WO2017086323A1 - 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材 - Google Patents

含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材 Download PDF

Info

Publication number
WO2017086323A1
WO2017086323A1 PCT/JP2016/083865 JP2016083865W WO2017086323A1 WO 2017086323 A1 WO2017086323 A1 WO 2017086323A1 JP 2016083865 W JP2016083865 W JP 2016083865W WO 2017086323 A1 WO2017086323 A1 WO 2017086323A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
mass
crosslinkable composition
structural unit
content
Prior art date
Application number
PCT/JP2016/083865
Other languages
English (en)
French (fr)
Inventor
智子 安田
宏樹 長井
八木 啓介
丈裕 巨勢
武志 山田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP16866324.3A priority Critical patent/EP3378896B1/en
Priority to JP2017551894A priority patent/JP6965749B2/ja
Priority to CN201680067596.4A priority patent/CN108291069B/zh
Publication of WO2017086323A1 publication Critical patent/WO2017086323A1/ja
Priority to US15/956,819 priority patent/US20180237628A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1068Crosslinkable materials

Definitions

  • the present invention relates to a crosslinkable composition containing a fluorine-containing copolymer having excellent crosslinking reactivity, a cross-linked product obtained by cross-linking the cross-linkable composition, and a sealing material for a semiconductor manufacturing apparatus.
  • the crosslinked product (elastic body) obtained by crosslinking the crosslinkable fluorine-containing copolymer is excellent in heat resistance, chemical resistance, oil resistance, weather resistance, etc., so that the hydrocarbon polymer cannot be tolerated. Suitable for use in harsh environments. Since the fluorine-containing copolymer is generally poor in crosslinking reactivity, it is required to improve the productivity of the crosslinked product. Therefore, it has been studied to prepare a crosslinkable composition in which a peroxide or an organic onium compound is blended with a fluorine-containing copolymer as a crosslinking agent to promote a crosslinking reaction.
  • Patent Document 1 proposes a crosslinked product obtained by crosslinking a composition in which an organic onium compound is blended with a terpolymer composed of vinylidene fluoride, tetrafluoroethylene, and propylene.
  • An example of an application in which a cross-linked product (elastic body) obtained by cross-linking a crosslinkable fluorine-containing copolymer is used in a harsh environment is a sealing material for a chamber irradiated with plasma in a semiconductor manufacturing apparatus.
  • This sealing material has a problem in that so-called particles (fine dust) are generated from a portion irradiated with plasma, and the cleanliness in the chamber is impaired.
  • a composition in which an aromatic compound such as an isoindolinone pigment, a quinacridone pigment, a diketopyrrolopyrrole pigment or an anthraquinone pigment is blended with a fluorine-containing copolymer has been proposed. (Patent Document 2).
  • An object of the present invention is to obtain a crosslinkable composition containing a fluorinated copolymer, which is excellent in crosslinking reactivity and gives a crosslinked product with low particles generated when subjected to plasma irradiation, and obtained by crosslinking the composition.
  • Another object of the present invention is to provide a cross-linked product and a sealing material for a semiconductor manufacturing apparatus containing the cross-linked product.
  • the present invention provides a crosslinkable composition having the following constitution, a cross-linked product obtained by cross-linking the composition, and a sealing material for a semiconductor manufacturing apparatus containing the cross-linked product.
  • the crosslinkable composition wherein the content of the metal element is less than 1 part by mass with respect to 100 parts by mass of the copolymer (X).
  • Copolymer (X) It has an iodine atom, has a structural unit based on tetrafluoroethylene and a structural unit based on propylene, and the content of the structural unit based on vinylidene fluoride is 0.1 relative to the total structural unit. A copolymer that is less than mol%.
  • the ratio of the structural unit based on the monomer represented by the formula (I) to the total structural unit of the copolymer (X) is 0.1 to 1.5 mol%.
  • the copolymer (X) is a copolymer having an iodine atom derived from a chain transfer agent having a constitutional unit based on a monomer having an iodine atom or containing an iodine atom.
  • [7] The crosslinkable composition according to any one of [1] to [6], wherein the content of iodine atoms in the copolymer (X) is 0.01 to 5.0 mass%.
  • the content of the crosslinking aid is 0.05 to 20 parts by mass, the content of the organic peroxide is 0.05 to 10 parts by mass with respect to 100 parts by mass of the copolymer (X).
  • the crosslinkable composition according to any one of [1] to [7], wherein the total content of the quaternary ammonium salt, the quaternary phosphonium salt, and the organic amine is 0.05 to 10 parts by mass.
  • a sealing material for a semiconductor manufacturing apparatus comprising the cross-linked product according to [10].
  • the crosslinkable composition of the present invention is excellent in crosslinking reactivity. Moreover, the cross-linked product of the present invention and the sealing material for a semiconductor manufacturing apparatus containing the cross-linked product have the same mechanical characteristics as conventional products, and can suppress the generation of particles when subjected to plasma irradiation.
  • the crosslinkable composition of the present invention comprises a copolymer (X) described later, an organic peroxide, a crosslinking aid, and at least one of a quaternary ammonium salt and a quaternary phosphonium salt,
  • the content of the metal element is less than 1 part by mass with respect to 100 parts by mass of (X).
  • metal element means a Group 1 element (alkali metal), a Group 2 element (alkaline earth metal), and a Group 3 to 12 element (transition metal) in the periodic table.
  • Metal element content means the total content of all metal elements.
  • Tetrafluoroethylene is TFE
  • hexafluoropropylene is HFP
  • vinylidene fluoride is VdF
  • chlorotrifluoroethylene is CTFE
  • perfluoro (alkyl vinyl ether) is PAVE
  • perfluoro (methyl vinyl ether) is PMVE
  • perfluoro (propyl vinyl ether) ) Is denoted as PPVE.
  • the structural unit based on the said monomer in a polymer is represented by attaching a unit to the above abbreviation.
  • TFE unit a structural unit based on VdF as “VdF unit”
  • P unit a structural unit based on propylene
  • Copolymer (X) has an iodine atom and has TFE units and P units. However, the content of VdF units in the copolymer (X) is less than 0.1 mol% with respect to all the structural units. Copolymer (X) may contain the structural unit based on monomers other than a TFE unit, P unit, and VdF unit.
  • the content of the VdF unit is preferably as low as possible, preferably 0.01 mol% or less, more preferably 0.001 mol% or less, still more preferably below the detection limit, and 0 (zero) mol% ( (Not contained) is most preferable. As will be described later, when VdF units are present in the crosslinked product, particles due to plasma irradiation are likely to be generated.
  • the total content of TFE units and P units with respect to all the structural units of the copolymer (X) is preferably 60 to 100 mol%, more preferably 80 to 100 mol%, still more preferably 90 to 100 mol%.
  • it is at least the above lower limit value particles generated when the crosslinked product is subjected to plasma irradiation can be further reduced. That the said value is less than 100 mol% means having the structural unit based on the monomer mentioned later, and the physical property of a polymer can be adjusted with this structural unit.
  • the molar ratio of TFE units to P units is preferably 30/70 to 99/1, more preferably 50/50 to 95/5, and even more preferably 70/30 to 90/10.
  • the crosslinked product has excellent physical properties and excellent heat resistance, chemical resistance, oil resistance, and weather resistance.
  • Examples of the structural unit based on monomers other than TFE, propylene and VdF include a structural unit based on a diene monomer represented by the following formula (I) (hereinafter referred to as DM unit), and a single unit having an iodine atom. Examples thereof include a structural unit based on a monomer and a structural unit based on the following other monomer.
  • DM unit diene monomer represented by the following formula (I)
  • Examples thereof include a structural unit based on a monomer and a structural unit based on the following other monomer.
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 each independently represents a hydrogen atom, a fluorine atom or a methyl group
  • R 4 represents a carbon atom having 1 to 10 carbon atoms.
  • R 4 represents a fluoroalkylene group or a group having an etheric oxygen atom between both ends, one end or a carbon-carbon bond of the perfluoroalkylene group.
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 of the above compound are hydrogen atoms or fluorine atoms.
  • R 1 , R 2 , R 3 , R 5 , R 6 and R 7 are more preferably all fluorine atoms.
  • R 4 may be linear or branched, but is preferably linear.
  • the number of carbon atoms of R 4 is preferably 2 to 8, more preferably 3 to 7, still more preferably 3 to 6, and particularly preferably 3 to 5.
  • the etheric oxygen atom in R 4 is preferably 0 to 3, more preferably 1 or 2.
  • One or two etheric oxygen atoms are preferably present at the end of the perfluoroalkylene group.
  • Examples of the diene monomer represented by the formula (I) include, for example, a vinyl group or a vinyl group or an etheric oxygen at each of both ends of a perfluoroalkylene group having 1 to 10 carbon atoms. Examples thereof include a compound having a trifluorovinyl group bonded thereto.
  • the copolymer (X) having a DM unit based on at least one of these monomers is particularly excellent in cross-linking reactivity, and the cross-linked product is excellent in tensile strength and / or has a compression set at high temperatures. small.
  • the content of DM units with respect to all the structural units of the copolymer (X) is preferably 0.1 to 1.5 mol%, more preferably 0.15 to 0.8 mol%, and 0.25 to 0.6 More preferred is mol%.
  • the cross-linking reactivity is excellent, and the cross-linked product has excellent tensile strength and further lower compression set at high temperatures.
  • the amount is not more than the upper limit of the above range, the crosslinked product can reliably prevent or further reduce cracking when stress such as bending is applied at a high temperature while maintaining the excellent physical properties.
  • the copolymer (X) may have a structural unit based on a monomer having an iodine atom.
  • the iodine atom can also be introduced into the side chain of the copolymer (X).
  • the monomer having an iodine atom include iodoethylene, 4-iodo-3,3,4,4-tetrafluoro-1-butene, 2-iodo-1,1,2,2-tetrafluoro-1-vinyloxyethane.
  • 2-iodoethyl vinyl ether allyl iodide, 1,1,2,3,3,3-hexafluoro-2-iodo-1- (perfluorovinyloxy) propane, 3,3,4,5,5,5- Hexafluoro-4-iodopentene, iodotrifluoroethylene, 2-iodoperfluoro (ethyl vinyl ether) and the like can be mentioned.
  • the content of the structural unit based on the monomer having an iodine atom with respect to all the structural units in the copolymer (X) is preferably 0.001 to 2.0 mol%, preferably 0.01 to 1.0 mol. % Is more preferable, and 0.01 to 0.5 mol% is particularly preferable.
  • HFP HFP
  • PAVE vinyl fluoride
  • pentafluoropropylene perfluorocyclobutene
  • CH 2 CHCF 3
  • CH 2 CHCF 2 CF 3
  • CH 2 CHCF 2 CF 2 CF 3
  • Non-fluorine-based single monomers such as ⁇ -olefins, vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, butyl vinyl ether, vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl caprylate One or more selected from the group consisting of bodies And the like.
  • PAVE is preferably a monomer represented by the following formula (II).
  • CF 2 CF—O—R f (II)
  • R f represents a perfluoroalkyl group which may contain an etheric oxygen atom having 1 to 8 carbon atoms.
  • the number of carbon atoms in R f is preferably 1-6, and more preferably 1-5.
  • PAVE examples include PMVE, perfluoro (ethyl vinyl ether), PPVE, perfluoro (3,6-dioxa-1-heptene), perfluoro (3,6-dioxa-1-octene), perfluoro (5 -Methyl-3,6-dioxa-1-nonene) and the like.
  • the content of structural units based on other monomers with respect to all structural units (100 mol%) in the copolymer (X) can be appropriately adjusted within a range of, for example, 0.1 to 1.5 mol%.
  • copolymers (X1) to (X3) are excellent in crosslinking reactivity. Among these, since the crosslinked product is excellent in mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance, the copolymer (X1) and the copolymer (X3) are more preferable, and the copolymer (X1) is more preferable. .
  • the copolymer composition in the copolymers (X1) to (X3) is preferably in the following range (molar ratio). Within the following range, the crosslinking reactivity of the copolymer is further improved, and the crosslinked product is further excellent in mechanical properties, heat resistance, chemical resistance, oil resistance, and weather resistance.
  • the total content of the respective structural units in the copolymers (X1) to (X3) is preferably 60 to 100 mol%, more preferably 80 to 100 mol%, based on all the structural units of the copolymer. More preferred is 90 to 100% by mass.
  • the copolymer (X) in the present invention has an iodine atom. It is preferable that an iodine atom exists in the terminal of the said copolymer (X) (polymer chain).
  • the terminal of the polymer chain is a concept including both the terminal of the main chain and the terminal of the branched chain of the copolymer (X).
  • the content of iodine atom in the copolymer (X) is preferably 0.01 to 5.0% by mass, more preferably 0.05 to 2.0% by mass, and 0.05 to 1.0% by mass. Most preferred. When the content of iodine atoms is within the above range, the crosslinking reactivity of the copolymer (X) is further improved, and the mechanical properties of the crosslinked product are further improved.
  • M H -M L degree of crosslinking measured by the method described later in Examples and the like. Usually, it shows that crosslinking reactivity is so high that the numerical value of a crosslinking degree is large.
  • the degree of crosslinking of the copolymer (X) is preferably from 30 to 150 dNm, more preferably from 50 to 130 dNm, still more preferably from 60 to 100 dNm. When the degree of cross-linking is in the above range, the cross-linking reaction proceeds at an appropriate rate, and the cross-linked product is excellent in tensile strength and has a much smaller compression set at high temperatures.
  • copolymer (X) examples include the following methods.
  • copolymer (X) is not limited to what was manufactured by the following manufacturing methods.
  • Examples of the method for producing the copolymer (X) include a radical polymerization initiator and a general formula RI 2 (wherein R is an alkylene group having 3 or more carbon atoms or a perfluoroalkylene group). And a method of copolymerizing TFE, propylene, and optionally the diene monomer or the like in the presence of the iodine compound to be produced.
