WO2017057454A1 - Method for manufacturing light-emitting device, and method for manufacturing display device - Google Patents

Method for manufacturing light-emitting device, and method for manufacturing display device Download PDF

Info

Publication number
WO2017057454A1
WO2017057454A1 PCT/JP2016/078612 JP2016078612W WO2017057454A1 WO 2017057454 A1 WO2017057454 A1 WO 2017057454A1 JP 2016078612 W JP2016078612 W JP 2016078612W WO 2017057454 A1 WO2017057454 A1 WO 2017057454A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor layer
phosphor
manufacturing
emitting device
layer
Prior art date
Application number
PCT/JP2016/078612
Other languages
French (fr)
Japanese (ja)
Inventor
神崎達也
重田和樹
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016560608A priority Critical patent/JPWO2017057454A1/en
Publication of WO2017057454A1 publication Critical patent/WO2017057454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing a light emitting device and a method for manufacturing a display device.
  • LEDs Light-emitting diodes
  • LCDs liquid crystal displays
  • car headlights with low power consumption, long service life, and design characteristics due to their remarkable improvement in luminous efficiency.
  • the market is rapidly expanding in the automotive field. Since LEDs have a low environmental impact, it is expected to form a huge market in the general lighting field in the future.
  • a method of using a phosphor sheet that is a sheet-like resin layer (phosphor layer) in which the phosphor material is uniformly distributed in advance has been proposed.
  • This method is easier to dispose a certain amount of phosphor on the LED chip than the conventional method of dispensing and curing a liquid resin in which the phosphor is dispersed on the LED chip.
  • the resulting white LED is excellent in that the color and brightness can be made uniform.
  • a phosphor sheet has a phosphor layer on a base film, and a protective film on the uppermost surface as necessary.
  • One of the manufacturing methods in the case of manufacturing an LED light-emitting device using such a phosphor sheet is to separate the phosphor layer by cutting after removing the protective film, and chip the separated phosphor layer into chips. It is picked up by a mounter or the like and attached to the LED chip (for example, see Patent Document 1). In some cases, the phosphor sheet is perforated during the cutting process.
  • a plurality of LEDs are collectively embedded in a sheet-like phosphor layer (for example, see Patent Document 2). Further, in order to divide the LED chip into individual pieces, a method has been proposed in which the LED with the phosphor layer after being embedded in one piece is cut into individual pieces by dicing (see, for example, Patent Document 3).
  • the phosphor sheets listed in Patent Documents 2 and 3 have high flexibility of the phosphor layer because emphasis is placed on the LED chip embeddability, and the phosphor sheet can be separated into individual processes such as cutting and drilling. There was also a problem that the layer was deformed.
  • an object of the present invention is to provide a method for manufacturing a light emitting device using a phosphor sheet that is excellent in cutting processability and excellent in pick-up property. Moreover, it aims at improving the productivity of LED light-emitting device by it.
  • the present invention includes a step of dividing the phosphor layer into pieces, and heat-treating or irradiating the phosphor sheet with the phosphor layer separated into pieces.
  • the phosphor layer can be easily cut into individual pieces and the pickup property is excellent, so that the productivity of the light emitting device using the phosphor sheet can be increased.
  • Schematic sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention Schematic sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention
  • Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention.
  • Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention.
  • Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention.
  • the present invention includes a step of dividing the phosphor layer into pieces, and heat-treating or irradiating the phosphor sheet with the phosphor layer separated into pieces.
  • a manufacturing method including a step, a step of picking up the separated phosphor layer, and a step of attaching the separated phosphor layer to an LED chip, before the heat treatment or ultraviolet irradiation
  • FIG. 1 is a schematic cross-sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention.
  • the phosphor sheet 6 is formed by forming a phosphor layer 2 containing the phosphor 1 on a base film 5 composed of an adhesive layer 3 and a film 4.
  • Another phosphor layer, diffusion layer, and transparency may be provided on the upper layer and / or lower layer of the phosphor layer.
  • the transparent layer is a layer that contains a resin having a total light transmittance of 90% or more at a wavelength of 450 nm and does not contain a phosphor.
  • the transparent layer preferably has tackiness so that it can be attached to the LED chip without using an adhesive.
  • the refractive index is preferably 1.58 or more.
  • the diffusion layer is a layer containing a resin and a diffusion material such as silica, titania, zirconia.
  • a diffusion material such as silica, titania, zirconia.
  • FIG. 2 shows a phosphor sheet in which a diffusion layer 7 is formed in the upper layer of the phosphor layer 2 and a transparent layer 8 is formed in the lower layer.
  • the method for manufacturing a light emitting device of the present invention includes a step of separating the phosphor layer of the phosphor sheet, a step of performing heat treatment or ultraviolet irradiation on the separated phosphor sheet, and the above-mentioned individualization. A step of picking up the phosphor layer, and a step of attaching the singulated phosphor layer to the LED chip.
  • the adhesive strength A between the phosphor layer and the substrate film at room temperature before the heat treatment or ultraviolet irradiation, and between the phosphor layer and the substrate film at room temperature after the heat treatment or ultraviolet irradiation is improved.
  • the adhesive strength A has a great influence on the cutting processability, and when it is less than 5.0 N / cm, the phosphor layer is easily peeled off from the base material film during the cutting process.
  • the adhesive strength A is more preferably 10 N / cm or more in terms of cutting workability.
  • the adhesive strength B has a great influence on the pick-up property, and if it exceeds 0.1 N / cm, the phosphor layer is likely to be cracked or chipped when picked up as an individual phosphor layer.
  • the adhesive strength B is more preferably 0.05 N / cm or less in terms of pickup properties.
  • the heat treatment conditions for reducing the adhesive strength are preferably a treatment temperature of 60 ° C. to 200 ° C., more preferably 80 ° C. to 160 ° C.
  • the treatment time is preferably 5 minutes or more, more preferably 10 minutes or more.
  • the ultraviolet irradiation conditions for reducing the adhesive strength are at least 100 mJ / cm 2 exposure in terms of i-line, and more preferably 150 mJ / cm 2 or more.
  • the adhesive strength B after being treated at 90 ° C. for 20 minutes is preferably within the above range.
  • the adhesive strength B after exposure of 200 mJ / cm 2 in terms of i-line is performed. Is preferably in the above range.
  • the adhesive strength in the present invention means strength measured by a method according to JIS C6471 (1995) copper foil peel strength test method A for measuring the peel strength of a copper foil.
  • the peel strength of the substrate film from the phosphor layer is measured.
  • digital force gauge “FGN-5B” manufactured by Nidec Symposium
  • electric vertical force gauge test stand “FGS-50-VB-L (H)” manufactured by Nidec Symposium
  • 90 degree peeling jig FGTT-12
  • NW-R15 manufactured by Nichiban
  • the tackiness of the phosphor layer is important.
  • the adhesiveness of the phosphor layer is determined by the type of resin used, the type of phosphor, the content of the phosphor, and the drying conditions at the time of preparing the phosphor layer. Therefore, when adjusting the adhesive strength, it is necessary to select a substrate film suitable for the tackiness of the phosphor layer.
  • FIG. 3 shows an embodiment of a method for manufacturing a light emitting device.
  • FIGS. 3A and 3B show a process of dividing the phosphor layer into individual pieces.
  • the method for cutting the phosphor layer 2 for singulation is not particularly limited, and methods such as punching with a mold, processing with a laser, and cutting with a blade are used.
  • FIG. 3A illustrates an example of cutting with the blade 9.
  • the cutting method with a blade there are a method of pushing and cutting a simple blade, and a method of cutting with a rotary blade, both of which can be suitably used.
  • an apparatus for cutting with a rotary blade an apparatus used for cutting (dicing) a semiconductor substrate called a dicer into individual chips can be suitably used. If the dicer is used, the width of the dividing line can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when cutting with a simple cutting tool. In either case, the whole substrate may be separated into individual pieces, or the phosphor layers may be separated into individual pieces while the substrate is not cut. Alternatively, the substrate is also preferably used in so-called half cut in which a cut line that does not penetrate is entered.
  • the cutting is preferably performed by dry cutting.
  • Dry cutting is a cutting method that does not use water or other liquid during cutting. Examples include cutting with a Thomson blade, but are not limited thereto. Dry cut is particularly effective when the phosphor layer includes a phosphor whose luminous efficiency is reduced by reacting with water, such as a KSF phosphor (for example, K 2 SiF 6 : Mn) described later.
  • a KSF phosphor for example, K 2 SiF 6 : Mn
  • the shape of the individual phosphor layers is not particularly limited, and examples thereof include polygons such as squares, rectangles, and hexagons, circles, and ellipses. Among these, a square and a rectangle are preferable.
  • At least one side of the singulated phosphor layer has a length of 0.1 mm or more.
  • stress may be applied to the phosphor layer due to the thickness of the blade or the rotary blade itself, which may cause minute cracks.
  • the phosphor layer is to be separated into pieces with a size of less than 0.1 mm, a minute crack generated between adjacent dividing lines may be connected, and the phosphor layer may be broken.
  • the adhesive strength A is 5.0 N / cm or more, more preferably 10 N / cm or more, and the length of at least one side of the singulated phosphor layer is 0.1 mm or more. It is preferable because it can be cut without being generated.
  • At least one side of the singulated phosphor layer has a length of 3 mm or less, and more preferably 0.3 mm or less.
  • a suction jig such as a collet is used.
  • a part of the separated phosphor layer is peeled off from the base film.
  • stress is applied to the phosphor layer. This stress is proportional to the size of the separated phosphor layer, and the larger the size of the separated phosphor, the easier the phosphor layer breaks.
  • the adhesive strength B is 0.1 N / cm or less, more preferably 0.05 N / cm or less, and the length of at least one side of the singulated phosphor layer is 3 mm or less, more preferably 0.3 mm or less. If it exists, since it becomes possible to pick up without causing such a problem, it is preferable.
  • the phosphor layer may be perforated before or after the individualization step or simultaneously with the individualization.
  • known methods such as laser processing and die punching can be suitably used for drilling, laser processing may cause burning of the resin and deterioration of the phosphor depending on the irradiation conditions, so there is no such concern. Punching with a mold is more preferable.
  • the punching process is impossible after the phosphor layer is attached to the LED chip. Therefore, it is essential to perform the punching process before applying the punching process. At this time, the phosphor layer remains adhered to the base film.
  • a hole having an arbitrary shape or size can be formed depending on the electrode shape of the LED chip to be attached.
  • the electrode joint portion on the LED chip inside and outside the 1 mm square is preferably, for example, 200 ⁇ m or less in diameter when the electrode joint portion is circular. In total, the diameter is preferably 200 ⁇ m or less.
  • an electrode for wire bonding or the like needs to have a certain size. For example, when the electrode portion is circular, at least its diameter is about 50 ⁇ m, so the hole size is about 50 ⁇ m accordingly. It is preferable that
  • the size of the hole is too large compared to the electrode, the light emitting surface is exposed, light leakage occurs, and the color characteristics of the LED light emitting device may deteriorate. Moreover, when too small than an electrode, a wire may touch at the time of wire bonding, and it may cause a joining defect. Therefore, it is preferable to process a small hole of 50 ⁇ m or more and 200 ⁇ m or less with high accuracy within ⁇ 10% for pattern processing.
  • the phosphor sheet in a state in which the separated phosphor layer is stuck on the base film may be referred to as “divided sheet”.
  • FIG. 3C shows a step of performing heat treatment or ultraviolet irradiation on the phosphor sheet in which the phosphor layer is singulated, that is, the singulated sheet 10.
  • the adhesive strength between the phosphor layer and the base film is lowered by heat treatment or ultraviolet irradiation, and this step reduces the adhesive strength between the phosphor layer and the base film.
  • irradiation may be performed from any direction, but it is more effective to irradiate ultraviolet rays from the base film side.
  • the preferable conditions for heat treatment or ultraviolet irradiation are as described above.
  • FIG. 3D shows a process of picking up the individual phosphor layers.
  • the phosphor layer is picked up using a pickup device equipped with a suction device such as a collet.
  • FIG. 3D illustrates a collet 11 as a pickup device.
  • the phosphor layer is separated into pieces on the substrate film, and the separated phosphor layer is picked up to the LED chip.
  • the pasting process can be easily performed. It can be said that the pick-up property is good when the separated phosphor layer is easily peeled off from the base film and the phosphor layer is not cracked or chipped.
  • a suction device a porous structure having an opening area ratio of 30% or more and 60% or less on the surface on which the singulated sheet 10 is adsorbed and held, a holding body made of an elastic body that holds the porous structure, and the holding It is preferable to use a collet that is inside the body and includes a suction path for sucking the phosphor sheet through the porous structure.
  • the porous structure preferably has a mesh-like opening.
  • a stainless steel wire having a wire diameter of 15 ⁇ m is crossed in two orthogonal directions to form a woven fabric to form a 30 ⁇ m square opening. Thereby, it is possible to pick up even when the phosphor layer is separated into pieces of 0.5 mm square or less.
  • FIG. 3E shows a step of attaching the individual phosphor layers to the LED chip 12.
  • the collet 11 picked up from the separated phosphor layer is transported and attached to the light extraction surface which is the surface opposite to the electrode forming surface of the LED chip 12.
  • Adhesive (not shown) is preferably used for pasting, and known die-bonding agents and adhesives such as acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin , Polyimide, polyvinyl alcohol, polymethacrylate resin, melamine resin, and urea resin can be used. If the phosphor layer has adhesiveness, it may be used.
  • a method of heating and attaching the phosphor layer is also preferable.
  • a semi-cured phosphor sheet it is preferable to use curing by heating.
  • the heating condition is preferably 1 minute to 1 hour at a temperature of 100 ° C. to 200 ° C., more preferably 5 minutes to 30 minutes at a temperature of 120 ° C. to 150 ° C.
  • the phosphor layer when the phosphor layer has heat softening properties after curing, it can be adhered by heat fusion.
  • bubbles may be caught between the LED chip and the phosphor sheet.
  • light is diffusely reflected at the interface between the bubble-LED chip and the bubble-phosphor layer, resulting in a decrease in light extraction efficiency from the LED chip, resulting in a decrease in luminance of the manufactured light-emitting device. End up.
  • the vacuum atmosphere is preferably 10 hPa or less, more preferably 5 hPa or less, and particularly preferably 1 hPa or less.
  • a temperature of 40 ° C. to 200 ° C. is preferably 1 second to 5 minutes
  • a temperature of 60 ° C. to 180 ° C. is more preferably 2 seconds to 3 minutes
  • a temperature of 80 ° C. to 120 ° C. 10 seconds or more and 1 minute or less are particularly preferable.
  • the light emitting device can be obtained by electrically connecting the electrode of the LED chip and the wiring of the circuit board by a known method.
  • the LED chip has an electrode on the light emitting surface side
  • the LED chip is fixed to the circuit board with a die bonding material or the like with the light emitting surface facing up, and then the wire on the upper surface of the LED chip and the circuit board are connected by wire bonding To do.
  • the LED chip is a flip chip type having an electrode pad on the opposite surface of the light emitting surface, the electrode surface of the LED chip is opposed to the wiring of the circuit board and connected by batch bonding.
  • the phosphor layer When the phosphor layer is attached to the LED chip in a semi-cured state, it can be cured at a suitable timing before or after this electrical connection. For example, in the case where the flip chip type is collectively bonded, when the thermocompression bonding is performed, the phosphor layer may be simultaneously cured by the heating. Further, in the case where a package in which an LED chip and a circuit board are connected is surface-mounted on a larger circuit board, the phosphor sheet may be cured simultaneously with soldering by solder reflow.
  • the case where the phosphor layer is stuck to the LED chip in a cured state includes, for example, a case where an adhesive layer is separately provided on the cured phosphor layer, and a case where the phosphor layer has heat-fusibility after curing. is there.
  • the phosphor layer may also serve as a sealant for the LED chip.
  • the LED chip to which the phosphor layer is attached is further coated with a known silicone resin or the like. 15 can be used for sealing.
  • a phosphor layer on the sealing material after sealing an LED chip with a translucent sealing material, it is also possible to use a phosphor layer on the sealing material.
  • the phosphor layer when applied to a face-up type LED chip, the phosphor layer is separated into pieces in the same manner as described above and then attached to the light extraction surface of the LED chip. When the phosphor layer is in a semi-cured state, the phosphor layer is cured after being attached.
  • the phosphor layer in the face-up type LED chip, at least one electrode is formed on the light extraction surface, and conduction is obtained from this electrode by wire bonding or the like as described later. Therefore, the phosphor layer is pasted so that at least a part of the electrode is exposed. Of course, it may be attached only to the light extraction portion. In this case, the phosphor layer can be patterned so that a part of the electrode is exposed. Then, the light emitting device can be obtained by fixing the surface opposite to the light extraction surface of the LED chip to the circuit board and electrically connecting the LED chip and the circuit board by a known method such as wire bonding. .
  • FIG. 4 shows another embodiment of the method for manufacturing a light emitting device of the present invention.
