Qsb ⁇ Ps ⁇ Fs ⁇ Qs ⁇ Vs ⁇ Is / id piping route, residue piping route Ldr * branches from position Qs and returns to tank Tsm (Qs ⁇ Vs5 ⁇ Tsm) residue piping route Ldr Except for corresponding to *, it is the same as the disinfectant supply device shown in FIG.
  • Ballast water treatment apparatus including tank Tsm, ballast water treatment method
  • Ballast water treatment apparatus including disinfectant supply apparatus S having tank Tsm shown in FIG. 9 and FIG.
  • the structure of the ballast water treatment method including the step of storing the disinfectant residue in the tank is expressed as follows.
  • a ballast water treatment apparatus that is mounted on a ship and sterilizes ballast water contained in a ballast tank included in the ship, and sterilized for injecting a chlorine-based disinfectant into the ballast water contained in the ballast tank
  • a ballast water treatment apparatus comprising: a tank that stores at least a part of the residue of the product; and a residue piping path that circulates at least a part of the contents stored in the tank.
  • the ballast water treatment apparatus according to i), wherein at least a part of the disinfectant piping path constitutes at least a part of the residue piping path.
  • the residue piping path is a piping path that circulates at least a part of the contents discharged from the tank toward the germicide inlet, and is described in i) or ii) Ballast water treatment equipment.
  • the disinfectant pipe path includes a return pipe path that returns at least a part of the contents flowing through the disinfectant pipe path from the downstream side to the upstream side of the disinfectant pipe path.
  • the residue piping path is provided with a return path for returning at least a part of the residue of the chlorinated disinfectant discharged from the tank to the tank.
  • the ballast water treatment apparatus according to any one of the above.
  • the disinfectant piping path includes a return piping path for returning at least a part of the contents flowing through the disinfectant piping path from the downstream side to the upstream side of the disinfectant piping path, and the residue
  • the piping path includes a return path for returning at least a part of the residue of the chlorine-based disinfectant discharged from the tank to the tank, and at least a part of the return piping path is the return path.
  • the ballast water treatment device according to any one of i) to iii), wherein the ballast water treatment device is a part of the ballast water treatment device.
  • the tank is a tank that holds at least a part of the residue of the chlorine-based disinfectant together with water containing the removal reactive substance at least temporarily or for a short time, and the removal reactive substance contains
  • the ballast water treatment apparatus according to any one of i) to vi), wherein the ballast water treatment apparatus is a reducing substance or an alkaline substance.
  • a ballast water treatment method for sterilizing ballast water stored in a ballast tank included in a ship in the ship, and sterilizing by preparing a chlorine-based disinfectant for sterilizing ballast water stored in the ballast tank A sterilizing step for injecting the chlorine-based disinfectant into the ballast water via a piping path and sterilizing the ballast water, and remaining in the piping path without being used for sterilizing the ballast water.
  • a residue removing step of removing at least a part of the residue of the chlorine-based disinfectant from the piping path, and the residue removing step includes at least a part of the residue of the chlorine-based disinfectant.
  • a second step of discharging at least a part of the residue of the chlorinated disinfectant contained in the tank from the tank a second step of discharging at least a part of the residue of the chlorinated disinfectant contained in the tank from the tank.
  • the second step is a step of discharging at least a part of the residue of the chlorinated disinfectant contained in the tank into a pipe through which the ballast water is circulated.
  • the ballast water treatment method as described. x) including a step of moving at least part of the residue of the chlorinated disinfectant contained in the tank back to the tank before being removed from the tank and removed from the piping path.
  • xi) a step of reacting at least a part of the residue of the chlorinated disinfectant with a removal reactive substance in the tank after the first step and before the second step is performed,
  • the ballast water treatment method according to any one of vii) to x), wherein the removal reactive substance is a reducing substance or an alkaline substance.
  • the residue removing step includes a step of supplying water and / or a removal reactive substance to the piping path, and the removal reactive substance is a reducing substance or an alkaline substance viii )
  • the ballast water treatment method according to any one of the above.
  • the return piping path provided in the disinfectant piping path of the ballast water treatment device returns at least a part of the contents flowing through the disinfectant piping path from the downstream side to the upstream side of the disinfectant piping path.
  • It is a piping path
  • the disinfectant piping path Ls allows part or all of the content Cs to be transferred from the position Qs0 (not shown) downstream of the pump Ps to the position Qs1 (not shown) upstream of the pump Ps.
  • a return piping path Lsr (not shown) for returning a part or the whole is provided.
  • the position Qs0 is a position downstream of the pump Ps and upstream of the position Qs or the position Qs.
  • the position Qs1 is a position downstream of the tank Ts or the tank Ts and upstream of the pump Ps.
  • An example of the return piping path Lsr is that at the position Qs0, the return piping path Lsr branches off from the bactericide pipe path Ls in a branch shape, and at least a part of the contents Cs flowing through the bactericide pipe path Ls is always the return pipe path Lsr. It is the piping path comprised so that it may flow through.
  • Another example of the return piping path Lsr includes a solid-liquid separation device typified by a liquid cyclone at the position Qs0, and is configured so that undissolved chlorinated chemical ms flows along with the water ws to the return piping path Lsr. It is a certain piping route.
  • all of the contents Cs are returned to the position Qs1 by the return piping path Lsr by closing the valve Vs and the valve Vd, and the position Qs1 is adjusted by adjusting the opening degree of the valve Vs and the valve Vd.
  • the amount of contents Cs to return to is determined.
  • Reducing agent supply device N 4.1) Basic Configuration As shown in FIG. 1, the reducing agent supply device N is supplied with a reducing agent raw material mn and water wn as a solvent thereof, a tank Tn for storing both, a reducing agent injection, and the like. An inlet In and a reducing agent piping path Ln connecting the tank Tn and the reducing agent inlet In are provided. The reducing agent inlet In is an inlet for injecting the reducing agent An into the ballast water Wt taken from the ballast tank T flowing in the ballast water drainage piping path Lr.
  • the reducing agent piping path Ln includes a pump Pn downstream of the tank Tn, upstream of the reducing agent inlet In, and a valve Vn downstream of the pump Pn and upstream of the reducing agent inlet In, Tn ⁇ Pn ⁇ Fn ⁇ Vn ⁇ It is a piping route of In.
  • Switching of the opening and closing of the valve Vn is performed automatically according to a control program installed in advance in the control device PLC or other control device (not shown), unless part or all of the switching operation is manually performed. Is called.
  • the reducing agent supply device N includes a flow meter Fn in the reducing agent piping path Ln, but may include a TRO measuring instrument or other equipment / device not shown in the reducing agent piping path Ln. Further, the reducing agent supply device N includes a check valve Vcn (not shown) for preventing a back flow that may occur in the event of an abnormality such as a stop or failure of the pump Pn on the discharge side of the pump Pn and upstream of the valve Vn. Alternatively, a check valve other than the check valve Vcn, not shown in the figure, and a manual valve for maintenance and inspection may be provided in the reducing agent piping path Ln.
  • Reducing agent A typical example of the raw material mn of the reducing agent An is sodium sulfite or a hydrate thereof, sodium thiosulfate or a hydrate thereof or an aqueous solution thereof.
  • the water temperature of the water wn or the temperature of the mixture Cn formed by mixing the raw material mn with the water wn can be increased using an appropriate heating device, or By stirring the mixture Cn more strongly using a suitable stirring device, a necessary amount of an aqueous solution An having a concentration of a reducing substance necessary as a reducing agent is prepared.
  • the solubility of the raw material mn in water is high, and the necessary amount of the reducing agent An can be secured in the tank Tn by simply storing the raw material mn and water wn in the tank Tn and agitating lightly, the pump Strong stirring of the mixture Cn with Pn is not essential for the preparation of the reducing agent An.
  • an aqueous solution of the raw material mn (reducing agent An) can be prepared in advance, it is not necessary to inject the raw material mn and water wn into the tank Tn, and strong stirring of the mixture Cn by the pump Pn is not indispensable. Just fill the tank Tn.
  • ballast water drain piping route Lr when the ballast water drain piping route Lr is not set (for example, when the ballast water intake piping route Lf or the residue discharge piping route Ld is set), the valve Vn is normally closed and the pump Pn is stopped.
  • the second operation mode of the ballast pump Pm to be described later in the case of the C type shown in FIG. 6 and the D type shown in FIG. Since the reducing agent An is injected into the circulating seawater (seawater Wo * in which at least a part of the disinfectant residue Re has been injected from the residue inlet Id), the valve Vn is opened and the pump Pn is operated.
  • FIG. 12 is a process flow explanatory diagram of the ballast water treatment method executed in the ship according to the present invention.
  • the ballast water treatment method WTM executed in the ship VSL has three stages, that is, a first stage ST1, a second stage ST2, and a third stage ST3.
  • the first stage ST1 is executed in the first operation mode of the ballast pump Pm
  • the second stage ST2 is executed in the second operation mode (A type and B type)
  • the second stage ST2 is executed in the third operation mode.
  • Three-stage ST3 is executed.
  • the first stage ST1 is a process ss1 for preparing a chlorine-based disinfectant As in the disinfectant supply device S, a process ss2 for distributing seawater Wo taken from the outside of the ship through a ballast water intake piping path Lf in the ship, and ballast water intake Step ss3 and chlorine-based disinfectant for injecting prepared chlorine-based disinfectant As through the disinfectant injection port Is to seawater Wo taken from the outside of the ship that circulates in the piping route Lf
  • the process includes a step ss4 of storing or flooding the seawater Ws into which As is injected into the ballast tank T.
  • the seawater Wo taken from the outside of the ship is circulated through the residue discharge piping route Ld in the ship sd1, and the seawater Wo taken from the outside of the vessel circulated through the residue discharge piping route Ld
  • at least a part of the disinfectant residue Re remaining in the disinfectant supply device S is transferred from the residue inlet Id or the disinfectant inlet / residue inlet Is / Id through the residue pipe path Ls *.
  • a step sd2 for removing by injection and a step sd3 for draining the seawater Wd into which at least a part of the disinfectant residue Re has been injected to the outside of the ship are included.
  • the third stage ST3 is a step sn1 for preparing the reducing agent An in the reducing agent supply device N, a step sn2 for distributing the ballast water Wt taken from the ballast tank T through the ballast water drainage piping path Lr in the ship, and ballast water drainage.
  • a process sn4 for draining Wn out of the ship is included.
  • the disinfectant residue Re is taken from the outside of the ship using the force of the pump Ps, gravity and / or the negative pressure generated by the circulation of the seawater Wo taken from the outside of the ship. Move to seawater Wo side and inject into seawater Wo. At that time, the amount of water ws injected into the tank Ts is increased, and more water wo that has been gained momentum by the pump Ps is circulated through the disinfectant piping path Is, thereby increasing the fluidity of the disinfectant residue Re, May accelerate the injection of the disinfectant residue Re into the seawater Wo taken from outside the ship.
  • the reducing substance An * is circulated through the residue piping path Ls * (for example, the removal reactive substance An * is passed through the water ws).
  • the water ws containing the removal reactive substance An * is circulated continuously, discontinuously, periodically or repetitively or temporarily to the residue piping path Ls *). At least a part of free active chlorine remaining in the disinfectant residue Re is reacted with the removal reactive substance An *, and at least a part of the remaining disinfectant residue Re is outboard with the reaction product.
  • the amount of water ws injected into the tank Ts may be increased, and more water ws that has gained momentum by the pump Ps may be circulated through the disinfectant piping path Is. .
  • the third stage ST3 is not an indispensable stage for removing the disinfectant residue Re performed in the second stage ST2
  • the process ss3 of the first stage ST1 disinfection treatment with the chlorine-based disinfectant As
  • ballast water treatment method is usually indispensable.
  • ballast water treatment method WTM Modification of ballast water treatment method WTM
  • the second stage ST2 when at least a part of the disinfectant residue Re is injected into the seawater Wo taken from the outside of the ship, the disinfectant residue Re in the seawater Wo is discharged during the period from the start to the end of the injection.
  • the concentration of the free effective chlorine derived from it becomes excessively high, and the seawater Wo has a water quality that is not suitable for draining outboard.
  • the seawater Wo (hereinafter sometimes referred to as “Wo *”) into which at least a part of the disinfectant residue Re has been injected is regarded as the ballast water Wt during the period and the third stage.
  • ballast water treatment stage performs ST3 to reduce free active chlorine derived from the disinfectant residue Re in the seawater Wo *, and reduce the reducing agent An sufficient to detoxify the seawater Wo * to a level that allows outboard drainage. Inject from the inlet In.
  • a ballast water treatment stage is tentatively referred to as a second * stage ST2 *, it has a first stage ST1, a second * stage ST2 *, and a third stage ST3, and the first stage of the ballast pump Pm.
  • the first stage ST1 is executed in the operation mode
  • the second stage ST2 * is executed in the second operation mode (C type and D type)
  • the third stage ST3 is executed in the third operation mode.
  • a variation of the ballast water treatment method WTM to be performed as shown in FIG. 12 can be considered.
  • stage 2 * 2 ST2 * seawater Wo taken from the outside of the ship was circulated through the residue discharge piping route Ld in the ship, sd1, and the residue was drawn from the outside of the vessel flowing through the residue discharge piping route Ld.
  • At least part of the disinfectant residue Re remaining in the disinfectant supply device S is supplied to the seawater Wo through the residue pipe path Ls *, as a residue inlet Id or a disinfectant inlet / residue inlet Is /
  • the reducing agent An prepared is injected from the reducing agent inlet In to the process sn2 * circulated through the residue discharge piping route Ld and the seawater Wo * circulated through the residue discharging piping route Ld.
  • ballast water treatment method For example, when a cargo ship leaves the port from the first port with empty cargo, seawater is loaded into the ballast tank at the first port and the cargo is loaded at the second port. When seawater is discharged out of the ship from the ballast tank, the first stage ST1 is performed at the first port, and the third stage ST3 is performed at the second port. Both the second stage and the second * stage are carried out before sailing from the first port or after leaving the first port and before arriving at the second port.
  • the first stage ST1 is executed in the piping path drawn in bold in FIG. Specifically, seawater Wo outside the ship VSL is taken into the ship VSL from the water intake IT by the ballast pump Pm, and circulated toward the ballast tank T through the ballast water intake piping path Lf, and a midway filter device After filtering with F, chlorine-based disinfectant As is injected from the disinfectant inlet Is, and after stirring by the mixer Mxs, the seawater Ws into which chlorine-based disinfectant As has been injected is stored or flooded in the ballast tank T.
  • the disinfectant supply device S uses the pump Ps to discharge the mixture Cs formed by mixing the chlorine-based agent ms with the water ws along the disinfectant piping path Ls from the tank Ts, and the mixture Cs is agitated by stirring the mixture Cs.
  • An aqueous solution (chlorine-based disinfectant) As of the disinfectant is created, and the chlorine-based disinfectant As is injected into the seawater Wo taken from the outside of the ship that circulates in the ballast water intake piping path Lf from the disinfectant inlet Is.
  • the chlorine-based chemical ms may become a source of chlorine-containing gas due to contact with seawater (for example, the chlorine-based chemical ms is trichloroisocyanuric acid, sodium dichloroisocyanurate and its hydrate, potassium dichloroisocyanurate, etc.
  • the water ws is treated as fresh water.
  • the fresh water is preferably fresh water produced using a seawater desalination apparatus installed in the ship.
  • Second operation mode There are four types of second operation modes of the ballast pump Pm: A type, B type, C type and D type. Table 2 shows the valve opening / closing settings for each type.
  • the second stage ST2 is executed. Therefore, the reducing agent An from the reducing agent supply device N is injected into the seawater flowing through the residue discharge piping path Ld (step sn3 * ) Is not performed.
  • the second * stage ST2 * is executed. Therefore, the reducing agent An from the reducing agent supply device N is injected into the seawater flowing in the residue discharge piping path Ld (process). sn3 *) is performed.
  • the residue discharge piping path Ld is the residue discharge piping path ⁇ Ld1> for the A type and C type, and the residue discharging piping path ⁇ Ld2> for the B type and D type.
  • Type A In Type A of the second operation mode, the second stage ST2 is executed in the piping route drawn in bold in FIG. Specifically, seawater Wo outside the ship VSL is taken into the ship VSL from the water intake IT by the ballast pump Pm and distributed to the outlet DO through the residue discharge piping route ⁇ Ld1>. The filter device F is not passed, and then at least part of the sterilant residue Re is injected from the residue injection port Id.
  • the seawater Wo that has been injected with the disinfectant residue Re (that is, the seawater Wo *) is stirred by the mixers Mxs and Mxn, and then the ship VSL is discharged from the outlet DO as seawater Wd into which the disinfectant residue Re after the stirring is injected Drain outside.
  • (B) B type In the B type of the second operation mode, the second stage ST2 is executed in the piping path drawn in bold in FIG. Specifically, seawater Wo outside the ship VSL is taken into the ship VSL from the water intake IT by the ballast pump Pm and distributed toward the outlet DO through the residue discharge piping route ⁇ Ld2>. After passing through the filter device F, at least a part of the disinfectant residue Re is injected from the residue injection port Id.
  • the seawater Wo that has been injected with the disinfectant residue Re (that is, the seawater Wo *) is stirred by the mixers Mxs and Mxn, and then the ship VSL is discharged from the outlet DO as seawater Wd into which the disinfectant residue Re after the stirring is injected Drain outside.
  • (C) C type In the C type of the second operation mode, the second * stage ST2 * is executed in the piping path drawn in bold in FIG. Specifically, seawater Wo outside the ship VSL is taken into the ship VSL from the water intake IT by the ballast pump Pm and distributed to the outlet DO through the residue discharge piping route ⁇ Ld1>. The filter device F is not passed, and then at least part of the sterilant residue Re is injected from the residue injection port Id into the seawater Wo taken from the outside of the ship.
  • seawater Wo injected with the disinfectant residue Re (that is, seawater Wo *) is stirred by the mixer Mxs, the reducing agent An is injected from the reducing agent inlet In, and the seawater Wo * already injected with the reducing agent An is mixed. After stirring by Mxn, it is drained out of the ship VSL from the discharge port DO as seawater Wd into which the stirred disinfectant residue Re is injected.
  • (D) D Type In the D type of the second operation mode, the second * stage ST2 * is executed in the piping path drawn in bold in FIG. Specifically, seawater Wo outside the ship VSL is taken into the ship VSL from the water intake IT by the ballast pump Pm and distributed toward the outlet DO through the residue discharge piping route ⁇ Ld2>. After passing through the filter device F, at least a part of the disinfectant residue Re is injected from the residue injection port Id into the seawater Wo taken from outside the ship.
  • seawater Wo injected with the disinfectant residue Re (that is, seawater Wo *) is stirred by the mixer Mxs, the reducing agent An is injected from the reducing agent inlet In, and the seawater Wo * already injected with the reducing agent An is mixed. After stirring by Mxn, it is drained out of the ship VSL from the discharge port DO as seawater Wd into which the stirred disinfectant residue Re is injected.
  • the disinfectant supply device S causes the pump Ps to circulate at least a part of the disinfectant residue Re remaining in the tank Ts and the disinfectant piping path Ls along the residue piping path Ls *, and the residue It is injected from the inlet Id into the seawater Wo taken from the outside of the ship through the residue discharge piping route Ld.
  • the chlorinated drug ms is not injected into the tank Ts.
  • the water ws may be poured into the tank Ts continuously, discontinuously, periodically or repetitively, and may be circulated through the residue piping path Ls *.
  • the removal reactive substance An * is continuously removed, continuously, discontinuously, periodically or repeatedly, or temporarily.
  • the path Ls * By circulating in the path Ls *, at least a part of the free effective chlorine remaining in the disinfectant residue Re may be reacted with the removal reactive substance An *, and in that case, the tank Ts
  • the amount of water ws injected may be increased, and more water ws that has gained momentum by the pump Ps may be circulated in the disinfectant piping path Is.
  • a tank Tsm is provided in the middle of the piping path Ldr to cause the reaction between the disinfectant residue Re and the removed reactive substance
  • An * to mainly occur in the tank Tsm, and then at least part of the contents of the tank Tsm is a residual pipe. It is circulated in the path Ldr, and is injected into the seawater Wo taken from the outside of the ship through the residue discharge piping path Ld from the residue injection port Id together with the disinfectant residue Re remaining downstream from the tank Tsm. It may be configured.
  • the disinfectant residue Re may be a source of chlorine-containing gas due to contact with seawater (for example, the chlorinated chemical ms is trichloroisocyanuric acid, sodium dichloroisocyanurate and its hydrate, dichloroisocyanuric In the case of potassium acid or the like), the water ws is used as fresh water.
  • the fresh water is preferably fresh water produced using a seawater desalination apparatus installed in the ship.
  • the removal reactive substance An * may be the same substance as the reducing agent An or a different substance.
  • the reducing agent An taken out from the tank Tn may be used as the removal reactive substance An * as it is or after dilution as necessary.
  • the third stage ST3 is executed in the piping path drawn in bold in FIG. Specifically, the seawater Ws already injected with the chlorine-based disinfectant As contained in the ballast tank T is taken as the ballast water Wt from the ballast tank T, and the ballast water Wt taken from the ballast tank T is used as the ballast pump. Reducing agent for reducing and detoxifying the free effective chlorine derived from the chlorine-based disinfectant As from the reducing agent inlet In through the ballast water draining piping route Lr by Pm and flowing toward the outlet DO After An is injected and stirred by the mixer Mxn, the ballast water Wn into which the reducing agent An has been injected is drained out of the ship VSL from the drain port DO.
  • the reducing agent supply device N is reduced by discharging the mixture Cn formed by mixing the raw material mn of the reducing agent with the water wn from the tank Tn along the reducing agent piping path Ln by the pump Pn, and stirring the mixture Cn.
  • the agent An is created, and the reducing agent An is injected from the reducing agent inlet In into the ballast water Wt taken from the ballast tank T flowing in the ballast water drainage piping path Lr.
  • the reducing agent supply device N is connected to the reducing agent piping path by the pump Pn.
  • the reducing agent An is discharged from the tank Tn, and injected from the reducing agent inlet In into the ballast water Wt flowing in the ballast water drainage piping path Lr.
  • Time difference between the end of the first operation mode and the start of the second operation mode The second operation mode is started as soon as possible after the end of the first operation mode.
  • the shorter the time between the end of the first operation mode and the start of the second operation mode the more effectively the generation, deposition and solidification of the deposits of the components of the chlorinated chemical ms are suppressed and sterilization is performed. This is because it is possible to suppress or prevent the occurrence of malfunction due to the agent residue Re. Therefore, if possible, start the second operation mode immediately after the end of the first operation mode, even if it is practically difficult, even within two hours after the end of the first operation mode. Even if it exists, the second operation mode is started within 3 hours. However, the time difference between the end of the first operation mode and the start of the second operation mode may exceed 3 hours as long as there is an effect of suppressing or preventing the occurrence of operation failure due to the disinfectant residue Re. .
  • ballast water treatment apparatus and ballast water treatment method for removing residue of chlorine-based disinfectant by supplying water and / or removal-reactive substance Residue of chlorine-based disinfectant by supplying water and / or removal-reactive substance
  • the structure of the ballast water treatment apparatus and the ballast water treatment method which are mainly characterized by removing water, is expressed as follows. These configurations are based on the above-mentioned descriptions of 3.5) Removal of disinfectant residue, (B) Use of water washing removal effect, and (C) Use of reaction removal effect.
  • a ballast water treatment apparatus that is mounted on a ship and sterilizes ballast water contained in a ballast tank included in the ship, and sterilized for injecting a chlorine-based disinfectant into the ballast water contained in the ballast tank And a bactericide pipe path through which the chlorine-based bactericide is distributed toward the bactericide inlet, and water and / or removal reactive substances are supplied to the bactericide pipe path. Accordingly, at least a part of the residue of the chlorine-based disinfectant that is not used for sterilizing the ballast water and remains in the disinfectant piping path is removed from the disinfectant piping path. And the removal reactive substance is a reducing substance or an alkaline substance.
  • the disinfectant piping path includes a return piping path that returns at least a part of the contents flowing through the disinfectant piping path from the downstream side to the upstream side of the disinfectant piping path.
  • the ballast water treatment device according to i).
  • iii) The ballast water treatment apparatus according to i) or ii), wherein the water is fresh water.
  • the disinfectant piping path includes a piping path for discharging at least a part of the residue of the chlorine-based disinfectant into the piping through which the ballast water is circulated.
  • the ballast water treatment apparatus according to any one of the above.
  • a ballast water treatment method for sterilizing ballast water contained in a ballast tank included in a ship in the ship, and sterilizing by preparing a chlorine-based disinfectant for sterilizing ballast water contained in the ballast tank An agent preparation step, a sterilization treatment step of sterilizing the ballast water by injecting the chlorine-based disinfectant into the ballast water via a disinfectant piping path, and the ballast water without being used for disinfection
  • a residue removing step of removing at least a part of the residue of the chlorine-based disinfectant remaining in the disinfectant piping route from the piping route, and the residue removing step is provided in the disinfectant piping route.
  • a method of treating ballast water comprising the step of supplying water and / or a removal reactive substance, wherein the removal reactive substance is a reducing substance or an alkaline substance.
  • the residue removing step includes a step of returning water and / or removal reactive substances supplied to the disinfectant piping path from the downstream side to the upstream side of the disinfectant piping path.
  • the residue removing step is a step of discharging at least part of the residue of the chlorinated disinfectant into a pipe through which the ballast water is circulated, and any one of v) to vii) The ballast water treatment method according to one.
  • the return piping path that realizes the step of returning the substance from the downstream side to the upstream side of the disinfectant piping path is configured such that at least a part of the content flowing through the disinfectant piping path is transferred from the downstream side of the disinfectant piping path.
  • This is a return piping path for returning to the upstream side, and is configured as follows as an example.
  • the disinfectant piping path Ls allows part or all of the content Cs to be transferred from the position Qs0 (not shown) downstream of the pump Ps to the position Qs1 (not shown) upstream of the pump Ps.
  • a return piping path Lsr (not shown) for returning a part or the whole is provided.
  • the position Qs0 is a position downstream of the pump Ps and upstream of the position Qs or the position Qs.
  • the position Qs1 is a position downstream of the tank Ts or the tank Ts and upstream of the pump Ps.
  • An example of the return piping path Lsr is that at the position Qs0, the return piping path Lsr branches off from the bactericide pipe path Ls in a branch shape, and at least a part of the contents Cs flowing through the bactericide pipe path Ls is always the return pipe path Lsr. It is the piping path comprised so that it may flow through.
  • Another example of the return piping path Lsr includes a solid-liquid separation device typified by a liquid cyclone at the position Qs0, and is configured so that undissolved chlorinated chemical ms flows along with the water ws to the return piping path Lsr. It is a certain piping route.
  • all of the contents Cs are returned to the position Qs1 by the return piping path Lsr by closing the valve Vs and the valve Vd, and the position Qs1 is adjusted by adjusting the opening degree of the valve Vs and the valve Vd.
  • the amount of contents Cs to return to is determined.
  • the chlorinated chemical ms when the water is fresh water, the chlorinated chemical ms may be a source of chlorine-containing gas due to contact with seawater Generation of chlorine-containing gas can be prevented (for example, when the chlorine-based drug ms is trichloroisocyanuric acid, sodium dichloroisocyanurate and its hydrate, potassium dichloroisocyanurate, etc.).
  • the sterilizer piping path of the ballast water treatment device of iv) or the piping path for realizing the residue removal step of the ballast water treatment method of viii) circulates the ballast water through at least a part of the chlorinated germicide residue.
  • a piping path for discharging into the piping Lf is provided.
  • FIG. 13 is an explanatory diagram of the basic configuration of the second embodiment of the ship according to the present invention. For convenience of explanation, in FIG. 13, all the open / close valves are depicted in an open state.
  • the disinfectant supply apparatus S in the second embodiment of the ship according to the present invention is as shown in FIG. 13 and as will be described later, the disinfectant in the first embodiment shown in FIG.
  • the internal structure is simplified by the supply device, and the disinfectant residue Re can be effectively removed.
  • the disinfectant supply device S is regarded as a device block that exhibits the function of injecting at least a part of the chlorine-based disinfectant As and the disinfectant residue Re into the ballast water
  • the first embodiment and the second embodiment There is no fundamental difference between the forms.
  • the on / off valve opening / closing settings corresponding to each of the ballast water intake piping path Lf, the ballast water draining piping path Lr, and the residue discharge piping path Ld are as shown in Table 1. It is.
  • the description of the basic configuration of the second embodiment is the same as the description of the basic configuration of the first embodiment, except for the internal configuration of the sterilizing agent supply device S and the portions related to the operation related thereto.
  • the disinfectant injection port Is also serves as the residue injection port Id (the disinfectant injection port and residue injection port Is.
  • the disinfectant piping path Ls also serves as the residue piping path Ls * (Ts ⁇ Ps ⁇ Fs ⁇ Vs ⁇ Is / Id), and the disinfectant piping path Ls and the residue piping path Ls * Therefore, the internal structure becomes simpler and the disinfectant residue Re can be removed more effectively than the disinfectant supply device in the first embodiment. (See 3.6 above)). Therefore, it can be said that the second embodiment is preferable to the first embodiment.
  • the disinfectant piping path Ls is disinfected downstream of the valve Vs.
  • a sterilizing agent injection pump Pis may be provided upstream of the agent / residue inlet Is / Id, and if a sterilizing agent injection pump Pis (not shown) is provided, sterilization is performed.
  • a back pressure valve may be provided downstream of the agent injection pump Pis (discharge port side) and upstream of the bactericide injection port / residue injection port Is / Id.
  • the sterilizing agent injection pump Pis is switched to be in an operating state when the valve Vs is open and to be in an inactive state when the valve Vs is closed. Such switching of the operating state of the pump Pis is automatically performed according to a control program installed in advance in the control device PLC or other control device (not shown), except when part or all of the switching operation is manually performed. Done in
  • the disinfectant piping path Ls may include the above-described return piping path Lsr (not shown). Then, by closing the valve Vs, the entire contents Cs may be returned to the upstream side of the pump Ps through the return pipe path Lsr, and the return pipe is adjusted by adjusting the opening of the valve Vs. You may comprise so that the quantity of the content Cs which returns to the upstream of the pump Ps through the path
  • route Lsr may be determined.
  • at least a part of the return piping path Lsr that is a part of the disinfectant piping path Ls constitutes a part of the residue piping path Ls *. .
  • the function and role of the sterilizing agent supply device S in the second embodiment are the same as those of the sterilizing agent supply device in the first embodiment.
  • the description of the sterilizing agent supply device S in the second embodiment is basically the same as the description in 3) above (excluding the above 3.6) regarding the sterilizing agent supply device in the first embodiment.
  • the explanation of the removal of the bactericidal residue Re in the first embodiment and the modification thereof is basically the same as that of the bactericidal residue Re in the second embodiment.
  • at least a part of the sterilizing agent residue Re remaining in the sterilizing agent piping path Ls including the tank Ts is removed by the pump Ps and / or the tank.
  • a part may be injected into the seawater Wo taken from the outside of the ship flowing through the residue discharge piping path Ld from the disinfectant inlet / residue inlet Is / Id and removed, and the tank Ts and / or
  • the amount of the disinfectant residue Re decreases as the reaction product increases.
  • At least a part of the sterilizing agent residue Re whose amount has been reduced or whose fluidity has been increased is circulated in the residue discharge piping path Ld from the sterilizing agent inlet / residue inlet Is / Id together with the reaction product. It may be poured into seawater Wo taken from the outside of the ship and removed.
  • Reducing agent supply device N The reducing agent supply device N in the second embodiment is the same as the reducing agent supply device in the first embodiment.
  • the description of the reducing agent supply device N in the second embodiment is basically the same as the description in 4) above regarding the reducing agent supply device in the first embodiment.
  • the 1st operation mode of the ballast pump Pm in 2nd Embodiment shown in FIG. 14 is the seawater which took water at least one part of the disinfectant residue Re from the ship outside. It is the same as the first operation mode of the ballast pump in the first embodiment shown in FIG. 2 except that the injection port injected into Wo is the bactericide injection port and the residue injection port Is / Id. . Therefore, the description of FIG. 14 is basically the same as the description of FIG.
  • valve Vd Since the valve Vd is not required when the inlet is the bactericide inlet / residue inlet Is / Id, the valve opening / closing setting in each operation mode of the ballast pump Pm is shown in Table 3. It is as follows.
  • ballast water treatment method For the explanation of the ballast water treatment method shown in FIG. 12 and the process flow of the modified example (see 5) above, the disinfectant inlet Is and the residue inlet Id are However, if the term is replaced with the bactericide inlet / residue inlet Is / Id, the ballast water treatment method in the second embodiment and the process flow of the modified example are also applicable.
  • FIG. 20 shows a configuration example for removing the removal reactive substance (reducing substance) An * from the reducing agent supply device. Yes.
  • the ballast tank T flowing through the branch piping path Lns and the ballast water drainage piping path Lr for preparing the removal reactive substance An * used for removing the disinfectant residue Re.
  • Any one of the reducing agent piping paths Ln for injecting the reducing agent An into the taken ballast water Wt is selected. Switching between the reducing agent piping path Ln and the branch piping path Lns is performed by switching between opening and closing of the valve Vn and the valve Vn * provided in the branch piping path Lns downstream of the position Qn *.
  • FIG. 21 is a configuration example different from the configuration example shown in FIG.
  • the reducing agent piping path Ln and the branch are prepared. Simultaneous selection of both of the piping paths Lns is performed.
  • both the valves Vn and Vn * are opened incompletely, or the valve Vn * is opened and the valve Vn is opened incompletely (half-opened). This corresponds to the case where the ballast pump Pm is the C type or D type in the second operation mode, or the case where the second * stage ST2 * of the ballast water treatment method is executed.
  • each of the ballast water intake piping path Lf and the ballast water drainage piping path Lr is In addition to being connected to the ballast tank T, the position Qts of the ballast water intake piping path Lf and the position Qtr of the ballast water drainage piping path Lr are bridged by a part of the residue discharge piping path Ld provided with the valve V5 *. It is.
  • the position Qts is a position that is downstream of the mixer Mxs, upstream of the valve V3, and upstream of the valve V5 *.
  • the position Qtr is a position downstream of the valve V4, downstream of the valve V5 *, and upstream of the reducing agent inlet In.
  • the ballast water intake piping path Lf is IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ Q4 ⁇ V2 ⁇ F ⁇ Is / Id.
  • ballast water drainage piping route Lr is T ⁇ Ftr ⁇ Sn1r ⁇ V4 ⁇ Qtr ⁇ In ⁇ Mxn ⁇ Q1 ⁇ V6 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇
  • the piping route is Q3 ⁇ Q4 ⁇ V7 ⁇ Q2 ⁇ Sn2 ⁇ DO.
  • ⁇ Ld1> in the residue discharge piping route Ld is IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ V9 ⁇ Q5 ⁇ Is / Id ⁇ Mxs ⁇ Qts ⁇ V5 * ⁇ Qtr ⁇
  • ⁇ Ld2> is IT ⁇ V1 ⁇ Q6 ⁇ Pm ⁇ Vcm ⁇ Q3 ⁇ Q4 ⁇ V2 ⁇ F ⁇ Q5 ⁇ Is / Id ⁇ Mxs ⁇ Qts ⁇ V5 * ⁇ Qtr ⁇
  • Table 4 the valve opening / closing settings in each operation mode of the ballast pump Pm are as shown in Table 5.
  • FIG. 23 is an explanatory diagram of another modification of the basic configuration of the second embodiment of the present invention. .
  • valves and measuring devices are not depicted for the sake of simplicity.
  • each of the ballast water intake piping path Lf and the ballast water drainage piping path Lr is connected to the ballast tank T as in the first modification.
  • the reducing agent inlet In is arranged between the bactericide inlet / residue inlet Is / In and the ballast tank T.
  • FIG. 24 is an explanatory diagram of a first operation mode of the ballast pump in the third modification shown in FIG. 23, and FIG. 25 shows a third operation of the ballast pump in the third modification shown in FIG. It is explanatory drawing of an operation mode.
  • FIGS. 26 to 29 are explanatory diagrams of the A type to the D type of the second operation mode of the ballast pump in the modified example 3 shown in FIG. 23, respectively.
  • ballast water intake piping path Lf is IT ⁇ Qa ⁇ Pm as depicted in bold in FIGS. ⁇ Vcm ⁇ Qb ⁇ F ⁇ Qc ⁇ Is / Id ⁇ Mxc ⁇ Qe ⁇ T piping route
  • ballast water drainage piping route Lr is T ⁇ Qa ⁇ Pm ⁇ Vcm ⁇ Qb ⁇ Qd ⁇ Qc ⁇
  • In ⁇ Mxc ⁇ ⁇ Ld1> is the piping route from Qe to DO
  • ⁇ Ld1> is the piping route from IT ⁇ Qa ⁇ Qb ⁇ Qd ⁇ Qc ⁇ Is / Id ⁇ In ⁇ Mxc ⁇ Qe ⁇ DO.
  • Position Qa is a position downstream of the intake port IT of the ballast water intake piping path Lf, upstream of the ballast pump Pm, and downstream of the ballast tank T of the ballast water drainage piping path Lr, upstream of the ballast pump Pm. It is.
  • the position Qb is a position downstream of the ballast pump Pm and upstream of the filter device F of the ballast water intake piping path Lf and the ballast water drainage piping path Lr
  • the position Qc is the ballast water intake piping path Lf and the ballast It is located downstream of the filter device F in the water drainage piping path Lr and upstream of the bactericide inlet / residue inlet Is / Id, and the position Qd is between the position Qb and the position Qc.
  • Position Qe is the ballast water intake piping route Lf, the ballast water drainage piping route Lr, and the residue discharge piping route Ld, downstream of the mixer Mxc, upstream of the drain port DO, and for the ballast water intake piping route It is a position upstream of the ballast tank T of Lf.
  • Mxc is a mixer.
  • a mixer Mxs for stirring the seawater into which the chlorine-based disinfectant As or the disinfectant residue Re is injected and a mixer Mxn for stirring the seawater into which the reducing agent An is injected are installed.
  • a common mixer Mxc may be installed.
  • the sterilizing agent supply device S in Modification 3 has the same configuration as the sterilizing agent supply device in the second embodiment shown in FIG. 13, and its function and role are not changed. Therefore, the description of the bactericidal agent supply device in the second embodiment is the configuration of the ballast water intake piping route Lf (IT ⁇ Qa ⁇ Pm ⁇ Vcm ⁇ Qb ⁇ F ⁇ Qc ⁇ Is / Id ⁇ Mxc ⁇ Qe The same applies to the disinfectant supply device S in the third modification except that T) is different.
  • Reducing agent supply device N The reducing agent supply device N in Modification 3 has the same configuration as that of the reducing agent supply device in the second embodiment shown in FIG. 13, and its function and role are not changed. Therefore, the description of the disinfectant supply device and the modified example thereof in the second embodiment is the route configuration of the residue discharge piping route ⁇ Ld1> (IT ⁇ Qa ⁇ Qb ⁇ Qd ⁇ Qc ⁇ Is / Id ⁇ In ⁇ Mxc ⁇ Qe ⁇ DO) and the route configuration of the residue discharge piping ⁇ Ld2> (IT ⁇ Qa ⁇ Qb ⁇ F ⁇ Qc ⁇ Is / Id ⁇ In ⁇ Mxc ⁇ Qe ⁇ DO)
  • the configuration example for taking out the removal reactive substance An * and the description thereof shown in FIGS. 20 and 21 also apply to the configuration example for taking out the removal reactive substance An * in Modification 3 as it is
  • the first operation mode of the ballast pump Pm in this modification 3 shown in FIG. 24 is the route configuration of the ballast water intake piping route Lf (IT ⁇ Qa ⁇ Pm ⁇ Vcm).
  • ⁇ Qb ⁇ F ⁇ Qc ⁇ Is / Id ⁇ In ⁇ Mxc ⁇ Qe ⁇ T) is the same as the first operation mode of the ballast pump in the second embodiment shown in FIG. .
  • 26 to 29 are the route configuration of the residue discharge piping route ⁇ Ld1> (IT ⁇ Qa ⁇ Qb->Qd->Qc-> Is / Id->In->Mxc->Qe-> DO) and residue drain piping route ⁇ Ld2>(IT->Qa->Qb->F->Qc-> Is / Id->In->Mxc-> Except for the point that Qe ⁇ DO) is different, it is the same as the second operation mode of the ballast pump in the second embodiment shown in FIGS.
  • Ballast water treatment method The description of the process flow of the ballast water treatment method and its modification shown in FIG. 12 includes the bactericide inlet Is and the residue inlet Id, both the bactericide inlet / residue inlet Is. If it is read as / Id, the process flow of the ballast water treatment method and its modification in the second embodiment also applies.
  • FIGS. 2 and 13 show only one ballast pump Pm.
  • the ballast pump Pm in the present invention is not limited to one configured with only one ballast pump, and may be configured with a plurality of ballast pumps.
  • the ballast pump Pm includes two ballast pumps Pm1 and Pm2, the following modifications are possible.
  • ballast pump Pm1 When there are multiple ballast tanks (T1 and T2), when the ballast pump Pm1 is in the first operation mode, it is chlorinated with respect to seawater Wo taken from outside the ship that circulates toward the ballast tank T1. The sterilizing agent As is injected, and when in the second operation mode, the sterilizing agent residue Re remaining without being injected into the seawater Wo taken from outside the ship in the first operation mode is removed. On the other hand, when the ballast pump Pm2 is in the first operation mode, the chlorine-based disinfectant As is injected into the seawater Wo taken from the outside of the ship flowing toward the ballast tank T2, and is in the second operation mode.
  • the disinfectant residue Re remaining without being injected into the seawater Wo taken from outside the ship in the first operation mode is removed.
  • the ballast pump Pm1 switched from the ballast pump Pm2 is in the third operation mode
  • the ballast water Wt taken from the ballast tank T2 is discharged out of the ship as the ballast water Wn already injected with the reducing agent An
  • the ballast pump Pm2 switched from the ballast pump Pm1 is in the third operation mode
  • the ballast water Wt taken from the ballast tank T1 is discharged out of the ship as the ballast water Wn already injected with the reducing agent An.
  • the modified example 4-1 circulates toward the ballast tank T when the ballast pump Pm is in the first operation mode.
  • Chlorine-based disinfectant As is injected into seawater Wo taken from outside the ship, and remains in the second operation mode without being injected into the seawater Wo taken from outside the ship when in the first operation mode. Remove the disinfectant residue Re.
  • the ballast pump Pm switched from the ballast pump Pm is in the third operation mode, the ballast water Wt taken from the ballast tank T is discharged out of the ship as the ballast water Wn already injected with the reducing agent An. There is nothing else.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