  • Iodine compound represented by the general formula RI 2 is a compound which has iodine atom bonded to both ends of the alkylene group or perfluoroalkylene group having 3 or more carbon atoms. Specific examples include 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, 1,3-diiodoperfluoropropane, 1,4-diiodopropane.
  • Examples include iodoperfluorobutane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, and the like.
  • the number of carbon atoms of the iodo compound represented by the general formula RI 2 is preferably 3 to 8, and more preferably 3 to 6.
  • the iodo compound represented by the general formula RI 2 is more preferably an iodo compound having a perfluoroalkylene group, and most preferably 1,4-diiodoperfluorobutane.
  • an iodine atom can be introduced into the end of the main chain of the copolymer (X) by copolymerizing the aforementioned monomers in the presence of these iodo compounds. .
  • an iodine atom can be similarly introduced into this branched chain end. Therefore, the polymer chain end having an iodine atom may be a main chain end or a branched chain end.
  • the abundance of the iodo compound during the copolymerization reaction is appropriately adjusted depending on the production amount of the copolymer (X).
  • the amount is preferably 0.005 to 10 parts by mass, more preferably 0.02 to 5 parts by mass with respect to 100 parts by mass of the copolymer (X).
  • Examples of the polymerization method of the copolymer (X) include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, and a bulk polymerization method. Since the adjustment of the molecular weight and copolymer composition of the copolymer (X) is easy and the productivity is excellent, an emulsion polymerization method in which a monomer is copolymerized in an aqueous medium in the presence of an emulsifier is preferable.
  • the aqueous medium water or water containing a water-soluble organic solvent is preferable.
  • the water-soluble organic solvent include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol, and tert-butanol, propylene glycol, and dipropylene glycol monomethyl ether are preferable.
  • the content of the water-soluble organic solvent is preferably 1 to 50 parts by mass and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of water.
  • the pH of the aqueous medium is preferably 7 to 14, more preferably 7 to 11, further preferably 7.5 to 11, and most preferably 8 to 10.5.
  • the pH is higher than 7, the stability of the iodo compound is sufficiently maintained, and the crosslinking reactivity of the resulting copolymer (X) is sufficiently maintained.
  • the period during which the pH of the aqueous medium is maintained within the above range is most preferably the entire polymerization period from the start of the polymerization to the end of the polymerization, but may not be the entire polymerization period.
  • the period during which the pH is maintained in the above range is preferably 80% or more of the total polymerization period, more preferably 90% or more, and still more preferably 95% or more.
  • pH buffering agents include inorganic salts.
  • examples of the inorganic salts include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate, and carbonates such as sodium bicarbonate and sodium carbonate. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • the emulsifier is preferably an ionic emulsifier or a reactive emulsifier, more preferably an anionic emulsifier, because the latex of the copolymer (X) obtained is excellent in mechanical and chemical stability.
  • X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms
  • A represents a hydrogen atom, an alkali metal, or NH 4
  • p represents an integer of 1 to 10
  • Q represents an integer of 0 to 3.
  • p is preferably 1 to 4, and more preferably 1 to 3.
  • q is preferably from 0 to 2, and more preferably from 1 to 2.
  • A is preferably a hydrogen atom, Na or NH 4 , more preferably NH 4 .
  • the reactive emulsifier is not particularly limited as long as it is a compound having one or more unsaturated bonds and one or more hydrophilic groups.
  • CH 2 CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4
  • CF 2 CFOCF (CF 3) CF 2 OCF (CF 3) COONH 4 and the like.
  • the amount of the emulsifier used is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and most preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the aqueous medium.
  • a suitable radical polymerization initiator in the production method of the copolymer (X) a water-soluble polymerization initiator and a redox polymerization initiator are preferable.
  • water-soluble polymerization initiator examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; organic polymerization initiators such as disuccinic acid peroxide and azobisisobutylamidine dihydrochloride. Of these, persulfates are preferable, and ammonium persulfate is more preferable.
  • the amount of the water-soluble polymerization initiator used is preferably 0.0001 to 3% by mass, more preferably 0.001 to 1% by mass, based on the total mass of the monomers.
  • redox polymerization initiators examples include polymerization initiators in which persulfuric acids are combined with a reducing agent. Among these, a polymerization initiator capable of polymerizing each monomer at a polymerization temperature in the range of 0 ° C. to 60 ° C. is preferable.
  • the persulfate constituting the redox polymerization initiator include alkali metal salts of persulfuric acid such as ammonium persulfate, sodium persulfate, and potassium persulfate. Of these, ammonium persulfate is preferable.
  • reducing agent combined with persulfates examples include thiosulfate, sulfite, bisulfite, pyrosulfite, hydroxymethanesulfinate, etc., hydroxymethanesulfinate is preferred, and hydroxymethanesulfinate sodium salt is Most preferred.
  • a small amount of iron, iron salt, silver sulfate or the like coexist as a third component, and it is more preferable that a water-soluble iron salt coexists.
  • water-soluble iron salts include ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, ferrous chloride, ferric chloride, ferrous ammonium sulfate, ferric sulfate Ammonium etc. are mentioned.
  • a chelating agent ethylenediaminetetraacetic acid disodium salt is preferred.
  • the amount of persulfate used is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and further 0.05 to 0.5% by mass in the aqueous medium.
  • the amount of the reducing agent used in the aqueous medium is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and particularly preferably 0.05 to 0.5% by mass.
  • the amount of iron salt such as iron, ferrous salt, and the third component such as silver sulfate is preferably 0.0001 to 0.3% by mass, more preferably 0.001 to 0.1% by mass in the aqueous medium.
  • 0.01 to 0.1% by mass is particularly preferable.
  • the amount of the chelating agent used is preferably 0.0001 to 0.3% by mass in the aqueous medium, more preferably 0.001 to 0.1% by mass, and particularly preferably 0.01 to 0.1% by mass.
  • the polymerization conditions such as polymerization pressure and polymerization temperature in the production method of the copolymer (X) are appropriately selected depending on the monomer composition, the decomposition temperature of the radical polymerization initiator, and the like.
  • the polymerization pressure is preferably 1.0 to 10 MPaG, more preferably 1.5 to 5.0 MPaG, and most preferably 2.0 to 4.0 MPaG.
  • the polymerization pressure is 1.0 MPaG or more, the polymerization rate is sufficiently maintained, the reaction is easily controlled, and the productivity is excellent.
  • the polymerization pressure is 10 MPaG or less, it can be produced by a low-cost polymerization equipment that is widely used.
  • the polymerization temperature is preferably 0 to 60 ° C, more preferably 10 to 50 ° C, and particularly preferably 20 to 40 ° C.
  • a copolymer (X) having excellent crosslinking reactivity can be easily obtained, and the mechanical properties of the crosslinked product are excellent.
  • the polymerization rate is preferably 10 to 100 g / L ⁇ hour, more preferably 5 to 70 g / L ⁇ hour, and further preferably 30 to 50 g / L ⁇ hour.
  • the polymerization rate is equal to or higher than the lower limit, practical productivity is obtained.
  • the polymerization rate is not more than the above upper limit, the molecular weight of the resulting copolymer (X) is sufficiently high, and the crosslinking reactivity is also excellent.
  • a method for isolating the copolymer (X) from the latex obtained by the emulsion polymerization method a method of aggregating by a known method can be exemplified.
  • agglomeration methods include a method of salting out by adding a metal salt to the latex, a method of adding an inorganic acid such as hydrochloric acid to the latex, a method of mechanically shearing the latex, and freezing and thawing the latex. And the like. It is also preferable that the latex is agglomerated after being diluted with water or the like as necessary.
  • the isolated copolymer (X) is preferably dried using a drying apparatus such as an oven.
  • the drying temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C. When it is in this range, the cross-linking reactivity of the dried copolymer (X) is further improved, and the mechanical properties of the cross-linked product are further improved.
  • the organic peroxide contained in the crosslinkable composition of the present invention is preferably an organic peroxide that functions as a crosslinking agent and generates peroxide radicals by heating or light.
  • organic peroxides include dialkyl peroxides, 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5- Dihydroxy peroxide, benzoyl peroxide, tert-butyl peroxybenzene, 2,5-dimethyl-2,5-di (benzoyl peroxy) hexane, tert-butyl peroxymaleic acid, tert-butyl peroxysopropyl carbonate, etc.
  • dialkyl peroxides are preferred.
  • examples of the dialkyl peroxides include ditert-butyl peroxide, tert-butylcumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (tert-butylperoxy) -p-diisopropylbenzene, 2,5- Examples include dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) -3-hexyne and the like.
  • the content of the organic peroxide in the crosslinkable composition is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the copolymer (X). 0.5 to 3 parts by mass is more preferable.
  • the content of the organic peroxide is within the above range, the crosslinking rate is appropriate, and the resulting crosslinked product is excellent in tensile strength and has a much smaller compression set at high temperatures.
  • Crosslinking aid contained in the crosslinkable composition of the present invention is used for the purpose of further improving the crosslinking reactivity when the copolymer (X) is crosslinked.
  • crosslinking aids include triallyl cyanurate, triallyl isocyanurate, trimethallyl isocyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, triallyl trimellitate.
  • M-phenylenediamine bismaleimide p-quinone dioxime, p, p′-dibenzoylquinone dioxime, dipropargyl terephthalate, diallyl phthalate, N, N ′, N ′′, N ′ ′′-tetraallyl terephthalate
  • examples thereof include amides and vinyl group-containing siloxane oligomers (polymethylvinylsiloxane, polymethylphenylvinylsiloxane, etc.).
  • triallyl cyanurate, triallyl isocyanurate, and trimethallyl isocyanurate are preferable, and triallyl isocyanurate is more preferable.
  • the content of the crosslinking aid in the crosslinkable composition is preferably 0.05 to 20 parts by mass, more preferably 0.5 to 12 parts by mass with respect to 100 parts by mass of the copolymer (X). 1 to 8 parts by mass is more preferable.
  • the content of the crosslinking aid is in the above range, the crosslinking rate is appropriate, and the obtained crosslinked product is excellent in tensile strength and has a much smaller compression set at high temperatures.
  • Quaternary ammonium salt, quaternary phosphonium salt and organic amine At least one selected from the group consisting of a quaternary ammonium salt, a quaternary phosphonium salt and an organic amine contained in the crosslinkable composition of the present invention functions as a crosslinking agent together with the coexisting organic peroxide.
  • the quaternary ammonium salt and quaternary phosphonium salt are preferably those that become a base in the crosslinking reaction.
  • One or more quaternary ammonium salts, quaternary phosphonium salts and organic amines may be contained, respectively, or only one of them may be contained.
  • quaternary ammonium salt examples include tetrabutylammonium hydroxide (hereinafter referred to as TBAH), tetrabutylammonium bromide, tetrabutylammonium chloride, phenyltrimethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium fluoride, tetra Propylammonium hydroxide, benzyltrimethylammonium iodide, benzyltripropylammonium chloride, benzyltriethylammonium bromide, benzyltriethylammonium chloride, benzyltrimethylammonium chloride, tetramethylammonium bromide, tetramethylammonium chloride, tetramethylammonium iodide, tetramethyl Ammoni Hydroxide, tetraethylammonium bromide, TB
  • Examples of the quaternary phosphonium salt include N-phenyltriphenylphosphonium bromide, tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride. , Tributyl-2-methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) phosphonium chloride, and the like.
  • BTPPC is preferable from the viewpoint of improving the crosslinkability and the physical properties of the crosslinked product.
  • Examples of the organic amine include laurylamine, stearylamine, oleylamine, distearylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, 1,8-diazobicyclo [5,4,0].
  • Examples include undecene-7 (hereinafter referred to as DBU), 1,4-diazabicyclo [2.2.2] octane, and the like.
  • DBU is preferable from the viewpoint of improving the crosslinkability and the physical properties of the cross-linked product.
  • the total content of the quaternary ammonium salt, the quaternary phosphonium salt and the organic amine in the crosslinkable composition is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the copolymer (X). 0.07 to 5 parts by mass is more preferable, and 0.1 to 3 parts by mass is particularly preferable.
  • the crosslinkability and the physical properties of the crosslinked product are excellent.
  • additives such as color pigments, fillers and reinforcing agents known as rubber materials may be blended as necessary.
  • the filler or reinforcing agent include carbon black, titanium oxide, silicon dioxide, clay, and talc.
  • the crosslinkable composition of the present invention may contain a fluorine-containing polymer that does not contain a structural unit based on TFE and P (hereinafter also referred to as another fluorine-containing polymer).
  • a fluorine-containing polymer that does not contain a structural unit based on TFE and P
  • the other fluorine-containing polymer include poly TFE, poly VdF, poly CTFE, TFE / ethylene copolymer, and the like.