  • the process up to the process shown in FIG. 4B is the same as the process shown in FIG.
  • a step of stretching the base film is included.
  • a gap can be formed between the separated phosphor layers by stretching the base film.
  • FIG.5 (a) is an example of the top view which shows the fluorescent substance sheet 6 after cut
  • the phosphor layer 2 is separated into rectangles by a dividing line 16.
  • FIG.5 (b) is a fluorescent substance sheet after extending
  • the large gap 17 between the phosphor layers as shown in FIG. 5B is more preferable because only the target phosphor layer can be reliably picked up.
  • the degree of stretching of the substrate is preferably 0.5 or more, more preferably 1 or more, further preferably 1.5 or more, and particularly preferably 2 or more.
  • the degree of stretching here is a value calculated by the following formula.
  • an individual phosphor layer may be attached to an LED chip mounted on a substrate.
  • the phosphor sheet used in the present invention is a sheet-like material having a phosphor layer on a substrate film.
  • the phosphor layer refers to a layer mainly containing a phosphor and a resin.
  • Components such as a dispersant, a crosslinking agent, a photopolymerization initiator, a thermal polymerization initiator, a leveling agent, a thixotropy adjusting agent, and a plasticizer may be included as necessary.
  • the phosphor layer preferably has a storage elastic modulus at 25 ° C. of 0.1 MPa or more. Thereby, cutting processes, such as individualization, can be performed easily. More preferably, it is 1 MPa or more, More preferably, it is 10 MPa or more, Especially preferably, it is 100 Mpa or more. When the pressure is less than 0.1 MPa, the flexibility of the phosphor layer is too high, and a flow or the like is generated at the time of cutting, so that stable cutting cannot be performed. Further, from the viewpoint of preventing the phosphor layer from being cracked during the cutting process, the storage elastic modulus at 25 ° C. is preferably 2000 MPa or less, and more preferably 1000 MPa or less.
  • the storage elastic modulus is a storage elastic modulus obtained by dynamic viscoelasticity measurement.
  • Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °.
  • the storage elastic modulus G ′ which represents the deformation and tracking of the material against the dynamic strain at each temperature. It is closely related to processability and adhesion.
  • the resin contained in the phosphor layer may be any resin as long as the phosphor can be uniformly dispersed therein and can form the phosphor layer.
  • silicone resin epoxy resin, polyarylate resin, PET modified polyarylate resin, polycarbonate resin (PC), cyclic olefin, polyethylene terephthalate resin (PET), polymethyl methacrylate resin (PMMA), polypropylene resin (PP ), Modified acrylic (Sanjure Kaneka Chemical), polystyrene resin (PE), acrylonitrile / styrene copolymer resin (AS), and the like.
  • a silicone resin or an epoxy resin is preferably used from the viewpoint of transparency.
  • a silicone resin is particularly preferably used from the viewpoint of heat resistance.
  • curable silicone rubber is preferable. Either one liquid type or two liquid type (three liquid type) liquid structure may be used.
  • the curable silicone rubber include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst.
  • the addition reaction type silicone rubber is more preferable in that it has no by-product accompanying the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
  • the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc.
  • methylhydrogenpolysiloxane dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc.
  • examples thereof include those formed by hydrosilylation reaction of the compounds having them.
  • other publicly known ones such as those described in JP 2010-159411 A can be used.
  • silicone sealing material for general LED applications as a commercially available product.
  • Specific examples include OE-6630A / B and OE-6336A / B manufactured by Toray Dow Corning, and SCR-1012A / B and SCR-1016A / B manufactured by Shin-Etsu Chemical Co., Ltd.
  • the silicone resin preferably has heat-fusibility. This is because when the phosphor layer has heat-fusibility, the phosphor layer can be heated and attached to the LED chip.
  • the heat fusibility mentioned here is the property of softening by heating, and when the phosphor sheet has heat fusibility, it is not necessary to use an adhesive for attaching to the LED chip, thus simplifying the process.
  • the phosphor layer having heat-fusibility is a phosphor sheet having a storage elastic modulus at 25 ° C. of 0.1 MPa or more and a storage elastic modulus at 100 ° C. of less than 0.1 MPa.
  • a cross-linked product obtained by hydrosilylation reaction of a cross-linkable silicone composition including the compositions (A) to (D) is particularly preferable.
  • This crosslinked product can be preferably used as a matrix resin for a phosphor sheet that does not require an adhesive because the storage elastic modulus decreases at 60 ° C. to 250 ° C. and a high adhesive force is obtained by heating.
  • R 3 is an alkenyl group, and m is an integer of 5 to 50.
  • m is an integer of 5 to 50.
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.
  • ⁇ Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2 ⁇
  • D Catalyst for hydrosilylation reaction ⁇ Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon atom-bonded hydrogen atom in component (C) ⁇ .
  • component (A) the values of a, b, and c are sufficient to obtain sufficient hardness at room temperature of the resulting crosslinked product, and softening at high temperature.
  • component (B) if the content of the phenyl group is less than the lower limit of the above range, the resulting crosslinked product is insufficiently softened at a high temperature. The resulting crosslinked product loses its transparency, and its mechanical strength also decreases.
  • at least one R 3 is an alkenyl group. This is because if the alkenyl group is not present, this component is not taken into the crosslinking reaction, and this component may bleed out from the resulting crosslinked product.
  • m is an integer in the range of 5 to 50, and this is a range in which handling workability is maintained while maintaining the mechanical strength of the resulting crosslinked product.
  • the content of the component (B) is within a range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A), and is a range for obtaining sufficient softening at a high temperature of the resulting crosslinked product. .
  • R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms.
  • alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group.
  • cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group.
  • the phenyl group content is in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and can maintain transparency and mechanical strength.
  • component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is in the range of 0.5 to 2. This is a range in which sufficient hardness at room temperature of the resulting crosslinked product can be obtained.
  • the component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • the component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the silicone composition.
  • platinum-based catalyst include platinum fine powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, particularly platinum-alkenylsiloxane complex. It is preferable.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to this complex.
  • the content of the component (D) is an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon-bonded hydrogen atom in the component (C).
  • the amount of metal atoms in the present component is within a range of 0.01 to 500 ppm by mass unit with respect to the silicone composition, and more preferably 0.01 to 100 ppm.
  • the amount is preferably in the range of 0.01 to 50 ppm, and particularly preferably in the range of 0.01 to 50 ppm. This is a range in which the obtained silicone composition is sufficiently crosslinked and does not cause problems such as coloring.
  • the silicone composition is composed of at least the above components (A) to (D), and other optional components include ethynylhexanol, 2-methyl-3-butyn-2-ol, and 3,5-dimethyl-1-hexyne.
  • Alkyne alcohols such as 3-ol and 2-phenyl-3-butyn-2-ol; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-in 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane;
  • a reaction inhibitor such as benzotriazole may be contained.
  • the content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the silicone composition.
  • the phosphor is not limited as long as it absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED can be emitted using a single LED chip by optically combining a blue LED with a phosphor that emits a yellow emission color by light from the LED.
  • the phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red.
  • Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, fluorescent pigments, and fluorescent dyes.
  • organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors.
  • Perylene phosphors are preferably used because they can be used for a long period of time.
  • Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
  • Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , at least one or more of Ba) Ga 2 S 4: Eu , S i 6 - Z a l Z O Z N 8 - Z: Eu (0 ⁇ Z ⁇ 4.2) , and the like.
  • Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
  • yttrium / aluminum oxide phosphors As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series.
  • R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho) 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5.
  • Examples of the phosphor that emits red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, Gd 2 O 2 S: Eu, and K 2 SiF 6 : Mn. .
  • YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and luminance.
  • ⁇ -type sialon phosphors and Mn-activated double fluoride phosphors are preferable in terms of a wide chromaticity range.
  • the KSF phosphor is particularly preferable because it has a low hardness and is less likely to generate burrs on the cut surface of the phosphor sheet as compared with a phosphor such as a ⁇ -type sialon phosphor.
  • known phosphors can be used according to the intended use and the intended emission color.
  • the phosphor is preferably in the form of particles.
  • the average particle diameter of the phosphor is not particularly limited, but preferably has a D50 of 0.05 ⁇ m or more, more preferably 3 ⁇ m or more. Further, those having a D50 of 30 ⁇ m or less are preferred, and those having a D50 of 20 ⁇ m or less are more preferred.
  • the average particle diameter means the median diameter, that is, D50.
  • the D50 of the phosphor contained in the phosphor layer is obtained by subjecting a measurement image obtained by scanning electron microscope (SEM) of the cross section of the phosphor layer to image processing to obtain a particle size distribution, and in the volume-based particle size distribution obtained therefrom, Measurement is made by a method in which the particle diameter of 50% of the accumulated amount from the diameter side is the median diameter D50.
  • SEM scanning electron microscope
  • the particle diameter is taken as the particle size.
  • the average value of the longest diameter and the shortest diameter is taken as the particle size.
  • the phosphor content is not particularly limited, but from the viewpoint of increasing the wavelength conversion efficiency of light emission from the LED chip, the proportion of the phosphor in the total solid content in the phosphor layer is 40% by weight or more. It is preferably 50% by weight or more, more preferably 60% by weight or more, and particularly preferably 65% by weight or more.
  • the upper limit of the phosphor content is not particularly defined, it is preferably 95% by weight or less, preferably 90% by weight or less of the entire phosphor layer from the viewpoint that a phosphor layer excellent in workability can be easily produced. Is more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
  • the phosphor content in the phosphor layer in the present invention can also be obtained from a prepared phosphor layer or an LED light emitting device equipped with the phosphor layer. For example, by embedding the phosphor layer with a resin and cutting it, preparing a sample with a polished cross section, and observing the exposed cross section with a scanning electron microscope (SEM), the resin portion and the phosphor particle portion are separated. It is possible to distinguish clearly. From the area ratio of the cross-sectional image, it is possible to accurately measure the volume ratio of the phosphor particles in the entire phosphor layer.
  • SEM scanning electron microscope
  • the weight ratio of the phosphor to the phosphor layer can be calculated by dividing the volume ratio by the specific gravity. If the composition of the resin or phosphor is not clear, the composition can be determined by analyzing the cross section of the phosphor layer by high-resolution micro-infrared spectroscopy or IPC emission analysis. If the composition becomes clear, the specific gravity specific to the substance of the resin or phosphor can be estimated with a considerable degree of accuracy, and the weight ratio can be obtained using this.
  • disassemble the LED light-emitting device in the case of an LED light-emitting device equipped with a phosphor layer, disassemble the LED light-emitting device, take out the phosphor layer portion, and observe the cross-section by the same method to determine the weight ratio of the phosphor in the phosphor layer. Can be sought.
  • the prepared phosphor layer and the LED light-emitting device on which the phosphor layer is mounted by the above-described method and other known analysis methods can be used. It is possible to confirm the phosphor weight ratio in the layer.
  • the phosphor layer preferably contains silicone fine particles. By containing the silicone fine particles, it is possible to obtain a phosphor layer having not only adhesiveness and workability but also good film thickness uniformity.
  • the silicone fine particles contained in the phosphor layer are preferably fine particles made of silicone resin and / or silicone rubber.
  • silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
  • organotrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t Examples include -butyltributoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane
  • Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
  • organotriacetoxysilane examples include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
  • organodiacetoxysilane examples include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
  • organotrioxime silane examples include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
  • organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as
  • the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone particles obtained by a method of adding a polymer dispersant in the solution.
  • organosilane and / or a partial hydrolyzate thereof are hydrolyzed / condensed in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution.
  • Silicone particles produced by adding silane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
  • the polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated.
  • a method for adding the polymer dispersant a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected.
  • the addition amount of the polymer dispersant is preferably in the range of 5 ⁇ 10 ⁇ 7 to 10 ⁇ 2 parts by weight with respect to 1 part by weight of the reaction liquid volume, and in this range, the particles are less likely to aggregate.
  • the organic substituents contained in the silicone fine particles are preferably a methyl group and a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents.
  • the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable.
  • the difference between the refractive index d1 of the silicone particles and the refractive index d2 of the components other than the silicone particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less.
  • Abbe refractometer For the measurement of the refractive index, Abbe refractometer, Pulrich refractometer, immersion type refractometer, immersion method, minimum declination method and the like are used as the total reflection method, but for measuring the refractive index of the silicone composition,
  • the immersion method is useful for measuring the refractive index of the Abbe refractometer and the silicone particles.
  • the refractive index difference can be adjusted by changing the amount ratio of the raw materials constituting the silicone particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
  • the average particle diameter of the silicone fine particles is represented by a median diameter (D50).
  • the lower limit of the average particle diameter is preferably 0.1 ⁇ m or more, and more preferably 0.5 ⁇ m or more.
  • the upper limit is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the average particle diameter that is, the median diameter (D50) and the particle size distribution of the silicone fine particles contained in the phosphor layer can be measured by SEM observation.
  • a particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the volume-based particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50.
  • the particle diameter is taken as the particle size.
  • the average value of the longest diameter and the shortest diameter is taken as the particle size.
  • the content of the silicone fine particles is preferably 1 part by weight or more, more preferably 2 parts by weight or more as a lower limit with respect to 100 parts by weight of the resin. Further, the upper limit is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, by containing 20 parts by weight or less, the viscosity of the composition is not excessively increased.
  • a hydrosilylation reaction retarder such as acetylene alcohol
  • fine particles such as fumed silica, glass powder, quartz powder, etc.
  • inorganic fillers and pigments such as titanium oxide, zirconia oxide, barium titanate, zinc oxide
  • blend adhesiveness imparting agents such as a flame retardant, a heat resistant agent, antioxidant, a dispersing agent, a solvent, a silane coupling agent, and a titanium coupling agent.
  • the phosphor layer it is preferable to contain a low molecular weight polydimethylsiloxane component, silicone oil, and the like.
  • the content of such components is preferably 100 to 2,000 ppm, more preferably 500 to 1,000 ppm, based on the entire composition.
  • the base film used in the present invention includes an adhesive strength A between the phosphor layer and the base film at room temperature before heat treatment or ultraviolet irradiation, and the phosphor at room temperature after heat treatment or ultraviolet irradiation.
  • the adhesive strength between the base film and the phosphor layer is lowered by heat treatment or ultraviolet irradiation.
  • a method for realizing such characteristics there is a method using a known film having a pressure-sensitive adhesive layer formed on the surface of a base film.
  • the pressure-sensitive adhesive layer needs to have a reduced adhesive strength by heat treatment or ultraviolet irradiation.
  • a phosphor layer is formed on such a base film, it is constant in order to suppress peeling of the phosphor layer from the base film during cutting such as individualization by cutting or dicing.
  • the adhesive strength of can be kept.
  • the pick-up can be facilitated by reducing the adhesive strength by heat treatment or ultraviolet irradiation in advance.
  • the material is not particularly limited as long as it is a base film having such characteristics, and a known film having a pressure-sensitive adhesive layer formed on the surface, coated paper, or the like can be used.
  • the film and coated paper include cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, aramid, polyphenylene sulfide, and other plastic films, plastic (polyethylene , Polypropylene, polystyrene, etc.), plastic-coated paper, aluminum (including aluminum alloys), zinc, copper, iron or other known metal laminated or vapor-deposited paper, or such known For example, a plastic film laminated or vapor-deposited can be used.
  • PET film, polyolefin film, polyvinyl chloride film and the like are preferable in terms of economy and handling.
  • a film containing no plasticizer is particularly suitable from the viewpoint of storage stability.
  • the film contains a low molecular weight plasticizer of phthalic acid diester type as a plasticizer, there is a problem that the phosphor layer softens because the plasticizer penetrates into the phosphor layer. .
  • a polyimide film is preferable in terms of heat resistance.
  • the tensile elastic modulus of the base film is preferably 0.1 MPa or more, and more preferably 1 MPa or more. Moreover, it is preferable that the tensile elasticity modulus of a base film is 100 Mpa or less, and it is more preferable that it is 10 Mpa or less. By being in the said range, a base film can be extended
  • the base film is preferably plastically deformed when stretched.
  • the tensile elongation at break of the substrate film is preferably 50% or more, and more preferably 100% or more.
  • the gap between the individual patterns of the phosphor layer formed by stretching can be widened, and pickup can be performed more easily.
  • the film thickness of the substrate film is not particularly limited, but the lower limit is preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more. Moreover, as an upper limit, 1000 micrometers or less are preferable and 500 micrometers or less are more preferable.
  • an ultraviolet curable pressure-sensitive adhesive whose adhesive strength is reduced by irradiation with ultraviolet rays can be used.
  • a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive.
  • a pressure-sensitive adhesive containing an ultraviolet curable monomer component or oligomer component can be employed.
  • a material in which the component contained therein is foamed by heating to reduce the contact area with the adherend, and as a result, a material whose adhesive force with the adherend is reduced can also be used.
  • a pressure-sensitive adhesive in which a thermal foaming agent is blended with a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive can be used as the pressure-sensitive adhesive layer.
