WO2017086206A1 - Manufacturing methods for sealed semiconductor element and semiconductor device - Google Patents

Manufacturing methods for sealed semiconductor element and semiconductor device Download PDF

Info

Publication number
WO2017086206A1
WO2017086206A1 PCT/JP2016/083081 JP2016083081W WO2017086206A1 WO 2017086206 A1 WO2017086206 A1 WO 2017086206A1 JP 2016083081 W JP2016083081 W JP 2016083081W WO 2017086206 A1 WO2017086206 A1 WO 2017086206A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
semiconductor element
transfer
transfer sheet
Prior art date
Application number
PCT/JP2016/083081
Other languages
French (fr)
Japanese (ja)
Inventor
悠紀 江部
広希 河野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2017086206A1 publication Critical patent/WO2017086206A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a method for manufacturing a sealed semiconductor element and a semiconductor device, and more particularly to a method for manufacturing a sealed semiconductor element and a method for manufacturing a semiconductor device using the sealed semiconductor element obtained thereby.
  • a phosphor sheet-covered LED comprising an LED and a phosphor sheet that covers the LED
  • the surface on which the bump is formed in the LED (bump forming surface) is in contact with the surface of the support sheet, and the phosphor It is produced in a state of being temporarily fixed to the support sheet so that the surface of the sheet is exposed.
  • the transfer sheet is composed of an active energy ray-irradiated release sheet whose adhesive strength is reduced by irradiation with active energy rays. Thereby, while the bump formation surface of LED is exposed, the surface of the phosphor sheet is in close contact with the surface of the transfer sheet.
  • the phosphor sheet-covered LED is transferred from the transfer sheet to the stretch support sheet, and the stretch support sheet is stretched outward in the plane direction.
  • the bump forming surface of the LED is in contact with the stretched support sheet, and the surface of the phosphor sheet is exposed.
  • the phosphor sheet-covered LED is mounted on the substrate while the surface of the phosphor sheet is sucked by the collet. Thereafter, the collet is separated from the surface of the phosphor sheet.
  • An object of the present invention is to provide a method for producing an encapsulated semiconductor element capable of suppressing the pressure-sensitive adhesive composition from adhering to the layer-side facing surface in the peeling step, and a pressure-sensitive adhesive composition to a conveying member.
  • An object of the present invention is to provide a method of manufacturing a semiconductor device that can suppress the adhesion of the semiconductor.
  • the method for producing a sealed semiconductor element of the present invention includes an electrode side surface, a semiconductor element having an element facing surface disposed to face the electrode side surface, and a layer side facing surface disposed to face the element facing surface.
  • a step of producing a sealed semiconductor element comprising a sealing layer for sealing the semiconductor element so that the electrode side surface is exposed and the element facing surface is covered;
  • the pressure-sensitive pressure-sensitive adhesive sheet comprising a pressure-sensitive pressure-sensitive adhesive composition configured to reduce pressure-sensitive adhesive strength by irradiation of After pressure-sensitive adhesive step, pressure-sensitive adhesive step, processing step of processing the sealing semiconductor element, and after the processing step, the pressure-sensitive adhesive sheet is irradiated with active energy rays, Encapsulating semiconductor element
  • the pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive composition, and the active energy ray-curable pressure-sensitive adhesive composition is a functional group.
  • a monomer A containing a a monomer B containing a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms, a functional group c capable of reacting with the functional group a, and a polymerizable carbon-carbon It is prepared from a polymer containing a structural unit derived from a monomer C containing both groups with a double bond group, and the monomer B constitutes a main chain together with the monomer A, and the content ratio is It is 50% by mass or more based on the total amount of the monomer A and the monomer B, and the polymer has a side by reacting and bonding a part of the functional group a with the functional group c.
  • Polymerizable carbon - is characterized by containing a carbon double bond group.
  • the pressure-sensitive adhesive composition is a specific active energy ray-curable pressure-sensitive adhesive composition
  • the pressure-sensitive adhesive composition is opposed to the layer side in the peeling step. It can suppress adhering to a surface.
  • the said pressure sensitive adhesive composition of the low molecular weight component of molecular weight 3.0 * 10 ⁇ 4 > or less of standard polystyrene conversion based on GPC measurement of the said pressure sensitive adhesive composition It is suitable that the content ratio with respect to a thing is 10 mass% or less.
  • the pressure sensitive adhesive composition is layer side facing surface in the peeling step. It can suppress further that it adheres to.
  • the sealed semiconductor element is applied to a transfer sheet configured to reduce pressure-sensitive adhesive force by irradiation with active energy rays.
  • the transfer sheet is irradiated with active energy rays so that the layer-side facing surface and the surface of the transfer sheet are in contact with each other, and the sealing semiconductor element is removed from the transfer sheet. It is preferable that a retransfer process for retransfer is further provided, and the transfer sheet is made of the pressure-sensitive adhesive composition.
  • the transfer sheet is made of a pressure-sensitive adhesive composition, the pressure-sensitive adhesive composition is prevented from adhering to the layer-side facing surface in the retransfer process. Can do.
  • the pressure-sensitive adhesive composition can be prevented from adhering to the member.
  • the method for manufacturing a semiconductor device of the present invention includes a step of manufacturing a sealed semiconductor element by the above-described method for manufacturing a sealed semiconductor element, bringing a conveying member into contact with the layer-side facing surface, and And a separation step of separating the transport member from the layer-side facing surface.
  • the mounting step includes mounting the substrate so that the electrode side surface contacts the substrate.
  • the adhesion of the pressure-sensitive adhesive composition to the layer-side facing surface is suppressed, the adhesion of the pressure-sensitive adhesive composition to the conveying member is suppressed in the mounting process. can do. Therefore, in the separation step, the conveying member can be smoothly separated from the layer-side facing surface. As a result, the semiconductor device can be manufactured efficiently.
  • the sealing semiconductor element of this invention can suppress that a pressure sensitive adhesive composition adheres to a layer side opposing surface in a peeling process.
  • the semiconductor device manufacturing method of the present invention can efficiently manufacture a semiconductor device.
  • FIG. 1A to 1E are manufacturing process diagrams of a first embodiment of a manufacturing method of a sealing semiconductor element and a semiconductor device according to the present invention.
  • FIG. 1A is an element preparation process
  • FIG. 1B is a sealing process
  • FIG. 1C shows the first transfer step
  • FIG. 1D shows the cutting step
  • FIG. 1E shows the stretching step.
  • 2F to FIG. 2H are manufacturing process diagrams of the first embodiment of the manufacturing method of the sealed semiconductor element and the semiconductor device of the present invention, following FIG. 1E.
  • FIG. 2F is a second transfer process
  • FIG. FIG. 2H shows the fourth transfer process.
  • 3I to FIG. 3L are manufacturing process diagrams of the first embodiment of the manufacturing method of the sealed semiconductor element and the semiconductor device of the present invention, following FIG. 2H.
  • FIG. 1A is an element preparation process
  • FIG. 1B is a sealing process
  • FIG. 1C shows the first transfer step
  • FIG. 1D shows the cutting step
  • FIG. 1E shows the
  • FIG. 3I is a fifth transfer process
  • FIG. FIG. 3K shows a peeling step
  • FIG. 3L shows a mounting step and a separation step.
  • FIG. 4 shows a step diagram of the first embodiment of the method for manufacturing a sealed semiconductor element and a semiconductor device of the present invention.
  • FIG. 5 shows the step figure of 2nd Embodiment of the manufacturing method of the sealing semiconductor element of this invention, and a semiconductor device.
  • FIG. 6 shows a step diagram of the third embodiment of the method for manufacturing a sealed semiconductor element and a semiconductor device of the present invention.
  • the vertical direction of the paper is the vertical direction (first direction, thickness direction)
  • the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper is the lower side (first Direction other side, thickness direction other side).
  • the left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other side in the second direction).
  • the paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
  • Pressure-sensitive adhesive is synonymous with “pressure-sensitive adhesive” and can be substituted for each other. Specifically, “pressure-sensitive adhesive layer”, “pressure-sensitive adhesive force”, “pressure-sensitive adhesive”, “pressure-sensitive adhesive”, and “pressure-sensitive adhesive composition” It is synonymous with “adhesive layer”, “pressure-sensitive adhesive strength”, “pressure-sensitive adhesive”, “pressure-sensitive adhesive”, and “pressure-sensitive adhesive composition”.
  • the first embodiment of the method for manufacturing a sealed semiconductor element of the present invention includes an element preparation step 81, a sealing step 82, a first transfer step 83 as an example of a pressure-sensitive adhesive step, and a processing step.
  • a cutting process 84 as an example, a stretching process 85 as an example of a processing process, a second transfer process 86 as an example of a peeling process, an inspection / selection process 87, a third transfer process 88, a fourth transfer process 89, and a transfer process.
  • a fifth transfer step 90 as an example, a sixth transfer step 91 as an example of a retransfer step, and a peeling step 92.
  • the above steps are sequentially performed in the above order.
  • each process will be described.
  • Element Preparation Step In the element preparation step 81, as shown in FIG. 1A, an optical semiconductor element 1 as an example of a plurality of semiconductor elements is disposed on the temporary fixing sheet 2.
  • the optical semiconductor element 1 is, for example, an LED or an LD that converts electrical energy into optical energy.
  • the optical semiconductor element 1 is a blue LED (light emitting diode element) that emits blue light.
  • the optical semiconductor element 1 does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element.
  • a plurality of optical semiconductor elements 1 are arranged on the temporary fixing sheet 2 in the front-rear direction and the left-right direction at intervals from each other.
  • the optical semiconductor element 1 has a substantially flat plate shape along the front-rear direction and the left-right direction.
  • the optical semiconductor element 1 has an electrode side surface 3, a facing surface 4, and a peripheral side surface 5.
  • the electrode side surface 3 is a lower surface of the optical semiconductor element 1 and is a surface on which the electrode 41 (see FIG. 3L) is formed.
  • the facing surface 4 is an upper surface of the optical semiconductor element 1 and is disposed so as to face the electrode side surface 3 with an interval on the upper side.
  • the peripheral side surface 5 connects the peripheral end edge of the electrode side surface 3 and the peripheral end edge of the facing surface 4.
  • the dimensions of the optical semiconductor element 1 are set as appropriate. Specifically, the thickness (height) is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less, Preferably, it is 200 micrometers or less.
  • the length L1 of the optical semiconductor element 1 in the front-rear direction and / or the left-right direction is, for example, 0.2 mm or more, preferably 0.5 mm or more, and, for example, 1.5 mm or less, preferably 1 .2 mm or less.
  • the interval (interval in the front-rear direction and / or the left-right direction) L0 between the adjacent optical semiconductor elements 1 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, Preferably, it is 0.8 mm or less.
  • the pitch L2 of the adjacent optical semiconductor elements 1, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.25 mm or more, preferably 0.6 mm or more. For example, it is 2.5 mm or less, preferably 2 mm or less.
  • Temporary fixing sheet The temporary fixing sheet 2 includes a support sheet 6 and a pressure-sensitive adhesive layer 7 disposed on the support sheet 6.
  • Support Sheets examples include polymer films such as a polyethylene film and a polyester film (PET), for example, a ceramic sheet, for example, a metal foil.
  • the thickness of the support sheet 6 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer 7 is disposed on the entire upper surface of the support sheet 6.
  • the pressure-sensitive adhesive layer 7 is configured such that the pressure-sensitive adhesive force is reduced by treatment (for example, irradiation of ultraviolet rays or heating).
  • the temporary fixing sheet 2 is disclosed in JP 2014-168032 A, JP 2014-168033 A, JP 2014-168034 A, JP 2014-168035 A, JP 2014-168036 A.
  • the thickness of the pressure-sensitive adhesive layer 7 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the electrode side surfaces 3 of the plurality of optical semiconductor elements 1 are arranged on the upper surface of the pressure-sensitive adhesive layer 7 as shown in FIG. 1A. Then, the optical semiconductor element 1 is pressure-sensitively adhered to the temporary fixing sheet 2.
  • sealing step 82 is performed after the element preparation step 81.
  • the sealing step 82 the plurality of optical semiconductor elements 1 are sealed with the sealing layer 10 as shown in FIG. 1B.
  • the sealing layer 10 is prepared.
  • a sealing sheet 8 including a release sheet 9 and a sealing layer 10 disposed on the lower surface of the release sheet 9 is prepared.
  • the sealing sheet 8 is preferably composed of a release sheet 9 and a sealing layer 10.
  • the release sheet 9 is formed into a sheet shape from the same material as the support sheet 6 described above.
  • the thickness of the release sheet 9 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the sealing layer 10 has a layer shape formed on the entire lower surface of the release sheet 9.
  • the sealing layer 10 is prepared from, for example, a sealing composition containing a resin.
  • thermoplastic resins such as thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin.
  • thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin.
  • a thermosetting resin is used.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • thermosetting resin is a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • a thermosetting resin Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
  • thermosetting resin may be the same type or a plurality of types.
  • the sealing composition can contain a filler and / or a phosphor.
  • Examples of the filler include light diffusing particles.
  • Examples of the light diffusing particles include inorganic particles and organic particles.
  • the inorganic particles include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO). ), Zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), and other oxides such as aluminum nitride Examples thereof include inorganic particles (inorganic materials) such as nitrides such as (AlN) and silicon nitride (Si 3 N 4 ). Examples of the inorganic particles include composite inorganic particles prepared from the inorganic materials exemplified above, and specifically, composite inorganic oxide particles (specifically, glass particles) prepared from an oxide. Can be mentioned.
  • the inorganic particles are preferably silica particles and glass particles.
  • organic materials for organic particles include acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimide resins. Resin etc. are mentioned.
  • ⁇ Fillers can be used alone or in combination.
  • the content ratio of the filler is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the sealing composition.
  • the mixture ratio with respect to 100 mass parts of thermosetting resins of a filler is 10 mass parts or more, for example, Preferably, it is 30 mass parts or more, for example, is 1,000 mass parts or less, Preferably, it is 200 mass parts. It is as follows.
  • Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and, for example, 80% by mass or less, preferably 70% by mass or less with respect to the sealing composition. .
  • the blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 90 parts by mass or less, preferably 100 parts by mass of the thermosetting resin. 80 parts by mass or less.
  • the sealing layer 10 for example, the above-described thermosetting resin and a filler and / or phosphor that are blended as necessary are blended to prepare a varnish of the sealing composition, It is applied to the surface of the release sheet 9. Thereafter, when the sealing composition contains a thermosetting resin, the sealing composition is B-staged (semi-cured). Specifically, the sealing composition is heated.
  • the heating temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less.
  • the heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
  • the thickness of the sealing layer 10 is, for example, 200 ⁇ m or more, preferably 300 ⁇ m or more, and, for example, 1000 ⁇ m or less, preferably 900 ⁇ m or less.
  • the sealing sheet 8 provided with the peeling sheet 9 and the sealing layer 10 of a B stage state (semi-hardened state) is obtained.
  • the sealing layer 10 is, for example, pressed, preferably hot pressed, against the plurality of optical semiconductor elements 1 and the temporary fixing sheet 2.
  • the temperature and time of the hot press are set to conditions under which the sealing layer 10 can embed a plurality of optical semiconductor elements 1.
  • the temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and 200 ° C. or lower, preferably 170 ° C. or lower, more preferably 150 ° C. It is below °C.
  • the pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less, more preferably 1.00 MPa or less.
  • the time for hot pressing is, for example, 3 minutes or more, preferably 5 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
  • the facing surface 4 and the peripheral side surface 5 of the optical semiconductor element 1 are covered with the sealing layer 10.
  • the upper surface 76 of the pressure-sensitive adhesive layer 7 exposed from the optical semiconductor element 1 is also covered with the sealing layer 10. Therefore, the sealing layer 10 is in contact with the upper surface 76 of the pressure-sensitive adhesive layer 7 and is formed to be flush with the electrode side surface 3 in the front-rear direction and the left-right direction, the upper side of the lower surface 15, and the optical semiconductor.
  • the element 1 has an upper surface 16 that is opposed to the upper side of the facing surface 4 and is an example of a layer-side facing surface. The upper surface 16 is protected by the release sheet 9.
  • release sheet 9 is peeled from the sealing layer 10 as indicated by the arrow in FIG. 1B.
  • the upper surface 16 of the sealing layer 10 becomes an exposed surface exposed to the upper side.
  • a sealed optical semiconductor element 11 including a plurality of optical semiconductor elements 1 and a sealing layer 10 that seals the plurality of optical semiconductor elements 1 is obtained in a state of being temporarily fixed to the temporary fixing sheet 2.
  • the sealing layer 10 is made to be C-staged (completely cured). Specifically, the sealing layer 10 is heated. More specifically, the heating temperature is, for example, 60 ° C. or more, preferably 80 ° C. or more, more preferably 100 ° C. or more, and for example, 170 ° C. or less, preferably 150 ° C. or less.
  • the heating time is, for example, 5 minutes or more, preferably 10 minutes or more, more preferably 30 minutes or more, and for example, 10 hours or less, preferably 4 hours or less, more preferably 2 hours or less. is there.
  • the first transfer step 83 is performed after the sealing step 82.
  • the sealed optical semiconductor element 11 is transferred from the temporarily fixed sheet 2 to a first transfer sheet 21 as an example of a pressure-sensitive adhesive sheet.
  • the first transfer sheet 21 is a stretched sheet configured to stretch in the surface direction (front-rear direction and left-right direction) and has pressure-sensitive adhesiveness (tack).
  • the first transfer sheet 21 is formed in a sheet shape from a pressure-sensitive adhesive composition configured to reduce the pressure-sensitive adhesive force by irradiation with active energy rays.
  • the first transfer sheet 21 has a lower surface 45 as a surface, and an upper surface 46 that is disposed to face the upper surface of the lower surface 45 and is substantially parallel to the lower surface 45.
  • the pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive composition.
  • Active energy ray curable pressure sensitive adhesive composition is a monomer A containing a functional group a and a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms. And a polymer containing structural units derived from monomer B containing monomer and monomer C containing both a functional group c capable of reacting with functional group a and a polymerizable carbon-carbon double bond group It is prepared from.
  • the monomer B comprises a main chain with the monomer A, and the content rate is 50 mass% or more with respect to the total amount of the monomer A and the monomer B.
  • the polymer contains a polymerizable carbon-carbon double bond in the side chain by a part of the functional group a reacting and bonding with the functional group c.
  • Examples of the functional group a include a carboxyl group, an epoxy group, an aziridyl group, a hydroxyl group, and an isocyanate group.
  • a hydroxyl group is used.
  • Monomer A is a vinyl monomer that constitutes the main chain of the polymer together with monomer B described later.
  • a carboxyl group-containing vinyl monomer such as (meth) acrylic acid
  • a glycidyl group-containing vinyl monomer containing a glycidyl group eg glycidyl (meth) acrylate
  • a hydroxyl group-containing vinyl monomer is used.
  • the blending ratio of monomer A is, for example, less than 50% by mass with respect to monomer A and monomer B.
  • alkyl group having 8 to 17 carbon atoms examples include octyl, 2-ethylhexyl, isooctyl, decyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, 1-methylnonyl, 1-ethyldecyl, 1 , 2-dimethyloctyl, 1,2-diethylhexyl, and the like.
  • dodecyl and 2-ethylhexyl are used.
  • Examples of the (meth) acrylate monomer in monomer B include dodecyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
  • Examples of the functional group c include the same ones as the functional group a described above.
  • Examples of the combination of the functional group a and the functional group c include a combination of a carboxyl group and an epoxy group, a combination of a carboxyl group and an aziridyl group, and a combination of a hydroxyl group and an isocyanate group.
  • the combination of a hydroxyl group and an isocyanate group is mentioned.
  • Examples of the monomer C include the same monomers as the monomer A described above, and preferably an isocyanate group-containing vinyl monomer.
  • the blending ratio of the monomer C is such that the number of polymerizable carbon-carbon double bonds is 5% or more, preferably 7% or more, for example, 20%, based on the number of all side chains of the polymer. Hereinafter, it is preferably adjusted to be 18% or less.
  • the polymer can contain structural units derived from a copolymerizable monomer that can be copolymerized with the monomers A to C, for example.
  • the copolymerizable monomer include nitrogen-containing (meth) acryloyl such as (meth) acryloylmorpholine.
  • the blending ratio of the copolymerizable monomer is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 25% by mass or less, preferably 10% by mass or less with respect to the monomer component. .
  • the blending ratio of the copolymerizable monomer is, for example, 1 part by mass or more, preferably 5 parts by mass or more, and, for example, 30 parts by mass or less, preferably 100 parts by mass of the total amount of monomer A and monomer B. Is 15 parts by mass or less.
  • a polymer In order to prepare a polymer, first, monomer A and monomer B are blended, and they are copolymerized (radical polymerization) by a thermal polymerization method using a thermal polymerization initiator or the like to form a copolymer (main chain). obtain. Thereafter, the monomer C is blended into the copolymer, and the monomer C is polymerized (grafted) to the copolymer by a reaction between a part of the monomer A (functional group a) and the monomer C (functional group c). Polymerization). As a result, a polymer having the monomer C introduced into the side chain is obtained.
  • a copolymerizable monomer is mix
  • a catalyst such as dibutyltin dilaurate IV is blended at an appropriate ratio as necessary.
  • the photopolymerization initiator examples include aromatic ketone compounds such as 1-hydroxycyclohexyl phenyl ketone.
  • the blending ratio of the photopolymerization initiator is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 15 parts by mass or less, preferably 100 parts by mass of the polymer. It is 10 parts by mass or less.
  • an active energy ray-curable pressure-sensitive adhesive composition is prepared.
  • the active energy ray-curable pressure-sensitive adhesive composition preferably contains a main chain containing a (meth) acrylate having 4 to 30 carbon atoms and a hydroxyl group-containing vinyl monomer, and is an isocyanate group-containing vinyl monomer.
  • a polymerizable carbon-carbon double bond group is introduced into the side chain by reacting the isocyanate group with the hydroxyl group of the hydroxyl group-containing vinyl monomer.
  • the active energy ray-curable pressure-sensitive adhesive composition is preferably a monomer A containing a functional group a, a monomer B containing a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms, And a structural unit derived from the monomer C containing both the (meth) acryloyl group of the same type as the (meth) acryloyl group of the monomer B and the functional group c capable of reacting with the functional group a It is prepared from a polymer containing
  • the active energy ray-curable pressure-sensitive adhesive composition preferably contains a monomer A containing a functional group a and a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms.
  • Monomer B monomer C containing both a (meth) acryloyl group of the same type as the (meth) acryloyl group possessed by monomer B and functional group c capable of reacting with functional group a, and copolymerization It is prepared from a polymer containing a structural unit derived from a functional monomer.
  • the (meth) acryloyl group in the monomer C contains a methacryloyl group when the monomer B contains a methacryloyl group, and contains an acryloyl group when the monomer B contains an acryloyl group.
  • the pressure-sensitive adhesive composition is prepared, for example, as an adhesive solution containing a solvent.
  • the active energy ray-curable pressure-sensitive adhesive composition is, for example, a radiation-curable pressure-sensitive adhesive disclosed in JP2012-136678A, JP2012-136679A, JP2010-53346A, and the like. It is a composition.
  • the weight average molecular weight in terms of standard polystyrene based on GPC measurement of the pressure sensitive adhesive composition is, for example, 1.0 ⁇ 10 4 or more, preferably 5.0 ⁇ . 10 4 or more, and 3.0 ⁇ 10 5 or less.
  • the content ratio of the low molecular weight component having a molecular weight of 3.0 ⁇ 10 4 or less in terms of standard polystyrene based on GPC measurement of the pressure sensitive adhesive composition to the pressure sensitive adhesive composition is, for example, 12% by mass or less, preferably Is 10.0% by mass or less, and for example, 2% by mass or more.
  • the content ratio of the low molecular weight component is less than or equal to the above upper limit, it is further suppressed that the pressure-sensitive adhesive composition adheres to the upper surface 16 of the sealing layer 10 in the second transfer step 86 (see FIG. 2F) described later. can do.
  • Pressure sensitive strength for a glass plate of the first transfer sheet 21 is F1, for example, 1.5 N / cm 2 or more, or preferably, 2N / cm 2 or more, For example, it is 3N / cm 2 or less.
  • the pressure-sensitive adhesive force (25 ° C.) F2 to the glass plate of the first transfer sheet 21 after irradiation with the active energy ray is specifically irradiated with 35 mJ / cm 2 of ultraviolet rays to the first transfer sheet 21.
  • the pressure-sensitive adhesive force F2 to the glass plate after, for example, 0.05 N / cm 2 or more, preferably at most 0.1 N / cm 2 or more, and is, for example, is 0.4 N / cm 2 or less.
  • the ratio of F1 to F2 is, for example, 1.25 or more, preferably 5 or more, and for example, 60 or less, preferably 40 or less.
  • the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are exposed to the lower side.
  • the upper surface 16 of the sealing layer 10 is pressure-sensitively adhered by the first transfer sheet 21.
  • Cutting process 84 As shown in FIG. 4, the cutting step 84 is performed after the first transfer step 83.
  • the sealing layer 10 is cut so as to correspond to each of the plurality of optical semiconductor elements 1. Further, the sealing layer 10 is cut while being supported by the first transfer sheet 21. In the cutting step 84, the first transfer sheet 21 is not cut.
  • a cutting device such as a dicing device using a disc-shaped dicing saw (dicing blade) 12 (see FIG. 1D), a cutting device using a cutter, or a laser irradiation device is used.
  • a dicing apparatus is used.
  • a cut surface 14 is formed in the sealing layer 10 along the front-rear direction and the left-right direction of the sealing layer 10.
  • An interval L4 between the cutting surfaces 14 facing in the front-rear direction and an interval L4 between the cutting surfaces 14 facing in the left-right direction are the same as or approximate to the pitch L2 of the optical semiconductor element 1 described above.
  • the length in the front-rear direction and the length in the left-right direction are, for example, 0.25 mm or more, preferably 0.6 mm or more, and, for example, 2.5 mm or less, preferably 2 mm or less.
  • Stretching Step 85 is performed after the cutting step 84 as shown in FIG.
  • the peripheral edge of the first transfer sheet 21 (specifically, the front edge and the rear edge, and the right edge and the left edge) are arranged outside (that is, outside in the front-rear direction). And laterally outward).
  • each of the plurality of sealed optical semiconductor elements 11 is pressure-sensitively adhered to the first transfer sheet 21 with an interval 18 therebetween.
  • the width W1 of the interval 18 separating the adjacent sealed optical semiconductor elements 11 is, for example, 200 ⁇ m or more, preferably 500 ⁇ m or more, and, for example, 2000 ⁇ m or less, preferably 1000 ⁇ m or less.
  • the ratio (W1 / W2) of the width W1 of the interval 18 to the width W2 of the sealed optical semiconductor element 11 is, for example, 0.08 or more, preferably 0.1 or more. 8 or less, preferably 3 or less.
  • the width W2 of the sealed optical semiconductor element 11 is the same as the interval L4 between the cut surfaces 14 described above.
  • Second Transfer Step The second transfer step 86 is performed after the stretching step 85 as shown in FIG.
  • the plurality of sealed optical semiconductor elements 11 are transferred from the first transfer sheet 21 to the second transfer sheet 22.
  • the second transfer sheet 22 include known transfer sheets. For example, commercially available products are used, and specifically, an SPV series (manufactured by Nitto Denko Corporation) is used.
  • active energy rays are applied to the first transfer sheet 21. Irradiate. More specifically, an active energy ray is applied to the first transfer sheet 21 from a radiation source 13 provided on the upper side of the first transfer sheet 21 and / or a radiation source (not shown) provided on the lower side. Irradiate. Preferably, an active energy ray is applied to the first transfer sheet 21 from the radiation source 13 provided on the upper side of the first transfer sheet 21.
  • Activating energy rays include ultraviolet rays and electron beams. Preferably, ultraviolet rays are used.
  • the radiation source examples include irradiation devices such as chemical lamps, excimer lasers, black lights, mercury arcs, carbon arcs, low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, and metal halide lamps.
  • irradiation devices such as chemical lamps, excimer lasers, black lights, mercury arcs, carbon arcs, low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, and metal halide lamps.
  • the irradiation amount is set so that the pressure-sensitive adhesive force of the first transfer sheet 21 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is sufficiently reduced.
  • the irradiation amount is, for example, 10 mJ / cm 2 , preferably 20 mJ / cm 2 or more, and, for example, 100 mJ / cm 2 .
  • the pressure-sensitive adhesive force of the first transfer sheet 21 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is reduced. Specifically, the surface tackiness of the first transfer sheet 21 is reduced, preferably eliminated.
  • the second transfer sheet 22 is disposed below the plurality of sealed optical semiconductor elements 11, and then the upper surface of the second transfer sheet 22 and the lower surface of the sealing layer 10. 15 and the electrode side surface 3 of the optical semiconductor element 1 are brought into contact (pressure-sensitive adhesion). 2F, the upper surface 16 of the sealing layer 10 is peeled from the lower surface 45 of the first transfer sheet 21 (peeling step).
  • the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered (pressure-sensitive adhesive) with the second transfer sheet 22.
  • the upper surface 16 of the sealing layer 10 is exposed to the upper side.
  • the plurality of sealed optical semiconductor elements 11 are transferred from the first transfer sheet 21 to the second transfer sheet 22 so that the interval 18 is maintained.
  • Inspection / Selection Process An inspection / selection process 87 is performed after the second transfer process 86 as shown in FIG.
  • each of the plurality of sealed optical semiconductor elements 11 is a non-defective product having a desired emission wavelength and / or emission efficiency, or has a desired emission wavelength and / or emission efficiency.
  • a tester or the like is used to inspect whether the product is defective.
  • the sealed optical semiconductor element 11 determined to be defective is removed. Specifically, the sealed optical semiconductor element 11 determined as a defective product is discarded. On the other hand, only the sealed optical semiconductor element 11 that is a good product remains (that is, is selected).
  • the third transfer step 88 is performed after the inspection / sorting step 87 as shown in FIG.
  • the selected sealed optical semiconductor element 11 is placed on the third transfer sheet 23.
  • the third transfer sheet 23 include known transfer sheets, and specifically, a transfer sheet similar to the second transfer sheet 22 may be used.
  • the selected sealed optical semiconductor element 11 is transferred to the third transfer sheet 23. That is, in the third transfer step 88, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered with the upper surface of the third transfer sheet 23. In the third transfer process 88, the upper surface 16 of the sealing layer 10 is exposed to the upper side.
  • the sealing optical semiconductor element 11 is placed on the third transfer sheet 23 using a pickup device including a pressing member and a suction member.
  • the plurality of sealed optical semiconductor elements 11 are aligned and arranged again on the third transfer sheet 23 with a distance L5 in the front-rear direction and the left-right direction.
  • the interval L5 is, for example, 0.2 mm or more, preferably 0.4 mm or more, and for example, 1 mm or less, preferably 0.8 mm or less.
  • the fourth transfer step 89 is performed after the third transfer step 88 as shown in FIG. 4 in order to transfer the selected adhered optical semiconductor element 11 to the fourth transfer sheet 24.
  • the plurality of sealed optical semiconductor elements 11 are transferred from the third transfer sheet 23 to the fourth transfer sheet 24.
  • Examples of the fourth transfer sheet 24 include known transfer sheets, and specifically, a transfer sheet similar to the second transfer sheet 22 may be used. In addition, the 4th transfer sheet 24 is not provided with the support part 19 (refer virtual line) mentioned later.
  • the fourth transfer step 89 is performed by the same method as the third transfer step 88 described above.
  • the fifth transfer step 90 is performed after the fourth transfer step 89 as shown in FIG. 4 in order to invert the bonded optical semiconductor element 11 transferred to the fourth transfer sheet 24. .
  • the plurality of sealed optical semiconductor elements 11 are transferred from the fourth transfer sheet 24 to the fifth transfer sheet 25.
  • the fifth transfer sheet 25 is formed from the pressure-sensitive adhesive composition that forms the first transfer sheet 21 described above (the pressure-sensitive adhesive composition configured so that the pressure-sensitive adhesive force is reduced by irradiation with active energy rays). Is formed.
  • the fifth transfer sheet 25 has a lower surface 47 as a surface, and an upper surface 48 that is disposed to face the upper surface of the lower surface 47 and is substantially parallel to the lower surface 47.
  • the thickness of the fifth transfer sheet 25 is, for example, 50 ⁇ m or more, preferably 80 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 150 ⁇ m or less.
  • the method illustrated in the first transfer step 83 is used to transfer the sealed optical semiconductor element 11 from the fourth transfer sheet 24 to the fifth transfer sheet 25.
  • the fifth transfer sheet 25 is disposed on the upper side of the plurality of sealed optical semiconductor elements 11, and then the lower surface 47 of the fifth transfer sheet 25 and the sealing layer The top surface 16 of 10 is brought into pressure sensitive contact.
  • the lower surface 15 of the sealing layer 10 and the electrode side surface 3 of the optical semiconductor element 1 are peeled off from the upper surface of the fourth transfer sheet 24.
  • the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are exposed to the lower side.
  • the upper surface 16 of the sealing layer 10 is pressure-sensitively adhered by the lower surface 47 of the fifth transfer sheet 25.
  • Sixth transfer step In order to move the sixth transfer step 91, the sealed optical semiconductor element 11 turned upside down in the fifth transfer sheet 25 to the sixth transfer sheet 26 having the support portion 19 described later while being turned upside down, As shown in FIG. 4, the fifth transfer step 90 is performed. That is, by the fifth transfer step 90 and the sixth transfer step 91, the sealed optical semiconductor element 11 is placed on the sixth transfer sheet 26 having the sixth transfer sheet 26 from the fourth transfer sheet 24 not having the support portion 19. Change.
  • the plurality of sealed optical semiconductor elements 11 are transferred from the fifth transfer sheet 25 to the sixth transfer sheet.
  • the sixth transfer sheet 26 include known transfer sheets.
  • the sixth transfer sheet 26 may be a transfer sheet similar to the second transfer sheet 22.
  • the sixth transfer step 91 is performed in the same manner as the second transfer step 86 (see FIG. 2F).
  • the fifth transfer sheet 25 is irradiated from a radiation source 13 provided on the upper side of the fifth transfer sheet 25 and / or a radiation source (not shown) provided on the lower side.
  • the fifth transfer sheet 25 is irradiated from a radiation source 13 provided on the upper side of the fifth transfer sheet 25.
  • the active energy ray, the radiation source, and the irradiation amount are selected from the examples described in “6. Second transfer step 86”.
  • the pressure-sensitive adhesive force of the fifth transfer sheet 25 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is reduced. Specifically, the surface tackiness of the fifth transfer sheet 25 is reduced, preferably eliminated.
  • the sixth transfer sheet 26 is disposed below the plurality of sealed optical semiconductor elements 11, and then the upper surface of the sixth transfer sheet 26 and the lower surface of the sealing layer 10. 15 and the electrode side surface 3 of the optical semiconductor element 1 are brought into contact (pressure-sensitive adhesion).
  • the upper surface 16 of the sealing layer 10 is peeled from the lower surface 47 of the fifth transfer sheet 25 as indicated by a virtual line and a virtual line arrow in FIG.
  • the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered (pressure-sensitive adhesive) by the sixth transfer sheet 26.
  • the upper surface 16 of the sealing layer 10 is exposed to the upper side.
  • the peripheral edge of the sixth transfer sheet 26 is gripped, and the peripheral edges (specifically, the front and rear edges, and the left and right edges) are inside (specifically,
  • the support portion 19 is provided so as not to move to the outside in the front-rear direction and the outside in the left-right direction.
  • the support portion 19 is made of metal or the like, and has a substantially frame shape (specifically, a ring shape) in plan view.
  • the sealed optical semiconductor element 11 is transferred from the fourth transfer sheet 24 to the sixth transfer sheet 26 having the support portion 19 by the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 described above.
  • the sealed optical semiconductor element 11 can be reliably peeled from the sixth transfer sheet 26 and mounted on the substrate 29 using the support portion 19.
  • the stripping step 92 is performed after the sixth transfer step 91 as shown in FIG.
  • each of the plurality of sealed optical semiconductor elements 11 is peeled from the sixth transfer sheet 26 by the pickup device 71 or the like.
  • the pickup device 71 includes, for example, a pressing member 72 and a suction member 73 as an example of a conveying member.
  • the pressing member 72 has a sharp shape at the upper end.
  • Examples of the pressing member 72 include a needle.
  • the suction member 73 is formed at the lower end thereof by being in contact with the upper surface 16 of the sealing layer 10 in the sealing optical semiconductor element 11 and the contact portion 74 being opened at the center of the contact surface 74.
  • the suction port 75 is provided.
  • the contact portion 74 has a substantially frame shape in plan view and has a flat surface.
  • the suction port 75 is connected to a suction device (not shown) (for example, a suction pump) via a connection line (not shown).
  • the suction member 73 is, for example, a collet.
  • the pressing member 72 corresponds to the sealed optical semiconductor element 11 to be peeled from the lower side of the sixth transfer sheet 26.
  • the sixth transfer sheet 26 is pushed up (pressed), and the sealed optical semiconductor element 11 is pushed up. At this time, since the peripheral edge of the sixth transfer sheet 26 is supported by the support portion 19, it does not move inward.
  • the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealed optical semiconductor element 11. That is, the suction port 75 is closed by the upper surface 16 of the sealing layer 10.
  • the suction member 73 is pulled up while sucking the sealed optical semiconductor element 11 by reducing the pressure of the suction port 75 and the connection line (not shown) based on the driving of the suction device (not shown).
  • the sealed optical semiconductor element 11 is peeled from the sixth transfer sheet 26. That is, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are peeled from the upper surface of the sixth transfer sheet 26.
  • the sealed optical semiconductor element 11 including the optical semiconductor element 1 and the sealing layer 10 that seals the optical semiconductor element 1 is sucked by the suction member 73. Get in.
  • the sealed optical semiconductor element 11 is not the light emitting device 30 (see FIG. 3L), that is, does not include the substrate 29 provided in the light emitting device 30. That is, the sealed optical semiconductor element 11 is configured such that the electrode 41 is exposed and the electrode 41 is not yet electrically connected to the terminal 31 provided on the substrate 29 of the light emitting device 30.
  • the sealed optical semiconductor element 11 is a component of the light emitting device 30, that is, a component for manufacturing the light emitting device 30, and is a device that can be distributed industrially and used industrially.
  • the sealed optical semiconductor element 11 preferably includes only the optical semiconductor element 1 and the sealing layer 10.
  • An embodiment of a method for manufacturing a semiconductor device of the present invention includes a step of manufacturing the sealed optical semiconductor element 11 by the above-described manufacturing method of the sealed optical semiconductor element 11 (see FIGS. 1A to 3K), and A mounting step (see FIG. 3L) for mounting the sealed optical semiconductor element 11 on the substrate 29 is provided.
  • the mounting step 93 is performed after the peeling step 92.
  • the sealed optical semiconductor element 11 sucked by the suction member 73 is mounted on the substrate 29.
  • the substrate 29 has a substantially flat plate shape, and is, for example, an insulating substrate. Further, the substrate 29 includes terminals 31 arranged on the upper surface.
  • the electrode 41 formed on the electrode side surface 3 of the sealed optical semiconductor element 11 is electrically connected to the terminal 31 of the substrate 29. That is, the sealed optical semiconductor element 11 sucked by the suction member 73 is lowered, and subsequently flip-chip mounted on the substrate 29. Further, the lower surface 15 of the sealing layer 10 is brought into contact with the upper surface of the substrate 29.
  • the light emitting device 30 as an example of the semiconductor device including the substrate 29 and the sealed optical semiconductor element 11 is obtained.
  • the light emitting device 30 includes only the substrate 29, the optical semiconductor element 1, and the sealing layer 10.
  • the separation step 94 is performed after the mounting step 93.
  • the suction member 73 is separated from the upper surface 16 of the sealing layer 10 as indicated by the phantom lines and phantom arrows in FIG.
  • the suction member 73 In order to separate the suction member 73 from the upper surface 16, the suction member 73 is pulled up relative to the sealing layer 10 provided in the light emitting device 30. That is, the suction member 73 is moved upward. As a result, the contact portion 74 of the suction member 73 is separated from the upper surface 16 of the sealing layer 10.
  • the pressure-sensitive adhesive composition is brought into contact with the contact portion 74. Can be prevented (glue takeaway).
  • the pressure-sensitive adhesive is applied to the lower surface 47 of the fifth transfer sheet 25. It can suppress that an agent composition adheres.
  • the content ratio of the low molecular weight component in the pressure-sensitive adhesive composition is not more than a specific value. Therefore, in the second transfer step 86, the pressure-sensitive adhesive is used. It is possible to further suppress the composition from adhering to the upper surface 16 of the sealing layer 10.
  • the sealing layer 10 has slight pressure-sensitive adhesiveness (microtackiness)
  • the pressure-sensitive adhesive composition described above adheres to the upper surface 16 of the sealing layer 10 ( The adhesive residue can be effectively suppressed.
  • the fifth transfer sheet 25 is made of a pressure-sensitive adhesive composition. As shown to 3J, it can suppress that the pressure-sensitive adhesive composition which forms the 5th transfer sheet 25 adheres to the upper surface 16 of the sealing layer 10.
  • the pressure-sensitive adhesive composition adheres to the contact portion 74. (Take back of glue) can be further suppressed.
  • the top surface 16 of the sealing layer 10 is prevented from adhering to the pressure-sensitive adhesive composition. Therefore, in the mounting step 93, as shown in FIG. It can suppress that a pressure-sensitive adhesive composition adheres to the contact part 74 of the member 73 (take-away of glue). Therefore, in the separation step 94, the contact portion 74 of the suction member 73 can be smoothly separated from the upper surface 16 as shown in FIG. 3L. As a result, the light emitting device 30 can be manufactured efficiently.
  • an optical semiconductor element 1 such as an LED or an LD is cited as an example of a semiconductor element.
  • a semiconductor that converts electrical energy into energy other than light specifically, signal energy or the like. It may be an element, and specifically includes a rectifier such as a transistor.
  • the sealed optical semiconductor element 11 can be circulated while being supported by the sixth transfer sheet 26.
  • the fifth transfer step 90 and the sixth transfer step 91 are performed. However, as shown in FIG. 5, the fifth transfer step 90 and the sixth transfer step 91 are performed. It is not necessary to carry out. Specifically, in the second embodiment, the element preparation step 81, the sealing step 82, the first transfer step 83, the cutting step 84, the stretching step 85, the second transfer step 86, the inspection / sorting step 87, and the third transfer Step 88, fourth transfer step 89, peeling step 92, mounting step 93, and separation step 94 are sequentially performed.
  • the fifth transfer step 90 using the fifth transfer sheet 25 formed from a specific pressure-sensitive adhesive composition, and the active energy rays are irradiated to the fifth transfer sheet 25.
  • the sixth transfer process 91 is not performed.
  • FIG. 2H a support portion 19 is provided on the peripheral edge of the fourth transfer sheet 24.
  • the sealing optical semiconductor element 11 is peeled from the 4th transfer sheet 24 using the pick-up apparatus 71.
  • the pressing member 72 pushes up (presses) the fourth transfer sheet 24 corresponding to the sealing optical semiconductor element 11 to be peeled from the lower side of the fourth transfer sheet 24, and the sealing light.
  • the semiconductor element 11 is pushed upward.
  • the peripheral edge of the fourth transfer sheet 24 is supported by the support portion 19, it does not move inward.
  • the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealed optical semiconductor element 11. That is, the suction port 75 is closed by the upper surface 16.
  • the suction member 73 is pulled up while sucking the sealed optical semiconductor element 11 by reducing the pressure of the suction port 75 and the connection line based on the driving of the suction device.
  • the sealed optical semiconductor element 11 is transferred from the fourth transfer sheet 24 to the sixth transfer sheet 26 having the support portion 19.
  • the sealing optical semiconductor element 11 can be reliably peeled off from the sixth transfer sheet 26 using the support portion 19 and mounted on the substrate 29.
  • the fourth transfer process 89 is performed, but the fourth transfer process 89 (see FIG. 2H) may not be performed. That is, in this modification, the peeling step 92 is performed after the third transfer step 88.
  • the sealed optical semiconductor element 11 is peeled from the third transfer sheet 23 as shown in FIG. 2G.
  • the sealed optical semiconductor element 11 can be circulated while being supported by the fourth transfer sheet 24.
  • the inspection / sorting process 87, the third transfer process 88, the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 are performed.
  • the inspection / sorting process 87, the third transfer process 88, the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 may not be performed.
  • the element preparation process 81, the sealing process 82, the first transfer process 83, the cutting process 84, the stretching process 85, the second transfer process 86, the peeling process 92, the mounting process 93, and the separation process. Step 94 is performed sequentially.
  • the sealed optical semiconductor element 11 is peeled from the second transfer sheet 22 by using the pickup device 71 so as to refer to the virtual line in FIG. 2F.
  • the fifth transfer process 90 and the sixth transfer process 91 are not performed, and further, the inspection / selection process 87, the third transfer process 88, and the fourth transfer process 89 are not performed.
  • the number can be reduced. Therefore, the sealed optical semiconductor element 11 can be manufactured more easily, and furthermore, the light emitting device 30 can be manufactured more simply.
  • steps other than the element preparation step 81, the sealing step 82, the first transfer step 83, the cutting step 84, the stretching step 85, and the second transfer step 86 are performed. May be omitted partially or entirely as appropriate.
  • blending ratio content ratio
  • physical property values and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  • Preparation of active energy ray-curable pressure-sensitive adhesive composition Preparation Example 1 (Preparation of intermediate polymer solution) As shown in Table 1, a polymerization initiator and a solvent were added to predetermined monomers (monomers other than monomer C).
  • benzoyl peroxide thermal polymerization initiator, Niper BW, manufactured by NOF Corporation
  • Niper BW thermo polymerization initiator
  • toluene 50% with respect to the total amount of monomers.
  • the amount was added so as to be weight%.
  • the mixture was put into a polymerization experimental apparatus equipped with a 1 L round bottom separable flask, a separable cover, a separatory funnel, a thermometer, a nitrogen inlet tube, a Liebig condenser, a vacuum seal, a stirring rod, and a stirring blade.
  • toluene was dropped to control the temperature during the polymerization.
  • ethyl acetate was added dropwise to prevent a sudden increase in viscosity due to hydrogen bonding due to polar groups in the side chain.
  • Base polymer solution 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, 3 parts by weight per 100 parts by weight of base polymer solids, polyisocyanate crosslinking agent (Coronate L; Nippon Polyurethane Co., Ltd.) was mixed with 3 parts by weight per 100 parts by weight of the base polymer solid content, and stirred uniformly to obtain a pressure-sensitive adhesive composition pressure-sensitive adhesive composition.
  • Irgacure 184 1-hydroxycyclohexyl phenyl ketone
  • polyisocyanate crosslinking agent Coronate L; Nippon Polyurethane Co., Ltd.
  • HEMA 2-hydroxyethyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • HEA 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • LMA Lauryl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • EHA 2-ethylhexyl acrylate (manufactured by Toa Gosei Co., Ltd.)
  • MOI Methacryloyloxyethyl isocyanate (manufactured by Showa Denko)
  • ACMO Acryloyl morpholine (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • BA Butyl acrylate (manufactured by Toa Gosei Co., Ltd.)
  • EA Ethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) (GPC measurement of
  • the content rate with respect to a pressure-sensitive adhesive composition of the low molecular weight component of molecular weight 3.0x10 4 or less of standard polystyrene conversion was calculated from the obtained chromatogram.
  • the pressure-sensitive adhesive composition of Preparation Example 1 was 10% by mass
  • the pressure-sensitive adhesive composition of Preparation Example 2 was 3% by mass
  • Test example 1 A first transfer sheet was prepared from the pressure-sensitive adhesive solution obtained in Preparation Example 1, and the peel adhesion (adhesion) of the first transfer sheet to the glass plate (1 cm square) was measured.
  • the pressure-sensitive adhesive solution was applied to the surface of the substrate (PET film) and dried for 5 minutes with a 120 ° C. dryer to obtain a first transfer sheet having a thickness of 10 ⁇ m.
  • the first transfer sheet was attached on a support substrate (stainless steel plate) via a double-sided tape.
  • the glass plate was pressure-sensitively adhered to the first transfer sheet, and then irradiated with ultraviolet rays under the following conditions to reduce the pressure-sensitive adhesive force of the first transfer sheet.
  • Radiation source UM-810 (manufactured by Nitto Seiki) Illuminance: 70 mW / cm 2 Irradiation time: 0.5 seconds Light intensity (irradiation amount): 35 mJ / cm 2 Thereafter, the glass plate was peeled from the first transfer sheet.
  • the series of operations described above that is, production of the first transfer sheet, pasting with a glass plate, and irradiation with ultraviolet rays were repeated five times.
  • a glass plate was used in common. That is, in the first time, the pressure-sensitive adhesive and peeled off from the surface of the first transfer sheet were pressure-sensitively attached and peeled off from the surface of the second transfer sheet. That is, when adhesive residue was generated on the glass plate, the glass plate was used so that it was accumulated on the surface of the glass plate.
  • Test example 2 The treatment and measurement were performed in the same manner as in Test Example 1 except that the adhesive solution of Preparation Example 2 was used as the first transfer sheet. As a result, the fifth peel adhesion (adhesion force) was 2.00 N / 10 mm 2 .
  • Comparative Test Example 1 The treatment and measurement were performed in the same manner as in Test Example 1 except that the adhesive solution of Comparative Preparation Example 1 was used as the first transfer sheet. As a result, the fifth peel adhesion (adhesion force) was 3.85 N / 10 mm 2 .
  • Table 3 shows the results of the test examples and comparative test examples.
  • Example 1 Based on 3rd Embodiment, the light-emitting device 30 shown to FIG. 3L was obtained.
  • the element preparation process 81, the sealing process 82, the first transfer process 83, the cutting process 84, the stretching process 85, the second transfer process 86, the peeling process 92, the mounting process 93, and the separation process 94. Were carried out sequentially.
  • a plurality of optical semiconductor elements 1 manufactured by Epitar, EDI-FA4545A were pressure-sensitively adhered onto the temporary fixing sheet 2.
  • the sealing step 82 first, as shown in FIG. 1B, a 50 ⁇ m-thick release sheet 9 made of PET, and a B-stage sealing layer 10 that is arranged on the lower surface of the release sheet 9 and made of a sealing composition.
  • the sealing sheet 8 provided with was prepared.
  • the sealing composition is composed of 20 g (1.4 mmol vinylsilyl group) of dimethylvinylsilyl-terminated polydimethylsiloxane (vinylsilyl group equivalent 0.071 mmol / g), trimethylsilyl-terminated dimethylsiloxane-methylhydrosiloxane copolymer (hydrosilyl).
  • Silicone fine particles (Tospearl 2000B, 30 parts by mass of Momentive Performance Materials Japan GK Co., Ltd.) was blended, and stirred and mixed uniformly to obtain a two-stage reaction curable silicone resin.
  • the thickness of the sealing layer 10 was 500 ⁇ m.
  • a plurality of optical semiconductor elements 1 were sealed with a sealing sheet 8. Thereafter, the sealing layer 10 was changed to a C stage by heating. Thereafter, the release sheet 9 was peeled from the sealing sheet 8.
  • the sealed optical semiconductor element 11 was obtained in a state of being pressure-sensitively adhered to the temporary fixing sheet 2.
  • the sealed optical semiconductor element 11 was transferred from the temporary fixing sheet 2 to the first transfer sheet 21.
  • the first transfer sheet 21 was formed into a sheet shape from the pressure-sensitive adhesive solution of Preparation Example 1 by the same method as in Test Example 1.
  • the sealing layer 10 is supported by the first transfer sheet 21 so as to correspond to each of the plurality of optical semiconductor elements 1 by the dicing saw 12. , Dicing.
  • the first transfer sheet 21 was stretched.
  • the width W of the interval 18 separating the adjacent sealed optical semiconductor elements 11 was 1200 ⁇ m.
  • the plurality of sealed optical semiconductor elements 11 were transferred from the first transfer sheet 21 to the second transfer sheet 22.
  • the first transfer sheet 21 was irradiated with ultraviolet rays under the following conditions to reduce the pressure-sensitive adhesive force of the first transfer sheet 21.
  • Radiation source 13 UM-810 (manufactured by Nitto Seiki) Illuminance: 70 mW / cm 2 Irradiation time: 0.5 seconds Light intensity (irradiation amount): 35 mJ / cm 2 Subsequently, the second transfer sheet 22 made of SPV-224 (manufactured by Nitto Denko Corporation) was pressure-sensitively adhered to the electrode side surface 3 and the lower surface 15, and then the upper surface 16 was peeled from the lower surface 45 of the first transfer sheet 21.
  • SPV-224 manufactured by Nitto Denko Corporation
  • the sealed optical semiconductor element 11 was peeled from the second transfer sheet 22 by the pickup device 71 so that the phantom line in FIG. Specifically, the contact portion 74 of the suction member 73 was brought into contact with the upper surface 16 of the sealing layer 10 of the sealing optical semiconductor element 11.
  • the sealed optical semiconductor element 11 was mounted on the substrate 29 as shown in FIG. 3L.
  • the contact portion 74 of the suction member 73 was separated from the upper surface 16 of the sealing layer 10 as indicated by a virtual line in FIG. 3L.
  • the series of steps described above was performed 100 times, and the number of times that the contact portion 74 of the suction member 73 could be separated from the upper surface 16 of the sealing layer 10 in the separation step 94 was counted.
  • the separation success rate (number of times the suction member 73 could be separated from the upper surface 16 / total number of implementations ⁇ 100) was calculated to be 99%.
  • Example 2 The first transfer sheet 21 was processed and measured in the same manner as in Example 1 except that the first transfer sheet 21 was formed into a sheet form from the pressure-sensitive adhesive solution of Preparation Example 2 by the same method as in Test Example 2. As a result, the separation success rate was 99%.
  • Comparative Example 1 The first transfer sheet 21 was processed and measured in the same manner as in Example 1 except that the first transfer sheet 21 was formed into a sheet form from the pressure-sensitive adhesive solution of Comparative Preparation Example 1 by the same method as in Comparative Test Example 1. As a result, the separation success rate was 50%.
  • the manufacturing method of a sealing semiconductor element is used for the manufacturing method of a sealing optical semiconductor element.

