WO2021193135A1 - Mounting method, mounting device, and transfer device - Google Patents

Mounting method, mounting device, and transfer device Download PDF

Info

Publication number
WO2021193135A1
WO2021193135A1 PCT/JP2021/010010 JP2021010010W WO2021193135A1 WO 2021193135 A1 WO2021193135 A1 WO 2021193135A1 JP 2021010010 W JP2021010010 W JP 2021010010W WO 2021193135 A1 WO2021193135 A1 WO 2021193135A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
substrate
semiconductor chip
transferred
mounting
Prior art date
Application number
PCT/JP2021/010010
Other languages
French (fr)
Japanese (ja)
Inventor
新井 義之
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020051720A external-priority patent/JP7463153B2/en
Priority claimed from JP2021012397A external-priority patent/JP2022115687A/en
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to KR1020227025264A priority Critical patent/KR20220158219A/en
Priority to CN202180022696.6A priority patent/CN115335974A/en
Publication of WO2021193135A1 publication Critical patent/WO2021193135A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/98Methods for disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68368Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/951Supplying the plurality of semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/40Details of apparatuses used for either manufacturing connectors or connecting the semiconductor or solid-state body
    • H01L2924/401LASER

Definitions

  • the present invention relates to a transfer device, a mounting method, and a mounting device for stably mounting a semiconductor chip with high accuracy.
  • LEDs used in displays are required to mount semiconductor chips of 50 um ⁇ 50 um or less called micro LEDs with an accuracy of several um at high speed.
  • Patent Document 1 a laser beam generated from a laser light source is reflected by a galvano mirror, and a plurality of elements arranged on the transfer source substrate are selectively irradiated, so that an element separated from the transfer source substrate by irradiation is transferred to a transfer destination.
  • the transfer method of the element to be transferred to the substrate is described. By this transfer method, it is possible to transfer a minute-sized element to the transfer destination substrate at high speed, and it is also possible to mount the element on the circuit board at high speed by using this.
  • an object of the present invention is to provide a mounting method and a mounting device capable of mounting a semiconductor chip on a circuit board with high productivity.
  • the mounting method of the present invention includes a first transfer step of transferring a plurality of semiconductor chips formed on a carrier substrate to a first transfer substrate, and transfer to the first transfer substrate.
  • An inspection step of inspecting the state of the semiconductor chip a second transfer step of transferring only the semiconductor chip determined to be normal by the inspection step from the first transfer substrate to the second transfer substrate, and the second transfer step. It is characterized by having a mounting process of mounting a semiconductor chip transferred to a transfer board onto a circuit board.
  • the second transfer step only the semiconductor chips judged to be normal in the inspection step are transferred from the first transfer substrate to the second transfer substrate, so that the semiconductor chips need to be repaired after mounting.
  • the number of circuits can be significantly reduced, and the productivity of the circuit board can be improved.
  • the mounting step includes a crimping step of crimping the semiconductor chip together with the second transfer board to the circuit board, and a separation step of separating the second transfer board and the semiconductor chip.
  • the transfer of the semiconductor chip is selectively performed in the second transfer step so that the semiconductor chips are arranged on the second transfer board facing the crimping step according to the position where the semiconductor chip should be arranged on the circuit board. Good to be done.
  • first transfer step and the second transfer step are performed by laser lift-off, and the first element spacing, which is the spacing between the semiconductor chips transferred to the first substrate by the first transfer step. Is smaller than the distance between the second elements, which is the distance between the semiconductor chips transferred to the second substrate by the second transfer step, and the oscillation frequency of the laser light in the first transfer step is the second. It may be higher than the oscillation frequency of the laser beam in the transfer process.
  • the distance between the semiconductor chips on the substrate is set to be relatively small until the first transfer step immediately before the second transfer step, so that the element can emit laser light at a relatively high oscillation frequency. Since the transfer can be performed, the transfer of the semiconductor chip to the circuit board can be completed in a short time.
  • each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the semiconductor chip at the second element interval when the unit is operated.
  • the semiconductor chip can be transferred in the shortest possible time even in the second transfer step.
  • the optical path of the laser beam is controlled by the galvano mirror.
  • the circuit board is provided with a repair semiconductor chip that functions in place of the semiconductor chip determined to be abnormal as a result of the post-mounting inspection step of inspecting the performance of the semiconductor chip mounted on the circuit board and the post-mounting inspection step.
  • the semiconductor chips are arranged from the first transfer board so as to be arranged according to the position where the semiconductor chips for repair should be arranged on the circuit board. It is preferable that the semiconductor chip is selectively transferred to the second transfer substrate, the semiconductor chip is crimped to the circuit board together with the second transfer substrate, and the second transfer substrate is separated from the semiconductor chip.
  • the state of the semiconductor chip on the first transfer substrate is inspected by visual inspection by image analysis.
  • the inspection process can be completed in a short time.
  • the state of the semiconductor chip on the first transfer substrate is inspected by photoluminescence.
  • a chip removing step of removing the semiconductor chip determined to be abnormal from the first transfer substrate between the inspection step and the second transfer step is preferable to further have a chip removing step of removing the semiconductor chip determined to be abnormal from the first transfer substrate between the inspection step and the second transfer step.
  • the mounting apparatus of the present invention transfers a plurality of semiconductor chips from the carrier substrate to the first transfer substrate and transfers the semiconductor chips from the first transfer substrate to the second transfer substrate.
  • the second transfer substrate is characterized in that only semiconductor chips determined to be normal by the inspection of the inspection unit are transferred from the first transfer substrate.
  • the mounting apparatus of the present invention only the semiconductor chips judged to be normal by the inspection of the inspection unit are transferred from the first transfer board to the second transfer board, so that the number of semiconductor chips that need to be repaired after mounting is increased. Can be significantly reduced, and the productivity of the circuit board can be improved.
  • the transfer device of the present invention includes a laser light source that emits laser light and can control the oscillation frequency of the laser light, and an optical path control unit that controls the optical path of the laser light.
  • a transfer device that controls the irradiation position of laser light on the transfer substrate by the optical path control unit and transfers any of the plurality of elements held on the transfer substrate to the transfer substrate by laser lift-off.
  • the first substrate is the substrate to be transferred, the first transfer mode in which the element is transferred to the first substrate, the first substrate is the transfer substrate, and the second substrate is the transfer substrate.
  • the elements have a second transfer mode in which the element held on the first substrate is transferred to the second substrate, and the elements are transferred to the first substrate by the first transfer mode.
  • the first element spacing which is the spacing between the elements
  • the second element spacing which is the spacing between the elements transferred to the second substrate by the second transfer mode, and the laser in the first transfer mode.
  • the light oscillation frequency is characterized in that it is higher than the oscillation frequency of the laser beam in the second transfer mode.
  • the distance between the elements on the substrate is set to be relatively small, so that the elements are transferred while emitting laser light at a relatively high oscillation frequency. Therefore, the transfer of the element to the circuit board can be completed in a short time.
  • the second board may be a circuit board on which a wiring circuit is formed.
  • the transfer is performed under the condition that the element spacing on the substrate is relatively small until just before the circuit board, so that the transfer of the element to the circuit board can be completed in a shorter time.
  • each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the element at the second element interval when the unit is operated.
  • the element can be transferred in the shortest possible time even in the second transfer mode.
  • optical path control unit should be a galvano mirror.
  • the optical path control unit can be formed with a simple configuration.
  • the distance between the first elements is preferably equal to the distance between the elements in the growth substrate which is the substrate on which the element is grown.
  • the distance between the elements in the first transfer mode becomes close to the minimum, and the oscillation frequency of the laser beam in the first transfer mode can be set higher.
  • the performance determination mode for determining the operating performance of each of the elements, and in the first transfer mode, only the element determined to be normal in the performance determination mode is transferred to the first substrate. Is good.
  • a semiconductor chip can be mounted on a circuit board with high productivity.
  • FIG. 1 shows a mounting device that performs the mounting method of the present invention.
  • the mounting device 100 includes a transfer unit 10, an inspection unit 20, and a mounting unit 30, in which the transfer unit 10 performs a first transfer step and a second transfer step, and the mounting unit 30 performs a mounting step. Will be. Further, the semiconductor chip is inspected by the inspection unit 20 between the first transfer step and the second transfer step. Further, the transfer of the substrates (carrier substrate 2, first transfer substrate 4a, second transfer substrate 4b, circuit board 6) between the devices is carried out by one or more types of robot hands 40.
  • the transfer unit 10 is located below the laser irradiation unit 12 that irradiates the laser beam 11, the transfer substrate holding unit 13 that holds the transfer substrate and can move at least in the X-axis direction and the Y-axis direction, and the transfer substrate holding unit 13.
  • a transfer substrate holding unit 14 that holds the transfer substrate so as to face the transfer substrate with a gap, and a control unit (not shown) are provided.
  • the laser irradiation unit 12 is a device that irradiates a laser beam 11 such as an excimer laser, a YAG laser, or a visible light laser at a predetermined oscillation frequency, and is fixedly provided on the transfer unit 10.
  • the laser irradiation unit 12 irradiates the spot-shaped laser light 11, and the laser light 11 is in the X-axis direction and the Y-axis via the galvanometer mirror 15 and the f ⁇ lens 16 whose angle is adjusted by the control unit.
  • the irradiation position in the direction is controlled, and the semiconductor chips 1 arranged on the transfer substrate held by the transfer substrate holding portion 13 are selectively irradiated.
  • the oscillation frequency in the present description refers to the number of times that a predetermined optical output is repeatedly output in 1 second.
  • the predetermined optical output is repeated 1000 times per second. It is output.
  • the larger the oscillation frequency the shorter the time interval of the optical output.
  • the first transfer step and the second transfer step are carried out by the transfer unit 10.
  • the carrier substrate 2 corresponds to the transfer substrate
  • the first transfer substrate 4a corresponds to the substrate to be transferred.
  • the second transfer step the first transfer substrate 4a corresponds to the transfer substrate
  • the second transfer substrate 4b corresponds to the transfer substrate.
  • the transfer substrate holding portion 13 has an opening and sucks and holds the vicinity of the outer peripheral portion of the transfer substrate.
  • the laser beam 11 emitted from the laser irradiation unit 12 can be applied to the transfer substrate held by the transfer substrate holding unit 13 through this opening.
  • the transfer substrate holding portion 13 moves relative to the transferred substrate holding portion 14 at least in the X-axis direction and the Y-axis direction by a moving mechanism (not shown).
  • the control unit controls this movement mechanism and adjusts the position of the transfer substrate holding unit 13, so that the relative position of the semiconductor chip 1 held on the transfer substrate with respect to the transferred substrate can be adjusted.
  • the transfer substrate holding portion 14 has a flat surface on the upper surface and holds the transfer substrate during the transfer process of the semiconductor chip 1.
  • a plurality of suction holes are provided on the upper surface of the transfer substrate holding portion 14, and the back surface of the transfer substrate (the surface on which the semiconductor chip 1 is not transferred) is held by the suction force.
  • the transfer substrate holding portion 13 moves in the X-axis direction and the Y-axis direction, so that the transfer substrate holding portion 13 and the transferred substrate holding portion 14 move relative to each other.
  • the substrate holding portion 14 to be transferred is also provided with moving mechanisms in the X-axis direction and the Y-axis direction. You may be.
  • the inspection unit 20 includes a camera 21, a substrate holding unit 22 to be inspected, and a control unit (not shown).
  • the inspection target held by the substrate holding unit 22 to be inspected is imaged by the camera 21 and a semiconductor chip is analyzed by image analysis. Perform the visual inspection of 1.
  • the inspection target is a plurality of semiconductor chips 1 transferred to the first transfer substrate 4a.
  • the semiconductor chip 1 on the first transfer substrate 4a does not reach its performance in the process of forming the semiconductor chip 1 in the carrier substrate 2 described later, or cracks occur during transfer to the first transfer substrate 4a. There is. Whether or not the performance of the semiconductor chip 1 is normal can be determined with high accuracy by checking the color and shape of the semiconductor chip 1.
  • the camera 21 is, for example, a CMOS camera in the present embodiment, and has an image pickup element, and uses a signal received from the outside as a trigger to convert a light beam formed on the image pickup element into an electric signal to create a digital image. ..
  • the image pickup direction of the camera 21 is vertically downward, and the semiconductor chip 1 is imaged from above.
  • the camera 21 is attached to a moving device (not shown), the moving device is driven by control by the control unit, and the camera 21 moves in the X-axis direction and the Y-axis direction.
  • the inspection unit 20 has a lighting unit (not shown).
  • the illumination unit is LED illumination, and emits light in synchronization with the movement of the camera 21 by the moving device, and when the illumination unit emits light, the camera 21 takes an image in the X-axis direction and the Y-axis direction. The appearance of the plurality of arranged semiconductor chips 1 is continuously imaged.
  • the mounting unit 30 includes a mounting table 31, a head 32, and a two-field optical system 33, and also includes a control unit (not shown).
  • the mounting table 31 can mount the circuit board 6 and hold it so as not to move by vacuum suction, and is configured to be movable in the X and Y axis directions by the XY stage.
  • the mounting table 31 has a heater 34, and the temperature of the surface of the mounting table 31 ( ⁇ the temperature of the circuit board 6 mounted on the mounting table 31) can be controlled by the control unit. .. Further, the mounting table 31 is provided with a thermometer (not shown), and the temperature of the mounting table 31 measured by the thermometer can be fed back to control the temperature.
  • the tip of the head 32 is a substantially flat surface, has one or more suction holes, and sucks and holds the surface of the second transfer substrate 4b on the side where the semiconductor chip 1 is not transferred during the mounting process. Further, the head 32 is movable in the Z-axis direction, and the circuit board 6 held by the mounting table 31 and the bump of the semiconductor chip 1 transferred to the second transfer board 4b held by the head 32 are transferred to each other. Contact and pressurize. Further, the head 32 has a heater 35, and the temperature of the head 32, particularly the tip portion, can be controlled by the control unit. Further, the head 32 is provided with a thermometer (not shown), and the temperature of the head 32 measured by the thermometer can be fed back to control the temperature.
  • the head 32 is configured to be movable in the ⁇ direction (the central direction centered on the Z-axis direction), and the mounting table 31 is moved in the X and Y-axis directions and the head 32 is moved in the Z-axis and ⁇ directions.
  • the semiconductor chip 1 can be thermocompression-bonded and mounted at a predetermined position on the circuit board 6 by interlocking with the above.
  • the heater 34 and the heater 35 are controlled at the same time, and the temperature of the surface of the mounting table 31 and the temperature of the tip of the head 32 ( ⁇ the temperature of the second transfer substrate 4b) are always equal during the mounting process. I am trying to be. By doing so, as described above, even if the circuit board 6 and the second transfer board 4b thermally expand during the mounting process, the portion of the second transfer board 4b that comes into contact with the semiconductor chip 1 and the circuit board 6 are on the circuit board 6. The position relative to the portion where the bumps of the semiconductor chip 1 are joined is unlikely to change, and high-precision mounting can be stably performed.
  • the head 32 is configured to move in the Z-axis and ⁇ directions
  • the mounting table 31 is configured to move in the X and Y-axis directions. It can be changed.
  • the head 32 may move in the X-axis, Y-axis, and ⁇ directions
  • the mounting table 31 may move in the Z-axis direction.
  • the movement mechanism in the ⁇ direction can be omitted if it is not necessary. For example, if there is no rotational deviation in the positions of the semiconductor chip 1 and the circuit board 6, the movement mechanism in the ⁇ direction can be omitted.
  • the two-field optical system 33 can enter between the head 32 and the circuit board 6 when the circuit board 6 is mounted on the mounting table 31 and capture both images. Each captured image is image-processed by the control unit to recognize the respective positional deviation. Then, in consideration of this misalignment, the control unit controls the semiconductor chips 1 so that they are brought into contact with and joined to a predetermined position on the circuit board 6, thereby causing the semiconductor chips 1 to be joined in the X and Y axis directions. Implement with high precision.
  • FIG. 5 is a diagram illustrating a first transfer step of the mounting method in the present invention.
  • FIG. 6 is a diagram illustrating an inspection step and a chip removing step of the mounting method in the present invention.
  • FIG. 9 is a diagram illustrating a second transfer step of the mounting method in the present invention.
  • FIG. 10 is a diagram illustrating a mounting process in another embodiment.
  • the surface held by the carrier substrate is defined as the first surface, and the surface opposite to the first surface is defined as the second surface.
  • a bump is formed on the surface of the circuit board and is joined to the circuit board.
  • performing the first transfer step by the transfer unit 10 is also referred to as a first transfer mode
  • performing the second transfer step described later by the transfer unit 10 is also referred to as a second transfer mode.
  • FIG. 5A shows a plurality of semiconductor chips 1 after dicing in which the first surface is held on the carrier substrate 2.
  • the carrier substrate 2 extends in the depth direction of FIG. 1 and has a circular shape or a quadrangular shape, and is made of silicon, gallium arsenide, sapphire, or the like. Further, a plurality (hundreds to tens of thousands) of semiconductor chips 1 are arranged two-dimensionally along the spread of the carrier substrate 2.
  • the small semiconductor chip 1 called a micro LED has a size of 50 um ⁇ 50 um or less, and is arranged at a pitch obtained by adding the dicing width to this size.
  • Such a small semiconductor chip 1 is required to be mounted on a circuit board 6 with high accuracy (for example, an accuracy of 1 um or less). Further, bumps are formed on the second surface of the semiconductor chip 1.
  • FIG. 5B shows a first transfer in which a second surface, which is a surface opposite to the first surface, which is a surface held by the carrier substrate 2 of the semiconductor chip 1, is attached to the first transfer substrate 4a.
  • the substrate pasting process is shown.
  • the first transfer substrate 4a is first held by the substrate portion 14 to be transferred by vacuum suction, and an adhesive layer 3a is formed on the surface on which the semiconductor chip 1 is attached.
  • the carrier substrate 2 holding the semiconductor chip 1 is sucked and handled by the robot hand 40, and the transfer substrate 4a held by the transfer substrate portion 14 shown in FIG. 2
  • the second surface of the semiconductor chip 1 is attached onto the adhesive layer 3a.
  • the carrier substrate removing step is executed on the first transfer substrate 4a to which the semiconductor chip 1 is attached together with the carrier substrate 2 as described above.
  • the carrier substrate removing step the carrier substrate 2 is peeled off from the semiconductor chip 1 by laser lift-off and removed.
  • the laser beam 11a emitted from the laser irradiation unit 12 shown in FIG. 2 is irradiated on the first surface of the semiconductor chip 1 through the carrier substrate 2.
  • a part of the GaN layer of the micro LED which is the semiconductor chip 1 is decomposed into Ga and N, and the semiconductor chip 1 is peeled off from the carrier substrate 2 made of sapphire.
  • the carrier substrate 2 in which all the semiconductor chips 1 are irradiated with the laser beam 11a is removed by separating the robot hand 40 on which the carrier substrate 2 is vacuum-adsorbed from the first transfer substrate 4a.
  • the semiconductor chip 1 is transferred from the carrier substrate 2 to the first transfer substrate 4a through the first transfer substrate attaching step and the carrier substrate removing step in this way.
  • the step of transferring the semiconductor chip 1 from the carrier substrate 2 to the first transfer substrate 4a is referred to as a first transfer step.
  • the carrier substrate 2 is removed after the second surface of the semiconductor chip 1 is attached to the first transfer substrate 4a in the first transfer step, but the first is not limited to this.
  • the carrier substrate 2 is irradiated with a laser under a state where the transfer substrate 4a is prepared at a position slightly separated from the second surface of the semiconductor chip 1, a part of the GaN layer of the micro LED is decomposed into Ga and N.
  • the semiconductor chip 1 may be urged by the propulsive force generated thereby, and may fly from the carrier substrate 2 to the first transfer substrate 4a and adhere to the first transfer substrate 4a.
  • the semiconductor chip 1 is transferred from the carrier substrate 2 to the first transfer substrate 4a by peeling the carrier substrate 2 from the semiconductor chip 1 by laser lift-off, but the present invention is not necessarily limited to this. It can be changed as appropriate.
  • the carrier substrate 2 may be scraped off from the side opposite to the side on which the semiconductor chip 1 is provided to be removed. This is called backgrinding, and this backgrinding technique is used because laser lift-off is not applicable, especially in the case of red LEDs.
  • the inspection step shown in FIG. 6A is executed in the inspection unit 20 shown in FIG.
  • the camera 21 is above the hundreds to tens of thousands of semiconductor chips 1 arranged in the X-axis direction and the Y-axis direction on the first transfer substrate 4a that is adsorbed and held by the substrate holding portion to be inspected. Takes an image while moving.
  • the control unit of the inspection unit 20 analyzes the image obtained by this imaging, and visually inspects the color, shape, and the like of each semiconductor chip 1.
  • the time required for the inspection step for this one first transfer substrate 4a is about 30 minutes when the first transfer substrate 4a is a 6-inch wafer.