  • the thermal foaming agent include a pyrolytic foaming agent and expanded graphite.
  • the pyrolytic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, azides, azo compounds, hydrazine compounds, semicarbazide compounds, and the like.
  • the thickness of the pressure-sensitive adhesive layer is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and 500 ⁇ m or less, preferably 200 ⁇ m or less.
  • the base film having the pressure-sensitive adhesive layer is not limited to these, but includes, for example, UHP series manufactured by Denki Kagaku Kogyo Co., Ltd. and Riba Alpha series manufactured by Nitto Denko Corporation.
  • the base film is not necessarily a film in which an adhesive layer is laminated or a coated paper, and a single layer can also be used.
  • an adhesive film produced by forming a resin containing an acrylate copolymer polymer, a photoinitiator, and an ultraviolet absorber into a sheet, and then irradiating ultraviolet rays from one side of the sheet.
  • the amount of UV irradiation appropriate, the surface irradiated with UV light has a low adhesive force because the crosslinking reaction is promoted, and the surface not irradiated with UV light has sufficient adhesive strength. Film is obtained.
  • a method of directly applying a phosphor layer to a substrate film as one method for producing a phosphor sheet.
  • a solution in which a phosphor is dispersed in a resin (hereinafter referred to as “phosphor layer preparation resin solution”) is prepared as a coating solution for forming a phosphor layer.
  • the resin liquid for producing the phosphor layer is obtained by mixing the phosphor and the resin in a solvent.
  • the type of the solvent is not particularly limited as long as the viscosity of the resin in a fluid state can be adjusted.
  • toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, acetone, terpineol, butyl carbitol, butyl carbitol acetate, glyme, diglyme and the like can be mentioned.
  • the resin solution for preparing the phosphor layer can be obtained by homogeneously mixing and dispersing with a stirrer / kneader such as a bead mill. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
  • the phosphor layer preparation resin solution is applied on the base film and dried.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, screen printing, natural roll coater, air knife coater, roll blade coater, two stream coater, rod coater, wire bar coater, An applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used.
  • a slit die coater In order to obtain the uniformity of the phosphor layer thickness, it is preferable to apply with a slit die coater.
  • the phosphor layer can also be produced using a printing method such as screen printing, gravure printing, or lithographic printing. In particular, screen printing is preferably used.
  • the phosphor layer can be dried using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heat curing conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 minutes to 3 hours.
  • Another method for creating a phosphor sheet is to form a phosphor layer on a substrate film that has been subjected to a release treatment in advance, and then peel the phosphor layer from the substrate film that has been subjected to a release treatment, There is a method of arranging on a material film. This method is preferably used when the substrate film necessary for achieving the desired adhesive strengths A and B cannot withstand the heat curing conditions of the phosphor layer.
  • the light-emitting device that can be manufactured by the method of the present invention is not particularly limited, and can be widely applied to display backlights used in televisions, personal computers, mobile phones, game machines, etc., in-vehicle fields such as car headlights, and general lighting. .
  • the display device is not particularly limited, and examples include a liquid crystal display, a traffic light, an electric bulletin board, and a projector.
  • a display device to which the present invention can be preferably applied preferably includes a liquid crystal panel and a backlight unit.
  • the liquid crystal panel is manufactured as follows. First, a transparent substrate is prepared. On one surface of the transparent substrate, a non-conductive black matrix pattern is formed, a conductive black matrix pattern is formed, and an electrode line is formed. Subsequently, a red color filter, a green color filter, and a blue color filter are sequentially formed to form a transparent insulating layer. A conductive electrode layer and an electrode wire are formed on the other surface of the transparent substrate. Finally, a liquid crystal layer and a TFT substrate are bonded together on the transparent insulating layer. The liquid crystal panel is completed through the above steps.
  • the edge type backlight includes a light emitting device, a reflection plate, and a light guide plate.
  • the light guide plate and the reflection plate are arranged to face each other.
  • the light guide plate has an incident surface on which light from the light emitting device is incident on its end surface, and changes the traveling direction of the light incident on the incident surface from the light emitting device to a direction perpendicular to the light emitting device.
  • the backlight unit is preferably formed by inserting an optical film such as a prism sheet, a diffusion plate, or a prism film.
  • the direct type backlight unit includes a plurality of light emitting devices arranged at predetermined intervals on a substrate such as a PCB (printed circuit board). It is preferable that the diffusing plate is disposed so as to face the PCB.
  • a substrate such as a PCB (printed circuit board). It is preferable that the diffusing plate is disposed so as to face the PCB.
  • the display device is completed by placing a liquid crystal panel on the light extraction surface of the backlight unit.
  • Silicone resin 1 OE-6630A / B (manufactured by Dow Corning Toray) Silicone resin 2: heat-sealing silicone resin.
  • the heat-sealing silicone resin is a crosslinked product obtained by hydrosilylation reaction of a crosslinkable silicone composition containing at least the following compositions (A) to (D).
  • R 1 is an alkenyl group
  • R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Organopolysiloxane (B) General formula: R 3 3 SiO (R 3 2 SiO) m SiR 3 3 (Wherein R 3 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 40 to 70 mol% of R 3 is phenyl.
  • R 3 is an alkenyl group, and m is an integer of 5 to 50.) ⁇ 5 to 15 parts by weight relative to 100 parts by weight of component (A) ⁇ (C) General formula: (HR 4 2 SiO) 2 SiR 4 2 Wherein R 4 is a phenyl group, or an alkyl or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.
  • a crosslinkable silicone composition comprising at least ⁇ a sufficient amount for promoting a hydrosilylation reaction between an alkenyl group in component (A) and component (B) and a silicon atom-bonded hydrogen atom in component (C) ⁇ .
  • Phosphor 1 NYAG-02 (manufactured by Intematix: Ce-activated YAG phosphor)
  • Phosphor 2 KSF phosphor (manufactured by Nemotomi Material Co., Ltd.).
  • Silicone fine particles Silicone fine particles: Production method is as follows: A 2 L four-necked round bottom flask is equipped with a stirrer, thermometer, reflux tube, and dropping funnel, and the flask contains 2.5 ppm of polyether-modified siloxane “BYK333” as a surfactant. 2 L of aqueous ammonia was added, and the temperature was raised in an oil bath while stirring at 300 rpm. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes.
  • PET film 1 “Therapy” HP2 (manufactured by Toray Film Processing Co., Ltd.)
  • PET film 2 “Therapy” BX9 (Toray Film Processing Co., Ltd.)
  • Adhesive film 1 NO.
  • Adhesive film 2 TRO-9520 (manufactured by Tsukasa Trading Co., Ltd.)
  • Adhesive film 3 TRV214C (UV) (manufactured by Tsukasa Trading Co., Ltd.)
  • Adhesive film 4 TRV-9925 (manufactured by Tsukasa Trading Co., Ltd.)
  • Adhesive film 5 UC3004M-80 (Furukawa Electric Co., Ltd.).
  • Measurement of the tensile modulus of elasticity and tensile elongation at break of the substrate film was carried out as follows. Each base film was cut with a razor to prepare 10 test pieces having a size of 10 mm ⁇ 60 mm (inside, gripping part is 5 mm at both ends).
  • Tensilon UTM-II-20 manufactured by Toyo Baldwin Co., Ltd.
  • Toyo Baldwin Co., Ltd. which is a tensile tester according to JIS-B-7721 (2009)
  • 5 mm at both ends of the test piece The sample was attached and fixed to a gripping tool (15 mm spacing between gripping tools), and a tensile test was performed at a tensile speed of 50 mm / min (under an environment of 25 ° C. and 50% RH).
  • Tensile modulus and tensile elongation at break were determined according to JIS-K-7127 (1999).
  • the average particle size of the synthesized silicone fine particles was calculated from an image obtained by measuring a cross-sectional SEM of each phosphor layer sample. The cross section of the phosphor layer was observed with a scanning electron microscope (Hitachi High-Technologies high resolution field emission scanning electron microscope S-4800). The obtained image was analyzed using analysis software (Image version 6.2) to determine the particle size distribution. At this time, when the particles were spherical, the particle diameter was taken as the particle size. When the particles were not spherical, the average value of the longest diameter and the shortest diameter was taken as the particle size. In the particle size distribution, the particle diameter of 50% accumulated from the small particle diameter side was determined as the median diameter (D50).
  • Bond strength A and bond strength B are based on the digital force gauge “FGN-5B” (NEC) based on the measurement method A for peel strength of copper foil in the JIS C6471 (1995) copper-clad laminate test method for flexible printed wiring boards.
  • ⁇ Measurement of storage modulus> The produced phosphor layer was cut into a diameter of 15 mm ⁇ to obtain a measurement sample, and the storage elastic modulus at room temperature (25 ° C.) was measured using a dynamic viscoelasticity measuring device (HAAKE MARS III) manufactured by Eiko Seiki Co., Ltd.
  • ⁇ Preparation of phosphor sheet> Using a polyethylene container having a volume of 300 ml, silicone resin, phosphor and silicone fine particles were mixed at a predetermined ratio. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a silicone resin liquid for preparing a phosphor layer. A phosphor-dispersed silicone resin solution for preparing a phosphor layer was applied onto the PET film 2 using a slit die coater, and kept at 120 ° C. for a predetermined time to be dried. Then, if necessary, the phosphor layer was pasted to the adhesive layer side of the adhesive film using a Nichigo Morton laminator V160.
  • composition of the phosphor layer prepared in this study is as shown in Table 1.
  • the phosphor layer cut into 1 mm square is vacuum-adsorbed with a collet and peeled off from the base material, and conveyed to the substrate on which the flip chip type blue LED light emitting element is mounted.
  • the LED light emitting element surface was aligned and pasted.
  • the phosphor layer had heat-fusibility, it was attached by pressing the collet while heating at 100 ° C.
  • an adhesive was applied in advance on the flip-chip blue LED light-emitting element, and the phosphor layer was attached via the adhesive. Silicone resin 1 was used as the adhesive.
  • An LED with the same phosphor sheet was sealed with a transparent resin and connected to a DC power source.
  • ⁇ Measurement of chromaticity and total luminous flux of light emitting device> The manufactured light-emitting device was turned on by turning on the LED element, and using the total luminous flux measurement system (HM-3000, manufactured by Otsuka Electronics Co., Ltd.), the chromaticity (x, y) of the CIE1931 XYZ color system and Total luminous flux (lm) was measured.
  • HM-3000 manufactured by Otsuka Electronics Co., Ltd.
  • Examples 1 to 8 Comparison of storage modulus of phosphor sheet-
  • the phosphor sheet was produced by the above-described method at the drying time shown in Table 2.
  • the adhesive film 1 was used in all of Examples 1 to 8 when the phosphor layer was replaced by a laminator.
  • Each phosphor layer was peeled off from the base film, and a part was cut out to 15 mm ⁇ to obtain a measurement sample, and the storage elastic modulus was measured by the method described above. A part of each phosphor sheet was cut out, and the adhesive strength A was measured by the method described above. Further, a part of each phosphor sheet was cut out and irradiated with 300 mJ / cm 2 of ultraviolet light of 365 nm using an ultraviolet irradiator ELC-500 manufactured by Electro Lite, and the adhesive strength B was measured by the method described above.
  • Each phosphor sheet is cut into 2 cm squares, and a blade is inserted from the phosphor layer side using a cutting device (GCUT manufactured by UHT).
  • the phosphor layers are individually divided into 0.1 mm square, 0.3 mm square, and 1 mm square. 400 pieces of phosphor sheets (hereinafter referred to as individualized sheets) were produced. At this time, the phosphor layer portion was so-called half cut that the blade penetrated but the base film portion did not penetrate. The processability of each phosphor sheet was evaluated by the method described above.
  • a phosphor sheet with a phosphor layer separated into 1 mm square is used after irradiating ultraviolet light of 365 nm with 300 mJ / cm 2 using an ELL-500 UV irradiator manufactured by Electro Lite. Then, the pickup property was evaluated by the method described above.
  • Table 2 shows the storage elastic modulus, adhesive strength A, adhesive strength B, processability evaluation result, and pickup property evaluation result of each phosphor sheet.
  • the storage elastic modulus of the phosphor sheet is preferably 0.1 Mpa or more, more preferably 1 Mpa or more, and preferably 2000 MPa or less. I understood.
  • the storage elastic modulus of the phosphor sheet is preferably 1 Mpa or more, more preferably 100 Mpa or more, and preferably 1000 MPa or less. I understood. It was found that the storage elastic modulus of the phosphor sheet is preferably 100 Mpa or more and more preferably 1000 MPa or less in order to produce a 0.1 mm square individualized sheet.
  • Example 9 (Examples 5 and 9, Comparative Examples 1 to 4) -Adhesive strength- In Example 9, a phosphor sheet was prepared in the same manner as in Example 5 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 2.
  • Comparative Example 1 a phosphor sheet was prepared in the same manner as in Example 5 except that PET film 1 was used as the base film and the adhesive film was not replaced.
  • Comparative Example 2 a phosphor sheet was prepared in the same manner as in Example 5 except that the adhesive film was not replaced.
  • Comparative Example 3 a phosphor sheet was produced in the same manner as in Example 5 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 5.
  • Comparative Example 4 a phosphor sheet was prepared by the same operation as in Example 5, and the same operation as in Example 5 was performed except that the amount of ultraviolet irradiation before evaluation of the pickup property was 50 mJ / cm 2 .
  • the adhesive strength A is preferably 5.0 N / cm or more. In particular, it was found that the adhesive strength A is more preferably 10 N / cm or more in order to produce a 0.1 mm square singulated sheet. Further, it was found that the adhesive strength B is preferably 0.1 N / cm or less.
  • Example 5 (Examples 5, 10, and 11) -Effect of stretching degree-
  • Example 10 and 11 the same operation as in Example 5 was performed except that the base film of the singulated sheet was stretched radially before pickup evaluation.
  • the degree of stretching was calculated by the following formula.
  • the degree of stretching was preferably 0.5 or more, and more preferably 1.0 or more.
  • Example 12 (Examples 12, 13, and 14) -In the case of containing fine particles and in the case of heat-sealing resin- In Examples 12 and 13, the same operation as in Example 4 was performed except that the composition of the phosphor layer was changed to the composition shown in Table 1.
  • Example 14 the same operation as in Example 13 was performed except that the step of attaching the singulated phosphor sheet was performed in a vacuum atmosphere.
  • Example 15 (Examples 15 and 16) -Storage stability- In Example 15, a phosphor sheet was produced in the same manner as in Example 4 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 3.
  • Example 16 a phosphor sheet was produced in the same manner as in Example 4 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 4.
  • the phosphor sheets produced in Examples 4, 15 and 16 were subjected to storage elastic modulus, adhesion strength A, adhesion strength B measurement, workability evaluation, and pickup property evaluation immediately after production and after storage for 6 months. The results are as shown in Table 6.
  • the phosphor sheet prepared in Example 15 had the storage elastic modulus of the phosphor layer significantly decreased after 6 months storage. This is because the plasticizer contained in the adhesive film oozes into the phosphor layer. As a result, the processability evaluation and pickup evaluation were also poor.
  • Example 17 Effects of individualized size on pickup-
  • the same operation as in Example 10 was performed, except that the phosphor layer was 0.1 mm, 0.3 mm, and phosphor sheets separated into 1 mm squares were used for pickup evaluation.
  • the results are shown in Table 7. It has been found that the pick-up property is improved when the individualized size is 0.3 mm square or less.

Abstract

The purpose of the present invention is to provide a method for manufacturing a light-emitting device, the manufacturing method including a step for dicing a phosphor layer of a phosphor sheet having a phosphor layer on a substrate film, a step for performing heat treatment or ultraviolet irradiation of the phosphor sheet in which the phosphor layer is diced, a step for picking up the diced phosphor layer, and a step for affixing the diced phosphor layer to an LED chip, wherein the method for manufacturing a light-emitting device is characterized in that the adhesion strength A between the phosphor layer and the substrate film at room temperature before the heat treatment or the ultraviolet irradiation and the adhesion strength B between the phosphor layer and the substrate film at room temperature after the heat treatment or the ultraviolet irradiation satisfy the expressions A = 5.0 N/cm or greater and B = 0.1 N/cm or less, respectively, the method for manufacturing a light-emitting device using a phosphor sheet having excellent cutting workability as well as excellent pick-up properties.

Description

発光装置の製造方法および表示装置の製造方法Method for manufacturing light emitting device and method for manufacturing display device
 本発明は、発光装置の製造方法および表示装置の製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device and a method for manufacturing a display device.
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、長寿命、意匠性などを特長として液晶ディスプレイ(LCD)のバックライト向けや、車のヘッドライト等の車載分野で急激に市場を拡大している。LEDは環境負荷も低いことから、今後、一般照明分野でも巨大な市場を形成すると期待されている。 Light-emitting diodes (LEDs, Light Emitting Diodes) are used for backlights of liquid crystal displays (LCDs) and car headlights with low power consumption, long service life, and design characteristics due to their remarkable improvement in luminous efficiency. The market is rapidly expanding in the automotive field. Since LEDs have a low environmental impact, it is expected to form a huge market in the general lighting field in the future.