Abstract

This manufacturing method for a sealed semiconductor element comprises: a step for manufacturing a sealed semiconductor element provided with a semiconductor element which includes an electrode side surface and an element facing surface arranged so as to face the electrode side surface, and with a sealing layer which includes a layer side facing surface arranged so as to face the element facing surface and which seals the semiconductor element so as to cover the element facing surface with the electrode side surface being exposed; a pressure-sensitive adhesion step for causing the sealed semiconductor element to adhere to a pressure-sensitive adhesive sheet by bringing the layer side facing surface into contact with a surface of the pressure-sensitive adhesive sheet, the pressure-sensitive adhesive sheet including a pressure-sensitive adhesive composition, the pressure-sensitive adhesion of which is weakened by irradiation with active energy rays; a treatment step for treating the sealed semiconductor element subsequent to the pressure-sensitive adhesion step; and a releasing step for irradiating, subsequent to the treatment step, the pressure-sensitive adhesive sheet with active energy rays to release the sealed semiconductor element from the pressure-sensitive adhesive sheet. The pressure-sensitive adhesive composition is an active energy ray curable type pressure-sensitive adhesive composition.

Description

封止半導体素子および半導体装置の製造方法SEALING SEMICONDUCTOR ELEMENT AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
 本発明は、封止半導体素子および半導体装置の製造方法、詳しくは、封止半導体素子の製造方法、および、それにより得られた封止半導体素子を用いる半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a sealed semiconductor element and a semiconductor device, and more particularly to a method for manufacturing a sealed semiconductor element and a method for manufacturing a semiconductor device using the sealed semiconductor element obtained thereby.
 従来、LEDを、封止層によって封止して、封止LEDを製造する方法が知られている。 Conventionally, a method of manufacturing a sealed LED by sealing an LED with a sealing layer is known.
 例えば、以下の方法によって、蛍光体シート被覆LEDを得、これを基板に実装することが提案されている。 For example, it has been proposed to obtain a phosphor sheet-covered LED and mount it on a substrate by the following method.
 すなわち、まず、LEDと、LEDを被覆する蛍光体シートとを備える蛍光体シート被覆LEDを、LEDにおいてバンプが形成される面(バンプ形成面)が支持シートの表面に接触し、かつ、蛍光体シートの表面が露出するように、支持シートに仮固定した状態で作製する。 That is, first, in a phosphor sheet-covered LED comprising an LED and a phosphor sheet that covers the LED, the surface on which the bump is formed in the LED (bump forming surface) is in contact with the surface of the support sheet, and the phosphor It is produced in a state of being temporarily fixed to the support sheet so that the surface of the sheet is exposed.
 その後、蛍光体シート被覆LEDを支持シートから転写シートに転写する。転写シートは、活性エネルギー線の照射によって粘着力が低下する活性エネルギー線照射剥離シートからなる。これにより、LEDのバンプ形成面が露出する一方、蛍光体シートの表面が転写シートの表面に密着する。 Thereafter, the phosphor sheet-covered LED is transferred from the support sheet to the transfer sheet. The transfer sheet is composed of an active energy ray-irradiated release sheet whose adhesive strength is reduced by irradiation with active energy rays. Thereby, while the bump formation surface of LED is exposed, the surface of the phosphor sheet is in close contact with the surface of the transfer sheet.
 その後、蛍光体シート被覆LEDを転写シートから延伸支持シートに転写して、延伸支持シートを面方向外側に延伸させる。このとき、LEDのバンプ形成面は、延伸支持シートに接触し、蛍光体シートの表面は露出している。 Thereafter, the phosphor sheet-covered LED is transferred from the transfer sheet to the stretch support sheet, and the stretch support sheet is stretched outward in the plane direction. At this time, the bump forming surface of the LED is in contact with the stretched support sheet, and the surface of the phosphor sheet is exposed.
 そして、蛍光体シート被覆LEDは、蛍光体シートの表面がコレットで吸引されながら、基板に実装される。その後、コレットが蛍光体シートの表面から離間する。 The phosphor sheet-covered LED is mounted on the substrate while the surface of the phosphor sheet is sucked by the collet. Thereafter, the collet is separated from the surface of the phosphor sheet.
 特開2014-168036号公報 JP 2014-168036 A
 しかし、特許文献1に記載の方法では、蛍光体シート被覆LEDを転写シートから剥離するときに、蛍光体シートの表面に、転写シートを形成する材料(粘着剤など)が残り易い(いわゆる糊残りが発生し易い)。そのため、材料がコレットに付着してしまい、そうすると、コレットを蛍光体シートの表面から円滑に離間することができないという不具合がある。 However, in the method described in Patent Document 1, when the phosphor sheet-covered LED is peeled from the transfer sheet, a material (such as an adhesive) that forms the transfer sheet tends to remain on the surface of the phosphor sheet (so-called adhesive residue). Is likely to occur). Therefore, there is a problem that the material adheres to the collet and the collet cannot be smoothly separated from the surface of the phosphor sheet.
 本発明の目的は、剥離工程において、感圧粘着剤組成物が層側対向面に付着することを抑制することのできる封止半導体素子の製造方法、および、運搬部材に感圧粘着剤組成物が付着することを抑制することのできる半導体装置の製造方法を提供することにある。 An object of the present invention is to provide a method for producing an encapsulated semiconductor element capable of suppressing the pressure-sensitive adhesive composition from adhering to the layer-side facing surface in the peeling step, and a pressure-sensitive adhesive composition to a conveying member. An object of the present invention is to provide a method of manufacturing a semiconductor device that can suppress the adhesion of the semiconductor.
 本発明の封止半導体素子の製造方法は、電極側面、および、前記電極側面に対向配置される素子対向面を有する半導体素子と、前記素子対向面に対向配置される層側対向面を有し、前記電極側面が露出し、前記素子対向面を被覆するように、前記半導体素子を封止する封止層とを備える封止半導体素子を作製する工程、前記封止半導体素子を、活性エネルギー線の照射によって感圧粘着力が低減するように構成される感圧粘着剤組成物からなる感圧粘着シートに、前記感圧粘着シートの表面と前記層側対向面とが接触するように、感圧粘着する感圧粘着工程、前記感圧粘着工程の後に、前記封止半導体素子を処理する処理工程、および、前記処理工程の後に、前記感圧粘着シートに活性エネルギー線を照射して、前記封止半導体素子を前記感圧粘着シートから剥離する剥離工程を備え、前記感圧粘着剤組成物は、活性エネルギー線硬化型感圧粘着剤組成物であり、前記活性エネルギー線硬化型感圧粘着剤組成物は、官能基aを含有するモノマーA、炭素数8以上17以下のアルキル基を含有する(メタ)アクリレートモノマーを含有するモノマーB、および、官能基aと反応することができる官能基cと重合性炭素-炭素二重結合基との双方の基を含有するモノマーC、に由来する構造単位を含有するポリマーから調製されており、前記モノマーBは、前記モノマーAとともに主鎖を構成し、その含有割合が、前記モノマーAおよび前記モノマーBの総量に対して、50質量%以上であり、前記ポリマーは、前記官能基aの一部が前記官能基cと反応して結合することにより、側鎖に重合性炭素-炭素二重結合基を含有することを特徴としている。 The method for producing a sealed semiconductor element of the present invention includes an electrode side surface, a semiconductor element having an element facing surface disposed to face the electrode side surface, and a layer side facing surface disposed to face the element facing surface. A step of producing a sealed semiconductor element comprising a sealing layer for sealing the semiconductor element so that the electrode side surface is exposed and the element facing surface is covered; The pressure-sensitive pressure-sensitive adhesive sheet comprising a pressure-sensitive pressure-sensitive adhesive composition configured to reduce pressure-sensitive adhesive strength by irradiation of After pressure-sensitive adhesive step, pressure-sensitive adhesive step, processing step of processing the sealing semiconductor element, and after the processing step, the pressure-sensitive adhesive sheet is irradiated with active energy rays, Encapsulating semiconductor element The pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive composition, and the active energy ray-curable pressure-sensitive adhesive composition is a functional group. a monomer A containing a, a monomer B containing a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms, a functional group c capable of reacting with the functional group a, and a polymerizable carbon-carbon It is prepared from a polymer containing a structural unit derived from a monomer C containing both groups with a double bond group, and the monomer B constitutes a main chain together with the monomer A, and the content ratio is It is 50% by mass or more based on the total amount of the monomer A and the monomer B, and the polymer has a side by reacting and bonding a part of the functional group a with the functional group c. Polymerizable carbon - is characterized by containing a carbon double bond group.
 この封止半導体素子の製造方法によれば、感圧粘着剤組成物が特定の活性エネルギー線硬化型感圧粘着剤組成物であるので、剥離工程において、感圧粘着剤組成物が層側対向面に付着することを抑制することができる。 According to this method for producing a sealed semiconductor element, since the pressure-sensitive adhesive composition is a specific active energy ray-curable pressure-sensitive adhesive composition, the pressure-sensitive adhesive composition is opposed to the layer side in the peeling step. It can suppress adhering to a surface.
 そのため、剥離工程後の層側対向面に部材を接触させても、部材に感圧粘着剤組成物が付着することを抑制することができる。 Therefore, even if the member is brought into contact with the layer-side facing surface after the peeling step, it is possible to suppress the pressure-sensitive adhesive composition from adhering to the member.
 また、本発明の封止半導体素子の製造方法では、前記感圧粘着剤組成物のGPC測定に基づく標準ポリスチレン換算の分子量3.0×10以下の低分子量成分の、前記感圧粘着剤組成物に対する含有割合が、10質量%以下であることが好適である。 Moreover, in the manufacturing method of the sealing semiconductor element of this invention, the said pressure sensitive adhesive composition of the low molecular weight component of molecular weight 3.0 * 10 < 4 > or less of standard polystyrene conversion based on GPC measurement of the said pressure sensitive adhesive composition. It is suitable that the content ratio with respect to a thing is 10 mass% or less.
 この封止半導体素子の製造方法によれば、低分子量成分の、感圧粘着剤組成物における含有割合が、特定値以下であるので、剥離工程において、感圧粘着剤組成物が層側対向面に付着することをより一層抑制することができる。 According to this method for producing a sealed semiconductor element, since the content ratio of the low molecular weight component in the pressure sensitive adhesive composition is not more than a specific value, the pressure sensitive adhesive composition is layer side facing surface in the peeling step. It can suppress further that it adheres to.
 また、本発明の封止半導体素子の製造方法は、前記剥離工程の後に、前記封止半導体素子を、活性エネルギー線の照射によって感圧粘着力が低減するように構成される転写シートに、前記層側対向面と前記転写シートの表面とが接触するように、転写する転写工程、前記転写工程の後に、前記転写シートに活性エネルギー線を照射して、前記封止半導体素子を前記転写シートから再転写する再転写工程をさらに備え、前記転写シートは、前記感圧粘着剤組成物からなることが好適である。 Further, in the method for producing a sealed semiconductor element of the present invention, after the peeling step, the sealed semiconductor element is applied to a transfer sheet configured to reduce pressure-sensitive adhesive force by irradiation with active energy rays. After the transfer step, the transfer sheet is irradiated with active energy rays so that the layer-side facing surface and the surface of the transfer sheet are in contact with each other, and the sealing semiconductor element is removed from the transfer sheet. It is preferable that a retransfer process for retransfer is further provided, and the transfer sheet is made of the pressure-sensitive adhesive composition.
 この封止半導体素子の製造方法によれば、転写シートが、感圧粘着剤組成物からなるので、再転写工程において、感圧粘着剤組成物が層側対向面に付着することを抑制することができる。 According to this method for producing a sealed semiconductor element, since the transfer sheet is made of a pressure-sensitive adhesive composition, the pressure-sensitive adhesive composition is prevented from adhering to the layer-side facing surface in the retransfer process. Can do.
 そのため、再転写工程後の封止半導体素子の層側対向面に部材を接触させても、部材に感圧粘着剤組成物が付着することを抑制することができる。 Therefore, even when the member is brought into contact with the layer-side facing surface of the encapsulated semiconductor element after the retransfer process, the pressure-sensitive adhesive composition can be prevented from adhering to the member.
 また、本発明の半導体装置の製造方法は、上記した封止半導体素子の製造方法により、封止半導体素子を製造する工程、運搬部材を前記層側対向面に接触させて、前記封止半導体素子を基板に、前記電極側面が基板と接触するように、実装する実装工程、および、前記運搬部材を前記層側対向面から離間させる離間工程を備えることを特徴としている。 Further, the method for manufacturing a semiconductor device of the present invention includes a step of manufacturing a sealed semiconductor element by the above-described method for manufacturing a sealed semiconductor element, bringing a conveying member into contact with the layer-side facing surface, and And a separation step of separating the transport member from the layer-side facing surface. The mounting step includes mounting the substrate so that the electrode side surface contacts the substrate.
 この半導体装置の製造方法によれば、層側対向面が、感圧粘着剤組成物の付着が抑制されているので、実装工程において、運搬部材に感圧粘着剤組成物が付着することを抑制することができる。そのため、離間工程において、運搬部材を層側対向面から円滑に離間させることができる。その結果、半導体装置を効率よく製造することができる。 According to this method for manufacturing a semiconductor device, since the adhesion of the pressure-sensitive adhesive composition to the layer-side facing surface is suppressed, the adhesion of the pressure-sensitive adhesive composition to the conveying member is suppressed in the mounting process. can do. Therefore, in the separation step, the conveying member can be smoothly separated from the layer-side facing surface. As a result, the semiconductor device can be manufactured efficiently.
 本発明の封止半導体素子の製造方法では、剥離工程において、感圧粘着剤組成物が層側対向面に付着することを抑制することができる。 In the manufacturing method of the sealing semiconductor element of this invention, it can suppress that a pressure sensitive adhesive composition adheres to a layer side opposing surface in a peeling process.
 本発明の半導体装置の製造方法は、半導体装置を効率よく製造することができる。 The semiconductor device manufacturing method of the present invention can efficiently manufacture a semiconductor device.
図1A~図1Eは、本発明の封止半導体素子および半導体装置の製造方法の第1実施形態の製造工程図であって、図1Aは、素子用意工程、図1Bは、封止工程、図1Cは、第1転写工程、図1Dは、切断工程、図1Eは、延伸工程を示す。1A to 1E are manufacturing process diagrams of a first embodiment of a manufacturing method of a sealing semiconductor element and a semiconductor device according to the present invention. FIG. 1A is an element preparation process, FIG. 1B is a sealing process, FIG. 1C shows the first transfer step, FIG. 1D shows the cutting step, and FIG. 1E shows the stretching step. 図2F~図2Hは、図1Eに引き続き、本発明の封止半導体素子および半導体装置の製造方法の第1実施形態の製造工程図であって、図2Fは、第2転写工程、図2Gは、第3転写工程、図2Hは、第4転写工程を示す。2F to FIG. 2H are manufacturing process diagrams of the first embodiment of the manufacturing method of the sealed semiconductor element and the semiconductor device of the present invention, following FIG. 1E. FIG. 2F is a second transfer process, FIG. FIG. 2H shows the fourth transfer process. 図3I~図3Lは、図2Hに引き続き、本発明の封止半導体素子および半導体装置の製造方法の第1実施形態の製造工程図であって、図3Iは、第5転写工程、図3Jは、第6転写工程、図3Kは、剥離工程、図3Lは、実装工程および離間工程を示す。3I to FIG. 3L are manufacturing process diagrams of the first embodiment of the manufacturing method of the sealed semiconductor element and the semiconductor device of the present invention, following FIG. 2H. FIG. 3I is a fifth transfer process, and FIG. FIG. 3K shows a peeling step, and FIG. 3L shows a mounting step and a separation step. 図4は、本発明の封止半導体素子および半導体装置の製造方法の第1実施形態のステップ図を示す。FIG. 4 shows a step diagram of the first embodiment of the method for manufacturing a sealed semiconductor element and a semiconductor device of the present invention. 図5は、本発明の封止半導体素子および半導体装置の製造方法の第2実施形態のステップ図を示す。FIG. 5: shows the step figure of 2nd Embodiment of the manufacturing method of the sealing semiconductor element of this invention, and a semiconductor device. 図6は、本発明の封止半導体素子および半導体装置の製造方法の第3実施形態のステップ図を示す。FIG. 6 shows a step diagram of the third embodiment of the method for manufacturing a sealed semiconductor element and a semiconductor device of the present invention.
  <第1実施形態>
 図1A~図3Lにおいて、紙面上下方向は、上下方向(第1方向、厚み方向)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
<First Embodiment>
In FIG. 1A to FIG. 3L, the vertical direction of the paper is the vertical direction (first direction, thickness direction), the upper side of the paper is the upper side (one side in the first direction, the one side in the thickness direction), and the lower side of the paper is the lower side (first Direction other side, thickness direction other side). The left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). The paper thickness direction is the front-rear direction (the third direction orthogonal to the first direction and the second direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (the other side in the third direction). is there. Specifically, it conforms to the direction arrow in each figure.
 「感圧粘着」は、「感圧接着」と同義であって、互いに置換可能である。具体的には、「感圧粘着剤層」、「感圧粘着力」、「感圧粘着する」、「感圧粘着される」、「感圧粘着剤組成物」は、それぞれ、「感圧接着剤層」、「感圧接着力」、「感圧接着する」、「感圧接着される」、「感圧接着剤組成物」と同義である。 “Pressure-sensitive adhesive” is synonymous with “pressure-sensitive adhesive” and can be substituted for each other. Specifically, “pressure-sensitive adhesive layer”, “pressure-sensitive adhesive force”, “pressure-sensitive adhesive”, “pressure-sensitive adhesive”, and “pressure-sensitive adhesive composition” It is synonymous with “adhesive layer”, “pressure-sensitive adhesive strength”, “pressure-sensitive adhesive”, “pressure-sensitive adhesive”, and “pressure-sensitive adhesive composition”.
 本発明の封止半導体素子の製造方法の第1実施形態は、図4に示すように、素子用意工程81、封止工程82、感圧粘着工程の一例としての第1転写工程83、処理工程の一例としての切断工程84、処理工程の一例としての延伸工程85、剥離工程の一例としての第2転写工程86、検査・選別工程87、第3転写工程88、第4転写工程89、転写工程の一例としての第5転写工程90、再転写工程の一例としての第6転写工程91、および、剥離工程92を備えている。第1実施形態では、上記の工程が上記の順序で順次実施される。以下、各工程を説明する。 As shown in FIG. 4, the first embodiment of the method for manufacturing a sealed semiconductor element of the present invention includes an element preparation step 81, a sealing step 82, a first transfer step 83 as an example of a pressure-sensitive adhesive step, and a processing step. A cutting process 84 as an example, a stretching process 85 as an example of a processing process, a second transfer process 86 as an example of a peeling process, an inspection / selection process 87, a third transfer process 88, a fourth transfer process 89, and a transfer process. A fifth transfer step 90 as an example, a sixth transfer step 91 as an example of a retransfer step, and a peeling step 92. In the first embodiment, the above steps are sequentially performed in the above order. Hereinafter, each process will be described.
  1. 素子用意工程
 素子用意工程81では、図1Aに示すように、複数の半導体素子の一例としての光半導体素子1を、仮固定シート2の上に配置する。
1. Element Preparation Step In the element preparation step 81, as shown in FIG. 1A, an optical semiconductor element 1 as an example of a plurality of semiconductor elements is disposed on the temporary fixing sheet 2.
  1-1. 光半導体素子
 光半導体素子1は、例えば、電気エネルギーを光エネルギーに変換するLEDやLDである。好ましくは、光半導体素子1は、青色光を発光する青色LED(発光ダイオード素子)である。一方、光半導体素子1は、光半導体素子とは技術分野が異なるトランジスタなどの整流器を含まない。
1-1. Optical Semiconductor Element The optical semiconductor element 1 is, for example, an LED or an LD that converts electrical energy into optical energy. Preferably, the optical semiconductor element 1 is a blue LED (light emitting diode element) that emits blue light. On the other hand, the optical semiconductor element 1 does not include a rectifier such as a transistor having a technical field different from that of the optical semiconductor element.
 光半導体素子1は、仮固定シート2の上において、前後方向および左右方向に互いに間隔を隔てて複数整列配置されている。 A plurality of optical semiconductor elements 1 are arranged on the temporary fixing sheet 2 in the front-rear direction and the left-right direction at intervals from each other.
 光半導体素子1は、前後方向および左右方向に沿う略平板形状を有している。光半導体素子1は、電極側面3と、対向面4と、周側面5とを有している。 The optical semiconductor element 1 has a substantially flat plate shape along the front-rear direction and the left-right direction. The optical semiconductor element 1 has an electrode side surface 3, a facing surface 4, and a peripheral side surface 5.
 電極側面3は、光半導体素子1における下面であって、電極41(図3L参照)が形成される面である。 The electrode side surface 3 is a lower surface of the optical semiconductor element 1 and is a surface on which the electrode 41 (see FIG. 3L) is formed.
 対向面4は、光半導体素子1における上面であって、電極側面3に対して上側に間隔を隔てて対向配置されている。 The facing surface 4 is an upper surface of the optical semiconductor element 1 and is disposed so as to face the electrode side surface 3 with an interval on the upper side.
 周側面5は、電極側面3の周端縁と、対向面4の周端縁とを連結している。 The peripheral side surface 5 connects the peripheral end edge of the electrode side surface 3 and the peripheral end edge of the facing surface 4.
 光半導体素子1の寸法は、適宜設定されており、具体的には、厚み(高さ)が、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。また、光半導体素子1の前後方向および/または左右方向における長さL1は、例えば、0.2mm以上、好ましくは、0.5mm以上であり、また、例えば、1.5mm以下、好ましくは、1.2mm以下である。また、隣接する光半導体素子1の間の間隔(前後方向および/または左右方向における間隔)L0は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下である。また、隣接する光半導体素子1のピッチL2、具体的には、上記した長さL1および間隔L0の和(L1+L0)は、例えば、0.25mm以上、好ましくは、0.6mm以上であり、また、例えば、2.5mm以下、好ましくは、2mm以下である。 The dimensions of the optical semiconductor element 1 are set as appropriate. Specifically, the thickness (height) is, for example, 0.1 μm or more, preferably 0.2 μm or more, and, for example, 500 μm or less, Preferably, it is 200 micrometers or less. The length L1 of the optical semiconductor element 1 in the front-rear direction and / or the left-right direction is, for example, 0.2 mm or more, preferably 0.5 mm or more, and, for example, 1.5 mm or less, preferably 1 .2 mm or less. Further, the interval (interval in the front-rear direction and / or the left-right direction) L0 between the adjacent optical semiconductor elements 1 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1 mm or less, Preferably, it is 0.8 mm or less. Further, the pitch L2 of the adjacent optical semiconductor elements 1, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.25 mm or more, preferably 0.6 mm or more. For example, it is 2.5 mm or less, preferably 2 mm or less.
  1-2. 仮固定シート
 仮固定シート2は、支持シート6と、支持シート6の上に配置される感圧粘着剤層7とを備えている。
1-2. Temporary fixing sheet The temporary fixing sheet 2 includes a support sheet 6 and a pressure-sensitive adhesive layer 7 disposed on the support sheet 6.
  1-2-1. 支持シート
 支持シート6としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミックスシート、例えば、金属箔などが挙げられる。支持シート6の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
1-2-1. Support Sheet Examples of the support sheet 6 include polymer films such as a polyethylene film and a polyester film (PET), for example, a ceramic sheet, for example, a metal foil. The thickness of the support sheet 6 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2,000 μm or less, preferably 1,000 μm or less.
  1-2-2. 感圧粘着層
 感圧粘着層7は、支持シート6の上面全面に配置されている。
1-2-2. Pressure-sensitive adhesive layer The pressure-sensitive adhesive layer 7 is disposed on the entire upper surface of the support sheet 6.
 感圧粘着剤層7は、処理(例えば、紫外線の照射や加熱など)によって感圧粘着力が低減するように構成されている。 The pressure-sensitive adhesive layer 7 is configured such that the pressure-sensitive adhesive force is reduced by treatment (for example, irradiation of ultraviolet rays or heating).