  • the transfer device 1 in this embodiment includes a wavelength measurement unit 20 as an inspection unit 20, and the emission characteristics (for example, emission wavelength) of each element 1 in which the wavelength measurement unit 20 is a light emitting element. Is measured, and the measurement result is reflected in the transfer of the element 1 in the transfer unit 10.
  • the wavelength measuring unit 20 measures the emission wavelength of each element 1 on the first transfer substrate 4a by using photoluminescence, and the laser light source 23, the wavelength measuring device 24, and the substrate to be inspected.
  • a holding portion 22 is provided.
  • the back surface of the first transfer substrate 4a which is the substrate to be inspected, is set by the substrate holding portion 22 to be inspected so that the surface (front surface) on which the element 1 is held is horizontal and upward. It is sucked and gripped.
  • the laser light source 23 is a device that emits one laser beam L2, and in the present embodiment, emits a laser beam such as a YAG laser or a visible light laser.
  • the wavelength measuring device 24 measures the wavelength of the light incident on itself, and a known optical wavemeter is applied.
  • the laser beam L2 When the laser beam L2 is incident on the element 1 at a predetermined position on the first transfer substrate 4a, the electrons in the element 1 are excited. When this electron returns to the ground state, it emits emitted light L3 (so-called photoluminescence).
  • emitted light L3 so-called photoluminescence
  • the substrate holding portion 22 to be inspected can be moved in the X-axis direction and the Y-axis direction by the moving stage, and the first transfer substrate 4a is moved in the X-axis direction and Y with respect to the laser light source 23 and the wavelength measuring instrument 24. Move relative to the axial direction.
  • the wavelength measuring unit 20 measures the emission wavelengths of all the elements 1 held by the first transfer substrate 4a.
  • FIG. 8 is a graph showing the distribution of the emission wavelength of the element 1 on the first transfer substrate 4a obtained by the wavelength measuring unit 20.
  • the horizontal axis is the emission wavelength
  • the vertical axis is the number of elements 1 (number of elements) that emit light at each emission wavelength.
  • the control device has a group A in a predetermined wavelength range including an emission wavelength having a mode value with respect to this distribution and a group outside the group A (the emission wavelength is larger than the mode value). It is classified into two groups of group B (different groups).
  • the red LED emits light of 600 nm to 780 nm
  • the green LED emits light of 505 nm to 530 nm
  • the blue LED emits light of 470 to 485 nm.
  • the wavelength range is set as group A, and the range outside the range is set as group B.
  • the control device determines that the element 1 belonging to group B whose emission wavelength is far from the mode value has not reached the performance. Then, only the element 1 belonging to the group A, which is the element 1 having normal performance, is used as the first transfer substrate so that the element 1 of the group B is not used for the transfer to the second transfer substrate 4b in the transfer unit 10. Transfer from 4a to the second transfer substrate 4b.
  • the wavelength measurement unit 20 measuring the emission wavelength of each element 1 as described above is called a wavelength measurement mode, and the operating performance of each element 1 is normal as in group A.
  • the control device determines the operating performance of each element 1 such as whether it falls into the category or falls into the unachieved category such as group B it is called a performance determination mode.
  • the completed display will have no uneven light emission.
  • the performance determination mode is executed prior to the first transfer mode, and in the first transfer mode, only the element 1 determined to be normal in the performance determination mode is transferred to the second transfer substrate 4b.
  • the chip removing step shown in FIG. 6B is carried out after the inspection step.
  • the semiconductor chip 1 is burnt out by irradiating the semiconductor chip 1 (two semiconductor chips 1 represented by dots in FIG. 6B) determined to be abnormal in the inspection process with laser light 11b. , Removed from the first transfer substrate 4a.
  • This chip removing step may be carried out by the transfer unit 10. Since the laser beam 11b at this time needs to burn out the semiconductor chip 1, it is irradiated from the laser irradiation unit 12 with a power stronger than that of the laser beam 11a in the first transfer step described above.
  • the transfer substrate holding portion 13 (not shown) holds the first transfer substrate 4a so that the adhesive layer 3a and the semiconductor chip 1 face downward as shown in FIG. 9A.
  • the transfer substrate holding portion 14 holds the second transfer substrate 4b so that the second transfer substrate 4b having the adhesive layer 3b is located below the first transfer substrate 4a.
  • the control unit of the transfer unit 10 adjusts the angle of the galvano mirror 15 to transmit the laser beam 11c through the first transfer substrate 4a at the interface between the adhesive layer 3a and the second surface of the predetermined semiconductor chip 1.
  • the semiconductor chip 1 is laser lifted off. Specifically, gas is generated from the adhesive layer 3a by irradiation with the laser beam 11, and the semiconductor chip 1 is urged by the generation of this gas, flies downward from the first transfer substrate 4a, and is a second transfer substrate. Land on 4b.
  • the semiconductor chip 1 transferred to the second transfer substrate 4b in this way has a first surface facing the second transfer substrate 4b, and the bumps are exposed on the surface.
  • this second transfer step not all the semiconductor chips 1 on the first transfer substrate 4a are continuously transferred, but the semiconductor chips 1 are selectively transferred as shown in FIG. 9B.
  • the arrangement of the semiconductor chips 1 on the first transfer substrate 4a immediately after the first transfer step is equivalent to the arrangement of the semiconductor chips 1 on the carrier substrate 2 before the first transfer step.
  • the arrangement of the semiconductor chips 1 on the second transfer board 4b is arranged according to the position where the semiconductor chips 1 should be arranged on the circuit board 6 in preparation for the mounting process described later. More specifically, the semiconductor chips 1 are arranged on the second transfer board 4b in a layout that has a mirror image relationship with the layout of the semiconductor chips 1 in the region where the semiconductor chips 1 can be mounted on the circuit board 6 in one mounting process. Has been done.
  • the semiconductor chip 1 that can be transferred to the position to be transferred on the second transfer substrate 4b is transferred to the first transfer substrate 4a. May not exist. In that case, as shown in FIG. 9C, it is advisable to move the first transfer substrate 4a and the second transfer substrate 4b relative to each other, and then perform laser lift-off.
  • how to relatively move the first transfer substrate 4a and the second transfer substrate 4b to form a predetermined layout on the second transfer substrate 4b with the minimum number of movements depends on AI. You may use it to make a decision.
  • the power of the laser beam 11c when the laser is lifted off from the first transfer substrate 4a is sufficient to decompose the adhesive layer 3a, and the power of the laser beam 11a for decomposing the GaN layer in the first transfer step is sufficient.
  • the mounting steps shown in FIGS. 10A to 10C are carried out in the mounting unit 30 shown in FIG.
  • the head 32 shown in FIG. 4 holds the surface of the second transfer board 4b on the side where the semiconductor chip 1 is not transferred, and the second transfer board 4b is mounted on a mounting table 31 described later.
  • the circuit board 6 is opposed to the semiconductor chip 1 held on the second transfer board 4b.
  • the head 32 approaches the circuit board 6, and as shown in FIG. 10B, the bump provided on the second surface of the semiconductor chip 1 and the circuit board 6 are brought into contact with each other to further pressurize the circuit board 6.
  • a bonding material 5 such as ACF (anisotropic conductive film) is provided on the surface of the circuit board 6 with which the semiconductor chip 1 abuts, and the semiconductor chip 1 abuts on the bonding material 5. After that, the semiconductor chip 1 is held by the bonding material 5.
  • ACF anisotropic conductive film
  • the head 32 is provided with a heater 35, and when the semiconductor chip 1 is pressurized, the heater 35 operates to heat the semiconductor chip 1 to a relatively low temperature of 50 ° C. or lower, thereby joining through the semiconductor chip 1.
  • the temperature of the material 5 rises, and the adhesive force of the bonding material 5 around the bump of the semiconductor chip 1 increases.
  • the semiconductor chip 1 is thermocompression-bonded to the extent that the position does not shift with respect to the wiring of the circuit board 6. That is, the semiconductor chip 1 is temporarily crimped to the circuit board 6.
  • the semiconductor chip 1 may not be heated during the temporary crimping. I do not care.
  • crimping the semiconductor chip 1 together with the second transfer board 4b to the circuit board 6 in this way is referred to as a crimping step.
  • the head 32 is separated from the circuit board 6 while holding the second transfer board 4b, so that the second transfer board 4b is separated from the semiconductor chip 1.
  • Separating the second transfer substrate 4b and the semiconductor chip 1 in this way is referred to as a separation step in this description.
  • the second transfer board 4b is simply separated from the circuit board 6 for the second transfer. It is possible to separate the substrate 4b and the semiconductor chip 1.
  • a plurality of semiconductor chips 1 are simultaneously crimped by one mounting step.
  • the semiconductor chip 1 is a micro LED
  • the number of semiconductor chips 1 mounted on one circuit board 6 is tens of thousands.
  • 3840 ⁇ 2160 ⁇ 3 semiconductor chips 1 are arranged in one panel, but a plurality of semiconductor chips 1 are collectively transferred to one second transfer substrate 4b, and the semiconductor chips 1 are transferred to one second transfer substrate 4b.
  • the time required for mounting can be significantly reduced.
  • the number of semiconductor chips 1 to be transferred to the second transfer substrate 4b at one time is considered to be 80 ⁇ 80, 120 ⁇ 120, or the like.
  • the semiconductor chip 1 may be mainly crimped to the circuit board 6 in the crimping step.
  • a series of mounting methods in the present invention is completed when the separation step is completed.
  • the coefficient of thermal expansion of at least the surface of the head 32 in contact with the second transfer substrate 4b (the tip of the head 32), the coefficient of thermal expansion of the second transfer substrate 4b, and the semiconductor chip 1 of the circuit board 6 are mounted. It is preferable that the coefficients of thermal expansion of the surfaces are the same.
  • the material of the tip of the head 32, the second transfer board 4b, and the surface on which the semiconductor chip 1 of the circuit board 6 is mounted is the same.
  • the material of the circuit board 6 is glass
  • glass is used as the material of the tip of the head 32 and the material of the second transfer board 4b as in the circuit board 6.
  • SUS304 is used as the material of the tip of the head 32 and the material of the second transfer board 4b.
  • the coefficient of thermal expansion of copper is 16.8 ppm
  • the coefficient of thermal expansion of SUS304 is 17.3 ppm, and the difference is about 3%.
  • a heater 34 is provided not only on the head 32 but also on the mounting table 31, and the temperature of the head 32 and the second transfer board 4b and the semiconductor chip 1 of the circuit board 6 are mounted while the thermocompression bonding process is performed.
  • the heater 34 and the heater 35 are controlled so that the temperature of the surface to be formed is always equal to that of the surface. By doing so, even if the circuit board 6, the head 32, and the second transfer board 4b thermally expand during the mounting process, the portion of the second transfer board 4b that comes into contact with the semiconductor chip 1 and the circuit board 6 The position relative to the portion where the bump of the semiconductor chip 1 is joined is unlikely to change, and high-precision mounting can be stably performed.
  • FIG. 11 is a diagram illustrating a lighting inspection process and a repair process.
  • the circuit board 6 is attached to the lighting inspection device 41 as shown in FIG. 11A. It is placed, all semiconductor chips 1 are turned on, and the light emission performance is inspected.
  • the step of inspecting the performance of the semiconductor chip 1 mounted on the circuit board 6 in this way is referred to as a post-mounting inspection step in the present invention.
  • the post-mounting inspection step (lighting inspection) if there is a semiconductor chip 1 that does not light or has low brightness like the second semiconductor chip 1 from the right in FIG. 11 (a), it is as shown in FIG. 11 (b).
  • the semiconductor chip 1 is irradiated with a laser beam 11d to burn it.
  • the power of the laser beam 11d may be the same as the power of the laser beam 11b in the chip removing step shown in FIG. 6B, and this step may be performed by the transfer unit 10. Even if there is a semiconductor chip 1 having abnormal performance, if a new semiconductor chip 1 can be arranged in the vicinity of the semiconductor chip 1, the semiconductor chip 1 is left without being burnt. It doesn't matter.
  • the joining material 5 may also be burned down.
  • the joining material 5 is applied as shown in FIG. 11 (c).
  • a repair semiconductor chip which is a new semiconductor chip 1 that functions in place of the semiconductor chip 1 having abnormal performance, is mounted at a portion where the semiconductor chip 1 is burnt down.
  • mounting the semiconductor chip for repair in this way is called a repair process, but the time required for one repair is about 30 seconds.
  • the circuit board 6 when used for, for example, a 4K television, 24.88 million semiconductor chips 1 are used. If the defect rate of the semiconductor chip 1 is 0.1%, it is necessary to repair about 25,000 pieces. Then, if the repair semiconductor chips are repaired one by one, the calculation will take about 200 hours just for the repair, and even if the mounting process itself is completed at high speed using the laser lift-off, the repair will greatly increase the productivity. Affect.
  • the mounting method of the present invention has an inspection process. Then, only the semiconductor chip 1 determined to be normal by this inspection step, that is, the semiconductor chip 1 having a non-defective rate of 100% in the inspection step is arranged on the second transfer board 4b, and is mounted on the circuit board 6. As a result, the number of defective lighting chips in the lighting inspection is significantly reduced as compared with the case where the chips are mounted without the inspection process, and the number of semiconductor chips 1 that need to be repaired after mounting can be significantly reduced. Productivity can be improved.
  • the mounting method of the present invention adds an inspection step, but as described above, the time required for the inspection step is about 30 minutes. It is possible to provide the circuit board 6 having a normal lighting rate of 100% by shortening the time.
  • the mounting method of the present invention is further utilized, and as shown in FIG. 12, the semiconductor chip 1 is transferred from the first transfer board 4a to the second transfer board 4b according to a plurality of repair positions on the circuit board 6. Is selectively transferred, and a plurality of points are repaired at the same time using the second transfer substrate 4b, whereby the time required for the repair can be further shortened.
  • FIG. 13 is a schematic view showing the first transfer mode.
  • the substrate to be transferred is the first substrate w1, and the transfer unit 10 transfers the element 1 held by the substrate w0 to the first substrate w1.
  • the substrate w0 may be a growth substrate on which the element 1 is epitaxially grown, or may be an intermediate substrate in which the transfer of the element 1 from the substrate to the substrate is performed once or a plurality of times.
  • the first element spacing d1 which is the pitch of the element 1 transferred to the first substrate w1 is the pitch of the element 1 transferred to the second substrate w2 by the second transfer mode described later. It is smaller than the element spacing d2 of 2. Further, the first element spacing d1 is the pitch of the element 1 formed on the growth substrate at the end of dicing, and the transfer of the element 1 is performed so as to maintain this pitch from the growth substrate to the first substrate w1. It is preferable to be For example, if the element 1 having a dimension of 20 um ⁇ 40 um is formed on the growth substrate at a pitch of 30 um in the short side direction and 50 um in the long side direction, the growth substrate to the first substrate w1 while maintaining this pitch. It is preferable that the transfer is performed.
  • the laser light L1 is emitted from the laser light source 12 at a predetermined oscillation frequency f1.
  • the oscillation frequency f1 (Hz) and the scan speed v1 (m / s) by the galvanometer mirror 15 are set so that each emitted laser beam L1 can laser lift off a predetermined element 1.
  • the transfer unit 10 sets the element 1. It can be transferred in order.
  • the transfer unit 10 can transfer the elements 1 in order, but the oscillation frequency f1 transfers them within a predetermined time. Since the number of elements 1 can be increased, it is preferable that the transfer is performed under the condition that the oscillation frequency f1 is as high as possible.
  • FIG. 14 is a schematic view showing a second transfer mode.
  • the first substrate w1 to which the element 1 is transferred by the above-mentioned first transfer mode is a transfer substrate
  • the second substrate w2 is a transfer substrate
  • the transfer unit 10 is the first substrate w1.
  • the element 1 held in the second substrate w2 is transferred to the second substrate w2.
  • the second substrate w2 is a circuit board for a television display in which a wiring circuit is formed on the surface in the present embodiment, and when the element 1 is transferred onto the wiring circuit, the element 1 which is an LED light emitting element is lit. It will be possible.
  • the transfer unit 10 transfers every few elements 1 held on the first substrate w1, so that the pitch of the elements 1 on the second substrate w2 is on the circuit board. Is adjusted to the pitch to be arranged for the element 1 to function, that is, the pitch of the wiring circuit on the circuit board, that is, the second element spacing d2.
  • the second element spacing d2, which is the pitch of the elements 1 on the substrate w2 of 2 is 600 um.
  • the oscillation frequency of the laser light L1 by the laser light source 12 may be restricted.
  • FIG. 15 is a graph showing the relationship between the scan speed of the optical path control unit (galvano mirror 15) and the oscillation frequency of the laser beam L1.
  • the solid line shows the case where the pitch of the laser lift-off target (element 1) is 0.03 mm
  • the alternate long and short dash line shows the case where the pitch is 0.60 mm.
  • the scan speed of the galvanometer mirror 15 is finite, and if the maximum scan speed is 5 m / s, it is emitted in a pulse shape under the condition of the maximum scan speed.
  • the oscillation frequency of the laser beam L1 capable of transferring the element 1 in which each laser beam L1 is arranged at a pitch of 0.03 mm is about 166 kHz.
  • each laser beam L1 emitted in a pulse shape transfers the element 1 even when the scan speed is the maximum value.
  • the oscillation frequency of the laser beam L1 is only about 8.3 kHz, and even if the laser light source 12 can emit the laser beam L1 at an oscillation frequency of 200 kHz, its performance cannot be fully utilized and the laser beam L1 is transferred within a predetermined time.
  • the number of elements 1 that can be made is relatively small.
  • the oscillation frequency of the laser light source 12 is made different between the first transfer mode and the second transfer mode, and the first element spacing d1 in the first transfer mode is the second in the second transfer mode. It is controlled so that the oscillation frequency f1 in the first transfer mode is higher than the oscillation frequency f2 in the second transfer mode after being made smaller than the element spacing d2 of 2.
  • the scan speed v2 of the galvano mirror 15 is set to be near the maximum speed (5 m / s), and the oscillation frequency f2 is such that each laser beam L1 is a wiring circuit at that time.
  • the frequency (about 8.3 kHz) at which the element 1 can be transferred is set at the second element interval d2 (0.60 mm) corresponding to the pitch of.
  • the scan speed v1 of the galvanometer mirror 15 is equal to the scan speed v2 and is close to the maximum speed (5 m / s), and the oscillation frequency f1 is such that each laser beam L1 is the first at that time.
  • the frequency (about 166 kHz) at which the element 1 can be transferred is set at the element interval d1 (0.03 mm).
  • the transfer speed becomes slow in the second transfer mode due to the relatively large interval d2 of the second element due to the pitch of the wiring circuit, while the first transfer mode immediately before the second transfer mode
  • the distance between the elements on the substrate is relatively small up to the transfer mode of, it is possible to transfer the elements while setting a relatively high oscillation frequency and emitting laser light, so that the elements can be transferred in a short time.
  • the transfer of the element to the circuit board can be completed.
  • the oscillation frequency f2 of the laser beam L1 in the second transfer mode is emitted from the laser light source 12 when the galvano mirror 15 is operated so as to be close to the maximum speed that can be controlled by the galvano mirror 15 which is an optical path control unit. Since each of the laser beams L1 has a frequency at which the element 1 can be transferred at the second element interval d2, the element 1 can be transferred in the shortest possible time even in the second transfer mode.
  • the spacing between the elements 1 in the first transfer mode becomes close to the minimum, and the laser in the first transfer mode
  • the oscillation frequency f1 of the light L1 can be set higher.
  • the mounting method, mounting device, and transfer device of the present invention are not limited to the forms described above, and may be other forms within the scope of the present invention.
  • the first transfer step and the second transfer step are carried out under atmospheric pressure, but the transfer section 10 may be carried out in a reduced pressure environment by providing a pressure reducing section (not shown). ..
  • the semiconductor chip is transferred by a laser in the transfer unit, but other means may be used.
  • the semiconductor chip may be transferred by attaching the semiconductor chip to the adhesive sheet.
  • the laser irradiation position is controlled by the galvano mirror in the transfer unit, but the present invention is not limited to this, and other known techniques such as a polygon mirror may be used to control the laser irradiation position. Further, the laser irradiation position may be controlled only by the relative movement of the transfer substrate and the transfer substrate without utilizing the reflection of the mirror.
  • first transfer step and the second transfer step are carried out by the same transfer section, but different transfer sections may be provided and each transfer section may be used. ..
  • the inspection of the semiconductor chip by the inspection unit is not limited to the visual inspection by image analysis and photoluminescence, and may be, for example, an inspection using X-rays.
  • the second substrate is a circuit board that is finally mounted on a product such as a display, but the present invention is not limited to this, and for example, a substrate that is transferred at a stage before the circuit board is the second substrate. It may be used as a substrate. However, in this case, the number of substrates transferred at the second element interval is multiple including the circuit board, and the transfer time is required accordingly. Therefore, as described above, the circuit board is used as the second substrate, and this second substrate is used. It is most desirable that the transfer of the element from the substrate to the substrate proceeds in a state where the distance between the elements is small until the transfer of the element to the substrate.
  • the first element spacing is the pitch of the elements formed on the growth substrate at the end of dicing, and the transfer of the elements is performed so as to maintain this pitch from the growth substrate to the first substrate.
  • the pitch may be changed in the middle of the process, and the elements may be finally arranged on the circuit board at predetermined intervals.
  • the scan speed is the same in the first transfer mode and the second transfer mode, which is the highest speed that can be controlled by the galvanometer mirror, but the present invention is not limited to this, and for example, in the first transfer mode.
  • the scan speed of may be slower than the scan speed in the second transfer mode.