バラスト水処理に使用されず残留する塩素系殺菌剤に起因するバラスト水処理上の不具合の発生を抑制又は防止出来る船舶が提供される。 船舶(VSL)が、船外から取水した海水(Wo)をバラストタンク(T)に向かって流通させバラストタンクに収容又は漲水する第1の運転モードと船外から取水した海水をバラストタンクを経由することなく流通させ船外に排水する第2の運転モードとを備えたバラストポンプ(Pm)を備える。船舶はさらに、第1の運転モードのときバラストタンクに向かって流通する海水に塩素系殺菌剤(As)を注入する殺菌剤注入口(Is)と、第2の運転モードのとき第1の運転モードのときに海水に注入されず残った塩素系殺菌剤の残留物(Re)の少なくとも一部を船外に向かって流通する海水に注入する残留物注入口(Id)と、を備えるバラスト水処理装置を備えている。

Description

船舶、バラスト水処理装置及びバラスト水処理方法
 本発明は、船舶のバラストタンクに収容されるバラスト水を、塩素系薬剤の水溶液を殺菌剤として使用して殺菌するバラスト水処理装置を船内に搭載する船舶に関し、より詳しくは、当該殺菌剤の残留物を船外に除去する機能を有する船舶に関する。また、本発明は、船舶のバラストタンクに収容されるバラスト水を、塩素系薬剤の水溶液を殺菌剤として使用して船舶内で殺菌するバラスト水処理装置及びバラスト水処理方法に関し、より詳しくは、当該殺菌剤の残留物を、船舶内で流通する海水とともに船外に排出して除去する機構を有するバラスト水処理装置及び除去する工程を有するバラスト水処理方法に関する。
 船舶のバラスト水を殺菌剤により殺菌するバラスト水処理の代表例は、船外から取水した海水をろ過した後、ろ過後の海水に酸化性物質を含有する殺菌剤を注入し、殺菌剤注入後の海水をバラストタンクに収容又は漲水する殺菌処理と、バラストタンクから取水した殺菌剤注入済みの海水に還元性物質を含有する還元剤を注入し、還元剤注入後の海水を船外へ排水する還元処理とに大別でき、酸化性を有する遊離有効塩素を含有する塩素系薬剤の水溶液を殺菌剤として使用することが知られている(特許文献1~3)。当該塩素系薬剤の水溶液は、固形の塩素系薬剤を水に溶解させることで用意することができる(特許文献4、5)。
特開2011-92899 特開2013-75250 特開2011-92898 特開2013-56296 WO2014/007171
 塩素系薬剤の水溶液を用意し、その水溶液を用いてバラストタンクに収容すべき海水を殺菌する場合、通常、当該海水を殺菌するために本来必要な量よりも多目に、当該水溶液を用意する。なぜなら、塩素系薬剤の水溶液を殺菌剤として海水に注入するためには、少なくとも、当該水溶液を当該海水まで流通させるための配管が必要であり、その配管内に行き渡る量の当該水溶液が余分に必要になるからである。
 しかし、塩素系薬剤の水溶液を本来必要な量よりも多目に用意すると、余分な当該水溶液がバラスト水処理に使用されることなく残留することになる。
 バラスト水処理に使用されることなく残留する塩素系薬剤の水溶液及び/又は当該塩素系薬剤の成分(以下、まとめて又は個別に「殺菌剤残留物」という)が、配管内で、溶媒である水の蒸発により濃化すると、あるいは、殺菌剤残留物の水温低下に伴い、塩素系薬剤の水に対する溶解度が低下すると、塩素系薬剤の成分の析出物が殺菌剤残留物中や、殺菌剤残留物と配管との接液領域に発生し、堆積し、場合によっては、当該析出物が配管内で固化するおそれがある。そのおそれは、塩素系殺菌剤の原料が固形の塩素系薬剤である場合、特に大きくなる。原料が固形であると、水に対する原料の溶解度の低下は、当該原料の成分の析出物の発生に直結するからである。
 上記析出物の発生・堆積・固化は、配管の閉塞、圧損増加その他の流通障害、配管に取り付けてあるミキサー、センサ、バルブ、ポンプ等の付属物の機能不全などの不具合(以下、まとめて、殺菌剤残留物に起因する「動作不具合」という)の原因となり、ひいてはバラスト水処理の正常な実行の阻害要因となる。
 本発明は上記問題に鑑みてなされたものであり、本発明の目的は、塩素系薬剤を水に溶解して得た水溶液を殺菌剤として使用するバラスト水処理の正常な実行の阻害要因の発生を抑制又は防止することができるバラスト水処理装置を搭載する船舶、バラスト水処理装置及びバラスト水処理方法を提供することである。
<船舶>
 前記目的を達成するための、本発明の第1の形態に係る船舶は、船外から取水した海水を船内で流通させるバラストポンプと、前記海水を収容するバラストタンクと、該バラストタンクが収容する前記海水を殺菌するバラスト水処理装置と、を具備する。そして、前記バラストポンプは、船外から取水した海水を前記バラストタンクに向かって流通させ前記バラストタンクに収容又は漲水する第1の運転モードと、そして、船外から取水した海水を前記バラストタンクを経由することなく流通させ船外に排水する第2の運転モードと、を備えていることを特徴とする。さらに、前記バラスト水処理装置は、前記第1の運転モードのとき前記バラストタンクに向かって流通する海水に塩素系殺菌剤を注入する殺菌剤注入口と、そして、前記第2の運転モードのとき、前記第1の運転モードのときに海水に注入されず残った前記塩素系殺菌剤の残留物の少なくとも一部を前記船外に向かって流通する海水に注入する残留物注入口と、を備えることを特徴とする。
 本発明の第2の形態に係る船舶は、第1の形態に従っている船舶であって、前記第2の運転モードが、前記第1の運転モードの終了後3時間以内に開始することを特徴とする。
 本発明の第3の形態に係る船舶は、第1の形態に従っている船舶であって、前記残留物注入口が、前記塩素系殺菌剤の残留物の少なくとも一部をポンプにより勢いを付けて、前記船外に向かって流通する海水に注入することを特徴とする。
 本発明の第4の形態に係る船舶は、第1の形態に従っている船舶であって、前記残留物注入口が、前記塩素系殺菌剤の残留物の少なくとも一部を、ポンプにより勢いが付けられた水とともに又はその水と混合して、前記船外に向かって流通する海水に注入することを特徴とする。当該勢いが付けられた水は、塩素系殺菌剤の水溶液の溶媒になる水であってよく、塩素系殺菌剤の水溶液の溶媒に既になっている水(従って、その場合、当該塩素系殺菌剤の水溶液そのもの)であってもよい。
 本発明の第5の形態に係る船舶は、第4の形態に従っている船舶であって、前記水が清水であることを特徴とする。
 本発明の第6の形態に係る船舶は、第4の形態に従っている船舶であって、前記水が還元性物質又はアルカリ性物質を含有する水であることを特徴とする。
 本発明の第7の形態に係る船舶は、第1の形態に従っている船舶であって、前記バラストポンプが、前記バラストタンクから取水した海水を船内で流通させ船外に排水する第3の運転モードを備えており、そして、前記バラスト水処理装置が、前記第3の運転モードのとき、前記バラストタンクから前記船外に向かって流通する海水に還元剤を注入する還元剤注入口を備える、ことを特徴とする。
 本発明の第8の形態に係る船舶は、第7の形態に従っている船舶であって、前記残留物注入口が、前記塩素系殺菌剤の残留物の少なくとも一部を前記還元剤の一部と反応させてできる反応生成物を、前記船外に向かって流通する海水に注入する、ことを特徴とする。
 本発明の第9の形態に係る船舶は、第7の形態に従っている船舶であって、前記殺菌剤注入口が前記残留物注入口を兼ね、前記還元剤注入口が、前記船外に向かって流通する海水の流れの方向において、前記残留物注入口の下流に位置している、ことを特徴とする。
 本発明の第10の形態に係る船舶は、第1の形態に従っている船舶であって、前記塩素系殺菌剤が、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はジクロロイソシアヌル酸カリウムの水溶液であり、その水溶液の溶媒は清水である、ことを特徴とする。
 本発明の第11の形態に係る船舶は、第10の形態に従っている船舶であって、前記清水が、船内に設置してある海水淡水化装置により海水を脱塩してできる清水である、ことを特徴とする。
<バラスト水処理装置>
 前記目的を達成するための、本発明の第12の形態に係るバラスト水処理装置は、船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置である。このバラスト水処理装置は、バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と、該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を収容するタンクと、そして、該タンクに収容されている内容物の少なくとも一部を流通させる残留物配管経路と、を備えることを特徴とする。
 本発明の第13の形態に係るバラスト水処理装置は、第12の形態に従っているバラスト水処理装置であって、前記殺菌剤配管経路の少なくとも一部が、前記残留物配管経路の少なくとも一部を構成していることを特徴とする。
 本発明の第14の形態に係るバラスト水処理装置は、第12又は第13の形態に従っているバラスト水処理装置であって、前記残留物配管経路が、前記タンクから排出された前記内容物の少なくとも一部を前記殺菌剤注入口に向けて流通させることを特徴とする。
 本発明の第15の形態に係るバラスト水処理装置は、第12乃至第14の形態のいずれか1つに従っているバラスト水処理装置であって、前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とする。
 本発明の第16の形態に係るバラスト水処理装置は、第12乃至第15の形態のいずれか1つに従っているバラスト水処理装置であって、前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えていることを特徴とする。
 本発明の第17の形態に係るバラスト水処理装置は、第12乃至第14の形態のいずれか1つに従っているバラスト水処理装置であって、前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えており、前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えており、 前記帰還配管経路の少なくとも一部が、前記帰還経路の一部を構成していることを特徴とする。
 本発明の第18の形態に係るバラスト水処理装置は、第12乃至第17の形態のいずれか1つに従っているバラスト水処理装置であって、前記タンクが、前記塩素系殺菌剤の残留物の少なくとも一部を、除去反応性物質を含有する水とともに少なくとも一時的に又は短時間停留し、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とする。
 前記目的を達成するための、本発明の第19の形態に係るバラスト水処理装置は、船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置である。このバラスト水処理装置は、バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と、そして、該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、を備えていることを特徴とする。さらにこのバラスト水処理装置は、前記殺菌剤配管経路に水及び/又は除去反応性物質が供給されることにより、前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が、前記殺菌剤配管経路外に除去されるように構成されており、そして、前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とする。
 本発明の第20の形態に係るバラスト水処理装置は、第19の形態に従っているバラスト水処理装置であって、前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とする。
 本発明の第21の形態に係るバラスト水処理装置は、第19又は第20の形態に従っているバラスト水処理装置であって、前記水が清水であることを特徴とする。
 本発明の第22の形態に係るバラスト水処理装置は、第19乃至第21の形態のいずれか1つに従っているバラスト水処理装置であって、前記殺菌剤配管経路が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させる配管経路を備えていることを特徴とする。
 前記目的を達成するための、本発明の第23の形態に係るバラスト水処理装置は、船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置である。このバラスト水処理装置は、バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と、該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、そして、該殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口と、を備えていることを特徴とする。さらにこのバラスト水処理装置は、前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が注入された除去反応性物質と反応し、前記殺菌剤配管経路外に除去されるように構成されており、そして、前記除去反応性物質は還元性物質又はアルカリ性物質である、ことを特徴とする。
<バラスト水処理方法>
 前記目的を達成するための、本発明の第24の形態に係るバラスト水処理方法は、船舶が具備するバラストタンクに収容される海水を殺菌するバラスト水処理方法である。このバラスト水処理方法は、海水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記塩素系殺菌剤を用いて、バラストタンクに収容される海水を船舶内で殺菌する殺菌処理工程と、そして、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、船舶内で流通する海水に注入し、その海水とともに船舶外に排出する残留物除去工程と、を備えることを特徴とする。
 本発明の第25の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記船舶内で流通する海水が、船舶外から取水され前記バラストタンクに収容されることなく船舶内で流通することを特徴とする。
 本発明の第26の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記残留物除去工程が、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、ポンプにより勢いを付けて前記船舶内で流通する海水に注入する工程を含むことを特徴とする。
 本発明の第27の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記残留物除去工程が、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、勢いを付けた水とともに又はその水と混合して前記船舶内で流通する海水に注入する工程を含むことを特徴とする。
 本発明の第28の形態に係るバラスト水処理方法は、第27の形態に従っているバラスト水処理方法であって、前記水が清水であることを特徴とする。
 本発明の第29の形態に係るバラスト水処理方法は、第27の形態に従っているバラスト水処理方法であって、前記水が、還元性物質又はアルカリ性物質を含有することを特徴とする。
 本発明の第30の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記残留物除去工程が、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、還元性物質又はアルカリ性物質とともにタンクに停留させる工程と、そして、前記タンクの内容物を前記船舶内で流通する海水に注入する工程と、を含むことを特徴とする。
 本発明の第31の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記塩素系殺菌剤を前記バラストタンクに収容される海水に殺菌剤注入口から注入する工程を含んでおり、前記残留物除去工程が、前記バラストタンクに収容される海水に注入されずに残った前記塩素系殺菌剤の残留物の少なくとも一部を前記船舶内で流通する海水に残留物注入口から注入する工程を含んでおり、そして、前記殺菌剤注入口が、前記残留物注入口を兼ねることを特徴とする。
 本発明の第32の形態に係るバラスト水処理方法は、第31の形態に従っているバラスト水処理方法であって、前記残留物除去工程が、前記塩素系殺菌剤の少なくとも一部が注入されている前記バラストタンクに収容される海水を船舶外に排出する前に、その海水に還元剤を注入する工程を含むことを特徴とする。
 本発明の第33の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記殺菌剤処理工程の終了後3時間以内に前記残留物除去工程が開始することを特徴とする。
 本発明の第34の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、そして、第1の港から出港する前又は前記第1の港から出港した後で第2の港に到着する前に前記残留物除去工程が実行される、ことを特徴とする。
 本発明の第35の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、そして、前記第1の港から出港した後で第2の港に到着したとき又はその到着後に前記残留物除去工程が実行されることを特徴とする。
 本発明の第36の形態に係るバラスト水処理方法は、第24の形態に従っているバラスト水処理方法であって、前記バラストタンクに収容される海水中に残留する、前記塩素系殺菌剤に由来する遊離有効塩素を還元する還元処理工程を更に含むことを特徴とする。
 前記目的を達成するための、本発明の第37の形態に係るバラスト水処理方法は、船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法である。このバラスト水処理方法は、バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記バラスト水に前記塩素系殺菌剤を配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と、そして、前記バラスト水の殺菌に用いられずに前記配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程を備えていることを特徴とする。さらに、前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部をタンクに収容させる第一工程と、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクから排出させる第二工程と、を含むことを特徴とする。
 本発明の第38の形態に係るバラスト水処理方法は、第37の形態に従っているバラスト水処理方法であって、前記残留物除去工程の前記第二工程が、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させることを特徴とする。
 本発明の第39の形態に係るバラスト水処理方法は、第37又は第38の形態に従っているバラスト水処理方法であって、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクから移動させ前記配管経路から除去する前に、前記タンクに帰還させる工程を更に備えることを特徴とする。
 本発明の第40の形態に係るバラスト水処理方法は、第37乃至第39の形態のいずれか1つに従っているバラスト水処理方法であって、前記第一工程の実行後に前記第二工程が実行される前に、前記塩素系殺菌剤の残留物の少なくとも一部と除去反応性物質を前記タンク内で反応させる工程を更に備えており、そして前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とする。
 本発明の第41の形態に係るバラスト水処理方法は、第37乃至第40の形態のいずれか1つに従っているバラスト水処理方法であって、前記残留物除去工程が、前記配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とする。
 前記目的を達成するための、本発明の第42の形態に係るバラスト水処理方法は、船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法である。このバラスト水処理方法は、バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記バラスト水に前記塩素系殺菌剤を殺菌剤配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と、そして、前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程と、を備えていることを特徴とする。さらに、前記残留物除去工程が、前記殺菌剤配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして、前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とする。
 本発明の第43の形態に係るバラスト水処理方法は、第42の形態に従っているバラスト水処理方法であって、前記残留物除去工程が、前記殺菌剤配管経路に供給された水及び/又は除去反応性物質を、前記殺菌剤配管経路の下流側から上流側に帰還させる工程を含む、ことを特徴とする。
 本発明の第44の形態に係るバラスト水処理方法は、第42又は第43の形態に従っているバラスト水処理方法であって、前記水が清水であることを特徴とする。
 本発明の第45の形態に係るバラスト水処理方法は、第42乃至第44の形態のいずれか1つに係るバラスト水処理方法であって、前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させることを特徴とする。
 本発明の第46の形態に係るバラスト水処理方法は、船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法である。このバラスト水処理方法は、バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記バラスト水に前記塩素系殺菌剤を殺菌剤配管経路を経由して殺菌剤注入口から注入し、前記バラスト水を殺菌する殺菌処理工程と、そして、前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記殺菌剤配管経路から除去する残留物除去工程と、を備えていることを特徴とする。さらに、前記残留物除去工程が、前記殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を供給する工程を含み、そして、前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とする。
 なお、本発明において、次に掲げる用語の意味又は解釈は、区別して別段の説明を行う場合を除き、以下のとおりとする。
 (1) 「塩素系薬剤」とは、溶媒である水に溶解したとき、水溶液中での不均化により、殺菌作用を有する遊離有効塩素を放出する薬剤又はその遊離有効塩素を放出し得る物質を生成する薬剤である。「固形」とは、常温において粉末、顆粒又は錠剤の状態にあることをいう。「塩素系薬剤」は「固形」である必要はない。
 「固形の塩素系薬剤」の代表例は、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等である。「塩素系殺菌剤」とは、遊離有効塩素が有する殺菌作用を利用して殺菌を行う薬剤であり、その代表例は、塩素系薬剤の水溶液である。
 (2) 「還元性物質」とは、固形であると否と問わず、他の物質から電子を受け取る(つまり還元する)性質を有する物質である。塩素系殺菌剤と関係した還元性物質は、塩素系殺菌剤に由来する遊離有効塩素を還元する性質を有する物質である。「還元剤」とは、固形であると否と問わず、他の物質から電子を受け取るために用いる薬剤である。塩素系殺菌剤と関係した還元剤は、塩素系殺菌剤に由来する遊離有効塩素を還元するために用いる物質である。還元剤の代表例は、亜硫酸ナトリウム又はその水和物、チオ硫酸ナトリウム又はその水和物、あるいは、それらの水溶液である。
 (3) 「アルカリ性物質」とは、水に溶解して塩基性を示す(つまり水素イオン指数 (pH)が7より大きくなる)性質を有する物質である。その代表例は、水に溶解すると水酸化物イオンを生じる、アルカリ金属またはアルカリ土類金属の水酸化物(塩)、またはアルカリ金属またはアルカリ土類金属の炭酸化物(塩)である。
 (4) 「配管経路」とは、液体、固体と液体の混合物その他の物質を流通させるための配管ならびにその配管に取り付けて継手、ミキサー、バルブ、ポンプ及びセンサ、バッファタンク等の付属品を含む。配管に取り付けてある付属品が一切存在しない場合であっても、その配管は「配管経路」に該当する。配管に取り付けてある付属品がバルブのみであっても、その配管及びバルブは「配管経路」に該当する。
 (5) 「容器」とは、液体、固体と液体の混合物、そしてその他の物質を長時間又は一時的に収容又は貯留する器としての機能を有する物品である。「容器の内容物」とは、当該物質をいう。「容器」の代表例は、タンク、溶解槽、タンク及びホッパーである。配管は、当該器としての機能を有する物品なので、「容器」に該当する。従って配管経路も「容器」に該当する。
 (6) 定義上、「容器」が「配管経路」に、「配管経路」が「容器」に、それぞれ該当する場合であっても、「容器及び配管経路」、「容器又は配管経路」、「容器に接続する配管経路」などのように一つの文章中で両用語を明確に区別して記載するときは、両用語は互いに異なるものとして解釈する。例えば「配管経路に接続するバッファタンク」と記載する場合には、当該「配管経路」は当該「バッファタンク」を含まず、当該「バッファタンク」は当該「配管経路」を含まない。
 (7) 「清水」とは、海水より塩分を含有していない水の意であり、真水や淡水と同義である。海水淡水化装置により海水から脱塩された後の水も、清水に該当する。
 (8) 「海水」は、第1の運転モード又は第2の運転モードにあるバラストポンプにより船外から取水されるものである限り、淡水、汽水及び海水のいずれであってもよい。従って、後述の海水Woは、海水に限定されず、淡水であっても、汽水であってもよい。
<船舶>
 本発明、特に本発明の第1の形態に係る船舶によれば、殺菌剤残留物の少なくとも一部を、船舶内で流通する海水に注入し、その海水とともに船舶外に排出するので、その殺菌剤残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 殺菌剤残留物の少なくとも一部を船舶内で流通する海水に注入するための力の代表例は、ポンプによる圧力、重力及び海水の流通に起因して残留物注入口近くに発生する負圧(海水側への吸引力)のいずれか又は組み合わせである。
 バラスト水処理装置の船内設置場所、船舶の行先、航路、航海時間等によっては、殺菌剤残留物の少なくとも一部の濃化が進行し、逆に殺菌剤残留物の水温低下により水に対する塩素系薬剤の溶解度が低下する。例えば、赤道直下を航行する船舶の機関室の空調及び通風の機能が不十分であると、機関室の温度は摂氏50度近く(場合によっては摂氏50度超)になることがあるので、そのような機関室内に設置してあるバラスト水処理装置では、水分の著しい蒸発により殺菌剤残留物の少なくとも一部の濃化が短時間で進行する。また、水分の蒸発が緩慢に進む場合であっても、バラスト水処理装置が一回目の運転から二回目の運転までの間、長時間活動停止状態に置かれる場合には、少しずつであっても確実に殺菌剤残留物の濃化は進行する。他方、中高緯度の海域を航行する船舶の機関室の空調及び通風の機能が不十分であると、機関室内は摂氏30度未満になるので、そのような機関室内に設置してあるバラスト水処理装置では、殺菌剤残留物の水温低下に伴い、水に対する塩素系薬剤の溶解度が低下する。
 殺菌剤残留物の少なくとも一部の濃化や水に対する塩素系薬剤の溶解度の低下が進行すると、塩素系薬剤の成分の析出物が、殺菌剤残留物中や、殺菌剤残留物とバラスト水処理装置の構成要素(容器、配管系統等)との接液領域に発生し、堆積し、場合によっては固化するので、殺菌剤残留物に起因する動作不具合が起こり、バラスト水処理の正常な実行の阻害要因となる。
 これに対し、本発明の第2の形態に係る船舶によれば、第2の運転モードが第1の運転モードの終了後3時間以内に開始されるので、殺菌剤残留物に起因する動作不具合の発生を抑制又は防止することができ、ひいてはバラスト水処理を正常に実行することができる。
 塩素系薬剤の成分の析出物の発生・堆積・固化の進行を抑えるためには、第1の運転モードの終了後できるだけ早いタイミングで第2の運転モードが開始されること、具体的には、第1の運転モード終了後2時間以内に第2の運転モードが開始されることがより好ましく、第1の運転モードの終了直後に、第2の運転モードが開始されることがさらに好ましい。
 殺菌剤残留物は、圧力を受けると移動し易くなる。それ故、本発明の第3の形態に係る船舶によれば、殺菌剤残留物の少なくとも一部をポンプにより付勢するので、これを船外に向かって流通する海水に注入し易くなり、従って船外へ排出し易くなる。また、殺菌剤残留物は、水の圧力を受けると移動し易くなるとともに、水と混合又は水に溶解すると流動性が高くなる。
 それ故、本発明の第4の形態に係る船舶によれば、殺菌剤残留物の少なくとも一部を、ポンプにより勢いを付けた水とともに又はその水と混合するので、これを船外に向かって流通する海水に注入し易くなり、従って船外へ排出し易くなる(以下、第3及び第4の形態に係る船舶が奏する効果をまとめて又は個別に「水洗除去効果」という場合がある)。なお、当該水は、塩素系殺菌剤の水溶液の溶媒になる水であってよく、塩素系殺菌剤の水溶液の溶媒に既になっている水(従って、その場合、当該塩素系殺菌剤の水溶液そのもの)であってもよい。
 塩素系薬剤の中には、塩素系薬剤の水溶液から塩素含有ガスを発生させるものがある。たとえば、ジクロロイソシアヌル酸ナトリウムの場合、その水溶液から塩素含有ガスが発生し、その水溶液の溶媒が海水であるときには、塩素含有ガスの発生は激しくなる。塩素含有ガスはたとえ少量であっても刺激臭を伴う場合が多いので、塩素含有ガスの発生源の周囲の船内作業環境を悪化させる。
 これに対し、本発明の第5の形態に係る船舶によれば、殺菌剤残留物の少なくとも一部を清水との混合物又は清水を溶媒とする水溶液にして、残留物注入口から、船外に向かって流通する海水に注入するので、水洗除去効果を得ることができると同時に、溶媒が海水であった場合の塩素含有ガスの発生、ひいては船内作業環境の悪化を抑制又は防止することができる。