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するため、その発光色は限られている。そのため、LEDを用いてLCDバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに合う蛍光体を設置し、発光波長を変換する必要がある。具体的には、青色を発光するLEDチップ上に黄色蛍光体を設置する方法、青色LEDチップ上に赤および緑の蛍光体を設置する方法、紫外線を発するLEDチップ上に赤、緑、青の蛍光体を設置する方法などが提案されている。これらの中で、LEDチップの発光効率やコストの面から、青色LED上に黄色蛍光体を設置する方法、および青色蛍光体上に赤および緑の蛍光体を設置する方法が、現在、最も広く採用されている。 Since the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for an LCD backlight or general illumination using an LED, it is necessary to install a phosphor suitable for each chip on the LED chip and convert the emission wavelength. Specifically, a method of installing a yellow phosphor on an LED chip that emits blue light, a method of installing red and green phosphors on a blue LED chip, a red, green, and blue color on an LED chip that emits ultraviolet light A method of installing a phosphor has been proposed. Among these, from the viewpoint of luminous efficiency and cost of the LED chip, the method of installing yellow phosphors on blue LEDs and the method of installing red and green phosphors on blue phosphors are currently the most widely used. It has been adopted.
 LEDチップ上に蛍光体を設置する具体的な方法の1つとして、あらかじめ蛍光材料が均一に分布したシート状の樹脂層(蛍光体層)である蛍光体シートを使用する方法が提案されている。この方法は、従来実用化されている蛍光体を分散した液状樹脂をLEDチップ上にディスペンスして硬化する方法と比較して、一定量の蛍光体をLEDチップ上に配置することが容易であり、結果として得られる白色LEDの色や輝度を均一にできる点で優れている。 As one of the specific methods for installing the phosphor on the LED chip, a method of using a phosphor sheet that is a sheet-like resin layer (phosphor layer) in which the phosphor material is uniformly distributed in advance has been proposed. . This method is easier to dispose a certain amount of phosphor on the LED chip than the conventional method of dispensing and curing a liquid resin in which the phosphor is dispersed on the LED chip. The resulting white LED is excellent in that the color and brightness can be made uniform.
 一般的に蛍光体シートは、基材フィルム上に蛍光体層を有し、必要に応じて最上面に保護フィルムを有する。こういった蛍光体シートを用いてLED発光装置を製造する場合の製造方法のひとつは、保護フィルムを剥離後、蛍光体層を切断加工により個片化し、個片化された蛍光体層をチップマウンターなどによりピックアップしLEDチップに貼り付けるというものである(例えば、特許文献1参照)。なお、切断加工時に蛍光体シートに孔開け加工を施す場合もある。 Generally, a phosphor sheet has a phosphor layer on a base film, and a protective film on the uppermost surface as necessary. One of the manufacturing methods in the case of manufacturing an LED light-emitting device using such a phosphor sheet is to separate the phosphor layer by cutting after removing the protective film, and chip the separated phosphor layer into chips. It is picked up by a mounter or the like and attached to the LED chip (for example, see Patent Document 1). In some cases, the phosphor sheet is perforated during the cutting process.
 また、別の方法としては、複数のLEDを一括してシート状の蛍光体層に埋設するというものである(例えば、特許文献2参照)。また、その後にLEDチップを個片化するため、一括埋設後の蛍光体層付きLEDをダイシングにより個片に切断する方法も提案されている(例えば、特許文献3参照)。 As another method, a plurality of LEDs are collectively embedded in a sheet-like phosphor layer (for example, see Patent Document 2). Further, in order to divide the LED chip into individual pieces, a method has been proposed in which the LED with the phosphor layer after being embedded in one piece is cut into individual pieces by dicing (see, for example, Patent Document 3).
特開2009-235368号公報JP 2009-235368 A 特開2010-123802号公報JP 2010-123802 A 特開2014-130918号公報JP 2014-130918 A
 特許文献1に記載のように蛍光体シートを予め個片化してからLEDチップと貼り合わせる方法においては、個片化のしやすさとその取り扱い性が、生産性の点で重要である。この点、蛍光体層と基材フィルムとの接着強度が不十分である場合、切断加工時に蛍光体層が基材フィルムから剥離して飛散してしまうという問題があった。また、逆に蛍光体層と基材フィルムとの接着強度が強すぎる場合、個片化された蛍光体層をピックアップする際、ピックアップできないという問題があった。 As described in Patent Document 1, in the method of preliminarily separating the phosphor sheet and then bonding it to the LED chip, the ease of individualization and its handling are important in terms of productivity. In this respect, when the adhesive strength between the phosphor layer and the substrate film is insufficient, there is a problem that the phosphor layer is peeled off and scattered from the substrate film during the cutting process. On the other hand, when the adhesive strength between the phosphor layer and the substrate film is too strong, there is a problem that when the separated phosphor layer is picked up, it cannot be picked up.
 また、特許文献2や3に挙げた蛍光体シートは、LEDチップの埋め込み性が重視されているため蛍光体層の柔軟性が高く、切断加工などの個片化工程や、穴あけ加工時に蛍光体層が変形してしまうという問題もあった。 In addition, the phosphor sheets listed in Patent Documents 2 and 3 have high flexibility of the phosphor layer because emphasis is placed on the LED chip embeddability, and the phosphor sheet can be separated into individual processes such as cutting and drilling. There was also a problem that the layer was deformed.
 このように、生産性を向上させるにあたり、切断加工性とピックアップ性の両立が課題となっていた。 Thus, in improving productivity, it has been a challenge to achieve both cutting workability and pick-up performance.
 かかる状況に鑑み、本発明は、切断加工性に優れ、かつピックアップ性にも優れた蛍光体シートを用いた発光装置の製造方法を提供することを目的とする。また、それによりLED発光装置の生産性を高めることを目的とする。 In view of such circumstances, an object of the present invention is to provide a method for manufacturing a light emitting device using a phosphor sheet that is excellent in cutting processability and excellent in pick-up property. Moreover, it aims at improving the productivity of LED light-emitting device by it.
 本発明は、基材フィルム上に蛍光体層を有する蛍光体シートにおいて前記蛍光体層を個片化する工程と、前記蛍光体層が個片化された蛍光体シートに熱処理または紫外線照射を行う工程と、前記個片化された蛍光体層をピックアップする工程と、前記個片化された蛍光体層をLEDチップに貼り付ける工程を含む製造方法であって、前記熱処理または紫外線照射の前における室温での前記蛍光体層と前記基材フィルム間の接着強度Aと、前記熱処理または紫外線照射の後における室温での前記蛍光体層と前記基材フィルム間の接着強度Bが、
  A=5.0N/cm以上
  B=0.1N/cm以下
であることを特徴とする発光装置の製造方法である。
In the phosphor sheet having a phosphor layer on a substrate film, the present invention includes a step of dividing the phosphor layer into pieces, and heat-treating or irradiating the phosphor sheet with the phosphor layer separated into pieces. A manufacturing method including a step, a step of picking up the separated phosphor layer, and a step of attaching the separated phosphor layer to an LED chip, before the heat treatment or ultraviolet irradiation Bond strength A between the phosphor layer and the substrate film at room temperature, and bond strength B between the phosphor layer and the substrate film at room temperature after the heat treatment or ultraviolet irradiation,
A = 5.0 N / cm or more and B = 0.1 N / cm or less.
 本発明の製造方法によれば、容易に蛍光体層の個片化等の切断加工ができ、かつピックアップ性に優れるため、蛍光体シートを用いた発光装置の生産性を高めることができる。 According to the production method of the present invention, the phosphor layer can be easily cut into individual pieces and the pickup property is excellent, so that the productivity of the light emitting device using the phosphor sheet can be increased.
本発明の発光装置の製造方法で用いる蛍光体シートの一例を示す模式断面図Schematic sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention 本発明の発光装置の製造方法で用いる蛍光体シートの一例を示す模式断面図Schematic sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention 本発明により発光装置を製造する方法の一実施形態を示す工程図Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention. 本発明により発光装置を製造する方法の一実施形態を示す工程図Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention. 本発明により発光装置を製造する方法の一実施形態を示す工程図Process drawing which shows one Embodiment of the method of manufacturing a light-emitting device by this invention.
 本発明は、基材フィルム上に蛍光体層を有する蛍光体シートにおいて上記蛍光体層を個片化する工程と、上記蛍光体層が個片化された蛍光体シートに熱処理または紫外線照射を行う工程と、上記個片化された蛍光体層をピックアップする工程と、上記個片化された蛍光体層をLEDチップに貼り付ける工程を含む製造方法であって、上記熱処理または紫外線照射の前における室温での上記蛍光体層と上記基材フィルム間の接着強度Aと、上記熱処理または紫外線照射の後における室温での上記蛍光体層と上記基材フィルム間の接着強度Bが、
  A=5.0N/cm以上
  B=0.1N/cm以下
であることを特徴とする発光装置の製造方法である。
In the phosphor sheet having a phosphor layer on a base film, the present invention includes a step of dividing the phosphor layer into pieces, and heat-treating or irradiating the phosphor sheet with the phosphor layer separated into pieces. A manufacturing method including a step, a step of picking up the separated phosphor layer, and a step of attaching the separated phosphor layer to an LED chip, before the heat treatment or ultraviolet irradiation The adhesive strength A between the phosphor layer and the substrate film at room temperature, and the adhesive strength B between the phosphor layer and the substrate film at room temperature after the heat treatment or ultraviolet irradiation,
A = 5.0 N / cm or more and B = 0.1 N / cm or less.
 図1は本発明の発光装置の製造方法で用いる蛍光体シートの一例を示す模式断面図である。蛍光体シート6は、粘着層3とフィルム4からなる基材フィルム5の上に、蛍光体1を含有する蛍光体層2が形成されてなる。 FIG. 1 is a schematic cross-sectional view showing an example of a phosphor sheet used in the method for manufacturing a light emitting device of the present invention. The phosphor sheet 6 is formed by forming a phosphor layer 2 containing the phosphor 1 on a base film 5 composed of an adhesive layer 3 and a film 4.
 蛍光体層の上層、および/または下層に別の蛍光体層、拡散層、透明性が設置されていても良い。 Another phosphor layer, diffusion layer, and transparency may be provided on the upper layer and / or lower layer of the phosphor layer.
 透明層とは波長450nmにおける全光線透過率が90%以上の樹脂を含み、蛍光体を含まない層である。透明層は、LEDチップに接着剤を使用せずに貼り付けられるよう、粘着性を有することが好ましい。さらに、屈折率が1.58以上であることが好ましい。透明層が屈折率の高いGaNやサファイア等のLEDチップ表面に貼り付けされた場合、屈折率差を低減して光取り出しを向上させることができる。そのため、透明層は、蛍光体層の下層に設置されることが好ましい。 The transparent layer is a layer that contains a resin having a total light transmittance of 90% or more at a wavelength of 450 nm and does not contain a phosphor. The transparent layer preferably has tackiness so that it can be attached to the LED chip without using an adhesive. Further, the refractive index is preferably 1.58 or more. When the transparent layer is attached to the surface of an LED chip such as GaN or sapphire having a high refractive index, it is possible to reduce the refractive index difference and improve light extraction. Therefore, it is preferable that the transparent layer is placed below the phosphor layer.
 また、拡散層とは、樹脂と、シリカ、チタニア、ジルコニア等の拡散材を含む層である。拡散層の設置により、LEDチップから発光した光の指向性を弱め、より等方的な光を取り出すことができる。そのため、拡散層は、蛍光体層の上層に設置されることが好ましい。 The diffusion layer is a layer containing a resin and a diffusion material such as silica, titania, zirconia. By setting the diffusion layer, the directivity of light emitted from the LED chip can be weakened, and more isotropic light can be extracted. Therefore, it is preferable that the diffusion layer is disposed on the phosphor layer.
 図2に、蛍光体層2の上層に拡散層7、下層に透明層8が形成された蛍光体シートを示す。 FIG. 2 shows a phosphor sheet in which a diffusion layer 7 is formed in the upper layer of the phosphor layer 2 and a transparent layer 8 is formed in the lower layer.
 <発光装置の製造方法>
 発光装置を製造する方法に関する以下の説明は一例であり、本発明はこれらに限られない。
<Method for manufacturing light emitting device>
The following description regarding the method for manufacturing the light emitting device is an example, and the present invention is not limited thereto.
 本発明の発光装置の製造方法は、蛍光体シートの蛍光体層を個片化する工程と、上記個片化された蛍光体シートに熱処理または紫外線照射を行う工程と、上記個片化された蛍光体層をピックアップする工程と、上記個片化された蛍光体層をLEDチップに貼り付ける工程を含む。 The method for manufacturing a light emitting device of the present invention includes a step of separating the phosphor layer of the phosphor sheet, a step of performing heat treatment or ultraviolet irradiation on the separated phosphor sheet, and the above-mentioned individualization. A step of picking up the phosphor layer, and a step of attaching the singulated phosphor layer to the LED chip.
 そして、上記熱処理または紫外線照射の前における室温での上記蛍光体層と上記基材フィルム間の接着強度Aと、上記熱処理または紫外線照射の後における室温での上記蛍光体層と上記基材フィルム間の接着強度Bが、
  A=5.0N/cm以上
  B=0.1N/cm以下
である。この関係により、切断加工性とピックアップ性がともにより良好になる。
And the adhesive strength A between the phosphor layer and the substrate film at room temperature before the heat treatment or ultraviolet irradiation, and between the phosphor layer and the substrate film at room temperature after the heat treatment or ultraviolet irradiation. The adhesive strength B of
A = 5.0 N / cm or more and B = 0.1 N / cm or less. Due to this relationship, the cutting workability and the pick-up property are improved.
 接着強度Aは切断加工性に及ぼす影響が大きく、5.0N/cm未満であると切断加工時に蛍光体層の基材フィルムからの剥がれが生じやすくなる。接着強度Aは切断加工性の面で10N/cm以上であることがより好ましい。 The adhesive strength A has a great influence on the cutting processability, and when it is less than 5.0 N / cm, the phosphor layer is easily peeled off from the base material film during the cutting process. The adhesive strength A is more preferably 10 N / cm or more in terms of cutting workability.
 接着強度Bはピックアップ性に及ぼす影響が大きく、0.1N/cmを超えると個片化された蛍光体層のピックアップ時、蛍光体層の割れや欠けが発生しやすくなる。接着強度Bはピックアップ性の面で0.05N/cm以下であることがより好ましい。 The adhesive strength B has a great influence on the pick-up property, and if it exceeds 0.1 N / cm, the phosphor layer is likely to be cracked or chipped when picked up as an individual phosphor layer. The adhesive strength B is more preferably 0.05 N / cm or less in terms of pickup properties.
 接着強度を低下させるための熱処理条件は処理温度が60℃~200℃が好ましく、より好ましくは80℃~160℃である。処理時間は5分以上が好ましく、より好ましくは10分以上である。また接着強度を低下させるための紫外線照射条件はi線換算で少なくとも100mJ/cmの露光であり、より好ましくは150mJ/cm以上である。 The heat treatment conditions for reducing the adhesive strength are preferably a treatment temperature of 60 ° C. to 200 ° C., more preferably 80 ° C. to 160 ° C. The treatment time is preferably 5 minutes or more, more preferably 10 minutes or more. Moreover, the ultraviolet irradiation conditions for reducing the adhesive strength are at least 100 mJ / cm 2 exposure in terms of i-line, and more preferably 150 mJ / cm 2 or more.
 特に、熱処理の場合は90℃で20分処理した後の接着強度Bが上記範囲であることが好ましく、紫外線照射の場合はi線換算で200mJ/cmの露光を行った後の接着強度Bが上記範囲であることが好ましい。 In particular, in the case of heat treatment, the adhesive strength B after being treated at 90 ° C. for 20 minutes is preferably within the above range. In the case of ultraviolet irradiation, the adhesive strength B after exposure of 200 mJ / cm 2 in terms of i-line is performed. Is preferably in the above range.
 本発明における接着強度とは、JIS C6471(1995)フレキシブルプリント配線板用銅張積層板試験方法における銅箔の引き剥がし強さの測定方法Aに準ずる方法によって測定される強度のことをいう。蛍光体層と基材フィルムとの接着強度を測定する場合、基材フィルムの蛍光体層からの引き剥がし強さを測定する。 The adhesive strength in the present invention means strength measured by a method according to JIS C6471 (1995) copper foil peel strength test method A for measuring the peel strength of a copper foil. When measuring the adhesive strength between the phosphor layer and the substrate film, the peel strength of the substrate film from the phosphor layer is measured.