 仮固定シート2は、具体的には、特開2014-168032号公報、特開2014-168033号公報、特開2014-168034号公報、特開2014-168035号公報、特開2014-168036号公報などに記載される仮固定シートが挙げられる。 Specifically, the temporary fixing sheet 2 is disclosed in JP 2014-168032 A, JP 2014-168033 A, JP 2014-168034 A, JP 2014-168035 A, JP 2014-168036 A. The temporarily fixed sheet described in the above.
 感圧粘着層7の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。 The thickness of the pressure-sensitive adhesive layer 7 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 1,000 μm or less, preferably 500 μm or less.
 そして、複数の光半導体素子1を仮固定シート2の上に仮固定するには、図1Aに示すように、複数の光半導体素子1の電極側面3を感圧粘着層7の上面に配置して(接触させて)、光半導体素子1を仮固定シート2に感圧粘着する。 In order to temporarily fix the plurality of optical semiconductor elements 1 on the temporary fixing sheet 2, the electrode side surfaces 3 of the plurality of optical semiconductor elements 1 are arranged on the upper surface of the pressure-sensitive adhesive layer 7 as shown in FIG. 1A. Then, the optical semiconductor element 1 is pressure-sensitively adhered to the temporary fixing sheet 2.
  2. 封止工程
 図4に示すように、封止工程82を、素子用意工程81の後に、実施する。
2. Sealing Step As shown in FIG. 4, the sealing step 82 is performed after the element preparation step 81.
 封止工程82では、図1Bに示すように、複数の光半導体素子1を、封止層10によって、封止する。 In the sealing step 82, the plurality of optical semiconductor elements 1 are sealed with the sealing layer 10 as shown in FIG. 1B.
 封止工程82では、まず、封止層10を用意する。 In the sealing step 82, first, the sealing layer 10 is prepared.
 封止層10を用意するには、例えば、図1Aに示すように、まず、剥離シート9と、剥離シート9の下面に配置される封止層10とを備える封止シート8とを用意する。封止シート8は、好ましくは、剥離シート9と、封止層10とからなる。 In order to prepare the sealing layer 10, for example, as shown in FIG. 1A, first, a sealing sheet 8 including a release sheet 9 and a sealing layer 10 disposed on the lower surface of the release sheet 9 is prepared. . The sealing sheet 8 is preferably composed of a release sheet 9 and a sealing layer 10.
 剥離シート9は、上記した支持シート6と同様の材料から、シート状に形成されている。剥離シート9の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。 The release sheet 9 is formed into a sheet shape from the same material as the support sheet 6 described above. The thickness of the release sheet 9 is, for example, 1 μm or more, preferably 10 μm or more, and for example, 2,000 μm or less, preferably 1,000 μm or less.
 封止層10は、剥離シート9の下面全面に形成される層状を有している。封止層10は、例えば、樹脂を含有する封止組成物から調製されている。 The sealing layer 10 has a layer shape formed on the entire lower surface of the release sheet 9. The sealing layer 10 is prepared from, for example, a sealing composition containing a resin.
 樹脂としては、例えば、2段反応硬化性樹脂、1段反応硬化性樹脂などの熱硬化性樹脂など、熱可塑性樹脂が挙げられる。好ましくは、熱硬化性樹脂が挙げられる。 Examples of the resin include thermoplastic resins such as thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin. Preferably, a thermosetting resin is used.
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の弾性率よりも小さい半固体状態または固体状態である。 The two-stage reaction curable resin has two reaction mechanisms. In the first stage reaction, the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained. To C-stage (complete curing). That is, the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions. The B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage. A semi-solid state or a solid state smaller than the elastic modulus of the state.
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂である。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。そのため、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂を含まない。 The first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction. Such a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state. It is a thermosetting resin that can be C-staged (completely cured) from the B-stage state when the reaction is resumed. That is, such a thermosetting resin is a thermosetting resin that can be in a B-stage state. Therefore, the first-stage reaction curable resin cannot be controlled to stop in the middle of the first-stage reaction, that is, cannot enter the B-stage state, and is changed from the A-stage state to the C-stage (completely cured). ) Does not contain thermosetting resin.
 要するに、熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂である。 In short, the thermosetting resin is a thermosetting resin that can be in a B-stage state.
 熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。 Examples of the thermosetting resin include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin. As a thermosetting resin, Preferably, a silicone resin and an epoxy resin are mentioned, More preferably, a silicone resin is mentioned.
 上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。 The above-mentioned thermosetting resin may be the same type or a plurality of types.
 また、封止組成物は、フィラーおよび/または蛍光体を含有することができる。 Moreover, the sealing composition can contain a filler and / or a phosphor.
 フィラーとしては、例えば、光拡散性粒子が挙げられる。光拡散性粒子としては、例えば、無機粒子、有機粒子などが挙げられる。 Examples of the filler include light diffusing particles. Examples of the light diffusing particles include inorganic particles and organic particles.
 無機粒子としては、例えば、シリカ(SiO)、タルク(Mg(Si10)(HO))、アルミナ(Al)、酸化ホウ素(B)、酸化カルシウム(CaO)、酸化亜鉛(ZnO)、酸化ストロンチウム(SrO)、酸化マグネシウム(MgO)、酸化ジルコニウム(ZrO)、酸化バリウム(BaO)、酸化アンチモン(Sb)などの酸化物、例えば、窒化アルミニウム(AlN)、窒化ケイ素(Si)などの窒化物などの無機物粒子(無機物)が挙げられる。また、無機粒子として、例えば、上記例示の無機物から調製される複合無機物粒子が挙げられ、具体的には、酸化物から調製される複合無機酸化物粒子(具体的には、ガラス粒子など)が挙げられる。 Examples of the inorganic particles include silica (SiO 2 ), talc (Mg 3 (Si 4 O 10 ) (HO) 2 ), alumina (Al 2 O 3 ), boron oxide (B 2 O 3 ), calcium oxide (CaO). ), Zinc oxide (ZnO), strontium oxide (SrO), magnesium oxide (MgO), zirconium oxide (ZrO 2 ), barium oxide (BaO), antimony oxide (Sb 2 O 3 ), and other oxides such as aluminum nitride Examples thereof include inorganic particles (inorganic materials) such as nitrides such as (AlN) and silicon nitride (Si 3 N 4 ). Examples of the inorganic particles include composite inorganic particles prepared from the inorganic materials exemplified above, and specifically, composite inorganic oxide particles (specifically, glass particles) prepared from an oxide. Can be mentioned.
 無機粒子として、好ましくは、シリカ粒子、ガラス粒子が挙げられる。 The inorganic particles are preferably silica particles and glass particles.
 有機粒子の有機材料としては、例えば、アクリル系樹脂、スチレン系樹脂、アクリル-スチレン系樹脂、シリコーン系樹脂、ポリカーボネート系樹脂、ベンゾグアナミン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂などが挙げられる。 Examples of organic materials for organic particles include acrylic resins, styrene resins, acrylic-styrene resins, silicone resins, polycarbonate resins, benzoguanamine resins, polyolefin resins, polyester resins, polyamide resins, and polyimide resins. Resin etc. are mentioned.
 フィラーは、単独使用または併用することができる。 ∙ Fillers can be used alone or in combination.
 フィラーの含有割合は、封止組成物に対して、例えば、1質量%以上、好ましくは、3質量%以上であり、また、例えば、80質量%以下、好ましくは、75質量%以下である。また、フィラーの熱硬化性樹脂100質量部に対する配合割合は、例えば、10質量部以上、好ましくは、30質量部以上であり、また、例えば、1,000質量部以下、好ましくは、200質量部以下である。 The content ratio of the filler is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the sealing composition. Moreover, the mixture ratio with respect to 100 mass parts of thermosetting resins of a filler is 10 mass parts or more, for example, Preferably, it is 30 mass parts or more, for example, is 1,000 mass parts or less, Preferably, it is 200 mass parts. It is as follows.
 蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。 Examples of the phosphor include a yellow phosphor capable of converting blue light into yellow light, and a red phosphor capable of converting blue light into red light.
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。 Examples of the yellow phosphor include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca-α-SiAlON.
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。 Examples of the red phosphor include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
 蛍光体として、好ましくは、黄色蛍光体、より好ましくは、ガーネット型蛍光体が挙げられる。 The phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。 Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。 The average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 μm or more, preferably 1 μm or more, and for example, 200 μm or less, preferably 100 μm or less. But there is.
 蛍光体は、単独使用または併用することができる。 Fluorescent substances can be used alone or in combination.
 蛍光体の配合割合は、封止組成物に対して、例えば、5質量%以上、好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、70質量%以下である。また、蛍光体の配合割合は、熱硬化性樹脂100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、例えば、90質量部以下、好ましくは、80質量部以下である。 The blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and, for example, 80% by mass or less, preferably 70% by mass or less with respect to the sealing composition. . The blending ratio of the phosphor is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 90 parts by mass or less, preferably 100 parts by mass of the thermosetting resin. 80 parts by mass or less.
 封止層10を調製するには、例えば、上記した熱硬化性樹脂と、必要により配合されるフィラーおよび/または蛍光体とを配合して、封止組成物のワニスを調製し、続いて、それを、剥離シート9の表面に塗布する。その後、封止組成物が熱硬化性樹脂を含有する場合には、封止組成物を、Bステージ化する(半硬化させる)。具体的には、封止組成物を、加熱する。 In order to prepare the sealing layer 10, for example, the above-described thermosetting resin and a filler and / or phosphor that are blended as necessary are blended to prepare a varnish of the sealing composition, It is applied to the surface of the release sheet 9. Thereafter, when the sealing composition contains a thermosetting resin, the sealing composition is B-staged (semi-cured). Specifically, the sealing composition is heated.
 加熱温度は、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。加熱時間は、例えば、5分以上、好ましくは、10分以上であり、また、例えば、20分以下、好ましくは、15分以下である。 The heating temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less. The heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
 封止層10の厚みは、例えば、200μm以上、好ましくは、300μm以上であり、また、例えば、1000μm以下、好ましくは、900μm以下である。 The thickness of the sealing layer 10 is, for example, 200 μm or more, preferably 300 μm or more, and, for example, 1000 μm or less, preferably 900 μm or less.
 これによって、図1Aに示すように、剥離シート9と、Bステージ状態(半硬化状態)の封止層10とを備える封止シート8を得る。 Thereby, as shown to FIG. 1A, the sealing sheet 8 provided with the peeling sheet 9 and the sealing layer 10 of a B stage state (semi-hardened state) is obtained.
 次いで、図1Aの矢印および図1Bに示すように、封止層10を、複数の光半導体素子1および仮固定シート2に対して、例えば、プレス、好ましくは、熱プレスする。熱プレスの温度および時間は、封止層10が複数の光半導体素子1を埋設できる条件に設定される。具体的には、熱プレスの温度は、60℃以上、好ましくは、70℃以上、より好ましくは、80℃以上であり、また、200℃以下、好ましくは、170℃以下、より好ましくは、150℃以下である。熱プレスの圧力は、例えば、0.01MPa以上、好ましくは、0.10MPa以上であり、また、例えば、10.00MPa以下、好ましくは、5.00MPa以下、より好ましくは、1.00MPa以下である。熱プレスの時間は、例えば、3分以上、好ましくは、5分以上であり、また、例えば、20分以下、好ましくは、15分以下である。 Next, as shown in the arrow of FIG. 1A and FIG. 1B, the sealing layer 10 is, for example, pressed, preferably hot pressed, against the plurality of optical semiconductor elements 1 and the temporary fixing sheet 2. The temperature and time of the hot press are set to conditions under which the sealing layer 10 can embed a plurality of optical semiconductor elements 1. Specifically, the temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and 200 ° C. or lower, preferably 170 ° C. or lower, more preferably 150 ° C. It is below ℃. The pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less, more preferably 1.00 MPa or less. . The time for hot pressing is, for example, 3 minutes or more, preferably 5 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
 これによって、光半導体素子1の対向面4と周側面5とが、封止層10によって被覆される。また、光半導体素子1から露出する感圧粘着層7の上面76も、封止層10によって被覆される。従って、封止層10は、感圧粘着剤層7の上面76に接触し、電極側面3と前後方向および左右方向において面一に形成される下面15と、下面15の上側、および、光半導体素子1の対向面4の上側に対向配置され、層側対向面の一例としての上面16とを有している。上面16は、剥離シート9によって保護されている。 Thereby, the facing surface 4 and the peripheral side surface 5 of the optical semiconductor element 1 are covered with the sealing layer 10. The upper surface 76 of the pressure-sensitive adhesive layer 7 exposed from the optical semiconductor element 1 is also covered with the sealing layer 10. Therefore, the sealing layer 10 is in contact with the upper surface 76 of the pressure-sensitive adhesive layer 7 and is formed to be flush with the electrode side surface 3 in the front-rear direction and the left-right direction, the upper side of the lower surface 15, and the optical semiconductor. The element 1 has an upper surface 16 that is opposed to the upper side of the facing surface 4 and is an example of a layer-side facing surface. The upper surface 16 is protected by the release sheet 9.
 その後、図1Bの矢印で示すように、剥離シート9を封止層10から剥離する。 Thereafter, the release sheet 9 is peeled from the sealing layer 10 as indicated by the arrow in FIG. 1B.
 これによって、封止層10の上面16は、上側に露出する露出面となる。 Thereby, the upper surface 16 of the sealing layer 10 becomes an exposed surface exposed to the upper side.
 これによって、複数の光半導体素子1と、複数の光半導体素子1を封止する封止層10とを備える封止光半導体素子11を、仮固定シート2に仮固定された状態で、得る。 Thus, a sealed optical semiconductor element 11 including a plurality of optical semiconductor elements 1 and a sealing layer 10 that seals the plurality of optical semiconductor elements 1 is obtained in a state of being temporarily fixed to the temporary fixing sheet 2.
 その後、封止組成物が熱硬化性樹脂を含有する場合には、封止層10をCステージ化する(完全硬化させる)。具体的には、封止層10を、加熱する。より具体的には、加熱温度は、例えば、60℃以上、好ましくは、80℃以上、より好ましくは、100℃以上であり、また、例えば、170℃以下、好ましくは、150℃以下である。加熱時間は、例えば、5分以上、好ましくは、10分以上、より好ましくは、30分以上であり、また、例えば、10時間以下、好ましくは、4時間以下、より好ましくは、2時間以下である。 Thereafter, when the sealing composition contains a thermosetting resin, the sealing layer 10 is made to be C-staged (completely cured). Specifically, the sealing layer 10 is heated. More specifically, the heating temperature is, for example, 60 ° C. or more, preferably 80 ° C. or more, more preferably 100 ° C. or more, and for example, 170 ° C. or less, preferably 150 ° C. or less. The heating time is, for example, 5 minutes or more, preferably 10 minutes or more, more preferably 30 minutes or more, and for example, 10 hours or less, preferably 4 hours or less, more preferably 2 hours or less. is there.
  3. 第1転写工程
 図4に示すように、第1転写工程83を、封止工程82の後に実施する。
3. First Transfer Step As shown in FIG. 4, the first transfer step 83 is performed after the sealing step 82.
 図1Cに示すように、第1転写工程83では、封止光半導体素子11を、仮固定シート2から感圧粘着シートの一例としての第1転写シート21に転写する。 As shown in FIG. 1C, in the first transfer step 83, the sealed optical semiconductor element 11 is transferred from the temporarily fixed sheet 2 to a first transfer sheet 21 as an example of a pressure-sensitive adhesive sheet.
 第1転写シート21は、面方向(前後方向および左右方向)に延伸するように構成され、感圧粘着(タック)性を有する延伸シートである。 The first transfer sheet 21 is a stretched sheet configured to stretch in the surface direction (front-rear direction and left-right direction) and has pressure-sensitive adhesiveness (tack).
 具体的には、第1転写シート21は、活性エネルギー線の照射によって感圧粘着力が低減するように構成される感圧粘着剤組成物からシート状に形成されている。第1転写シート21は、表面としての下面45と、下面45の上側に対向配置され、下面45に対して実質的な平行する上面46とを有している。 Specifically, the first transfer sheet 21 is formed in a sheet shape from a pressure-sensitive adhesive composition configured to reduce the pressure-sensitive adhesive force by irradiation with active energy rays. The first transfer sheet 21 has a lower surface 45 as a surface, and an upper surface 46 that is disposed to face the upper surface of the lower surface 45 and is substantially parallel to the lower surface 45.
  3-1. 感圧粘着剤組成物
 感圧粘着剤組成物は、活性エネルギー線硬化型感圧粘着剤組成物である。
3-1. Pressure-sensitive adhesive composition The pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive composition.
  3-2.活性エネルギー線硬化型感圧粘着剤組成物
 活性エネルギー線硬化型感圧粘着剤組成物は、官能基aを含有するモノマーA、炭素数8以上17以下のアルキル基を含有する(メタ)アクリレートモノマーを含有するモノマーB、および、官能基aと反応することができる官能基cと重合性炭素-炭素二重結合基との双方の基を含有するモノマーC、に由来する構造単位を含有するポリマーから調製されている。また、モノマーBは、モノマーAとともに主鎖を構成し、その含有割合が、モノマーAおよびモノマーBの総量に対して、50質量%以上である。さらに、ポリマーは、官能基aの一部が官能基cと反応して結合することにより、側鎖に重合性炭素-炭素二重結合を含有している。
3-2. Active energy ray curable pressure sensitive adhesive composition Active energy ray curable pressure sensitive adhesive composition is a monomer A containing a functional group a and a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms. And a polymer containing structural units derived from monomer B containing monomer and monomer C containing both a functional group c capable of reacting with functional group a and a polymerizable carbon-carbon double bond group It is prepared from. Moreover, the monomer B comprises a main chain with the monomer A, and the content rate is 50 mass% or more with respect to the total amount of the monomer A and the monomer B. Further, the polymer contains a polymerizable carbon-carbon double bond in the side chain by a part of the functional group a reacting and bonding with the functional group c.
 官能基aとしては、例えば、カルボキシル基、エポキシ基、アジリジル基、ヒドロキシル基、イソシアネート基などが挙げられる。好ましくは、ヒドロキシル基が挙げられる。 Examples of the functional group a include a carboxyl group, an epoxy group, an aziridyl group, a hydroxyl group, and an isocyanate group. Preferably, a hydroxyl group is used.
 モノマーAは、後述するモノマーBとともにポリマーの主鎖を構成するビニルモノマーである。モノマーAとしては、カルボキシル基を含有するカルボキシル基含有ビニルモノマー(例えば、(メタ)アクリル酸など)、グリシジル基を含有するグリシジル基含有ビニルモノマー(例えば、(メタ)アクリル酸グリシジルなど)、ヒドロキシル基を含有するヒドロキシル基含有ビニルモノマー(例えば、2-ヒドロキシエチル(メタ)アクリレートなど)、イソシアネート基を含有するイソシアネート基含有ビニルモノマー(例えば、2-イソシアナトエチル(メタ)アクリレートなど)などが挙げられる。これらは、単独使用または併用することができる。好ましくは、ヒドロキシル基含有ビニルモノマーが挙げられる。 Monomer A is a vinyl monomer that constitutes the main chain of the polymer together with monomer B described later. As the monomer A, a carboxyl group-containing vinyl monomer (such as (meth) acrylic acid) containing a carboxyl group, a glycidyl group-containing vinyl monomer containing a glycidyl group (eg glycidyl (meth) acrylate), a hydroxyl group Hydroxyl group-containing vinyl monomers containing, for example, 2-hydroxyethyl (meth) acrylate, etc., isocyanate group-containing vinyl monomers containing isocyanate groups, such as 2-isocyanatoethyl (meth) acrylate, etc. . These can be used alone or in combination. Preferably, a hydroxyl group-containing vinyl monomer is used.
 モノマーAの配合割合は、モノマーAおよびモノマーBに対して、例えば、50質量%未満である。 The blending ratio of monomer A is, for example, less than 50% by mass with respect to monomer A and monomer B.
 炭素数8以上17以下のアルキル基としては、例えば、オクチル、2-エチルヘキシル、イソオクチル、デシル、ウンデシル、ドデシル(ラウリル)、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、1-メチルノニル、1-エチルデシル、1,2-ジメチルオクチル、1,2-ジエチルヘキシルなどの直鎖または分岐のアルキル基が挙げられる。好ましくは、ドデシル、2-エチルヘキシルが挙げられる。 Examples of the alkyl group having 8 to 17 carbon atoms include octyl, 2-ethylhexyl, isooctyl, decyl, undecyl, dodecyl (lauryl), tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, 1-methylnonyl, 1-ethyldecyl, 1 , 2-dimethyloctyl, 1,2-diethylhexyl, and the like. Preferably, dodecyl and 2-ethylhexyl are used.
 モノマーBにおける(メタ)アクリレートモノマーとしては、例えば、ドデシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられる。 Examples of the (meth) acrylate monomer in monomer B include dodecyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
 官能基cとしては、例えば、上記した官能基aと同じのものが挙げられる。官能基aと官能基cとの組合せとしては、カルボキシル基とエポキシ基との組合せ、カルボキシル基とアジリジル基との組合せ、ヒドロキシル基とイソシアネート基との組合せなどが挙げられる。好ましくは、ヒドロキシル基とイソシアネート基との組合せが挙げられる。 Examples of the functional group c include the same ones as the functional group a described above. Examples of the combination of the functional group a and the functional group c include a combination of a carboxyl group and an epoxy group, a combination of a carboxyl group and an aziridyl group, and a combination of a hydroxyl group and an isocyanate group. Preferably, the combination of a hydroxyl group and an isocyanate group is mentioned.
 モノマーCとしては、例えば、上記したモノマーAと同じのものが挙げられ、好ましくは、イソシアネート基含有ビニルモノマーが挙げられる。 Examples of the monomer C include the same monomers as the monomer A described above, and preferably an isocyanate group-containing vinyl monomer.
 モノマーCの配合割合は、重合性炭素-炭素二重結合の数が、ポリマーの全ての側鎖の数に対して、例えば、5%以上、好ましくは、7%以上、また、例えば、20%以下、好ましくは、18%以下となるように、調整される。 The blending ratio of the monomer C is such that the number of polymerizable carbon-carbon double bonds is 5% or more, preferably 7% or more, for example, 20%, based on the number of all side chains of the polymer. Hereinafter, it is preferably adjusted to be 18% or less.
 また、ポリマーは、例えば、モノマーA~Cと共重合できる共重合性モノマーに由来する構造単位を含有することができる。共重合性モノマーとしては、例えば、(メタ)アクリロイルモルフォリンなどの窒素含有(メタ)アクリロイルなどが挙げられる。 In addition, the polymer can contain structural units derived from a copolymerizable monomer that can be copolymerized with the monomers A to C, for example. Examples of the copolymerizable monomer include nitrogen-containing (meth) acryloyl such as (meth) acryloylmorpholine.
 共重合性モノマーの配合割合は、モノマー成分に対して、例えば、1質量%以上、好ましくは、5質量%以上であり、また、例えば、25質量%以下、好ましくは、10質量%以下である。共重合性モノマーの配合割合は、モノマーAおよびモノマーBの総量100質量部に対して、例えば、1質量部以上、好ましくは、5質量部以上であり、また、例えば、30質量部以下、好ましくは、15質量部以下である。 The blending ratio of the copolymerizable monomer is, for example, 1% by mass or more, preferably 5% by mass or more, and for example, 25% by mass or less, preferably 10% by mass or less with respect to the monomer component. . The blending ratio of the copolymerizable monomer is, for example, 1 part by mass or more, preferably 5 parts by mass or more, and, for example, 30 parts by mass or less, preferably 100 parts by mass of the total amount of monomer A and monomer B. Is 15 parts by mass or less.
 ポリマーを調製するには、まず、モノマーAおよびモノマーBを配合して、熱重合開始剤などを用いる熱重合方法によって、それらを共重合(ラジカル重合)させて、共重合体(主鎖)を得る。その後、モノマーCを、共重合体に配合して、モノマーA(の官能基a)の一部とモノマーC(官能基c)との反応により、モノマーCを共重合体に対して重合(グラフト重合)させる。これにより、側鎖にモノマーCが導入されたポリマーを得る。なお、ポリマーが、共重合性モノマーに由来する構造単位を含有する場合には、共重合性モノマーを、モノマーAおよびモノマーBとともに配合して、共重合体(主鎖)を得る。モノマーCを配合する際に、必要により、ジラウリン酸ジブチルスズIVなどの触媒を適宜の割合で配合する。 In order to prepare a polymer, first, monomer A and monomer B are blended, and they are copolymerized (radical polymerization) by a thermal polymerization method using a thermal polymerization initiator or the like to form a copolymer (main chain). obtain. Thereafter, the monomer C is blended into the copolymer, and the monomer C is polymerized (grafted) to the copolymer by a reaction between a part of the monomer A (functional group a) and the monomer C (functional group c). Polymerization). As a result, a polymer having the monomer C introduced into the side chain is obtained. In addition, when a polymer contains the structural unit derived from a copolymerizable monomer, a copolymerizable monomer is mix | blended with the monomer A and the monomer B, and a copolymer (main chain) is obtained. When blending the monomer C, a catalyst such as dibutyltin dilaurate IV is blended at an appropriate ratio as necessary.
 次いで、ポリマーに光重合開始剤を配合する。 Next, a photopolymerization initiator is blended into the polymer.