 なお、船員の飲料水その他の生活水として用いるための清水を製造するために海水淡水化装置を設置している船舶は多い。その場合、当該清水は、船内に設置してある海水淡水化装置を用いて製造した清水で賄えばよいので、当該清水を用意するための専用装置を、船内の限られた、狭い空間内に設置しないで済ませることができる。
 殺菌剤残留物中に遊離有効塩素が存在する場合、殺菌剤残留物が還元性物質に接触すると遊離有効塩素の還元反応が起り、反応生成物が殺菌剤残留物の表面近く又は内部に生じるため、その殺菌剤残留物の流動性が高まることがある。また、塩素系薬剤の水溶液から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、還元性物質に接触させることにより塩素系薬剤の水溶液(塩素系殺菌剤)中の遊離有効塩素を還元すれば、あるいはアルカリ性物質により当該水溶液のpHをより高くしアルカリ性にして、塩素系薬剤の水溶液(塩素系殺菌剤)中の遊離有効塩素を有する殺菌剤成分の分解反応を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第6の形態に係る船舶によれば、ポンプにより勢いを付けた還元性物質又はアルカリ性物質を含有する水を流通させるので、塩素系薬剤の水溶液から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる(以下、この効果を「反応除去効果」という 場合がある)。また、殺菌剤残留物の少なくとも一部をポンプにより付勢するので、水洗除去効果を得ることができる。
 本発明の第7の形態に係る船舶によれば、バラストタンクから取水した海水に残留する、塩素系殺菌剤に由来する遊離有効塩素を、還元剤により無害化した後、当該バラスト水を船外に排出することができる。
 本発明の第8の形態に係る船舶によれば、バラストタンクから取水した海水を船外に排出する前に無害化するために用いる還元剤の一部を、殺菌剤残留物の少なくとも一部との反応に用いるので、殺菌剤残留物との反応に用いる還元性物質を用意するための専用装置を、船内の限られた、狭い空間内に設置しないで済ませることができる。
 本発明の第9の形態に係る船舶によれば、殺菌剤注入口が残留物注入口を兼ねるので、殺菌剤配管経路の末端に位置する殺菌剤注入口近くに存在する殺菌剤残留物まで船外に排出することができる。なお、後述の第2の運転モードのC型及びD型の場合には、船外に向かって流通する海水に殺菌剤残留物の少なくとも一部を注入することにより当該海水への殺菌剤残留物の溶解又はより均一な分散を促進することができるので、引き続く還元剤の注入による、塩素系殺菌剤に由来する遊離有効塩素の還元をより効率的に行うことができる。
 本発明の第10の形態に係る船舶によれば、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はジクロロイソシアヌル酸カリウムの水溶液を塩素系殺菌剤とする場合において、清水を溶媒にするので、塩素含有ガスの発生、ひいては船内作業環境の悪化を抑制又は防止することができる。
 本発明の第11の形態に係る船舶によれば、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はジクロロイソシアヌル酸カリウムの水溶液の溶媒を、船内に設置してある海水淡水化装置を用いて製造した清水で賄うので、当該溶媒である清水を用意するための専用装置を、決して広いとはいえない船内に設置しないで済ませることができる。
 総じて、本発明に係る船舶によれば、本発明の各形態が奏する効果を発揮し、それによりバラスト水処理を正常に実行することができる船舶を実現することができる。
<バラスト水処理装置>
 本発明、特に本発明の第12の形態に係るバラスト水処理装置は、バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を収容するタンクと、該タンクに収容されている内容物の少なくとも一部を流通させる残留物配管経路とを備えるので、その塩素系殺菌剤の残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 塩素系殺菌剤の残留物中に遊離有効塩素が存在する場合、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物を還元性物質に接触させることにより遊離有効塩素を還元すれば、あるいはアルカリ性物質により塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第18の形態に係るバラスト水処理装置によれば、タンクは、前記塩素系殺菌剤の残留物の少なくとも一部を、除去反応性物質を含有する水とともに少なくとも一時的に又は短時間停留するタンクであり、その除去反応性物質は還元性物質又はアルカリ性物質であるので、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる。
 本発明の第18の形態に係るバラスト水処理装置においては、塩素系殺菌剤の残留物と還元性物質又はアルカリ性物質との反応により発熱が起こるケースにおいて、タンクは、前記塩素系殺菌剤の残留物の少なくとも一部を、除去反応性物質を含有する水とともに少なくとも一時的に又は短時間停留するタンクであって、両物質をタンクに少なくとも一時的又は短時間停留させるので、発熱が起こる場所は、主としてタンクになる。それ故、この第18の形態に係るバラスト水処理装置によれば、発熱対策を講じるべき対象を、主としてタンクに絞り込むことができる。
 本発明、特に本発明の第19の形態に係るバラスト水処理装置によれば、バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部が、殺菌剤配管経路に水及び/又は除去反応性物質が供給されることにより、前記殺菌剤配管経路外に除去されるように構成されており、前記除去反応性物質は還元性物質又はアルカリ性物質であるので、その塩素系殺菌剤の残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 塩素系薬剤の中には、塩素系薬剤の水溶液から塩素含有ガスを発生させるものがある。たとえば、塩素化イソシアヌル酸ナトリウムの場合、その水溶液から塩素含有ガスが発生し、塩素含有ガスはたとえ少量であっても刺激臭を伴う場合が多いので、塩素含有ガスの発生源の周囲の船内作業環境を悪化させる。
 これに対し、本発明の第21の形態に係るバラスト水処理装置によれば、バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部が、殺菌剤配管経路に清水が供給されることにより、前記殺菌剤配管経路外に除去されるように構成されているので、水洗除去効果を得ることができると同時に、塩素含有ガスの発生、ひいては船内作業環境の悪化を抑制又は防止することができる。
 塩素系殺菌剤の残留物中に遊離有効塩素が存在する場合、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物を還元性物質に接触させることにより遊離有効塩素を還元すれば、あるいはアルカリ性物質により塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第19の形態に係るバラスト水処理装置によれば、殺菌剤配管経路に除去反応性物質が供給されることにより、前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が、前記殺菌剤配管経路外に除去されるように構成されており、その除去反応性物質は還元性物質又はアルカリ性物質であるので、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる。
 殺菌剤配管経路に残留している塩素系殺菌剤の残留物が除去反応性物質と接触すると、反応が生じ反応生成物の増加とともに塩素系殺菌剤の残留物の量は減少し、場合によっては塩素系殺菌剤の残留物の流動性が高くなる。それ故、本発明の第23の形態に係るバラスト水処理装置によれば、殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口を備えているので、塩素系殺菌剤の残留物を除去反応性物質と反応させ、減量された又は流動性が高められた塩素系殺菌剤の残留物の少なくとも一部を、殺菌剤配管経路外に除去することができる。
 塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物に還元性物質を接触させることにより塩素系殺菌剤の残留物中の遊離有効塩素を還元すれば、あるいは、塩素系殺菌剤の残留物にアルカリ性物質を接触させることにより、塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解反応を促進すれば、塩素含有ガスの発生は起らないか、抑制される。それ故、本発明の第23の形態に係るバラスト水処理装置によれば、殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口を備えているので、塩素系殺菌剤の残留物を除去反応性物質と反応させることができ、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念される場合であっても、その発生を抑制又は防止することができる。
 総じて、本発明に係るバラスト水処理装置によれば、本発明の各形態が奏する効果を発揮し、それにより船舶内でバラスト水処理を正常に実行することができる。
<バラスト水処理方法>
 本発明、特に本発明の第24の形態に係るバラスト水処理方法によれば、殺菌剤残留物の少なくとも一部を、船舶内で流通する海水に注入し、その海水とともに船舶外に排出するので、その殺菌剤残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 殺菌剤残留物の少なくとも一部を船舶内で流通する海水に注入するための力の代表例は、ポンプによる圧力、重力及び海水の流通に起因して残留物注入口近くに発生する負圧(海水側への吸引力)のいずれか又は組み合わせである。
 本発明の第26の形態に係るバラスト水処理方法は、ポンプの圧力を利用して殺菌剤残留物の少なくとも一部を船舶内で流通する海水に注入する工程を含む例に該当する。
 殺菌剤残留物は、圧力を受けると移動し易くなる。それ故、本発明の第26の形態に係るバラスト水処理方法によれば、殺菌剤残留物の少なくとも一部をポンプにより付勢するので、これを船外に向かって流通する海水に注入し易くなり、従って船外へ排出し易くなる。また、殺菌剤残留物は、水の圧力を受けると移動し易くなるとともに、水と混合又は水に溶解すると流動性が高くなる。
 それ故、本発明の第27の形態に係るバラスト水処理方法によれば、殺菌剤残留物の少なくとも一部を、勢いを付けた水とともに又はその水と混合するので、これを船外に向かって流通する海水に注入し易くなり、従って船外へ排出し易くなる(以下、第26及び第27の形態に係るバラスト水処理方法が奏する効果をまとめて又は個別に「水洗除去効果」という場合がある)。なお、当該水は、塩素系殺菌剤の水溶液の溶媒になる水であってよく、塩素系殺菌剤の水溶液の溶媒に既になっている水(従って、その場合、当該塩素系殺菌剤の水溶液そのもの)であってもよい。
 塩素系薬剤の中には、塩素系薬剤の水溶液から塩素含有ガスを発生させるものがある。たとえば、ジクロロイソシアヌル酸ナトリウムの場合、その水溶液から塩素含有ガスが発生し、その水溶液の溶媒が海水であるときには、塩素含有ガスの発生は激しくなる。塩素含有ガスはたとえ少量であっても刺激臭を伴う場合が多いので、塩素含有ガスの発生源の周囲の船内作業環境を悪化させる。
 これに対し、本発明の第28の形態に係るバラスト水処理方法によれば、殺菌剤残留物の少なくとも一部を清水との混合物又は清水を溶媒とする水溶液にして、残留物注入口から、船外に向かって流通する海水に注入するので、水洗除去効果を得ることができると同時に、溶媒が海水であった場合の塩素含有ガスの発生、ひいては船内作業環境の悪化を抑制又は防止することができる。
 なお、船員の飲料水その他の生活水として用いるための清水を製造するために海水淡水化装置を設置している船舶は多い。その場合、当該清水は、船内に設置してある海水淡水化装置を用いて製造した清水で賄えばよいので、当該清水を用意するための専用装置を、船内の限られた、狭い空間内に設置しないで済ませることができる。
 殺菌剤残留物中に遊離有効塩素が存在する場合、殺菌剤残留物が還元性物質に接触すると遊離有効塩素の還元反応が起り、反応生成物が殺菌剤残留物の表面近く又は内部に生じるため、その殺菌剤残留物の流動性が高まることがある。また、塩素系薬剤の水溶液から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、還元性物質に接触させることにより塩素系薬剤の水溶液(塩素系殺菌剤)中の遊離有効塩素を還元すれば、あるいはアルカリ性物質により当該水溶液のpHをより高くしアルカリ性にして、塩素系薬剤の水溶液(塩素系殺菌剤)中の遊離有効塩素を有する殺菌剤成分の分解反応を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第29の形態に係るバラスト水処理方法によれば、勢いを付けた還元性物質又はアルカリ性を含有する水を流通させるので、塩素系薬剤の水溶液から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる。また、殺菌剤残留物の少なくとも一部をポンプにより付勢するので、水洗除去効果を得ることができる。
 本発明の第30の形態に係るバラスト水処理方法においては、殺菌剤残留物と還元性物質又はアルカリ性物質との反応により発熱が起こるケースにおいて、両物質をタンクに少なくとも一時的又は短時間停留させるので、発熱が起こる場所は、主としてタンクになる。それ故、この第30の形態に係るバラスト水処理方法によれば、発熱対策を講じるべき対象を、主としてタンクに絞り込むことができる。
 本発明の第31の形態に係るバラスト水処理方法によれば、殺菌剤注入口が残留物注入口を兼ねるので、殺菌剤配管経路の末端に位置する殺菌剤注入口近くに存在する殺菌剤残留物まで船外に排出することができる。
 また、本発明の第32の形態に係るバラスト水処理方法によれば、船外に向かって船内を流通する海水に殺菌剤残留物の少なくとも一部を注入することにより当該海水への殺菌剤残留物の溶解又はより均一な分散を促進することができるので、引き続く還元性物質の注入による、塩素系殺菌剤に由来する遊離有効塩素の還元をより効率的に行うことができる。
 バラスト水処理装置の船内設置場所、船舶の行先、航路、航海時間等によっては、殺菌剤残留物の少なくとも一部の濃化が進行し、逆に殺菌剤残留物の水温低下により水に対する塩素系薬剤の溶解度が低下する。例えば、赤道直下を航行する船舶の機関室の空調及び通風の機能が不十分であると、機関室の温度は摂氏50度近く(場合によっては摂氏50度超)になることがあるので、そのような機関室内に設置してあるバラスト水処理装置では、水分の著しい蒸発により殺菌剤残留物の少なくとも一部の濃化が短時間で進行する。また、水分の蒸発が緩慢に進む場合であっても、バラスト水処理装置が一回目の運転から二回目の運転までの間、長時間活動停止状態に置かれる場合には、少しずつであっても確実に殺菌剤残留物の濃化は進行する。他方、中高緯度の海域を航行する船舶の機関室の空調及び通風の機能が不十分であると、機関室内は摂氏30度未満になるので、そのような機関室内に設置してあるバラスト水処理装置では、殺菌剤残留物の水温低下に伴い、水に対する塩素系薬剤の溶解度が低下する。
 殺菌剤残留物の少なくとも一部の濃化や水に対する塩素系薬剤の溶解度の低下が進行すると、塩素系薬剤の成分の析出物が、殺菌剤残留物中や、殺菌剤残留物とバラスト水処理装置の構成要素(容器、配管系統等)との接液領域に発生し、堆積し、場合によっては固化するので、殺菌剤残留物に起因する動作不具合が起こり、バラスト水処理の正常な実行の阻害要因となる。
 これに対し、本発明の第33の形態に係るバラスト水処理方法によれば、殺菌剤処理工程の終了後3時間以内に残留物除去工程が開始されるので、殺菌剤残留物に起因する動作不具合の発生を抑制又は防止することができ、ひいてはバラスト水処理を正常に実行することができる。
 塩素系薬剤の成分の析出物の発生・堆積・固化の進行を抑えるためには、殺菌剤処理工程の終了後できるだけ早いタイミングで残留物除去工程が開始されること、具体的には、殺菌剤処理工程の終了後2時間以内に残留物除去工程が開始されることがより好ましく、殺菌剤処理工程の終了直後に残留物除去工程が開始されることがさらに好ましい。
 尤も、殺菌剤残留物に起因する動作不具合の発生を抑制又は防止する効果がある限り、殺菌剤処理工程の終了と残留物除去工程の開始との時間差は3時間を越えてもよい。
 そのため、場合によっては、本発明の第34の形態に係るバラスト水処理方法のように、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、前記第1の港から出港する前又は出港した後で第2の港に到着する前に前記残留物除去工程が実行されてもよい。あるいは、本発明の第35の形態に係るバラスト水処理方法のように、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、前記第1の港から出港した後で第2の港に到着したとき又はその到着後に前記残留物除去工程が実行されてもよい。
 本発明の第36の形態に係るバラスト水処理方法によれば、バラストタンクから取水した海水中に残留する、塩素系殺菌剤に由来する遊離有効塩素を、還元剤により無害化した後、当該バラスト水を船外に排出することができる。
 本発明、特に本発明の第37の形態に係るバラスト水処理方法によれば、バラスト水の殺菌に用いられずに配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を配管経路から除去する残留物除去工程を備えている。そして、残留物除去工程が、塩素系殺菌剤の残留物の少なくとも一部をタンクに収容させる第一工程と、タンクに収容されている塩素系殺菌剤の残留物の少なくとも一部をタンクから排出させる第二工程と、を含むので、その塩素系殺菌剤の残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 塩素系殺菌剤の残留物中に遊離有効塩素が存在する場合、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物を還元性物質に接触させることにより遊離有効塩素を還元すれば、あるいはアルカリ性物質により塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第40又は41の形態に係るバラスト水処理方法によれば、塩素系殺菌剤の残留物の少なくとも一部と除去反応性物質をタンク内で反応させる工程又は配管経路に水及び/または除去反応性物質を供給して配管経路内の塩素系殺菌剤の残留物の少なくとも一部と除去反応性物質を配管経路内で反応させる工程を含み、その除去反応性物質が還元性物質又はアルカリ性物質であるので、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる。
 本発明の第40の形態に係るバラスト水処理方法においては、塩素系殺菌剤の残留物と還元性物質又はアルカリ性物質との反応により発熱が起こるケースにおいて、両物質をタンクに少なくとも一時的又は短時間停留させるので、発熱が起こる場所は、主としてタンクになる。それ故、この第40の形態に係るバラスト水処理方法によれば、発熱対策を講じるべき対象を、主としてタンクに絞り込むことができる。
 本発明、特に本発明の第42の形態に係るバラスト水処理方法によれば、バラスト水の殺菌に用いられずに配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を配管経路から除去する残留物除去工程を備えている。そして、残留物除去工程が、前記殺菌剤配管経路に水及び/又は除去反応性物質を供給する工程を含み、前記除去反応性物質が還元性物質又はアルカリ性物質であるので、その塩素系殺菌剤の残留物に起因する、容器や配管経路の閉塞、圧損増加その他の流通障害、配管経路を構成する付属物の機能不全などの動作不具合の発生を抑制又は防止することができる。
 塩素系薬剤の中には、塩素系薬剤の水溶液から塩素含有ガスを発生させるものがある。たとえば、塩素化イソシアヌル酸ナトリウムの場合、その水溶液から塩素含有ガスが発生し、塩素含有ガスはたとえ少量であっても刺激臭を伴う場合が多いので、塩素含有ガスの発生源の周囲の船内作業環境を悪化させる。
 これに対し、本発明の第44の形態に係るバラスト水処理方法によれば、バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程を含み、前記残留物除去工程が、前記殺菌剤配管経路に清水を供給するので、水洗除去効果を得ることができると同時に、塩素含有ガスの発生、ひいては船内作業環境の悪化を抑制又は防止することができる。
 塩素系殺菌剤の残留物中に遊離有効塩素が存在する場合、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物を還元性物質に接触させることにより遊離有効塩素を還元すれば、あるいはアルカリ性物質により塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解を促進すれば、塩素含有ガスの発生は起らないか、抑制される。
 それ故、本発明の第42の形態に係るバラスト水処理方法によれば、バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程を備えており、前記残留物除去工程が、前記殺菌剤配管経路に除去反応性物質を供給する工程を含み、そして、その除去反応性物質が還元性物質又はアルカリ性物質であるので、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念されるケースであっても、その発生を抑制又は防止することができる。
 殺菌剤配管経路に残留している塩素系殺菌剤の残留物が除去反応性物質と接触すると、反応が生じ反応生成物の増加とともに塩素系殺菌剤の残留物の量は減少し、場合によっては塩素系殺菌剤の残留物の流動性が高くなる。それ故、本発明の第46の形態に係るバラスト水処理方法によれば、殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口を備えているので、塩素系殺菌剤の残留物を除去反応性物質と反応させ、減量された又は流動性が高められた塩素系殺菌剤の残留物の少なくとも一部を、殺菌剤配管経路外に除去することができる。
 塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、塩素系殺菌剤の残留物に還元性物質を接触させることにより塩素系殺菌剤の残留物中の遊離有効塩素を還元すれば、あるいは、塩素系殺菌剤の残留物にアルカリ性物質を接触させることにより、塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解反応を促進すれば、塩素含有ガスの発生は起らないか、抑制される。それ故、本発明の第46の形態に係るバラスト水処理方法によれば、殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口を備えているので、塩素系殺菌剤の残留物を除去反応性物質と反応させることができ、塩素系殺菌剤の残留物から塩素含有ガスが発生することが懸念される場合であっても、その発生を抑制又は防止することができる。
 総じて、本発明に係るバラスト水処理方法によれば、本発明の各形態が奏する効果を発揮し、それにより船舶内でバラスト水処理を正常に実行することができる。
本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態の基本構成説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第1の運転モードの説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第3の運転モードの説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第2の運転モードのA型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第2の運転モードのB型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第2の運転モードのC型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態におけるバラストポンプの第2の運転モードのD型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態における殺菌剤残留物の除去の説明図である。 図8に示されている殺菌剤残留物の除去の変形例の説明図である。 図8に示されている殺菌剤残留物の除去の別の変形例の説明図である。 図9に示されている殺菌剤残留物の除去の別の変形例の説明図である。 本発明に係る船舶において実行されるバラスト水処理方法及び本発明に係るバラスト水処理方法並びにその変形例の工程フロー説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第1の運転モードの説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第3の運転モードの説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第2の運転モードのA型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第2の運転モードのB型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第2の運転モードのC型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態におけるバラストポンプの第2の運転モードのD型の説明図である。 還元剤供給装置から還元性物質を取り出す構成例の説明図である。 還元剤供給装置から還元性物質を取り出す別の構成例の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の変形例の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第1の運転モードの説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第3の運転モードの説明図である。 本発明に係る船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第2の運転モードのA型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第2の運転モードのB型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第2の運転モードのC型の説明図である。 本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第2の実施形態の基本構成の別の変形例におけるバラストポンプの第2の運転モードのD型の説明図である。
 以下、本発明の実施形態又は実施例を示し、本発明を詳細に説明する。その際、必要に応じて図表を参照しつつ説明するが、各図表において同じ部分又は相当する若しくは共通する部分にはこれと同じ符号を付す。いうまでもなく、本発明は、図面に記載された実施の形態や実施例に限定されるものではない。
<本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶の第1の実施形態>
1)基本構成
 図1は、本発明に係る船舶及び本発明に係るバラスト水処理方法が適用される船舶(以下「船舶VSL」という)の第1の実施形態の基本構成説明図である。説明の便のため、図1では、すべての開閉バルブが開状態で描かれている。
 図1に示されているとおり、船舶VSLは、取水口又はシーチェストITと、バラストポンプPmと、バラストタンクTと、排水口DOとを備え、シーチェストIT、バラストポンプPm及びバラストタンクTを連結し、取水口ITを通じて船外から取水した海水WoをバラストタンクTに向かって流通させ、その途中で塩素系殺菌剤Asを注入して、塩素系殺菌剤Asが注入された海水Wsにして、バラストタンクTに排出するバラスト水取水用配管経路Lfと、バラストタンクT、バラストポンプPm及び排水口DOを連結し、バラストタンクTから取水したバラスト水Wtを排水口DOに向かって流通させ、排水口DOを通じて船外へ排出するバラスト水排水用配管経路Lrと、バラスト水取水用配管経路Lfを流通する海水Woをろ過するフィルタ装置Fと、フィルタ装置Fの下流においてバラスト水取水用配管経路Lfに塩素系殺菌剤Asを注入する殺菌剤注入口Isを具備する殺菌剤供給装置Sを備えている。
 船舶VSLは、更に、バラスト水排水用配管経路Lrに還元剤Anを注入する還元剤注入口Inを具備する還元剤供給装置Nを備えており、バラスト水排水用配管経路Lrの途中でバラストタンクTから取水したバラスト水Wtに還元剤Anを注入して、還元剤Anが注入されたバラスト水Wnにし、還元剤Anが注入されたバラスト水Wnを排水口DOを通じて船外へ排出することを可能にしている。
 船舶VSLは、更に、取水口ITを通じて船外から取水した海水Woを、バラストタンクTを経由することなく排水口DOに向かって流通させ、その途中で殺菌剤供給装置Sの配管経路Lsにおいて海水Woに殺菌剤残留物Reの少なくとも一部を注入し、殺菌剤残留物Reが注入された海水Wdとして、排水口DOを通じて船外へ排出する残留物排出用配管経路Ldを備えている。
 残留物排出用配管経路Ldは、フィルタ装置Fをバイパスする配管経路<Ld1>を具備していても、バイパスしない配管経路<Ld2>を具備していてもよい。
 殺菌剤残留物Reは、殺菌剤供給装置Sが具備するタンクTsや殺菌剤配管経路Lsに残留している、未使用の塩素系殺菌剤Asであるが、その少なくとも一部が濃化してできる物質、塩素系殺菌剤Asの原料である塩素系薬剤ms及び塩素系薬剤msとその溶媒である水wsとを混合してできる混合物Csの少なくとも一つを含む。混合物Csは、塩素系薬剤msを水wsに溶解してできる水溶液を含む。
 バラストポンプPmの吐出側には、ポンプの停止、故障等の異常時に起こり得る逆流を防止するために、逆止弁Vcmが設置してある。
 バラストポンプPmは、少なくとも三つの運転モード(後述の第1乃至第3の運転モード)を備えている。