  • the content thereof is preferably, for example, 0.1 to 20 parts by mass with respect to 100 parts by mass of the copolymer (X). 1 to 15 parts by mass is more preferable, and 5 to 10 parts by mass is further preferable. Within this range, the physical properties of the other fluoropolymer can be utilized in the crosslinked product without impairing the spirit of the present invention.
  • the other fluorine-containing polymer preferably contains almost no fluorine-containing polymer having a VdF unit.
  • the fluorine-containing polymer having a VdF unit include poly VdF, TFE / VdF copolymer, and the like.
  • the fact that the crosslinkable composition of the present invention does not contain the fluorine-containing polymer having the VdF unit means that the VdF unit is added to 100 parts by mass of the copolymer (X) in the crosslinkable composition. It means that the content of the fluoropolymer has preferably less than 0.1 parts by mass, more preferably less than 0.01 parts by mass, and still more preferably substantially below the detection limit.
  • Content of the metal element in the crosslinkable composition of this invention is less than 1 mass part with respect to 100 mass parts of copolymer (X).
  • the content is preferably less than 0.1 parts by mass, more preferably less than 0.01 parts by mass, further preferably substantially below the detection limit, and most preferably 0 (zero) parts by mass (not contained). preferable.
  • the metal element is included in the crosslinkable composition in the form of a salt of a saturated or unsaturated fatty acid as an additive to be blended, for example, derived from impurities during the production of the copolymer (X) Can be considered.
  • the fatty acid include higher fatty acids having 10 or more carbon atoms such as stearic acid, oleic acid, palmitic acid, and lauric acid.
  • Examples of an apparatus for mixing each material when preparing the crosslinkable composition of the present invention include rubber mixing apparatuses such as a roll, a kneader, a Banbury mixer, and an extruder.
  • the crosslinked product of the present invention is obtained by crosslinking the copolymer (X) in the aforementioned crosslinkable composition of the present invention.
  • the compression set of the crosslinked product of the present invention is measured according to JIS K6262.
  • the compression set is preferably 65% or less, more preferably 40% or less, and even more preferably 30% or less under the conditions of 200 ° C. and 22 hours and a compression rate of 25%.
  • the lower limit is not particularly limited, and may be 0%.
  • the tensile strength of the cross-linked product of the present invention is measured in accordance with JISK 6251 at 23 ° C. by forming into a sheet having a thickness of 1 mm, punching with a No. 4 dumbbell.
  • the tensile strength is preferably 15 MPa or more, more preferably 20 MPa or more, and further preferably 22 MPa or more.
  • An upper limit is not specifically limited, For example, about 30 MPa is mentioned.
  • the 100% tensile stress (100% modulus) measured according to JISK 6251 is preferably 2.5 MPa or more, more preferably 3.5 MPa or more, and further preferably 4.5 MPa or more.
  • An upper limit is not specifically limited, For example, about 30 MPa is mentioned.
  • the elongation measured according to JISK ⁇ ⁇ 6251 is preferably 250% or more, more preferably 300% or more, and further preferably 350% or more.
  • An upper limit is not specifically limited, For example, about 1000% is mentioned.
  • the crosslinked product of the present invention is preferably produced by the method for producing a crosslinked product of the present invention described below, but is not limited to those produced by the following production method.
  • Examples of the method for producing the crosslinked product include a method for producing a crosslinked product by crosslinking the copolymer (X) by heating the aforementioned crosslinkable composition.
  • Examples of the method for heating and crosslinking the crosslinkable composition include various methods such as hot press crosslinking, steam crosslinking and hot air crosslinking. What is necessary is just to select suitably from these methods in consideration of the shape and use of the crosslinked product to be molded.
  • the crosslinking temperature is preferably from 100 to 400 ° C. for several seconds to 24 hours.
  • the crosslinkable composition may be heat-pressed to crosslink and crosslink the crosslinkable composition to obtain a crosslinked product.
  • the said molded object may be bridge
  • Examples of the molding method of the crosslinkable composition include compression molding, injection molding, extrusion molding, calender molding, or a method of melting and dipping, coating and molding.
  • the cross-linked product As a method for producing the cross-linked product, it is preferable to heat the cross-linkable composition to perform primary cross-linking to obtain a cross-linked product, and further heat the cross-linked product to perform secondary cross-linking.
  • the heating conditions for the secondary crosslinking are preferably 100 to 300 ° C. for 30 minutes to 48 hours.
  • a method of irradiating the cross-linkable composition with radiation instead of a heating method is also preferable.
  • radiation to be irradiated include electron beams and ultraviolet rays.
  • the irradiation amount in electron beam irradiation is preferably 0.1 to 30 Mrad, and more preferably 1 to 20 Mrad.
  • the crosslinkable composition may be a composition not containing an organic peroxide.
  • the crosslinked product of the present invention is excellent in resistance to treatment that can decompose or corrode synthetic resins such as plasma, UV, reactive ions, laser, etching gas, etc., for example, generation of particles due to plasma irradiation can be suppressed. For this reason, it is suitable as a sealing material (member for keeping airtightness) of a chamber (processing chamber) in which the above processing is performed.
  • a sealing material member for keeping airtightness
  • a semiconductor manufacturing apparatus is mentioned, for example, Especially the semiconductor manufacturing apparatus provided with the chamber where plasma is irradiated is suitable.
  • the sealing material for a semiconductor manufacturing apparatus containing the cross-linked product of the present invention since the generation of particles when the above treatment is performed is suppressed, the particles are scattered in the chamber and the cleanliness in the chamber is lowered. Can be prevented.
  • Examples of the semiconductor manufacturing apparatus include etching apparatuses such as a dry etching apparatus, a plasma etching apparatus, a reactive ion etching apparatus, a reactive ion beam etching apparatus, a sputter etching apparatus, an ion beam etching apparatus, a wet etching apparatus, and an ashing apparatus; Dry etching cleaning device, UV / O 3 cleaning device, ion beam cleaning device, laser beam cleaning device, plasma cleaning device, gas etching cleaning device, extraction cleaning device, Soxhlet extraction cleaning device, high temperature high pressure extraction cleaning device, microwave extraction cleaning Cleaning devices such as steppers and coaters / developers; Polishing devices such as CMP devices, film forming devices such as CVD devices and sputtering devices; oxidation diffusion devices, ion implantation devices, etc. And a diffusion / ion implantation apparatus.
  • etching apparatuses such as a dry etching apparatus, a plasma etching apparatus, a reactive ion etching
  • VdF units are arranged ⁇ —CF 2 —CH 2 —CF 2 —CH 2 — ⁇ , or VdF units and TFE units are arranged ⁇
  • the —CH 2 — proton sandwiched from both sides by electron-withdrawing —CF 2 — may be in an electronic state in which it is easy to desorb. Presumed to be a cause. That is, when chemical activation energy by plasma irradiation is given, it is presumed that particles are generated by the proton being eliminated and the copolymer partially decomposing. Therefore, it is estimated that the smaller the content of VdF units in the copolymer, the more the generation of particles from the crosslinked product can be suppressed.
  • the present inventors have found that when a metal element is contained in a crosslinked product, the crosslinked product has low plasma resistance and it is difficult to suppress the generation of particles due to plasma irradiation. I confirmed experimentally. Although the details of this reason are not yet elucidated, it is presumed that the metal element is activated by the plasma irradiation and reacts with the constituent material of the crosslinked product, thereby causing the decomposition of the crosslinked product and generating particles. Therefore, it is estimated that the smaller the content of the metal element in the cross-linked product, the more the generation of particles can be suppressed.
  • TAIC manufactured by Nippon Kasei Co., Ltd., triallyl isocyanurate.
  • Parkadox 14RP product name: ⁇ , ⁇ '-bis (t-butylperoxy) -p-diisopropylbenzene, manufactured by Kayaku Akzo Corporation.
  • Perhexa 25B product name: 2,5-dimethyl-2,5-di (t-butylperoxy) -hexane manufactured by NOF Corporation.
  • MT carbon product name: Carbon black manufactured by CANCARB.
  • Sodium stearate NOF SAL-1 (product name) manufactured by NOF Corporation Calcium stearate: manufactured by Kanto Chemical Co., Inc.
  • TBAH manufactured by Tokyo Chemical Industry Co., Ltd., tetrabutylammonium hydroxide (37% methanol solution).
  • BTPPC Benzyltriphenylphosphonium chloride, manufactured by Tokyo Chemical Industry Co., Ltd.
  • DBU manufactured by Tokyo Chemical Industry Co., Ltd., 1,8-diazobicyclo [5,4,0] undecene-7
  • An anchor blade was rotated at 300 rpm, and then a 2.5% by mass aqueous solution of sodium hydroxymethanesulfinate dihydrate (hereinafter referred to as Rongalite) adjusted to pH 10.0 with sodium hydroxide (hereinafter referred to as Rongalite). 2.5% by weight aqueous solution) was added to the reactor to initiate the polymerization reaction. Thereafter, Rongalite 2.5 mass% aqueous solution was continuously added to the reactor using a high-pressure pump.
  • aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate and 0.3 g of ferrous sulfate heptahydrate were dissolved in 100 g of ion exchange water was added to the reactor.
  • the pH of the aqueous medium in the reactor was 9.5.
  • the anchor blade was rotated at 300 rpm, and then 2.5% by mass of Rongalite whose pH was adjusted to 10.0 with sodium hydroxide was added to the reactor to initiate the polymerization reaction.
  • Rongalite 2.5 mass% aqueous solution was continuously added to the reactor using a high-pressure pump.
  • the addition of the 2.5% by weight aqueous solution of Rongalite is stopped, the internal temperature of the reactor is cooled to 10 ° C., and the polymerization reaction is performed.
  • the latex of copolymer 2 was stopped.
  • the amount of Rongalite 2.5 mass% aqueous solution added was 68 g.
  • the polymerization time was 6 hours.
  • a 5% by mass aqueous solution of calcium chloride was added to the latex to agglomerate the latex of copolymer 2, and copolymer 2 was precipitated.
  • the iodine content in the copolymer was quantified with an apparatus combining an automatic sample combustion apparatus ion chromatograph pretreatment apparatus AQF-100 type manufactured by Dia Instruments and an ion chromatograph.
  • Metal element content 0.5 g of the copolymer was calcined at 600 ° C. for 60 minutes in the air for ashing, and the remaining ash was dissolved in an aqueous sulfuric acid solution to obtain a solution.
  • the metal element content of 10 ml of the obtained solution was measured by IPC-MS (manufactured by Agilent Technologies). The case where the total amount of generated metal is less than 1 part by mass with respect to 100 parts by mass of the copolymer is “ ⁇ ” (pass), and the case where it is 1 part by mass or more is “x” (fail).
  • the kind of metal element measured here is as above-mentioned, and metal element content is the sum total of content of all the metal elements.
  • t 90 after the start of the curing process is a value defined as the time (crosslinking rate) to reach 90% of the torque value of the maximum torque, indicating an approximation of the optimum crosslinking time.
  • the t 90 is long, it takes a long time until the molding is complete, the production efficiency is low.
  • a P26 size O-ring was prepared in the same manner as the above crosslinked rubber sheet.
  • a gas flow rate 30 CCM, frequency: 13.6 Hz, RF output: 300 W, pressure: 42 Pa, irradiation time: 270 minutes, using a plasma device (Plasma Cleaner PDC210, manufactured by Yamato Scientific Co., Ltd.) Plasma irradiation was performed under the following conditions.
  • the irradiated O-ring was cleaned by sonication in pure water. After washing, it was dried at 100 ° C. for 24 hours, and the mass was measured.
  • the case where the mass change rate before the plasma irradiation is 1.0% or less is “ ⁇ ” (good), and the case where the mass change rate is more than 1.0% is “x” (defective).
  • the magnitude of the mass change rate measured here correlates with the amount of particles generated by plasma irradiation. Since particles generated during O-ring are dispersed in pure water by washing in pure water, the mass change rate increases as the number of generated particles increases.
  • the crosslinkable compositions of Examples 1 to 4 have excellent crosslinking reactivity.
  • the cross-linked products obtained by cross-linking the cross-linkable compositions of Examples 1 to 4 have excellent rubber physical properties, a small mass change rate, and a small number of particles generated by plasma irradiation. It was.
  • the crosslinkable compositions of Comparative Examples 1 and 4 did not contain a quaternary ammonium salt and a quaternary phosphonium salt, the crosslinking reactivity was poor, and a crosslinked product whose characteristics could be measured was not obtained.
  • the crosslinkable compositions of Comparative Examples 2 to 3 contain an alkali metal salt or alkaline earth metal salt of stearic acid as a processing aid, the mass change rate of the crosslinked product is large, and the number of particles generated by plasma irradiation is large. It was confirmed. Since the polymer of Comparative Example 5 has VdF units, it was confirmed that the mass change rate was large and the number of particles generated by plasma irradiation was large. For this reason, the crosslinked product of Comparative Examples 2, 3, and 5 was incompatible as a sealing material for a semiconductor manufacturing apparatus.
  • a crosslinked product having excellent plasma resistance can be provided.
  • the obtained cross-linked product is suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms, V-rings and the like. It can also be applied to applications such as heat-resistant chemical-resistant sealing materials, heat-resistant oil-resistant sealing materials, wire coating materials, semiconductor manufacturing equipment sealing materials, corrosion-resistant rubber paints, urea-based grease sealing materials, etc. It is suitable as a sealing material for devices.
  • the entire content of the specification, claims and abstract of Japanese Patent Application No. 2015-226737 filed on November 19, 2015 is incorporated herein as the disclosure of the specification of the present invention. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