Abstract

Provided are a mounting method, a mounting device, and a transfer device capable of mounting a semiconductor chip on a circuit board with high productivity. In detail, the mounting method comprises: a first transfer step for transferring, to a first transfer substrate 4a, a plurality of semiconductor chips 1 formed on a carrier substrate 2; an inspection step for inspecting the state of the semiconductor chip 1 transferred to the first transfer substrate 4a; a second transfer step for transferring, from the first transfer substrate 4a to a second transfer substrate 4b, only the semiconductor chip 1 determined to be normal in the inspection step; and a mounting step for mounting, on a circuit board 6, the semiconductor chip 1 transferred to the second transfer substrate 4b.

Description

実装方法、実装装置、および転写装置Mounting method, mounting device, and transfer device
 本発明は、半導体チップを高精度に安定して実装するための転写装置、実装方法、および実装装置に関するものである。 The present invention relates to a transfer device, a mounting method, and a mounting device for stably mounting a semiconductor chip with high accuracy.
 半導体チップは、コスト低減のために小型化し、小型化した半導体チップを高精度に実装するための取組みが行われている。特に、ディスプレイに用いられるLEDはマイクロLEDと呼ばれる50um×50um以下の半導体チップを数umの精度で高速に実装することが求められている。 Semiconductor chips have been miniaturized to reduce costs, and efforts are being made to mount the miniaturized semiconductor chips with high accuracy. In particular, LEDs used in displays are required to mount semiconductor chips of 50 um × 50 um or less called micro LEDs with an accuracy of several um at high speed.
 特許文献1には、レーザ光源から発生したレーザビームをガルバノミラーで反射させ、転写元基板に複数配列された素子に選択的に照射することにより、照射によって転写元基板から剥離した素子を転写先基板に転写する素子の転写方法が記載されている。この転写方法によって、微小な大きさの素子を高速で転写先基板に転写することが可能であり、これを用いて回路基板に素子を高速で実装することも可能である。 In Patent Document 1, a laser beam generated from a laser light source is reflected by a galvano mirror, and a plurality of elements arranged on the transfer source substrate are selectively irradiated, so that an element separated from the transfer source substrate by irradiation is transferred to a transfer destination. The transfer method of the element to be transferred to the substrate is described. By this transfer method, it is possible to transfer a minute-sized element to the transfer destination substrate at high speed, and it is also possible to mount the element on the circuit board at high speed by using this.
特開2006-41500号公報Japanese Unexamined Patent Publication No. 2006-41500
 しかしながら、特許文献1記載の転写方法を用いたのみの実装方法では、実装後のリペアに相当な時間を要するおそれがあった。具体的には、回路基板に半導体チップが正常に実装されたか否かを点灯検査で検査した後、異常であった半導体チップは除去し、あらためて正常な半導体チップを実装する(リペアを行う)必要がある。これに対し、たとえば回路基板が4Kテレビ用途のものである場合、半導体チップは2488万個用いられており、不良率が0.1%であったとしても約2.5万個分のリペアを行う必要がある。そうするとリペアだけで数百時間要する計算となり、たとえ実装工程自体は高速で完了したとしてもリペアが起因して生産性に大きく影響するといった問題があった。 However, with the mounting method only using the transfer method described in Patent Document 1, there is a possibility that a considerable amount of time may be required for repair after mounting. Specifically, after inspecting whether or not the semiconductor chip is normally mounted on the circuit board by lighting inspection, it is necessary to remove the abnormal semiconductor chip and mount (repair) the normal semiconductor chip again. There is. On the other hand, for example, when the circuit board is used for a 4K TV, 24.88 million semiconductor chips are used, and even if the defect rate is 0.1%, about 25,000 repairs are performed. There is a need to do. In that case, the calculation would take hundreds of hours just for repair, and even if the mounting process itself was completed at high speed, there was a problem that the repair would greatly affect the productivity.
 本発明は、上記問題点を鑑み、生産性良く半導体チップを回路基板に実装することができる実装方法および実装装置を提供することを目的としている。 In view of the above problems, an object of the present invention is to provide a mounting method and a mounting device capable of mounting a semiconductor chip on a circuit board with high productivity.
 上記課題を解決するために本発明の実装方法は、キャリア基板に形成された複数の半導体チップを第1の転写基板へ転写する第1の転写工程と、前記第1の転写基板に転写された半導体チップの状態を検査する検査工程と、前記検査工程により正常と判断された半導体チップのみを前記第1の転写基板から第2の転写基板へ転写する第2の転写工程と、前記第2の転写基板に転写された半導体チップを回路基板へ実装する実装工程と、を有することを特徴としている。 In order to solve the above problems, the mounting method of the present invention includes a first transfer step of transferring a plurality of semiconductor chips formed on a carrier substrate to a first transfer substrate, and transfer to the first transfer substrate. An inspection step of inspecting the state of the semiconductor chip, a second transfer step of transferring only the semiconductor chip determined to be normal by the inspection step from the first transfer substrate to the second transfer substrate, and the second transfer step. It is characterized by having a mounting process of mounting a semiconductor chip transferred to a transfer board onto a circuit board.
 本発明の実装方法では、第2の転写工程では検査工程により正常と判断された半導体チップのみを第1の転写基板から第2の転写基板へ転写することにより、実装後にリペアが必要な半導体チップの数を大幅に減らすことができ、回路基板の生産性を向上することができる。 In the mounting method of the present invention, in the second transfer step, only the semiconductor chips judged to be normal in the inspection step are transferred from the first transfer substrate to the second transfer substrate, so that the semiconductor chips need to be repaired after mounting. The number of circuits can be significantly reduced, and the productivity of the circuit board can be improved.
 また、前記実装工程は、前記第2の転写基板ごと半導体チップの回路基板への圧着を行う圧着工程と、前記第2の転写基板と半導体チップとを分離する分離工程と、を有し、前記圧着工程に臨む前記第2の転写基板には前記回路基板に半導体チップが配置されるべき位置に応じて半導体チップが配列されるよう、前記第2の転写工程で半導体チップの転写が選択的に行われると良い。 Further, the mounting step includes a crimping step of crimping the semiconductor chip together with the second transfer board to the circuit board, and a separation step of separating the second transfer board and the semiconductor chip. The transfer of the semiconductor chip is selectively performed in the second transfer step so that the semiconductor chips are arranged on the second transfer board facing the crimping step according to the position where the semiconductor chip should be arranged on the circuit board. Good to be done.
 こうすることにより、複数の半導体チップを一括して回路基板に実装することが可能である。 By doing so, it is possible to mount a plurality of semiconductor chips on a circuit board at once.
 また、前記第1の転写工程および前記第2の転写工程はレーザリフトオフによって行われ、前記第1の転写工程によって前記第1の基板に転写された半導体チップ同士の間隔である第1の素子間隔は前記第2の転写工程によって前記第2の基板に転写された半導体チップ同士の間隔である第2の素子間隔よりも小さく、前記第1の転写工程におけるレーザ光の発振周波数は前記第2の転写工程におけるレーザ光の発振周波数よりも高くても良い。 Further, the first transfer step and the second transfer step are performed by laser lift-off, and the first element spacing, which is the spacing between the semiconductor chips transferred to the first substrate by the first transfer step. Is smaller than the distance between the second elements, which is the distance between the semiconductor chips transferred to the second substrate by the second transfer step, and the oscillation frequency of the laser light in the first transfer step is the second. It may be higher than the oscillation frequency of the laser beam in the transfer process.
 こうすることにより、第2の転写工程の直前の第1の転写工程までは基板上の半導体チップ同士の間隔を比較的小さく設定することにより比較的高い発振周波数でレーザ光を出射しながら素子の転写を行うことができるため、短時間で回路基板への半導体チップの転写を完了させることができる。 By doing so, the distance between the semiconductor chips on the substrate is set to be relatively small until the first transfer step immediately before the second transfer step, so that the element can emit laser light at a relatively high oscillation frequency. Since the transfer can be performed, the transfer of the semiconductor chip to the circuit board can be completed in a short time.
 また、前記第2の転写工程におけるレーザ光の発振周波数は、前記第1の基板におけるレーザ光の照射スポットの移動速度に対し前記光路制御部が制御しうる最高速度近傍となるように前記光路制御部を動作させた場合に、前記レーザ光源から出射された各々のレーザ光が前記第2の素子間隔で半導体チップを転写させうる発振周波数であると良い。 Further, the optical path control is performed so that the oscillation frequency of the laser beam in the second transfer step is close to the maximum speed that can be controlled by the optical path control unit with respect to the moving speed of the irradiation spot of the laser beam on the first substrate. It is preferable that each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the semiconductor chip at the second element interval when the unit is operated.
 こうすることにより、第2の転写工程においても可能な限り短時間で半導体チップの転写を行うことができる。 By doing so, the semiconductor chip can be transferred in the shortest possible time even in the second transfer step.
 また、ガルバノミラーによりレーザ光の光路が制御されると良い。 Also, it is good that the optical path of the laser beam is controlled by the galvano mirror.
 こうすることにより、簡単な構成で光路を形成することができる。 By doing so, an optical path can be formed with a simple configuration.
 また、前記回路基板に実装された半導体チップの性能を検査する実装後検査工程と、前記実装後検査工程の結果、異常と判断された半導体チップに代わって機能するリペア用半導体チップを前記回路基板に追加もしくは置き換えるリペア工程と、を有し、前記リペア工程では、前記回路基板に前記リペア用半導体チップが配置されるべき位置に応じて半導体チップが配列されるよう、前記第1の転写基板から前記第2の転写基板へ半導体チップを選択的に転写し、前記第2の転写基板ごと半導体チップの回路基板への圧着を行い、半導体チップから前記第2の転写基板を分離すると良い。 Further, the circuit board is provided with a repair semiconductor chip that functions in place of the semiconductor chip determined to be abnormal as a result of the post-mounting inspection step of inspecting the performance of the semiconductor chip mounted on the circuit board and the post-mounting inspection step. In the repair step, the semiconductor chips are arranged from the first transfer board so as to be arranged according to the position where the semiconductor chips for repair should be arranged on the circuit board. It is preferable that the semiconductor chip is selectively transferred to the second transfer substrate, the semiconductor chip is crimped to the circuit board together with the second transfer substrate, and the second transfer substrate is separated from the semiconductor chip.
 こうすることにより、リペアに要する時間を短縮することが可能である。 By doing this, it is possible to shorten the time required for repair.
 また、前記検査工程では、画像解析による外観検査によって前記第1の転写基板上の半導体チップの状態の検査が行われると良い。 Further, in the inspection step, it is preferable that the state of the semiconductor chip on the first transfer substrate is inspected by visual inspection by image analysis.
 こうすることにより、短時間で検査工程を完了させることができる。 By doing this, the inspection process can be completed in a short time.
 また、前記検査工程では、フォトルミネッセンスによって前記第1の転写基板上の半導体チップの状態の検査が行われると良い。 Further, in the inspection step, it is preferable that the state of the semiconductor chip on the first transfer substrate is inspected by photoluminescence.
 こうすることにより、半導体チップを結線することなく所定の素子の検査を行うことができる。 By doing so, it is possible to inspect a predetermined element without connecting a semiconductor chip.
 また、前記検査工程と前記第2の転写工程の間に、異常と判断された半導体チップを前記第1の転写基板から除去するチップ除去工程をさらに有すると良い。 Further, it is preferable to further have a chip removing step of removing the semiconductor chip determined to be abnormal from the first transfer substrate between the inspection step and the second transfer step.
 こうすることにより、誤って異常チップが第2の転写基板に転写されることを防ぐことができる。 By doing so, it is possible to prevent the abnormal chip from being accidentally transferred to the second transfer substrate.
 また、上記課題を解決するために本発明の実装装置は、キャリア基板から第1の転写基板への複数の半導体チップの転写および当該第1の転写基板から第2の転写基板への半導体チップの転写を行う転写部と、前記第1の転写基板に転写された半導体チップの状態を検査する検査部と、前記第2の転写基板に転写された半導体チップを回路基板へ実装する実装部と、を有し、前記第2の転写基板には、前記検査部の検査により正常と判断された半導体チップのみが前記第1の転写基板から転写されることを特徴としている。 Further, in order to solve the above problems, the mounting apparatus of the present invention transfers a plurality of semiconductor chips from the carrier substrate to the first transfer substrate and transfers the semiconductor chips from the first transfer substrate to the second transfer substrate. A transfer unit that performs transfer, an inspection unit that inspects the state of the semiconductor chip transferred to the first transfer board, and a mounting unit that mounts the semiconductor chip transferred to the second transfer board on a circuit board. The second transfer substrate is characterized in that only semiconductor chips determined to be normal by the inspection of the inspection unit are transferred from the first transfer substrate.
 本発明の実装装置では、第2の転写基板には検査部の検査により正常と判断された半導体チップのみが第1の転写基板から転写されることにより、実装後にリペアが必要な半導体チップの数を大幅に減らすことができ、回路基板の生産性を向上することができる。 In the mounting apparatus of the present invention, only the semiconductor chips judged to be normal by the inspection of the inspection unit are transferred from the first transfer board to the second transfer board, so that the number of semiconductor chips that need to be repaired after mounting is increased. Can be significantly reduced, and the productivity of the circuit board can be improved.
 また、上記課題を解決するために本発明の転写装置は、レーザ光を出射し、レーザ光の発振周波数が制御可能であるレーザ光源と、レーザ光の光路を制御する光路制御部と、を備え、前記光路制御部によって転写基板におけるレーザ光の照射位置を制御し、当該転写基板に保持されている複数の素子のうち任意の当該素子をレーザリフトオフによって被転写基板に転写させる転写装置であり、第1の基板を前記被転写基板とし、当該第1の基板へ前記素子を転写させる第1の転写モードと、前記第1の基板を前記転写基板、第2の基板を前記被転写基板とし、前記第1の基板に保持された前記素子を当該第2の基板に転写させる第2の転写モードと、を有し、前記第1の転写モードによって前記第1の基板に転写された前記素子同士の間隔である第1の素子間隔は前記第2の転写モードによって前記第2の基板に転写された前記素子同士の間隔である第2の素子間隔よりも小さく、前記第1の転写モードにおけるレーザ光の発振周波数は前記第2の転写モードにおけるレーザ光の発振周波数よりも高いことを特徴としている。 Further, in order to solve the above problems, the transfer device of the present invention includes a laser light source that emits laser light and can control the oscillation frequency of the laser light, and an optical path control unit that controls the optical path of the laser light. A transfer device that controls the irradiation position of laser light on the transfer substrate by the optical path control unit and transfers any of the plurality of elements held on the transfer substrate to the transfer substrate by laser lift-off. The first substrate is the substrate to be transferred, the first transfer mode in which the element is transferred to the first substrate, the first substrate is the transfer substrate, and the second substrate is the transfer substrate. The elements have a second transfer mode in which the element held on the first substrate is transferred to the second substrate, and the elements are transferred to the first substrate by the first transfer mode. The first element spacing, which is the spacing between the elements, is smaller than the second element spacing, which is the spacing between the elements transferred to the second substrate by the second transfer mode, and the laser in the first transfer mode. The light oscillation frequency is characterized in that it is higher than the oscillation frequency of the laser beam in the second transfer mode.
 この転写装置により、第2の転写モードの直前の第1の転写モードまでは基板上の素子同士の間隔を比較的小さく設定することにより比較的高い発振周波数でレーザ光を出射しながら素子の転写を行うことができるため、短時間で回路基板への素子の転写を完了させることができる。 With this transfer device, until the first transfer mode immediately before the second transfer mode, the distance between the elements on the substrate is set to be relatively small, so that the elements are transferred while emitting laser light at a relatively high oscillation frequency. Therefore, the transfer of the element to the circuit board can be completed in a short time.
 また、前記第2の基板は、配線回路が形成された回路基板であると良い。 Further, the second board may be a circuit board on which a wiring circuit is formed.
 こうすることにより、回路基板の直前まで基板上の素子間隔が比較的小さい条件で転写を行うため、より短時間で回路基板への素子の転写を完了させることができる。 By doing so, the transfer is performed under the condition that the element spacing on the substrate is relatively small until just before the circuit board, so that the transfer of the element to the circuit board can be completed in a shorter time.
 また、前記第2の転写モードにおけるレーザ光の発振周波数は、前記第1の基板におけるレーザ光の照射位置の移動速度に対し前記光路制御部が制御しうる最高速度近傍となるように前記光路制御部を動作させた場合に、前記レーザ光源から出射された各々のレーザ光が前記第2の素子間隔で前記素子を転写させうる発振周波数であると良い。 Further, the optical path control is performed so that the oscillation frequency of the laser beam in the second transfer mode is close to the maximum speed that can be controlled by the optical path control unit with respect to the moving speed of the laser beam irradiation position on the first substrate. It is preferable that each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the element at the second element interval when the unit is operated.
 こうすることにより、第2の転写モードにおいても可能な限り短時間で素子の転写を行うことができる。 By doing so, the element can be transferred in the shortest possible time even in the second transfer mode.
 また、前記光路制御部はガルバノミラーであると良い。 Also, the optical path control unit should be a galvano mirror.
 こうすることにより、簡単な構成で光路制御部を形成することができる。 By doing so, the optical path control unit can be formed with a simple configuration.
 また、前記第1の素子間隔は、前記素子を成長させる基板である成長基板における前記素子同士の間隔と同等であると良い。 Further, the distance between the first elements is preferably equal to the distance between the elements in the growth substrate which is the substrate on which the element is grown.
 こうすることにより、第1の転写モードにおける素子同士の間隔が最小限に近くなり、第1の転写モードにおけるレーザ光の発振周波数をより高く設定することができる。 By doing so, the distance between the elements in the first transfer mode becomes close to the minimum, and the oscillation frequency of the laser beam in the first transfer mode can be set higher.
 また、各々の前記素子の動作性能を判定する性能判定モードをさらに有し、前記第1の転写モードでは、前記性能判定モードにおいて正常と判定された前記素子のみを前記第1の基板へ転写させると良い。 Further, it further has a performance determination mode for determining the operating performance of each of the elements, and in the first transfer mode, only the element determined to be normal in the performance determination mode is transferred to the first substrate. Is good.
 こうすることにより、第2の転写モードで正常な素子のみ分別して転写を行うことに対して、より短時間で転写を行うことができる。 By doing so, it is possible to perform the transfer in a shorter time as compared with the case where only the normal elements are separated and transferred in the second transfer mode.
 本発明の実装方法、実装装置、および転写装置により、生産性良く半導体チップを回路基板に実装することができる。 With the mounting method, mounting device, and transfer device of the present invention, a semiconductor chip can be mounted on a circuit board with high productivity.
本発明における実装装置を説明する図である。It is a figure explaining the mounting apparatus in this invention. 本発明における実装装置のうち、転写部を説明する図である。It is a figure explaining the transfer part among the mounting apparatus in this invention. 本発明における実装装置のうち、検査部を説明する図である。It is a figure explaining the inspection part among the mounting apparatus in this invention. 本発明における実装装置のうち、実装部を説明する図である。It is a figure explaining the mounting part among the mounting apparatus in this invention. 本発明における実装方法の第1の転写工程を説明する図である。It is a figure explaining the 1st transfer process of the mounting method in this invention. 本発明における実装方法の検査工程およびチップ除去工程を説明する図である。It is a figure explaining the inspection process and the chip removal process of the mounting method in this invention. 本発明の他の実施形態における転写装置を説明する図である。It is a figure explaining the transfer apparatus in other embodiment of this invention. 転写装置が有する波長測定部によって得られた転写基板上の素子の発光波長分布および制御装置によるグループ分けの結果を示す図である。It is a figure which shows the emission wavelength distribution of the element on the transfer substrate obtained by the wavelength measuring part which a transfer apparatus has, and the result of grouping by a control apparatus. 本発明における実装方法の第2の転写工程を説明する図である。It is a figure explaining the 2nd transfer process of the mounting method in this invention. 本発明における実装方法の実装工程を説明する図である。It is a figure explaining the mounting process of the mounting method in this invention. 一般的な点灯検査工程およびリペア工程を説明する図である。It is a figure explaining the general lighting inspection process and repair process. 本発明におけるリペア工程を説明する図である。It is a figure explaining the repair process in this invention. 本発明の他の実施形態における第1の転写工程を示す図である。It is a figure which shows the 1st transfer process in another embodiment of this invention. 本発明の他の実施形態における第2の転写工程を示す図である。It is a figure which shows the 2nd transfer process in another embodiment of this invention. 光路制御部のスキャン速度とレーザ光の発振周波数との関係を示すグラフである。It is a graph which shows the relationship between the scan speed of an optical path control part, and the oscillation frequency of a laser beam.
 本発明の実装方法を行う実装装置を図1に示す。 FIG. 1 shows a mounting device that performs the mounting method of the present invention.
 実装装置100は、転写部10、検査部20、および実装部30を有しており、転写部10により第1の転写工程および第2の転写工程が行われ、実装部30により実装工程が行われる。また、第1の転写工程と第2の転写工程の間に、検査部20による半導体チップの検査が行われる。また、各装置間の基板(キャリア基板2、第1の転写基板4a、第2の転写基板4b、回路基板6)の搬送は、1種類以上のロボットハンド40により実施される。 The mounting device 100 includes a transfer unit 10, an inspection unit 20, and a mounting unit 30, in which the transfer unit 10 performs a first transfer step and a second transfer step, and the mounting unit 30 performs a mounting step. Will be. Further, the semiconductor chip is inspected by the inspection unit 20 between the first transfer step and the second transfer step. Further, the transfer of the substrates (carrier substrate 2, first transfer substrate 4a, second transfer substrate 4b, circuit board 6) between the devices is carried out by one or more types of robot hands 40.
 転写部10の詳細を図2に示す。 The details of the transfer unit 10 are shown in FIG.
 転写部10は、レーザ光11を照射するレーザ照射部12、転写基板を保持して少なくともX軸方向、Y軸方向に移動可能な転写基板保持部13、転写基板保持部13の下側にあって転写基板に隙間を有して対向するように被転写基板を保持する被転写基板保持部14、および図示しない制御部を備えている。 The transfer unit 10 is located below the laser irradiation unit 12 that irradiates the laser beam 11, the transfer substrate holding unit 13 that holds the transfer substrate and can move at least in the X-axis direction and the Y-axis direction, and the transfer substrate holding unit 13. A transfer substrate holding unit 14 that holds the transfer substrate so as to face the transfer substrate with a gap, and a control unit (not shown) are provided.
 レーザ照射部12は、エキシマレーザ、YAGレーザ、可視光レーザなどのレーザ光11を所定の発振周波数で照射する装置であり、転写部10に固定して設けられる。本実施形態においては、レーザ照射部12はスポット状のレーザ光11を照射し、レーザ光11は、制御部により角度が調節されるガルバノミラー15およびfθレンズ16を介してX軸方向およびY軸方向の照射位置が制御され、転写基板保持部13に保持された転写基板に複数配置されている半導体チップ1に選択的に照射する。レーザ光11が転写基板の半導体チップ1に入射することによって、レーザリフトオフが生じ、転写基板から被転写基板へ半導体チップ1が転写される。 The laser irradiation unit 12 is a device that irradiates a laser beam 11 such as an excimer laser, a YAG laser, or a visible light laser at a predetermined oscillation frequency, and is fixedly provided on the transfer unit 10. In the present embodiment, the laser irradiation unit 12 irradiates the spot-shaped laser light 11, and the laser light 11 is in the X-axis direction and the Y-axis via the galvanometer mirror 15 and the fθ lens 16 whose angle is adjusted by the control unit. The irradiation position in the direction is controlled, and the semiconductor chips 1 arranged on the transfer substrate held by the transfer substrate holding portion 13 are selectively irradiated. When the laser beam 11 is incident on the semiconductor chip 1 of the transfer substrate, laser lift-off occurs, and the semiconductor chip 1 is transferred from the transfer substrate to the transfer substrate.