 バラストポンプPm、複数個のバルブ、殺菌剤供給装置S、還元剤供給装置Nなどの機器・装置等の操作や調整は、当該操作や調整の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。例えば、バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ld(残留物排出用配管経路<Ld1>及び残留物排出用配管経路<Ld2>)のうちのいずれか一つを選択するための複数個の開閉バルブの開閉の設定、設定した配管経路から他の配管経路への変更ならびにバラストポンプPmの運転モードの切り換えは、当該設定、変更及び切り換えの操作の一部又は全部を手動で行う場合を除き、制御装置PLCに予めインストールしてある制御プログラムに従って自動で行われる。
 制御装置PLCは、バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ldのうちのいずれか又はすべてが具備する計測機器の出力Smを受信し、記録し、監視し、その出力Smに基づき、他のいずれかの機器・装置等を制御するための制御信号Saを生成し、その機器・装置等に向けて発信する機能を有する監視制御装置であってもよい。出力Smは、例えば流量計の出力F(i)、TRO計測装置の出力Sn(j)であり、図示されていない水温計その他の計測装置の出力であってもよい。制御信号Saは、例えば各バルブの開閉や開度を変更するためのモータの制御信号V(k)、バラストポンプPmを初めとするポンプ装置を駆動するモータの制御信号P(l)であり、その他の機器・装置類の動作を制御する信号であってもよい。
 機器・装置類の動作を計測装置の出力に基づき直接制御する場合には、制御装置PLCによる当該動作の制御は行われない。
2)配管経路
 図2は、図1に示されている船舶の第1の実施形態におけるバラストポンプの第1の運転モードの説明図であり、図3は、図1に示されている船舶の第1の実施形態におけるバラストポンプの第3の運転モードの説明図である。図4乃至図7は、それぞれ、図1に示されている船舶の第1の実施形態におけるバラストポンプの第2の運転モードのA型乃至D型の説明図である。図2乃至図7は、各運転モードに対応したバルブの開閉状態で描かれている。
 なお、バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ldのそれぞれに対応する開閉バルブの開閉の設定は、表1に記載のとおりである。
 バラスト水取水用配管経路Lfは、図2中で太字により描かれている配管経路であり、殺菌剤注入口Isの下流、バラストタンクTの上流に、船外から取水した海水Woと塩素系殺菌剤Asとの混合を促進するためのミキサーMxsを備えており、IT→V1→Q6→Pm→Vcm→Q3→Q4→V2→F→Q5→Is→Mxs→V3→Qt→V5→Sn1→Ft→Tの経路中に、逆止弁Vcm及び複数個の開状態のバルブ(V1, V2, V3,V5)を備えている。
 バラスト水排水用配管経路Lrは、図3中で太字により描かれている配管経路であり、T→Ft→Sn1→V5→Qt→V4→In→Mxn→Q1→V6→Q6→Pm→Vcm→Q3→Q4→V7→Q2→Sn2→DOの経路中に逆止弁Vcm及び複数個の開状態のバルブ(V4, V5, V6,V7)を備えている。
 残留物排出用配管経路Ldには、フィルタ装置Fを通過するものと、しないものの二種類ある。フィルタ装置Fを通過しない残留物排出用配管経路<Ld1>は、図4及び図6中で太字により描かれている配管経路であり、IT→V1→Q6→Pm→Vcm→Q3→V9→Q5→Id→Mxs→V3→Qt→V4→In→Mxn→Q1→V8→Q2→Sn2→DOの経路中に逆止弁Vcm及び複数個の開状態のバルブ(V1, V3, V4, V8, V9)を備えている。フィルタ装置Fを通過する残留物排出用配管経路<Ld2>は、図5及び図7中で太字により描かれている配管経路であり、IT→V1→Q6→Pm→Vcm→Q3→Q4→V2→F→Q5→Id→Mxs→V3→Qt→V4→In→Mxn→Q1→V8→Q2→Sn2→DOの経路中に逆止弁Vcm及び複数個の開状態のバルブ(V1, V2, V3, V4, V8)を備えている。
 ここで、位置Q1は、ミキサーMxnの下流、バルブV8の上流にあり、位置Q2は、バルブV8の下流、排水口DOの上流にある。位置Q4は、バルブV7とバルブV2の間にあり、位置Q3は、バラストポンプPmの下流、位置Q4の上流にある。位置Q5は、フィルタ装置Fの下流、残留物注入口Idの上流にある。バルブV8は、バラストポンプPmを通過しないQ1→Q2の配管経路中にあり、バルブV9は、フィルタ装置Fを通過しないQ3→Q5の配管経路中にある。位置Q6は、バルブV1の下流、バラストポンプPmの上流にあり、且つ、バルブV1とバルブV6の間に位置する。位置Qtは、バラスト水取水用配管経路Lfの場合はバルブV3の下流、バルブV5の上流にあり、バラスト水排水用配管経路Lrの場合は、バルブV5の下流、バルブV4の上流の位置にある。
 残留物排出用配管経路<Ld1>及び残留物排出用配管経路<Ld2>はいずれも、その配管経路中に残留物注入口Idを備えている。残留物注入口Idは、残留物排出用配管経路Ldを流通する船外から取水した海水Woに、殺菌剤供給装置Sが具備する配管経路Lsに残存する殺菌剤残留物Reの少なくとも一部を注入する注入口であり、殺菌剤注入口Isと共通の注入口であってもよく、殺菌剤注入口Isの上流に配置していても、下流に配置していてもよい。注入口の代表例は、排出ノズルや排出用開口部である。
 バラスト水取水用配管経路Lfは複数個のセンサ(TRO計測器Sn1, 流量計Ft)を備え、バラスト水排水用配管経路Lrは複数個のセンサ(TRO計測器Sn1, Sn2, 流量計Ft)を備え、残留物排出用配管経路LdはTRO計測器Sn2を備えているが、それらは例示に過ぎない。各配管経路は、図示されていないその他の機器・装置等を備えていてもよい。
 バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ld(残留物排出用配管経路<Ld1>及び残留物排出用配管経路<Ld2>)のそれぞれの設定ならびに設定した配管経路から他の配管経路への変更は、表1に示されている開閉バルブの開閉の設定に基づき手動であるいは制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って制御装置PLC又はその他の制御装置による制御に従って自動で行われる。
Figure JPOXMLDOC01-appb-T000001
 各配管経路は、更に、図示されていない、逆止弁Vcm以外の逆止弁や保守点検の便のための手動バルブを備えていてもよい。
3)殺菌剤供給装置S
3.1)基本構成
 殺菌剤供給装置Sは、図1に示されているとおり、塩素系薬剤ms及び塩素系薬剤msの溶媒となる水wsが注入され、両者を収容するタンクTsと、殺菌剤注入口Isと、タンクTsと殺菌剤注入口Isとを接続する殺菌剤配管経路Lsとを備えている。殺菌剤注入口Isは、バラスト水取水用配管経路Lfを流通する船外から取水した海水Woに塩素系殺菌剤Asを注入する、排出ノズル、排出用開口部などの注入口である。殺菌剤配管経路Lsは、タンクTsの下流、殺菌剤注入口Isの上流にポンプPsを、ポンプPsの下流、殺菌剤注入口Isの上流にバルブVsを備える、Ts→Ps→Fs→Vs→Isの配管経路である。
 殺菌剤供給装置Sは、更に、タンクTsと、残留物注入口Idと、タンクTsと残留物注入口Idとを接続する残留物配管経路Ls*とを備えている。残留物配管経路Ls*は、タンクTsの下流、残留物注入口Idの上流にポンプPsを、ポンプPsとバルブVsの間の位置Qsの下流、残留物注入口Idの上流にバルブVdを備える、Ts→Ps→Fs→Qs→Vd→Idの配管経路である。残留物配管経路Ls*は、タンクTsから位置Qsまでは殺菌剤配管経路Lsと同じであり、位置Qsから分岐して残留物注入口Idに接続している。
 なお、殺菌剤供給装置Sは、位置Qsと殺菌剤注入口Isとの距離及び位置QsとバルブVsとの距離は、できるだけ小さくなるように、そしてそれにより位置Qsと殺菌剤注入口Isとの間に残留し得る殺菌剤残留物Reの量が少なくなるように設計し、作製してある。また、タンクTsは、塩素系薬剤msの水wsとの混合及び水wsへの溶解を促進するための攪拌装置Sts(図示されず)を備えていてもよい。攪拌装置の典型例は、インペラ式攪拌機である。
 殺菌剤配管経路Lsと残留物配管経路Ls*の切り換えは、バルブVs, Vdの開閉の切り換えにより行われる。殺菌剤配管経路Lsを選択する場合には、バルブVsを開、バルブVdを閉にし、残留物配管経路Ls*を選択する場合には、バルブVsを閉、バルブVdを開にする。このようなバルブVs, Vdの開閉の切り換えは、当該切り換えの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行う。
 殺菌剤供給装置Sは、殺菌剤配管経路Ls中に流量計Fsを備えているが、殺菌剤配管経路Ls及び残留物配管経路Ls*中に図示されていないTRO計測機器その他の機器・装置等を備えていてもよい。また、殺菌剤供給装置Sは、ポンプPsの吐出側、位置Qsの上流に、ポンプPsの停止、故障等の異常時に起こり得る逆流を防止するための逆止弁Vcs(図示されず)を備えていてもよく、殺菌剤配管経路Ls及び残留物配管経路Ls*中に図示されていない、逆止弁Vcs以外の逆止弁や保守点検の便のための手動バルブを備えていてもよい。
 例えば、殺菌剤注入口Isから船外から取水した海水Woへの塩素系殺菌剤Asの注入圧力が足りない場合には、殺菌剤配管経路Lsは、バルブVsの下流、殺菌剤注入口Isの上流に殺菌剤注入用ポンプPis(図示されず)を備えていてもよく、殺菌剤注入用ポンプPis(図示されず)を備える場合には、殺菌剤注入用ポンプPisの下流(吐出口側)、殺菌剤注入口Isの上流に背圧弁を備えていてもよい。また、残留物注入口Idから船外から取水した海水Woへの殺菌剤残留物Reの注入圧力が足りない場合には、残留物配管経路Ls*は、バルブVdの下流、残留物注入口Idの上流に残留物注入用ポンプPid(図示されず)を備えていてもよく、残留物注入用ポンプPidの下流(吐出口側)、残留物注入口Idの上流に背圧弁を備えていてもよい。
 なお、バルブVsが開、バルブVdが閉であるとき、殺菌剤注入用ポンプPisが稼動状態、残留物注入用ポンプPidが不稼動状態になるように、また、バルブVsが閉、バルブVdが開であるとき、殺菌剤注入用ポンプPisが不稼動状態、残留物注入用ポンプPidが稼動状態になるように切り換える。このようなポンプの稼動状態の切り換えは、当該切り換えの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
 また、殺菌剤配管経路Lsは、内容物Csの一部又は全部を、ポンプPsの下流の位置Qs0(図示されず)から、ポンプPsの上流の位置Qs1(図示されず)に、内容物Csの一部又は全部を戻す帰還配管経路Lsr(図示されず)を備えていてもよい。位置Qs0は、ポンプPsの下流、位置Qsの上流の位置あるいは位置Qsであり、位置Qs1は、タンクTsあるいはタンクTsの下流、ポンプPsの上流の位置である。帰還配管経路Lsrの一例は、位置Qs0において、帰還配管経路Lsrが殺菌剤配管経路Lsから枝状に分岐し、殺菌剤配管経路Lsを流通する内容物Csの少なくとも一部は必ず帰還配管経路Lsrを流れるように構成してある配管経路である。帰還配管経路Lsrの別の例は、位置Qs0に、液体サイクロンに代表される固液分離装置を備え、未溶解の塩素系薬剤msが水wsとともに帰還配管経路Lsrに流通するように構成してある配管経路である。いずれの例も、バルブVs及びバルブVdを閉にすることで、内容物Csの全部が、帰還配管経路Lsrにより位置Qs1に戻り、バルブVs及びバルブVdの開度を調整することで、位置Qs1に戻る内容物Csの量が決まるように構成してある。殺菌剤配管経路Lsから殺菌剤残留物Reの除去を行なう際は、殺菌剤配管経路Lsの一部である帰還配管経路Lsrの少なくとも一部は、残留物配管経路Ls*の一部を構成する。
3.2)塩素系殺菌剤
 塩素系殺菌剤Asの原料である塩素系薬剤msの代表例は、固形の塩素系薬剤であり、固形の塩素系薬剤の代表例は、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等であり、塩素系殺菌剤Asの代表例は、ジクロロイソシアヌル酸ナトリウムの水溶液である。
 水に対する固形の塩素系薬剤msの溶解度が低いと、水wsへの当該固形の塩素系薬剤msの溶解に時間がかかる、塩素系薬剤の水溶液中の遊離有効塩素濃度が高くならず塩素系殺菌剤Asとしての役割を十分に果たせない、などの問題が生じる。そのような場合には、適当な加熱装置を用いて水wsの水温や固形の塩素系薬剤msを水wsに混合してできる混合物Csの温度を高めたり、適当な撹拌装置を用いて当該混合物Csをより強く撹拌することにより、殺菌剤として必要な遊離有効塩素濃度を有する水溶液Anを必要量用意する。また、殺菌剤配管経路Lsに帰還配管経路Lsrを備える殺菌剤供給装置Sを採用し、ポンプPsにより混合物Csを強く攪拌する回数を増やすことで、固形の塩素系薬剤msの水wsへの溶解を促進してもよい。
3.3)水ws
 水wsは、海水でも非海水でもよい。しかし、塩素系薬剤msや殺菌剤残留物Reが海水との接触により塩素含有ガスの発生源となる場合には、水wsは清水とする。
 清水を水wsとして使用する場合、その清水は、船外から船内の専用貯蔵タンクに予め収容してある清水であってもよく、船内に設置してある海水淡水化装置を用いて製造した清水でもよいが、後者であれば、前者のような専用貯蔵タンクを船内に設置する必要がないので、より好ましい。それ故、塩素系薬剤msがトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウムである場合には、水wsは、清水とする。
3.4)殺菌処理
 バラスト水取水用配管経路Lf及び殺菌剤配管経路Lsが設定してある場合、図2中に示されているように、ポンプPsにより、塩素系薬剤msを水wsに混合させてできる混合物CsをタンクTsから排出させ、混合物Csを強く撹拌することにより塩素系殺菌剤の水溶液(塩素系殺菌剤)Asを作り出し、塩素系殺菌剤Asを、殺菌剤配管経路Lsを通じて殺菌剤注入口Isから、バラスト水取水用配管経路Lfを流通する船外から取水した海水Woに注入し、これを殺菌する。
3.5)殺菌剤残留物の除去
 殺菌剤残留物Reの除去の最中は、タンクTsへの塩素系薬剤msの注入は行わない。
(A)強制除去
 残留物排出用配管経路Ld及び残留物配管経路Ls*が設定してある場合、ポンプPsにより、タンクTsを含む殺菌剤配管経路Lsに残留している殺菌剤残留物Reの少なくとも一部を、残留物配管経路Ls*を通じて残留物注入口Idから、残留物排出用配管経路Ld中を流通する船外から取水した海水Woに注入し、除去する。
 位置Qsと残留物注入口Idとの間に残留し得る殺菌剤残留物Reについては、これを、残留物排出用配管経路Ldの船外から取水した海水Woの流通に起因する負圧により、残留物注入口Id側から海水Wo側に移動させて、除去する。その場合、必要に応じてバルブVsを一時的に開にして当該移動を促してもよい。
(B)水洗除去効果の利用
 残留物配管経路Ls*が設定してある場合、図4乃至図7に示されているように、予めタンクTsに水wsを収容させておき、あるいはタンクTsへの水wsの注入を続けながら、ポンプPsにより、水wsをタンクTsから排出させ、勢いを付けて残留物配管経路Ls*に流通させる。そして、殺菌剤残留物Reの流動性が、水wsの勢いにより及び/又は殺菌剤残留物Reの水wsと混合又は水wsへの溶解を通じて、向上することを利用して、タンクTsを含む殺菌剤配管経路Lsに残留している殺菌剤残留物Reの少なくとも一部を、残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入し、除去する。
 殺菌剤残留物Reの水wsへの溶解を促進するため、水wsの水温や殺菌剤残留物Reと水wsとの混合物の温度を、残留物配管経路Ls*の耐熱温度範囲内で、且つ、塩素含有ガスの発生への対処ができる範囲で、高めてもよい。
 なお、殺菌剤配管経路Lsが帰還配管経路Lsrを備える場合において、帰還配管経路Lsrに残留する殺菌剤残留物Reの少なくとも一部を除去するためには、まず、一時的にバルブVs及びバルブVdを閉にして、水wsを位置Qs0から位置Qs1に戻し、又は、位置Qs0と位置Qs1との間で循環させ、それにより、帰還配管経路Lsrに残留する殺菌剤残留物Reの流動性を、水wsの勢いにより及び/又は水wsと混合又は溶解することにより向上させる。その後、バルブVsを閉、バルブVdを開にして、当該殺菌剤残留物Reの少なくとも一部を残留物注入口Idから、船外から取水した海水Woに注入すればよい。
(C)反応除去効果の利用
 図8は、殺菌剤残留物の除去の変形例の説明図である。図8を参照しながら、図4乃至図7に示されている殺菌剤供給装置Sにおいて、位置Qnから還元性物質又はアルカリ性物質An*(以下「除去反応性物質An*」という場合がある)を注入することにより残留物配管経路Ls*中に注入する場合について説明する。ここで、位置Qnは、水wsを供給する配管経路のタンクTs上流の位置、タンクTs及びタンクTsの下流、残留物配管経路Ls*の途中にある位置のうち少なくとも一つである。位置Qnは、図8中に示されているように、(c1)水wsを供給する配管経路のタンクTs上流の位置であるが、これにとどまらず、(c2)タンクTsの位置や(c3)タンクTsの下流、残留物配管経路Ls*の途中にある位置(図示されず)であってもよく、それら三つ、つまり(c1)乃至(c3)のうち複数の位置であってもよい。
 タンクTs及び/又はその他の殺菌剤配管経路Lsに残留している殺菌剤残留物Reと除去反応性物質An*とを反応させると、反応生成物の増加とともに当該殺菌剤残留物Reの量は減少し、場合によっては残留する当該殺菌剤残留物Reの流動性が高くなる。減量された又は流動性が高められた殺菌剤残留物Reの少なくとも一部を、当該反応生成物質とともに残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入し、除去する。また、殺菌剤残留物Reが塩素含有ガスの発生源になる場合には、還元性物質により当該殺菌剤残留物Re中の遊離有効塩素の還元によって、又はアルカリ性物質により殺菌剤残留物Reを含む系のpHを高くしアルカリ雰囲気として当該殺菌剤残留物質Re中の遊離有効塩素を有する殺菌剤成分の分解反応を促進することにより、塩素含有ガスの発生を抑制又は防止する。塩素系薬剤msがジクロロイソシアヌル酸ナトリウムである場合には、アルカリ性物質により殺菌剤残留物Reを含む系のpHを高くしアルカリ雰囲気とすることによりイソシアヌル酸はシアヌル酸に形態が変化し、ジクロロイソシアヌル酸ナトリウムと水から遊離有効塩素を有する殺菌剤成分である次亜塩素酸が生成する反応が進み、生成した次亜塩素酸は分解反応により塩酸と酸素を生成して有効塩素を失って塩素含有ガスの発生が抑制又は防止される。アルカリ性物質としては、アルカリ金属またはアルカリ土類金属の水酸化物(塩)またはアルカリ金属またはアルカリ土類金属の炭酸化物(塩)を用いる。具体的には水酸化ナトリウムまたは炭酸ナトリウムを用いる。
 塩素系殺菌剤の残留物に除去反応性物質を接触させ反応を生じさせるために、殺菌剤配管経路Lsの殺菌剤注入口Isより上流側の位置又は殺菌剤注入口Isの位置に、除去反応性物質An*を注入する除去反応性物質注入口を設けてもよい。バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を注入された除去反応性物質と反応させ、塩素系殺菌剤の残留物の量を減少させ、塩素系殺菌剤の残留物の流動性を高くして、塩素系殺菌剤の残留物の少なくとも一部を、殺菌剤配管経路外に除去することができる。
 また、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、除去反応性物質注入口から除去反応性物質を供給し、塩素系殺菌剤の残留物に還元性物質を接触させることにより塩素系殺菌剤の残留物中の遊離有効塩素を還元して、あるいは、塩素系殺菌剤の残留物にアルカリ性物質を接触させることにより、塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解反応を促進して、塩素含有ガスの発生を抑制することができる。
 除去反応性物質An*を使用する上記の反応除去効果の利用と、上記(B)の水洗除去効果の利用との組み合わせにより、殺菌剤残留物Reを除去してもよい。例えば、除去反応性物質An*が水溶液である場合には、除去反応性物質An*の水溶液をポンプPsにより勢いを付けて残留物配管経路Ls*に流通させれば、両効果の利用による殺菌剤残留物Reの除去を行うことができる。また、除去反応性物質An*を残留物配管経路Ls*に注入した後、除去反応性物質An*を含有しない水wsをタンクTsに注入し続けながら、ポンプPsにより、水wsをタンクTsから排出させ、勢いを付けて残留物配管経路Ls*に流通させれば、反応除去効果の利用による除去に引き続き、水洗除去効果の利用による除去を行うことができる。
(D)除去反応性物質An*
 除去反応性物質An*が還元性物質である場合は、後述の還元剤Anと同じ物質であっても、異なる物質であってもよい。また、還元剤供給装置Nが具備するタンクTnから取り出した還元剤Anをそのまま又は必要に応じて希釈して、除去反応性物質An*として使用してもよい(図20及び図21参照)。
(E)反応除去の際の発熱対策
 殺菌剤残留物Reと除去反応性物質An*との反応に伴う発熱により船内環境が悪化するおそれがある場合には、下記(e1)乃至(e3)の少なくとも一つにより、当該発熱による船内環境への実害を抑制又は防止する。
(e1) 除去反応性物質An*の濃度が低くなるようにして、殺菌剤残留物Reと除去反応性物質An*との反応に伴う発熱の量を抑える。 
 例えば、(e11)タンクTsに注入する水wsの量を、塩素系殺菌剤Asを作り出す場合よりも多くして、タンクTs中の除去反応性物質An*の濃度を低く抑える;
(e12)除去反応性物質An*の水溶液を予め用意しておき、これをタンクTsに注入して、タンクTs中の除去反応性物質An*の濃度を低く抑える;
(e13)除去反応性物質An*の水溶液を予め用意しておき、これを小分けにして複数回にわたり水wsに注入することで、除去反応性物質An*を含有する水wsと除去反応性物質An*を含有しない水wsを交互に残留物配管経路Ls*に流通させ、殺菌剤残留物Reと除去反応性物質An*との反応による発熱を、除去反応性物質An*を含有しない水wsにより抑える、といった対策を行う。 
(e2) 除去反応性物質An*を残留物配管経路Ls*中に注入した後、除去反応性物質An*を含有しない水wsを残留物配管経路Ls*中に注入し、冷却する。例えば、除去反応性物質An*を残留物配管経路Ls*中に注入した後、除去反応性物質An*を含有しない水wsをタンクTsに注入し、ポンプPsにより、タンクTsからタンクTs内の内容物の少なくとも一部を排出させ、残留物配管経路Ls*中に流通させることで、当該水wsの冷却作用により当該発熱を抑制する。 
(e3) 残留物配管経路Ls*にタンクTsとは別のタンクTsmを設置し、主にタンクTsmにおいて、殺菌剤残留物Reと除去反応性物質An*との反応による発熱が起こるように構成する。
 図9は、図8中に示されている殺菌剤供給装置Sの別の変形例の説明図である。図9を参照して上記(e3)の対策が例説される。この変形例では、殺菌剤配管経路Lsは、Ts→Qsa→Vs2→Qsb→Ps→Fs→Qs→Vs→Isの配管経路であり、残留物配管経路Ls*は、Ts→Qsa→Vs2→Qsb→Ps→Fs→Qs→Vd→Qsc→Vs4→Idの配管経路であり、図8における殺菌剤配管経路Ls及び残留物配管経路Ls*と基本的に変わらない。この変形例では、更に、タンクTsmを通過する残留物配管経路Ldrを備えている。残留物配管経路Ldrは、Ts→Qsa→Vs1→Tsm→Vs3→Qsb→Ps→Fs→Qs→Vd→Qsc→Vs4→Idの配管経路である。当該残留物配管経路Ldrは、位置Qscから分岐してタンクTsmに戻る帰還経路(Qsc→Vs5→Tsm)を備える残留物配管経路Ldr*であってもよい。
 ここで、位置Qsaは、タンクTsからタンクTsmを経由せずにポンプPsに向かう配管経路とタンクTsからタンクTsmに向かう配管経路の分岐点であり、位置Qsbは、位置Qsaの下流、ポンプPsの上流にある、位置QsaからタンクTsmを経由せずにポンプPsに向かう配管経路とタンクTsmからポンプPsに向かう配管経路との接続点である。バルブVs1は、位置Qsaの下流、タンクTsmの上流にある開閉バルブであり、バルブVs2は、位置Qsaの下流、位置Qsbの上流にある開閉バルブであり、バルブVs3は、タンクTsmの下流、位置Qsbの上流にある開閉バルブである。
 位置Qscは、バルブVdの下流、残留物注入口Idの上流にある位置である。バルブVs4は、位置Qscの下流、残留物注入口Idの上流にある開閉バルブであり、バルブVs5は、位置Qscの下流にある、位置Qscから分岐する残留物配管経路Ldr*の帰還経路(Qsc→Vs5→Tsm)が備える開閉バルブである。
 殺菌剤配管経路Lsは、バルブVs2及びVsを開にし、バルブVs1、Vs3及びVdを閉にすることで設定し、残留物配管経路Ls*は、バルブVs2、Vd及びVs4を開にし、バルブVs1、Vs3、Vs及びVs5を閉にすることで設定する。残留物配管経路Ldrは、バルブVs1、Vs3、Vd及びVs4を開にし、バルブVs2、VsおよびVs5を閉にすることにより設定し、残留物配管経路Ldr*は、バルブVs1、Vs3、Vd及びVs5を開にし、バルブVs2、VsおよびVs4を閉にすることにより設定する。
 殺菌剤配管経路Ls、残留物配管経路Ls*、残留物配管経路Ldr及び残留物配管経路Ldr*の切り換えは、当該切り換えの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
 例えば、殺菌剤残留物Reの少なくとも一部を水wsとともに残留物配管経路Ldr*に沿って、タンクTsmに収容し帰還経路(Qsc→Vs5→Tsm)に沿って循環させ、その循環を所定回数又は所定時間を行った後に残留物配管経路Ldrに切り換えて、残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入するように自動制御が行われる。また、殺菌剤残留物Reの少なくとも一部を水wsとともに、まず、残留物配管経路Ls*に沿って流通させ、残留物注入口Idから船外から取水した海水Woに注入した後、残留物配管経路Ls*から残留物配管経路Ldr*に切り換え、引き続き、水wsを流通させることで、除去し切れなかった殺菌剤残留物Reの少なくとも一部を残留物配管経路Ldr*に沿って循環させ、その循環を所定回数又は所定時間を行った後に残留物配管経路Ldrに切り換えて、残留物注入口Idから船外から取水した海水Woに注入するように自動制御が行われる。いずれの自動制御が行われるか、あるいはいかなるその他の自動制御が行われるかは、制御プログラムの内容次第である。
 残留物配管経路Ldr, Ldr*が設定してある場合、タンクTsからタンクTsmへのタンクTsの内容物の移動は、位置Qsaの下流、タンクTsmの上流にあるポンプ(図示されず)により、又は重力の作用により行われる。バルブVs3が開である場合には、ポンプPsの力が生む出す負圧により当該移動が行われてもよい。
 タンクTsmは、殺菌剤残留物Reが除去反応性物質An*を含有する水wsとともに少なくとも一時的に又は短時間停留する構造(例えば、深底の構造)を有している。そのため、殺菌剤残留物Reと除去反応性物質An*との反応による発熱は、タンクTsm内で進行し易くなる。しかも、ポンプPsによりタンクTsの内容物の少なくとも一部を排出させ、さらに、タンクTsmの内容物の少なくとも一部を排出させ、勢いを付けて残留物配管経路Ldrに流通させ、タンクTsmよりも下流に残留する殺菌剤残留物Reの少なくとも一部とともに残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入し、除去するので、当該発熱が起こる場所は、主としてタンクTsmになる。従って、当該発熱への対策は、主としてタンクTsmに対して講じればよい。
 なお、除去反応性物質An*を残留物配管経路Ls*中に注入した後、除去反応性物質An*を含有しない水wsをタンクTsに注入し続けながら、ポンプPsにより、水wsをタンクTsから排出させ、勢いを付けて残留物配管経路Ls*中に流通させれば、上記(e2)のとおり、当該水wsの冷却作用により当該発熱を抑制することができ、しかも、水洗除去効果の利用による殺菌剤残留物Reの除去を行うことができ、これによっても当該発熱を抑制することができるので、より好ましい。
 殺菌剤残留物Reと除去反応性物質An*との反応によると除去反応性物質An*との反応を促進する必要がある場合や当該反応を促進しても発熱対策に支障を生じず、発熱の悪影響を抑えることができる場合には、タンクTsmは、その内容物を攪拌するための攪拌装置(図示されず)を備えていてもよい。
(F)帰還配管経路Lsrからの除去
 殺菌剤配管経路Lsが帰還配管経路Lsrを備える場合において、帰還配管経路Lsrに残留する殺菌剤残留物Reの少なくとも一部を除去するためには、(f1)まず、一時的にバルブVs及びバルブVdを閉にして、水wsを位置Qs0から位置Qs1に戻し、又は、位置Qs0と位置Qs1との間で循環させ、帰還配管経路Lsrに残留する殺菌剤残留物Reの流動性を、水wsの勢いにより及び/又は殺菌剤残留物Reの水wsと混合又は水wsへの溶解を通じて向上させる。その後、バルブVsを閉、バルブVdを開にして、当該殺菌剤残留物Reの少なくとも一部を残留物注入口Idから、船外から取水した海水Woに注入すればよい。また、(f2)まず、一時的にバルブVs及びバルブVdを閉にして、除去反応性物質An*を含有する水wsを位置Qs0から位置Qs1に戻し、又は、位置Qs0と位置Qs1との間で循環させ、その過程で、殺菌剤残留物Reの中の遊離有効塩素と当該除去反応性物質An*とを反応させることにより、あるいは/ならびに、水wsの勢いにより及び/又は殺菌剤残留物Reの水wsと混合又は水wsへの溶解を通じて、帰還配管経路Lsrに残留する殺菌剤残留物Reの流動性を向上させる。その後、バルブVsを閉、バルブVdを開にして、反応生成物を、当該殺菌剤残留物Reの少なくとも一部とともに、残留物注入口Idから、船外から取水した海水Woに注入すればよい。
3.6)殺菌剤注入口と残留物注入口の兼用