 光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトンなどの芳香族ケトン化合物などが挙げられる。光重合開始剤の配合割合は、ポリマー100質量部に対して、例えば、0.1質量部以上、好ましくは、0.5質量部以上であり、また、例えば、15質量部以下、好ましくは、10質量部以下である。 Examples of the photopolymerization initiator include aromatic ketone compounds such as 1-hydroxycyclohexyl phenyl ketone. The blending ratio of the photopolymerization initiator is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, for example, 15 parts by mass or less, preferably 100 parts by mass of the polymer. It is 10 parts by mass or less.
 これにより、活性エネルギー線硬化型感圧粘着剤組成物が調製される。 Thereby, an active energy ray-curable pressure-sensitive adhesive composition is prepared.
 活性エネルギー線硬化型感圧粘着剤組成物は、好ましくは、炭素数4以上30以下の(メタ)アクリレートと、ヒドロキシル基含有ビニルモノマーとを含有する主鎖を含有し、イソシアネート基含有ビニルモノマーのイソシアネート基と、ヒドロキシル基含有ビニルモノマーのヒドロキシル基とを反応させることにより、側鎖に重合性炭素-炭素二重結合基が導入されている。 The active energy ray-curable pressure-sensitive adhesive composition preferably contains a main chain containing a (meth) acrylate having 4 to 30 carbon atoms and a hydroxyl group-containing vinyl monomer, and is an isocyanate group-containing vinyl monomer. A polymerizable carbon-carbon double bond group is introduced into the side chain by reacting the isocyanate group with the hydroxyl group of the hydroxyl group-containing vinyl monomer.
 また、活性エネルギー線硬化型感圧粘着剤組成物は、好ましくは、官能基aを含有するモノマーA、炭素数8以上17以下のアルキル基を含有する(メタ)アクリレートモノマーを含有するモノマーB、および、モノマーBが有する(メタ)アクリロイル基と同じ種類の(メタ)アクリロイル基と、官能基aと反応することができる官能基cとの双方の基を含有するモノマーC、に由来する構造単位を含有するポリマーから調製されている。 また、好ましくは、活性エネルギー線硬化型感圧粘着剤組成物は、好ましくは、官能基aを含有するモノマーA、炭素数8以上17以下のアルキル基を含有する(メタ)アクリレートモノマーを含有するモノマーB、モノマーBが有する(メタ)アクリロイル基と同じ種類の(メタ)アクリロイル基と、官能基aと反応することができる官能基cとの双方の基を含有するモノマーC、および、共重合性モノマーに由来する構造単位を含有するポリマーから調製されている。モノマーCにおける(メタ)アクリロイル基は、具体的には、モノマーBがメタクリロイル基を含有する場合には、メタクリロイル基を含有し、モノマーBがアクリロイル基を含有する場合には、アクリロイル基を含有する。より好ましくは、モノマーA、モノマーBおよびモノマーCのいずれもが、メタクリロイル基を含有する。 The active energy ray-curable pressure-sensitive adhesive composition is preferably a monomer A containing a functional group a, a monomer B containing a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms, And a structural unit derived from the monomer C containing both the (meth) acryloyl group of the same type as the (meth) acryloyl group of the monomer B and the functional group c capable of reacting with the functional group a It is prepared from a polymer containing The active energy ray-curable pressure-sensitive adhesive composition preferably contains a monomer A containing a functional group a and a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms. Monomer B, monomer C containing both a (meth) acryloyl group of the same type as the (meth) acryloyl group possessed by monomer B and functional group c capable of reacting with functional group a, and copolymerization It is prepared from a polymer containing a structural unit derived from a functional monomer. Specifically, the (meth) acryloyl group in the monomer C contains a methacryloyl group when the monomer B contains a methacryloyl group, and contains an acryloyl group when the monomer B contains an acryloyl group. . More preferably, all of monomer A, monomer B and monomer C contain a methacryloyl group.
 感圧粘着剤組成物は、例えば、溶媒を含む粘着剤溶液として調製される。 The pressure-sensitive adhesive composition is prepared, for example, as an adhesive solution containing a solvent.
 なお、活性エネルギー線硬化型感圧粘着剤組成物は、例えば、特開2012-136678号公報、特開2012-136679号公報、特開2010-53346号公報などに開示される放射線硬化型粘着剤組成物である。 The active energy ray-curable pressure-sensitive adhesive composition is, for example, a radiation-curable pressure-sensitive adhesive disclosed in JP2012-136678A, JP2012-136679A, JP2010-53346A, and the like. It is a composition.
  3-3. 感圧粘着剤組成物および第1転写シートの物性
 感圧粘着剤組成物のGPC測定に基づく標準ポリスチレン換算の重量平均分子量は、例えば、1.0×10以上、好ましくは、5.0×10以上であり、また、3.0×10以下である。
3-3. Physical Properties of Pressure Sensitive Adhesive Composition and First Transfer Sheet The weight average molecular weight in terms of standard polystyrene based on GPC measurement of the pressure sensitive adhesive composition is, for example, 1.0 × 10 4 or more, preferably 5.0 ×. 10 4 or more, and 3.0 × 10 5 or less.
 また、感圧粘着剤組成物のGPC測定に基づく標準ポリスチレン換算の分子量3.0×10以下の低分子量成分の、感圧粘着剤組成物に対する含有割合は、例えば、12質量%以下、好ましくは、10.0%質量以下であり、また、例えば、2質量%以上である。 The content ratio of the low molecular weight component having a molecular weight of 3.0 × 10 4 or less in terms of standard polystyrene based on GPC measurement of the pressure sensitive adhesive composition to the pressure sensitive adhesive composition is, for example, 12% by mass or less, preferably Is 10.0% by mass or less, and for example, 2% by mass or more.
 GPC測定の条件は、後の実施例で詳述される。 The conditions for GPC measurement will be described in detail in later examples.
 低分子量成分の含有割合が上記上限以下であれば、後述する第2転写工程86(図2F参照)において、感圧粘着剤組成物が封止層10の上面16に付着することをより一層抑制することができる。 If the content ratio of the low molecular weight component is less than or equal to the above upper limit, it is further suppressed that the pressure-sensitive adhesive composition adheres to the upper surface 16 of the sealing layer 10 in the second transfer step 86 (see FIG. 2F) described later. can do.
 第1転写シート21のガラス板に対する感圧粘着力(25℃、活性エネルギー線の照射前)F1は、例えば、1.5N/cm以上、好ましくは、2N/cm以上であり、また、例えば、3N/cm以下である。 Pressure sensitive strength for a glass plate of the first transfer sheet 21 (25 ° C., before irradiation of an active energy ray) is F1, for example, 1.5 N / cm 2 or more, or preferably, 2N / cm 2 or more, For example, it is 3N / cm 2 or less.
 また、活性エネルギー線の照射後の第1転写シート21のガラス板に対する感圧粘着力(25℃)F2は、具体的には、35mJ/cmの紫外線を第1転写シート21に対して照射した後のガラス板に対する感圧粘着力F2は、例えば、0.05N/cm以上、好ましくは、0.1N/cm以上であり、また、例えば、0.4N/cm以下である。 Further, the pressure-sensitive adhesive force (25 ° C.) F2 to the glass plate of the first transfer sheet 21 after irradiation with the active energy ray is specifically irradiated with 35 mJ / cm 2 of ultraviolet rays to the first transfer sheet 21. the pressure-sensitive adhesive force F2 to the glass plate after, for example, 0.05 N / cm 2 or more, preferably at most 0.1 N / cm 2 or more, and is, for example, is 0.4 N / cm 2 or less.
 F1のF2に対する比(F1/F2)は、例えば、1.25以上、好ましくは、5以上であり、また、例えば、60以下、好ましくは、40以下である。 The ratio of F1 to F2 (F1 / F2) is, for example, 1.25 or more, preferably 5 or more, and for example, 60 or less, preferably 40 or less.
  3-4.転写方法
 封止光半導体素子11を、仮固定シート2から第1転写シート21に転写するには、図1Cが参照されるように、第1転写シート21を、封止光半導体素子11の上側に配置し、続いて、第1転写シート21の下面45と、封止層10の上面16とを感圧接触させる。次いで、図1Cの仮想線および仮想線矢印で示すように、封止層10の下面15と、光半導体素子1の電極側面3とを、仮固定シート2の感圧粘着剤層7の上面76から剥離する。
3-4. Transfer Method To transfer the sealed optical semiconductor element 11 from the temporary fixing sheet 2 to the first transfer sheet 21, as shown in FIG. 1C, the first transfer sheet 21 is placed on the upper side of the sealed optical semiconductor element 11. Then, the lower surface 45 of the first transfer sheet 21 and the upper surface 16 of the sealing layer 10 are brought into pressure-sensitive contact. 1C, the lower surface 15 of the sealing layer 10 and the electrode side surface 3 of the optical semiconductor element 1 are connected to the upper surface 76 of the pressure-sensitive adhesive layer 7 of the temporary fixing sheet 2. Peel from.
 第1転写工程83によって、光半導体素子1の電極側面3と、封止層10の下面15とが下側に露出する。一方、封止層10の上面16が、第1転写シート21により感圧粘着される。 In the first transfer process 83, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are exposed to the lower side. On the other hand, the upper surface 16 of the sealing layer 10 is pressure-sensitively adhered by the first transfer sheet 21.
  4. 切断工程84
 図4に示すように、切断工程84を、第1転写工程83の後に、実施する。
4). Cutting process 84
As shown in FIG. 4, the cutting step 84 is performed after the first transfer step 83.
 図1Dに示すように、切断工程84では、封止層10を、複数の光半導体素子1のそれぞれに対応するように、切断する。また、封止層10を、第1転写シート21によって支持しながら、切断する。なお、切断工程84において、第1転写シート21は、切断されない。 As shown in FIG. 1D, in the cutting step 84, the sealing layer 10 is cut so as to correspond to each of the plurality of optical semiconductor elements 1. Further, the sealing layer 10 is cut while being supported by the first transfer sheet 21. In the cutting step 84, the first transfer sheet 21 is not cut.
 封止層10の切断では、例えば、円盤状のダイシングソー(ダイシングブレード)12(図1D参照)を用いるダイシング装置、カッターを用いるカッティング装置、レーザー照射装置などの切断装置が用いられる。好ましくは、ダイシング装置が用いられる。 For cutting the sealing layer 10, for example, a cutting device such as a dicing device using a disc-shaped dicing saw (dicing blade) 12 (see FIG. 1D), a cutting device using a cutter, or a laser irradiation device is used. Preferably, a dicing apparatus is used.
 封止層10の切断によって、封止層10には、切断面14が、封止層10の前後方向および左右方向に沿って形成される。 By cutting the sealing layer 10, a cut surface 14 is formed in the sealing layer 10 along the front-rear direction and the left-right direction of the sealing layer 10.
 前後方向に対向する切断面14間の間隔L4、および、左右方向に対向する切断面14間の間隔L4は、上記した光半導体素子1のピッチL2と同一あるいは近似しており、具体的には、前後方向長さおよび左右方向長さが、例えば、0.25mm以上、好ましくは、0.6mm以上であり、また、例えば、2.5mm以下、好ましくは、2mm以下である。 An interval L4 between the cutting surfaces 14 facing in the front-rear direction and an interval L4 between the cutting surfaces 14 facing in the left-right direction are the same as or approximate to the pitch L2 of the optical semiconductor element 1 described above. The length in the front-rear direction and the length in the left-right direction are, for example, 0.25 mm or more, preferably 0.6 mm or more, and, for example, 2.5 mm or less, preferably 2 mm or less.
  5. 延伸工程
 延伸工程85を、図4に示すように、切断工程84の後に、実施する。
5). Stretching Step The stretching step 85 is performed after the cutting step 84 as shown in FIG.
 延伸工程85では、図1Eに示すように、第1転写シート21の周端縁(具体的には、前端縁および後端縁と、右端縁および左端縁)を、外側(つまり、前後方向外側および左右方向外側)に延伸する。 In the stretching step 85, as shown in FIG. 1E, the peripheral edge of the first transfer sheet 21 (specifically, the front edge and the rear edge, and the right edge and the left edge) are arranged outside (that is, outside in the front-rear direction). And laterally outward).
 これによって、切断面14間に間隔18が形成される。つまり、複数の封止光半導体素子11のそれぞれは、互いに間隔18を隔てて、第1転写シート21に感圧粘着されている。隣接する封止光半導体素子11を隔てる間隔18の幅W1は、例えば、200μm以上、好ましくは、500μm以上であり、また、例えば、2000μm以下、好ましくは、1000μm以下である。また、封止光半導体素子11の幅W2に対する、上記した間隔18の幅W1の比(W1/W2)は、例えば、0.08以上、好ましくは、0.1以上であり、また、例えば、8以下、好ましくは、3以下である。なお、封止光半導体素子11の幅W2は、上記した切断面14間の間隔L4と同一である。 Thereby, a space 18 is formed between the cut surfaces 14. That is, each of the plurality of sealed optical semiconductor elements 11 is pressure-sensitively adhered to the first transfer sheet 21 with an interval 18 therebetween. The width W1 of the interval 18 separating the adjacent sealed optical semiconductor elements 11 is, for example, 200 μm or more, preferably 500 μm or more, and, for example, 2000 μm or less, preferably 1000 μm or less. Further, the ratio (W1 / W2) of the width W1 of the interval 18 to the width W2 of the sealed optical semiconductor element 11 is, for example, 0.08 or more, preferably 0.1 or more. 8 or less, preferably 3 or less. The width W2 of the sealed optical semiconductor element 11 is the same as the interval L4 between the cut surfaces 14 described above.
  6. 第2転写工程
 第2転写工程86を、図4に示すように、延伸工程85の後に、実施する。
6). Second Transfer Step The second transfer step 86 is performed after the stretching step 85 as shown in FIG.
 図2Fに示すように、第2転写工程86では、複数の封止光半導体素子11を、第1転写シート21から第2転写シート22に転写する。第2転写シート22としては、公知の転写シートが挙げられ、例えば、市販品が用いられ、具体的には、SPVシリーズ(日東電工社製)などが用いられる。 As shown in FIG. 2F, in the second transfer step 86, the plurality of sealed optical semiconductor elements 11 are transferred from the first transfer sheet 21 to the second transfer sheet 22. Examples of the second transfer sheet 22 include known transfer sheets. For example, commercially available products are used, and specifically, an SPV series (manufactured by Nitto Denko Corporation) is used.
 複数の封止光半導体素子11を第1転写シート21から第2転写シート22に転写するには、まず、図1Eの矢印で示すように、第1転写シート21に対して、活性エネルギー線を照射する。より具体的には、第1転写シート21の上側に設けられた線源13および/または下側に設けられた線源(図示せず)から、第1転写シート21に対して、活性エネルギー線を照射する。好ましくは、第1転写シート21の上側に設けられた線源13から、第1転写シート21に対して活性エネルギー線を照射する。 In order to transfer the plurality of encapsulated optical semiconductor elements 11 from the first transfer sheet 21 to the second transfer sheet 22, first, as shown by arrows in FIG. 1E, active energy rays are applied to the first transfer sheet 21. Irradiate. More specifically, an active energy ray is applied to the first transfer sheet 21 from a radiation source 13 provided on the upper side of the first transfer sheet 21 and / or a radiation source (not shown) provided on the lower side. Irradiate. Preferably, an active energy ray is applied to the first transfer sheet 21 from the radiation source 13 provided on the upper side of the first transfer sheet 21.
 活性エネルギー線としては、紫外線、電子線などが挙げられる。好ましくは、紫外線が挙げられる。 Activating energy rays include ultraviolet rays and electron beams. Preferably, ultraviolet rays are used.
 線源としては、例えば、ケミカルランプ、エキシマレーザ、ブラックライト、水銀アーク、炭素アーク、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプなどの照射装置が挙げられる。 Examples of the radiation source include irradiation devices such as chemical lamps, excimer lasers, black lights, mercury arcs, carbon arcs, low pressure mercury lamps, medium pressure mercury lamps, high pressure mercury lamps, ultrahigh pressure mercury lamps, and metal halide lamps.
 照射量は、第1転写シート21の封止光半導体素子11(具体的には、封止層10の上面16)に対する感圧粘着力が十分に低下するように設定される。具体的には、照射量は、例えば、10mJ/cm、好ましくは、20mJ/cm以上であり、また、例えば、100mJ/cmである。 The irradiation amount is set so that the pressure-sensitive adhesive force of the first transfer sheet 21 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is sufficiently reduced. Specifically, the irradiation amount is, for example, 10 mJ / cm 2 , preferably 20 mJ / cm 2 or more, and, for example, 100 mJ / cm 2 .
 活性エネルギー線を第1転写シート21に照射することによって、第1転写シート21の封止光半導体素子11(具体的には、封止層10の上面16)に対する感圧粘着力が低減する。具体的には、第1転写シート21の表面タック性が低減、好ましくは、なくなる。 By irradiating the first transfer sheet 21 with active energy rays, the pressure-sensitive adhesive force of the first transfer sheet 21 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is reduced. Specifically, the surface tackiness of the first transfer sheet 21 is reduced, preferably eliminated.
 次いで、図2Fが参照されるように、第2転写シート22を複数の封止光半導体素子11の下側に配置し、続いて、第2転写シート22の上面と、封止層10の下面15、および、光半導体素子1の電極側面3とを接触(感圧粘着)させる。次いで、図2Fの仮想線および仮想線矢印で示すように、封止層10の上面16を、第1転写シート21の下面45から剥離する(剥離工程)。 Next, as illustrated in FIG. 2F, the second transfer sheet 22 is disposed below the plurality of sealed optical semiconductor elements 11, and then the upper surface of the second transfer sheet 22 and the lower surface of the sealing layer 10. 15 and the electrode side surface 3 of the optical semiconductor element 1 are brought into contact (pressure-sensitive adhesion). 2F, the upper surface 16 of the sealing layer 10 is peeled from the lower surface 45 of the first transfer sheet 21 (peeling step).
 この第2転写工程86によって、光半導体素子1の電極側面3と、封止層10の下面15とが、第2転写シート22によって被覆(感圧粘着)される。一方、封止層10の上面16が、上側に露出する。 In the second transfer step 86, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered (pressure-sensitive adhesive) with the second transfer sheet 22. On the other hand, the upper surface 16 of the sealing layer 10 is exposed to the upper side.
 第2転写工程86では、複数の封止光半導体素子11は、間隔18が維持されるように、第1転写シート21から第2転写シート22に転写される。 In the second transfer step 86, the plurality of sealed optical semiconductor elements 11 are transferred from the first transfer sheet 21 to the second transfer sheet 22 so that the interval 18 is maintained.
  7. 検査・選別工程
 検査・選別工程87を、図4に示すように、第2転写工程86の後に、実施する。
7). Inspection / Selection Process An inspection / selection process 87 is performed after the second transfer process 86 as shown in FIG.
 検査・選別工程87では、複数の封止光半導体素子11のそれぞれが、所望の発光波長および/または発光効率を有している良品であるか、または、所望の発光波長および/または発光効率を有していない不良品であるかを、例えば、テスターなどを用いて検査する。 In the inspection / sorting process 87, each of the plurality of sealed optical semiconductor elements 11 is a non-defective product having a desired emission wavelength and / or emission efficiency, or has a desired emission wavelength and / or emission efficiency. For example, a tester or the like is used to inspect whether the product is defective.
 その後、図示しないが、不良品と判別された封止光半導体素子11を、除去する。具体的には、不良品と判別された封止光半導体素子11を廃棄する。一方、良品とされた封止光半導体素子11のみが残る(すなわち、選別される)。 Thereafter, although not shown, the sealed optical semiconductor element 11 determined to be defective is removed. Specifically, the sealed optical semiconductor element 11 determined as a defective product is discarded. On the other hand, only the sealed optical semiconductor element 11 that is a good product remains (that is, is selected).
  8. 第3転写工程
 第3転写工程88を、図4に示すように、検査・選別工程87の後に、実施する。
8). Third Transfer Step The third transfer step 88 is performed after the inspection / sorting step 87 as shown in FIG.
 図2Gに示すように、第3転写工程88では、選別された封止光半導体素子11を第3転写シート23に載置する。第3転写シート23としては、公知の転写シートが挙げられ、具体的には、第2転写シート22と同様の転写シートが挙げられる。 As shown in FIG. 2G, in the third transfer step 88, the selected sealed optical semiconductor element 11 is placed on the third transfer sheet 23. Examples of the third transfer sheet 23 include known transfer sheets, and specifically, a transfer sheet similar to the second transfer sheet 22 may be used.
 封止光半導体素子11を第3転写シート23に転写するには、選別された封止光半導体素子11を第3転写シート23に載せ替える。つまり、第3転写工程88において、光半導体素子1の電極側面3と、封止層10の下面15とは、第3転写シート23の上面によって被覆される。また、第3転写工程88において、封止層10の上面16は、上側に露出している。 In order to transfer the sealed optical semiconductor element 11 to the third transfer sheet 23, the selected sealed optical semiconductor element 11 is transferred to the third transfer sheet 23. That is, in the third transfer step 88, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered with the upper surface of the third transfer sheet 23. In the third transfer process 88, the upper surface 16 of the sealing layer 10 is exposed to the upper side.
 具体的には、特開2014-168032号公報、特開2014-168033号公報、特開2014-168034号公報、特開2014-168035号公報、特開2014-168036号公報などに記載される、押圧部材および吸引部材を備えるピックアップ装置などを用いて、封止光半導体素子11を第3転写シート23に載置する。複数の封止光半導体素子11は、第3転写シート23の上において、再度、前後方向および左右方向に間隔L5を隔てて、整列配置される。間隔L5は、例えば、0.2mm以上、好ましくは、0.4mm以上であり、また、例えば、1mm以下、好ましくは、0.8mm以下である。 Specifically, it is described in JP 2014-168032 A, JP 2014-168033 A, JP 2014-168034 A, JP 2014-168035 A, JP 2014-168036 A, etc. The sealing optical semiconductor element 11 is placed on the third transfer sheet 23 using a pickup device including a pressing member and a suction member. The plurality of sealed optical semiconductor elements 11 are aligned and arranged again on the third transfer sheet 23 with a distance L5 in the front-rear direction and the left-right direction. The interval L5 is, for example, 0.2 mm or more, preferably 0.4 mm or more, and for example, 1 mm or less, preferably 0.8 mm or less.
  9. 第4転写工程
 第4転写工程89を、選別された貼着光半導体素子11を第4転写シート24に移すために、図4に示すように、第3転写工程88の後に、実施する。
9. Fourth Transfer Step The fourth transfer step 89 is performed after the third transfer step 88 as shown in FIG. 4 in order to transfer the selected adhered optical semiconductor element 11 to the fourth transfer sheet 24.
 第4転写工程89では、図2Hに示すように、複数の封止光半導体素子11を第3転写シート23から第4転写シート24に転写する。 In the fourth transfer step 89, as shown in FIG. 2H, the plurality of sealed optical semiconductor elements 11 are transferred from the third transfer sheet 23 to the fourth transfer sheet 24.
 第4転写シート24としては、公知の転写シートが挙げられ、具体的には、第2転写シート22と同様の転写シートが挙げられる。なお、第4転写シート24は、後述する支持部19(仮想線参照)を備えていない。 Examples of the fourth transfer sheet 24 include known transfer sheets, and specifically, a transfer sheet similar to the second transfer sheet 22 may be used. In addition, the 4th transfer sheet 24 is not provided with the support part 19 (refer virtual line) mentioned later.
 第4転写工程89を、上記した第3転写工程88と同様の方法により、実施する。 The fourth transfer step 89 is performed by the same method as the third transfer step 88 described above.
  10. 第5転写工程
 第5転写工程90を、第4転写シート24に移された貼着光半導体素子11を上下反転させるために、図4に示すように、第4転写工程89の後に、実施する。
10. Fifth Transfer Step The fifth transfer step 90 is performed after the fourth transfer step 89 as shown in FIG. 4 in order to invert the bonded optical semiconductor element 11 transferred to the fourth transfer sheet 24. .
 第5転写工程90を、図3Iに示すように、複数の封止光半導体素子11を第4転写シート24から第5転写シート25に転写する。 In the fifth transfer step 90, as shown in FIG. 3I, the plurality of sealed optical semiconductor elements 11 are transferred from the fourth transfer sheet 24 to the fifth transfer sheet 25.
 第5転写シート25は、上記した第1転写シート21を形成する感圧粘着剤組成物(活性エネルギー線の照射によって感圧粘着力が低減するように構成される感圧粘着剤組成物)から形成されている。第5転写シート25は、表面としての下面47と、下面47の上側に対向配置され、下面47に対して実質的な平行する上面48とを有している。 The fifth transfer sheet 25 is formed from the pressure-sensitive adhesive composition that forms the first transfer sheet 21 described above (the pressure-sensitive adhesive composition configured so that the pressure-sensitive adhesive force is reduced by irradiation with active energy rays). Is formed. The fifth transfer sheet 25 has a lower surface 47 as a surface, and an upper surface 48 that is disposed to face the upper surface of the lower surface 47 and is substantially parallel to the lower surface 47.
 第5転写シート25の厚みは、例えば、50μm以上、好ましくは、80μm以上であり、また、例えば、200μm以下、好ましくは、150μm以下である。 The thickness of the fifth transfer sheet 25 is, for example, 50 μm or more, preferably 80 μm or more, and for example, 200 μm or less, preferably 150 μm or less.
 第5転写工程90において、封止光半導体素子11を第4転写シート24から第5転写シート25に転写するには、上記した第1転写工程83で例示した方法が用いられる。 In the fifth transfer step 90, the method illustrated in the first transfer step 83 is used to transfer the sealed optical semiconductor element 11 from the fourth transfer sheet 24 to the fifth transfer sheet 25.
 すなわち、図3Iが参照されるように、まず、第5転写シート25を、複数の封止光半導体素子11の上側に配置し、続いて、第5転写シート25の下面47と、封止層10の上面16とを感圧接触させる。次いで、図3Iの仮想線および仮想線矢印で示すように、封止層10の下面15と、光半導体素子1の電極側面3とを、第4転写シート24の上面から剥離する。 That is, as shown in FIG. 3I, first, the fifth transfer sheet 25 is disposed on the upper side of the plurality of sealed optical semiconductor elements 11, and then the lower surface 47 of the fifth transfer sheet 25 and the sealing layer The top surface 16 of 10 is brought into pressure sensitive contact. 3I, the lower surface 15 of the sealing layer 10 and the electrode side surface 3 of the optical semiconductor element 1 are peeled off from the upper surface of the fourth transfer sheet 24.
 第5転写工程90によって、光半導体素子1の電極側面3と、封止層10の下面15とが下側に露出する。一方、封止層10の上面16が、第5転写シート25の下面47によって感圧粘着される。 In the fifth transfer step 90, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are exposed to the lower side. On the other hand, the upper surface 16 of the sealing layer 10 is pressure-sensitively adhered by the lower surface 47 of the fifth transfer sheet 25.
  11. 第6転写工程