 ここで、本説明における発振周波数とは、所定の光出力が1秒間に繰り返し出力される回数のことを指し、たとえば発振周波数が1kHzであった場合、所定の光出力が1秒間に1000回繰り返し出力される。この発振周波数が大きくなるほど、光出力の時間間隔は短くなる。 Here, the oscillation frequency in the present description refers to the number of times that a predetermined optical output is repeatedly output in 1 second. For example, when the oscillation frequency is 1 kHz, the predetermined optical output is repeated 1000 times per second. It is output. The larger the oscillation frequency, the shorter the time interval of the optical output.
 なお、本説明では後述の第1の転写工程および第2の転写工程がこの転写部10により実施される。第1の転写工程では、キャリア基板2が転写基板にあたり、第1の転写基板4aが被転写基板にあたる。一方、第2の転写工程では、第1の転写基板4aが転写基板にあたり、第2の転写基板4bが被転写基板にあたる。 In this description, the first transfer step and the second transfer step, which will be described later, are carried out by the transfer unit 10. In the first transfer step, the carrier substrate 2 corresponds to the transfer substrate, and the first transfer substrate 4a corresponds to the substrate to be transferred. On the other hand, in the second transfer step, the first transfer substrate 4a corresponds to the transfer substrate, and the second transfer substrate 4b corresponds to the transfer substrate.
 転写基板保持部13は開口を有し、転写基板の外周部近傍を吸着保持する。転写基板保持部13に保持された転写基板へこの開口を介してレーザ照射部12から発せられたレーザ光11を当てることができる。 The transfer substrate holding portion 13 has an opening and sucks and holds the vicinity of the outer peripheral portion of the transfer substrate. The laser beam 11 emitted from the laser irradiation unit 12 can be applied to the transfer substrate held by the transfer substrate holding unit 13 through this opening.
 また、転写基板保持部13は図示しない移動機構により、少なくともX軸方向、Y軸方向に関して被転写基板保持部14に対して相対移動する。制御部がこの移動機構を制御し、転写基板保持部13の位置を調節することにより、転写基板に保持された半導体チップ1の被転写基板に対する相対位置を調節することができる。 Further, the transfer substrate holding portion 13 moves relative to the transferred substrate holding portion 14 at least in the X-axis direction and the Y-axis direction by a moving mechanism (not shown). The control unit controls this movement mechanism and adjusts the position of the transfer substrate holding unit 13, so that the relative position of the semiconductor chip 1 held on the transfer substrate with respect to the transferred substrate can be adjusted.
 被転写基板保持部14は、上面に平坦面を有し、半導体チップ1の転写工程中、被転写基板を保持する。この被転写基板保持部14の上面には複数の吸引孔が設けられており、吸引力により被転写基板の裏面(半導体チップ1が転写されない方の面)を保持する。 The transfer substrate holding portion 14 has a flat surface on the upper surface and holds the transfer substrate during the transfer process of the semiconductor chip 1. A plurality of suction holes are provided on the upper surface of the transfer substrate holding portion 14, and the back surface of the transfer substrate (the surface on which the semiconductor chip 1 is not transferred) is held by the suction force.
 なお、本実施形態では、転写基板保持部13のみがX軸方向およびY軸方向に移動することにより転写基板保持部13と被転写基板保持部14とが相対移動する形態をとっているが、被転写基板の寸法が大きく、レーザ光11の照射範囲の直下に被転写基板の全面が位置できない場合には、被転写基板保持部14にもX軸方向およびY軸方向の移動機構が設けられていても良い。 In the present embodiment, only the transfer substrate holding portion 13 moves in the X-axis direction and the Y-axis direction, so that the transfer substrate holding portion 13 and the transferred substrate holding portion 14 move relative to each other. When the size of the substrate to be transferred is large and the entire surface of the substrate to be transferred cannot be positioned directly under the irradiation range of the laser beam 11, the substrate holding portion 14 to be transferred is also provided with moving mechanisms in the X-axis direction and the Y-axis direction. You may be.
 次に、検査部20の詳細を図3に示す。 Next, the details of the inspection unit 20 are shown in FIG.
 検査部20は、カメラ21と被検査基板保持部22、および図示しない制御部を有しており、被検査基板保持部22に保持された検査対象をカメラ21で撮像し、画像解析による半導体チップ1の外観検査を行う。本実施形態では、検査対象は第1の転写基板4aに転写された複数の半導体チップ1である。 The inspection unit 20 includes a camera 21, a substrate holding unit 22 to be inspected, and a control unit (not shown). The inspection target held by the substrate holding unit 22 to be inspected is imaged by the camera 21 and a semiconductor chip is analyzed by image analysis. Perform the visual inspection of 1. In the present embodiment, the inspection target is a plurality of semiconductor chips 1 transferred to the first transfer substrate 4a.
 第1の転写基板4a上の半導体チップ1は、後述するキャリア基板2における半導体チップ1の形成過程で性能が未達となるものや、第1の転写基板4aへの転写時に割れなどが生じるものがある。半導体チップ1の性能が正常か否かは、半導体チップ1の色や形状を確認することで確度高く判別することができる。 The semiconductor chip 1 on the first transfer substrate 4a does not reach its performance in the process of forming the semiconductor chip 1 in the carrier substrate 2 described later, or cracks occur during transfer to the first transfer substrate 4a. There is. Whether or not the performance of the semiconductor chip 1 is normal can be determined with high accuracy by checking the color and shape of the semiconductor chip 1.
 カメラ21は、本実施形態ではたとえばCMOSカメラであって、撮像素子を有し、外部から受け取る信号をトリガとして、この撮像素子に結像された光線を電気信号に変換し、デジタル画像を作成する。このカメラ21の撮像方向は鉛直下方向であり、半導体チップ1を上方から撮像する。また、カメラ21は図示しない移動装置に取り付けられており、制御部による制御により移動装置が駆動し、カメラ21がX軸方向およびY軸方向に移動する。 The camera 21 is, for example, a CMOS camera in the present embodiment, and has an image pickup element, and uses a signal received from the outside as a trigger to convert a light beam formed on the image pickup element into an electric signal to create a digital image. .. The image pickup direction of the camera 21 is vertically downward, and the semiconductor chip 1 is imaged from above. Further, the camera 21 is attached to a moving device (not shown), the moving device is driven by control by the control unit, and the camera 21 moves in the X-axis direction and the Y-axis direction.
 また、検査部20は図示しない照明部を有している。本実施形態では照明部はLED照明であり、移動装置によるカメラ21の移動に同期して発光し、照明部が発光する際にカメラ21が撮像を行うことにより、X軸方向およびY軸方向に複数配列された半導体チップ1の外観を連続して撮像する。 Further, the inspection unit 20 has a lighting unit (not shown). In the present embodiment, the illumination unit is LED illumination, and emits light in synchronization with the movement of the camera 21 by the moving device, and when the illumination unit emits light, the camera 21 takes an image in the X-axis direction and the Y-axis direction. The appearance of the plurality of arranged semiconductor chips 1 is continuously imaged.
 次に、実装部30の詳細を図4に示す。 Next, the details of the mounting unit 30 are shown in FIG.
 実装部30は、載置台31、ヘッド32、および2視野光学系33を備え、また、図示しない制御部を備えている。 The mounting unit 30 includes a mounting table 31, a head 32, and a two-field optical system 33, and also includes a control unit (not shown).
 載置台31は、回路基板6を載置して真空吸着により動かないように保持することができ、XYステージによりX、Y軸方向に移動可能に構成されている。 The mounting table 31 can mount the circuit board 6 and hold it so as not to move by vacuum suction, and is configured to be movable in the X and Y axis directions by the XY stage.
 また、本実施形態では載置台31はヒータ34を有し、制御部によって載置台31の表面の温度(≒載置台31に載置された回路基板6の温度)を制御することが可能である。また、載置台31には図示しない温度計が設けられ、この温度計により計測された載置台31の温度をフィードバックして温度制御を行うことが可能である。 Further, in the present embodiment, the mounting table 31 has a heater 34, and the temperature of the surface of the mounting table 31 (≈ the temperature of the circuit board 6 mounted on the mounting table 31) can be controlled by the control unit. .. Further, the mounting table 31 is provided with a thermometer (not shown), and the temperature of the mounting table 31 measured by the thermometer can be fed back to control the temperature.
 ヘッド32は先端部が略平坦面であり、1以上の吸着穴を有し、実装工程時に第2の転写基板4bの半導体チップ1が転写されていない側の面を吸着保持する。また、ヘッド32はZ軸方向に移動可能であり、載置台31に保持された回路基板6とヘッド32が保持している第2の転写基板4bに転写されている半導体チップ1のバンプとを接触させ、加圧する。また、ヘッド32はヒータ35を有し、制御部によってヘッド32、特に先端部の温度を制御することが可能である。また、ヘッド32には図示しない温度計が設けられ、この温度計により計測されたヘッド32の温度をフィードバックして温度制御を行うことが可能である。 The tip of the head 32 is a substantially flat surface, has one or more suction holes, and sucks and holds the surface of the second transfer substrate 4b on the side where the semiconductor chip 1 is not transferred during the mounting process. Further, the head 32 is movable in the Z-axis direction, and the circuit board 6 held by the mounting table 31 and the bump of the semiconductor chip 1 transferred to the second transfer board 4b held by the head 32 are transferred to each other. Contact and pressurize. Further, the head 32 has a heater 35, and the temperature of the head 32, particularly the tip portion, can be controlled by the control unit. Further, the head 32 is provided with a thermometer (not shown), and the temperature of the head 32 measured by the thermometer can be fed back to control the temperature.
 また、ヘッド32はθ方向(Z軸方向を回転の中心とする中心方向)に移動可能に構成され、載置台31のX、Y軸方向への移動とヘッド32のZ軸、θ方向の移動と連動させることによって、回路基板6上の所定位置に半導体チップ1を熱圧着し、実装することができる。 Further, the head 32 is configured to be movable in the θ direction (the central direction centered on the Z-axis direction), and the mounting table 31 is moved in the X and Y-axis directions and the head 32 is moved in the Z-axis and θ directions. The semiconductor chip 1 can be thermocompression-bonded and mounted at a predetermined position on the circuit board 6 by interlocking with the above.
 ここで、本実施形態ではヒータ34およびヒータ35を同時に制御し、実装工程中に載置台31の表面の温度とヘッド32の先端部の温度(≒第2の転写基板4bの温度)が常に等しくなるようにしている。こうすることにより、前述の通り、実装工程中に回路基板6と第2の転写基板4bとが熱膨張したとしても、第2の転写基板4bの半導体チップ1と接触する箇所と回路基板6上で半導体チップ1のバンプが接合されている箇所の箇所との相対位置に変化が生じにくく、高精度な実装を安定して行うことができる。 Here, in the present embodiment, the heater 34 and the heater 35 are controlled at the same time, and the temperature of the surface of the mounting table 31 and the temperature of the tip of the head 32 (≈ the temperature of the second transfer substrate 4b) are always equal during the mounting process. I am trying to be. By doing so, as described above, even if the circuit board 6 and the second transfer board 4b thermally expand during the mounting process, the portion of the second transfer board 4b that comes into contact with the semiconductor chip 1 and the circuit board 6 are on the circuit board 6. The position relative to the portion where the bumps of the semiconductor chip 1 are joined is unlikely to change, and high-precision mounting can be stably performed.
 なお、本実施形態においては、ヘッド32がZ軸、θ方向に移動し、載置台31はX、Y軸方向に移動するように構成したが、必ずしもこれに限定されず、装置の都合により適宜変更が可能である。例えば、ヘッド32がX軸、Y軸、θ方向に移動し、載置台31はZ軸方向に移動する構成としてもよい。また、θ方向の移動機構は必要がなければ省略することが可能である。例えば、半導体チップ1及び回路基板6の位置に回転ずれがない場合はθ方向の移動機構は省略できる。 In the present embodiment, the head 32 is configured to move in the Z-axis and θ directions, and the mounting table 31 is configured to move in the X and Y-axis directions. It can be changed. For example, the head 32 may move in the X-axis, Y-axis, and θ directions, and the mounting table 31 may move in the Z-axis direction. Further, the movement mechanism in the θ direction can be omitted if it is not necessary. For example, if there is no rotational deviation in the positions of the semiconductor chip 1 and the circuit board 6, the movement mechanism in the θ direction can be omitted.
 2視野光学系33は、載置台31に回路基板6が載置されている際にヘッド32と回路基板6との間に進入して双方の画像を撮像することができる。撮像された各画像は、制御部で画像処理されてそれぞれの位置ずれを認識する。そして、制御部は、この位置ずれを考慮して、各半導体チップ1が回路基板6上の所定の位置に接触して接合されるように制御することにより、半導体チップ1をX、Y軸方向に高精度に実装する。 The two-field optical system 33 can enter between the head 32 and the circuit board 6 when the circuit board 6 is mounted on the mounting table 31 and capture both images. Each captured image is image-processed by the control unit to recognize the respective positional deviation. Then, in consideration of this misalignment, the control unit controls the semiconductor chips 1 so that they are brought into contact with and joined to a predetermined position on the circuit board 6, thereby causing the semiconductor chips 1 to be joined in the X and Y axis directions. Implement with high precision.
 次に、本発明の実装方法について、図5乃至図10を参照して説明する。図5は、本発明における実装方法の第1の転写工程を説明する図である。図6は、本発明における実装方法の検査工程およびチップ除去工程を説明する図である。図9は、本発明における実装方法の第2の転写工程を説明する図である。図10は、別の実施形態における実装工程を説明する図である。 Next, the mounting method of the present invention will be described with reference to FIGS. 5 to 10. FIG. 5 is a diagram illustrating a first transfer step of the mounting method in the present invention. FIG. 6 is a diagram illustrating an inspection step and a chip removing step of the mounting method in the present invention. FIG. 9 is a diagram illustrating a second transfer step of the mounting method in the present invention. FIG. 10 is a diagram illustrating a mounting process in another embodiment.
 なお、本発明において、半導体チップのもつ2つの主面のうち、キャリア基板に保持された面を第1の面とし、第1面と反対側の面を第2の面と定義し、第2の面にはバンプが形成されており、回路基板に接合されるものとする。 In the present invention, of the two main surfaces of the semiconductor chip, the surface held by the carrier substrate is defined as the first surface, and the surface opposite to the first surface is defined as the second surface. A bump is formed on the surface of the circuit board and is joined to the circuit board.
 まず、図2に示す転写部10において実施される本発明の実装方法における第1の転写工程について、図5を参照して説明する。なお、本説明では、転写部10が第1の転写工程を実施することを第1の転写モード、転写部10が後述の第2の転写工程を実施することを第2の転写モードとも呼ぶ。 First, the first transfer step in the mounting method of the present invention carried out in the transfer unit 10 shown in FIG. 2 will be described with reference to FIG. In this description, performing the first transfer step by the transfer unit 10 is also referred to as a first transfer mode, and performing the second transfer step described later by the transfer unit 10 is also referred to as a second transfer mode.
 図5(a)は、キャリア基板2に第1の面が保持されたダイシング後の複数の半導体チップ1を示している。キャリア基板2は図1の奥行き方向にも広がっていて円形又は四角形を有しており、シリコン、ガリウムヒ素、サファイヤ等からなっている。また、半導体チップ1もキャリア基板2の広がりに沿って2次元に複数個(数百個~数万個)が配列されている。マイクロLEDと呼ばれる小型の半導体チップ1では、50um×50um以下のサイズであり、このサイズにダイシング幅を加えたピッチで配列されている。このような小型の半導体チップ1は、高精度(例えば、1um以下の精度)で回路基板6に実装することが求められている。また、半導体チップ1の第2の面にはバンプが形成されている。 FIG. 5A shows a plurality of semiconductor chips 1 after dicing in which the first surface is held on the carrier substrate 2. The carrier substrate 2 extends in the depth direction of FIG. 1 and has a circular shape or a quadrangular shape, and is made of silicon, gallium arsenide, sapphire, or the like. Further, a plurality (hundreds to tens of thousands) of semiconductor chips 1 are arranged two-dimensionally along the spread of the carrier substrate 2. The small semiconductor chip 1 called a micro LED has a size of 50 um × 50 um or less, and is arranged at a pitch obtained by adding the dicing width to this size. Such a small semiconductor chip 1 is required to be mounted on a circuit board 6 with high accuracy (for example, an accuracy of 1 um or less). Further, bumps are formed on the second surface of the semiconductor chip 1.
 図5(b)は、半導体チップ1のキャリア基板2に保持された面である第1の面と反対側の面である第2の面を第1の転写基板4aに貼付ける第1の転写基板貼付け工程を示している。第1の転写基板4aは、まず被転写基板部14に真空吸着により保持されており、半導体チップ1を貼付ける面には粘着層3aが形成されている。この第1の転写基板貼付け工程では、半導体チップ1を保持したキャリア基板2をロボットハンド40で吸着、ハンドリングして、図2に示す被転写基板部14に保持された第1の転写基板4aの粘着層3a上に半導体チップ1の第2の面を貼り付ける。 FIG. 5B shows a first transfer in which a second surface, which is a surface opposite to the first surface, which is a surface held by the carrier substrate 2 of the semiconductor chip 1, is attached to the first transfer substrate 4a. The substrate pasting process is shown. The first transfer substrate 4a is first held by the substrate portion 14 to be transferred by vacuum suction, and an adhesive layer 3a is formed on the surface on which the semiconductor chip 1 is attached. In this first transfer substrate sticking step, the carrier substrate 2 holding the semiconductor chip 1 is sucked and handled by the robot hand 40, and the transfer substrate 4a held by the transfer substrate portion 14 shown in FIG. 2 The second surface of the semiconductor chip 1 is attached onto the adhesive layer 3a.
 次に、上記の通りキャリア基板2ごと半導体チップ1が貼付けられた第1の転写基板4aに対し、キャリア基板除去工程を実行する。キャリア基板除去工程では、レーザリフトオフによりキャリア基板2が半導体チップ1から剥離され、除去される。具体的には、キャリア基板2を透過させて半導体チップ1の第1の面に図2に示すレーザ照射部12から発したレーザ光11aが照射される。これにより、半導体チップ1であるマイクロLEDのGaN層の一部がGaとNに分解され、サファイヤからなるキャリア基板2から半導体チップ1が剥離する。全ての半導体チップ1にレーザ光11aが照射されたキャリア基板2は、キャリア基板2が真空吸着されたロボットハンド40が第1の転写基板4aから離間することにより、除去される。 Next, the carrier substrate removing step is executed on the first transfer substrate 4a to which the semiconductor chip 1 is attached together with the carrier substrate 2 as described above. In the carrier substrate removing step, the carrier substrate 2 is peeled off from the semiconductor chip 1 by laser lift-off and removed. Specifically, the laser beam 11a emitted from the laser irradiation unit 12 shown in FIG. 2 is irradiated on the first surface of the semiconductor chip 1 through the carrier substrate 2. As a result, a part of the GaN layer of the micro LED which is the semiconductor chip 1 is decomposed into Ga and N, and the semiconductor chip 1 is peeled off from the carrier substrate 2 made of sapphire. The carrier substrate 2 in which all the semiconductor chips 1 are irradiated with the laser beam 11a is removed by separating the robot hand 40 on which the carrier substrate 2 is vacuum-adsorbed from the first transfer substrate 4a.
 このように第1の転写基板貼付け工程とキャリア基板除去工程とを経て、図1(c)に示すように半導体チップ1はキャリア基板2から第1の転写基板4aに転写される。本説明では、半導体チップ1をキャリア基板2から第1の転写基板4aに転写する工程を第1の転写工程と呼ぶ。 As shown in FIG. 1C, the semiconductor chip 1 is transferred from the carrier substrate 2 to the first transfer substrate 4a through the first transfer substrate attaching step and the carrier substrate removing step in this way. In this description, the step of transferring the semiconductor chip 1 from the carrier substrate 2 to the first transfer substrate 4a is referred to as a first transfer step.
 なお、上記の説明では、第1の転写工程において半導体チップ1の第2の面を第1の転写基板4aに貼付けてからキャリア基板2の除去を行っているが、それに限らず、第1の転写基板4aが半導体チップ1の第2の面から若干離間した位置に準備された状態の下、キャリア基板2にレーザを照射した際にマイクロLEDのGaN層の一部がGaとNに分解することで生じる推進力により半導体チップ1が付勢され、キャリア基板2から第1の転写基板4aへ飛行して第1の転写基板4aへ貼り付くようにしても良い。 In the above description, the carrier substrate 2 is removed after the second surface of the semiconductor chip 1 is attached to the first transfer substrate 4a in the first transfer step, but the first is not limited to this. When the carrier substrate 2 is irradiated with a laser under a state where the transfer substrate 4a is prepared at a position slightly separated from the second surface of the semiconductor chip 1, a part of the GaN layer of the micro LED is decomposed into Ga and N. The semiconductor chip 1 may be urged by the propulsive force generated thereby, and may fly from the carrier substrate 2 to the first transfer substrate 4a and adhere to the first transfer substrate 4a.
 また、本実施形態においては、レーザリフトオフにより半導体チップ1からキャリア基板2を剥離させることにより半導体チップ1をキャリア基板2から第1の転写基板4aへ転写するようにしたが、必ずしもこれに限定されず適宜変更が可能である。例えば、キャリア基板2を半導体チップ1が設けられている側と反対側から削り落として除去するようにしてもよい。これは、バックグラインドと呼ばれ、特に赤色LEDの場合にはレーザリフトオフが適用できないのでこのバックグラインドの手法が用いられる。 Further, in the present embodiment, the semiconductor chip 1 is transferred from the carrier substrate 2 to the first transfer substrate 4a by peeling the carrier substrate 2 from the semiconductor chip 1 by laser lift-off, but the present invention is not necessarily limited to this. It can be changed as appropriate. For example, the carrier substrate 2 may be scraped off from the side opposite to the side on which the semiconductor chip 1 is provided to be removed. This is called backgrinding, and this backgrinding technique is used because laser lift-off is not applicable, especially in the case of red LEDs.
 続いて、図6(a)に示す検査工程が図3に示す検査部20において実行される。検査工程では、被検査基板保持部に吸着保持された第1の転写基板4a上にX軸方向およびY軸方向に配列されている数百個~数万個の半導体チップ1の上方をカメラ21が移動しながら撮像する。この撮像で得られた画像を検査部20の制御部が画像解析し、個々の半導体チップ1に対して色、形状などの外観検査を行う。この1つの第1の転写基板4aに対する検査工程に要する時間は、第1の転写基板4aが6インチウェーハの場合で約30分である。 Subsequently, the inspection step shown in FIG. 6A is executed in the inspection unit 20 shown in FIG. In the inspection step, the camera 21 is above the hundreds to tens of thousands of semiconductor chips 1 arranged in the X-axis direction and the Y-axis direction on the first transfer substrate 4a that is adsorbed and held by the substrate holding portion to be inspected. Takes an image while moving. The control unit of the inspection unit 20 analyzes the image obtained by this imaging, and visually inspects the color, shape, and the like of each semiconductor chip 1. The time required for the inspection step for this one first transfer substrate 4a is about 30 minutes when the first transfer substrate 4a is a 6-inch wafer.
 ここで、本発明の他の実施形態における転写装置、特に検査部について図7を用いて説明する。 Here, the transfer device, particularly the inspection unit, according to another embodiment of the present invention will be described with reference to FIG. 7.
 この実施形態における転写装置1は、図7に示すように検査部20として波長測定部20を備えており、この波長測定部20が発光素子である各々の素子1の発光特性(たとえば発光波長)を測定し、この測定結果を転写部10における素子1の転写に反映させている。 As shown in FIG. 7, the transfer device 1 in this embodiment includes a wavelength measurement unit 20 as an inspection unit 20, and the emission characteristics (for example, emission wavelength) of each element 1 in which the wavelength measurement unit 20 is a light emitting element. Is measured, and the measurement result is reflected in the transfer of the element 1 in the transfer unit 10.
 波長測定部20は、本実施形態ではフォトルミネッセンスを利用して第1の転写基板4a上の各素子1の発光波長を測定するものであり、レーザ光源23、波長測定器24、および被検査基板保持部22を備える。 In the present embodiment, the wavelength measuring unit 20 measures the emission wavelength of each element 1 on the first transfer substrate 4a by using photoluminescence, and the laser light source 23, the wavelength measuring device 24, and the substrate to be inspected. A holding portion 22 is provided.
 この波長測定部20内では、被検査基板である第1の転写基板4aは、素子1が保持されている面(表面)が水平かつ上向きとなるように、被検査基板保持部22によって裏面が吸着把持されている。 In the wavelength measuring unit 20, the back surface of the first transfer substrate 4a, which is the substrate to be inspected, is set by the substrate holding portion 22 to be inspected so that the surface (front surface) on which the element 1 is held is horizontal and upward. It is sucked and gripped.