 図1乃至図9に示されているように、殺菌剤注入口Isと残留物注入口Idを別々にすると、殺菌剤配管経路Lsのうち位置Qsと殺菌剤注入口Isとの間の部分の構造が複雑になり、その部分に残留する殺菌剤残留物Reを十分除去できないという問題が生じる場合がある。また、残留物配管経路Ls*のバルブVdの下流、残留物注入口Idの上流に残留物注入用ポンプPid(図示されず)を備える場合は勿論、さらに残留物注入用ポンプPidの下流(吐出口側)、残留物注入口Idの上流に背圧弁を備える場合には、残留物配管経路Ls*の構造が複雑化する。これに対し、殺菌剤注入口Isを残留物注入口Idと兼ねさせる(殺菌剤注入口兼残留物注入口Is/Id)と、殺菌剤配管経路Lsは残留物配管経路Ls*を兼ねる簡素なもの(Ts→Ps→Fs→Vs→Is/Id)になり、バルブVdは無用になり、総じて殺菌剤供給装置Sの内部構造が簡素になるので、上記の問題の発生を抑制又は防止することができる。
 例えば、図10に示されている殺菌剤供給装置Sは、バルブVsを開にすることで、ポンプPsにより、殺菌剤注入口兼残留物注入口Is/Id から、塩素系殺菌剤Asを、バラスト水取水用配管経路Lfを流通する船外から取水した海水Woに注入することができるので、図8中に示されている殺菌剤供給装置Sに比して遜色がない。むしろ、内部構造をより簡素にすることができ、しかも、殺菌剤注入口Isと残留物注入口Idとを別々にした場合に位置Qsと殺菌剤注入口Isとの間に残留する殺菌剤残留物Reの少なくとも一部を含むより多くの殺菌剤残留物Reの少なくとも一部を、残留物排出用配管経路Ld中を流通する船外から取水した海水Woに注入することができるので、図8中に示されている殺菌剤供給装置Sよりも好ましい。
 殺菌剤注入口が残留物注入口を兼ね、殺菌剤配管経路が残留物配管経路を兼ねる場合に、塩素系殺菌剤の残留物に除去反応性物質を接触させ反応を生じさせるために、殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置に、除去反応性物質を注入する除去反応性物質注入口を設けてもよい。図10に示されている殺菌剤供給装置Sにおいて、位置Qnから除去反応性物質An*を注入することにより殺菌剤配管経路Ls中に注入する場合について説明する。ここで、位置Qnは、水wsを供給する配管経路のタンクTs上流の位置、タンクTs及びタンクTsの下流、殺菌剤配管経路Lsの途中にある位置のうち少なくとも一つである。図10では、除去反応性物質An*を注入する位置Qnは、(c1)水wsを供給する配管経路のタンクTsの上流側の位置を示しているが、これにとどまらず、(c2)タンクTsの位置や(c3)タンクTsの下流、殺菌剤配管経路Lsの途中にある位置(殺菌剤配管経路の殺菌剤注入口より上流側の位置)や(c4)殺菌剤注入口Isの位置であってもよく、それら四つ、つまり(c1)乃至(c4)のうち複数の位置であってもよい。
 バラスト水の殺菌に用いられずに殺菌剤配管経路に残った塩素系殺菌剤の残留物の少なくとも一部を注入された除去反応性物質と反応させ、塩素系殺菌剤の残留物の量を減少させ、塩素系殺菌剤の残留物の流動性を高くして、塩素系殺菌剤の残留物の少なくとも一部を、殺菌剤配管経路外に除去することができる。また、塩素系殺菌剤の残留物から塩素含有ガスが発生し、その塩素含有ガスにより船内作業環境の悪化が懸念される場合であっても、除去反応性物質注入口から除去反応性物質を供給し、塩素系殺菌剤の残留物に還元性物質を接触させることにより塩素系殺菌剤の残留物中の遊離有効塩素を還元して、あるいは、塩素系殺菌剤の残留物にアルカリ性物質を接触させることにより、塩素系殺菌剤の残留物のpHをより高くしアルカリ性にして、塩素系殺菌剤の残留物中の遊離有効塩素を有する殺菌剤成分の分解反応を促進して、塩素含有ガスの発生を抑制することができる。
 殺菌剤注入口兼残留物注入口Is/Idは、図9に示されている殺菌剤供給装置Sにおいても、図11中に示されているように採用することができる。図11中に示されている殺菌剤供給装置Sは、殺菌剤注入口兼残留物注入口Is/Idの採用及びその採用に伴い必要になる変形を除き、図9中に示されている殺菌剤供給装置と同じである。具体的には、殺菌剤注入口兼残留物注入口Is/Idの採用により、バルブVd及びバルブVs4が無用になり、位置Qsと位置Qscとを同一視できるようになり、殺菌剤配管経路Lsが残留物配管経路Ls*を兼用し(Ts→Qsa→Vs2→Qsb→Ps→Fs→Qs→Vs→Is/Id)、残留物配管経路LdrがTs→Qsa→Vs1→Tsm→Vs3→Qsb→Ps→Fs→Qs→Vs→Is/idの配管経路となり、残留物配管経路Ldr*が、位置Qsから分岐してタンクTsmに戻る循環経路(Qs→Vs5→Tsm)を伴う残留物配管経路Ldr*に相当することを除き、図9中に示されている殺菌剤供給装置と同じである。
3.7)タンクTsmを備えるバラスト水処理装置、バラスト水処理方法
 図9及び図11に示されているタンクTsmを有する殺菌剤供給装置Sを備えるバラスト水処理装置及び残留物除去工程が塩素系殺菌剤の残留物をタンクに収容させる工程を有するバラスト水処理方法の構成を、以下のように表す。
i)船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置であって、バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と、該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を収容するタンクと、そして、該タンクに収容されている内容物の少なくとも一部を流通させる残留物配管経路と、を備えることを特徴とするバラスト水処理装置。 
ii)前記殺菌剤配管経路の少なくとも一部が、前記残留物配管経路の少なくとも一部を構成していることを特徴とするi)に記載のバラスト水処理装置。
iii)前記残留物配管経路が、前記タンクから排出された前記内容物の少なくとも一部を、前記殺菌剤注入口に向けて流通させる配管経路であることを特徴とするi)又はii)に記載のバラスト水処理装置。 
iv)前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とするi)乃至iii)のいずれか1つに記載のバラスト水処理装置。 
v)前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えていることを特徴とするi)及至iv)のいずれか1つに記載のバラスト水処理装置。 
vi)前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えており、前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えており、そして、 前記帰還配管経路の少なくとも一部が、前記帰還経路の一部を構成している、ことを特徴とするi)乃至iii)のいずれか1つに記載のバラスト水処理装置。 
vii)前記タンクが、前記塩素系殺菌剤の残留物の少なくとも一部を、除去反応性物質を含有する水とともに少なくとも一時的に又は短時間停留するタンクであり、そして、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とするi)乃至vi)のいずれか1つに記載のバラスト水処理装置。
viii)船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法であって、バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記バラスト水に前記塩素系殺菌剤を配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と、前記バラスト水の殺菌に用いられずに前記配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程と、を備えており、前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部をタンクに収容させる第一工程と、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクから排出させる第二工程と、を含むことを特徴とするバラスト水処理方法。 
ix)前記第二工程が、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させる工程であることを特徴とするviii)に記載のバラスト水処理方法。 
x)前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を、前記タンクから移動させ、配管経路から除去する前に、前記タンクに帰還させる工程を含むことを特徴とするviii)又はix)に記載のバラスト水処理方法。 
xi)前記第一工程の実行後で前記第二工程が実行される前に、前記塩素系殺菌剤の残留物の少なくとも一部と除去反応性物質を前記タンク内で反応させる工程を備え、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とするvii)乃至x)のいずれか1つに記載のバラスト水処理方法。 
xii)前記残留物除去工程が、前記配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とするviii)乃至xi)のいずれか1つに記載のバラスト水処理方法。
 iv)のバラスト水処理装置の殺菌剤配管経路が備える帰還配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路であって、一例として以下のように構成されている。
 殺菌剤配管経路Lsは、内容物Csの一部又は全部を、ポンプPsの下流の位置Qs0(図示されず)から、ポンプPsの上流の位置Qs1(図示されず)に、内容物Csの一部又は全部を戻す帰還配管経路Lsr(図示されず)を備えている。位置Qs0は、ポンプPsの下流、位置Qsの上流の位置あるいは位置Qsであり、位置Qs1は、タンクTsあるいはタンクTsの下流、ポンプPsの上流の位置である。帰還配管経路Lsrの一例は、位置Qs0において、帰還配管経路Lsrが殺菌剤配管経路Lsから枝状に分岐し、殺菌剤配管経路Lsを流通する内容物Csの少なくとも一部は必ず帰還配管経路Lsrを流れるように構成してある配管経路である。帰還配管経路Lsrの別の例は、位置Qs0に、液体サイクロンに代表される固液分離装置を備え、未溶解の塩素系薬剤msが水wsとともに帰還配管経路Lsrに流通するように構成してある配管経路である。いずれの例も、バルブVs及びバルブVdを閉にすることで、内容物Csの全部が、帰還配管経路Lsrにより位置Qs1に戻り、バルブVs及びバルブVdの開度を調整することで、位置Qs1に戻る内容物Csの量が決まるように構成してある。殺菌剤配管経路Lsから殺菌剤残留物Reの除去を行なう際は、殺菌剤配管経路Lsの一部である帰還配管経路Lsrの少なくとも一部は、残留物配管経路Ls*の一部を構成する。
4)還元剤供給装置N
4.1)基本構成
 還元剤供給装置Nは、図1中に示されているとおり、還元剤の原料mn及びその溶媒となる水wnが注入され、両者を収容するタンクTnと、還元剤注入口Inと、タンクTnと還元剤注入口Inとを接続する還元剤配管経路Lnとを備えている。還元剤注入口Inは、バラスト水排水用配管経路Lr中を流通するバラストタンクTから取水したバラスト水Wtに還元剤Anを注入する注入口である。還元剤配管経路Lnは、タンクTnの下流、還元剤注入口Inの上流にポンプPnを、ポンプPnの下流、還元剤注入口Inの上流にバルブVnを備える、Tn→Pn→Fn→Vn→Inの配管経路である。
 バルブVnの開閉の切り換えは、当該切り換えの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
 還元剤供給装置Nは、還元剤配管経路Ln中に流量計Fnを備えているが、還元剤配管経路Ln中に図示されていないTRO計測機器その他の機器・装置等を備えていてもよい。また、還元剤供給装置Nは、ポンプPnの吐出側、バルブVnの上流に、ポンプPnの停止、故障等の異常時に起こり得る逆流を防止のための逆止弁Vcn(図示されず)を備えていてもよく、還元剤配管経路Ln中に図示されていない、逆止弁Vcn以外の逆止弁や、保守点検の便のための手動バルブを備えていてもよい。
4.2)還元剤
 還元剤Anの原料mnの代表例は、亜硫酸ナトリウム又はその水和物、チオ硫酸ナトリウム又はその水和物あるいはそれらの水溶液である。
 原料mnが固形であり、水に対する原料mnの溶解度が低い場合には、適当な加熱装置を用いて水wnの水温や原料mnを水wnに混合してできる混合物Cnの温度を高めたり、適当な撹拌装置を用いて当該混合物Cnをより強く撹拌することにより、還元剤として必要な還元性物質の濃度を有する水溶液Anを必要量用意する。
 原料mnが固形であり、水に対する原料mnの溶解度が高く、原料mnと水wnをタンクTnに収容し軽く撹拌しただけでタンクTn内で還元剤Anの必要量を確保できる場合には、ポンプPnによる混合物Cnの強撹拌は、還元剤Anの用意に不可欠ではない。また、原料mnの水溶液(還元剤An)を予め用意できる場合には、原料mnと水wnをタンクTnに注入する必要がなく、またポンプPnによる混合物Cnの強撹拌も不可欠ではなく、当該水溶液をタンクTnに注入するだけで良い。
4.3)還元処理
 バラスト水排水用配管経路Lrが設定してあり、バルブVnが開である場合、ポンプPnにより、原料mnの水溶液(還元剤)Anを、還元剤配管経路Lnを通じて還元剤注入口Inから、バラスト水排水用配管経路Lrを流通するバラストタンクTから取水したバラスト水Wtに注入し、バラスト水Wt中に残留する、塩素系殺菌剤に由来する遊離有効塩素を還元し、船外排水が許される水準まで無害化する。
 バラスト水排水用配管経路Lrが設定してない場合(例えばバラスト水取水用配管経路Lfや残留物排出用配管経路Ldが設定してある場合)には、通常は、バルブVnは閉とし、ポンプPnは停止させる。ただし、後述するバラストポンプPmの第2の運転モードのうち、図6中に示されているC型及び図7中に示されているD型の場合には、残留物排出用配管経路Ldを流通する海水(殺菌剤残留物Reの少なくとも一部が残留物注入口Idから注入済みの海水Wo*)に還元剤Anを注入するので、バルブVnは開とし、ポンプPnを稼動させる。
4.4)除去反応性物質An*の用意
 殺菌剤残留物Reの反応除去のために使用する除去反応性物質An*を還元剤Anから用意する場合には、図20及び図21中に示されている構成例のように、ポンプPnにより、タンクTnから、タンクTnの内容物Cnの少なくとも一部を排出させた後、ポンプ下流、還元剤注入口Inの上流の位置Qn*で還元剤配管経路Lnから枝分かれする分岐配管経路Lnsを通じて還元剤Anを取り出し、取り出した還元剤Anをそのまま又は水で希釈して当該除去反応性物質An*として使用する。なお、除去反応性物質An*を還元剤Anから用意しない場合には、別途、除去反応性物質An*を収容する容器を用意して、その容器から除去反応性物質An*を残留物配管経路Ls*中に注入する構成にする。
5)バラスト水処理方法
 図12は、本発明に係る船舶において実行されるバラスト水処理方法の工程フロー説明図である。
5.1)バラスト水処理方法WTM
 船舶VSLにおいて実行するバラスト水処理方法WTMは、図12中に示されているとおり、三つの段階、つまり第1の段階ST1、第2の段階ST2及び第3の段階ST3を有しており、バラストポンプPmの第1の運転モードにおいて第1の段階ST1が実行され、その第2の運転モード(A型及びB型)において第2の段階ST2が実行され、その第3の運転モードにおいて第3段階ST3が実行される。
 第1の段階ST1は、殺菌剤供給装置Sにおいて塩素系殺菌剤Asを用意する工程ss1、船外から取水した海水Woを船内のバラスト水取水用配管経路Lfで流通させる工程ss2、バラスト水取水用配管経路Lfで流通している船外から取水した海水Woに対し、用意しておいた塩素系殺菌剤Asを殺菌剤注入口Isから注入して殺菌処理を施す工程ss3及び塩素系殺菌剤Asが注入してある海水WsをバラストタンクTに収容又は漲水する工程ss4を有する。
 第2の段階ST2は、船外から取水した海水Woを船内の残留物排出用配管経路Ldで流通させる工程sd1、残留物排出用配管経路Ldで流通している船外から取水した海水Woに対して、殺菌剤供給装置Sに残留している殺菌剤残留物Reの少なくとも一部を、残留物配管経路Ls*を通じて残留物注入口Id又は殺菌剤注入口兼残留物注入口Is/Idから注入して除去する工程sd2及び殺菌剤残留物Reの少なくとも一部が注入してある海水Wdを船外へ排水する工程sd3を有する。
 第3の段階ST3は、還元剤供給装置Nにおいて還元剤Anを用意する工程sn1、バラストタンクTから取水したバラスト水Wtを船内のバラスト水排水用配管経路Lrで流通させる工程sn2、バラスト水排水用配管経路Lrで流通しているバラスト水Wtに対し、用意しておいた還元剤Anを還元剤注入口Inから注入して還元処理を施す工程sn3及び還元剤Anが注入してあるバラスト水Wnを船外へ排水する工程sn4を有する。
 第2の段階ST2では、ポンプPsの力、重力及び/又は船外から取水した海水Woの流通が生む出す負圧を利用して、殺菌剤残留物Reの少なくとも一部を船外から取水した海水Wo側に移動させ海水Woに注入する。その際、タンクTsへの水wsの注入量を増やし、ポンプPsにより勢いを付けたより多くの水woを殺菌剤配管経路Isに流通させることで、殺菌剤残留物Reの流動性を高め、それにより船外から取水した海水Woへの殺菌剤残留物Reの注入を促進させてもよい。
 また、連続的に、非連続的に、周期的に若しくは反復的に又は一時的に還元性物質An*を残留物配管経路Ls*に流通させる(例えば、除去反応性物質An*を水wsに混入した後、その除去反応性物質An*を含有する水wsを連続的に、非連続的に、周期的に若しくは反復的に又は一時的に残留物配管経路Ls*に流通させる)ことで、殺菌剤残留物Reの中に残存する遊離有効塩素の少なくとも一部と除去反応性物質An*とを反応させて、その反応生成物とともに、残りの殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入してもよく、その際、タンクTsへの水wsの注入量を増やし、ポンプPsにより勢いを付けたより多くの水wsを殺菌剤配管経路Isに流通させてもよい。
 第3の段階ST3は、第2の段階ST2において行う殺菌剤残留物Reの除去のために不可欠な段階とはいえないが、第1の段階ST1の工程ss3(塩素系殺菌剤Asによる殺菌処理)を伴うバラスト水処理方法WTMでは、通常は不可欠である。
5.2)バラスト水処理方法WTMの変形例 
 第2の段階ST2において殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woへ注入すると、その注入の開始から終了までの期間中、当該海水Wo中の、殺菌剤残留物Reに由来する遊離有効塩素の濃度が過度に高くなり、当該海水Woが船外への排水に適さない水質になるおそれがある。そのおそれがある場合には、当該期間中、殺菌剤残留物Reの少なくとも一部を注入してある海水Wo(以下「Wo*」という場合がある)をバラスト水Wtとみなして第3の段階ST3を行い、海水Wo*中の、殺菌剤残留物Reに由来する遊離有効塩素を還元し、当該海水Wo*を船外排水が許される水準まで無害化するに足る還元剤Anを、還元剤注入口Inから注入する。そのようなバラスト水処理の段階を第2*の段階ST2*と仮称すると、第1の段階ST1、第2*の段階ST2*及び第3の段階ST3を有し、バラストポンプPmの第1の運転モードにおいて第1の段階ST1を実行し、その第2の運転モード(C型及びD型)において第2*の段階ST2*を実行し、その第3の運転モードにおいて第3の段階ST3を実行する、図12中に示されているようなバラスト水処理方法WTMの変形例を考えることができる。
 第2*の段階ST2*は、船外から取水した海水Woを船内の残留物排出用配管経路Ldで流通させる工程sd1、残留物排出用配管経路Ld中を流通している船外から取水した海水Woに対し、殺菌剤供給装置Sに残留している殺菌剤残留物Reの少なくとも一部を、残留物配管経路Ls*を通じて残留物注入口Id又は殺菌剤注入口兼残留物注入口Is/Idから注入して除去する工程sd2、還元剤供給装置Nにおいて還元剤Anを用意する工程sn1、殺菌剤残留物Reの少なくとも一部を注入してある海水Wo(つまり海水Wo*)を船内の残留物排出用配管経路Ldで流通させる工程sn2*、残留物排出用配管経路Ldで流通している海水Wo*に対し、用意しておいた還元剤Anを還元剤注入口Inから注入して還元処理を施す工程sn3*及び還元剤Anが注入してある海水Wo*を船外へ排水する工程sn4*を有する。
5.3)バラスト水処理方法の実行例
 例えば、貨物船が第1の港から空荷で出港するとき、第1の港で海水がバラストタンクに積み込まれ、貨物を積載する第2の港でバラストタンクから海水が船外へ排出される場合では、第1の港において第1の段階ST1が行われ、第2の港で第3の段階ST3が行われる。第2の段階及び第2*の段階は、いずれも、第1の港から出港する前に又は第1の港から出港した後、第2の港に到着する前の航行途中で行われる。
 なお、第2の港に到着した段階で、第2の段階及び第2*の段階が行われても、塩素系薬剤msの成分の析出物の発生・堆積・固化の進行を抑えることや、殺菌剤残留物Reに起因する動作不具合の発生を抑制又は防止することができるのであれば、それらの段階は、第2の港に到着した段階又はその後に行われてもよい。
6)バラストポンプPmの運転モード
6.1)第1の運転モード
 バラストポンプPmの第1の運転モードにおけるバルブの開閉の設定は、表2に示されているとおりである。
Figure JPOXMLDOC01-appb-T000002
 この第1の運転モードでは、図2中に太字により描かれている配管経路において、第1の段階ST1が実行される。具体的には、船舶VSL外にある海水Woを、バラストポンプPmにより、取水口ITから船舶VSL内に取水し、バラスト水取水用配管経路Lfを通じてバラストタンクTに向けて流通させ、途中フィルタ装置Fでろ過し、引き続き殺菌剤注入口Isから塩素系殺菌剤Asを注入し、ミキサーMxsにより撹拌した後、塩素系殺菌剤As注入済みの海水WsとしてバラストタンクTに収容又は漲水する。
 殺菌剤供給装置Sは、ポンプPsにより、殺菌剤配管経路Lsに沿って、塩素系薬剤msを水wsに混合してできる混合物CsをタンクTsから排出させ、混合物Csを撹拌することにより塩素系殺菌剤の水溶液(塩素系殺菌剤)Asを作り出し、塩素系殺菌剤Asを、殺菌剤注入口Isから、バラスト水取水用配管経路Lf中を流通する船外から取水した海水Woに注入する。
 塩素系薬剤msが海水との接触により塩素含有ガスの発生源になるおそれがある場合(例えば、塩素系薬剤msがトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等である場合)には、水wsを清水とする。その清水は、船内に設置してある海水淡水化装置を用いて製造した清水であることが好ましい。
6.2)第2の運転モード
 バラストポンプPmの第2の運転モードには、A型、B型、C型及びD型の四種類ある。各型におけるバルブの開閉の設定は、表2に示されているとおりである。
 A型及びB型では、第2の段階ST2が実行され、それ故、還元剤供給装置Nからの還元剤Anの、残留物排出用配管経路Ld中を流通する海水への注入(工程sn3*)は行われない。C型及びD型では、第2*の段階ST2*が実行され、それ故、還元剤供給装置Nからの還元剤Anの、残留物排出用配管経路Ld中を流通する海水への注入(工程sn3*)が行われる。なお、残留物排出用配管経路Ldは、A型及びC型では、残留物排出用配管経路<Ld1>であり、B型及びD型では、残留物排出用配管経路<Ld2>である。
(A)A型
 第2の運転モードのA型では、図4中に太字により描かれている配管経路において、第2の段階ST2が実行される。具体的には、船舶VSL外にある海水Woを、バラストポンプPmにより、取水口ITから船舶VSL内に取水し、残留物排出用配管経路<Ld1>を通じて排出口DOに向けて流通させ、途中フィルタ装置Fを通過させず、次いで残留物注入口Idから殺菌剤残留物Reの少なくとも一部を注入する。引き続き、殺菌剤残留物Re注入済みの海水Wo(つまり海水Wo*)を、ミキサーMxs, Mxnにより撹拌した後、攪拌後の殺菌剤残留物Reが注入された海水Wdとして排出口DOから船VSL外に排水する。
(B)B型
 第2の運転モードのB型では、図5中に太字により描かれている配管経路において、第2の段階ST2が実行される。具体的には、船舶VSL外にある海水Woを、バラストポンプPmにより、取水口ITから船舶VSL内に取水し、残留物排出用配管経路<Ld2>を通じて排出口DOに向けて流通させ、途中フィルタ装置Fを通過させた後、残留物注入口Idから殺菌剤残留物Reの少なくとも一部を注入する。引き続き、殺菌剤残留物Re注入済みの海水Wo(つまり海水Wo*)を、ミキサーMxs, Mxnにより撹拌した後、攪拌後の殺菌剤残留物Reが注入された海水Wdとして排出口DOから船VSL外に排水する。
(C)C型
 第2の運転モードのC型では、図6中に太字により描かれている配管経路において、第2*の段階ST2*が実行される。具体的には、船舶VSL外にある海水Woを、バラストポンプPmにより、取水口ITから船舶VSL内に取水し、残留物排出用配管経路<Ld1>を通じて排出口DOに向けて流通させ、途中フィルタ装置Fを通過させず、次いで残留物注入口Idから殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入する。引き続き、殺菌剤残留物Re注入済みの海水Wo(つまり海水Wo*)を、ミキサーMxsにより撹拌し、還元剤注入口Inから還元剤Anを注入し、還元剤An注入済みの海水Wo*をミキサーMxnにより撹拌した後、攪拌後の殺菌剤残留物Reが注入された海水Wdとして排出口DOから船VSL外に排水する。
(D)D型
 第2の運転モードのD型では、図7中に太字により描かれている配管経路において、第2*の段階ST2*が実行される。具体的には、船舶VSL外にある海水Woを、バラストポンプPmにより、取水口ITから船舶VSL内に取水し、残留物排出用配管経路<Ld2>を通じて排出口DOに向けて流通させ、途中フィルタ装置Fを通過させた後、残留物注入口Idから殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入する。引き続き、殺菌剤残留物Re注入済みの海水Wo(つまり海水Wo*)を、ミキサーMxsにより撹拌し、 還元剤注入口Inから還元剤Anを注入し、還元剤An注入済みの海水Wo*をミキサーMxnにより撹拌した後、攪拌後の殺菌剤残留物Reが注入された海水Wdとして排出口DOから船VSL外に排水する。
 第2の運転モードがA型乃至D型のいずれであっても:
<1> 殺菌剤供給装置Sは、ポンプPsにより、タンクTsや殺菌剤配管経路Lsに残留する殺菌剤残留物Reの少なくとも一部を、残留物配管経路Ls*に沿って流通させ、残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入する。この場合、タンクTsには塩素系薬剤msは注入しない。しかし、連続的に、非連続的に、周期的もしくは反復的に又は一時的に水wsをタンクTsに注入し、残留物配管経路Ls*中を流通させでもよい。また、図8中に示されている殺菌剤製造装置Sの場合のように、連続的に、非連続的に、周期的もしくは反復的に又は一時的に除去反応性物質An*を残留物配管経路Ls*中に流通させることで、殺菌剤残留物Reの中に残存する遊離有効塩素の少なくとも一部と除去反応性物質An*とを反応させてもよく、その際、タンクTs中への水wsの注入量を増やし、ポンプPsにより勢いを付けたより多くの水wsを殺菌剤配管経路Is中に流通させてもよい。 
<2> 除去反応性物質An*を残留物配管経路Ls*中に流通させるのであれば、図9中に示されている殺菌剤製造装置Sの場合のように、タンクTsの下流、残留物配管経路Ldrの途中にタンクTsmを設けて、殺菌剤残留物Reと除去反応性物質An*との反応を主にタンクTsmで起こさせ、その後タンクTsmの内容物の少なくとも一部を残留物配管経路Ldr中に流通させ、タンクTsmよりも下流に残留する殺菌剤残留物Reとともに残留物注入口Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入するように構成してもよい。 
<3> 殺菌剤残留物Reが海水との接触により塩素含有ガスの発生源になるおそれがある場合(例えば、塩素系薬剤msがトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等である場合)には、水wsを清水とする。その清水は、船内に設置してある海水淡水化装置を用いて製造した清水であることが好ましい。 
<4> 除去反応性物質An*は、還元剤Anと同じ物質であっても、異なる物質であってよい。タンクTnから取り出した還元剤Anをそのまま又は必要に応じて希釈して、除去反応性物質An*として使用してもよい。
6.3)第3の運転モード
 バラストポンプPmの第3の運転モードにおけるバルブの開閉の設定は、表2中に示されているとおりである。
 この第3の運転モードでは、図3中に太字により描かれている配管経路において、第3の段階ST3が実行される。具体的には、バラストタンクTに収容してある塩素系殺菌剤As注入済みの海水Wsをバラスト水Wtとして当該バラストタンクTから取水し、そのバラストタンクTから取水したバラスト水Wtを、バラストポンプPmにより、バラスト水排水用配管経路Lr中を通じて排水口DOに向けて流通させ、途中還元剤注入口Inから、塩素系殺菌剤Asに由来する遊離有効塩素を還元し無害化するための還元剤Anを注入し、ミキサーMxnにより撹拌した後、還元剤An注入済みのバラスト水Wnとして排水口DOから船舶VSL外へ排水する。
 還元剤供給装置Nは、ポンプPnにより、還元剤配管経路Lnに沿って、還元剤の原料mnを水wnに混合してできる混合物CnをタンクTnから排出させ、混合物Cnを撹拌することにより還元剤Anを作り出し、還元剤Anを、還元剤注入口Inから、バラスト水排水用配管経路Lr中を流通するバラストタンクTから取水したバラスト水Wtに注入する。
 なお、水溶液状態の還元剤Anを用意することができ、タンクTnに当該還元剤Anを予め注入しておくことができる場合には、還元剤供給装置Nは、ポンプPnにより、還元剤配管経路Lnに沿って、還元剤AnをタンクTnから排出させ、還元剤注入口Inから、バラスト水排水用配管経路Lr中を流通するバラスト水Wtに注入する。
6.4)第1の運転モードの終了と第2の運転モードの開始との時間差