 第6転写工程91を、第5転写シート25において上下反転された封止光半導体素子11を、後述する支持部19を有する第6転写シート26に上下反転しながら移すために、図4に示すように、第5転写工程90の後に、実施する。つまり、第5転写工程90および第6転写工程91によって、封止光半導体素子11を、支持部19を有しない第4転写シート24から、第6転写シート26を有する第6転写シート26に載せ替える。
11. Sixth transfer step In order to move the sixth transfer step 91, the sealed optical semiconductor element 11 turned upside down in the fifth transfer sheet 25 to the sixth transfer sheet 26 having the support portion 19 described later while being turned upside down, As shown in FIG. 4, the fifth transfer step 90 is performed. That is, by the fifth transfer step 90 and the sixth transfer step 91, the sealed optical semiconductor element 11 is placed on the sixth transfer sheet 26 having the sixth transfer sheet 26 from the fourth transfer sheet 24 not having the support portion 19. Change.
 第6転写工程91では、図3Jに示すように、複数の封止光半導体素子11を、第5転写シート25から第6転写シート26に転写する。第6転写シート26としては、公知の転写シートが挙げられ、具体的には、第2転写シート22と同様の転写シートから挙げられる。 In the sixth transfer step 91, as shown in FIG. 3J, the plurality of sealed optical semiconductor elements 11 are transferred from the fifth transfer sheet 25 to the sixth transfer sheet. Examples of the sixth transfer sheet 26 include known transfer sheets. Specifically, the sixth transfer sheet 26 may be a transfer sheet similar to the second transfer sheet 22.
 第6転写工程91を、第2転写工程86(図2F参照)と同様にして、実施する。 The sixth transfer step 91 is performed in the same manner as the second transfer step 86 (see FIG. 2F).
 複数の封止光半導体素子11を第5転写シート25から第6転写シート26に転写するには、まず、図3Iの矢印で示すように、第5転写シート25に対して、活性エネルギー線を照射する。具体的には、第5転写シート25の上側に設けられた線源13および/または下側に設けられた線源(図示せず)から、第5転写シート25に対して、照射する。好ましくは、第5転写シート25の上側に設けられた線源13から、第5転写シート25に対して照射する。 In order to transfer the plurality of sealed optical semiconductor elements 11 from the fifth transfer sheet 25 to the sixth transfer sheet 26, first, as shown by arrows in FIG. Irradiate. Specifically, the fifth transfer sheet 25 is irradiated from a radiation source 13 provided on the upper side of the fifth transfer sheet 25 and / or a radiation source (not shown) provided on the lower side. Preferably, the fifth transfer sheet 25 is irradiated from a radiation source 13 provided on the upper side of the fifth transfer sheet 25.
 活性エネルギー線、線源および照射量は、「6. 第2転写工程86」で記載した例示から選択される。 The active energy ray, the radiation source, and the irradiation amount are selected from the examples described in “6. Second transfer step 86”.
 活性エネルギー線を第5転写シート25に照射することによって、第5転写シート25の封止光半導体素子11(具体的には、封止層10の上面16)に対する感圧粘着力が低減する。具体的には、第5転写シート25の表面タック性が低減、好ましくは、なくなる。 By irradiating the fifth transfer sheet 25 with active energy rays, the pressure-sensitive adhesive force of the fifth transfer sheet 25 to the sealed optical semiconductor element 11 (specifically, the upper surface 16 of the sealing layer 10) is reduced. Specifically, the surface tackiness of the fifth transfer sheet 25 is reduced, preferably eliminated.
 次いで、図3Jが参照されるように、第6転写シート26を複数の封止光半導体素子11の下側に配置し、続いて、第6転写シート26の上面と、封止層10の下面15、および、光半導体素子1の電極側面3とを接触(感圧粘着)させる。次いで、封止層10の上面16を、図3Jの仮想線および仮想線矢印で示すように、第5転写シート25の下面47から剥離する。 Next, as illustrated in FIG. 3J, the sixth transfer sheet 26 is disposed below the plurality of sealed optical semiconductor elements 11, and then the upper surface of the sixth transfer sheet 26 and the lower surface of the sealing layer 10. 15 and the electrode side surface 3 of the optical semiconductor element 1 are brought into contact (pressure-sensitive adhesion). Next, the upper surface 16 of the sealing layer 10 is peeled from the lower surface 47 of the fifth transfer sheet 25 as indicated by a virtual line and a virtual line arrow in FIG.
 この第2転写工程86によって、図3Jに示すように、光半導体素子1の電極側面3と、封止層10の下面15とが、第6転写シート26によって被覆(感圧粘着)される。一方、封止層10の上面16が、上側に露出する。 In the second transfer step 86, as shown in FIG. 3J, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are covered (pressure-sensitive adhesive) by the sixth transfer sheet 26. On the other hand, the upper surface 16 of the sealing layer 10 is exposed to the upper side.
 第6転写シート26の周端縁には、その周端縁を把持し、周端縁(具体的には、前端縁および後端縁と、左端縁および右端縁)が内側(具体的には、前後方向外側および左右方向外側)に移動しないように、構成される支持部19が設けられている。支持部19は、金属などからなり、平面視略枠形状(具体的には、リング形状)を有している。 The peripheral edge of the sixth transfer sheet 26 is gripped, and the peripheral edges (specifically, the front and rear edges, and the left and right edges) are inside (specifically, The support portion 19 is provided so as not to move to the outside in the front-rear direction and the outside in the left-right direction. The support portion 19 is made of metal or the like, and has a substantially frame shape (specifically, a ring shape) in plan view.
 そして、上記した第4転写工程89、第5転写工程90および第6転写工程91によって、封止光半導体素子11を、第4転写シート24から、支持部19を有する第6転写シート26に転写し、支持部19を利用して、封止光半導体素子11を第6転写シート26から確実に剥離して、基板29に実装することができる。 Then, the sealed optical semiconductor element 11 is transferred from the fourth transfer sheet 24 to the sixth transfer sheet 26 having the support portion 19 by the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 described above. In addition, the sealed optical semiconductor element 11 can be reliably peeled from the sixth transfer sheet 26 and mounted on the substrate 29 using the support portion 19.
  12. 剥離工程
 剥離工程92を、図4に示すように、第6転写工程91の後に、実施する。
12 Stripping Step The stripping step 92 is performed after the sixth transfer step 91 as shown in FIG.
 剥離工程92では、図3Kに示すように、ピックアップ装置71などによって、複数の封止光半導体素子11のそれぞれを、第6転写シート26から剥離する。 In the peeling step 92, as shown in FIG. 3K, each of the plurality of sealed optical semiconductor elements 11 is peeled from the sixth transfer sheet 26 by the pickup device 71 or the like.
 具体的には、ピックアップ装置71は、例えば、押圧部材72と、運搬部材の一例としての吸引部材73とを備える。 Specifically, the pickup device 71 includes, for example, a pressing member 72 and a suction member 73 as an example of a conveying member.
 押圧部材72は、上端に尖る形状を有している。押圧部材72としては、例えば、針などが挙げられる。 The pressing member 72 has a sharp shape at the upper end. Examples of the pressing member 72 include a needle.
 吸引部材73は、その下端において、封止光半導体素子11における封止層10の上面16に接触する接触部74と、接触面74の中央に位置し、接触部74が開口されることにより形成される吸引口75とを備えている。接触部74は、平面視略枠形状を有し、平坦面を有している。吸引口75は、図示しない吸引装置(例えば、吸引ポンプなど)に図示しない接続ラインを介して接続されている。吸引部材73は、例えば、コレットなどである。 The suction member 73 is formed at the lower end thereof by being in contact with the upper surface 16 of the sealing layer 10 in the sealing optical semiconductor element 11 and the contact portion 74 being opened at the center of the contact surface 74. The suction port 75 is provided. The contact portion 74 has a substantially frame shape in plan view and has a flat surface. The suction port 75 is connected to a suction device (not shown) (for example, a suction pump) via a connection line (not shown). The suction member 73 is, for example, a collet.
 ピックアップ装置71によって、封止光半導体素子11を第6転写シート26から剥離するには、まず、押圧部材72によって、第6転写シート26の下側から、剥離したい封止光半導体素子11に対応する第6転写シート26を押し上げて(押圧して)、封止光半導体素子11を上側に押し上げる。この際、第6転写シート26の周端縁は、支持部19によって支持されていることから、内側に移動しない。 In order to peel off the sealed optical semiconductor element 11 from the sixth transfer sheet 26 by the pickup device 71, first, the pressing member 72 corresponds to the sealed optical semiconductor element 11 to be peeled from the lower side of the sixth transfer sheet 26. The sixth transfer sheet 26 is pushed up (pressed), and the sealed optical semiconductor element 11 is pushed up. At this time, since the peripheral edge of the sixth transfer sheet 26 is supported by the support portion 19, it does not move inward.
 次いで、吸引部材73の接触部74を、封止光半導体素子11の上面16に接触させる。つまり、封止層10の上面16によって、吸引口75を閉塞する。次いで、吸引装置(図示せず)の駆動に基づき、吸引口75および接続ライン(図示せず)を減圧することによって、封止光半導体素子11を吸引しながら、吸引部材73を引き上げる。 Next, the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealed optical semiconductor element 11. That is, the suction port 75 is closed by the upper surface 16 of the sealing layer 10. Next, the suction member 73 is pulled up while sucking the sealed optical semiconductor element 11 by reducing the pressure of the suction port 75 and the connection line (not shown) based on the driving of the suction device (not shown).
 すると、封止光半導体素子11が第6転写シート26から剥離する。つまり、光半導体素子1の電極側面3と、封止層10の下面15とを、第6転写シート26の上面から、剥離する。 Then, the sealed optical semiconductor element 11 is peeled from the sixth transfer sheet 26. That is, the electrode side surface 3 of the optical semiconductor element 1 and the lower surface 15 of the sealing layer 10 are peeled from the upper surface of the sixth transfer sheet 26.
 これによって、図3Kの左図で示すように、光半導体素子1と、光半導体素子1を封止する封止層10とを備える封止光半導体素子11を、吸引部材73に吸引された状態で、得る。 As a result, as shown in the left diagram of FIG. 3K, the sealed optical semiconductor element 11 including the optical semiconductor element 1 and the sealing layer 10 that seals the optical semiconductor element 1 is sucked by the suction member 73. Get in.
 封止光半導体素子11は、発光装置30(図3L参照)ではなく、つまり、発光装置30に備えられる基板29を含まない。つまり、封止光半導体素子11は、その電極41が露出されており、電極41が、発光装置30の基板29に設けられる端子31とまだ電気的に接続されないように、構成されている。また、封止光半導体素子11は、発光装置30の一部品、すなわち、発光装置30を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。封止光半導体素子11は、好ましくは、光半導体素子1と、封止層10とのみからなる。 The sealed optical semiconductor element 11 is not the light emitting device 30 (see FIG. 3L), that is, does not include the substrate 29 provided in the light emitting device 30. That is, the sealed optical semiconductor element 11 is configured such that the electrode 41 is exposed and the electrode 41 is not yet electrically connected to the terminal 31 provided on the substrate 29 of the light emitting device 30. The sealed optical semiconductor element 11 is a component of the light emitting device 30, that is, a component for manufacturing the light emitting device 30, and is a device that can be distributed industrially and used industrially. The sealed optical semiconductor element 11 preferably includes only the optical semiconductor element 1 and the sealing layer 10.
 また、本発明の半導体装置の製造方法の一実施形態は、上記した封止光半導体素子11の製造方法(図1A~図3K参照)により、封止光半導体素子11を製造する工程、および、封止光半導体素子11を基板29に実装する実装工程(図3L参照)を備える。 An embodiment of a method for manufacturing a semiconductor device of the present invention includes a step of manufacturing the sealed optical semiconductor element 11 by the above-described manufacturing method of the sealed optical semiconductor element 11 (see FIGS. 1A to 3K), and A mounting step (see FIG. 3L) for mounting the sealed optical semiconductor element 11 on the substrate 29 is provided.
  13. 実装工程
 図4に示すように、実装工程93を、剥離工程92の後に、実施する。
13. Mounting Step As shown in FIG. 4, the mounting step 93 is performed after the peeling step 92.
 実装工程93では、図3Lの実線で示すように、吸引部材73に吸引された状態の封止光半導体素子11を、基板29に実装する。 In the mounting step 93, as shown by the solid line in FIG. 3L, the sealed optical semiconductor element 11 sucked by the suction member 73 is mounted on the substrate 29.
 基板29は、略平板形状を有し、例えば、絶縁基板である。また、基板29は、上面に配置される端子31を備えている。 The substrate 29 has a substantially flat plate shape, and is, for example, an insulating substrate. Further, the substrate 29 includes terminals 31 arranged on the upper surface.
 封止光半導体素子11を基板29に実装するには、封止光半導体素子11の電極側面3に形成される電極41を、基板29の端子31に電気的に接続する。すなわち、吸引部材73に吸引された状態の封止光半導体素子11を降下させ、続いて、基板29にフリップチップ実装する。また、封止層10の下面15を、基板29の上面に接触させる。 To mount the sealed optical semiconductor element 11 on the substrate 29, the electrode 41 formed on the electrode side surface 3 of the sealed optical semiconductor element 11 is electrically connected to the terminal 31 of the substrate 29. That is, the sealed optical semiconductor element 11 sucked by the suction member 73 is lowered, and subsequently flip-chip mounted on the substrate 29. Further, the lower surface 15 of the sealing layer 10 is brought into contact with the upper surface of the substrate 29.
 これによって、基板29と、封止光半導体素子11とを備える半導体装置の一例としての発光装置30を得る。 Thereby, the light emitting device 30 as an example of the semiconductor device including the substrate 29 and the sealed optical semiconductor element 11 is obtained.
 好ましくは、発光装置30は、基板29と、光半導体素子1と、封止層10とのみからなる。 Preferably, the light emitting device 30 includes only the substrate 29, the optical semiconductor element 1, and the sealing layer 10.
  14. 離間工程
 図4に示すように、離間工程94を、実装工程93の後に、実施する。
14 Separation Step As shown in FIG. 4, the separation step 94 is performed after the mounting step 93.
 離間工程94では、図3Lの仮想線および仮想線矢印で示すように、吸引部材73を封止層10の上面16から離間させる。 In the separation step 94, the suction member 73 is separated from the upper surface 16 of the sealing layer 10 as indicated by the phantom lines and phantom arrows in FIG.
 吸引部材73を上面16から離間するには、発光装置30に備えられる封止層10に対して、相対的に、吸引部材73を引き上げる。つまり、吸引部材73を上側に移動させる。これによって、吸引部材73の接触部74が、封止層10の上面16から離間する。 In order to separate the suction member 73 from the upper surface 16, the suction member 73 is pulled up relative to the sealing layer 10 provided in the light emitting device 30. That is, the suction member 73 is moved upward. As a result, the contact portion 74 of the suction member 73 is separated from the upper surface 16 of the sealing layer 10.
 これによって、吸引部材73から独立した状態の発光装置30を得る。 Thereby, the light emitting device 30 in a state independent of the suction member 73 is obtained.
  <第1実施形態の作用効果>
 そして、この封止光半導体素子11の製造方法によれば、第1転写シート21を形成する感圧粘着剤組成物が特定の活性エネルギー線硬化型感圧粘着剤組成物であるので、図2Fに示すように、第2転写工程86において、第1転写シート21(図1E参照)を形成する感圧粘着剤組成物が封止層10の上面16に付着すること(糊残り)を抑制することができる。
<Operational effects of the first embodiment>
According to the method for manufacturing the sealed optical semiconductor element 11, since the pressure-sensitive adhesive composition forming the first transfer sheet 21 is a specific active energy ray-curable pressure-sensitive adhesive composition, FIG. As shown in FIG. 4, in the second transfer step 86, the pressure-sensitive adhesive composition forming the first transfer sheet 21 (see FIG. 1E) is prevented from adhering to the upper surface 16 of the sealing layer 10 (adhesive residue). be able to.
 そのため、第2転写工程86以降の工程において、封止層10の上面16に部材(例えば、吸引部材73の接触部74や、第5転写シート25の接触部74など)を接触させても、その部材に感圧粘着剤組成物が付着することを抑制することができる。 Therefore, even if a member (for example, the contact portion 74 of the suction member 73 or the contact portion 74 of the fifth transfer sheet 25) is brought into contact with the upper surface 16 of the sealing layer 10 in the steps after the second transfer step 86, It can suppress that a pressure-sensitive adhesive composition adheres to the member.
 具体的には、実装工程93において、図3Kが参照されるように、封止層10の上面16に吸引部材73の接触部74を接触させても、接触部74に感圧粘着剤組成物が付着すること(糊の持ち帰り)を抑制することができる。 Specifically, in the mounting step 93, as shown in FIG. 3K, even if the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealing layer 10, the pressure-sensitive adhesive composition is brought into contact with the contact portion 74. Can be prevented (glue takeaway).
 さらに、第5転写工程90において、図3Iに示すように、光半導体素子10の上面16に第5転写シート25の下面47が接触しても、第5転写シート25の下面47に感圧粘着剤組成物が付着することを抑制することができる。 Further, in the fifth transfer step 90, as shown in FIG. 3I, even if the lower surface 47 of the fifth transfer sheet 25 contacts the upper surface 16 of the optical semiconductor element 10, the pressure-sensitive adhesive is applied to the lower surface 47 of the fifth transfer sheet 25. It can suppress that an agent composition adheres.
 また、この封止光半導体素子11の製造方法によれば、低分子量成分の、感圧粘着剤組成物における含有割合が、特定値以下であるので、第2転写工程86において、感圧粘着剤組成物が封止層10の上面16に付着することをより一層抑制することができる。 Moreover, according to the manufacturing method of this sealed optical semiconductor element 11, the content ratio of the low molecular weight component in the pressure-sensitive adhesive composition is not more than a specific value. Therefore, in the second transfer step 86, the pressure-sensitive adhesive is used. It is possible to further suppress the composition from adhering to the upper surface 16 of the sealing layer 10.
 とりわけ、封止層10が微感圧粘着性(微タック性)を有している場合であっても、上記した感圧粘着剤組成物が、封止層10の上面16に付着すること(糊残り)を有効に抑制することができる。 In particular, even when the sealing layer 10 has slight pressure-sensitive adhesiveness (microtackiness), the pressure-sensitive adhesive composition described above adheres to the upper surface 16 of the sealing layer 10 ( The adhesive residue can be effectively suppressed.
 さらに、この封止光半導体素子11の製造方法によれば、図3Iが参照されるように、第5転写シート25が、感圧粘着剤組成物からなるので、第6転写工程91において、図3Jに示すように、第5転写シート25を形成する感圧粘着剤組成物が封止層10の上面16に付着することを抑制することができる。 Furthermore, according to the method for manufacturing the sealed optical semiconductor element 11, as shown in FIG. 3I, the fifth transfer sheet 25 is made of a pressure-sensitive adhesive composition. As shown to 3J, it can suppress that the pressure-sensitive adhesive composition which forms the 5th transfer sheet 25 adheres to the upper surface 16 of the sealing layer 10. FIG.
 そのため、実装工程93において、図3Kが参照されるように、封止層10の上面16に吸引部材73の接触部74を接触させても、接触部74に感圧粘着剤組成物が付着すること(糊の持ち帰り)をより一層抑制することができる。 Therefore, in the mounting step 93, as shown in FIG. 3K, even if the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealing layer 10, the pressure-sensitive adhesive composition adheres to the contact portion 74. (Take back of glue) can be further suppressed.
 また、この発光装置30の製造方法によれば、封止層10の上面16は、感圧粘着剤組成物の付着が抑制されているので、実装工程93において、図3Kに示すように、吸引部材73の接触部74に感圧粘着剤組成物が付着すること(糊の持ち帰り)を抑制することができる。そのため、離間工程94において、図3Lに示すように、吸引部材73の接触部74を上面16から円滑に離間させることができる。その結果、発光装置30を効率よく製造することができる。 Further, according to the method for manufacturing the light emitting device 30, the top surface 16 of the sealing layer 10 is prevented from adhering to the pressure-sensitive adhesive composition. Therefore, in the mounting step 93, as shown in FIG. It can suppress that a pressure-sensitive adhesive composition adheres to the contact part 74 of the member 73 (take-away of glue). Therefore, in the separation step 94, the contact portion 74 of the suction member 73 can be smoothly separated from the upper surface 16 as shown in FIG. 3L. As a result, the light emitting device 30 can be manufactured efficiently.
  <第1実施形態の変形例>
 第1実施形態では、半導体素子の一例として、LEDやLDなどの光半導体素子1を挙げているが、例えば、電気エネルギーを、光以外のエネルギー、具体的には、信号エネルギーなどに変換する半導体素子であってもよく、具体的には、トランジスタなどの整流器なども挙げられる。
<Modification of First Embodiment>
In the first embodiment, an optical semiconductor element 1 such as an LED or an LD is cited as an example of a semiconductor element. For example, a semiconductor that converts electrical energy into energy other than light, specifically, signal energy or the like. It may be an element, and specifically includes a rectifier such as a transistor.
 また、図3Jに示すように、封止光半導体素子11を、第6転写シート26に支持された状態で、流通させることもできる。 Further, as shown in FIG. 3J, the sealed optical semiconductor element 11 can be circulated while being supported by the sixth transfer sheet 26.
  <第2実施形態>
 第2実施形態において、第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
Second Embodiment
In the second embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図4に示すように、第1実施形態では、第5転写工程90および第6転写工程91を実施しているが、図5に示すように、第5転写工程90および第6転写工程91を実施しなくてもよい。具体的には、第2実施形態では、素子用意工程81、封止工程82、第1転写工程83、切断工程84、延伸工程85、第2転写工程86、検査・選別工程87、第3転写工程88、第4転写工程89、剥離工程92、実装工程93および離間工程94を順次実施する。 As shown in FIG. 4, in the first embodiment, the fifth transfer step 90 and the sixth transfer step 91 are performed. However, as shown in FIG. 5, the fifth transfer step 90 and the sixth transfer step 91 are performed. It is not necessary to carry out. Specifically, in the second embodiment, the element preparation step 81, the sealing step 82, the first transfer step 83, the cutting step 84, the stretching step 85, the second transfer step 86, the inspection / sorting step 87, and the third transfer Step 88, fourth transfer step 89, peeling step 92, mounting step 93, and separation step 94 are sequentially performed.
 つまり、この第2実施形態では、特定の感圧粘着剤組成物から形成される第5転写シート25を用いる第5転写工程90、および、第5転写シート25に対して活性エネルギー線を照射する第6転写工程91を実施しない。 That is, in the second embodiment, the fifth transfer step 90 using the fifth transfer sheet 25 formed from a specific pressure-sensitive adhesive composition, and the active energy rays are irradiated to the fifth transfer sheet 25. The sixth transfer process 91 is not performed.
 一方、図2Hの仮想線で示すように、第4転写シート24の周端縁には、支持部19が設けられている。そして、剥離工程92では、図2Hの仮想線で示すように、ピックアップ装置71を用いて、封止光半導体素子11を、第4転写シート24から剥離する。 On the other hand, as shown by the phantom line in FIG. 2H, a support portion 19 is provided on the peripheral edge of the fourth transfer sheet 24. And in the peeling process 92, as shown with the virtual line of FIG. 2H, the sealing optical semiconductor element 11 is peeled from the 4th transfer sheet 24 using the pick-up apparatus 71. FIG.
 具体的には、まず、押圧部材72によって、第4転写シート24の下側から、剥離したい封止光半導体素子11に対応する第4転写シート24を押し上げて(押圧して)、封止光半導体素子11を上側に押し上げる。この際、第4転写シート24の周端縁は、支持部19によって支持されていることから、内側に移動しない。 Specifically, first, the pressing member 72 pushes up (presses) the fourth transfer sheet 24 corresponding to the sealing optical semiconductor element 11 to be peeled from the lower side of the fourth transfer sheet 24, and the sealing light. The semiconductor element 11 is pushed upward. At this time, since the peripheral edge of the fourth transfer sheet 24 is supported by the support portion 19, it does not move inward.
 次いで、吸引部材73の接触部74を、封止光半導体素子11の上面16に接触させる。つまり、上面16によって、吸引口75を閉塞する。次いで、吸引装置の駆動に基づき、吸引口75および接続ラインを減圧することによって、封止光半導体素子11を吸引しながら、吸引部材73を引き上げる。 Next, the contact portion 74 of the suction member 73 is brought into contact with the upper surface 16 of the sealed optical semiconductor element 11. That is, the suction port 75 is closed by the upper surface 16. Next, the suction member 73 is pulled up while sucking the sealed optical semiconductor element 11 by reducing the pressure of the suction port 75 and the connection line based on the driving of the suction device.
  <第2実施形態の作用効果>
 第2実施形態では、第5転写工程90および第6転写工程91を実施しないので、転写工程の数を低減することができる。そのため、封止光半導体素子11を簡便に製造でき、さらには、発光装置30を簡便に製造することができる。
<Effects of Second Embodiment>
In the second embodiment, since the fifth transfer process 90 and the sixth transfer process 91 are not performed, the number of transfer processes can be reduced. Therefore, the sealed optical semiconductor element 11 can be easily manufactured, and furthermore, the light emitting device 30 can be easily manufactured.
 一方、第1実施形態では、第5転写工程90および第6転写工程91を実施するので、封止光半導体素子11を、第4転写シート24から、支持部19を有する第6転写シート26に転写し、支持部19を利用して、封止光半導体素子11を第6転写シート26から確実に剥離して、基板29に実装することができる。 On the other hand, in the first embodiment, since the fifth transfer step 90 and the sixth transfer step 91 are performed, the sealed optical semiconductor element 11 is transferred from the fourth transfer sheet 24 to the sixth transfer sheet 26 having the support portion 19. The sealing optical semiconductor element 11 can be reliably peeled off from the sixth transfer sheet 26 using the support portion 19 and mounted on the substrate 29.