 レーザ光源23は、1本のレーザ光L2を出射する装置であり、本実施形態ではYAGレーザ、可視光レーザなどのレーザ光を出射する。 The laser light source 23 is a device that emits one laser beam L2, and in the present embodiment, emits a laser beam such as a YAG laser or a visible light laser.
 波長測定器24は、自身に入射した光の波長を測定するものであり、公知の光波長計が適用される。 The wavelength measuring device 24 measures the wavelength of the light incident on itself, and a known optical wavemeter is applied.
 第1の転写基板4a上の所定の位置の素子1にレーザ光L2が入射されると、素子1内の電子が励起される。この電子が基底状態に戻る際に放出光L3を放出する(いわゆるフォトルミネッセンス)。この放出光L3を波長測定器24で取り込み、この放出光L3の波長を測定することにより、素子1を結線することなく所定の素子1の発光波長を測定することが可能である。 When the laser beam L2 is incident on the element 1 at a predetermined position on the first transfer substrate 4a, the electrons in the element 1 are excited. When this electron returns to the ground state, it emits emitted light L3 (so-called photoluminescence). By capturing the emitted light L3 with the wavelength measuring device 24 and measuring the wavelength of the emitted light L3, it is possible to measure the emission wavelength of a predetermined element 1 without connecting the element 1.
 また、被検査基板保持部22は移動ステージによってX軸方向およびY軸方向に移動可能となっており、レーザ光源23および波長測定器24に対して第1の転写基板4aをX軸方向およびY軸方向に相対移動させる。この移動ステージによる第1の転写基板4aの位置制御により、第1の転写基板4aに保持されている任意の位置の素子1の発光波長を測定することが可能である。この波長測定部20により、第1の転写基板4aが保持する全ての素子1の発光波長が測定される。 Further, the substrate holding portion 22 to be inspected can be moved in the X-axis direction and the Y-axis direction by the moving stage, and the first transfer substrate 4a is moved in the X-axis direction and Y with respect to the laser light source 23 and the wavelength measuring instrument 24. Move relative to the axial direction. By controlling the position of the first transfer substrate 4a by the moving stage, it is possible to measure the emission wavelength of the element 1 at an arbitrary position held by the first transfer substrate 4a. The wavelength measuring unit 20 measures the emission wavelengths of all the elements 1 held by the first transfer substrate 4a.
 図8は、波長測定部20によって得られた第1の転写基板4a上の素子1の発光波長の分布を示すグラフである。横軸は発光波長、縦軸は各発光波長で発光する素子1の個数(素子数)である。 FIG. 8 is a graph showing the distribution of the emission wavelength of the element 1 on the first transfer substrate 4a obtained by the wavelength measuring unit 20. The horizontal axis is the emission wavelength, and the vertical axis is the number of elements 1 (number of elements) that emit light at each emission wavelength.
 同一の成長基板からエピタキシャル成長した同一色の素子1であっても、発光波長には各素子1で多少の差があり、図8に示すような正規分布に似た分布が形成される。 Even if the elements 1 have the same color epitaxially grown from the same growth substrate, there is a slight difference in the emission wavelength between the elements 1, and a distribution similar to the normal distribution as shown in FIG. 8 is formed.
 ここで本実施形態では、この分布に対して制御装置は最頻値(モード値)をとる発光波長を含む所定の波長範囲のグループAとグループAより外側のグループ(発光波長がモード値から大きく異なるグループ)であるグループBの2つのグループに分類する。 Here, in the present embodiment, the control device has a group A in a predetermined wavelength range including an emission wavelength having a mode value with respect to this distribution and a group outside the group A (the emission wavelength is larger than the mode value). It is classified into two groups of group B (different groups).
 具体的には、本実施形態では、図8におけるグループAとグループBの境界となる発光波長において、たとえば、赤色LEDでは600nm~780nm、緑色LEDでは505nm~530nm、青色LEDでは470~485nmの発光波長の範囲をグループAとし、その範囲の外側の範囲をグループBと設定している。 Specifically, in the present embodiment, at the emission wavelength that is the boundary between Group A and Group B in FIG. 8, for example, the red LED emits light of 600 nm to 780 nm, the green LED emits light of 505 nm to 530 nm, and the blue LED emits light of 470 to 485 nm. The wavelength range is set as group A, and the range outside the range is set as group B.
 このような各素子1の発光波長の測定結果をもとに、制御装置は発光波長がモード値からかけ離れているグループBに属する素子1は性能未達と判断する。そして、転写部10における第2の転写基板4bへの転写にはグループBの素子1が用いられないように、性能が正常な素子1であるグループAに属する素子1のみを第1の転写基板4aから第2の転写基板4bへ転写させる。 Based on the measurement result of the emission wavelength of each element 1, the control device determines that the element 1 belonging to group B whose emission wavelength is far from the mode value has not reached the performance. Then, only the element 1 belonging to the group A, which is the element 1 having normal performance, is used as the first transfer substrate so that the element 1 of the group B is not used for the transfer to the second transfer substrate 4b in the transfer unit 10. Transfer from 4a to the second transfer substrate 4b.
 ここで、本説明では、上記の通り波長測定部20が各々の素子1の発光波長を測定することを波長測定モードと呼び、また、各々の素子1において動作性能がグループAのような正常な範疇に入るのか、もしくはグループBのような未達の範疇に入るのか、というように制御装置が各々の素子1の動作性能を判定することを性能判定モードと呼ぶ。 Here, in this description, the wavelength measurement unit 20 measuring the emission wavelength of each element 1 as described above is called a wavelength measurement mode, and the operating performance of each element 1 is normal as in group A. When the control device determines the operating performance of each element 1 such as whether it falls into the category or falls into the unachieved category such as group B, it is called a performance determination mode.
 これら性能判定モードおよび波長測定モードを素子1の転写の工程に組み込むことにより、完成されたディスプレイは発光むらが無いものとなる。 By incorporating these performance determination modes and wavelength measurement modes into the transfer process of the element 1, the completed display will have no uneven light emission.
 そして、本実施形態において性能判定モードが第1の転写モードに先立って実施され、第1の転写モードでは性能判定モードにおいて正常と判定された素子1のみを第2の転写基板4bへ転写させる。 Then, in the present embodiment, the performance determination mode is executed prior to the first transfer mode, and in the first transfer mode, only the element 1 determined to be normal in the performance determination mode is transferred to the second transfer substrate 4b.
 図6の説明に戻り、本実施形態では、検査工程の後、図6(b)に示すチップ除去工程が実施される。このチップ除去工程では、検査工程で異常と判断された半導体チップ1(図6(b)でドットで表した2つの半導体チップ1)にレーザ光11bを照射することにより、半導体チップ1を焼失させ、第1の転写基板4aから除去する。 Returning to the explanation of FIG. 6, in the present embodiment, the chip removing step shown in FIG. 6B is carried out after the inspection step. In this chip removing step, the semiconductor chip 1 is burnt out by irradiating the semiconductor chip 1 (two semiconductor chips 1 represented by dots in FIG. 6B) determined to be abnormal in the inspection process with laser light 11b. , Removed from the first transfer substrate 4a.
 このチップ除去工程は、転写部10にて実施されても良い。この時のレーザ光11bは、半導体チップ1を焼失させることが必要であるため、上述の第1の転写工程におけるレーザ光11aよりも強いパワーでレーザ照射部12から照射される。 This chip removing step may be carried out by the transfer unit 10. Since the laser beam 11b at this time needs to burn out the semiconductor chip 1, it is irradiated from the laser irradiation unit 12 with a power stronger than that of the laser beam 11a in the first transfer step described above.
 このようにチップ除去工程で異常の半導体チップ1が除去されることにより、以降の工程で誤って異常の半導体チップ1が転写されることを防ぐことができる。 By removing the abnormal semiconductor chip 1 in the chip removing step in this way, it is possible to prevent the abnormal semiconductor chip 1 from being accidentally transferred in the subsequent steps.
 次に、図2に示す転写部10において、図9(a)乃至(c)に示す第2の転写工程が実行される。第2の転写工程では、図9(a)に示すように粘着層3aおよび半導体チップ1が下を向くように第1の転写基板4aを転写基板保持部13(不図示)が保持し、また、第1の転写基板4aの下方に粘着層3bを有する第2の転写基板4bが位置するよう、被転写基板保持部14が第2の転写基板4bを保持する。 Next, in the transfer unit 10 shown in FIG. 2, the second transfer steps shown in FIGS. 9 (a) to 9 (c) are executed. In the second transfer step, the transfer substrate holding portion 13 (not shown) holds the first transfer substrate 4a so that the adhesive layer 3a and the semiconductor chip 1 face downward as shown in FIG. 9A. The transfer substrate holding portion 14 holds the second transfer substrate 4b so that the second transfer substrate 4b having the adhesive layer 3b is located below the first transfer substrate 4a.
 そして、転写部10の制御部がガルバノミラー15の角度を調節することによってレーザ光11cを粘着層3aと所定の半導体チップ1の第2の面との界面に第1の転写基板4aを透過して到達させることにより、半導体チップ1がレーザリフトオフされる。具体的には、レーザ光11の照射により粘着層3aからガスが発生し、このガスの発生によって半導体チップ1が付勢され、第1の転写基板4aから下方へ飛行し、第2の転写基板4bに着弾する。なお、このように第2の転写基板4bに転写された半導体チップ1は、第1の面が第2の転写基板4bと対向し、バンプは表面に露出した状態となる。 Then, the control unit of the transfer unit 10 adjusts the angle of the galvano mirror 15 to transmit the laser beam 11c through the first transfer substrate 4a at the interface between the adhesive layer 3a and the second surface of the predetermined semiconductor chip 1. The semiconductor chip 1 is laser lifted off. Specifically, gas is generated from the adhesive layer 3a by irradiation with the laser beam 11, and the semiconductor chip 1 is urged by the generation of this gas, flies downward from the first transfer substrate 4a, and is a second transfer substrate. Land on 4b. The semiconductor chip 1 transferred to the second transfer substrate 4b in this way has a first surface facing the second transfer substrate 4b, and the bumps are exposed on the surface.
 また、この第2の転写工程では第1の転写基板4aにある半導体チップ1を全て連続で転写するのではなく、図9(b)に示すように選択的に半導体チップ1を転写する。第1の転写工程直後の第1の転写基板4a上の半導体チップ1の配列は、第1の転写工程前のキャリア基板2上の半導体チップ1の配列と同等であるが、このように第2の転写工程で半導体チップ1を選択的に転写することにより、任意の配列で第2の転写基板4bへ半導体チップ1を転写することができる。 Further, in this second transfer step, not all the semiconductor chips 1 on the first transfer substrate 4a are continuously transferred, but the semiconductor chips 1 are selectively transferred as shown in FIG. 9B. The arrangement of the semiconductor chips 1 on the first transfer substrate 4a immediately after the first transfer step is equivalent to the arrangement of the semiconductor chips 1 on the carrier substrate 2 before the first transfer step. By selectively transferring the semiconductor chip 1 in the transfer step of the above, the semiconductor chip 1 can be transferred to the second transfer substrate 4b in an arbitrary arrangement.
 ここで、本実施形態では、後述の実装工程に備え、第2の転写基板4bにおける半導体チップ1の配列は回路基板6に半導体チップ1が配置されるべき位置に応じた配列となっている。さらに具体的には、一度の実装工程で回路基板6に半導体チップ1を実装できる領域内における半導体チップ1のレイアウトと鏡像の関係となるレイアウトで第2の転写基板4bには半導体チップ1が配列されている。 Here, in the present embodiment, the arrangement of the semiconductor chips 1 on the second transfer board 4b is arranged according to the position where the semiconductor chips 1 should be arranged on the circuit board 6 in preparation for the mounting process described later. More specifically, the semiconductor chips 1 are arranged on the second transfer board 4b in a layout that has a mirror image relationship with the layout of the semiconductor chips 1 in the region where the semiconductor chips 1 can be mounted on the circuit board 6 in one mounting process. Has been done.
 一方、図9(b)にて第2の転写基板4b上に破線で示すように、第2の転写基板4b上の転写すべき位置に転写可能な半導体チップ1が第1の転写基板4aに存在しない場合がある。その場合は、図9(c)に示すように第1の転写基板4aと第2の転写基板4bとを相対移動させ、その後レーザリフトオフを実施すると良い。なお、どのように第1の転写基板4aと第2の転写基板4bとを相対移動させると最小限の移動回数で所定のレイアウトを第2の転写基板4b上に形成できるか、は、AIを利用して判断させても良い。 On the other hand, as shown by a broken line on the second transfer substrate 4b in FIG. 9B, the semiconductor chip 1 that can be transferred to the position to be transferred on the second transfer substrate 4b is transferred to the first transfer substrate 4a. May not exist. In that case, as shown in FIG. 9C, it is advisable to move the first transfer substrate 4a and the second transfer substrate 4b relative to each other, and then perform laser lift-off. In addition, how to relatively move the first transfer substrate 4a and the second transfer substrate 4b to form a predetermined layout on the second transfer substrate 4b with the minimum number of movements depends on AI. You may use it to make a decision.
 また、第1の転写基板4aからレーザリフトオフさせるときのレーザ光11cのパワーは、粘着層3aを分解する程度のパワーで足り、第1の転写工程におけるGaN層を分解するためのレーザ光11aのパワーよりも低い。そのため、第2の転写工程においてレーザ光11cの照射によって半導体チップ1が破壊される可能性はこの第1の転写工程においてレーザ光11aの照射によって半導体チップ1が破壊される可能性よりも低く、無視することも可能である。 Further, the power of the laser beam 11c when the laser is lifted off from the first transfer substrate 4a is sufficient to decompose the adhesive layer 3a, and the power of the laser beam 11a for decomposing the GaN layer in the first transfer step is sufficient. Lower than power. Therefore, the possibility that the semiconductor chip 1 is destroyed by the irradiation of the laser beam 11c in the second transfer step is lower than the possibility that the semiconductor chip 1 is destroyed by the irradiation of the laser beam 11a in the first transfer step. It can be ignored.
 次に、図10(a)乃至(c)に示す実装工程が図4に示す実装部30において実施される。実装工程では、図10(a)に示すように第2の転写基板4bの半導体チップ1が転写されていない側の面を図4に示すヘッド32が保持し、後述する載置台31に載置された回路基板6と第2の転写基板4bに保持された半導体チップ1とを対向させる。 Next, the mounting steps shown in FIGS. 10A to 10C are carried out in the mounting unit 30 shown in FIG. In the mounting step, as shown in FIG. 10A, the head 32 shown in FIG. 4 holds the surface of the second transfer board 4b on the side where the semiconductor chip 1 is not transferred, and the second transfer board 4b is mounted on a mounting table 31 described later. The circuit board 6 is opposed to the semiconductor chip 1 held on the second transfer board 4b.
 そして、ヘッド32が回路基板6に接近し、図10(b)に示すように半導体チップ1の第2の面に設けられたバンプと回路基板6とを当接させ、さらに加圧する。 Then, the head 32 approaches the circuit board 6, and as shown in FIG. 10B, the bump provided on the second surface of the semiconductor chip 1 and the circuit board 6 are brought into contact with each other to further pressurize the circuit board 6.
 なお、本実施形態では、回路基板6の半導体チップ1が当接する面にはACF(異方性導電膜)などの接合材5が設けられており、半導体チップ1が接合材5上に当接した後、接合材5により半導体チップ1が保持される。 In the present embodiment, a bonding material 5 such as ACF (anisotropic conductive film) is provided on the surface of the circuit board 6 with which the semiconductor chip 1 abuts, and the semiconductor chip 1 abuts on the bonding material 5. After that, the semiconductor chip 1 is held by the bonding material 5.
 また、ヘッド32にはヒータ35が設けられており、半導体チップ1の加圧時にヒータ35が作動して半導体チップ1を50℃以下の比較的低い温度まで加熱することにより、半導体チップ1を通じて接合材5の温度が上昇し、半導体チップ1のバンプ周辺の接合材5の粘着力が増大する。その結果、半導体チップ1が回路基板6の配線に対して位置ズレしない程度に熱圧着される。すなわち、半導体チップ1が回路基板6に仮圧着される。なお、接合材5へ半導体チップ1のバンプを埋め込むだけで半導体チップ1が回路基板6の配線に対して位置ズレしない程度に固定されるならば、仮圧着時に半導体チップ1の加熱はともなわないでも構わない。なお、このように第2の転写基板4bごと半導体チップ1の回路基板6への圧着を行うことを本説明では圧着工程と呼ぶ。 Further, the head 32 is provided with a heater 35, and when the semiconductor chip 1 is pressurized, the heater 35 operates to heat the semiconductor chip 1 to a relatively low temperature of 50 ° C. or lower, thereby joining through the semiconductor chip 1. The temperature of the material 5 rises, and the adhesive force of the bonding material 5 around the bump of the semiconductor chip 1 increases. As a result, the semiconductor chip 1 is thermocompression-bonded to the extent that the position does not shift with respect to the wiring of the circuit board 6. That is, the semiconductor chip 1 is temporarily crimped to the circuit board 6. If the semiconductor chip 1 is fixed to the extent that the position does not shift with respect to the wiring of the circuit board 6 only by embedding the bump of the semiconductor chip 1 in the bonding material 5, the semiconductor chip 1 may not be heated during the temporary crimping. I do not care. In this description, crimping the semiconductor chip 1 together with the second transfer board 4b to the circuit board 6 in this way is referred to as a crimping step.
 そして、ヘッド32が第2の転写基板4bを保持したまま回路基板6から離間することにより、第2の転写基板4bが半導体チップ1から分離される。このように第2の転写基板4bと半導体チップ1とを分離することを、本説明では分離工程と呼ぶ。この分離工程において、半導体チップ1に対する粘着層3bの粘着力が半導体チップ1と回路基板6との結合力より弱ければ、第2の転写基板4bを回路基板6から離間させるだけで第2の転写基板4bと半導体チップ1とを分離することは可能である。この分離工程の後、図示はしていないが上記の仮圧着の時の温度よりも高い温度(150℃程度)への半導体チップ1の加熱をともなう回路基板6への半導体チップ1の圧着、いわゆる本圧着が行われることにより、半導体チップ1のバンプが溶融し、冷却後に強い接合力で半導体チップ1が回路基板6の所定の位置へ実装される。この本圧着が実施されることにより、本発明における一連の実装方法が完了する。 Then, the head 32 is separated from the circuit board 6 while holding the second transfer board 4b, so that the second transfer board 4b is separated from the semiconductor chip 1. Separating the second transfer substrate 4b and the semiconductor chip 1 in this way is referred to as a separation step in this description. In this separation step, if the adhesive force of the adhesive layer 3b to the semiconductor chip 1 is weaker than the bonding force between the semiconductor chip 1 and the circuit board 6, the second transfer board 4b is simply separated from the circuit board 6 for the second transfer. It is possible to separate the substrate 4b and the semiconductor chip 1. After this separation step, although not shown, crimping of the semiconductor chip 1 to the circuit board 6 accompanied by heating of the semiconductor chip 1 to a temperature (about 150 ° C.) higher than the temperature at the time of the above-mentioned temporary crimping, so-called By performing this crimping, the bumps of the semiconductor chip 1 are melted, and after cooling, the semiconductor chip 1 is mounted at a predetermined position on the circuit board 6 with a strong bonding force. By carrying out this crimping, a series of mounting methods in the present invention is completed.
 また、本実施形態では、図10(b)のように1回の実装工程により複数の半導体チップ1の圧着を同時に行っている。特に半導体チップ1がマイクロLEDの場合、1つの回路基板6に実装される半導体チップ1は数万個にも及ぶ。この場合、たとえば4Kテレビ用パネルでは3840×2160×3個の半導体チップ1が1つのパネルに配列されるが、複数の半導体チップ1をまとめて1つの第2の転写基板4bに転写させ、その第2の転写基板4bをヘッド32が保持し、一括して圧着することにより、実装にかかる時間を大幅に低減することができる。なお、一度に第2の転写基板4bに転写させる半導体チップ1の数は、具体的には80×80個、120×120個などが考えられる。 Further, in the present embodiment, as shown in FIG. 10B, a plurality of semiconductor chips 1 are simultaneously crimped by one mounting step. In particular, when the semiconductor chip 1 is a micro LED, the number of semiconductor chips 1 mounted on one circuit board 6 is tens of thousands. In this case, for example, in a 4K television panel, 3840 × 2160 × 3 semiconductor chips 1 are arranged in one panel, but a plurality of semiconductor chips 1 are collectively transferred to one second transfer substrate 4b, and the semiconductor chips 1 are transferred to one second transfer substrate 4b. By holding the second transfer substrate 4b by the head 32 and crimping the second transfer substrate 4b all at once, the time required for mounting can be significantly reduced. Specifically, the number of semiconductor chips 1 to be transferred to the second transfer substrate 4b at one time is considered to be 80 × 80, 120 × 120, or the like.
 ここで、本実施形態では、上記の通り分離工程の前の圧着工程では半導体チップ1の回路基板6への仮圧着までを行うにとどめ、別途本圧着を実施しているが、これに代わり、圧着工程で回路基板6への半導体チップ1の本圧着を行っても良い。この場合、分離工程が完了した時点で本発明における一連の実装方法が完了する。このとき、ヘッド32の少なくとも第2の転写基板4bと接触する面(ヘッド32の先端)の熱膨張係数、第2の転写基板4bの熱膨張係数、および回路基板6の半導体チップ1が実装される面の熱膨張係数が同等となるようにすると良い。また、ヘッド32の先端、第2の転写基板4b、回路基板6の半導体チップ1が実装される面の材料が同一であることがさらに好ましい。具体的には、回路基板6の材料がガラスであった場合、ヘッド32の先端の材料および第2の転写基板4bの材料は回路基板6と同様にガラスが用いられる。また、回路基板6の材料が銅であった場合、ヘッド32の先端の材料および第2の転写基板4bの材料はSUS304が用いられる。この場合、銅の熱膨張係数は16.8ppmであり、これに対しSUS304の熱膨張係数は17.3ppmであり、その差は3%程度である。 Here, in the present embodiment, as described above, in the crimping step before the separation step, only the temporary crimping of the semiconductor chip 1 to the circuit board 6 is performed, and the main crimping is performed separately. The semiconductor chip 1 may be mainly crimped to the circuit board 6 in the crimping step. In this case, a series of mounting methods in the present invention is completed when the separation step is completed. At this time, the coefficient of thermal expansion of at least the surface of the head 32 in contact with the second transfer substrate 4b (the tip of the head 32), the coefficient of thermal expansion of the second transfer substrate 4b, and the semiconductor chip 1 of the circuit board 6 are mounted. It is preferable that the coefficients of thermal expansion of the surfaces are the same. Further, it is more preferable that the material of the tip of the head 32, the second transfer board 4b, and the surface on which the semiconductor chip 1 of the circuit board 6 is mounted is the same. Specifically, when the material of the circuit board 6 is glass, glass is used as the material of the tip of the head 32 and the material of the second transfer board 4b as in the circuit board 6. When the material of the circuit board 6 is copper, SUS304 is used as the material of the tip of the head 32 and the material of the second transfer board 4b. In this case, the coefficient of thermal expansion of copper is 16.8 ppm, whereas the coefficient of thermal expansion of SUS304 is 17.3 ppm, and the difference is about 3%.
 そして、ヘッド32だけでなく載置台31にもヒータ34が設けられており、熱圧着工程が実施される間、ヘッド32および第2の転写基板4bの温度と回路基板6の半導体チップ1が実装される面の温度とが常に等しくなるようにヒータ34およびヒータ35が制御されている。こうすることにより、実装工程中に回路基板6とヘッド32および第2の転写基板4bとが熱膨張したとしても、第2の転写基板4bの半導体チップ1と接触する箇所と回路基板6上で半導体チップ1のバンプが接合されている箇所との相対位置に変化が生じにくく、高精度な実装を安定して行うことができる。 A heater 34 is provided not only on the head 32 but also on the mounting table 31, and the temperature of the head 32 and the second transfer board 4b and the semiconductor chip 1 of the circuit board 6 are mounted while the thermocompression bonding process is performed. The heater 34 and the heater 35 are controlled so that the temperature of the surface to be formed is always equal to that of the surface. By doing so, even if the circuit board 6, the head 32, and the second transfer board 4b thermally expand during the mounting process, the portion of the second transfer board 4b that comes into contact with the semiconductor chip 1 and the circuit board 6 The position relative to the portion where the bump of the semiconductor chip 1 is joined is unlikely to change, and high-precision mounting can be stably performed.
 図11は、点灯検査工程およびリペア工程を説明する図である。 FIG. 11 is a diagram illustrating a lighting inspection process and a repair process.
 半導体チップ1がマイクロLEDである場合、回路基板6への実装が完了した半導体チップ1の発光性能を確認するためには、図11(a)に示すように回路基板6を点灯検査装置41に載置し、全ての半導体チップ1を点灯させ、発光性能を検査する。なお、このように回路基板6に実装された半導体チップ1の性能を検査する工程を、本発明では実装後検査工程と呼ぶ。 When the semiconductor chip 1 is a micro LED, in order to confirm the light emitting performance of the semiconductor chip 1 that has been mounted on the circuit board 6, the circuit board 6 is attached to the lighting inspection device 41 as shown in FIG. 11A. It is placed, all semiconductor chips 1 are turned on, and the light emission performance is inspected. The step of inspecting the performance of the semiconductor chip 1 mounted on the circuit board 6 in this way is referred to as a post-mounting inspection step in the present invention.