 具体的にはデジタルフォースゲージ“FGN-5B”(日本電産シンポ社製)、電動式縦型フォースゲージテストスタンド“FGS-50-VB-L(H)”(日本電産シンポ社製)、90度剥離治具“FGTT-12”(日本電産シンポ社製)を測定装置として用い、両面テープ“NW-R15”(ニチバン社製)をサンプルの固定に使用して、基材フィルムと蛍光体層間の接着強度を測定する。 Specifically, digital force gauge “FGN-5B” (manufactured by Nidec Symposium), electric vertical force gauge test stand “FGS-50-VB-L (H)” (manufactured by Nidec Symposium), 90 degree peeling jig “FGTT-12” (manufactured by Nidec Sympo) is used as a measuring device, and double-sided tape “NW-R15” (manufactured by Nichiban) is used to fix the sample. Measure the adhesive strength between body layers.
 接着強度を調整するには、まず、蛍光体層の粘着性が重要となる。蛍光体層の粘着性は、使用される樹脂の種類、蛍光体の種類、蛍光体の含有量や蛍光体層作製時の乾燥条件によって決定される。よって、接着強度を調整する場合、蛍光体層の粘着性にあった基材フィルムを選定する必要がある。 To adjust the adhesive strength, first, the tackiness of the phosphor layer is important. The adhesiveness of the phosphor layer is determined by the type of resin used, the type of phosphor, the content of the phosphor, and the drying conditions at the time of preparing the phosphor layer. Therefore, when adjusting the adhesive strength, it is necessary to select a substrate film suitable for the tackiness of the phosphor layer.
 図3に発光装置の製造方法の一実施形態を示す。 FIG. 3 shows an embodiment of a method for manufacturing a light emitting device.
 (蛍光体層を個片化する工程)
 図3(a)、(b)は蛍光体層を個片化する工程である。個片化のために蛍光体層2を切断する方法としては特に限定はなく、金型によるパンチング、レーザーによる加工、刃物による切削などの方法が用いられる。
(Step of dividing the phosphor layer into individual pieces)
FIGS. 3A and 3B show a process of dividing the phosphor layer into individual pieces. The method for cutting the phosphor layer 2 for singulation is not particularly limited, and methods such as punching with a mold, processing with a laser, and cutting with a blade are used.
 このとき、蛍光体層2は基材フィルム5に貼り付けられたままである。レーザーによる加工は、高エネルギーが付与されるので、照射条件によっては樹脂の焼け焦げや蛍光体の劣化を生じる場合がある。刃物による切削は、そのような懸念がないためより好ましい。図3(a)には刃物9による切削を例示する。 At this time, the phosphor layer 2 remains attached to the base film 5. Since processing with a laser imparts high energy, resin burnt or phosphor deterioration may occur depending on the irradiation conditions. Cutting with a blade is more preferable because there is no such concern. FIG. 3A illustrates an example of cutting with the blade 9.
 刃物での切削方法としては、単純な刃物を押し込んで切る方法と、回転刃によって切る方法があり、いずれも好適に使用できる。回転刃によって切断する装置としては、ダイサーと呼ばれる半導体基板を個別のチップに切断(ダイシング)するのに用いる装置が好適に利用できる。ダイサーを用いれば、回転刃の厚みや条件設定により、分割ラインの幅を精密に制御できるため、単純な刃物の押し込みにより切断するよりも高い加工精度が得られる。何れの場合も基材ごと個片化しても良いし、あるいは蛍光体層は個片化しつつ、基材は切断しなくても構わない。あるいは基材は貫通しない切り込みラインが入る所謂ハーフカットでも好ましく用いられる。 As the cutting method with a blade, there are a method of pushing and cutting a simple blade, and a method of cutting with a rotary blade, both of which can be suitably used. As an apparatus for cutting with a rotary blade, an apparatus used for cutting (dicing) a semiconductor substrate called a dicer into individual chips can be suitably used. If the dicer is used, the width of the dividing line can be precisely controlled by the thickness of the rotary blade and the condition setting, so that higher processing accuracy can be obtained than when cutting with a simple cutting tool. In either case, the whole substrate may be separated into individual pieces, or the phosphor layers may be separated into individual pieces while the substrate is not cut. Alternatively, the substrate is also preferably used in so-called half cut in which a cut line that does not penetrate is entered.
 切断は、ドライカットによる切断であることが好ましい。ドライカットとは切断時に水などの液体を使用しない切断方法のことである。例えばトムソン刃による切断などが挙げられるがこれに限られない。蛍光体層が、後述するKSF蛍光体(例えばKSiF:Mn)などのように、水と反応することで発光効率が低下する蛍光体を含む場合、ドライカットが特に有効である。 The cutting is preferably performed by dry cutting. Dry cutting is a cutting method that does not use water or other liquid during cutting. Examples include cutting with a Thomson blade, but are not limited thereto. Dry cut is particularly effective when the phosphor layer includes a phosphor whose luminous efficiency is reduced by reacting with water, such as a KSF phosphor (for example, K 2 SiF 6 : Mn) described later.
 個片化された蛍光体層の形状には特に制限はなく、正方形、長方形、六角形などの多角形、円形、楕円形などが挙げられる。これらの中でも正方形および長方形が好ましい。 The shape of the individual phosphor layers is not particularly limited, and examples thereof include polygons such as squares, rectangles, and hexagons, circles, and ellipses. Among these, a square and a rectangle are preferable.
 個片化された蛍光体層は少なくとも一辺の長さが0.1mm以上であることが好ましい。刃物や回転刃により切断する際、刃物や回転刃自体の厚みがあるため蛍光体層に応力が加わり、微小なクラックが生じることがある。0.1mm未満のサイズで蛍光体層を個片化しようとすると隣接する分断ライン間で生じた微小なクラックが繋がり、蛍光体層が破断してしまう場合がある。接着強度Aが5.0N/cm以上、より好ましくは10N/cm以上であり、かつ個片化された蛍光体層の少なくとも一辺の長さが0.1mm以上であると、そのような問題が生じることなく切断加工が可能となるため好ましい。 It is preferable that at least one side of the singulated phosphor layer has a length of 0.1 mm or more. When cutting with a blade or a rotary blade, stress may be applied to the phosphor layer due to the thickness of the blade or the rotary blade itself, which may cause minute cracks. If the phosphor layer is to be separated into pieces with a size of less than 0.1 mm, a minute crack generated between adjacent dividing lines may be connected, and the phosphor layer may be broken. Such a problem occurs when the adhesive strength A is 5.0 N / cm or more, more preferably 10 N / cm or more, and the length of at least one side of the singulated phosphor layer is 0.1 mm or more. It is preferable because it can be cut without being generated.
 また、個片化された蛍光体層は少なくとも一辺の長さが3mm以下であることが好ましく、0.3mm以下であることがより好ましい。基材フィルムから個片化された蛍光体層をピックアップする工程ではコレットなどの吸引治具が用いられるが、このとき個片化された蛍光体層の一部が基材フィルムから剥離し、一部が基材フィルムに接着している瞬間がある。この瞬間において蛍光体層に応力が加わる。この応力は個片化された蛍光体層の大きさに比例し、個片化された蛍光体のサイズが大きいほど蛍光体層の破断が起きやすくなる。接着強度Bが0.1N/cm以下、より好ましくは0.05N/cm以下であり、かつ個片化された蛍光体層の少なくとも一辺の長さが3mm以下、より好ましくは0.3mm以下であると、そのような問題が生じることなくピックアップが可能となるため好ましい。 In addition, it is preferable that at least one side of the singulated phosphor layer has a length of 3 mm or less, and more preferably 0.3 mm or less. In the process of picking up the phosphor layer separated from the base film, a suction jig such as a collet is used. At this time, a part of the separated phosphor layer is peeled off from the base film. There is a moment when the part adheres to the base film. At this moment, stress is applied to the phosphor layer. This stress is proportional to the size of the separated phosphor layer, and the larger the size of the separated phosphor, the easier the phosphor layer breaks. The adhesive strength B is 0.1 N / cm or less, more preferably 0.05 N / cm or less, and the length of at least one side of the singulated phosphor layer is 3 mm or less, more preferably 0.3 mm or less. If it exists, since it becomes possible to pick up without causing such a problem, it is preferable.
 蛍光体層は、個片化工程の前後において、または個片化と同時に、孔開け加工が施されても良い。孔開け加工はレーザー加工、金型パンチングなどの公知の方法が好適に使用できるが、レーザー加工は照射条件によっては樹脂の焼け焦げや蛍光体の劣化を引き起こす場合があるので、そのような懸念のない金型によるパンチング加工がより好ましい。 The phosphor layer may be perforated before or after the individualization step or simultaneously with the individualization. Although known methods such as laser processing and die punching can be suitably used for drilling, laser processing may cause burning of the resin and deterioration of the phosphor depending on the irradiation conditions, so there is no such concern. Punching with a mold is more preferable.
 パンチング加工を実施する場合、蛍光体層をLEDチップに貼り付けた後ではパンチング加工は不可能であるので、貼り付け前にパンチング加工を施すことが必須となる。このとき、蛍光体層は基材フィルムに貼り付けられたままである。金型によるパンチング加工は、貼り付けるLEDチップの電極形状などにより任意の形状や大きさの孔を開けることができる。 When performing the punching process, the punching process is impossible after the phosphor layer is attached to the LED chip. Therefore, it is essential to perform the punching process before applying the punching process. At this time, the phosphor layer remains adhered to the base film. In the punching process using a mold, a hole having an arbitrary shape or size can be formed depending on the electrode shape of the LED chip to be attached.
 孔の大きさや形状は金型を設計すれば任意のものが形成できる。1mm角内外のLEDチップ上の電極接合部分は、発光面の面積を小さくしないためには、例えば電極接合部分が円形の場合、その直径は200μm以下であることが望ましく、孔の大きさはそれに合わせて直径が200μm以下で形成されることが好ましい。また、ワイヤーボンディングなどを行う電極はある程度の大きさが必要であり、例えば電極部分が円形の場合少なくともその直径は50μm程度の大きさとなるので、孔の大きさはそれに合わせてその直径は50μm程度であることが好ましい。 Any size and shape of the hole can be formed by designing the mold. In order to avoid reducing the area of the light emitting surface, the electrode joint portion on the LED chip inside and outside the 1 mm square is preferably, for example, 200 μm or less in diameter when the electrode joint portion is circular. In total, the diameter is preferably 200 μm or less. In addition, an electrode for wire bonding or the like needs to have a certain size. For example, when the electrode portion is circular, at least its diameter is about 50 μm, so the hole size is about 50 μm accordingly. It is preferable that
 孔の大きさが電極より大きすぎると、発光面が露出して光漏れが発生し、LED発光装置の色特性が低下する場合がある。また、電極より小さすぎると、ワイヤーボンディング時にワイヤーが触れて接合不良を起こす場合がある。従って、パターン加工は50μm以上200μm以下という小さい孔を±10%以内の高精度で加工することが好ましい。 If the size of the hole is too large compared to the electrode, the light emitting surface is exposed, light leakage occurs, and the color characteristics of the LED light emitting device may deteriorate. Moreover, when too small than an electrode, a wire may touch at the time of wire bonding, and it may cause a joining defect. Therefore, it is preferable to process a small hole of 50 μm or more and 200 μm or less with high accuracy within ± 10% for pattern processing.
 いずれの加工も蛍光体層は基材フィルムに貼り付けられたまま行われるため、加工時に蛍光体層がフィルムから剥離することが問題となりやすい。これらのような加工時に蛍光体層の基材フィルムからの剥離が生じず、加工部分に割れや欠けが生じない場合に、加工性が良好であるといえる。 Since both processes are performed while the phosphor layer is attached to the base film, it tends to be a problem that the phosphor layer is peeled off from the film during processing. It can be said that the processability is good when the phosphor layer is not peeled off from the base material film during the processing as described above, and the processed portion is not cracked or chipped.
 以下、基材フィルム上に個片化された蛍光体層が貼り付けられた状態の蛍光体シートを「個片化シート」と呼ぶことがある。 Hereinafter, the phosphor sheet in a state in which the separated phosphor layer is stuck on the base film may be referred to as “divided sheet”.
 (蛍光体層が個片化された蛍光体シートに熱処理または紫外線照射を行う工程)
 図3(c)は蛍光体層が個片化された蛍光体シート、すなわち個片化シート10に熱処理または紫外線照射を行う工程である。本発明の発光装置の製造方法においては蛍光体層と基材フィルム間の接着強度が熱処理または紫外線照射によって低下するものであるので、この工程により蛍光体層と基材フィルムとの接着力を低下させることができる。紫外線照射を行う場合、どの方向から照射してもよいが、基材フィルム側から紫外線を照射したほうがより効果的である。熱処理または紫外線照射の好ましい条件は既に述べた通りである。
(The process of heat-treating or irradiating the phosphor sheet with the phosphor layer separated into individual pieces)
FIG. 3C shows a step of performing heat treatment or ultraviolet irradiation on the phosphor sheet in which the phosphor layer is singulated, that is, the singulated sheet 10. In the manufacturing method of the light emitting device of the present invention, the adhesive strength between the phosphor layer and the base film is lowered by heat treatment or ultraviolet irradiation, and this step reduces the adhesive strength between the phosphor layer and the base film. Can be made. When ultraviolet irradiation is performed, irradiation may be performed from any direction, but it is more effective to irradiate ultraviolet rays from the base film side. The preferable conditions for heat treatment or ultraviolet irradiation are as described above.
 (個片化された蛍光体層をピックアップする工程)
 図3(d)は個片化された蛍光体層をピックアップする工程である。この工程ではコレットなどの吸引装置を備えたピックアップ装置を用いて蛍光体層をピックアップする。図3(d)ではピックアップ装置としてコレット11を例示する。
(Step of picking up individual phosphor layers)
FIG. 3D shows a process of picking up the individual phosphor layers. In this step, the phosphor layer is picked up using a pickup device equipped with a suction device such as a collet. FIG. 3D illustrates a collet 11 as a pickup device.
 本発明では蛍光体層と基材フィルムとの接着力が変わりうるものであるため、基材フィルム上で蛍光体層を個片化し、個片化された蛍光体層をピックアップしてLEDチップへ貼り付ける工程を容易に行うことができる。個片化された蛍光体層が基材フィルムから容易に剥がれ、剥がれた蛍光体層に割れや欠けが生じない場合に、ピックアップ性が良好であるといえる。 In the present invention, since the adhesive force between the phosphor layer and the substrate film can be changed, the phosphor layer is separated into pieces on the substrate film, and the separated phosphor layer is picked up to the LED chip. The pasting process can be easily performed. It can be said that the pick-up property is good when the separated phosphor layer is easily peeled off from the base film and the phosphor layer is not cracked or chipped.
 中でも、吸引装置として、個片化シート10を吸着保持する面における開口面積率が30%以上60%以下の多孔構造体と、該多孔構造体を保持する弾性体よりなる保持体と、該保持体の内部にあって多孔構造体を介して蛍光体シートを吸引する吸引路を含むコレットを使用することが好ましい。 Among them, as a suction device, a porous structure having an opening area ratio of 30% or more and 60% or less on the surface on which the singulated sheet 10 is adsorbed and held, a holding body made of an elastic body that holds the porous structure, and the holding It is preferable to use a collet that is inside the body and includes a suction path for sucking the phosphor sheet through the porous structure.
 多孔構造体はメッシュ状の開口を有することが好ましく、例えば線径15μmのステンレス製ワイヤーを直交する2方向に交叉させて織物状にし、30μm角の開口を形成したものである。これにより蛍光体層が0.5mm角以下のサイズに個片化されている場合でもピックアップすることが可能である。 The porous structure preferably has a mesh-like opening. For example, a stainless steel wire having a wire diameter of 15 μm is crossed in two orthogonal directions to form a woven fabric to form a 30 μm square opening. Thereby, it is possible to pick up even when the phosphor layer is separated into pieces of 0.5 mm square or less.
 (個片化された蛍光体層をLEDチップに貼り付ける工程)
 図3(e)は個片化された蛍光体層をLEDチップ12に貼り付ける工程である。個片化された蛍光体層をピックアップしたコレット11を搬送し、LEDチップ12の電極形成面とは反対側の面である光取り出し面に貼り付ける。
(Step of attaching the separated phosphor layer to the LED chip)
FIG. 3E shows a step of attaching the individual phosphor layers to the LED chip 12. The collet 11 picked up from the separated phosphor layer is transported and attached to the light extraction surface which is the surface opposite to the electrode forming surface of the LED chip 12.
 貼り付けには接着剤(図示せず)を使用することが好ましく、公知のダイボンド剤や接着剤、例えばアクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、シリコーン樹脂系、変性シリコーン樹脂系、フェノール樹脂系、ポリイミド系、ポリビニルアルコール系、ポリメタクリレート樹脂系、メラミン樹脂系、ユリア樹脂系の接着剤を使用することができる。蛍光体層が粘着性を有する場合はそれを利用してもよい。 Adhesive (not shown) is preferably used for pasting, and known die-bonding agents and adhesives such as acrylic resin, epoxy resin, urethane resin, silicone resin, modified silicone resin, phenol resin , Polyimide, polyvinyl alcohol, polymethacrylate resin, melamine resin, and urea resin can be used. If the phosphor layer has adhesiveness, it may be used.