架橋特性に優れ、プラズマ照射を受けた場合に発生するパーティクルが抑制された架橋物を与える含フッ素共重合体を含む架橋性組成物、その組成物を架橋して得た架橋物、およびその架橋物を含む半導体製造装置用シール材を提供する。 ヨウ素原子を有すると共に、テトラフルオロエチレンに基づく構成単位およびプロピレンに基づく構成単位を有し、フッ化ビニリデンに基づく構成単位の含有量が、全構成単位に対して、0.1モル%未満である共重合体(X)と、有機過酸化物と、架橋助剤と、4級アンモニウム塩および4級ホスホニウム塩および有機アミンからなる群から選ばれる少なくとも一種と、を含み、前記共重合体(X)の100質量部に対して金属元素の含有量が1質量部未満であることを特徴とする架橋性組成物。

Description

含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材
 本発明は、架橋反応性に優れる含フッ素共重合体を含む架橋性組成物、当該架橋性組成物を架橋してなる架橋物および半導体製造装置用シール材に関する。
 架橋性の含フッ素共重合体を架橋して得た架橋物(弾性体)は、耐熱性、耐薬品性、耐油性、耐候性等に優れることから、炭化水素系重合体が耐えられないような過酷な環境下での使用に適している。含フッ素共重合体は一般に架橋反応性に乏しいので、架橋物の生産性を向上させることが要請される。そのため、含フッ素共重合体に、架橋剤として過酸化物や有機オニウム化合物を配合した架橋性組成物を調製し、架橋反応を促進させることが検討されている。例えば、特許文献1には、フッ化ビニリデン、テトラフルオロエチレンおよびプロピレンからなる三元系共重合体に、有機オニウム化合物を配合した組成物を架橋して得た架橋物が提案されている。
 架橋性の含フッ素共重合体を架橋して得た架橋物(弾性体)が過酷な環境下に使用される用途の一例として、半導体製造装置におけるプラズマが照射されるチャンバーのシール材がある。このシール材には、プラズマ照射を受けた部位から、いわゆるパーティクル(微細な粉塵)が発生し、チャンバー内の清浄性が損なわれる問題があった。この問題を解決するべく、含フッ素共重合体に、イソインドリノン系顔料、キナクリドン系顔料、ジケトピロピロール系顔料、アンスラキノン系顔料等の芳香族化合物を配合した組成物が提案されている(特許文献2)。
特開平5-155943号公報 特許第4720501号公報
 しかしながら、特許文献2で提案された組成物には、含フッ素共重合体の架橋反応性の制御や上記芳香族化合物の調製が難しい場合がある。このため、より簡便で、架橋反応性に優れ、得られた架橋物がプラズマ照射を受けた場合に発生するパーティクルが少ない架橋性組成物が求められている。
 本発明の目的は、架橋反応性に優れ、プラズマ照射を受けた場合に発生するパーティクルが低い架橋物を与える、含フッ素共重合体を含む架橋性の組成物、その組成物を架橋して得た架橋物、およびその架橋物を含む半導体製造装置用シール材を提供することである。
 本発明は、以下の構成を有する、架橋性組成物、その組成物を架橋して得た架橋物、およびその架橋物を含む半導体製造装置用シール材を提供する。
[1] 下記共重合体(X)と、有機過酸化物と、架橋助剤と、4級アンモニウム塩、4級ホスホニウム塩および有機アミンからなる群から選ばれる少なくとも一種と、を含み、
 前記共重合体(X)の100質量部に対して金属元素の含有量が1質量部未満であることを特徴とする架橋性組成物。
 共重合体(X):ヨウ素原子を有すると共に、テトラフルオロエチレンに基づく構成単位およびプロピレンに基づく構成単位を有し、フッ化ビニリデンに基づく構成単位の含有量が全構成単位に対して0.1モル%未満である、共重合体。
[2] 前記共重合体(X)の全構成単位に対する、プロピレンに基づく構成単位とテトラフルオロエチレンに基づく構成単位の合計の含有量が90~100モル%である、[1]に記載の架橋性組成物。
[3] 前記プロピレンに基づく構成単位に対するテトラフルオロエチレンに基づく構成単位のモル比が、30/70~99/1である、[1]または[2]に記載の架橋性組成物。
[4] 前記共重合体(X)が、下記式(I)で表される単量体に基づく構成単位を有する、[1]~[3]の何れかに記載の架橋性組成物。
   CR=CR-R-CR=CR    ・・・(I)
(式中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の炭素-炭素結合間にエーテル性酸素原子が挿入された基を示す。)
[5] 前記共重合体(X)の全構成単位に対する、前記式(I)で表される単量体に基づく構成単位の割合が0.1~1.5モル%である、[4]に記載の架橋性組成物。
[6] 前記共重合体(X)が、ヨウ素原子を有する単量体に基づく構成単位を有するかまたはヨウ素原子を含有する連鎖移動剤に由来するヨウ素原子を有する共重合体である、[1]~[5]の何れかに記載の架橋性組成物。
[7] 前記共重合体(X)中のヨウ素原子の含有量が0.01~5.0質量%である、[1]~[6]の何れかに記載の架橋性組成物。
[8] 前記共重合体(X)100質量部に対して、前記架橋助剤の含有量が0.05~20質量部、前記有機過酸化物の含有量が0.05~10質量部、前記4級アンモニウム塩、4級ホスホニウム塩および有機アミンの合計の含有量が0.05~10質量部である、[1]~[7]の何れかに記載の架橋性組成物。
[9] 前記架橋性組成物が脂肪酸金属塩を含有しない、[1]~[8]の何れかに記載の架橋性組成物。
[10] [1]~[9]の何れかに記載の架橋性組成物中の前記共重合体(X)を架橋して得た架橋物。
[11] [10]に記載の架橋物を含む半導体製造装置用シール材。
 本発明の架橋性組成物は架橋反応性に優れる。また、本発明の架橋物およびその架橋物を含む半導体製造装置用シール材は、従来品と同等の機械的特性を有し、プラズマ照射を受けた場合のパーティクルの発生を抑制できる。
<架橋性組成物>
 本発明の架橋性組成物は、後記する共重合体(X)と、有機過酸化物と、架橋助剤と、4級アンモニウム塩および4級ホスホニウム塩の少なくとも一方と、を含み、共重合体(X)の100質量部に対して金属元素の含有量が1質量部未満である。
 本発明において、「金属元素」とは、周期表の第1族元素(アルカリ金属)、第2族元素(アルカリ土類金属)、および第3~第12族元素(遷移金属)を意味する。「金属元素の含有量」とは、全ての金属元素の合計の含有量を意味する。
 以下、テトラフルオロエチレンをTFE、ヘキサフルオロプロピレンをHFP、フッ化ビニリデンをVdF、クロロトリフルオロエチレンをCTFE、パーフルオロ(アルキルビニルエーテル)をPAVE、パーフルオロ(メチルビニルエーテル)をPMVE、パーフルオロ(プロピルビニルエーテル)をPPVEと記す。
 また、重合体中の上記モノマーに基づく構成単位を、上記略称に単位を付して表す。たとえば、TFEに基づく構成単位を「TFE単位」、VdFに基づく構成単位を「VdF単位」等と記す。さらに、プロピレンに基づく構成単位を「P単位」と記す。
[共重合体(X)]
 共重合体(X)は、ヨウ素原子を有し、TFE単位およびP単位を有する。しかし、共重合体(X)中にVdF単位の含有量は、全構成単位に対して0.1モル%未満である。共重合体(X)は、TFE単位、P単位およびVdF単位以外の単量体に基づく構成単位を含んでもよい。
 前記VdF単位の含有量は少ないほど好ましく、0.01モル%以下が好ましく、0.001モル%以下がより好ましく、実質的に検出限界以下であることがさらに好ましく、0(ゼロ)モル%(含有しないこと)が最も好ましい。後述する様に、VdF単位が架橋物中に存在すると、プラズマ照射によるパーティクルが発生しやすい。
 共重合体(X)の全構成単位に対するTFE単位およびP単位の合計の含有量は、60~100モル%が好ましく、80~100モル%がより好ましく、90~100モル%がさらに好ましい。
 上記下限値以上であると、架橋物がプラズマ照射を受けた場合に発生するパーティクルをより一層低減できる。
 上記値が100モル%未満であることは後述する単量体に基づく構成単位を有すること意味し、この構成単位よって重合体の物性を調整できる。
 P単位に対するTFE単位のモル比[TFE単位/P単位]は、30/70~99/1が好ましく、50/50~95/5がより好ましく、70/30~90/10がさらに好ましい。この範囲にあると、架橋物は、物性に優れ、耐熱性、耐薬品性、耐油性、および耐候性に優れる。
 TFE、プロピレンおよびVdF以外の単量体に基づく構成単位としては、下記式(I)で表されるジエン系単量体に基づく構成単位(以下、DM単位と記す。)、ヨウ素原子を有する単量体に基づく構成単位、および下記他の単量体に基づく構成単位が挙げられる。共重合体(X)がDM単位を有すると、架橋物は引張り強度に優れる。
   CR=CR-R-CR=CR    ・・・(I)
(式中、R、R、R、R、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の両末端、片末端もしくは炭素-炭素結合間にエーテル性酸素原子を有する基を示す。)
 共重合体(X)の架橋反応性および耐熱性を高める観点から、上記の化合物のR、R、R、R、RおよびRが水素原子またはフッ素原子であることが好ましく、R、R、R、R、RおよびRの全てがフッ素原子であることがより好ましい。
 Rは、直鎖であってもよく分岐鎖であってもよいが、直鎖であることが好ましい。Rの炭素原子数は、2~8が好ましく、3~7がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。また、Rにおける前記エーテル性酸素原子は0~3個が好ましく、1または2個がより好ましい。1または2個のエーテル性酸素原子はパーフルオロアルキレン基の末端に存在していることが好ましい。Rがこれらの好適な範囲にあると、架橋物は、引張り強度に優れ、および/または高温下での圧縮永久歪が小さい。
 式(I)で表されるジエン系単量体としては、例えば、炭素原子数1~10のパーフルオロアルキレン基の両末端の各々に、エーテル性酸素を介してまたは介することなく、ビニル基またはトリフルオロビニル基が結合した化合物などが挙げられる。
 ジエン系単量体の好適な具体例としては、CF=CFO(CFOCF=CF、CF=CFO(CFOCF=CF、CH=CH(CFCH=CHが挙げられる。これらの単量体の少なくとも1種に基づくDM単位を有する共重合体(X)は、架橋反応性に特に優れ、架橋物は、引張り強度に優れる、および/または高温下での圧縮永久歪が小さい。
 ジエン系単量体を共重合させると、重合中に当該単量体の両末端にある重合性二重結合の少なくとも一部が反応し、分岐鎖を有する共重合体(X)が得られる。
 共重合体(X)が分岐鎖を有することによって、架橋反応性が向上し、引張り強度に優れおよび圧縮永久歪が小さい架橋物が得られる。
 共重合体(X)の全構成単位に対するDM単位の含有量は、0.1~1.5モル%が好ましく、0.15~0.8モル%がより好ましく、0.25~0.6モル%がさらに好ましい。
 上記範囲の下限値以上であると、架橋反応性が優れ、架橋物は、引張り強度に優れおよび高温下での圧縮永久歪がより一層小さい。
 上記範囲の上限値以下であると、架橋物は、上記優れた物性を維持しつつ、高温下で折り曲げ等の応力が加えられた場合の割れを確実に防ぐまたはより一層低減できる。
 共重合体(X)は、ヨウ素原子を有する単量体に基づく構成単位を有してもよい。ヨウ素原子を有する単量体を共重合させると、共重合体(X)の側鎖にもヨウ素原子を導入できる。
 ヨウ素原子を有する単量体としては、ヨードエチレン、4-ヨード-3,3,4,4-テトラフルオロ-1-ブテン、2-ヨード-1,1,2,2-テトラフルオロ-1-ビニロキシエタン、2-ヨードエチルビニルエーテル、アリルヨージド、1,1,2,3,3,3-ヘキサフルオロ-2-ヨード-1-(パーフルオロビニロキシ)プロパン、3,3,4,5,5,5-ヘキサフルオロ-4-ヨードペンテン、ヨードトリフルオロエチレン、2-ヨードパーフルオロ(エチルビニルエーテル)などが挙げられる。
 共重合体(X)中の全構成単位に対する、前記ヨウ素原子を有する単量体に基づく構成単位の含有量は、0.001~2.0モル%が好ましく、0.01~1.0モル%がより好ましく、0.01~0.5モル%が特に好ましい。
 他の単量体としては、HFP、PAVE、フッ化ビニル、ペンタフルオロプロピレン、パーフルオロシクロブテン、CH=CHCF、CH=CHCFCF、CH=CHCFCFCF、CH=CHCFCFCFCF、CH=CHCFCFCFCFCF等の(パーフルオロアルキル)エチレン類等の含フッ素系単量体および、エチレン、イソブチレン、ペンテンなどのα-オレフィン類、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル等のビニルエーテル類、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル等のビニルエステル類等の非フッ素系単量体からなる群より選ばれる1種以上が挙げられる。
 PAVEとしては、下記式(II)で表される単量体が好ましい。
CF=CF-O-R ・・・(II)
(式中、Rは、炭素原子数1~8のエーテル性酸素原子を含んでいてもよいパーフルオロアルキル基を示す。)
 Rの炭素原子数は、1~6が好ましく、1~5がより好ましい。
 PAVEの具体例としては、PMVE、パーフルオロ(エチルビニルエーテル)、PPVE、パーフルオロ(3,6-ジオキサ-1-ヘプテン)、パーフルオロ(3,6-ジオキサ-1-オクテン)、パーフルオロ(5-メチル-3,6-ジオキサ-1-ノネン)等が挙げられる。
 共重合体(X)中の全構成単位(100モル%)に対する、他の単量体に基づく構成単位の含有量は、例えば、0.1~1.5モル%の範囲で適宜調整できる。
 共重合体(X)を構成する構成単位の組み合わせの具体例としては、下記共重合体(X1)~(X3)等が挙げられる。共重合体(X1)~(X3)は架橋反応性が優れる。中でも架橋物が機械特性、耐熱性、耐薬品性、耐油性、および耐候性に優れるので、共重合体(X1)および共重合体(X3)がより好ましく、共重合体(X1)がさらに好ましい。
 共重合体(X1):TFE単位とP単位との組み合わせ
 共重合体(X2):TFE単位とP単位とPPVE単位との組み合わせ
 共重合体(X3):TFE単位とP単位とPMVE単位との組み合わせ