 実装後検査工程(点灯検査)の結果、図11(a)における右から2番目の半導体チップ1のように点灯しない、もしくは輝度が低い半導体チップ1があれば、図11(b)に示すようにレーザ光11dをその半導体チップ1に照射し、焼失させる。このレーザ光11dのパワーは図6(b)に示すチップ除去工程におけるレーザ光11bのパワーと同等で良く、この工程は転写部10で実施されても構わない。なお、性能が異常な半導体チップ1があったとしても、その半導体チップ1の近傍に新たな半導体チップ1を配置することが可能であれば、その半導体チップ1を焼失させずに残しておいても構わない。 As a result of the post-mounting inspection step (lighting inspection), if there is a semiconductor chip 1 that does not light or has low brightness like the second semiconductor chip 1 from the right in FIG. 11 (a), it is as shown in FIG. 11 (b). The semiconductor chip 1 is irradiated with a laser beam 11d to burn it. The power of the laser beam 11d may be the same as the power of the laser beam 11b in the chip removing step shown in FIG. 6B, and this step may be performed by the transfer unit 10. Even if there is a semiconductor chip 1 having abnormal performance, if a new semiconductor chip 1 can be arranged in the vicinity of the semiconductor chip 1, the semiconductor chip 1 is left without being burnt. It doesn't matter.
 このように半導体チップ1を焼失させた際、接合材5まで焼失する場合があり、この場合は図11(c)に示すように接合材5を塗布する。そして、図11(d)に示すように半導体チップ1を焼失させた箇所に、性能が異常な半導体チップ1に代わって機能する新たな半導体チップ1であるリペア用半導体チップを実装する。 When the semiconductor chip 1 is burnt down in this way, the joining material 5 may also be burned down. In this case, the joining material 5 is applied as shown in FIG. 11 (c). Then, as shown in FIG. 11D, a repair semiconductor chip, which is a new semiconductor chip 1 that functions in place of the semiconductor chip 1 having abnormal performance, is mounted at a portion where the semiconductor chip 1 is burnt down.
 このようにリペア用半導体チップを実装することを本発明ではリペア工程と呼ぶが、1回のリペアに要する時間は30秒程度である。 In the present invention, mounting the semiconductor chip for repair in this way is called a repair process, but the time required for one repair is about 30 seconds.
 ここで、回路基板6がたとえば4Kテレビ用途のものである場合、半導体チップ1は2488万個用いられている。この半導体チップ1の不良率が0.1%であった場合、約2.5万個分のリペアを行う必要がある。そうすると仮にリペア用半導体チップを1個ずつリペアする場合、リペアだけで約200時間要する計算となり、たとえレーザリフトオフを利用して実装工程自体は高速で完了したとしてもリペアが起因して生産性に大きく影響する。 Here, when the circuit board 6 is used for, for example, a 4K television, 24.88 million semiconductor chips 1 are used. If the defect rate of the semiconductor chip 1 is 0.1%, it is necessary to repair about 25,000 pieces. Then, if the repair semiconductor chips are repaired one by one, the calculation will take about 200 hours just for the repair, and even if the mounting process itself is completed at high speed using the laser lift-off, the repair will greatly increase the productivity. Affect.
 これに対し、本発明の実装方法では検査工程を有している。そして、この検査工程により正常と判断された半導体チップ1のみ、すなわち検査工程における良品率100%の半導体チップ1が第2の転写基板4bに配置され、それが回路基板6に実装されている。その結果、点灯検査における点灯不良チップは検査工程を行わないで実装した場合と比較して格段に少なくなり、実装後にリペアが必要な半導体チップ1の数を大幅に減らすことができ、回路基板6の生産性を向上させることができる。 On the other hand, the mounting method of the present invention has an inspection process. Then, only the semiconductor chip 1 determined to be normal by this inspection step, that is, the semiconductor chip 1 having a non-defective rate of 100% in the inspection step is arranged on the second transfer board 4b, and is mounted on the circuit board 6. As a result, the number of defective lighting chips in the lighting inspection is significantly reduced as compared with the case where the chips are mounted without the inspection process, and the number of semiconductor chips 1 that need to be repaired after mounting can be significantly reduced. Productivity can be improved.
 仮に上記の4Kテレビの事例において検査工程を設けることにより点灯不良率が100分の1になったとすると、リペアに必要な時間は約2時間となり、200時間近く短縮することが可能である。従来の実装方法と比較すると、本発明の実装方法では検査工程が追加されているものの、上記の通り検査工程に要する時間は30分程度であるため、本発明の実装方法を用いることにより大幅に時間を短縮して正常点灯率100%の回路基板6を提供することができる。 If the lighting defect rate is reduced to 1/100 by providing the inspection process in the above case of 4K TV, the time required for repair is about 2 hours, which can be shortened by nearly 200 hours. Compared with the conventional mounting method, the mounting method of the present invention adds an inspection step, but as described above, the time required for the inspection step is about 30 minutes. It is possible to provide the circuit board 6 having a normal lighting rate of 100% by shortening the time.
 また、さらにリペアにあたってさらに本発明の実装方法を利用し、図12に示すように回路基板6上の複数のリペア位置に応じて第2の転写基板4bに第1の転写基板4aから半導体チップ1を選択的に転写させ、この第2の転写基板4bを用いて複数点のリペアを同時に実施することにより、リペアに要する時間をさらに短縮することが可能である。 Further, in the repair, the mounting method of the present invention is further utilized, and as shown in FIG. 12, the semiconductor chip 1 is transferred from the first transfer board 4a to the second transfer board 4b according to a plurality of repair positions on the circuit board 6. Is selectively transferred, and a plurality of points are repaired at the same time using the second transfer substrate 4b, whereby the time required for the repair can be further shortened.
 次に、本発明の他の実施形態における転写工程を図13および図14を用いて説明する。 Next, the transfer process in another embodiment of the present invention will be described with reference to FIGS. 13 and 14.
 図13は、第1の転写モードを示す概略図である。 FIG. 13 is a schematic view showing the first transfer mode.
 第1の転写モードでは、被転写基板を第1の基板w1とし、転写部10は基板w0に保持されている素子1を第1の基板w1に転写させる。基板w0は、素子1をエピタキシャル成長させる成長基板であっても良く、基板から基板への素子1の転写が1回または複数回なされた中間基板であっても良い。 In the first transfer mode, the substrate to be transferred is the first substrate w1, and the transfer unit 10 transfers the element 1 held by the substrate w0 to the first substrate w1. The substrate w0 may be a growth substrate on which the element 1 is epitaxially grown, or may be an intermediate substrate in which the transfer of the element 1 from the substrate to the substrate is performed once or a plurality of times.
 ここで、第1の基板w1に転写された素子1のピッチである第1の素子間隔d1は、後述する第2の転写モードによって第2の基板w2に転写される素子1のピッチである第2の素子間隔d2よりも小さい。さらには、第1の素子間隔d1はダイシングの末に成長基板に形成された素子1のピッチであって、成長基板から第1の基板w1までこのピッチを維持するように素子1の転写が行われることが好ましい。たとえば、20um×40umの寸法の素子1が短辺方向に30um、長辺方向に50umのピッチで成長基板上に形成されていれば、このピッチが維持されながら成長基板から第1の基板w1まで転写が行われることが好ましい。 Here, the first element spacing d1, which is the pitch of the element 1 transferred to the first substrate w1, is the pitch of the element 1 transferred to the second substrate w2 by the second transfer mode described later. It is smaller than the element spacing d2 of 2. Further, the first element spacing d1 is the pitch of the element 1 formed on the growth substrate at the end of dicing, and the transfer of the element 1 is performed so as to maintain this pitch from the growth substrate to the first substrate w1. It is preferable to be For example, if the element 1 having a dimension of 20 um × 40 um is formed on the growth substrate at a pitch of 30 um in the short side direction and 50 um in the long side direction, the growth substrate to the first substrate w1 while maintaining this pitch. It is preferable that the transfer is performed.
 この第1の転写モードにおいて、レーザ光源12からは所定の発振周波数f1でレーザ光L1が出射される。この発振周波数f1(Hz)およびガルバノミラー15によるスキャン速度v1(m/s)は、出射された各レーザ光L1が所定の素子1をレーザリフトオフさせることが可能なように設定される。たとえば、図13のようにピッチd1で配列された素子1を順番にレーザリフトオフさせる場合は、v1/f1=d1の式を満たすよう、発振周波数f1およびスキャン速度v1が設定される。具体的には、第1の素子間隔d1=30um(=0.03mm)の場合、たとえば発振周波数f1=166kHz、スキャン速度v1=5m/sと設定された場合に、転写部10は素子1を順番に転写させることができる。一方、発振周波数f1=10kHz、スキャン速度v1=300mm/sと設定された場合にも、転写部10は素子1を順番に転写させることができるが、発振周波数f1がすなわち所定時間内に転写させることが可能な素子1の数量となるため、可能な限り発振周波数f1が高い条件で転写が行われることが好ましい。 In this first transfer mode, the laser light L1 is emitted from the laser light source 12 at a predetermined oscillation frequency f1. The oscillation frequency f1 (Hz) and the scan speed v1 (m / s) by the galvanometer mirror 15 are set so that each emitted laser beam L1 can laser lift off a predetermined element 1. For example, when the elements 1 arranged at the pitch d1 are sequentially laser lifted off as shown in FIG. 13, the oscillation frequency f1 and the scan speed v1 are set so as to satisfy the equation v1 / f1 = d1. Specifically, when the first element spacing d1 = 30 um (= 0.03 mm), for example, when the oscillation frequency f1 = 166 kHz and the scan speed v1 = 5 m / s are set, the transfer unit 10 sets the element 1. It can be transferred in order. On the other hand, even when the oscillation frequency f1 = 10 kHz and the scan speed v1 = 300 mm / s are set, the transfer unit 10 can transfer the elements 1 in order, but the oscillation frequency f1 transfers them within a predetermined time. Since the number of elements 1 can be increased, it is preferable that the transfer is performed under the condition that the oscillation frequency f1 is as high as possible.
 図14は、第2の転写モードを示す概略図である。 FIG. 14 is a schematic view showing a second transfer mode.
 第2の転写モードでは、上述の第1の転写モードによって素子1が転写された第1の基板w1を転写基板、第2の基板w2を被転写基板とし、転写部10は第1の基板w1に保持されている素子1を第2の基板w2に転写させる。 In the second transfer mode, the first substrate w1 to which the element 1 is transferred by the above-mentioned first transfer mode is a transfer substrate, the second substrate w2 is a transfer substrate, and the transfer unit 10 is the first substrate w1. The element 1 held in the second substrate w2 is transferred to the second substrate w2.
 第2の基板w2は、本実施形態では表面に配線回路が形成されたテレビディスプレイ用途の回路基板であり、配線回路上に素子1が転写されることにより、LED発光素子である素子1が点灯可能となる。 The second substrate w2 is a circuit board for a television display in which a wiring circuit is formed on the surface in the present embodiment, and when the element 1 is transferred onto the wiring circuit, the element 1 which is an LED light emitting element is lit. It will be possible.
 この第2の転写モードでは、転写部10が第1の基板w1に保持されている素子1を数個おきに転写させることによって、第2の基板w2上での素子1のピッチは回路基板上で素子1が機能するために配置されるべきピッチ、すなわち回路基板上の配線回路のピッチである第2の素子間隔d2へ調節される。たとえば、転写部10が第1の基板w1に第1の素子間隔d1=30umで配列されている素子1を20個おきに第1の基板w1から第2の基板w2へ転写させることにより、第2の基板w2における素子1のピッチである第2の素子間隔d2は600umとなる。 In this second transfer mode, the transfer unit 10 transfers every few elements 1 held on the first substrate w1, so that the pitch of the elements 1 on the second substrate w2 is on the circuit board. Is adjusted to the pitch to be arranged for the element 1 to function, that is, the pitch of the wiring circuit on the circuit board, that is, the second element spacing d2. For example, the transfer unit 10 transfers elements 1 arranged on the first substrate w1 with a first element spacing d1 = 30um every 20 elements from the first substrate w1 to the second substrate w2. The second element spacing d2, which is the pitch of the elements 1 on the substrate w2 of 2, is 600 um.
 一方、この第2の転写モードのように素子1のピッチを拡張するように転写が実施される場合、レーザ光源12によるレーザ光L1の発振周波数に制約が生じる可能性がある。 On the other hand, when the transfer is performed so as to expand the pitch of the element 1 as in this second transfer mode, the oscillation frequency of the laser light L1 by the laser light source 12 may be restricted.
 図15は、光路制御部(ガルバノミラー15)のスキャン速度とレーザ光L1の発振周波数との関係を示すグラフである。グラフ上、実線はレーザリフトオフ対象(素子1)のピッチが0.03mmの場合、一点鎖線はピッチが0.60mmである場合を示す。 FIG. 15 is a graph showing the relationship between the scan speed of the optical path control unit (galvano mirror 15) and the oscillation frequency of the laser beam L1. On the graph, the solid line shows the case where the pitch of the laser lift-off target (element 1) is 0.03 mm, and the alternate long and short dash line shows the case where the pitch is 0.60 mm.
 転写部10において、ガルバノミラー15(光路制御部)のスキャン速度は有限であり、仮にスキャン速度の最高値が5m/sであった場合、この最高速のスキャン速度の条件でパルス状に出射された各レーザ光L1が0.03mmのピッチで配列されている素子1を転写させることが可能なレーザ光L1の発振周波数は約166kHzとなる。 In the transfer unit 10, the scan speed of the galvanometer mirror 15 (optical path control unit) is finite, and if the maximum scan speed is 5 m / s, it is emitted in a pulse shape under the condition of the maximum scan speed. The oscillation frequency of the laser beam L1 capable of transferring the element 1 in which each laser beam L1 is arranged at a pitch of 0.03 mm is about 166 kHz.
 これに対し、素子1のピッチが0.60mmであった場合には、スキャン速度が最高値であった場合であっても、パルス状に出射された各レーザ光L1が素子1を転写させることが可能なレーザ光L1の発振周波数は約8.3kHzにとどまり、仮にレーザ光源12が200kHzの発振周波数でレーザ光L1を出射可能であってもその性能を充分に活かせず、所定時間内に転写させることが可能な素子1の数量は比較的少なくなってしまう。 On the other hand, when the pitch of the element 1 is 0.60 mm, each laser beam L1 emitted in a pulse shape transfers the element 1 even when the scan speed is the maximum value. The oscillation frequency of the laser beam L1 is only about 8.3 kHz, and even if the laser light source 12 can emit the laser beam L1 at an oscillation frequency of 200 kHz, its performance cannot be fully utilized and the laser beam L1 is transferred within a predetermined time. The number of elements 1 that can be made is relatively small.
 そこで、本発明では第1の転写モードと第2の転写モードとの間でレーザ光源12の発振周波数を異ならせ、第1の転写モードにおける第1の素子間隔d1が第2の転写モードにおける第2の素子間隔d2よりも小さくされた上で、第1の転写モードにおける発振周波数f1が第2の転写モードにおける発振周波数f2よりも高くなるように制御している。 Therefore, in the present invention, the oscillation frequency of the laser light source 12 is made different between the first transfer mode and the second transfer mode, and the first element spacing d1 in the first transfer mode is the second in the second transfer mode. It is controlled so that the oscillation frequency f1 in the first transfer mode is higher than the oscillation frequency f2 in the second transfer mode after being made smaller than the element spacing d2 of 2.
 具体的には、本実施形態において、第2の転写モードでは、ガルバノミラー15のスキャン速度v2は最高速(5m/s)近傍とされ、発振周波数f2はそのときに各レーザ光L1が配線回路のピッチ相当の第2の素子間隔d2(0.60mm)で素子1を転写させうる周波数(約8.3kHz)とされる。 Specifically, in the second transfer mode, in the second transfer mode, the scan speed v2 of the galvano mirror 15 is set to be near the maximum speed (5 m / s), and the oscillation frequency f2 is such that each laser beam L1 is a wiring circuit at that time. The frequency (about 8.3 kHz) at which the element 1 can be transferred is set at the second element interval d2 (0.60 mm) corresponding to the pitch of.
 これに対し、第1の転写モードでは、ガルバノミラー15のスキャン速度v1はスキャン速度v2と等しく最高速(5m/s)近傍とされ、発振周波数f1はそのときに各レーザ光L1が第1の素子間隔d1(0.03mm)で素子1を転写させうる周波数(約166kHz)とされる。 On the other hand, in the first transfer mode, the scan speed v1 of the galvanometer mirror 15 is equal to the scan speed v2 and is close to the maximum speed (5 m / s), and the oscillation frequency f1 is such that each laser beam L1 is the first at that time. The frequency (about 166 kHz) at which the element 1 can be transferred is set at the element interval d1 (0.03 mm).
 こうすることにより、配線回路のピッチの都合上第2の転写モードでは第2の素子間隔d2が比較的大きくなることが原因で転写スピードが遅くなる一方、第2の転写モードの直前の第1の転写モードまでは基板上の素子同士の間隔が比較的小さく設定されることにより、比較的高い発振周波数に設定してレーザ光を出射しながら素子の転写を行うことができるため、短時間で回路基板への素子の転写を完了させることができる。 By doing so, the transfer speed becomes slow in the second transfer mode due to the relatively large interval d2 of the second element due to the pitch of the wiring circuit, while the first transfer mode immediately before the second transfer mode By setting the distance between the elements on the substrate to be relatively small up to the transfer mode of, it is possible to transfer the elements while setting a relatively high oscillation frequency and emitting laser light, so that the elements can be transferred in a short time. The transfer of the element to the circuit board can be completed.
 また、第2の転写モードにおけるレーザ光L1の発振周波数f2は、光路制御部であるガルバノミラー15が制御しうる最高速度近傍となるようにガルバノミラー15を動作させた場合にレーザ光源12から出射された各々のレーザ光L1が第2の素子間隔d2で素子1を転写させうる周波数であることにより、第2の転写モードにおいても可能な限り短時間で素子1の転写を行うことができる。 Further, the oscillation frequency f2 of the laser beam L1 in the second transfer mode is emitted from the laser light source 12 when the galvano mirror 15 is operated so as to be close to the maximum speed that can be controlled by the galvano mirror 15 which is an optical path control unit. Since each of the laser beams L1 has a frequency at which the element 1 can be transferred at the second element interval d2, the element 1 can be transferred in the shortest possible time even in the second transfer mode.
 また、前記第1の素子間隔d1が成長基板における素子1同士の間隔と同等であることにより、第1の転写モードにおける素子1同士の間隔が最小限に近くなり、第1の転写モードにおけるレーザ光L1の発振周波数f1をより高く設定することができる。 Further, since the first element spacing d1 is equivalent to the spacing between the elements 1 in the growth substrate, the spacing between the elements 1 in the first transfer mode becomes close to the minimum, and the laser in the first transfer mode The oscillation frequency f1 of the light L1 can be set higher.
 以上の実装方法、実装装置、および転写装置により、生産性良く半導体チップを回路基板に実装することが可能である。 With the above mounting method, mounting device, and transfer device, it is possible to mount a semiconductor chip on a circuit board with high productivity.
 ここで、本発明の実装方法、実装装置、および転写装置は、以上で説明した形態に限らず本発明の範囲内において他の形態のものであってもよい。たとえば、上記の説明では、第1の転写工程および第2の転写工程は大気圧下で実施されているが、転写部10が図示しない減圧部を備えることにより、減圧環境で実施されても良い。 Here, the mounting method, mounting device, and transfer device of the present invention are not limited to the forms described above, and may be other forms within the scope of the present invention. For example, in the above description, the first transfer step and the second transfer step are carried out under atmospheric pressure, but the transfer section 10 may be carried out in a reduced pressure environment by providing a pressure reducing section (not shown). ..
 また、上記の説明では、転写部ではレーザによる半導体チップの転写が行われているが、他の手段が用いられていても良い。たとえば、粘着シートに半導体チップを貼り付けることによって半導体チップの転写が行われていても良い。 Further, in the above description, the semiconductor chip is transferred by a laser in the transfer unit, but other means may be used. For example, the semiconductor chip may be transferred by attaching the semiconductor chip to the adhesive sheet.
 また、上記の説明では転写部においてレーザの照射位置をガルバノミラーで制御しているが、これに限らず、たとえばポリゴンミラーなど他の公知技術で制御しても構わない。また、ミラーの反射は利用せず、転写基板と被転写基板の相対移動だけでレーザの照射位置を制御しても良い。 Further, in the above description, the laser irradiation position is controlled by the galvano mirror in the transfer unit, but the present invention is not limited to this, and other known techniques such as a polygon mirror may be used to control the laser irradiation position. Further, the laser irradiation position may be controlled only by the relative movement of the transfer substrate and the transfer substrate without utilizing the reflection of the mirror.
 また、上記の説明では第1の転写工程と第2の転写工程とを同一の転写部により実施しているが、それぞれ別の転写部が設けられ、それぞれの転写部で実施されていても良い。 Further, in the above description, the first transfer step and the second transfer step are carried out by the same transfer section, but different transfer sections may be provided and each transfer section may be used. ..
 また、検査部による半導体チップの検査は画像解析による外観検査、フォトルミネッセンスに限らず、たとえばX線を用いた検査であっても構わない。 Further, the inspection of the semiconductor chip by the inspection unit is not limited to the visual inspection by image analysis and photoluminescence, and may be, for example, an inspection using X-rays.
 また、上記の説明では第2の基板をディスプレイなどの製品に最終的に搭載される回路基板としているが、これに限らず、たとえば回路基板よりも前の段階で転写される基板を第2の基板としても良い。ただし、この場合第2の素子間隔で転写される基板が回路基板を含めて複数になり、その分転写時間を要するため、上記の説明の通り回路基板を第2の基板とし、この第2の基板への素子の転写までは素子の間隔が小さい状態で基板から基板への素子の転写が進められることが最も望ましい。 Further, in the above description, the second substrate is a circuit board that is finally mounted on a product such as a display, but the present invention is not limited to this, and for example, a substrate that is transferred at a stage before the circuit board is the second substrate. It may be used as a substrate. However, in this case, the number of substrates transferred at the second element interval is multiple including the circuit board, and the transfer time is required accordingly. Therefore, as described above, the circuit board is used as the second substrate, and this second substrate is used. It is most desirable that the transfer of the element from the substrate to the substrate proceeds in a state where the distance between the elements is small until the transfer of the element to the substrate.
 また、上記の説明では第1の素子間隔はダイシングの末に成長基板に形成された素子のピッチであって、成長基板から第1の基板までこのピッチを維持するように素子の転写が行われるが、それに限らず途中の段階でピッチが変更されても構わず、最終的に回路基板に所定間隔で素子が配置されれば良い。 Further, in the above description, the first element spacing is the pitch of the elements formed on the growth substrate at the end of dicing, and the transfer of the elements is performed so as to maintain this pitch from the growth substrate to the first substrate. However, the pitch may be changed in the middle of the process, and the elements may be finally arranged on the circuit board at predetermined intervals.
 また、上記の説明では、第1の転写モードおよび第2の転写モードにおいてスキャン速度は同じであり、ガルバノミラーが制御しうる最高速であるが、これに限らず、たとえば第1の転写モードでのスキャン速度が第2の転写モードでのスキャン速度よりも遅くても良い。 Further, in the above description, the scan speed is the same in the first transfer mode and the second transfer mode, which is the highest speed that can be controlled by the galvanometer mirror, but the present invention is not limited to this, and for example, in the first transfer mode. The scan speed of may be slower than the scan speed in the second transfer mode.
 1 半導体チップ(素子)
 2 キャリア基板
 3a 粘着層
 3b 粘着層
 4a 第1の転写基板
 4b 第2の転写基板
 5 接合材
 6 回路基板
 10 転写部
 11 レーザ光
 11a レーザ光
 11b レーザ光
 11c レーザ光
 11d レーザ光
 12 レーザ照射部
 13 転写基板保持部
 14 被転写基板保持部
 15 ガルバノミラー
 16 fθレンズ
 20 検査部(波長測定部)
 21 カメラ
 22 被検査基板保持部
 23 レーザ光源
 24 波長測定器
 30 実装部
 31 載置台
 32 ヘッド
 33 2視野光学系
 34 ヒータ
 35 ヒータ
 40 ロボットハンド
 41 点灯検査装置
 100 実装装置
 L1 レーザ光
 L2 レーザ光
 L3 放出光
 W0 基板
 W1 第1の基板
 W2 第2の基板
1 Semiconductor chip (element)
2 Carrier substrate 3a Adhesive layer 3b Adhesive layer 4a First transfer substrate 4b Second transfer substrate 5 Bonding material 6 Circuit substrate 10 Transfer unit 11 Laser light 11a Laser light 11b Laser light 11c Laser light 11d Laser light 12 Laser irradiation part 13 Transfer substrate holding part 14 Transferped substrate holding part 15 Galvano mirror 16 fθ lens 20 Inspection part (wavelength measuring part)
21 Camera 22 Inspected substrate holding part 23 Laser light source 24 Wavelength measuring instrument 30 Mounting part 31 Mounting stand 32 Head 33 2 Field optical system 34 Heater 35 Heater 40 Robot hand 41 Lighting inspection device 100 Mounting device L1 Laser light L2 Laser light L3 emission Optical W0 board W1 1st board W2 2nd board