  <第2実施形態の変形例>
 また、第2実施形態では、第4転写工程89を実施しているが、第4転写工程89(図2H参照)を実施しなくてもよい。つまり、この変形例では、第3転写工程88の後に、剥離工程92を実施する。
<Modification of Second Embodiment>
In the second embodiment, the fourth transfer process 89 is performed, but the fourth transfer process 89 (see FIG. 2H) may not be performed. That is, in this modification, the peeling step 92 is performed after the third transfer step 88.
 すなわち、剥離工程92では、図2Gが参照されるように、封止光半導体素子11を、第3転写シート23から剥離する。 That is, in the peeling step 92, the sealed optical semiconductor element 11 is peeled from the third transfer sheet 23 as shown in FIG. 2G.
 また、図2Hに示すように、封止光半導体素子11を、第4転写シート24に支持された状態で、流通させることもできる。 Further, as shown in FIG. 2H, the sealed optical semiconductor element 11 can be circulated while being supported by the fourth transfer sheet 24.
  <第3実施形態>
 第3実施形態において、第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
<Third Embodiment>
In the third embodiment, the same members and steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図4に示すように、第1実施形態では、検査・選別工程87、第3転写工程88、第4転写工程89、第5転写工程90および第6転写工程91を実施しているが、図6に示すように、検査・選別工程87、第3転写工程88、第4転写工程89、第5転写工程90および第6転写工程91を実施しなくてもよい。具体的には、第2実施形態では、素子用意工程81、封止工程82、第1転写工程83、切断工程84、延伸工程85、第2転写工程86、剥離工程92、実装工程93および離間工程94を順次実施する。 As shown in FIG. 4, in the first embodiment, the inspection / sorting process 87, the third transfer process 88, the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 are performed. As shown in FIG. 6, the inspection / sorting process 87, the third transfer process 88, the fourth transfer process 89, the fifth transfer process 90, and the sixth transfer process 91 may not be performed. Specifically, in the second embodiment, the element preparation process 81, the sealing process 82, the first transfer process 83, the cutting process 84, the stretching process 85, the second transfer process 86, the peeling process 92, the mounting process 93, and the separation process. Step 94 is performed sequentially.
 つまり、この第3実施形態では、剥離工程92では、図2Fの仮想線が参照されるように、ピックアップ装置71を用いて、封止光半導体素子11を第2転写シート22から剥離する。 That is, in the third embodiment, in the peeling step 92, the sealed optical semiconductor element 11 is peeled from the second transfer sheet 22 by using the pickup device 71 so as to refer to the virtual line in FIG. 2F.
  <第3実施形態の作用効果>
 第3実施形態では、第5転写工程90および第6転写工程91を実施せず、さらには、検査・選別工程87、第3転写工程88および第4転写工程89も実施しないので、転写工程の数を低減することができる。そのため、封止光半導体素子11をより一層簡便に製造でき、さらには、発光装置30をより一層簡便に製造することができる。
<Operational effects of the third embodiment>
In the third embodiment, the fifth transfer process 90 and the sixth transfer process 91 are not performed, and further, the inspection / selection process 87, the third transfer process 88, and the fourth transfer process 89 are not performed. The number can be reduced. Therefore, the sealed optical semiconductor element 11 can be manufactured more easily, and furthermore, the light emitting device 30 can be manufactured more simply.
  <変形例>
 上記した各実施形態では、素子用意工程81、封止工程82、第1転写工程83、切断工程84、延伸工程85および第2転写工程86以外の工程を実施しているが、そのような工程は適宜、一部あるいは全部を省略することもできる。
<Modification>
In each of the embodiments described above, steps other than the element preparation step 81, the sealing step 82, the first transfer step 83, the cutting step 84, the stretching step 85, and the second transfer step 86 are performed. May be omitted partially or entirely as appropriate.
 以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Specific numerical values such as blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and the corresponding blending ratio (content ratio) ), Physical property values, parameters, etc. may be replaced with the upper limit values (numerical values defined as “less than” or “less than”) or lower limit values (numbers defined as “greater than” or “exceeded”). it can.
  (活性エネルギー線硬化型感圧粘着剤組成物の調製)
  調製例1
  (中間重合物溶液の調製)
 表1に示すように、所定のモノマー(モノマーC以外のモノマー)に、重合開始剤と溶媒とを投入した。
(Preparation of active energy ray-curable pressure-sensitive adhesive composition)
Preparation Example 1
(Preparation of intermediate polymer solution)
As shown in Table 1, a polymerization initiator and a solvent were added to predetermined monomers (monomers other than monomer C).
 具体的には、ベンゾイルパーオキサイド(熱重合開始剤、ナイパーBW、日油社製)をモノマー総量に対し0.2重量%となるように投入し、溶媒は、トルエンをモノマー総量に対して50重量%となるように投入した。 Specifically, benzoyl peroxide (thermal polymerization initiator, Niper BW, manufactured by NOF Corporation) is added so as to be 0.2% by weight with respect to the total amount of monomers, and toluene is 50% with respect to the total amount of monomers. The amount was added so as to be weight%.
 この混合物は、1L丸底セパラブルフラスコ、セパラブルカバー、分液ロート、温度計、窒素導入管、リービッヒ冷却器、バキュームシール、攪拌棒、攪拌羽が装備された重合用実験装置に投入した。 The mixture was put into a polymerization experimental apparatus equipped with a 1 L round bottom separable flask, a separable cover, a separatory funnel, a thermometer, a nitrogen inlet tube, a Liebig condenser, a vacuum seal, a stirring rod, and a stirring blade.
 投入した混合物を攪拌しながら、常温で窒素置換を1時間実施した。その後、窒素流入下、攪拌しながら、ウオーターバスにて実験装置内溶液温度が60℃±2℃となるように制御しつつ、12時間保持し、中間重合物溶液を得た。 While stirring the charged mixture, nitrogen substitution was performed at room temperature for 1 hour. Thereafter, the mixture was kept for 12 hours while controlling the solution temperature in the experimental apparatus to be 60 ° C. ± 2 ° C. with a water bath while stirring under nitrogen inflow to obtain an intermediate polymer solution.
 なお、重合途中に、重合中の温度制御のために、トルエンを滴下した。また、側鎖の極性基等による水素結合による急激な粘度上昇を防止するために、酢酸エチルを滴下した。 In addition, during the polymerization, toluene was dropped to control the temperature during the polymerization. In addition, ethyl acetate was added dropwise to prevent a sudden increase in viscosity due to hydrogen bonding due to polar groups in the side chain.
  (ベースポリマーの調製)
 得られた中間重合物溶液を室温まで冷却し、表1に示す量のメタクリル酸2-イソシアナトエチル(モノマーC、別名:メタクリロイルオキシエチルイソシアネート、カレンズMOI、昭和電工社製)を添加し、空気雰囲気下で50℃に24時間攪拌及び保持して、ベースポリマー溶液を得た。
(Preparation of base polymer)
The obtained intermediate polymer solution was cooled to room temperature, and the amount of 2-isocyanatoethyl methacrylate (monomer C, also known as: methacryloyloxyethyl isocyanate, Karenz MOI, Showa Denko KK) in the amount shown in Table 1 was added, and air Stirring and holding at 50 ° C. for 24 hours under atmosphere gave a base polymer solution.
  (粘着剤溶液の調製)
 ベースポリマー溶液、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(イルガキュア184;チバ・スペシャリティ・ケミカルズ社製)をベースポリマー固形分100重量部当りに3重量部、ポリイソシアネート系架橋剤(コロネートL;日本ポリウレタン社製)をベースポリマー固形分100重量部当りに3重量部を混合し、均一に攪拌し、感圧粘着剤組成物の粘着剤溶液を得た。
(Preparation of adhesive solution)
Base polymer solution, 1-hydroxycyclohexyl phenyl ketone (Irgacure 184; manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, 3 parts by weight per 100 parts by weight of base polymer solids, polyisocyanate crosslinking agent (Coronate L; Nippon Polyurethane Co., Ltd.) was mixed with 3 parts by weight per 100 parts by weight of the base polymer solid content, and stirred uniformly to obtain a pressure-sensitive adhesive composition pressure-sensitive adhesive composition.
  調製例2および比較調製例1
 表1に記載の配合処方に従って、調製例1と同様に処理して、粘着剤溶液を調製した。
Preparation Example 2 and Comparative Preparation Example 1
In the same manner as in Preparation Example 1 according to the formulation described in Table 1, a pressure-sensitive adhesive solution was prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に記載の略号に示される各モノマーの諸元を以下に記載する。
HEMA:2-ヒドロキシエチルメタクリレート(東京化成工業社製)
HEA:2-ヒドロキシエチルアクリレート(東京化成工業社製)
LMA:ラウリルメタクリレート(東京化成工業社製)
2EHA:2-エチルヘキシルアクリレート(東亜合成社製)
MOI:メタクリロイルオキシエチルイソシアネート(昭和電工社製)
ACMO:アクリロイルモルフォリン(東京化成工業社製)
BA:ブチルアクリレート(東亜合成社製)
EA:エチルアクリレート(東京化成工業社製)
  (感圧粘着剤組成物のGPC測定)
 感圧粘着剤組成物を、GPCにより、下記の装置条件で、測定した。
The specifications of each monomer shown in the abbreviations shown in Table 1 are described below.
HEMA: 2-hydroxyethyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
HEA: 2-hydroxyethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
LMA: Lauryl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
2EHA: 2-ethylhexyl acrylate (manufactured by Toa Gosei Co., Ltd.)
MOI: Methacryloyloxyethyl isocyanate (manufactured by Showa Denko)
ACMO: Acryloyl morpholine (manufactured by Tokyo Chemical Industry Co., Ltd.)
BA: Butyl acrylate (manufactured by Toa Gosei Co., Ltd.)
EA: Ethyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.)
(GPC measurement of pressure-sensitive adhesive composition)
The pressure sensitive adhesive composition was measured by GPC under the following apparatus conditions.
 [測定装置および測定条件]
カラム:TSKgel GMH-H(S)×2
カラムサイズ:7.8mmI.D.×300mm
カラム温度:40℃
溶離液:THF
流量: 0.5mL/分
サンプル濃度:0.1mass%
注入量:100μl
検出器:示差屈折率計(RI)
 得られたクロマトグラムから、標準ポリスチレン換算の重量平均分子量を算出した。その結果、調製例1の感圧粘着剤組成物では、1.03×10であり、調製例2の感圧粘着剤組成物では、6.09×10であり、比較調製例1の感圧粘着剤組成物では、5.08×10であった。
[Measurement equipment and measurement conditions]
Column: TSKgel GMH-H (S) x 2
Column size: 7.8 mm I.D. D. × 300mm
Column temperature: 40 ° C
Eluent: THF
Flow rate: 0.5 mL / min Sample concentration: 0.1 mass%
Injection volume: 100 μl
Detector: Differential refractometer (RI)
From the obtained chromatogram, the weight average molecular weight in terms of standard polystyrene was calculated. As a result, in the pressure-sensitive adhesive composition of Preparation Example 1, it was 1.03 × 10 4 and in the pressure-sensitive adhesive composition of Preparation Example 2, it was 6.09 × 10 4 . In the pressure-sensitive adhesive composition, it was 5.08 × 10 4 .
 また、得られたクロマトグラムから、標準ポリスチレン換算の分子量3.0×10以下の低分子量成分の、感圧粘着剤組成物に対する含有割合を算出した。その結果、調製例1の感圧粘着剤組成物で、10質量%であり、調製例2の感圧粘着剤組成物で、3質量%であり、比較調製例1の感圧粘着剤組成物で、7質量%であった。 Moreover, the content rate with respect to a pressure-sensitive adhesive composition of the low molecular weight component of molecular weight 3.0x10 4 or less of standard polystyrene conversion was calculated from the obtained chromatogram. As a result, the pressure-sensitive adhesive composition of Preparation Example 1 was 10% by mass, the pressure-sensitive adhesive composition of Preparation Example 2 was 3% by mass, and the pressure-sensitive adhesive composition of Comparative Preparation Example 1 And 7% by mass.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  試験例1
 調製例1で得られた感圧粘着剤溶液から、第1転写シートを作製し、第1転写シートのガラス板(1cm角)に対する剥離接着力(密着力)を測定した。
Test example 1
A first transfer sheet was prepared from the pressure-sensitive adhesive solution obtained in Preparation Example 1, and the peel adhesion (adhesion) of the first transfer sheet to the glass plate (1 cm square) was measured.
 すなわち、感圧粘着剤溶液を、基材(PETフィルム)の表面に塗布し、120℃の乾燥機にて5分間乾燥することにより、厚み10μmの第1転写シートを得た。 That is, the pressure-sensitive adhesive solution was applied to the surface of the substrate (PET film) and dried for 5 minutes with a 120 ° C. dryer to obtain a first transfer sheet having a thickness of 10 μm.
 次いで、第1転写シートを、支持基板(ステンレス板)の上に、両面テープを介して、貼り付けた。 Next, the first transfer sheet was attached on a support substrate (stainless steel plate) via a double-sided tape.
 ガラス板を、第1転写シートに対して、感圧粘着し、その後、下記の条件で、紫外線を照射して、第1転写シートの感圧粘着力を低下させた。 The glass plate was pressure-sensitively adhered to the first transfer sheet, and then irradiated with ultraviolet rays under the following conditions to reduce the pressure-sensitive adhesive force of the first transfer sheet.
 線源:UM-810(日東精機製)
 照度:70mW/cm
 照射時間:0.5秒
 光量(照射量):35mJ/cm
 その後、ガラス板を第1転写シートから剥離した。
Radiation source: UM-810 (manufactured by Nitto Seiki)
Illuminance: 70 mW / cm 2
Irradiation time: 0.5 seconds Light intensity (irradiation amount): 35 mJ / cm 2
Thereafter, the glass plate was peeled from the first transfer sheet.
 そして、上記した一連の操作、つまり、第1転写シートの作製、ガラス板による貼り付け、および、紫外線の照射を5回繰り返した。なお、1~5回目の操作すべてにおいて、ガラス板を共通して使用した。つまり、1回目において、第1転写シートの表面に対して感圧粘着および剥離した、ガラス板の表面を、2回目においても、第2転写シートの表面に対して感圧粘着および剥離した。すなわち、ガラス板において糊残りが発生する場合には、それが、ガラス板の表面に蓄積されるように、ガラス板を使用した。 Then, the series of operations described above, that is, production of the first transfer sheet, pasting with a glass plate, and irradiation with ultraviolet rays were repeated five times. In all of the first to fifth operations, a glass plate was used in common. That is, in the first time, the pressure-sensitive adhesive and peeled off from the surface of the first transfer sheet were pressure-sensitively attached and peeled off from the surface of the second transfer sheet. That is, when adhesive residue was generated on the glass plate, the glass plate was used so that it was accumulated on the surface of the glass plate.
 そして、5回目の剥離接着力(密着力)を測定した。その結果、2.05N/10mmであった。 And the 5th peeling adhesive force (adhesion force) was measured. As a result, it was 2.05 N / 10 mm 2 .
  試験例2
 第1転写シートとして、調製例2の粘着剤溶液を用いた以外は、試験例1と同様に、処理および測定した。その結果、5回目の剥離粘着力(密着力)は、2.00N/10mmであった。
Test example 2
The treatment and measurement were performed in the same manner as in Test Example 1 except that the adhesive solution of Preparation Example 2 was used as the first transfer sheet. As a result, the fifth peel adhesion (adhesion force) was 2.00 N / 10 mm 2 .
  比較試験例1
 第1転写シートとして、比較調製例1の粘着剤溶液を用いた以外は、試験例1と同様に、処理および測定した。その結果、5回目の剥離接着力(密着力)は、3.85N/10mmであった。
Comparative Test Example 1
The treatment and measurement were performed in the same manner as in Test Example 1 except that the adhesive solution of Comparative Preparation Example 1 was used as the first transfer sheet. As a result, the fifth peel adhesion (adhesion force) was 3.85 N / 10 mm 2 .
 試験例および比較試験例の結果を表3に示す。 Table 3 shows the results of the test examples and comparative test examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  実施例1
 第3実施形態に基づいて、図3Lに示す発光装置30を得た。
Example 1
Based on 3rd Embodiment, the light-emitting device 30 shown to FIG. 3L was obtained.
 つまり、図6に示すように、素子用意工程81、封止工程82、第1転写工程83、切断工程84、延伸工程85、第2転写工程86、剥離工程92、実装工程93および離間工程94を順次実施した。 That is, as shown in FIG. 6, the element preparation process 81, the sealing process 82, the first transfer process 83, the cutting process 84, the stretching process 85, the second transfer process 86, the peeling process 92, the mounting process 93, and the separation process 94. Were carried out sequentially.
 具体的には、まず、素子用意工程81では、図1Aに示すように、複数の光半導体素子1(Epitar製、EDI-FA4545A)を、仮固定シート2の上に感圧粘着した。 Specifically, first, in the element preparation step 81, as shown in FIG. 1A, a plurality of optical semiconductor elements 1 (manufactured by Epitar, EDI-FA4545A) were pressure-sensitively adhered onto the temporary fixing sheet 2.
 次いで、封止工程82では、まず、図1Bに示すように、PETからなる厚み50μmの剥離シート9と、剥離シート9の下面に配置され、封止組成物からなるBステージの封止層10とを備える封止シート8とを用意した。封止組成物は、具体的には、ジメチルビニルシリル末端ポリジメチルシロキサン(ビニルシリル基当量0.071mmol/g)20g(1.4mmolビニルシリル基)、トリメチルシリル末端ジメチルシロキサン-メチルヒドロシロキサン共重合体(ヒドロシリル基当量4.1mmol/g)0.40g(1.6mmolヒドロシリル基)、白金-ジビニルテトラメチルジシロキサン錯体(ヒドロシリル化触媒)のキシレン溶液(白金濃度2質量%)0.036mL(1.9μmol)、および、水酸化テトラメチルアンモニウム(TMAH、硬化遅延剤)のメタノール溶液(10質量%)0.063mL(57μmol)を混合し、20℃で10分攪拌し、その混合物100質量部に対して、シリコーン微粒子(トスパール2000B、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社社製)を30質量部配合して、均一に攪拌混合することにより、2段反応硬化性シリコーン樹脂を得た。 Next, in the sealing step 82, first, as shown in FIG. 1B, a 50 μm-thick release sheet 9 made of PET, and a B-stage sealing layer 10 that is arranged on the lower surface of the release sheet 9 and made of a sealing composition. The sealing sheet 8 provided with was prepared. Specifically, the sealing composition is composed of 20 g (1.4 mmol vinylsilyl group) of dimethylvinylsilyl-terminated polydimethylsiloxane (vinylsilyl group equivalent 0.071 mmol / g), trimethylsilyl-terminated dimethylsiloxane-methylhydrosiloxane copolymer (hydrosilyl). 0.40 g (1.6 mmol hydrosilyl group), group equivalent of 4.1 mmol / g), xylene solution of platinum-divinyltetramethyldisiloxane complex (hydrosilylation catalyst) (platinum concentration 2 mass%) 0.036 mL (1.9 μmol) , And 0.063 mL (57 μmol) of a tetramethylammonium hydroxide (TMAH, curing retarder) methanol solution (10% by mass), and stirred at 20 ° C. for 10 minutes. With respect to 100 parts by mass of the mixture, Silicone fine particles (Tospearl 2000B, 30 parts by mass of Momentive Performance Materials Japan GK Co., Ltd.) was blended, and stirred and mixed uniformly to obtain a two-stage reaction curable silicone resin.
 封止層10の厚みは、500μmであった。 The thickness of the sealing layer 10 was 500 μm.
 次いで、封止シート8によって、複数の光半導体素子1を封止した。その後、加熱により、封止層10をCステージ化した。その後、剥離シート9を封止シート8から剥離した。 Next, a plurality of optical semiconductor elements 1 were sealed with a sealing sheet 8. Thereafter, the sealing layer 10 was changed to a C stage by heating. Thereafter, the release sheet 9 was peeled from the sealing sheet 8.
 これにより、封止光半導体素子11を、仮固定シート2に感圧粘着された状態で、得た。 Thereby, the sealed optical semiconductor element 11 was obtained in a state of being pressure-sensitively adhered to the temporary fixing sheet 2.
 次いで、図1Cに示すように、封止光半導体素子11を、仮固定シート2から第1転写シート21に転写した。第1転写シート21は、試験例1と同様に方法によって、調製例1の感圧粘着剤溶液から、シート状に形成した。 Next, as shown in FIG. 1C, the sealed optical semiconductor element 11 was transferred from the temporary fixing sheet 2 to the first transfer sheet 21. The first transfer sheet 21 was formed into a sheet shape from the pressure-sensitive adhesive solution of Preparation Example 1 by the same method as in Test Example 1.
 次いで、図1Dに示すように、切断工程84において、封止層10を、第1転写シート21で支持された状態で、複数の光半導体素子1のそれぞれに対応するように、ダイシングソー12によって、ダイシングした。 Next, as shown in FIG. 1D, in the cutting step 84, the sealing layer 10 is supported by the first transfer sheet 21 so as to correspond to each of the plurality of optical semiconductor elements 1 by the dicing saw 12. , Dicing.
 その後、図1Eに示すように、延伸工程85において、第1転写シート21を延伸させた。隣接する封止光半導体素子11を隔てる間隔18の幅W1200μmであった。 Thereafter, as shown in FIG. 1E, in the stretching step 85, the first transfer sheet 21 was stretched. The width W of the interval 18 separating the adjacent sealed optical semiconductor elements 11 was 1200 μm.
 次いで、図2Fに示すように、第2転写工程86において、複数の封止光半導体素子11を第1転写シート21から第2転写シート22に転写した。 Next, as shown in FIG. 2F, in the second transfer step 86, the plurality of sealed optical semiconductor elements 11 were transferred from the first transfer sheet 21 to the second transfer sheet 22.
 具体的には、まず、下記の条件で、紫外線を第1転写シート21に対して照射して、第1転写シート21の感圧粘着力を低下させた。 Specifically, first, the first transfer sheet 21 was irradiated with ultraviolet rays under the following conditions to reduce the pressure-sensitive adhesive force of the first transfer sheet 21.
 線源13:UM-810(日東精機製)
 照度:70mW/cm
 照射時間:0.5秒
 光量(照射量):35mJ/cm
 続いて、SPV-224(日東電工社製)からなる第2転写シート22を電極側面3および下面15に感圧粘着させ、次いで、上面16を第1転写シート21の下面45から剥離した。
Radiation source 13: UM-810 (manufactured by Nitto Seiki)
Illuminance: 70 mW / cm 2
Irradiation time: 0.5 seconds Light intensity (irradiation amount): 35 mJ / cm 2
Subsequently, the second transfer sheet 22 made of SPV-224 (manufactured by Nitto Denko Corporation) was pressure-sensitively adhered to the electrode side surface 3 and the lower surface 15, and then the upper surface 16 was peeled from the lower surface 45 of the first transfer sheet 21.
 その後、剥離工程92において、図2Fの仮想線が参照されるように、ピックアップ装置71によって、封止光半導体素子11を第2転写シート22から剥離した。具体的には、吸引部材73の接触部74を、封止光半導体素子11の封止層10における上面16に接触させた。 Thereafter, in the peeling step 92, the sealed optical semiconductor element 11 was peeled from the second transfer sheet 22 by the pickup device 71 so that the phantom line in FIG. Specifically, the contact portion 74 of the suction member 73 was brought into contact with the upper surface 16 of the sealing layer 10 of the sealing optical semiconductor element 11.
 その後、実装工程93において、図3Lに示すように、封止光半導体素子11を、基板29に実装した。 Thereafter, in the mounting step 93, the sealed optical semiconductor element 11 was mounted on the substrate 29 as shown in FIG. 3L.
 その後、離間工程94において、図3Lの仮想線で示すように、吸引部材73の接触部74を封止層10の上面16から離間させた。 Thereafter, in the separation step 94, the contact portion 74 of the suction member 73 was separated from the upper surface 16 of the sealing layer 10 as indicated by a virtual line in FIG. 3L.
 上記した一連の工程を100回実施し、離間工程94において、吸引部材73の接触部74を封止層10の上面16から離間させることができた回数を数えた。そして、離間成功率(吸引部材73を上面16から離間させることができた回数/総実施回数×100)を算出したところ、99%であった。 The series of steps described above was performed 100 times, and the number of times that the contact portion 74 of the suction member 73 could be separated from the upper surface 16 of the sealing layer 10 in the separation step 94 was counted. The separation success rate (number of times the suction member 73 could be separated from the upper surface 16 / total number of implementations × 100) was calculated to be 99%.
 実施例2
 第1転写シート21は、試験例2と同様に方法によって、調製例2の感圧粘着剤溶液から、シート状に形成した以外は、実施例1と同様に、処理および測定した。その結果、離間成功率は、99%であった。
Example 2
The first transfer sheet 21 was processed and measured in the same manner as in Example 1 except that the first transfer sheet 21 was formed into a sheet form from the pressure-sensitive adhesive solution of Preparation Example 2 by the same method as in Test Example 2. As a result, the separation success rate was 99%.
  比較例1
 第1転写シート21は、比較試験例1と同様に方法によって、比較調製例1の感圧粘着剤溶液から、シート状に形成した以外は、実施例1と同様に、処理および測定した。その結果、離間成功率は、50%であった。
Comparative Example 1
The first transfer sheet 21 was processed and measured in the same manner as in Example 1 except that the first transfer sheet 21 was formed into a sheet form from the pressure-sensitive adhesive solution of Comparative Preparation Example 1 by the same method as in Comparative Test Example 1. As a result, the separation success rate was 50%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be interpreted in a limited manner. Variations of the present invention that are apparent to one of ordinary skill in the art are within the scope of the following claims.
 封止半導体素子の製造方法は、封止光半導体素子の製造方法に用いられる。 The manufacturing method of a sealing semiconductor element is used for the manufacturing method of a sealing optical semiconductor element.
符合の説明Explanation of sign
1     光半導体素子
3     電極側面
4     対向面
10   封止層
11   封止光半導体素子
16   上面
25   第5転写シート
45   下面
47   下面
73   吸引部材
82   封止工程
83   第1転写工程
84   切断工程
85   延伸工程
86   第2転写工程
93   実装工程
94   離間工程
DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 3 Electrode side surface 4 Opposite surface 10 Sealing layer 11 Sealing optical semiconductor element 16 Upper surface 25 5th transfer sheet 45 Lower surface 47 Lower surface 73 Suction member 82 Sealing process 83 1st transfer process 84 Cutting process 85 Extending process 86 Second transfer process 93 Mounting process 94 Separating process