 第2の運転モードは、第1の運転モードの終了後のできるだけ早い時期に開始される。第1の運転モードの終了と第2の運転モードの開始との間をより短くするほど、より効果的に、塩素系薬剤msの成分の析出物の発生・堆積・固化の進行を抑え、殺菌剤残留物Reに起因する動作不具合の発生を抑制又は防止することができるからである。それ故、できれば第1の運転モード終了直後に、第2の運転モードを開始し、それが実務的に難しい場合であっても、第1の運転モード終了後2時間以内、それも難しい場合であっても、3時間以内に、第2の運転モードを開始する。尤も、殺菌剤残留物Reに起因する動作不具合の発生を抑制又は防止する効果がある限り、第1の運転モードの終了と第2の運転モードの開始との時間差は3時間を超えてもよい。
7)水及び/又は除去反応性物質の供給により塩素系殺菌剤の残留物を除去するバラスト水処理装置、バラスト水処理方法
 水及び/又は除去反応性物質の供給により塩素系殺菌剤の残留物を除去することを主要な特徴とするバラスト水処理装置及びバラスト水処理方法の構成を、以下のように表す。これらの構成は前述した3.5)殺菌剤残留物の除去、(B)水洗除去効果の利用と(C)反応除去効果の利用の記載内容に基づくものである。
i)船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置であって、バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と、そして、該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、を備えており、前記殺菌剤配管経路に水及び/又は除去反応性物質が供給されることにより、前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が、前記殺菌剤配管経路外に除去されるように構成されており、そして、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とするバラスト水処理装置。 
ii)前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とするi)に記載のバラスト水処理装置。 
iii)前記水が清水であることを特徴とするi)又はii)に記載のバラスト水処理装置。
iv)前記殺菌剤配管経路が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させる配管経路を備えていることを特徴とするi)乃至iii)のいずれか1つに記載のバラスト水処理装置。
v)船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法であって、バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と、前記バラスト水に前記塩素系殺菌剤を殺菌剤配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と、そして、前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程と、を備えており、前記残留物除去工程が、前記殺菌剤配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして、前記除去反応性物質が還元性物質又はアルカリ性物質である、ことを特徴とするバラスト水処理方法。 
vi)前記残留物除去工程が、前記殺菌剤配管経路に供給された水及び/又は除去反応性物質を、前記殺菌剤配管経路の下流側から上流側に帰還させる工程を含むことを特徴とする、v)に記載のバラスト水処理方法。 
vii)前記水が清水であることを特徴とする、v)又はvi)に記載のバラスト水処理方法。 
viii)前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させる工程であることを特徴とする、v)乃至vii)のいずれか1つに記載のバラスト水処理方法。
 ii)のバラスト水処理装置の殺菌剤配管経路が備える帰還配管経路、又はvi)のバラスト水処理方法の残留物除去工程が含む、前記殺菌剤配管経路に供給された水及び/又は除去反応性物質を前記殺菌剤配管経路の下流側から上流側に帰還させる工程を実現する帰還配管経路は、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路であって、一例として以下のように構成されている。
 殺菌剤配管経路Lsは、内容物Csの一部又は全部を、ポンプPsの下流の位置Qs0(図示されず)から、ポンプPsの上流の位置Qs1(図示されず)に、内容物Csの一部又は全部を戻す帰還配管経路Lsr(図示されず)を備えている。位置Qs0は、ポンプPsの下流、位置Qsの上流の位置あるいは位置Qsであり、位置Qs1は、タンクTsあるいはタンクTsの下流、ポンプPsの上流の位置である。帰還配管経路Lsrの一例は、位置Qs0において、帰還配管経路Lsrが殺菌剤配管経路Lsから枝状に分岐し、殺菌剤配管経路Lsを流通する内容物Csの少なくとも一部は必ず帰還配管経路Lsrを流れるように構成してある配管経路である。帰還配管経路Lsrの別の例は、位置Qs0に、液体サイクロンに代表される固液分離装置を備え、未溶解の塩素系薬剤msが水wsとともに帰還配管経路Lsrに流通するように構成してある配管経路である。いずれの例も、バルブVs及びバルブVdを閉にすることで、内容物Csの全部が、帰還配管経路Lsrにより位置Qs1に戻り、バルブVs及びバルブVdの開度を調整することで、位置Qs1に戻る内容物Csの量が決まるように構成してある。殺菌剤配管経路Lsから殺菌剤残留物Reの除去を行なう際は、殺菌剤配管経路Lsの一部である帰還配管経路Lsrの少なくとも一部は、残留物配管経路Ls*の一部を構成する。
 iii)のバラスト水処理装置又はvii)のバラスト水処理方法において、水が清水であることとすることにより、塩素系薬剤msが海水との接触により塩素含有ガスの発生源になるおそれがある場合(例えば、塩素系薬剤msがトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等である場合)に、塩素含有ガスの発生を防止することができる。
 iv)のバラスト水処理装置の殺菌剤配管経路は、又はviii)のバラスト水処理方法の残留物除去工程を実現する配管経路は、塩素系殺菌剤の残留物の少なくとも一部をバラスト水を流通させる例えば配管Lf内に排出させる配管経路を備えている。
<本発明に係る船舶の第2の実施形態>
1)基本構成及び配管経路
 図13は、本発明に係る船舶の第2の実施形態の基本構成説明図である。説明の便のため、図13では、すべての開閉バルブが開状態で描かれている。
 本発明に係る船舶の第2の実施形態における殺菌剤供給装置Sは、図13中に示されているとおり、また後述のとおり、図1中に示されている第1の実施形態における殺菌剤供給装置より、内部構造が簡素になり、殺菌剤残留物Reの除去を効果的に行うことができる。
 しかし、塩素系殺菌剤Asや殺菌剤残留物Reの少なくとも一部をバラスト水に注入する機能を発揮する装置ブロックとして殺菌剤供給装置Sを捉えた場合、第1の実施形態と第2の実施形態との間に基本的な差異はない。第2の実施形態においても、バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ldのそれぞれに対応する開閉バルブの開閉の設定は、表1に記載のとおりである。
 それ故、第2の実施形態の基本構成の説明は、殺菌剤供給装置Sの内部構成及びそれに関わる動作に関する箇所を除き、第1の実施形態の基本構成の説明と同じである。
2)殺菌剤供給装置S 
 第2の実施形態における殺菌剤供給装置Sは、図13中に示されているように、殺菌剤注入口Isが残留物注入口Idを兼ねており(殺菌剤注入口兼残留物注入口Is/Id)、それに伴い、殺菌剤配管経路Lsは残留物配管経路Ls*を兼ねており(Ts→Ps→Fs→Vs→Is/Id)、殺菌剤配管経路Lsと残留物配管経路Ls*とを切り替えるためのバルブVdを必要としないので、第1の実施形態における殺菌剤供給装置に比べて、内部構造がより簡素になり、殺菌剤残留物Reの除去をより効果的に行うことができる(上記3.6)参照)。そのことからすると、第2の実施形態の方が、第1の実施形態より好ましいといえる。
 殺菌剤注入口兼残留物注入口Is/Idから船外から取水した海水Woへの塩素系殺菌剤Asの注入圧力が足りない場合には、殺菌剤配管経路Lsは、バルブVsの下流、殺菌剤注入口兼残留物注入口Is/Idの上流に殺菌剤注入用ポンプPis(図示されず)を備えていてもよく、殺菌剤注入用ポンプPis(図示されず)を備える場合には、殺菌剤注入用ポンプPisの下流(吐出口側)、殺菌剤注入口兼残留物注入口Is/Idの上流に背圧弁を備えていてもよい。
 殺菌剤注入用ポンプPisは、バルブVsが開であるとき稼動状態になるように、また、バルブVsが閉であるとき不稼動状態になるように切り替える。このようなポンプPisの稼動状態の切り替えは、当該切り替えの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
 また、殺菌剤配管経路Lsは、既述の帰還配管経路Lsr(図示されず)を備えていてもよい。そして、バルブVsを閉にすることで、内容物Csの全部を、帰還配管経路Lsrを通じてポンプPsの上流に戻すように構成してもよく、バルブVsの開度を調整することで、帰還配管経路Lsrを通じてポンプPsの上流に戻る内容物Csの量が決まるように構成してもよい。殺菌剤配管経路Lsから殺菌剤残留物Reの除去を行なう際は、殺菌剤配管経路Lsの一部である帰還配管経路Lsrの少なくとも一部は、残留物配管経路Ls*の一部を構成する。
 上記のような内部構造の違いはあるとはいえ、第2の実施形態における殺菌剤供給装置Sの機能や役割は、第1の実施形態における殺菌剤供給装置のそれらと同じである。第2の実施形態における殺菌剤供給装置Sについての説明は、第1の実施形態における殺菌剤供給装置についての上記3)の説明(上記3.6)を除く)と基本的に同じである。
3)殺菌剤残留物Reの除去及びその変形例
 殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入する注入口が殺菌剤注入口兼残留物注入口Is/Idである点を除き、図16乃至図19に示されている殺菌剤残留物の除去の原理や作用・仕組みは、それぞれ、図4及び図7に示されている第1の実施形態における殺菌剤残留物の除去のそれらと基本的に同じであり、図10及び図11に示されている殺菌剤残留物の除去の変形例の原理や作用・仕組みは、それぞれ、図8及び図9に示されている第1の実施形態における殺菌剤残留物の除去の変形例と同じである。従って、第1の実施形態における殺菌剤残留物Reの除去及びその変形例についての説明(特に上記3.5)の説明)は、基本的に、第2の実施形態における殺菌剤残留物Reの除去についても当てはまる。たとえば、第2の実施形態における殺菌剤残留物Reの除去においては、タンクTsを含む殺菌剤配管経路Lsに残留している殺菌剤残留物Reの少なくとも一部を、ポンプPsによりならびに/あるいはタンクTsから排出させた水wsの勢いにより及び/又は殺菌剤残留物Reを水wsに混合又は溶解させて、残留物配管経路Ls*を通じて殺菌剤注入口兼残留物注入口Is/Idから、残留物排出用配管経路Ld中を流通する船外から取水した海水Woに注入する。その際、水wsの勢いにより及び/又は殺菌剤残留物Reの水wsと混合又は水wsへの溶解を通じて、タンクTsを含む殺菌剤配管経路Lsに残留している殺菌剤残留物Reの少なくとも一部を、殺菌剤注入口兼残留物注入口Is/Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入し、除去してもよく、タンクTs及び/又はその他の殺菌剤配管経路Lsに残留している殺菌剤残留物Reと除去反応性物質An*とを反応させると、反応生成物の増加とともに当該殺菌剤残留物Reの量は減少し、場合によっては残留する当該殺菌剤残留物Reの流動性が高くなる。減量された又は流動性が高められた殺菌剤残留物Reの少なくとも一部を、当該反応生成物質とともに殺菌剤注入口兼残留物注入口Is/Idから、残留物排出用配管経路Ldを流通する船外から取水した海水Woに注入し、除去してもよい。
4)除去反応性物質An*を取り出す構成例
 図20及び図21に示されている、除去反応性物質An*を取り出す構成例及びそれについての説明は、第2の実施形態においても、そのまま当てはまる。
5)還元剤供給装置N
 第2の実施形態における還元剤供給装置Nは、第1の実施形態における還元剤供給装置と同じである。第2の実施形態における還元剤供給装置Nについての説明は、第1の実施形態における還元剤供給装置についての上記4)の説明と基本的に同じである。
6)バラストポンプPmの運転モード
 図14中に示されている、第2の実施形態におけるバラストポンプPmの第1の運転モードは、殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入する注入口が殺菌剤注入口兼残留物注入口Is/Idである点を除き、図2に示されている第1の実施形態におけるバラストポンプの第1の運転モードと同じである。従って、図14についての説明は、図3についての説明と基本的に同じである。
 バラストポンプPmの第3の運転モードでは、塩素系殺菌剤Asや殺菌剤残留物Reの少なくとも一部をバラスト水に注入せず、殺菌剤供給装置Sは関係しない。それ故、図15についての説明は、図3についての説明と同じである。
 図16乃至図19中に示されている、第2の実施形態におけるバラストポンプPmの第2の運転モードのA型乃至D型は、殺菌剤残留物Reの少なくとも一部を船外から取水した海水Woに注入する注入口が殺菌剤注入口兼残留物注入口Is/Idである点を除き、図4乃至図7中に示されている第1の実施形態におけるバラストポンプの第2の運転モードのA型乃至D型と同じである。従って、図16乃至図19についての説明は、図4乃至図7についての説明と基本的に同じである。
 なお、注入口が殺菌剤注入口兼残留物注入口Is/IdであるとバルブVdが不要になるので、バラストポンプPmの各運転モードにおけるバルブの開閉の設定は、表3に示されているとおりである。
Figure JPOXMLDOC01-appb-T000003
7)バラスト水処理方法
 図12中に示されているバラスト水処理方法及びその変形例の工程フローについての説明(上記5)参照)は、殺菌剤注入口Is及び残留物注入口Idを、いずれも、殺菌剤注入口兼残留物注入口Is/Idに読み替えれば、第2の実施形態におけるバラスト水処理方法及びその変形例の工程フローについても当てはまる。
8)還元剤供給装置Nから除去反応性物質(還元性物質)An*を取り出す構成例
 図20は、還元剤供給装置から除去反応性物質(還元性物質)An*を取り出す構成例を示している。この図に示されている構成例では、殺菌剤残留物Reの除去に用いる除去反応性物質An*を用意するための分岐配管経路Lns及びバラスト水排水用配管経路Lrを流通するバラストタンクTから取水したバラスト水Wtに還元剤Anを注入するための還元剤配管経路Lnのいずれかの択一的選択が行われる。還元剤配管経路Lnと分岐配管経路Lnsとの切り換えは、バルブVnと、位置Qn*の下流の分岐配管経路Lnsに設けたバルブVn*との開閉の切り換えにより行われる。
 分岐配管経路Lnsを選択するときは、バルブVnを閉、バルブVn*を開にする。これは、バラストポンプPmが第2の運転モードのA型もしくはB型である場合又はバラスト水処理方法の第2の段階ST2を実行する場合に対応する。
 分岐配管経路Lnを選択するときは、バルブVnを開、バルブVn*を閉にする。これは、バラストポンプPmが第2の運転モードのC型もしくはD型である場合又はバラスト水処理方法の第3の段階ST3を実行する場合である場合に対応している。
 図21は、図20中に示されている構成例とは別の構成例である。図21中に示されている構成例では、殺菌剤残留物が注入された海水Wo*に還元剤Anを注入すると同時に除去反応性物質An*を用意するために、還元剤配管経路Ln及び分岐配管経路Lnsの両方の同時選択が行われる。その同時選択を行うときは、例えば、バルブVn, Vn*をいずれも不完全な開にするか、バルブVn*を開、バルブVnを不完全な開(半開き)にする。これは、バラストポンプPmが第2の運転モードのC型もしくはD型である場合又はバラスト水処理方法の第2*の段階ST2*を実行する場合に対応している。
 図20及び図21中に示されている各構成例においては、バルブVn, Vn*の開閉の切り換え及び開度の調節は、それらの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
 タンクTnから分岐配管経路Lnsを通じて取り出した除去反応性物質An*の濃度が不必要に高い場合には、事前に水で希釈して使用する。
 本発明の技術的範囲は、上記の実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。例えば、次の掲げる変形例は、いずれも、発明の要旨を変更するものではないので、本発明の技術的範囲に属する。
[変形例1]第2の実施形態の基本構成の変形例
 図13に示されている第2の実施形態の基本構成の場合には、位置QtとバラストタンクTとの間において、バラスト水取水用配管経路Lfとバラスト水排水用配管経路Lrとが共通の配管経路(Qt-V5-Sn1-Ft-T)になるように構成してある。これに対して、図22に示されている第2の実施形態の基本構成の変形例の場合には、バラスト水取水用配管経路Lfとバラスト水排水用配管経路Lrのぞれぞれが、バラストタンクTに接続するとともに、バラスト水取水用配管経路Lfの位置Qtsとバラスト水排水用配管経路Lrの位置Qtrとが、バルブV5*を備える残留物排出用配管経路Ldの一部により架橋してある。なお、位置Qtsは、ミキサーMxsの下流、バルブV3の上流、バルブV5*の上流にある位置である。位置Qtrは、バルブV4の下流、バルブV5*の下流、還元剤注入口Inの上流の位置である。
 図22に示されている第2の実施形態の基本構成の変形例において、バラスト水取水用配管経路Lfは、IT→V1→Q6→Pm→Vcm→Q3→Q4→V2→F→Is/Id→Mxs→Qts→V3→Sn1s→Fts→Tの配管経路となり、バラスト水排水用配管経路Lrは、T→Ftr→Sn1r→V4→Qtr→In→Mxn→Q1→V6→Q6→Pm→Vcm→Q3→Q4→V7→Q2→Sn2→DOの配管経路となる。残留物排出用配管経路Ldのうち<Ld1>は、IT→V1→Q6→Pm→Vcm→Q3→V9→Q5→Is/Id→Mxs→Qts→V5*→Qtr→In→Mxn→Q1→V8→Q2→Sn2→DOの配管経路となり、<Ld2>は、IT→V1→Q6→Pm→Vcm→Q3→Q4→V2→F→Q5→Is/Id→Mxs→Qts→V5*→Qtr→In→Mxn→Q1→V8→Q2→Sn2→DOの配管経路となり、それぞれの配管経路におけるバルブの開閉の設定は、表4に記載のとおりである。また、バラストポンプPmの各運転モードにおけるバルブの開閉の設定は、表5に記載のとおりである。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
[変形例2]第1の実施形態の基本構成の変形例
 図2に示されている第1の実施形態の基本構成の場合も、位置QtとバラストタンクTとの間において、バラスト水取水用配管経路Lfとバラスト水排水用配管経路Lrとが共通の配管経路(Qt-V5-Sn1-Ft-T)になるように構成してあるので、図22に示されている第2の実施形態の基本構成の変形例と同様の変形が可能である。
[変形例3]第2の実施形態の基本構成の別の変形例
1)基本構成及び配管経路
 図23は、本発明の第2の実施形態の基本構成の別の変形例の説明図である。この図23では、説明の簡便化のため、バルブや計測機器は描写していない。図23に示されている、変形例3は、上記変形例1と同様に、バラスト水取水用配管経路Lfとバラスト水排水用配管経路Lrのぞれぞれが、バラストタンクTに接続している一方で、上記変形例1と異なり、殺菌剤注入口兼残留物注入口Is/InとバラストタンクTとの間に還元剤注入口Inが配置する経路構成を有している。
 図24は、図23に示されている変形例3におけるバラストポンプの第1の運転モードの説明図であり、図25は、図23に示されている変形例3におけるバラストポンプの第3の運転モードの説明図である。図26乃至図29は、それぞれ、図23に示されている変形例3におけるバラストポンプの第2の運転モードのA型乃至D型の説明図である。
 図23に示されている第2の実施形態の基本構成の変形例において、図24乃至図27中で太字により描かれているように、バラスト水取水用配管経路Lfは、IT→Qa→Pm→Vcm→Qb→F→Qc→Is/Id→Mxc→Qe→Tの配管経路となり、バラスト水排水用配管経路Lrは、T→Qa→Pm→Vcm→Qb→Qd→Qc→In→Mxc→Qe→DOの配管経路となり、残留物排出用配管経路Ldのうち<Ld1>は、IT→Qa→Qb→Qd→Qc→Is/Id→In→Mxc→Qe→DOの配管経路となり、<Ld2>は、IT→Qa→Qb→F→Qc→Is/Id→In→Mxc→Qe→DOの配管経路となる。
 位置Qaは、バラスト水取水用配管経路Lfの取水口ITの下流、バラストポンプPmの上流にあり、且つ、バラスト水排水用配管経路LrのバラストタンクTの下流、バラストポンプPmの上流にある位置である。位置Qbは、バラスト水取水用配管経路Lf及びバラスト水排水用配管経路LrのバラストポンプPmの下流、フィルタ装置Fの上流にある位置であり、位置Qcは、バラスト水取水用配管経路Lf及びバラスト水排水用配管経路Lrのフィルタ装置Fの下流、殺菌剤注入口兼残留物注入口Is/Idの上流にある位置であり、位置Qdは、位置Qbと位置Qcとの間を、フィルタ装置Fを通過することなく接続する配管経路の、位置Qbの下流、位置Qcの上流にある位置である。位置Qeは、バラスト水取水用配管経路Lf、バラスト水排水用配管経路Lr及び残留物排出用配管経路Ldの、ミキサーMxcの下流、排水口DOの上流にあり、且つ、バラスト水取水用配管経路LfのバラストタンクTの上流にある位置である。
 Mxcは、ミキサーである。第2の実施形態では、塩素系殺菌剤As又は殺菌剤残留物Reが注入してある海水を攪拌するためのミキサーMxs及び還元剤Anが注入してある海水を攪拌するためのミキサーMxnを設置していたが、この変形例3では、共通の、一つのミキサーMxcを設置すれば済む。
2)殺菌剤供給装置S
 この変形例3における殺菌剤供給装置Sは、図13中に示されている第2の実施形態における殺菌剤供給装置と構成が同じであり、機能及び役割も変わらない。 
 それ故、第2の実施形態における殺菌剤供給装置についての説明は、バラスト水取水用配管経路Lfの経路構成(IT→Qa→Pm→Vcm→Qb→F→Qc→Is/Id→Mxc→Qe→T)が異なる点を除き、この変形例3における殺菌剤供給装置Sについても当てはまる。
3)殺菌剤残留物Reの除去 
 第2の実施形態における殺菌剤残留物の除去についての説明は、残留物排出用配管経路<Ld1>の経路構成(IT→Qa→Qb→Qd→Qc→Is/Id→In→Mxc→Qe→DO)及び残留物排出用配管経路<Ld2>の経路構成(IT→Qa→Qb→F→Qc→Is/Id→In→Mxc→Qe→DO)が異なる点を除き、この変形例3における殺菌剤残留物Reの除去についても当てはまる。なお、図10及び図11に示されている、殺菌剤残留物の除去の変形例及びそれについての説明も、この変形例3における殺菌剤残留物Reの除去の変形例について当てはまる。
4)還元剤供給装置N 
 この変形例3における還元剤供給装置Nは、図13に示されている第2の実施形態における還元剤供給装置と構成が同じであり、機能及び役割も変わらない。 
 それ故、第2の実施形態における殺菌剤供給装置及びその変形例についての説明は、残留物排出用配管経路<Ld1>の経路構成(IT→Qa→Qb→Qd→Qc→Is/Id→In→Mxc→Qe→DO)及び残留物排出用配管経路<Ld2>の経路構成(IT→Qa→Qb→F→Qc→Is/Id→In→Mxc→Qe→DO)が異なる点を除き、この変形例における還元剤供給装置N及びその変形例についての説明に当てはまる。特に、図20及び図21に示されている、除去反応性物質An*を取り出す構成例及びそれについての説明は、この変形例3における除去反応性物質An*を取り出す構成例についても、そのまま当てはまる。
5)バラストポンプPmの運転モード
 図24に示されている、この変形例3におけるバラストポンプPmの第1の運転モードは、バラスト水取水用配管経路Lfの経路構成(IT→Qa→Pm→Vcm→Qb→F→Qc→Is/Id→In→Mxc→Qe→T)が異なる点を除き、図14に示されている第2の実施形態におけるバラストポンプの第1の運転モードと同じである。図25に示されている、この変形例3におけるバラストポンプの第3の運転モードでは、バラスト水排水用配管経路Lrの経路構成(T→Qa→Pm→Vcm→Qb→Qd→Qc→In→Mxc→Qe→DO)が異なる点を除き、図15に示されている第2の実施形態におけるバラストポンプの第3の運転モードと同じである。図26乃至図29中に示されている、この変形例3におけるバラストポンプの第2の運転モードのA型乃至D型は、残留物排出用配管経路<Ld1>の経路構成(IT→Qa→Qb→Qd→Qc→Is/Id→In→Mxc→Qe→DO)及び残留物排出用配管経路<Ld2>の経路構成(IT→Qa→Qb→F→Qc→Is/Id→In→Mxc→Qe→DO)が異なる点を除き、図16乃至図19にそれぞれ示されている第2の実施形態におけるバラストポンプの第2の運転モードと同じである。
6)バラスト水処理方法 
 図12中に示されているバラスト水処理方法及びその変形例の工程フローについての説明は、殺菌剤注入口Is及び残留物注入口Idを、いずれも、殺菌剤注入口兼残留物注入口Is/Idに読み替えれば、第2の実施形態におけるバラスト水処理方法及びその変形例の工程フローについても当てはまる。
 図20及び図21中に示されている各構成例においては、バルブVn, Vn*の開閉の切り替え及び開度の調節は、それらの操作の一部又は全部を手動で行う場合を除き、制御装置PLC又は、図示されていないその他の制御装置に予めインストールしてある制御プログラムに従って自動で行われる。
[変形例4]バラストポンプPmが複数台のバラストポンプを備える変形例
 図2及び図13には、バラストポンプPmが一台しか描かれていない。しかし、本発明におけるバラストポンプPmは、一台のみのバラストポンプで構成してあるものに限定されず、複数台のバラストポンプで構成してあってもよい。例えば、バラストポンプPmが二台のバラストポンプPm1, Pm2を備えている場合、次のような変形例が可能である。
[変形例4-1]
 バラストポンプPm1が第1の運転モードであるとき、バラストタンクTに向かって流通する船外から取水した海水Woに対して塩素系殺菌剤Asを注入し、第2の運転モードであるとき、第1の運転モードであるときに船外から取水した海水Woに注入されずに残った殺菌剤残留物Reを除去する。その後、バラストポンプPm1から切り替わったバラストポンプPm2が第3の運転モードであるとき、バラストタンクTから取水したバラスト水Wtを、還元剤An注入済みのバラスト水Wnとして船外に排出する。
[変形例4-2]
 バラストタンクが複数基(仮にT1,T2の二基)ある場合、バラストポンプPm1が第1の運転モードであるとき、バラストタンクT1に向かって流通する船外から取水した海水Woに対して塩素系殺菌剤Asを注入し、第2の運転モードであるとき、第1の運転モードであるときに船外から取水した海水Woに注入されずに残った殺菌剤残留物Reを除去する。他方、バラストポンプPm2が第1の運転モードであるとき、バラストタンクT2に向かって流通する船外から取水した海水Woに対して塩素系殺菌剤Asを注入し、第2の運転モードであるとき、第1の運転モードであるときに船外から取水した海水Woに注入されずに残った殺菌剤残留物Reを除去する。そして、バラストポンプPm2から切り替わったバラストポンプPm1が第3の運転モードであるとき、バラストタンクT2から取水したバラスト水Wtを、還元剤An注入済みのバラスト水Wnとして船外に排出し、他方、バラストポンプPm1から切り替わったバラストポンプPm2が第3の運転モードであるとき、バラストタンクT1から取水したバラスト水Wtを、還元剤An注入済みのバラスト水Wnとして船外に排出する。
 バラストポンプPm1, Pm2を一体的に捉えて、これをバラストポンプPmであるとすると、変形例4-1は、バラストポンプPmが第1の運転モードであるとき、バラストタンクTに向かって流通する船外から取水した海水Woに対して塩素系殺菌剤Asを注入し、第2の運転モードであるとき、第1の運転モードであるときに船外から取水した海水Woに注入されずに残った殺菌剤残留物Reを除去する。その後、バラストポンプPmから切り替わったバラストポンプPmが第3の運転モードであるとき、バラストタンクTから取水したバラスト水Wtを、還元剤An注入済みのバラスト水Wnとして船外に排出する、例にほかならない。また、変形例4-2は、バラストポンプPmが第1の運転モードであるとき、バラストタンクT1(又はT2)に向かって流通する船外から取水した海水Woに対して塩素系殺菌剤Asを注入し、第2の運転モードであるとき、第1の運転モードであるときに船外から取水した海水Woに注入されずに残った殺菌剤残留物Reを除去する。その後、バラストポンプPmから切り替わったバラストポンプPmが第3の運転モードであるとき、バラストタンクT1(又はT2)から取水したバラスト水Wtを、還元剤An注入済みのバラスト水Wnとして船外に排出する、例にほかならない。
 本発明の技術的範囲は、均等の範囲にまで及ぶものである。本明細書における各用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。
VSL…船舶、IT…取水口、DO…排水口、Lf…バラスト水取水用配管経路、Lr…バラスト水排水用配管経路、Ld, <Ld1>, <Ld2>…残留物排出用配管経路、Ls…殺菌剤配管経路、Ln…還元剤配管経路、Ls*, Ldr, Ldr*…残留物配管経路、Lns…分岐配管経路、V1~V9, Vs, Vn…バルブ、Pm…バラストポンプ、Ps, Pn…ポンプ、S…殺菌供給装置、N…還元剤供給装置、T…バラストタンク、Ts,Tsm,Tn…タンク、Is…殺菌剤注入口、In…還元剤注入口、Id…残留物注入口、Is/Id…殺菌剤注入口兼残留物注入口、Mxs, Mxn, Mxc…ミキサー、Fs, Fn,Ft…流量計、Sn1, Sn2…TRO計測装置、As…塩素系殺菌剤、An…還元剤、An*…除去反応性物質、ms…塩素系殺菌剤の原料(塩素系薬剤)、mn…還元剤の原料、ws, wn…水、Cs, Cn…混合物、Re…殺菌剤残留物、Wo…船外から取水した海水、Ws…殺菌剤が注入された海水、Wt…バラストタンクから取水した海水(バラスト水)、Wn…還元剤が注入されたバラスト水、Wd, Wo*…殺菌剤残留物が注入された海水