 共重合体(X1)~(X3)における共重合体組成は下記範囲(モル比)であることが好ましい。下記範囲であると、共重合体の架橋反応性がより一層優れ、さらに架橋物は、機械特性、耐熱性、耐薬品性、耐油性、および耐候性に優れる。
 共重合体(X1):TFE単位/P単位=30/70~90/10(モル比)
 共重合体(X2):TFE単位/P単位/PPVE単位=30~70/10~60/10~40(モル比)
 共重合体(X3):TFE単位/P単位/PMVE単位=30~70/10~60/10~40(モル比)
 ここで、上記共重合体(X1)~(X3)における各構成単位の合計の含有量は、共重合体の全構成単位に対して、60~100モル%が好ましく、80~100モル%がより好ましく、90~100質量%がさらに好ましい。
 本発明における共重合体(X)は、ヨウ素原子を有する。
 ヨウ素原子は、当該共重合体(X)(高分子鎖)の末端にあることが好ましい。ここで、高分子鎖の末端とは、共重合体(X)の主鎖の末端および分岐鎖の末端の両方を含む概念とする。
 共重合体(X)中のヨウ素原子の含有量は、0.01~5.0質量%が好ましく、0.05~2.0質量%がより好ましく、0.05~1.0質量%が最も好ましい。
 ヨウ素原子の含有量が上記範囲にあると、共重合体(X)の架橋反応性がより一層優れ、架橋物の機械特性がより一層優れる。
 共重合体(X)の架橋特性として、後述する実施例の方法で測定されるM-M(架橋度)が挙げられる。通常、架橋度の数値が大きいほど、架橋反応性が高いことを示す。共重合体(X)の架橋度は、30~150dNmが好ましく、50~130dNmがより好ましく、60~100dNmがさらに好ましい。
 架橋度が上記範囲であると、適切な速度で架橋反応が進行し、架橋物は、引張り強度に優れおよび高温下での圧縮永久歪がより一層小さい。
 共重合体(X)の製造方法として、例えば以下の方法が挙げられる。なお、共重合体(X)は以下の製造方法によって製造されたものに限定されない。
[共重合体(X)の製造方法]
 共重合体(X)の製造方法としては、例えば、ラジカル重合開始剤、および、一般式RI(式中、Rは炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、TFEとプロピレンと、任意に前記ジエン系単量体等とを共重合する方法が挙げられる。
 一般式RIで表されるヨード化合物は、炭素原子数3以上のアルキレン基またはパーフルオロアルキレン基の両末端にヨウ素原子が結合した化合物である。具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン等が挙げられる。一般式RIで表されるヨード化合物の炭素原子数は、好ましくは3~8であり、より好ましくは3~6である。一般式RIで表されるヨード化合物としては、パーフルオロアルキレン基を有するヨード化合物がより好ましく、1,4-ジヨードパーフルオロブタンが最も好ましい。
 これらのヨード化合物は、連鎖移動剤として機能するため、これらのヨード化合物の存在下に前述した各単量体を共重合させると、共重合体(X)の主鎖末端にヨウ素原子を導入できる。また、本製造方法において、分岐鎖を有する共重合体(X)が得られる場合には、この分岐鎖末端にも同様にヨウ素原子を導入できる。したがって、ヨウ素原子を有する高分子鎖末端は、主鎖末端であってもよいし、分岐鎖末端であってもよい。
 共重合反応を行う際のヨード化合物の存在量は、共重合体(X)の製造量によって適宜調整される。例えば、共重合体(X)100質量部に対して、0.005~10質量部が好ましく、0.02~5質量部がより好ましい。
 共重合体(X)の重合方法としては、例えば、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。共重合体(X)の分子量および共重合体組成の調整が容易で、生産性に優れるので、乳化剤の存在下に水性媒体中で単量体を共重合する乳化重合法が好ましい。
 水性媒体としては、水、または水溶性有機溶媒を含む水が好ましい。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール等が挙げられ、tert-ブタノール、プロピレングリコール、ジプロピレングリコールモノメチルエーテルが好ましい。
 水性媒体が水溶性有機溶媒を含む場合、水溶性有機溶媒の含有量は、水の100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。
 乳化重合法において、水性媒体のpHは好ましくは7~14、より好ましくは7~11、さらに好ましくは7.5~11、最も好ましくは8~10.5である。pHが7より大きいと、ヨード化合物の安定性が充分に保たれ、得られる共重合体(X)の架橋反応性が充分に保たれる。
 水性媒体のpHを上記範囲に保持する期間は、乳化重合の重合開始から重合終了までの間の全重合期間であることが最も好ましいが、全重合期間でなくてもよい。pHを上記範囲に保持する期間は、好ましくは全重合期間の80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。
 pHの調整には、pH緩衝剤を用いることが好ましい。pH緩衝剤としては、無機塩類などが挙げられる。無機塩類としては、リン酸水素二ナトリウム、リン酸二水素ナトリウムなどのリン酸塩、炭酸水素ナトリウム、炭酸ナトリウムなどの炭酸塩などが挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。
 乳化剤としては、得られる共重合体(X)のラテックスの機械的および化学的安定性が優れるので、イオン性乳化剤または反応性乳化剤が好ましく、アニオン性乳化剤がより好ましい。アニオン性乳化剤としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の炭化水素系乳化剤;パーフルオロオクタン酸アンモニウム、パーフルオロヘキサン酸アンモニウム、ω-ヒドロパーフルオロオクタン酸アンモニウム等の含フッ素アルキルカルボン酸およびその塩;下記式(III)で表される乳化剤(以下、乳化剤(III)と記す。);CFO(CFO)CFCOONH(ここで、n=2または3)等が好ましい。
 F(CFO(CF(X)CFO)CF(X)COOA ・・・(III)
 上記式(III)中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。
 上記式(III)中、pは、1~4が好ましく、1~3がより好ましい。qは、0~2が好ましく、1~2がより好ましい。Aは、水素原子、NaまたはNHが好ましく、NHがより好ましい。
 上記式(III)のAがNHである場合の乳化剤(III)の具体例を以下に挙げる。
 CFOCFCFOCFCOONH
 CFO(CFCFO)CFCOONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 CFO(CF(CF)CFO)CF(CF)COONH
 F(CFO(CF(CF)CFO)CF(CF)COONH
 F(CFO(CF(CF)CFO)CF(CF)COONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 F(CFOCFCFOCFCOONH
 F(CFO(CFCFO)CFCOONH
 CFOCF(CF)CFOCF(CF)COONH
 F(CFOCF(CF)CFOCF(CF)COONH
 F(CFOCF(CF)CFOCF(CF)COONH
 反応性乳化剤としては、不飽和結合と親水基とをそれぞれ1つ以上有する化合物であれば特に限定されないが、例えば、CH=CFCFOCF(CF)CFOCF(CF)COONH、CF=CFOCF(CF)CFOCF(CF)COONHが挙げられる。
 乳化剤の使用量は、水性媒体の100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましく、0.1~2質量部が最も好ましい。
 共重合体(X)の製造方法における好適なラジカル重合開始剤としては、水溶性重合開始剤、レドックス重合開始剤が好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類;ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等の有機系重合開始剤類等が挙げられる。なかでも、過硫酸類が好ましく、過硫酸アンモニウムがより好ましい。
 水溶性重合開始剤の使用量は、単量体の合計の質量に対して、0.0001~3質量%が好ましく、0.001~1質量%がより好ましい。
 レドックス重合開始剤としては、過硫酸類と還元剤を組み合せた重合開始剤が挙げられる。このうち、重合温度が0℃~60℃の範囲で各単量体を重合可能な重合開始剤が好ましい。レドックス重合開始剤を構成する過硫酸塩の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸のアルカリ金属塩等が挙げられる。なかでも、過硫酸アンモニウムが好ましい。過硫酸類と組み合わせる還元剤としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩等が挙げられ、ヒドロキシメタンスルフィン酸塩が好ましく、ヒドロキシメタンスルフィン酸ナトリウム塩が最も好ましい。
 レドックス重合開始剤には、第三成分として、少量の鉄、鉄塩、硫酸銀等を共存させることが好ましく、水溶性鉄塩を共存させることがより好ましい。
 水溶性鉄塩の具体例としては、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウム等が挙げられる。
 レドックス重合開始剤の使用時には、キレート剤を加えることが好ましい。キレート剤としては、エチレンジアミン四酢酸二ナトリウム塩が好ましい。
 レドックス重合開始剤において、過硫酸塩の使用量は、水性媒体中に0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%がさらに好ましい。還元剤の使用量は、水性媒体中に0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。
 鉄、第一鉄塩などの鉄塩、硫酸銀などの第三成分の使用量は、水性媒体中に0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。キレート剤の使用量は、水性媒体中に0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 共重合体(X)の製造方法における重合圧力、重合温度等の重合条件は、単量体の組成、ラジカル重合開始剤の分解温度等により適宜選択される。
 重合圧力としては、1.0~10MPaGが好ましく、1.5~5.0MPaGがより好ましく、2.0~4.0MPaGが最も好ましい。
 重合圧力が1.0MPaG以上であると、重合速度が充分に保たれ、反応を制御しやすく、生産性が優れる。重合圧力が10MPaG以下であると、汎用される廉価な重合設備で製造することができる。
 重合温度は0~60℃が好ましく、10~50℃がより好ましく、20~40℃が特に好ましい。
 重合温度が上記範囲にあると、架橋反応性に優れる共重合体(X)が容易に得られ、架橋物の機械特性が優れる。
 共重合体(X)の製造方法において、重合速度は10~100g/L・時間が好ましく、5~70g/L・時間がより好ましく、30~50g/L・時間がさらに好ましい。重合速度が上記下限値以上であると、実用的な生産性である。重合速度が上記上限値以下であると、得られる共重合体(X)の分子量が充分に高くなり、架橋反応性も優れる。
 乳化重合法で得られたラテックスから、共重合体(X)を単離する方法としては、公知の方法で凝集させる方法が例示できる。
 凝集方法としては、例えば、ラテックスに金属塩を添加して塩析する方法、該ラテックスに塩酸等の無機酸を添加する方法、該ラテックスを機械的に剪断する方法、該ラテックスを凍結して解凍する方法等が挙げられる。ラテックスは必要に応じて水等で希釈した後、凝集することも好ましい。
 単離された共重合体(X)は、オーブン等の乾燥装置を用いて乾燥されることが好ましい。乾燥温度は、60~150℃が好ましく、80~120℃がより好ましい。この範囲にあると、乾燥された共重合体(X)の架橋反応性がより一層優れ、架橋物の機械的特性がより一層優れる。
[有機過酸化物]
 本発明の架橋性組成物に含まれる有機過酸化物は、架橋剤として機能し、加熱や光等により過酸化物ラジカルを発生する有機過酸化物が好ましい。このような有機過酸化物としては、例えば、ジアルキルパーオキシド類、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネート等が挙げられる。これらのうち、ジアルキルパーオキシド類が好ましい。
 ジアルキルパーオキシド類としては、例えば、ジtert-ブチルパーオキシド、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)-3-ヘキシン等が挙げられる。
 前記架橋性組成物中の有機過酸化物の含有量は、共重合体(X)の100質量部に対して、0.05~10質量部が好ましく、0.1~5質量部がより好ましく、0.5~3質量部がさらに好ましい。有機過酸化物の含有量が上記範囲にあると、架橋速度が適切で、得られる架橋物は、引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
[架橋助剤]
 本発明の架橋性組成物に含まれる架橋助剤は、共重合体(X)を架橋する際に、架橋反応性をさらに向上させる目的で使用される。このような架橋助剤としては、例えば、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N’,N’’,N’’’-テトラアリルテレフタールアミド、ビニル基含有シロキサンオリゴマー(ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等)等が挙げられる。これらのうち、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレートが好ましく、トリアリルイソシアヌレートがより好ましい。