Claims (4)

  1.  電極側面、および、前記電極側面に対向配置される素子対向面を有する半導体素子と、前記素子対向面に対向配置される層側対向面を有し、前記電極側面が露出し、前記素子対向面を被覆するように、前記半導体素子を封止する封止層とを備える封止半導体素子を作製する工程、
     前記封止半導体素子を、活性エネルギー線の照射によって感圧粘着力が低減するように構成される感圧粘着剤組成物からなる感圧粘着シートに、前記感圧粘着シートの表面と前記層側対向面とが接触するように、粘着する感圧粘着工程、
     前記感圧粘着工程の後に、前記封止半導体素子を処理する処理工程、および、
     前記処理工程の後に、前記感圧粘着シートに活性エネルギー線を照射して、前記封止半導体素子を前記感圧粘着シートから剥離する剥離工程を備え、
     前記感圧粘着剤組成物は、活性エネルギー線硬化型感圧粘着剤組成物であり、
      前記活性エネルギー線硬化型感圧粘着剤組成物は、官能基aを含有するモノマーA、炭素数8以上17以下のアルキル基を含有する(メタ)アクリレートモノマーを含有するモノマーB、および、官能基aと反応することができる官能基cと重合性炭素-炭素二重結合基との双方の基を含有するモノマーC、に由来する構造単位を含有するポリマーから調製されており、
     前記モノマーBは、前記モノマーAとともに主鎖を構成し、その含有割合が、前記モノマーAおよび前記モノマーBの総量に対して、50質量%以上であり、
     前記ポリマーは、前記官能基aの一部が前記官能基cと反応して結合することにより、側鎖に重合性炭素-炭素二重結合基を含有することを特徴とする、封止半導体素子の製造方法。
    A semiconductor element having an electrode side surface and an element facing surface disposed to face the electrode side surface; and a layer side facing surface disposed to face the element facing surface, wherein the electrode side surface is exposed, and the element facing surface A step of producing a sealing semiconductor element comprising a sealing layer for sealing the semiconductor element so as to cover
    The surface of the pressure-sensitive adhesive sheet and the layer side of the sealing semiconductor element are formed into a pressure-sensitive adhesive sheet composed of a pressure-sensitive adhesive composition configured to reduce pressure-sensitive adhesive force by irradiation with active energy rays. Pressure-sensitive adhesive process to adhere so that the opposing surface comes into contact,
    After the pressure-sensitive adhesive step, a processing step of processing the sealing semiconductor element, and
    After the treatment step, the pressure-sensitive adhesive sheet is irradiated with active energy rays, and the sealing semiconductor element is separated from the pressure-sensitive adhesive sheet.
    The pressure-sensitive adhesive composition is an active energy ray-curable pressure-sensitive adhesive composition,
    The active energy ray-curable pressure-sensitive adhesive composition includes a monomer A containing a functional group a, a monomer B containing a (meth) acrylate monomer containing an alkyl group having 8 to 17 carbon atoms, and a functional group. prepared from a polymer containing structural units derived from a monomer C containing both a functional group c capable of reacting with a and a polymerizable carbon-carbon double bond group,
    The monomer B constitutes a main chain together with the monomer A, and the content ratio thereof is 50% by mass or more based on the total amount of the monomer A and the monomer B,
    The encapsulated semiconductor element, wherein the polymer contains a polymerizable carbon-carbon double bond group in a side chain by reacting and bonding a part of the functional group a with the functional group c. Manufacturing method.
  2.  前記感圧粘着剤組成物のGPC測定に基づく標準ポリスチレン換算の分子量3.0×10以下の低分子量成分の、前記感圧粘着剤組成物に対する含有割合が、10質量%以下であることを特徴とする、請求項1に記載の封止半導体素子の製造方法。 The content ratio of the low molecular weight component having a molecular weight of 3.0 × 10 4 or less in terms of standard polystyrene based on GPC measurement of the pressure-sensitive adhesive composition to the pressure-sensitive adhesive composition is 10% by mass or less. The method for producing a sealed semiconductor device according to claim 1, wherein the method is characterized in that:
  3.  前記剥離工程の後に、前記封止半導体素子を、活性エネルギー線の照射によって感圧粘着力が低減するように構成される転写シートに、前記層側対向面と前記転写シートの表面とが接触するように、転写する転写工程、
     前記転写工程の後に、前記転写シートに活性エネルギー線を照射して、前記封止半導体素子を前記転写シートから再転写する再転写工程をさらに備え、
     前記転写シートは、前記感圧粘着剤組成物からなることを特徴とする、請求項1に記載の封止半導体素子の製造方法。
    After the peeling step, the layer-side facing surface and the surface of the transfer sheet are brought into contact with a transfer sheet configured to reduce pressure-sensitive adhesive strength of the encapsulated semiconductor element by irradiation with active energy rays. Transfer process to transfer,
    After the transfer step, further comprising a retransfer step of irradiating the transfer sheet with active energy rays to retransfer the sealing semiconductor element from the transfer sheet,
    The method for manufacturing a sealed semiconductor element according to claim 1, wherein the transfer sheet is made of the pressure-sensitive adhesive composition.
  4.  請求項1に記載の封止半導体素子の製造方法により、封止半導体素子を製造する工程、
     運搬部材を前記層側対向面に接触させて、前記封止半導体素子を基板に、前記電極側面が基板と接触するように、実装する実装工程、および、
     前記運搬部材を前記層側対向面から離間させる離間工程
    を備えることを特徴とする、半導体装置の製造方法。
    A process for producing a sealed semiconductor element by the method for producing a sealed semiconductor element according to claim 1,
    A mounting step in which the conveying member is brought into contact with the layer-side facing surface, and the sealing semiconductor element is mounted on the substrate so that the electrode side surface is in contact with the substrate; and
    The manufacturing method of the semiconductor device characterized by including the separation process which separates the said conveyance member from the said layer side opposing surface.
PCT/JP2016/083081 2015-11-20 2016-11-08 Manufacturing methods for sealed semiconductor element and semiconductor device WO2017086206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-227423 2015-11-20
JP2015227423A JP2017098354A (en) 2015-11-20 2015-11-20 Method for manufacturing sealed semiconductor element and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2017086206A1 true WO2017086206A1 (en) 2017-05-26