Claims (46)

  1.  船外から取水した海水(Wo)を船内で流通させるバラストポンプ(Pm)と、前記海水を収容するバラストタンク(T)と、該バラストタンクが収容する前記海水を殺菌するバラスト水処理装置と、を具備する船舶は:
     前記バラストポンプが、船外から取水した海水を前記バラストタンクに向かって流通させ前記バラストタンクに収容する第1の運転モードと、船外から取水した海水を前記バラストタンクを経由することなく流通させ船外に排水する第2の運転モードと、を備えており、そして、
     前記バラスト水処理装置が、前記第1の運転モードのとき前記バラストタンクに向かって流通する海水(Wo)に塩素系殺菌剤(As)を注入する殺菌剤注入口(Is)と、前記第2の運転モードのとき、前記第1の運転モードのときに海水に注入されず残った前記塩素系殺菌剤の残留物の少なくとも一部を前記船外に向かって流通する海水に注入する残留物注入口(Id)と、を備える、
     ことを特徴とする。
  2.  請求項1に従っている船舶は、前記第2の運転モードが、前記第1の運転モードの終了後3時間以内に開始することを特徴とする。
  3.  請求項1に従っている船舶は、前記残留物注入口(Id)が、前記塩素系殺菌剤(As)の残留物の少なくとも一部をポンプにより勢いを付けて、前記船外に向かって流通する海水に注入する、ことを特徴とする。
  4.  請求項1に従っている船舶は、前記残留物注入口(Id)が、前記塩素系殺菌剤(As)の残留物の少なくとも一部を、ポンプにより勢いが付けられた水とともに又はその水と混合して、前記船外に向かって流通する海水に注入する、ことを特徴とする。
  5.  請求項4に従っている船舶は、前記水が清水であることを特徴とする。
  6.  請求項4に従っている船舶は、前記水が還元性物質又はアルカリ性物質を含有する水であることを特徴とする。
  7.  請求項1に従っている船舶は、
     前記バラストポンプが、前記バラストタンクから取水した海水を船内で流通させ船外に排水する第3の運転モードを備えており、そして、
     前記バラスト水処理装置が、前記第3の運転モードのとき、前記バラストタンクから前記船外に向かって流通する海水に還元剤を注入する還元剤注入口を備える、
     ことを特徴とする。
  8.  請求項7に従っている船舶は、前記残留物注入口が、前記塩素系殺菌剤の残留物の少なくとも一部を前記還元剤の一部と反応させてできる反応生成物を、前記船外に向かって流通する海水に注入する、ことを特徴とする。
  9.  請求項7に従っている船舶は、前記殺菌剤注入口が、前記残留物注入口を兼ねており、前記還元剤注入口が、前記船外に向かって流通する海水の流れの方向において、前記残留物注入口の下流に位置している、ことを特徴とする。
  10.  請求項1に従っている船舶は、前記塩素系殺菌剤がトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はジクロロイソシアヌル酸カリウムの水溶液であり、その水溶液の溶媒が清水である、ことを特徴とする。
  11.  請求項10に従っている船舶は、前記清水が、船内に設置してある海水淡水化装置により海水を脱塩してできる清水である、ことを特徴とする。
  12.  船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置は:
     バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と;
     該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と;
     前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を収容するタンクと;そして、
     該タンクに収容されている内容物の少なくとも一部を流通させる残留物配管経路と、
     を備えることを特徴とする。
  13.  請求項12に従っているバラスト水処理装置は、前記殺菌剤配管経路の少なくとも一部が、前記残留物配管経路の少なくとも一部を構成していることを特徴とする。
  14.  請求項12又は13に従っているバラスト水処理装置は、前記残留物配管経路が、前記タンクから排出された前記内容物の少なくとも一部を前記殺菌剤注入口に向けて流通させることを特徴とする。
  15.  請求項12及至14のいずれか1項に従っているバラスト水処理装置は、前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を、前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とする。
  16.  請求項12及至15のいずれか1項に従っているバラスト水処理装置は、前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えていることを特徴とする。
  17.  請求項12及至14のいずれか1項に従っているバラスト水処理装置は、
     前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えており、
     前記残留物配管経路が、前記タンクから排出された前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクに帰還させる帰還経路を備えており、そして、
     前記帰還配管経路の少なくとも一部が、前記帰還経路の一部を構成している、
     ことを特徴とする。
  18.  請求項12及至17のいずれか1項に従っているバラスト水処理装置は、前記タンクが、前記塩素系殺菌剤の残留物の少なくとも一部を、除去反応性物質を含有する水とともに少なくとも一時的に又は短時間停留し、前記除去反応性物質が還元性物質又はアルカリ性物質であることを特徴とする。
  19.  船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置は:
     バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と;そして、
     該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と、
     を備えており、
     前記殺菌剤配管経路に水及び/又は除去反応性物質が供給されることにより、前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が、前記殺菌剤配管経路外に除去されるように構成されており、そして、
     前記除去反応性物質が還元性物質又はアルカリ性物質である、
     ことを特徴とする。
  20.  請求項19に従っているバラスト水処理装置は、前記殺菌剤配管経路が、前記殺菌剤配管経路を流通する内容物の少なくとも一部を前記殺菌剤配管経路の下流側から上流側に帰還させる帰還配管経路を備えていることを特徴とする。
  21.  請求項19又は20に従っているバラスト水処理装置は、前記水が清水であることを特徴とする。
  22.  請求項19及至21のいずれか1項に従っているバラスト水処理装置は、前記殺菌剤配管経路が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させる配管経路を備えていることを特徴とする。
  23.  船舶に搭載され、前記船舶が具備するバラストタンクに収容されるバラスト水を殺菌するバラスト水処理装置は:
     バラストタンクに収容されるバラスト水に塩素系殺菌剤を注入するための殺菌剤注入口と;
     該殺菌剤注入口に向けて前記塩素系殺菌剤を流通させる殺菌剤配管経路と;そして、
     該殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を注入する除去反応性物質注入口と、を備えており、
     前記バラスト水の殺菌に用いられずに殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部が注入された除去反応性物質と反応し、前記殺菌剤配管経路外に除去されるように構成されており、前記除去反応性物質は還元性物質又はアルカリ性物質である、
     ことを特徴とする。
  24.  船舶が具備するバラストタンクに収容される海水を殺菌するバラスト水処理方法は:
     海水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と;
     前記塩素系殺菌剤を用いて、バラストタンクに収容される海水を船舶内で殺菌する殺菌処理工程と;そして、
    前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、船舶内で流通する海水に注入し、その海水とともに船舶外に排出する残留物除去工程と、
     を備えることを特徴とする。
  25.  請求項24に従っているバラスト水処理方法は、前記船舶内で流通する海水が、船舶外から取水され前記バラストタンクに収容されることなく船舶内で流通することを特徴とする。
  26.  請求項24に従っているバラスト水処理方法は、前記残留物除去工程が、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、ポンプにより勢いを付けて前記船舶内で流通する海水に注入する工程を含むことを特徴とする。
  27.  請求項24に従っているバラスト水処理方法は、前記残留物除去工程が、前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、勢いを付けた水とともに又はその水と混合して前記船舶内で流通する海水に注入する工程を含むことを特徴とする。
  28.  請求項27に従っているバラスト水処理方法は、前記水が清水であることを特徴とする。
  29.  請求項27に従っているバラスト水処理方法は、前記水が、還元性物質又はアルカリ性物質を含有することを特徴とする。
  30.  請求項24に従っているバラスト水処理方法は、前記残留物除去工程が、
     前記バラストタンクに収容される海水の殺菌に用いられずに船舶内に残った前記塩素系殺菌剤の残留物の少なくとも一部を、還元性物質又はアルカリ性物質とともにタンクに停留させる工程と、そして、
     前記タンクの内容物を前記船舶内で流通する海水に注入する工程と、
     を含むことを特徴とする。
  31.  請求項24に従っているバラスト水処理方法は、
     前記殺菌処理工程が、前記塩素系殺菌剤を前記バラストタンクに収容される海水に殺菌剤注入口から注入する工程を含んでおり、
     前記残留物除去工程が、前記バラストタンクに収容される海水に注入されずに残った前記塩素系殺菌剤の残留物の少なくとも一部を前記船舶内で流通する海水に残留物注入口から注入する工程を含んでおり、そして、
     前記殺菌剤注入口が、前記残留物注入口を兼ねる、
     ことを特徴とする。
  32.  請求項31に従っているバラスト水処理方法は、前記残留物除去工程が、前記塩素系殺菌剤の少なくとも一部が注入されている前記バラストタンクに収容される海水を船舶外に排出する前に、その海水に還元剤を注入する工程を含むことを特徴とする。
  33.  請求項24に従っているバラスト水処理方法は、前記殺菌剤処理工程の終了後3時間以内に前記残留物除去工程が開始することを特徴とする。
  34.  請求項24に従っているバラスト水処理方法は、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、そして、前記第1の港から出港する前又は前記第1の港から出港した後で第2の港に到着する前に前記残留物除去工程が実行されることを特徴とする。
  35.  請求項24に従っているバラスト水処理方法は、船舶が第1の港から出港する前に前記殺菌剤処理工程が実行され、そして、前記第1の港から出港した後で第2の港に到着したとき又はその到着後に前記残留物除去工程が実行されることを特徴とする。
  36.  請求項24に従っているバラスト水処理方法は、前記バラストタンクに収容される海水中に残留する、前記塩素系殺菌剤に由来する遊離有効塩素を還元する還元処理工程を更に含むことを特徴とする。
  37.  船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法は:
     バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と;
     前記バラスト水に前記塩素系殺菌剤を配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と;そして、
     前記バラスト水の殺菌に用いられずに前記配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程と、
     を備えており、
     前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部をタンクに収容させる第一工程と、そして、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクから排出させる第二工程と、を含む、
     ことを特徴とする。
  38.  請求項37に従っているバラスト水処理方法は、前記残留物除去工程の前記第二工程が、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させることを特徴とする。
  39.  請求項37又は38に従っているバラスト水処理方法は、前記タンクに収容されている前記塩素系殺菌剤の残留物の少なくとも一部を前記タンクから移動させ前記配管経路から除去する前に、前記タンクに帰還させる工程を更に備えることを特徴とする。
  40.  請求項37乃至39のいずれか1項に従っているバラスト水処理方法は、前記第一工程の実行後に前記第二工程が実行される前に、前記塩素系殺菌剤の残留物の少なくとも一部と除去反応性物質を前記タンク内で反応させる工程を更に備えており、そして、
     前記除去反応性物質が還元性物質又はアルカリ性物質である、
     ことを特徴とする。
  41.  請求項37乃至40のいずれか1項に従っているバラスト水処理方法は、前記残留物除去工程が、前記配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして、
     前記除去反応性物質が還元性物質又はアルカリ性物質である、
     ことを特徴とする。
  42.  船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法は:
     バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と;
     前記バラスト水に前記塩素系殺菌剤を殺菌剤配管経路を経由して注入し、前記バラスト水を殺菌する殺菌処理工程と;そして、
     前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記配管経路から除去する残留物除去工程と、
     を備えており、
     前記残留物除去工程が、前記殺菌剤配管経路に水及び/又は除去反応性物質を供給する工程を含み、そして、前記除去反応性物質が還元性物質又はアルカリ性物質である、
     ことを特徴とする。
  43.  請求項42に従っているバラスト水処理方法は、前記残留物除去工程が、前記殺菌剤配管経路に供給された水及び/又は除去反応性物質を、前記殺菌剤配管経路の下流側から上流側に帰還させる工程を含む、ことを特徴とする。
  44.  請求項42又は43に従っているバラスト水処理方法は、前記水が清水であることを特徴とする。
  45.  請求項42乃至44のいずれか1項に従っているバラスト水処理方法は、前記残留物除去工程が、前記塩素系殺菌剤の残留物の少なくとも一部を前記バラスト水を流通させる配管内に排出させることを特徴とする。
  46.  船舶が具備するバラストタンクに収容されるバラスト水を船舶内で殺菌するバラスト水処理方法は:
     バラストタンクに収容されるバラスト水の殺菌を行うために塩素系殺菌剤を用意する殺菌剤準備工程と;
     前記バラスト水に前記塩素系殺菌剤を殺菌剤配管経路を経由して殺菌剤注入口から注入し、前記バラスト水を殺菌する殺菌処理工程と;そして、
     前記バラスト水の殺菌に用いられずに前記殺菌剤配管経路に残った前記塩素系殺菌剤の残留物の少なくとも一部を前記殺菌剤配管経路から除去する残留物除去工程と、
     を備えており、
     前記残留物除去工程が、前記殺菌剤配管経路の殺菌剤注入口より上流側の位置又は殺菌剤注入口の位置において除去反応性物質を供給する工程を含み、そして、
     前記除去反応性物質が還元性物質又はアルカリ性物質である、
     ことを特徴とする。
PCT/JP2016/084173 2015-11-18 2016-11-17 船舶、バラスト水処理装置及びバラスト水処理方法 WO2017086407A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20180424.2A EP3730397A1 (en) 2015-11-18 2016-11-17 Ballast water treatment device, and ballast water treatment method
EP16866408.4A EP3378837A4 (en) 2015-11-18 2016-11-17 SHIP, BALLAST WATER TREATMENT SYSTEM, AND BALLAST WATER TREATMENT METHOD
KR1020187017241A KR102068920B1 (ko) 2015-11-18 2016-11-17 선박, 밸러스트수 처리 장치 및 밸러스트수 처리 방법
CN201680067787.0A CN108290757A (zh) 2015-11-18 2016-11-17 船舶、压舱水处理装置及压舱水处理方法
KR1020197038326A KR102208217B1 (ko) 2015-11-18 2016-11-17 밸러스트수 처리 방법 및 밸러스트수 처리 장치