 前記架橋性組成物中の架橋助剤の含有量は、共重合体(X)の100質量部に対して、0.05~20質量部が好ましく、0.5~12質量部がより好ましく、1~8質量部がさらに好ましい。架橋助剤の含有量が上記範囲にあると、架橋速度が適切で、得られた架橋物は、引張り強度に優れ、高温下での圧縮永久歪がより一層小さい。
[4級アンモニウム塩、4級ホスホニウム塩および有機アミン]
 本発明の架橋性組成物に含まれる4級アンモニウム塩、4級ホスホニウム塩および有機アミンからなる群から選ばれる少なくとも一種は、共存する有機過酸化物とともに架橋剤として機能する。4級アンモニウム塩および4級ホスホニウム塩は、架橋反応において塩基となるものが好ましい。4級アンモニウム塩、4級ホスホニウム塩および有機アミンは、それぞれ1種類以上含まれていてもよいし、何れかの1種類のみが含まれていてもよい。
 前記4級アンモニウム塩としては、例えば、テトラブチルアンモニウムハイドロオキサイド(以下、TBAHと記す)、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド、フェニルトリメチルアンモニウムブロミド、テトラプロピルアンモニウムブロミド、テトラブチルアンモニウムフルオリド、テトラプロピルアンモニウムハイドロオキサイド、ベンジルトリメチルアンモニウムアイオダイド、ベンジルトリプロピルアンモニウムクロリド、ベンジルトリエチルアンモニウムブロミド、ベンジルトリエチルアンモニウムクロリド、ベンジルトリメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムアイオダイド、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムブロミド、テトラエチルアンモニウムクロリド、テトラエチルアンモニウムアイオダイド、テトラエチルアンモニウムハイドロオキサイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド(以下、DBU-Bと記す)、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリドなどが挙げられる。
 これらの中でも、架橋性、架橋物の物性を向上させる観点から、TBAHが好ましい。
 前記4級ホスホニウム塩としては、例えば、N-フェニルトリフェニルホスホニウムブロミド、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCと記す)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどをあげることができ、
 これらの中でも、架橋性、架橋物の物性を向上させる観点から、BTPPCが好ましい。
 前記有機アミンとしては、例えば、ラウリルアミン、ステアリルアミン、オレイルアミン、ジステアリルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、1,8-ジアゾビシクロ[5,4,0]ウンデセン-7(以下、DBUと記す。)、1,4-ジアザビシクロ[2.2.2]オクタンなどをあげることができる。
 これらの中でも、架橋性、架橋物の物性を向上させる観点から、DBUが好ましい。
 前記架橋性組成物中の4級アンモニウム塩、4級ホスホニウム塩および有機アミンの合計の含有量は、共重合体(X)100質量部に対して、0.05~10質量部が好ましく、0.07~5質量部がより好ましく、0.1~3質量部が特に好ましい。4級アンモニウム塩および4級ホスホニウム塩の合計の含有量が上記範囲にあると、架橋性、架橋物の物性が優れる。
 本発明の架橋性組成物には、必要に応じてゴム材料として公知の着色顔料、充填剤、補強剤などの添加剤を配合してもよい。充填剤または補強剤としては、カーボンブラック、酸化チタン、二酸化珪素、クレー、タルク等が挙げられる。
 本発明の架橋性組成物には、共重合体(X)の他に、TFEおよびPに基づく構成単位を含まない含フッ素ポリマー(以下、別の含フッ素ポリマーともいう)が配合されてもよい。
 前記別の含フッ素ポリマーとしては、例えば、ポリTFE、ポリVdF、ポリCTFE、TFE/エチレン共重合体等が挙げられる。
 本発明の架橋性組成物が前記別の含フッ素ポリマーを含有する場合、その含有量は、共重合体(X)の100質量部に対して、例えば、0.1~20質量部が好ましく、1~15質量部がより好ましく、5~10質量部がさらに好ましい。この範囲であると、本発明の趣旨を損なわずに、前記別の含フッ素ポリマーの物性を架橋物に活かすことができる。
 ただし、前記別の含フッ素ポリマーとしては、VdF単位を有する含フッ素ポリマーを殆ど含まないことが好ましい。前記VdF単位を有する含フッ素ポリマーとしては、例えばポリVdF、TFE/VdF共重合体等が挙げられる。後述する様に、VdF単位が架橋物中に存在すると、プラズマ照射によるパーティクル発生が生じやすくなる。ここで、本発明の架橋性組成物が前記VdF単位を有する含フッ素ポリマーを含まないとは、当該架橋性組成物中の共重合体(X)の100質量部に対して、前記VdF単位を有する含フッ素ポリマーの含有量が、好ましくは0.1質量部未満、より好ましくは0.01質量部未満、さらに好ましくは実質的に検出限界以下であること、を意味する。
 本発明の架橋性組成物における金属元素の含有量は、共重合体(X)の100質量部に対して、1質量部未満である。前記含有量は、0.1質量部未満が好ましく、0.01質量部未満がより好ましく、実質的に検出限界以下であることがさらに好ましく、0(ゼロ)質量部(含有しないこと)が最も好ましい。前記金属元素を含有すると、架橋物がプラズマ照射された場合のパーティクルの発生を抑制することが困難になる。
 前記金属元素は、例えば、共重合体(X)の製造時の不純物に由来するものや、配合される添加剤としての飽和または不飽和脂肪酸の塩の形態で架橋性組成物中に含まれることが考えられる。前記脂肪酸としては、例えば、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸等の炭素数10以上の高級脂肪酸が挙げられる。
 本発明の架橋性組成物を調製する際に各材料を混合する装置としては、例えば、ロール、ニーダー、バンバリーミキサー、押し出し機などのゴム用混合装置が挙げられる。
<架橋物>
 本発明の架橋物は、上述した本発明の架橋性組成物中の共重合体(X)を架橋して得る。
 本発明の架橋物の圧縮永久歪は、JIS K6262に準じて測定される。圧縮永久歪は、200℃且つ22時間、圧縮率25%の条件で、65%以下が好ましく、40%以下がより好ましく、30%以下がさらに好ましい。下限値は特に限定されず、0%であってもよい。
 本発明の架橋物の引張り強度は、厚さ1mmのシート状に成形し、4号ダンベルで打ち抜いて試料を作製し、23℃でJISK 6251に準じて測定される。引張強度は、15MPa以上が好ましく、20MPa以上がより好ましく、22MPa以上がさらに好ましい。上限値は特に限定されず、例えば30MPa程度が挙げられる。
 上記と同様にJISK 6251に準じて測定される100%引張応力(100%モジュラス)は、2.5MPa以上が好ましく、3.5MPa以上がより好ましく、4.5MPa以上がさらに好ましい。上限値は特に限定されず、例えば30MPa程度が挙げられる。
 上記と同様にJISK 6251に準じて測定される伸びは、250%以上が好ましく、300%以上がより好ましく、350%以上がさらに好ましい。上限値は特に限定されず、例えば1000%程度が挙げられる。
 本発明の架橋物は、以下に説明する本発明の架橋物の製造方法により製造することが好ましいが、以下の製造方法によって製造されたものに限定されない。
<架橋物の製造方法>
 前記架橋物の製造方法としては、例えば、前述した架橋性組成物を加熱することにより、共重合体(X)を架橋して架橋物を製造する方法が挙げられる。
 前記架橋性組成物を加熱して架橋する方法としては、加熱プレス架橋、スチーム架橋、熱風架橋など種々の方法が挙げられる。これらの方法から、成形する架橋物の形状や用途を考慮して適宜選択すればよい。架橋温度は、100~400℃で数秒~24時間の範囲が好ましい。
 前記架橋性組成物を加熱プレスすることによって、当該架橋性組成物を架橋するとともに成形して架橋物を得てもよい。また、前記架橋性組成物を予め成形して成形体を得た後に、当該成形体を架橋して架橋物を得てもよい。
 前記架橋性組成物の成形方法としては、圧縮成形、射出成形、押し出し成形、カレンダー成形または溶剤に溶かしてディッピング、コーティングして成形する方法等が例示できる。
 前記架橋物を製造する方法としては、前記架橋性組成物を加熱して1次架橋して架橋物を得て、さらに該架橋物を加熱して2次架橋を行うことが好ましい。2次架橋を行うことにより、架橋物の機械特性、圧縮永久歪、その他の特性を向上、安定化できる。2次架橋を行う際の加熱条件は、100~300℃で30分間~48時間程度が好ましい。
 前記架橋性組成物を架橋して架橋物を得る方法として、加熱する方法に代えて、前記架橋性組成物に放射線を照射する方法も好ましい。照射する放射線としては、電子線、紫外線などが挙げられる。電子線照射における照射量は、0.1~30Mradが好ましく、1~20Mradがより好ましい。放射線照射により架橋する場合には、前記架橋性組成物が有機過酸化物を含有しない組成物であってもよい。
<半導体製造装置用シール材>
 本発明の架橋物は、プラズマ、UV、反応性イオン、レーザー、エッチングガス等の合成樹脂を分解または腐食させ得る処理に対する耐性に優れることから、例えば、プラズマ照射によるパーティクルの発生を抑制できる。このため、上記処理が行われるチャンバー(処理室)のシール材(気密を保つ部材)として好適である。上記チャンバーを備えた装置としては、例えば、半導体製造装置が挙げられ、なかでもプラズマが照射されるチャンバーを備えた半導体製造装置が好適である。本発明の架橋物を含む半導体製造装置用シール材は、上記処理を受けた場合のパーティクルの発生が抑制されているため、当該チャンバー内にパーティクルが飛散してチャンバー内の清浄性が低下することを防止できる。
 前記半導体製造装置としては、例えば、ドライエッチング装置、プラズマエッチング装置、反応性イオンエッチング装置、反応性イオンビームエッチング装置、スパッタエッチング装置、イオンビームエッチング装置、ウェットエッチング装置、アッシング装置などのエッチング装置;乾式エッチング洗浄装置、UV/O洗浄装置、イオンビーム洗浄装置、レーザービーム洗浄装置、プラズマ洗浄装置、ガスエッチング洗浄装置、抽出洗浄装置、ソックスレー抽出洗浄装置、高温高圧抽出洗浄装置、マイクロウェーブ抽出洗浄装置、超臨界抽出洗浄装置などの洗浄装置;ステッパー、コータ・デベロッパーなどの露光装置;CMP装置などの研磨装置、CVD装置、スパッタリング装置などの成膜装置;酸化拡散装置、イオン注入装置などの拡散・イオン注入装置等が挙げられる。
<作用効果>
 本発明者らは、架橋性組成物にVdF単位を有する共重合体が含まれると、その架橋物の耐プラズマ性が低く、プラズマ照射によるパーティクル発生を抑制することが困難であることを見出し、実験的に確かめた。この理由の詳細は未解明であるが、共重合体中に、VdF単位が2つ以上並んだ{-CF-CH-CF-CH-}やVdF単位とTFE単位が並んだ{-CF-CH-CF-CF-}の構造が存在すると、電子吸引性の-CF-によって両側から挟まれた-CH-のプロトンが脱離しやすい電子状態にあることが一因であると推測される。すなわち、プラズマ照射による化学的な活性化エネルギーが与えられた場合に、当該プロトンが脱離して共重合体が部分的に分解することによって、パーティクルが発生すると推測される。したがって、共重合体中にVdF単位の含有量が少ないほど、架橋物からのパーティクルの発生を抑制できると推定される。
 本発明者らは、さらに検討したところ、金属元素が架橋物中に含まれていると、当該架橋物の耐プラズマ性が低く、プラズマ照射によるパーティクル発生を抑制することが困難であることを見出し、実験的に確かめた。この理由の詳細は未解明であるが、プラズマ照射によって、金属元素が活性化されて、架橋物の構成材料と反応することにより、架橋物の分解を引き起こして、パーティクルが発生すると推測される。したがって、架橋物中における金属元素の含有量が少ないほど、パーティクルの発生を抑制できると推定される。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定して解釈されない。
[共重合体、組成物の調製に使用した化合物とその略称、製造会社名等]
  TAIC:日本化成社製、トリアリルイソシアヌレート。
  パーカドックス14R-P(製品名):化薬アクゾ社製、α,α’-ビス(t-ブチルパーオキシ)-p-ジイソプロピルベンゼン。
  パーヘキサ25B(製品名):日油社製、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-へキサン。
  MTカーボン(製品名):CANCARB社製、カーボンブラック。
  ステアリン酸ナトリウム:日油社製ノンサールSN-1(製品名)
  ステアリン酸カルシウム:関東化学社製
  TBAH:東京化成社製、テトラブチルアンモニウムヒドロキシド (37%メタノール溶液)。なお、表1では100%換算した量で示した。
  BTPPC:東京化成社製、ベンジルトリフェニルホスホニウムクロリド。
  DBU:東京化成社製、1,8-ジアゾビシクロ[5,4,0]ウンデセン-7
[共重合体1(TFE/プロピレン/CF=CFO(CFOCF=CF共重合体)の製造]
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の58.5g、水酸化ナトリウムの0.7g、tert-ブタノールの197g、ラウリル硫酸ナトリウムの9g、1,4-ジヨードパーフルオロブタンの9g、CF=CFO(CFOCF=CFの5.6gおよび過硫酸アンモニウムの6gを加えた。さらに、100gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.5であった。