 また、蛍光体層を加熱して貼り付ける方法も好ましい。半硬化された蛍光体シートの場合は、加熱による硬化を利用することが好ましい。加熱条件としては、100℃以上200℃以下の温度で1分以上1時間以下が好ましく、120℃以上150℃以下の温度で5分以上30分以下がより好ましい。 In addition, a method of heating and attaching the phosphor layer is also preferable. In the case of a semi-cured phosphor sheet, it is preferable to use curing by heating. The heating condition is preferably 1 minute to 1 hour at a temperature of 100 ° C. to 200 ° C., more preferably 5 minutes to 30 minutes at a temperature of 120 ° C. to 150 ° C.
 また、蛍光体層が硬化後に熱軟化性を有する場合には、熱融着により接着させることも可能である。 Also, when the phosphor layer has heat softening properties after curing, it can be adhered by heat fusion.
 また、蛍光体層を加熱してLEDチップに貼り付ける工程を大気中で行うとLEDチップと蛍光体シート間に泡を噛み込むことがある。泡を噛み込んだ場合、泡-LEDチップおよび泡-蛍光体層の界面で光が乱反射することによりLEDチップからの光取り出し効率が低下し、結果として製造された発光装置の輝度が低下してしまう。 Also, if the step of heating the phosphor layer and attaching it to the LED chip is performed in the air, bubbles may be caught between the LED chip and the phosphor sheet. When bubbles are bitten, light is diffusely reflected at the interface between the bubble-LED chip and the bubble-phosphor layer, resulting in a decrease in light extraction efficiency from the LED chip, resulting in a decrease in luminance of the manufactured light-emitting device. End up.
 このような泡の噛み込みを防ぐ観点から、蛍光体層を加熱して貼り付ける工程を真空雰囲気下にて行うことが好ましい。真空雰囲気下とは10hPa以下であることが好ましく、5hPa以下であることがより好ましく、1hPa以下であることが特に好ましい。加熱条件としては40℃以上200℃以下の温度で1秒以上5分以下が好ましく、60℃以上180℃以下の温度で2秒以上3分以下がより好ましく、80℃以上120℃以下の温度で10秒以上1分以下が特に好ましい。 From the viewpoint of preventing such bubble entrapment, it is preferable to perform the step of heating and attaching the phosphor layer in a vacuum atmosphere. The vacuum atmosphere is preferably 10 hPa or less, more preferably 5 hPa or less, and particularly preferably 1 hPa or less. As heating conditions, a temperature of 40 ° C. to 200 ° C. is preferably 1 second to 5 minutes, a temperature of 60 ° C. to 180 ° C. is more preferably 2 seconds to 3 minutes, and a temperature of 80 ° C. to 120 ° C. 10 seconds or more and 1 minute or less are particularly preferable.
 (その後の工程)
 その後、LEDチップの電極と回路基板の配線を公知の方法で電気的に接続することにより、発光装置を得ることができる。LEDチップが発光面側に電極を有する場合には、LEDチップを、発光面を上にしてダイボンド材などで回路基板に固定した後、LEDチップ上面の電極と回路基板の配線をワイヤーボンディングで接続する。また、LEDチップが発光面の反対面に電極パッドを有するフリップチップタイプである場合には、LEDチップの電極面を回路基板の配線と対抗させ、一括接合で接続する。
(Subsequent steps)
Then, the light emitting device can be obtained by electrically connecting the electrode of the LED chip and the wiring of the circuit board by a known method. When the LED chip has an electrode on the light emitting surface side, the LED chip is fixed to the circuit board with a die bonding material or the like with the light emitting surface facing up, and then the wire on the upper surface of the LED chip and the circuit board are connected by wire bonding To do. Further, when the LED chip is a flip chip type having an electrode pad on the opposite surface of the light emitting surface, the electrode surface of the LED chip is opposed to the wiring of the circuit board and connected by batch bonding.
 蛍光体層が半硬化状態でLEDチップと貼り付けられていた場合は、この電気的接続の前もしくは後の好適なタイミングで硬化させることができる。例えば、フリップチップタイプを一括接合させる場合に熱圧着の接合を行う場合にはその加熱により同時に蛍光体層を硬化させてもよい。また、LEDチップと回路基板を接続したパッケージをより大きな回路基板上に表面実装する場合には、半田リフローでハンダ付けを行うと同時に蛍光体シートを硬化させても良い。 When the phosphor layer is attached to the LED chip in a semi-cured state, it can be cured at a suitable timing before or after this electrical connection. For example, in the case where the flip chip type is collectively bonded, when the thermocompression bonding is performed, the phosphor layer may be simultaneously cured by the heating. Further, in the case where a package in which an LED chip and a circuit board are connected is surface-mounted on a larger circuit board, the phosphor sheet may be cured simultaneously with soldering by solder reflow.
 蛍光体層が硬化された状態でLEDチップと貼り付けられる場合には、LEDチップと貼り付け後に硬化過程を設ける必要はない。蛍光体層が硬化された状態でLEDチップと貼り付けられる場合とは、例えば、硬化した蛍光体層に別途接着層を有する場合や、硬化後に熱融着性を有する蛍光体層の場合などである。蛍光体層はLEDチップの封止剤を兼ねてもよいが、図3(f)に示すように、蛍光体層を貼りつけたLEDチップをさらに公知のシリコーン樹脂等を透光性封止材15として用いて封止することもできる。また、透光性封止材でLEDチップを封止したあとに、封止材上に蛍光体層を貼り付けて使用することも可能である。 When the phosphor layer is bonded to the LED chip in a cured state, it is not necessary to provide a curing process after the LED chip is bonded. The case where the phosphor layer is stuck to the LED chip in a cured state includes, for example, a case where an adhesive layer is separately provided on the cured phosphor layer, and a case where the phosphor layer has heat-fusibility after curing. is there. The phosphor layer may also serve as a sealant for the LED chip. However, as shown in FIG. 3 (f), the LED chip to which the phosphor layer is attached is further coated with a known silicone resin or the like. 15 can be used for sealing. Moreover, after sealing an LED chip with a translucent sealing material, it is also possible to use a phosphor layer on the sealing material.
 また、フェイスアップタイプのLEDチップに適用する場合は、上記と同様に蛍光体層を個片化した後、LEDチップの光取り出し面に貼り付ける。蛍光体層が半硬化状態の場合は、貼り付けた後、蛍光体層を硬化させる。ここで、フェイスアップタイプのLEDチップでは光取り出し面に少なくとも一方の電極が形成されており、この電極からは後述のようにワイヤーボンディング等により導通が取られる。したがって、蛍光体層は少なくとも電極の一部が露出するように貼り付ける。もちろん、光取り出し部分だけに貼り付けてもよい。この場合、蛍光体層は電極の一部が露出する様にパターン化することができる。その後、LEDチップの光取り出し面とは反対側の面を回路基板に固定し、ワイヤーボンディング等の公知の方法でLEDチップと回路基板を電気的に接続することにより、発光装置を得ることができる。 In addition, when applied to a face-up type LED chip, the phosphor layer is separated into pieces in the same manner as described above and then attached to the light extraction surface of the LED chip. When the phosphor layer is in a semi-cured state, the phosphor layer is cured after being attached. Here, in the face-up type LED chip, at least one electrode is formed on the light extraction surface, and conduction is obtained from this electrode by wire bonding or the like as described later. Therefore, the phosphor layer is pasted so that at least a part of the electrode is exposed. Of course, it may be attached only to the light extraction portion. In this case, the phosphor layer can be patterned so that a part of the electrode is exposed. Then, the light emitting device can be obtained by fixing the surface opposite to the light extraction surface of the LED chip to the circuit board and electrically connecting the LED chip and the circuit board by a known method such as wire bonding. .
 (別の実施形態)
 図4に本発明の発光装置の製造方法の別の実施形態を示す。図4(b)に示す工程までは図3(b)に示す工程までと同じである。本実施形態では、その後に、図4(b-2)に示すように、基材フィルムを延伸する工程を含む。基材フィルムを延伸することにより個片化された蛍光体層間に間隙を形成することができる。このように隙間を作ることで、個片化した蛍光体層一つだけをピックアップする場合、より簡便に行うことができる。
(Another embodiment)
FIG. 4 shows another embodiment of the method for manufacturing a light emitting device of the present invention. The process up to the process shown in FIG. 4B is the same as the process shown in FIG. In the present embodiment, thereafter, as shown in FIG. 4B-2, a step of stretching the base film is included. A gap can be formed between the separated phosphor layers by stretching the base film. By creating a gap in this way, when picking up only a single phosphor layer, it can be performed more easily.
 この時、延伸を放射状に行うと、間隙が碁盤目状に形成される。図5(a)は、図3(b)や図4(b)に見られるような、蛍光体層2を切断した後の蛍光体シート6を示す上面図の一例である。蛍光体層2は分断ライン16によって矩形に個片化されている。また、図5(b)は、図5(a)に示す蛍光体シートの基材フィルムを、縦方向および横方向に延伸した後の蛍光体シートである。図5(b)のように蛍光体層間に大きな間隙17があることにより、目的とする蛍光体層のみを確実にピックアップすることができるため、より好ましい。 At this time, if the stretching is performed radially, the gaps are formed in a grid pattern. Fig.5 (a) is an example of the top view which shows the fluorescent substance sheet 6 after cut | disconnecting the fluorescent substance layer 2, as seen in FIG.3 (b) and FIG.4 (b). The phosphor layer 2 is separated into rectangles by a dividing line 16. Moreover, FIG.5 (b) is a fluorescent substance sheet after extending | stretching the base film of the fluorescent substance sheet shown to Fig.5 (a) to the vertical direction and a horizontal direction. The large gap 17 between the phosphor layers as shown in FIG. 5B is more preferable because only the target phosphor layer can be reliably picked up.
 ピックアップを容易にするためには間隙は大きいことが好ましい。そのためには基材の延伸度は0.5以上であることが好ましく、1以上であることがより好ましく、1.5以上であることがさらに好ましく、2以上であることが特に好ましい。ここでいう延伸度とは下記の計算式によって算出される値のことである。 It is preferable that the gap is large for easy pickup. For this purpose, the degree of stretching of the substrate is preferably 0.5 or more, more preferably 1 or more, further preferably 1.5 or more, and particularly preferably 2 or more. The degree of stretching here is a value calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、その他の変形例として、基板に実装された状態のLEDチップに対し、個片化した蛍光体層を貼り付けてもよい。 As another modification, an individual phosphor layer may be attached to an LED chip mounted on a substrate.
 (蛍光体シート)
 本発明に用いられる蛍光体シートは、基材フィルム上に蛍光体層を有するシート状物である。
(Phosphor sheet)
The phosphor sheet used in the present invention is a sheet-like material having a phosphor layer on a substrate film.
 (蛍光体層)
 本発明において蛍光体層とは、主として蛍光体と樹脂を含有する層をいう。必要に応じて分散剤、架橋材、光重合開始剤、熱重合開始剤、レベリング剤、チキソトロピー調整剤、可塑剤等の成分を含んでいてもよい。
(Phosphor layer)
In the present invention, the phosphor layer refers to a layer mainly containing a phosphor and a resin. Components such as a dispersant, a crosslinking agent, a photopolymerization initiator, a thermal polymerization initiator, a leveling agent, a thixotropy adjusting agent, and a plasticizer may be included as necessary.
 蛍光体層は、25℃での貯蔵弾性率が0.1MPa以上であることが好ましい。これにより個片化等の切断加工を容易に行うことができる。より好ましくは1MPa以上であり、さらに好ましくは10MPa以上であり、特に好ましくは100Mpa以上である。0.1MPa未満であると、蛍光体層の柔軟性が高すぎ、切断加工時に流動等が発生するため安定した切断加工を行うことができない。
また、切断加工時に蛍光体層に割れが発生するのを予防する観点から、25℃での貯蔵弾性率が2000MPa以下であることが好ましく、1000MPa以下であることがより好ましい。
The phosphor layer preferably has a storage elastic modulus at 25 ° C. of 0.1 MPa or more. Thereby, cutting processes, such as individualization, can be performed easily. More preferably, it is 1 MPa or more, More preferably, it is 10 MPa or more, Especially preferably, it is 100 Mpa or more. When the pressure is less than 0.1 MPa, the flexibility of the phosphor layer is too high, and a flow or the like is generated at the time of cutting, so that stable cutting cannot be performed.
Further, from the viewpoint of preventing the phosphor layer from being cracked during the cutting process, the storage elastic modulus at 25 ° C. is preferably 2000 MPa or less, and more preferably 1000 MPa or less.
 ここで言う貯蔵弾性率とは、動的粘弾性測定により求められる貯蔵弾性率である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)に分解して、材料の動的な力学特性を解析する手法である。ここで剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率G’であり、各温度における動的な歪みに対する材料の変形、追随を表すものであるので、材料の加工性や接着性に密接に関連している。 Here, the storage elastic modulus is a storage elastic modulus obtained by dynamic viscoelasticity measurement. Dynamic viscoelasticity means that when shear strain is applied to a material at a sinusoidal frequency, the shear stress that appears when a steady state is reached is divided into a component (elastic component) whose strain and phase match, and the strain and phase are This is a technique for analyzing the dynamic mechanical properties of a material by decomposing it into components (viscous components) delayed by 90 °. Here, what is obtained by dividing the stress component whose phase matches the shear strain by the shear strain is the storage elastic modulus G ′, which represents the deformation and tracking of the material against the dynamic strain at each temperature. It is closely related to processability and adhesion.
 (樹脂)
 蛍光体層に含まれる樹脂は、内部に蛍光体を均質に分散させられるものであり、蛍光体層を形成できるものであれば、いかなる樹脂でも構わない。
(resin)
The resin contained in the phosphor layer may be any resin as long as the phosphor can be uniformly dispersed therein and can form the phosphor layer.
 具体的には、シリコーン樹脂、エポキシ樹脂、ポリアリレート樹脂、PET変性ポリアリレート樹脂、ポリカーボネート樹脂(PC)、環状オレフィン、ポリエチレンテレフタレート樹脂(PET)、ポリメチルメタアクリレート樹脂(PMMA)、ポリプロピレン樹脂(PP)、変性アクリル(サンジュレー鐘淵化学)、ポリスチレン樹脂(PE)及びアクリルニトリル・スチレン共重合体樹脂(AS)等が挙げられる。本発明においては、透明性の面からシリコーン樹脂やエポキシ樹脂が好ましく用いられる。更に耐熱性の面から、シリコーン樹脂が特に好ましく用いられる。 Specifically, silicone resin, epoxy resin, polyarylate resin, PET modified polyarylate resin, polycarbonate resin (PC), cyclic olefin, polyethylene terephthalate resin (PET), polymethyl methacrylate resin (PMMA), polypropylene resin (PP ), Modified acrylic (Sanjure Kaneka Chemical), polystyrene resin (PE), acrylonitrile / styrene copolymer resin (AS), and the like. In the present invention, a silicone resin or an epoxy resin is preferably used from the viewpoint of transparency. Furthermore, a silicone resin is particularly preferably used from the viewpoint of heat resistance.
 本発明で用いられるシリコーン樹脂としては、硬化型シリコーンゴムが好ましい。一液型、二液型(三液型)のいずれの液構成を使用してもよい。硬化型シリコーンゴムには、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型などがある。また、触媒によってヒドロシリル化反応を起こすタイプとして付加反応型がある。これらのいずれのタイプの硬化型シリコーンゴムを使用してもよい。特に、付加反応型のシリコーンゴムは硬化反応に伴う副成物がなく、硬化収縮が小さい点、加熱により硬化を早めることが容易な点でより好ましい。 As the silicone resin used in the present invention, curable silicone rubber is preferable. Either one liquid type or two liquid type (three liquid type) liquid structure may be used. Examples of the curable silicone rubber include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst. Moreover, there is an addition reaction type as a type that causes a hydrosilylation reaction with a catalyst. Any of these types of curable silicone rubber may be used. In particular, the addition reaction type silicone rubber is more preferable in that it has no by-product accompanying the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
 付加反応型のシリコーンゴムは、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成される。このような材料としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等のケイ素原子に結合したアルケニル基を含有する化合物と、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等のケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成されるものが挙げられる。また、他にも、例えば特開2010-159411号公報に記載されているような公知のものを利用することができる。 For example, the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom. Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc. And hydrogen atoms bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc. Examples thereof include those formed by hydrosilylation reaction of the compounds having them. In addition, other publicly known ones such as those described in JP 2010-159411 A can be used.