Claims (16)

  1.  キャリア基板に形成された複数の半導体チップを第1の転写基板へ転写する第1の転写工程と、
     前記第1の転写基板に転写された半導体チップの状態を検査する検査工程と、
     前記検査工程により正常と判断された半導体チップのみを前記第1の転写基板から第2の転写基板へ転写する第2の転写工程と、
     前記第2の転写基板に転写された半導体チップを回路基板へ実装する実装工程と、
    を有することを特徴とする、実装方法。
    A first transfer step of transferring a plurality of semiconductor chips formed on a carrier substrate to a first transfer substrate, and
    An inspection step for inspecting the state of the semiconductor chip transferred to the first transfer substrate, and
    A second transfer step of transferring only the semiconductor chips determined to be normal by the inspection step from the first transfer substrate to the second transfer substrate,
    The mounting process of mounting the semiconductor chip transferred to the second transfer board on the circuit board, and
    A mounting method, characterized in that it has.
  2.  前記実装工程は、前記第2の転写基板ごと半導体チップの回路基板への圧着を行う圧着工程と、前記第2の転写基板と半導体チップとを分離する分離工程と、を有し、前記圧着工程に臨む前記第2の転写基板には前記回路基板に半導体チップが配置されるべき位置に応じて半導体チップが配列されるよう、前記第2の転写工程で半導体チップの転写が選択的に行われることを特徴とする、請求項1に記載の実装方法。 The mounting step includes a crimping step of crimping the semiconductor chip together with the second transfer substrate to the circuit board, and a separation step of separating the second transfer substrate and the semiconductor chip, and the crimping step. The semiconductor chip is selectively transferred in the second transfer step so that the semiconductor chips are arranged on the second transfer substrate facing the circuit board according to the position where the semiconductor chips should be arranged on the circuit board. The implementation method according to claim 1, wherein the method is characterized by the above.
  3.  前記第1の転写工程および前記第2の転写工程はレーザリフトオフによって行われ、
     前記第1の転写工程によって前記第1の基板に転写された前記半導体チップ同士の間隔である第1の素子間隔は前記第2の転写工程によって前記第2の基板に転写された前記半導体チップ同士の間隔である第2の素子間隔よりも小さく、
     前記第1の転写工程におけるレーザ光の発振周波数は前記第2の転写工程におけるレーザ光の発振周波数よりも高いことを特徴とする、請求項1もしくは2に記載の実装方法。
    The first transfer step and the second transfer step are performed by laser lift-off.
    The first element spacing, which is the distance between the semiconductor chips transferred to the first substrate by the first transfer step, is the distance between the semiconductor chips transferred to the second substrate by the second transfer step. Is smaller than the second element spacing, which is the spacing between
    The mounting method according to claim 1 or 2, wherein the oscillation frequency of the laser light in the first transfer step is higher than the oscillation frequency of the laser light in the second transfer step.
  4.  前記第2の転写工程におけるレーザ光の発振周波数は、前記第1の基板におけるレーザ光の照射スポットの移動速度に対し前記光路制御部が制御しうる最高速度近傍となるように前記光路制御部を動作させた場合に、前記レーザ光源から出射された各々のレーザ光が前記第2の素子間隔で前記半導体チップを転写させうる発振周波数であることを特徴とする、請求項3に記載の実装方法。 The optical path control unit is set so that the oscillation frequency of the laser beam in the second transfer step is close to the maximum speed that the optical path control unit can control with respect to the moving speed of the laser beam irradiation spot on the first substrate. The mounting method according to claim 3, wherein each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the semiconductor chip at the second element interval when operated. ..
  5.  ガルバノミラーによりレーザ光の光路が制御されることを特徴とする、請求項3もしくは4に記載の実装方法。 The mounting method according to claim 3 or 4, wherein the optical path of the laser beam is controlled by the galvanometer mirror.
  6.  前記回路基板に実装された半導体チップの性能を検査する実装後検査工程と、前記実装後検査工程の結果、異常と判断された半導体チップに代わって機能するリペア用半導体チップを前記回路基板に追加もしくは置き換えるリペア工程と、を有し、前記リペア工程では、前記回路基板に前記リペア用半導体チップが配置されるべき位置に応じて半導体チップが配列されるよう、前記第1の転写基板から前記第2の転写基板へ半導体チップを選択的に転写し、前記第2の転写基板ごと半導体チップの回路基板への圧着を行い、半導体チップから前記第2の転写基板を分離することを特徴とする、請求項2に記載の実装方法。 A post-mounting inspection step for inspecting the performance of the semiconductor chip mounted on the circuit board and a repair semiconductor chip that functions in place of the semiconductor chip determined to be abnormal as a result of the post-mounting inspection step are added to the circuit board. Alternatively, the repair step includes a repair step of replacing the semiconductor chips from the first transfer board so that the semiconductor chips are arranged according to the positions where the semiconductor chips for repair should be arranged on the circuit board. The semiconductor chip is selectively transferred to the transfer substrate of No. 2, the second transfer substrate is crimped to the circuit board of the semiconductor chip, and the second transfer substrate is separated from the semiconductor chip. The mounting method according to claim 2.
  7.  前記検査工程では、画像解析による外観検査によって前記第1の転写基板上の半導体チップの状態の検査が行われることを特徴とする、請求項1から6のいずれかに記載の実装方法。 The mounting method according to any one of claims 1 to 6, wherein in the inspection step, the state of the semiconductor chip on the first transfer substrate is inspected by visual inspection by image analysis.
  8.  前記検査工程では、フォトルミネッセンスによって前記第1の転写基板上の半導体チップの状態の検査が行われることを特徴とする、請求項1から6のいずれかに記載の実装方法。 The mounting method according to any one of claims 1 to 6, wherein in the inspection step, the state of the semiconductor chip on the first transfer substrate is inspected by photoluminescence.
  9.  前記検査工程と前記第2の転写工程の間に、異常と判断された半導体チップを前記第1の転写基板から除去するチップ除去工程をさらに有することを特徴とする、請求項1から8のいずれかに記載の実装方法。 Any of claims 1 to 8, further comprising a chip removing step of removing a semiconductor chip determined to be abnormal from the first transfer substrate between the inspection step and the second transfer step. Implementation method described in Crab.
  10.  キャリア基板から第1の転写基板への複数の半導体チップの転写および当該第1の転写基板から第2の転写基板へのチップの転写を行う転写部と、
     前記第1の転写基板に転写された半導体チップの状態を検査する検査部と、
     前記第2の転写基板に転写された半導体チップを回路基板へ実装する実装部と、
    を有し、
     前記第2の転写基板には、前記検査部の検査により正常と判断された半導体チップのみが前記第1の転写基板から転写されることを特徴とする、実装装置。
    A transfer unit that transfers a plurality of semiconductor chips from the carrier substrate to the first transfer substrate and transfers the chips from the first transfer substrate to the second transfer substrate.
    An inspection unit that inspects the state of the semiconductor chip transferred to the first transfer substrate, and an inspection unit.
    A mounting unit for mounting the semiconductor chip transferred to the second transfer board on the circuit board, and
    Have,
    A mounting device, characterized in that, on the second transfer substrate, only semiconductor chips determined to be normal by the inspection of the inspection unit are transferred from the first transfer substrate.
  11.  レーザ光を出射し、レーザ光の発振周波数が制御可能であるレーザ光源と、
     レーザ光の光路を制御する光路制御部と、
    を備え、前記光路制御部によって転写基板におけるレーザ光の照射位置を制御し、当該転写基板に保持されている複数の素子のうち任意の当該素子をレーザリフトオフによって被転写基板に転写させる転写装置であり、
     第1の基板を前記被転写基板とし、当該第1の基板へ前記素子を転写させる第1の転写モードと、
     前記第1の基板を前記転写基板、第2の基板を前記被転写基板とし、前記第1の基板に保持された前記素子を当該第2の基板に転写させる第2の転写モードと、
    を有し、
     前記第1の転写モードによって前記第1の基板に転写された前記素子同士の間隔である第1の素子間隔は前記第2の転写モードによって前記第2の基板に転写された前記素子同士の間隔である第2の素子間隔よりも小さく、
     前記第1の転写モードにおけるレーザ光の発振周波数は前記第2の転写モードにおけるレーザ光の発振周波数よりも高いことを特徴とする、転写装置。
    A laser light source that emits laser light and can control the oscillation frequency of the laser light,
    An optical path control unit that controls the optical path of the laser beam,
    The optical path control unit controls the irradiation position of the laser beam on the transfer substrate, and any of the plurality of elements held on the transfer substrate is transferred to the transfer substrate by laser lift-off. can be,
    A first transfer mode in which the first substrate is used as the transfer substrate and the element is transferred to the first substrate,
    A second transfer mode in which the first substrate is the transfer substrate, the second substrate is the substrate to be transferred, and the element held on the first substrate is transferred to the second substrate.
    Have,
    The first element spacing, which is the distance between the elements transferred to the first substrate by the first transfer mode, is the distance between the elements transferred to the second substrate by the second transfer mode. Is smaller than the second element spacing,
    A transfer device, characterized in that the oscillation frequency of the laser light in the first transfer mode is higher than the oscillation frequency of the laser light in the second transfer mode.
  12.  前記第2の基板は、配線回路が形成された回路基板であることを特徴とする、請求項11に記載の転写装置。 The transfer device according to claim 11, wherein the second substrate is a circuit board on which a wiring circuit is formed.
  13.  前記第2の転写モードにおけるレーザ光の発振周波数は、前記第1の基板におけるレーザ光の照射スポットの移動速度に対し前記光路制御部が制御しうる最高速度近傍となるように前記光路制御部を動作させた場合に、前記レーザ光源から出射された各々のレーザ光が前記第2の素子間隔で前記素子を転写させうる発振周波数であることを特徴とする、請求項11もしくは12に記載の転写装置。 The optical path control unit is set so that the oscillation frequency of the laser beam in the second transfer mode is close to the maximum speed that the optical path control unit can control with respect to the moving speed of the laser beam irradiation spot on the first substrate. The transfer according to claim 11 or 12, wherein each laser beam emitted from the laser light source has an oscillation frequency capable of transferring the element at the second element interval when operated. Device.
  14.  前記光路制御部はガルバノミラーであることを特徴とする、請求項11から13のいずれかに記載の転写装置。 The transfer device according to any one of claims 11 to 13, wherein the optical path control unit is a galvanometer mirror.
  15.  前記第1の素子間隔は、前記素子を成長させる基板である成長基板における前記素子同士の間隔と同等であることを特徴とする、請求項11から14のいずれかに記載の転写装置。 The transfer device according to any one of claims 11 to 14, wherein the first element spacing is equivalent to a spacing between the elements in a growth substrate which is a substrate for growing the element.
  16.  各々の前記素子の動作性能を判定する性能判定モードをさらに有し、前記第1の転写モードでは、前記性能判定モードにおいて正常と判定された前記素子のみを前記第1の基板へ転写させることを特徴とする、請求項11から15のいずれかに記載の転写装置。 It further has a performance determination mode for determining the operating performance of each of the elements, and in the first transfer mode, only the element determined to be normal in the performance determination mode is transferred to the first substrate. The transfer device according to any one of claims 11 to 15, characterized in that.
PCT/JP2021/010010 2020-03-23 2021-03-12 Mounting method, mounting device, and transfer device WO2021193135A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227025264A KR20220158219A (en) 2020-03-23 2021-03-12 Mounting method, mounting device, and transfer device
CN202180022696.6A CN115335974A (en) 2020-03-23 2021-03-12 Mounting method, mounting apparatus, and transfer apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020051720A JP7463153B2 (en) 2020-03-23 2020-03-23 Mounting method and mounting device
JP2020-051720 2020-03-23
JP2021-012397 2021-01-28
JP2021012397A JP2022115687A (en) 2021-01-28 2021-01-28 Transfer device