Family

ID=58719194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083081 WO2017086206A1 (en) 2015-11-20 2016-11-08 Manufacturing methods for sealed semiconductor element and semiconductor device

Country Status (2)

Country Link
JP (1) JP2017098354A (en)
WO (1) WO2017086206A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748290A (en) * 2019-03-26 2020-10-09 日东电工株式会社 Dicing tape with adhesive film

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7463153B2 (en) * 2020-03-23 2024-04-08 東レエンジニアリング株式会社 Mounting method and mounting device
WO2021193135A1 (en) * 2020-03-23 2021-09-30 東レエンジニアリング株式会社 Mounting method, mounting device, and transfer device
JP2022135730A (en) * 2021-03-05 2022-09-15 株式会社ブイ・テクノロジー Transfer device and transfer method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234136A (en) * 1999-12-14 2001-08-28 Nitto Denko Corp Releasable pressure-sensitive adhesive sheet
JP2003306657A (en) * 2002-02-07 2003-10-31 Sumitomo Chem Co Ltd Adhesive resin composition and adhesive film
JP2012039013A (en) * 2010-08-10 2012-02-23 Citizen Electronics Co Ltd Manufacturing method of light-emitting devices
JP2012136678A (en) * 2010-12-28 2012-07-19 Nitto Denko Corp Radiation-curable pressure-sensitive adhesive composition, and pressure-sensitive adhesive sheet
JP2014168033A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Reflection layer-phosphor layer covered led, manufacturing method of the same, led device, and manufacturing method of led device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234136A (en) * 1999-12-14 2001-08-28 Nitto Denko Corp Releasable pressure-sensitive adhesive sheet
JP2003306657A (en) * 2002-02-07 2003-10-31 Sumitomo Chem Co Ltd Adhesive resin composition and adhesive film
JP2012039013A (en) * 2010-08-10 2012-02-23 Citizen Electronics Co Ltd Manufacturing method of light-emitting devices
JP2012136678A (en) * 2010-12-28 2012-07-19 Nitto Denko Corp Radiation-curable pressure-sensitive adhesive composition, and pressure-sensitive adhesive sheet
JP2014168033A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Reflection layer-phosphor layer covered led, manufacturing method of the same, led device, and manufacturing method of led device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748290A (en) * 2019-03-26 2020-10-09 日东电工株式会社 Dicing tape with adhesive film
CN111748290B (en) * 2019-03-26 2023-12-01 日东电工株式会社 Dicing tape with adhesive film

Also Published As

Publication number Publication date
JP2017098354A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US8017444B2 (en) Adhesive sheet, semiconductor device, and process for producing semiconductor device
KR101420902B1 (en) Dicing/die bonding film
WO2017086206A1 (en) Manufacturing methods for sealed semiconductor element and semiconductor device
TWI503395B (en) Die-bonding film, dicing. die-bonding film and fabricating method of semicomductor device
EP1411547A2 (en) Dicing/die-bonding-film, method of fixing semiconductor chips and semiconductor device
KR20160128936A (en) Adhesive composition for semiconductor, adhesive film for semiconductor, and dicing die bonding film
WO2017057454A1 (en) Method for manufacturing light-emitting device, and method for manufacturing display device
TWI669363B (en) Reagent composition, adhesive sheet, and method of manufacturing semiconductor device
JP7409029B2 (en) Method for manufacturing semiconductor devices, integrated dicing/die bonding film, and method for manufacturing the same
CN104946149B (en) Die bonding film with dicing sheet, semiconductor device, and method for manufacturing semiconductor device
TW202035605A (en) Adhesive film, adhesive film with dicing tape and method for manufacturing semiconductor device
CN110383438B (en) Adhesive sheet
TW200949922A (en) Dicing method
TW202040658A (en) Dicing tape with bonding film characterized by allowing the adhesive layer of the UV curable dicing tape to ensure the retention of the annular frame even after UV irradiation
TW202039727A (en) Dicing tape with adhesive film capable of realizing a higher ultraviolet curing speed for an adhesive layer
JP2016208033A (en) Manufacturing method of encapsulated semiconductor element and semiconductor device
JP6735270B2 (en) Film adhesive, adhesive sheet, and method for manufacturing semiconductor device
WO2017047246A1 (en) Sealed optical semiconductor element and method for manufacturing light emitting device
CN115397870A (en) Sheet for sealing optical semiconductor element
JP6543564B2 (en) Method of manufacturing coated optical semiconductor device
JP2019075449A (en) Dicing die bonding sheet and manufacturing method of semiconductor chip
KR102541672B1 (en) adhesive sheet
CN112011287B (en) Dicing tape and dicing die bonding film
JP2010132807A (en) Adhesive composition, adhesive sheet and method of manufacturing semiconductor device
CN111748298B (en) Transparent adhesive sheet and transparent adhesive sheet with release material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866208

Country of ref document: EP

Kind code of ref document: A1