 また、市販されているものとして、一般的なLED用途のシリコーン封止材を使用することも可能である。具体例としては、東レ・ダウコーニング社製のOE-6630A/B、OE-6336A/Bや信越化学工業株式会社製のSCR-1012A/B、SCR-1016A/Bなどがある。 Moreover, it is also possible to use a silicone sealing material for general LED applications as a commercially available product. Specific examples include OE-6630A / B and OE-6336A / B manufactured by Toray Dow Corning, and SCR-1012A / B and SCR-1016A / B manufactured by Shin-Etsu Chemical Co., Ltd.
 シリコーン樹脂は、熱融着性を有することが好ましい。前記蛍光体層が熱融着性を有する場合、蛍光体層を加熱してLEDチップに貼り付けることが可能であるためである。ここでいう熱融着性とは加熱により軟化する性質のことであり、蛍光体シートが熱融着性を有する場合、LEDチップへの貼り付けに接着剤を使用する必要がないため工程を簡略化することができる。熱融着性を有する蛍光体層とは25℃における貯蔵弾性率が0.1MPa以上、かつ100℃における貯蔵弾性率が0.1MPa未満である蛍光体シートである。 The silicone resin preferably has heat-fusibility. This is because when the phosphor layer has heat-fusibility, the phosphor layer can be heated and attached to the LED chip. The heat fusibility mentioned here is the property of softening by heating, and when the phosphor sheet has heat fusibility, it is not necessary to use an adhesive for attaching to the LED chip, thus simplifying the process. Can be The phosphor layer having heat-fusibility is a phosphor sheet having a storage elastic modulus at 25 ° C. of 0.1 MPa or more and a storage elastic modulus at 100 ° C. of less than 0.1 MPa.
 熱融着性を有するシリコーン樹脂の一例としては、(A)~(D)の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物であることが特に好ましい。この架橋物は、60℃~250℃で貯蔵弾性率が減少し、加熱によって高い接着力が得られるため、接着剤不要の蛍光体シート用のマトリックス樹脂として好ましく用いることができる。
(A)平均単位式: 
(R SiO2/2)a(RSiO3/2)b(R1/2)c
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)
で表されるオルガノポリシロキサン、
(B)一般式: 
SiO(R SiO)SiR
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
(C)一般式: 
(HR SiO)SiR
(式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基であり、ただし、Rの30~70モル%はフェニルである。)
で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および
(D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}。
As an example of the silicone resin having heat-fusibility, a cross-linked product obtained by hydrosilylation reaction of a cross-linkable silicone composition including the compositions (A) to (D) is particularly preferable. This crosslinked product can be preferably used as a matrix resin for a phosphor sheet that does not require an adhesive because the storage elastic modulus decreases at 60 ° C. to 250 ° C. and a high adhesive force is obtained by heating.
(A) Average unit formula:
(R 1 2 SiO 2/2 ) a (R 1 SiO 3/2 ) b (R 2 O 1/2 ) c
(Wherein R 1 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 65 to 75 mol% of R 1 is phenyl. 10 to 20 mol% of R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, and c are 0.5 ≦ a ≦ 0. (6, 0.4 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.1, and a + b = 1)
An organopolysiloxane represented by
(B) General formula:
R 3 3 SiO (R 3 2 SiO) m SiR 3 3
(Wherein R 3 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 40 to 70 mol% of R 3 is phenyl. And at least one of R 3 is an alkenyl group, and m is an integer of 5 to 50.) {5 to 15 parts by weight relative to 100 parts by weight of component (A)}
(C) General formula:
(HR 4 2 SiO) 2 SiR 4 2
(In the formula, R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl.)
{Amount such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is 0.5 to 2}, and ( D) Catalyst for hydrosilylation reaction {Amount sufficient to promote hydrosilylation reaction between alkenyl group in component (A), component (B) and silicon atom-bonded hydrogen atom in component (C)}.
 (A)成分の一般式においてa、b、およびcの値は得られる架橋物の室温での十分な硬さが得られ、かつ高温での軟化が得られる。(B)成分の一般式において、フェニル基の含有量が上記範囲の下限未満であると、得られる架橋物の高温での軟化が不十分であり、一方、上記範囲の上限を超えると、得られる架橋物の透明性が失われ、その機械的強度も低下する。また、式中、Rの少なくとも1個はアルケニル基である。これは、アルケニル基を有さないと、本成分が架橋反応に取り込まれず、得られる架橋物から本成分がブリードアウトするおそれがあるからである。また、式中、mは5~50の範囲内の整数であり、これは、得られる架橋物の機械的強度を維持しつつ取扱作業性を保持する範囲である。 In the general formula of component (A), the values of a, b, and c are sufficient to obtain sufficient hardness at room temperature of the resulting crosslinked product, and softening at high temperature. In the general formula of the component (B), if the content of the phenyl group is less than the lower limit of the above range, the resulting crosslinked product is insufficiently softened at a high temperature. The resulting crosslinked product loses its transparency, and its mechanical strength also decreases. In the formula, at least one R 3 is an alkenyl group. This is because if the alkenyl group is not present, this component is not taken into the crosslinking reaction, and this component may bleed out from the resulting crosslinked product. In the formula, m is an integer in the range of 5 to 50, and this is a range in which handling workability is maintained while maintaining the mechanical strength of the resulting crosslinked product.
 (B)成分の含有量は、(A)成分100重量部に対して5~15重量部の範囲内となる量で、得られる架橋物の高温での十分な軟化を得るための範囲である。 The content of the component (B) is within a range of 5 to 15 parts by weight with respect to 100 parts by weight of the component (A), and is a range for obtaining sufficient softening at a high temperature of the resulting crosslinked product. .
 (C)成分の一般式において、式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基が例示される。Rのシクロアルキル基としては、シクロペンチル基、シクロヘプチル基が例示される。なお、Rの内、フェニル基の含有量は30~70モル%の範囲内である。これは、得られる架橋物の高温での十分な軟化が得られ、かつ透明性と機械的強度を保つ範囲である。 In the general formula of the component (C), R 4 is a phenyl group, or an alkyl group or cycloalkyl group having 1 to 6 carbon atoms. Examples of the alkyl group for R 4 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group. Examples of the cycloalkyl group for R 4 include a cyclopentyl group and a cycloheptyl group. Of R 4 , the phenyl group content is in the range of 30 to 70 mol%. This is a range in which the obtained crosslinked product can be sufficiently softened at a high temperature and can maintain transparency and mechanical strength.
 (C)成分の含有量は、(A)成分中および(B)成分中のアルケニル基の合計に対して、本成分中のケイ素原子結合水素原子のモル比が0.5~2の範囲内となる量であり、これは得られる架橋物の室温での十分な硬さが得られる範囲である。 The content of component (C) is such that the molar ratio of silicon-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and component (B) is in the range of 0.5 to 2. This is a range in which sufficient hardness at room temperature of the resulting crosslinked product can be obtained.
 (D)成分は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、シリコーン組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体が例示され、特に、白金-アルケニルシロキサン錯体であることが好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-トテラメチルジシロキサンが好ましい。また、この白金-アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジアリル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,3-ジメチル-1,3-ジフェニルジシロキサン、1,3-ジビニル-1,1,3,3-テトラフェニルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。 The component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C). Examples of the component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the silicone composition. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, alcohol solution of chloroplatinic acid, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, particularly platinum-alkenylsiloxane complex. It is preferable. Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like. In particular, 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of the platinum-alkenylsiloxane complex is good. Further, since the stability of the platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane and 1,3-diallyl-1,1 are added to this complex. , 3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane, It is preferable to add an alkenyl siloxane such as 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane or an organosiloxane oligomer such as a dimethylsiloxane oligomer. It is preferable.
 (D)成分の含有量は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するための十分な量であれば特に限定されないが、好ましくは、シリコーン組成物に対して、本成分中の金属原子が質量単位で0.01~500ppmの範囲内となる量であることが好ましく、さらには、0.01~100ppmの範囲内となる量であることが好ましく、特には、0.01~50ppmの範囲内となる量であることが好ましい。これは、得られるシリコーン組成物が十分に架橋し、かつ着色等の問題を生じない範囲である。 The content of the component (D) is an amount sufficient to promote the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon-bonded hydrogen atom in the component (C). Although not particularly limited, it is preferable that the amount of metal atoms in the present component is within a range of 0.01 to 500 ppm by mass unit with respect to the silicone composition, and more preferably 0.01 to 100 ppm. The amount is preferably in the range of 0.01 to 50 ppm, and particularly preferably in the range of 0.01 to 50 ppm. This is a range in which the obtained silicone composition is sufficiently crosslinked and does not cause problems such as coloring.
 シリコーン組成物は、少なくとも上記(A)成分~(D)成分からなるが、その他任意の成分として、エチニルヘキサノール、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、2-フェニル-3-ブチン-2-オール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。この反応抑制剤の含有量は限定されないが、シリコーン組成物の重量に対して1~5,000ppmの範囲内であることが好ましい。反応抑制剤の含有量を調整することにより、得られる架橋物の貯蔵弾性率を調整することもできる。 The silicone composition is composed of at least the above components (A) to (D), and other optional components include ethynylhexanol, 2-methyl-3-butyn-2-ol, and 3,5-dimethyl-1-hexyne. Alkyne alcohols such as 3-ol and 2-phenyl-3-butyn-2-ol; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-in 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane; Further, a reaction inhibitor such as benzotriazole may be contained. The content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm with respect to the weight of the silicone composition. By adjusting the content of the reaction inhibitor, the storage elastic modulus of the resulting cross-linked product can be adjusted.
 (蛍光体)
 蛍光体は、LEDチップから放出される光を吸収して波長を変換し、LEDチップの光と異なる波長の光を放出するものであれば限定されない。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDが得られる。具体的には、青色系LEDにLEDからの光によって黄色系の発光色を発光する蛍光体を光学的に組み合わせることによって、単一のLEDチップを用いて白色系を発光させることができる。
(Phosphor)
The phosphor is not limited as long as it absorbs light emitted from the LED chip, converts the wavelength, and emits light having a wavelength different from that of the LED chip. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED can be emitted using a single LED chip by optically combining a blue LED with a phosphor that emits a yellow emission color by light from the LED.
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、無機蛍光体、有機蛍光体、蛍光顔料、蛍光染料等公知の蛍光体が挙げられる。有機蛍光体としては、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、長期間使用可能な点からペリレン系蛍光体が好ましく用いられる。本発明に特に好ましく用いられる蛍光物質としては、無機蛍光体が挙げられる。以下に本発明に用いられる無機蛍光体について記載する。 The phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red. Specific phosphors used in the present invention include known phosphors such as inorganic phosphors, organic phosphors, fluorescent pigments, and fluorescent dyes. Examples of organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors. Perylene phosphors are preferably used because they can be used for a long period of time. Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
 緑色に発光する蛍光体として、例えば、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga:Eu、S i 6 - Z A l Z O  N 8 - Z:Eu(0<Z<4.2)などがある。 Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , at least one or more of Ba) Ga 2 S 4: Eu , S i 6 - Z a l Z O Z N 8 - Z: Eu (0 <Z <4.2) , and the like.
 青色に発光する蛍光体として、例えば、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1以上)(POCl:Eu,Mnなどがある。 Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
 緑色から黄色に発光する蛍光体として、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦活されたイットリウム・アルミニウム・ガーネット酸化物蛍光体、及び、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体などがある(いわゆるYAG系蛍光体)。具体的には、Ln12:R(Lnは、Y、Gd、Laから選ばれる少なくとも1以上である。Mは、Al、Caの少なくともいずれか一方を含む。Rは、ランタノイド系である。)、(Y1-xGa(Al1-yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以上である。0<x<0.5、0<y<0.5である。)などを使用することができる。 As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series. ), (Y 1-x Ga x ) 3 (Al 1-y Ga y ) 5 O 12 : R (R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho) 0 <x <0.5, 0 <y <0.5.) And the like can be used.
 赤色に発光する蛍光体として、例えば、YS:Eu、LaS:Eu、Y:Eu、GdS:Eu、KSiF:Mnなどがある。 Examples of the phosphor that emits red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, Gd 2 O 2 S: Eu, and K 2 SiF 6 : Mn. .
 また、現在主流の青色LEDに対応し発光する蛍光体としては、Y(Al,Ga)12:Ce,(Y,Gd)Al12:Ce,LuAl12:Ce,YAl12:CeなどのYAG系蛍光体、TbAl12:CeなどのTAG系蛍光体、(Ba,Sr)SiO:Eu系蛍光体やCaScSi12:Ce系蛍光体、(Sr,Ba,Mg)SiO:Euなどのシリケート系蛍光体、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、CaSiAlN:Eu等のナイトライド系蛍光体、Ca(Si,Al)12(O,N)16:Euなどのオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si:Eu系蛍光体、CaMgSi16Cl:Eu系蛍光体、SrAl:Eu,SrAl1425:Eu、S i 6 - Z A l Z O  N 8 - Z:Eu(0<Z<4.2)などのサイアロン蛍光体、一般式AMF:Mn(ここで、AはLi、Na、K、Rb及びCsからなる群より選ばれ、かつ少なくともNa及び/又はKを含む1種以上のアルカリ金属であり、MはSi、Ti、Zr、Hf、Ge及びSnからなる群より選ばれる1種以上の4価元素である。)で表される複フッ化物蛍光体等の蛍光体(KSF蛍光体)が挙げられる。 As the phosphor corresponding to the current mainstream of the blue LED emission, Y 3 (Al, Ga) 5 O 12: Ce, (Y, Gd) 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: Ce, Y 3 Al 5 O 12 : YAG phosphor such as Ce, TAG phosphor such as Tb 3 Al 5 O 12 : Ce, (Ba, Sr) 2 SiO 4 : Eu phosphor and Ca 3 Sc 2 Si 3 O 12 : Ce phosphor, silicate phosphor such as (Sr, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, CaSiAlN 3 : Nitride-based phosphors such as Eu, Ca x (Si, Al) 12 (O, N) 16 : Oxynitride-based phosphors such as Eu, and (Ba, Sr, Ca) Si 2 O 2 N 2: u phosphor, Ca 8 MgSi 4 O 16 Cl 2: Eu phosphor, SrAl 2 O 4: Eu, Sr 4 Al 14 O 25: Eu, S i 6 - Z A l Z O Z N 8 - Z: Sialon phosphors such as Eu (0 <Z <4.2), general formula A 2 MF 6 : Mn (where A is selected from the group consisting of Li, Na, K, Rb and Cs, and at least Na and And / or one or more alkali metals containing K, and M is one or more tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn. And phosphors (KSF phosphors) such as fluoride compounds.
 これらの中では、YAG系蛍光体、TAG系蛍光体、シリケート系蛍光体が、発光効率や輝度などの点で好ましく用いられる。また、β型サイアロン蛍光体、Mn付活複フッ化物蛍光体(いわゆるKSF蛍光体)は広色度範囲の点で好ましい。KSF蛍光体はβ型サイアロン蛍光体などの蛍光体と比較して、硬度が低く蛍光体シートをカットした面でバリが出にくいため特に好ましい。 Of these, YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and luminance. Further, β-type sialon phosphors and Mn-activated double fluoride phosphors (so-called KSF phosphors) are preferable in terms of a wide chromaticity range. The KSF phosphor is particularly preferable because it has a low hardness and is less likely to generate burrs on the cut surface of the phosphor sheet as compared with a phosphor such as a β-type sialon phosphor.
 上記以外にも、用途や目的とする発光色に応じて公知の蛍光体を用いることができる。 In addition to the above, known phosphors can be used according to the intended use and the intended emission color.
 蛍光体は粒子状のものを好ましく用いることができる。蛍光体の平均粒子径は、特に制限はないが、D50が0.05μm以上のものが好ましく、3μm以上のものがより好ましい。また、D50が30μm以下のものが好ましく、20μm以下のものがより好ましい。 The phosphor is preferably in the form of particles. The average particle diameter of the phosphor is not particularly limited, but preferably has a D50 of 0.05 μm or more, more preferably 3 μm or more. Further, those having a D50 of 30 μm or less are preferred, and those having a D50 of 20 μm or less are more preferred.
 本発明において平均粒子径とはメジアン径、すなわちD50のことをいう。蛍光体層に含まれる蛍光体のD50は、蛍光体層断面の走査型電子顕微鏡(SEM)による測定画像を画像処理して粒径分布を求め、そこから得られる体積基準粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50とする方法で測定する。粒子が球形である場合、粒子直径を粒径とする。粒子が球形でない場合、最も長い径の長さと最も短い径の長さの平均値を粒径とする。D50が上記範囲であると、蛍光体シート中の蛍光体の分散性が良好で、安定な発光が得られる。 In the present invention, the average particle diameter means the median diameter, that is, D50. The D50 of the phosphor contained in the phosphor layer is obtained by subjecting a measurement image obtained by scanning electron microscope (SEM) of the cross section of the phosphor layer to image processing to obtain a particle size distribution, and in the volume-based particle size distribution obtained therefrom, Measurement is made by a method in which the particle diameter of 50% of the accumulated amount from the diameter side is the median diameter D50. When the particles are spherical, the particle diameter is taken as the particle size. When the particles are not spherical, the average value of the longest diameter and the shortest diameter is taken as the particle size. When D50 is in the above range, the dispersibility of the phosphor in the phosphor sheet is good, and stable light emission is obtained.