Publications (1)

Publication Number Publication Date
WO2021193135A1 true WO2021193135A1 (en) 2021-09-30

Family

ID=77891991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010010 WO2021193135A1 (en) 2020-03-23 2021-03-12 Mounting method, mounting device, and transfer device

Country Status (4)

Country Link
KR (1) KR20220158219A (en)
CN (1) CN115335974A (en)
TW (1) TW202201580A (en)
WO (1) WO2021193135A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017098354A (en) * 2015-11-20 2017-06-01 日東電工株式会社 Method for manufacturing sealed semiconductor element and method for manufacturing semiconductor device
JP2018506166A (en) * 2015-08-18 2018-03-01 ゴルテック.インク Pre-exclusion method, manufacturing method, apparatus and electronic apparatus for micro light-emitting diode
WO2019005818A1 (en) * 2017-06-26 2019-01-03 Tesoro Scientific, Inc. Light emitting diode (led) mass-transfer apparatus and method of manufacture
US20190035688A1 (en) * 2017-07-26 2019-01-31 Ultra Display Technology Corp. Method of batch transferring micro semiconductor structures
JP2019114659A (en) * 2017-12-22 2019-07-11 東レエンジニアリング株式会社 Mounting method and mounting device
JP2019138949A (en) * 2018-02-06 2019-08-22 株式会社ブイ・テクノロジー Method for manufacturing led display
JP2019175978A (en) * 2018-03-28 2019-10-10 東レエンジニアリング株式会社 Transfer board and mounting method using the same and manufacturing method of picture display unit
JP2020043188A (en) * 2018-09-10 2020-03-19 東レエンジニアリング株式会社 Manufacturing method for packaging substrate and packaging substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744770B2 (en) 2004-06-23 2010-06-29 Sony Corporation Device transfer method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018506166A (en) * 2015-08-18 2018-03-01 ゴルテック.インク Pre-exclusion method, manufacturing method, apparatus and electronic apparatus for micro light-emitting diode
JP2017098354A (en) * 2015-11-20 2017-06-01 日東電工株式会社 Method for manufacturing sealed semiconductor element and method for manufacturing semiconductor device
WO2019005818A1 (en) * 2017-06-26 2019-01-03 Tesoro Scientific, Inc. Light emitting diode (led) mass-transfer apparatus and method of manufacture
US20190035688A1 (en) * 2017-07-26 2019-01-31 Ultra Display Technology Corp. Method of batch transferring micro semiconductor structures
JP2019114659A (en) * 2017-12-22 2019-07-11 東レエンジニアリング株式会社 Mounting method and mounting device
JP2019138949A (en) * 2018-02-06 2019-08-22 株式会社ブイ・テクノロジー Method for manufacturing led display
JP2019175978A (en) * 2018-03-28 2019-10-10 東レエンジニアリング株式会社 Transfer board and mounting method using the same and manufacturing method of picture display unit
JP2020043188A (en) * 2018-09-10 2020-03-19 東レエンジニアリング株式会社 Manufacturing method for packaging substrate and packaging substrate

Also Published As

Publication number Publication date
TW202201580A (en) 2022-01-01
CN115335974A (en) 2022-11-11
KR20220158219A (en) 2022-11-30

Similar Documents

Publication Publication Date Title
US10755958B2 (en) Transfer method, mounting method, transfer device, and mounting device
JP2022173193A (en) Method of parallelly assembling discrete components on substrate
KR20190000582A (en) Chip mounting apparatus and method using the same
KR101854679B1 (en) Laser processing apparatus and method for setting processing condition of substrate with pattern
TW202006987A (en) Micro-LED transfer methods using light-based debonding
US10984708B1 (en) Manufacture LED displays using temporary carriers
JP6911003B2 (en) Method of manufacturing element array and method of removing specific element
TWI802665B (en) Laser transfer device and laser transfer method
WO2018061896A1 (en) Transfer method, mounting method, transfer device, and mounting device
KR101368150B1 (en) Test correction method and apparatus of thin film display device
CN111194480A (en) Micro LED pick and place using gallium metal
JP2021150614A (en) Mounting method and mounting device
WO2021117753A1 (en) Collection lens height adjusting method, chip transfer method, collection lens height adjusting device, and chip transfer device
TWI723209B (en) Installation method and installation device
TW201511874A (en) Laser processing device, and method for setting the processing conditions of substrate with patterns
KR20210091640A (en) Method of manufacturing display apparatus, display apparatus, and structure for manufacturing display apparatus
WO2021193135A1 (en) Mounting method, mounting device, and transfer device
WO2013154181A1 (en) Method for manufacturing light-emitting device having chip-on-board package substrate
JP6916104B2 (en) Mounting method and mounting device
CN112313776A (en) Sapphire substrate for semiconductor element formation, method for manufacturing sapphire substrate for semiconductor element formation, and semiconductor element transfer method
KR20220078542A (en) Micro led manufacturing system and micro led manufacturing method
JP7319044B2 (en) Device array manufacturing equipment and specific device removal equipment
JP2010141208A (en) Visual inspection device and visual inspection method for semiconductor laser chip or semiconductor laser bar
WO2022185686A1 (en) Transfer system, transfer position determination device, and transfer method
KR102361309B1 (en) Apparatus and method for removing mini led chip, and system and method for repairing mini led display module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776327

Country of ref document: EP

Kind code of ref document: A1