 ついで、25℃で、TFE/プロピレン=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、その後、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットと記す。)の2.5質量%水溶液(以下、ロンガリット2.5質量%水溶液と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 TFE/プロピレンの単量体混合ガスの圧入量の総量が1000gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、共重合体1のラテックスを得た。ロンガリット2.5質量%水溶液の添加量は68gであった。重合時間は6時間であった。
 該ラテックスに塩化カルシウムの5質量%水溶液を添加して、共重合体1のラテックスを凝集し、共重合体1を析出させた。共重合体1をろ過し、回収した。ついで、共重合体1をイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色の共重合体1の980gを得た。
 後述の方法で測定した共重合体1のヨウ素含有量は0.2質量%であった。また、共重合体1の単位組成は、モル比で、TFE単位/P単位/CF=CFO(CFOCF=CFに基づく構成単位=56/43.9/0.1であった。
[共重合体2(TFE/プロピレン共重合体)の製造]
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の58.5g、水酸化ナトリウムの0.7g、tert-ブタノールの197g、ラウリル硫酸ナトリウム、1,4-ジヨードパーフルオロブタンの3.2gおよび過硫酸アンモニウムの6gを加えた。さらに、100gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.5であった。
 ついで、25℃で、TFE/プロピレン=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、その後、水酸化ナトリウムでpHを10.0に調整したロンガリット2.5質量%を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 TFE/プロピレンの単量体混合ガスの圧入量の総量が1000gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、共重合体2のラテックスを得た。ロンガリット2.5質量%水溶液の添加量は68gであった。重合時間は6時間であった。
 該ラテックスに塩化カルシウムの5質量%水溶液を添加して、共重合体2のラテックスを凝集し、共重合体2を析出させた。共重合体2をろ過し、回収した。ついで、共重合体2をイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色のポリマー2の980gを得た。
 後述の方法で測定した共重合体2のヨウ素含有量は0.2質量%であった。また、共重合体2の単位組成は、モル比で、TFE単位/P単位=56/44であった。
[共重合体3]
 市販品のVdF/TFE/HFP3元共重合体、有機過酸化物架橋タイプ、フッ素含有量71質量%、ムーニー粘度(ML1+4100℃)50、を使用した。
 後述の方法で測定した共重合体3のヨウ素含有量は0.3質量%であった。また、共重合体3の単位組成は、モル比で、VdF単位/TFE単位/HFP単位=50/30/20であった。
[共重合体組成の測定]
 上記共重合体1~3の単位組成は、共重合体中のTFE単位の含有量をフッ素含有量分析により、また、赤外吸収スペクトルによりジビニルエーテルに基づく構成単位の含有量を算出した。
[ヨウ素含有量の測定]
 共重合体中のヨウ素含有量は、ダイアインスツルメンツ社製の自動試料燃焼装置イオンクロマトグラフ用前処理装置AQF-100型とイオンクロマトグラフを組み合わせた装置で定量した。
[金属元素含有量]
 共重合体の0.5gを大気下600℃で60分焼成し灰化させ、残った灰を硫酸水溶液に溶解させ、溶液を得た。得られた溶液10mlをIPC-MS(アジレント・テクノロジー社製)にて金属元素含有量を測定した。発生金属総量が、共重合体100質量部に対して1質量部未満の場合を「○」(合格)とし、1質量部以上の場合を「×」(不合格)とする。ここで測定した金属元素の種類は、前述の通りであり、金属元素含有量は全ての金属元素の含有量の合計である。
[実施例1~4、比較例1~5]
上記および下記方法で得た各架橋性組成物および架橋物についてその特性を測定した。結果を表2に示す。
[架橋性組成物の調製]
 表1に示す配合(単位:質量部)で、共重合体1~3、充填剤、架橋助剤、有機過酸化物、およびオニウム塩または加工助剤を二軸ロールによって混錬し、実施例および比較例の架橋性組成物をそれぞれ得た。
[架橋度および架橋速度の測定]
 架橋性測定機(RPA(製品名)、アルファーテクノロジーズ社製)を用いて170℃、12分間、振幅3度の条件にて、上記の様に配合した実施例1~4および比較例1~4の架橋性組成物の架橋度および架橋反応性を測定した。比較例5については、温度を160℃に変更して測定した。トルクの最大値をMH、トルクの最小値をMLとするとき、MH-MLは架橋度を示し、値が大きいほど架橋反応性が良好であることを示す。MH-MLが20以下であると成形不良を起こす。t90は、硬化プロセスの開始後、最大トルクの90%のトルク値に達するまでの時間(架橋速度)として定義される値であり、最適架橋時間の近似値を示す。t90が長いと、成形完了までに時間がかかり、生産効率が低い。
[架橋物の作成]
 調製した実施例1~4および比較例1~4の各架橋性組成物を170℃で10分間熱プレスして100mm×100mm×1mmのシート状に成形した(一次架橋)。比較例5については、温度を160℃に変更して熱プレスした。各シートを更に、200℃のギアオーブン中で4時間加熱し、二次架橋して架橋物(架橋ゴムシート)を得た。ただし、比較例1および4の架橋性組成物を使用した場合は、架橋不良のため、架橋ゴムシートを作成できなかった。
 作成した各架橋ゴムシートから第4号ダンベルで試料を3枚打ち抜き、下記の測定方法で架橋ゴム特性を測定した。各項目の測定結果を表2に示す。
[引張り強度]
 JIS K6251(2010年)に準拠して23℃にて測定した。
[100%引張応力(モジュラス M100)]
 JIS 6251(2010年)に準拠して23℃にて測定した。
[伸び]
 JIS K6251(2010年)に準拠して23℃にて測定した。
[圧縮永久歪]
 上記の架橋ゴムシートと同様の方法でP26サイズのO-ringを作成した。JIS K6262(2006年)に準拠し、200℃×22時間、圧縮率25%の条件で、O-ringの圧縮永久歪を測定した。
[質量変化率]
 上記の架橋ゴムシートと同様の方法でP26サイズのO-ringを作成した。このO-ringに対して、プラズマ装置(ヤマト科学社製、プラズマクリーナーPDC210)を用いて、ガス流量:30CCM、周波数:13・6Hz、RF出力:300W、圧力:42Pa、照射時間:270分、の条件でプラズマ照射した。
 照射後のO-ringを純水中で超音波処理して洗浄した。洗浄後、100℃24時間で乾燥し、質量を測定した。プラズマ照射前との質量変化率が1.0%以下の場合を「○」(良好)とし、1.0%超の場合を「×」(不良)とする。
 ここで測定した質量変化率の大小は、プラズマ照射によるパーティクル発生の多少と相関する。O-ring中に発生したパーティクルは、純水中の洗浄によって純水中に分散するため、パーティクル発生数が多いほど、質量変化率は大きくなる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 以上から、実施例1~4の架橋性組成物は、優れた架橋反応性を有することが確認された。また、実施例1~4の架橋性組成物を架橋して得た架橋物は、優れたゴム物性を有し、且つ、質量変化率が小さく、プラズマ照射による発生パーティクル数が少ないことが確認された。
 一方、比較例1,4の架橋性組成物は4級アンモニウム塩および4級ホスホニウム塩を含んでいないため、架橋反応性に乏しく、特性を測定できる架橋物が得られなかった。比較例2~3の架橋性組成物は、加工助剤としてステアリン酸のアルカリ金属塩またはアルカリ土類金属塩を含有するため、架橋物の質量変化率が大きく、プラズマ照射による発生パーティクル数が多いことが確認された。比較例5のポリマーはVdF単位を有するため、質量変化率が大きく、プラズマ照射による発生パーティクル数が多いことが確認された。このため、比較例2,3,5の架橋物は、半導体製造装置のシール材としては不適合であった。
 本発明の架橋性組成物によれば、耐プラズマ性に優れる架橋物を提供できる。得られた架橋物は、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に適する。また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体製造装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等の用途に適用でき、特に半導体製造装置用シール材として好適である。
 なお、2015年11月19日に出願された日本特許出願2015-226737号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記共重合体(X)と、有機過酸化物と、架橋助剤と、4級アンモニウム塩、4級ホスホニウム塩および有機アミンからなる群から選ばれる少なくとも一種と、を含み、
     前記共重合体(X)の100質量部に対して金属元素の含有量が1質量部未満であることを特徴とする架橋性組成物。
     共重合体(X):ヨウ素原子を有すると共に、テトラフルオロエチレンに基づく構成単位およびプロピレンに基づく構成単位を有し、フッ化ビニリデンに基づく構成単位の含有量が全構成単位に対して0.1モル%未満である、共重合体。
  2.  前記共重合体(X)の全構成単位に対する、プロピレンに基づく構成単位とテトラフルオロエチレンに基づく構成単位の合計の含有量が90~100モル%である、請求項1に記載の架橋性組成物。
  3.  前記プロピレンに基づく構成単位に対するテトラフルオロエチレンに基づく構成単位のモル比が、30/70~99/1である、請求項1または2に記載の架橋性組成物。
  4.  前記共重合体(X)が、下記式(I)で表される単量体に基づく構成単位を有する、請求項1~3の何れか一項に記載の架橋性組成物。
       CR=CR-R-CR=CR   ・・・(I)
    (式中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子またはメチル基を示し、Rは、炭素原子数1~10のパーフルオロアルキレン基または該パーフルオロアルキレン基の炭素-炭素結合間にエーテル性酸素原子が挿入された基を示す。)
  5.  前記共重合体(X)の全構成単位に対する、前記式(I)で表される単量体に基づく構成単位の割合が0.1~1.5モル%である、請求項4に記載の架橋性組成物。
  6.  前記共重合体(X)が、ヨウ素原子を有する単量体に基づく構成単位を有するかまたはヨウ素原子を含有する連鎖移動剤に由来するヨウ素原子を有する共重合体である、請求項1~5の何れか一項に記載の架橋性組成物。
  7.  前記共重合体(X)中のヨウ素原子の含有量が0.01~5.0質量%である、請求項1~6の何れか一項に記載の架橋性組成物。
  8.  前記共重合体(X)100質量部に対して、
     前記架橋助剤の含有量が0.05~20質量部、
     前記有機過酸化物の含有量が0.05~10質量部、
     前記4級アンモニウム塩、4級ホスホニウム塩および有機アミンの合計の含有量が0.05~10質量部である、請求項1~7の何れか一項に記載の架橋性組成物。
  9.  前記架橋性組成物が脂肪酸金属塩を含有しない、請求項1~8の何れか一項に記載の架橋性組成物。
  10.  請求項1~9の何れか一項に記載の架橋性組成物中の前記共重合体(X)を架橋して得た架橋物。
  11.  請求項10に記載の架橋物を含む半導体製造装置用シール材。
PCT/JP2016/083865 2015-11-19 2016-11-15 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材 WO2017086323A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16866324.3A EP3378896B1 (en) 2015-11-19 2016-11-15 Crosslinkable composition containing fluorinated copolymer, crosslinked product, and sealing material for semiconductor production equipment
JP2017551894A JP6965749B2 (ja) 2015-11-19 2016-11-15 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材
CN201680067596.4A CN108291069B (zh) 2015-11-19 2016-11-15 含有含氟共聚物的交联性组合物、交联物及半导体制造装置用密封材料
US15/956,819 US20180237628A1 (en) 2015-11-19 2018-04-19 Crosslinkable composition containing fluorinated copolymer, crosslinked product, and sealing material for semiconductor production equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-226737 2015-11-19
JP2015226737 2015-11-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/956,819 Continuation US20180237628A1 (en) 2015-11-19 2018-04-19 Crosslinkable composition containing fluorinated copolymer, crosslinked product, and sealing material for semiconductor production equipment