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015226036 2015-11-18
JP2015-226036 2015-11-18
JP2015246442A JP5924447B1 (ja) 2015-11-18 2015-12-17 船舶
JP2015-246442 2015-12-17
JP2016-084801 2016-04-20
JP2016084801A JP5999280B1 (ja) 2015-11-18 2016-04-20 バラスト水処理方法
JP2016-170100 2016-08-31
JP2016-170101 2016-08-31
JP2016170100A JP6241521B2 (ja) 2015-11-18 2016-08-31 バラスト水処理装置及びバラスト水処理方法
JP2016170101A JP6241522B2 (ja) 2015-11-18 2016-08-31 バラスト水処理装置及びバラスト水処理方法

Publications (1)

Publication Number Publication Date
WO2017086407A1 true WO2017086407A1 (ja) 2017-05-26

Family

ID=58718902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084173 WO2017086407A1 (ja) 2015-11-18 2016-11-17 船舶、バラスト水処理装置及びバラスト水処理方法

Country Status (1)

Country Link
WO (1) WO2017086407A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471895A (en) * 1977-11-18 1979-06-08 Shikoku Kasei Kougiyou Kk Device for sterilizing pool water
JPH10506835A (ja) * 1994-10-03 1998-07-07 ウェインストック, デイビッド 生物の増殖を阻害する液体処理方法
JP2011092898A (ja) 2009-10-30 2011-05-12 Jfe Engineering Corp バラスト水処理装置
JP2011092899A (ja) 2009-10-30 2011-05-12 Jfe Engineering Corp バラスト水処理装置
JP2011098269A (ja) * 2009-11-05 2011-05-19 Jfe Engineering Corp バラスト水処理装置
JP2012020256A (ja) * 2010-07-16 2012-02-02 Toshiba Corp 次亜塩素酸ソーダの注入装置
JP2012254416A (ja) * 2011-06-09 2012-12-27 Kurita Water Ind Ltd 船舶バラスト水の処理システム
JP2013056296A (ja) 2011-09-08 2013-03-28 Jfe Engineering Corp 固形物と液体との混合物の製造方法及び混合装置
JP2013075250A (ja) 2011-09-29 2013-04-25 Kurita Water Ind Ltd 船舶バラスト水の処理方法
JP2013194949A (ja) * 2012-03-16 2013-09-30 Chugoku Electric Power Co Inc:The 薬液注入装置
WO2014007171A1 (ja) 2012-07-03 2014-01-09 Jfeエンジニアリング株式会社 粉体と液体の混合溶解装置及びこれを使用するバラスト水処理装置
JP5924447B1 (ja) * 2015-11-18 2016-05-25 Jfeエンジニアリング株式会社 船舶

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471895A (en) * 1977-11-18 1979-06-08 Shikoku Kasei Kougiyou Kk Device for sterilizing pool water
JPH10506835A (ja) * 1994-10-03 1998-07-07 ウェインストック, デイビッド 生物の増殖を阻害する液体処理方法
JP2011092898A (ja) 2009-10-30 2011-05-12 Jfe Engineering Corp バラスト水処理装置
JP2011092899A (ja) 2009-10-30 2011-05-12 Jfe Engineering Corp バラスト水処理装置
JP2011098269A (ja) * 2009-11-05 2011-05-19 Jfe Engineering Corp バラスト水処理装置
JP2012020256A (ja) * 2010-07-16 2012-02-02 Toshiba Corp 次亜塩素酸ソーダの注入装置
JP2012254416A (ja) * 2011-06-09 2012-12-27 Kurita Water Ind Ltd 船舶バラスト水の処理システム
JP2013056296A (ja) 2011-09-08 2013-03-28 Jfe Engineering Corp 固形物と液体との混合物の製造方法及び混合装置
JP2013075250A (ja) 2011-09-29 2013-04-25 Kurita Water Ind Ltd 船舶バラスト水の処理方法
JP2013194949A (ja) * 2012-03-16 2013-09-30 Chugoku Electric Power Co Inc:The 薬液注入装置
WO2014007171A1 (ja) 2012-07-03 2014-01-09 Jfeエンジニアリング株式会社 粉体と液体の混合溶解装置及びこれを使用するバラスト水処理装置
JP5924447B1 (ja) * 2015-11-18 2016-05-25 Jfeエンジニアリング株式会社 船舶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378837A4 *

Similar Documents

Publication Publication Date Title
JP6465168B2 (ja) バラスト水処理方法及びバラスト水処理装置
JP2017177108A5 (ja)
JP2018023975A5 (ja)
JP2017100129A5 (ja)
KR101709638B1 (ko) 이염화이소시아눌산나트륨을 이용한 선박평형수 처리장치
JP6720883B2 (ja) 船舶
WO2017086407A1 (ja) 船舶、バラスト水処理装置及びバラスト水処理方法
KR20150125375A (ko) 밸러스트 수 처리 시스템용 약품 주입 장치
JP6756298B2 (ja) バラスト水処理装置及びバラスト水処理方法
JP6720912B2 (ja) 船舶及びバラスト水処理方法
KR102218130B1 (ko) 밸러스트수 처리 장치 및 밸러스트수 처리 방법
JP6726414B2 (ja) バラスト水処理装置
JP2018099666A (ja) バラスト水処理装置及び配管ユニット
EP3290394B1 (en) Ballast water treatment device and ballast water treatment method
JP2017225945A (ja) 水処理方法及びその装置
JP2020078804A (ja) 塩素系殺菌剤の製造方法
JP2023136258A (ja) 水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187017241

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017241

Country of ref document: KR

Ref document number: 2016866408

Country of ref document: EP