Publications (1)

Publication Number Publication Date
WO2017086323A1 true WO2017086323A1 (ja) 2017-05-26

Family

ID=58718816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083865 WO2017086323A1 (ja) 2015-11-19 2016-11-15 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材

Country Status (6)

Country Link
US (1) US20180237628A1 (ja)
EP (1) EP3378896B1 (ja)
JP (1) JP6965749B2 (ja)
CN (1) CN108291069B (ja)
TW (1) TWI728000B (ja)
WO (1) WO2017086323A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004059A1 (ja) * 2017-06-27 2019-01-03 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
CN110709433A (zh) * 2017-06-05 2020-01-17 Agc株式会社 含氟弹性共聚物及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020204076A1 (ja) * 2019-04-04 2020-10-08
CN116547309A (zh) 2020-12-14 2023-08-04 索尔维特殊聚合物意大利有限公司 用于制造氟弹性体的方法
WO2024115069A1 (en) 2022-11-30 2024-06-06 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing fluoroelastomers in aqueous emulsion without using fluorinated surfactants
WO2024165313A1 (en) 2023-02-06 2024-08-15 Solvay Specialty Polymers Italy S.P.A. Method for manufacturing fluoroelastomers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155943A (ja) 1991-11-29 1993-06-22 Asahi Glass Co Ltd フッ素ゴムの製造方法
JP2003526705A (ja) * 1999-07-02 2003-09-09 ダイネオン エルエルシー フルオロエラストマー組成物およびそれから作製される物品
JP2003277445A (ja) * 2002-01-18 2003-10-02 Nichias Corp テトラフルオロエチレン−プロピレン系共重合体及びその製造方法
JP2007332216A (ja) * 2006-06-13 2007-12-27 Asahi Glass Co Ltd 含フッ素弾性共重合体組成物および架橋ゴム
WO2010053056A1 (ja) * 2008-11-05 2010-05-14 旭硝子株式会社 含フッ素弾性共重合体、その製造方法および架橋ゴム
JP4720501B2 (ja) 2003-04-22 2011-07-13 ダイキン工業株式会社 プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品
WO2012073977A1 (ja) * 2010-11-30 2012-06-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1265461B1 (it) * 1993-12-29 1996-11-22 Ausimont Spa Fluoroelastomeri comprendenti unita' monomeriche derivanti da una bis-olefina
CN1332988C (zh) * 2001-09-26 2007-08-22 霓佳斯株式会社 氟橡胶模塑产品及其生产方法
JP2003183466A (ja) * 2001-12-19 2003-07-03 Asahi Glass Co Ltd フッ素ゴム組成物及びその成形品
US20060058448A1 (en) * 2003-01-10 2006-03-16 Daikin Industries Ltd. Cross-linked elastomer composition and formed product composed of such cross-linked elastomer composition
JP5686137B2 (ja) * 2010-08-25 2015-03-18 ダイキン工業株式会社 フッ素ゴム組成物の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155943A (ja) 1991-11-29 1993-06-22 Asahi Glass Co Ltd フッ素ゴムの製造方法
JP2003526705A (ja) * 1999-07-02 2003-09-09 ダイネオン エルエルシー フルオロエラストマー組成物およびそれから作製される物品
JP2003277445A (ja) * 2002-01-18 2003-10-02 Nichias Corp テトラフルオロエチレン−プロピレン系共重合体及びその製造方法
JP4720501B2 (ja) 2003-04-22 2011-07-13 ダイキン工業株式会社 プラズマ老化防止効果に優れた含フッ素エラストマー組成物およびその成形品
JP2007332216A (ja) * 2006-06-13 2007-12-27 Asahi Glass Co Ltd 含フッ素弾性共重合体組成物および架橋ゴム
WO2010053056A1 (ja) * 2008-11-05 2010-05-14 旭硝子株式会社 含フッ素弾性共重合体、その製造方法および架橋ゴム
WO2012073977A1 (ja) * 2010-11-30 2012-06-07 旭硝子株式会社 架橋性フッ素ゴム組成物および架橋ゴム物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3378896A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709433A (zh) * 2017-06-05 2020-01-17 Agc株式会社 含氟弹性共聚物及其制造方法
EP3636682A4 (en) * 2017-06-05 2021-03-03 AGC Inc. ELASTIC COPOLYMER CONTAINING FLUORINE AND ITS PRODUCTION PROCESS
WO2019004059A1 (ja) * 2017-06-27 2019-01-03 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
JPWO2019004059A1 (ja) * 2017-06-27 2020-04-23 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品
US11117993B2 (en) 2017-06-27 2021-09-14 AGC Inc. Fluorinated elastic copolymer and method for its production, fluorinated elastic copolymer composition, and crosslinked rubber article
JP7140118B2 (ja) 2017-06-27 2022-09-21 Agc株式会社 含フッ素弾性共重合体およびその製造方法、含フッ素弾性共重合体組成物ならびに架橋ゴム物品

Also Published As

Publication number Publication date
EP3378896B1 (en) 2020-09-30
EP3378896A4 (en) 2019-07-24
CN108291069A (zh) 2018-07-17
CN108291069B (zh) 2021-04-09
JPWO2017086323A1 (ja) 2018-09-06
US20180237628A1 (en) 2018-08-23
TWI728000B (zh) 2021-05-21
EP3378896A1 (en) 2018-09-26
TW201734099A (zh) 2017-10-01
JP6965749B2 (ja) 2021-11-10

Similar Documents

Publication Publication Date Title
US10787531B2 (en) Fluorinated elastic copolymer, method for its production, crosslinked rubber and method for its production
JP6965749B2 (ja) 含フッ素共重合体を含む架橋性組成物、架橋物および半導体製造装置用シール材
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
JP6582991B2 (ja) ペルフルオロエラストマー、ペルフルオロエラストマー組成物、及び架橋ゴム物品
US7884166B2 (en) Elastic fluorocopolymer, its composition and crosslinked rubber
WO2010053056A1 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
US20200102409A1 (en) Fluorinated elastic copolymer and method for its production
US11117993B2 (en) Fluorinated elastic copolymer and method for its production, fluorinated elastic copolymer composition, and crosslinked rubber article
US20210380794A1 (en) Fluorinated copolymer composition, crosslinked rubber and method for its production
EP4050047A1 (en) Fluorine-containing copolymer composition and crosslinked rubber article
JP5055718B2 (ja) 架橋可能な含フッ素弾性共重合体組成物および架橋ゴム
US11306167B2 (en) Fluorinated elastic copolymer, and method for producing fluorinated elastic copolymer
JP2018044078A (ja) 含フッ素弾性共重合体組成物および架橋ゴム
WO2023042510A1 (ja) 含フッ素エラストマー組成物
TW201406792A (zh) 含氟彈性物及其加硫性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551894

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866324

Country of ref document: EP