 本発明では、蛍光体の含有量について特に制限はないが、LEDチップからの発光の波長変換効率を高める観点から、蛍光体層における全固形分に占める蛍光体の割合は40重量%以上であることが好ましく、50重量%以上であることがより好ましく、60重量%以上であることがさらに好ましく、65重量%以上であることが特に好ましい。蛍光体含有量の上限は特に規定されないが、作業性に優れた蛍光体層が作成しやすいという観点から、蛍光体層全体の95重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが特に好ましい。 In the present invention, the phosphor content is not particularly limited, but from the viewpoint of increasing the wavelength conversion efficiency of light emission from the LED chip, the proportion of the phosphor in the total solid content in the phosphor layer is 40% by weight or more. It is preferably 50% by weight or more, more preferably 60% by weight or more, and particularly preferably 65% by weight or more. Although the upper limit of the phosphor content is not particularly defined, it is preferably 95% by weight or less, preferably 90% by weight or less of the entire phosphor layer from the viewpoint that a phosphor layer excellent in workability can be easily produced. Is more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
 本発明における蛍光体層中の蛍光体含有量は、作製済みの蛍光体層や、それを搭載したLED発光装置からも求めることが可能である。例えば、蛍光体層を樹脂で包埋して切断し、断面を研磨した試料を作製し、その露出した断面を走査型電子顕微鏡(SEM)で観測することにより、樹脂部分と蛍光体粒子部分を明確に判別することが可能である。その断面像の面積比から、蛍光体層全体に占める蛍光体粒子の体積比率を正確に測定することが可能である。 The phosphor content in the phosphor layer in the present invention can also be obtained from a prepared phosphor layer or an LED light emitting device equipped with the phosphor layer. For example, by embedding the phosphor layer with a resin and cutting it, preparing a sample with a polished cross section, and observing the exposed cross section with a scanning electron microscope (SEM), the resin portion and the phosphor particle portion are separated. It is possible to distinguish clearly. From the area ratio of the cross-sectional image, it is possible to accurately measure the volume ratio of the phosphor particles in the entire phosphor layer.
 蛍光体層を形成する樹脂および蛍光体の比重が明らかな場合は、体積比率をそれぞれの比重で除することにより蛍光体が蛍光体層に占める重量比率を計算することができる。樹脂や蛍光体の組成が明らかでない場合には、蛍光体層の断面を高分解能の顕微赤外分光やIPC発光分析で分析することで組成を判別できる。組成が明らかになれば、樹脂や蛍光体の物質固有の比重は相当程度の正確さで推定できるので、これを用いて重量比率を求めることができる。 When the specific gravity of the resin and the phosphor forming the phosphor layer is clear, the weight ratio of the phosphor to the phosphor layer can be calculated by dividing the volume ratio by the specific gravity. If the composition of the resin or phosphor is not clear, the composition can be determined by analyzing the cross section of the phosphor layer by high-resolution micro-infrared spectroscopy or IPC emission analysis. If the composition becomes clear, the specific gravity specific to the substance of the resin or phosphor can be estimated with a considerable degree of accuracy, and the weight ratio can be obtained using this.
 また、蛍光体層を搭載したLED発光装置の場合も、LED発光装置を分解して、蛍光体層部分を取り出し、同様の手法で断面観察することにより蛍光体層に占める蛍光体の重量比率を求めることができる。このような手法により、蛍光体層作製時の仕込み比率が明らかでない場合にも、上記の方法や、その他公知の分析方法により、作製済みの蛍光体層及びそれを搭載したLED発光装置から蛍光体層中の蛍光体重量比率を確認することが可能である。 Also, in the case of an LED light-emitting device equipped with a phosphor layer, disassemble the LED light-emitting device, take out the phosphor layer portion, and observe the cross-section by the same method to determine the weight ratio of the phosphor in the phosphor layer. Can be sought. By such a method, even when the preparation ratio at the time of preparing the phosphor layer is not clear, the prepared phosphor layer and the LED light-emitting device on which the phosphor layer is mounted by the above-described method and other known analysis methods can be used. It is possible to confirm the phosphor weight ratio in the layer.
 (シリコーン微粒子)
 蛍光体層はシリコーン微粒子を含有していることが好ましい。シリコーン微粒子を含有することで、接着性や加工性だけでなく、膜厚均一性も良好な蛍光体層を得ることができる。
(Silicone fine particles)
The phosphor layer preferably contains silicone fine particles. By containing the silicone fine particles, it is possible to obtain a phosphor layer having not only adhesiveness and workability but also good film thickness uniformity.
 蛍光体層に含有されるシリコーン微粒子は、シリコーン樹脂およびまたはシリコーンゴムからなる微粒子が好ましい。特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が好ましい。 The silicone fine particles contained in the phosphor layer are preferably fine particles made of silicone resin and / or silicone rubber. In particular, silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
 オルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロキシシラン、メチルトリ-i-プロキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-i-ブトキシシラン、メチルトリ-s-ブトキシシラン、メチルトリ-t-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、i-プロピルトリメトキシシラン、n-ブチルトリブトキシシラン、i-ブチルトリブトキシシラン、s-ブチルトリメトキシシラン、t-ブチルトリブトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが例示される。 Examples of the organotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t Examples include -butyltributoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, and phenyltrimethoxysilane.
 オルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジエトキシシラン、(フェニルアミノメチル)メチルジメトキシシラン、ビニルメチルジエトキシシランなどが例示される。 Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
 オルガノトリアセトキシシランとしては、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシランなどが例示される。 Examples of organotriacetoxysilane include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
 オルガノジアセトキシシランとしては、ジメチルジアセトキシシラン、メチルエチルジアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルエチルジアセトキシシランなどが例示される。 Examples of organodiacetoxysilane include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
 オルガノトリオキシムシランとしては、メチルトリスメチルエチルケトオキシムシラン、ビニルトリスメチルエチルケトオキシムシラン、オルガノジオキシムシランとしては、メチルエチルビスメチルエチルケトオキシムシランなどが例示される。 Examples of the organotrioxime silane include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
 このような粒子は、具体的には、特開昭63-77940号公報で報告されている方法、特開平6-248081号公報で報告されている方法、特開2003-342370号公報で報告されている方法、特開平4-88022号公報で報告されている方法などにより得ることができる。また、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランおよび/またはその部分加水分解物をアルカリ水溶液に添加し、加水分解・縮合させ粒子を得る方法や、水あるいは酸性溶液にオルガノシランおよび/またはその部分加水分解物を添加し、該オルガノシランおよび/またはその部分加水分解物の加水分解部分縮合物を得た後、アルカリを添加し縮合反応を進行させ粒子を得る方法、オルガノシランおよび/またはその加水分解物を上層にし、アルカリまたはアルカリと有機溶媒の混合液を下層にして、これらの界面で該オルガノシランおよび/またはその加水分解物を加水分解・重縮合させて粒子を得る方法なども知られており、これらいずれの方法においても、本発明で用いられる粒子を得ることができる。 Specifically, such particles are reported in the method reported in JP-A-63-77940, the method reported in JP-A-6-248081, and in JP-A-2003-342370. Or a method reported in JP-A-4-88022. In addition, organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent is used as a lower layer, and the organosilane at these interfaces. And / or hydrolyzate thereof · Polycondensation engaged with is also known a method of obtaining a particle, In any of these methods, it is possible to obtain the particles used in the present invention.
 これらの中で、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、球状オルガノポリシルセスキオキサン微粒子を製造するにあたり、特開2003-342370号公報で報告されているような反応溶液内に高分子分散剤を添加する方法により得られたシリコーン粒子を用いることが好ましい。 Among these, the reaction as reported in Japanese Patent Application Laid-Open No. 2003-342370 is carried out in the production of spherical organopolysilsesquioxane fine particles by hydrolyzing and condensing organosilane and / or a partial hydrolyzate thereof. It is preferable to use silicone particles obtained by a method of adding a polymer dispersant in the solution.
 また、粒子を製造するに当たり、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、酸性水溶液に溶媒中で保護コロイドとして作用する高分子分散剤及び塩を存在させた状態で、オルガノシランおよび/またはその加水分解物を添加し加水分解物を得た後、アルカリを添加し縮合反応を進行させることにより製造したシリコーン粒子を用いることもできる。 In the production of particles, organosilane and / or a partial hydrolyzate thereof are hydrolyzed / condensed in the presence of a polymer dispersant and a salt that act as a protective colloid in a solvent in an acidic aqueous solution. Silicone particles produced by adding silane and / or a hydrolyzate thereof to obtain a hydrolyzate and then adding an alkali to advance the condensation reaction can also be used.
 高分子分散剤は、水溶性高分子であり、溶媒中で保護コロイドとして作用するものであれば合成高分子、天然高分子のいずれでも使用できるが、具体的にはポリビニルアルコール、ポリビニルピロリドンなどを例示することができる。高分子分散剤の添加方法としては、反応初液に予め添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物と同時に添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物を加水分解部分縮合させた後に添加する方法が例示でき、これらの何れの方法を選ぶこともできる。ここで、高分子分散剤の添加量は、反応液容量1重量部に対して5×10-7~10-2重量部の範囲が好ましく、この範囲であると粒子同士の凝集が起きにくい。 The polymer dispersant is a water-soluble polymer, and any synthetic polymer or natural polymer can be used as long as it acts as a protective colloid in a solvent. Specifically, polyvinyl alcohol, polyvinyl pyrrolidone and the like can be used. It can be illustrated. As a method for adding the polymer dispersant, a method of adding in advance to the reaction initial solution, a method of adding organotrialkoxysilane and / or a partial hydrolyzate thereof simultaneously, an organotrialkoxysilane and / or a partial hydrolyzate thereof, The method of adding after hydrolyzing partial condensation can be illustrated, and any of these methods can be selected. Here, the addition amount of the polymer dispersant is preferably in the range of 5 × 10 −7 to 10 −2 parts by weight with respect to 1 part by weight of the reaction liquid volume, and in this range, the particles are less likely to aggregate.
 シリコーン微粒子に含まれる有機置換基としては、好ましくはメチル基およびフェニル基であり、これら置換基の含有量によりシリコーン微粒子の屈折率を調整することができる。LED発光装置の輝度を低下させないためにバインダー樹脂であるシリコーン樹脂を通る光を散乱させずに使用したい場合には、シリコーン微粒子の屈折率d1と、当該シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率差が小さい方が好ましい。シリコーン粒子の屈折率d1と、シリコーン粒子および蛍光体以外の成分による屈折率d2の屈折率の差は、0.10未満であることが好ましく、0.03以下であることがさらに好ましい。このような範囲に屈折率を制御することにより、シリコーン粒子とシリコーン組成物の界面での反射・散乱が低減され、高い透明性、光透過率が得られ、LED発光装置の輝度を低下させることがない。 The organic substituents contained in the silicone fine particles are preferably a methyl group and a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents. In order not to reduce the luminance of the LED light-emitting device, when it is desired to use the light passing through the silicone resin as the binder resin without scattering, the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable. The difference between the refractive index d1 of the silicone particles and the refractive index d2 of the components other than the silicone particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less. By controlling the refractive index in such a range, reflection / scattering at the interface between the silicone particles and the silicone composition is reduced, high transparency and light transmittance can be obtained, and the brightness of the LED light emitting device is lowered. There is no.
 屈折率の測定は、全反射法としては、Abbe屈折計、Pulfrich屈折計、液浸型屈折計、液浸法、最小偏角法などが用いられるが、シリコーン組成物の屈折率測定には、Abbe屈折計、シリコーン粒子の屈折率測定には、液浸法が有用である。 For the measurement of the refractive index, Abbe refractometer, Pulrich refractometer, immersion type refractometer, immersion method, minimum declination method and the like are used as the total reflection method, but for measuring the refractive index of the silicone composition, The immersion method is useful for measuring the refractive index of the Abbe refractometer and the silicone particles.
 また、上記屈折率差を制御するための手段としては、シリコーン粒子を構成する原料の量比を変えることにより調整可能である。すわなち、例えば、原料であるメチルトリアルコキシシランとフェニルトリアルコキシシランの混合比を調整し、メチル基の構成比を多くすることで、1.4に近い低屈折率化することが可能であり、逆に、フェニル基の構成比を多くすることで、比較的高屈折率化することが可能である。 Further, as a means for controlling the refractive index difference, it can be adjusted by changing the amount ratio of the raw materials constituting the silicone particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
 本発明において、シリコーン微粒子の平均粒子径はメジアン径(D50)で表される。この平均粒径は下限としては0.1μm以上であることが好ましく、0.5μm以上であることがさらに好ましい。また、上限としては2.0μm以下であることが好ましく、1.0μm以下であることがさらに好ましい。このようなシリコーン微粒子を用いることで、スリットダイコーターを用いた場合の吐出性に優れ、膜厚均一性に優れた蛍光体層を得ることができる。また、単分散で真球状の粒子を用いることが好ましい。 In the present invention, the average particle diameter of the silicone fine particles is represented by a median diameter (D50). The lower limit of the average particle diameter is preferably 0.1 μm or more, and more preferably 0.5 μm or more. The upper limit is preferably 2.0 μm or less, and more preferably 1.0 μm or less. By using such silicone fine particles, it is possible to obtain a phosphor layer having excellent ejection properties and excellent film thickness uniformity when a slit die coater is used. Moreover, it is preferable to use monodispersed true spherical particles.
 本発明において、蛍光体層に含まれるシリコーン微粒子の平均粒子径すなわちメジアン径(D50)および粒度分布は、SEM観察によって測定することができる。SEMによる測定画像を画像処理して粒径分布を求め、そこから得られる体積基準粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50として求める。粒子が球形である場合、粒子直径を粒径とする。粒子が球形でない場合、最も長い径の長さと最も短い径の長さの平均値を粒径とする。 In the present invention, the average particle diameter, that is, the median diameter (D50) and the particle size distribution of the silicone fine particles contained in the phosphor layer can be measured by SEM observation. A particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the volume-based particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50. When the particles are spherical, the particle diameter is taken as the particle size. When the particles are not spherical, the average value of the longest diameter and the shortest diameter is taken as the particle size.
 シリコーン微粒子の含有量としては、樹脂100重量部に対して、下限としては1重量部以上であることが好ましく、2重量部以上であることがさらに好ましい。また、上限としては20重量部以下であることが好ましく、10重量部以下であることがさらに好ましい。シリコーン微粒子を1重量部以上含有することで、特に良好な蛍光体分散安定化効果が得られ、一方、20重量部以下の含有により、組成物の粘度を過度に上昇させることがない。 The content of the silicone fine particles is preferably 1 part by weight or more, more preferably 2 parts by weight or more as a lower limit with respect to 100 parts by weight of the resin. Further, the upper limit is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, by containing 20 parts by weight or less, the viscosity of the composition is not excessively increased.
 (その他の成分)
 蛍光体層には、その他の成分として、常温での硬化を抑制してポットライフを長くするためにアセチレンアルコールなどのヒドロシリル化反応遅延剤を配合することが好ましい。また、本発明の効果が損なわれない範囲で、必要に応じてフュームドシリカ、ガラス粉末、石英粉末等の微粒子、酸化チタン、酸化ジルコニア、チタン酸バリウム、酸化亜鉛等の無機充填剤や顔料、難燃剤、耐熱剤、酸化防止剤、分散剤、溶剤、シランカップリング剤やチタンカップリング剤などの接着性付与剤等を配合してもよい。
(Other ingredients)
As other components, it is preferable to blend a hydrosilylation reaction retarder such as acetylene alcohol in the phosphor layer in order to suppress curing at room temperature and lengthen the pot life. In addition, as long as the effect of the present invention is not impaired, fine particles such as fumed silica, glass powder, quartz powder, etc., inorganic fillers and pigments such as titanium oxide, zirconia oxide, barium titanate, zinc oxide, You may mix | blend adhesiveness imparting agents, such as a flame retardant, a heat resistant agent, antioxidant, a dispersing agent, a solvent, a silane coupling agent, and a titanium coupling agent.
 特に、蛍光体層の表面平滑性の点から、低分子量のポリジメチルシロキサン成分、シリコーンオイルなどを含むことが好ましい。このような成分の含有量は、全体組成物に対して、100~2,000ppmであることが好ましく、500~1,000ppmであることがさらに好ましい。 In particular, from the viewpoint of surface smoothness of the phosphor layer, it is preferable to contain a low molecular weight polydimethylsiloxane component, silicone oil, and the like. The content of such components is preferably 100 to 2,000 ppm, more preferably 500 to 1,000 ppm, based on the entire composition.
 (基材フィルム)
 本発明に用いられる基材フィルムには、熱処理または紫外線照射の前における室温での上記蛍光体層と上記基材フィルム間の接着強度Aと、熱処理または紫外線照射の後における室温での上記蛍光体層と上記基材フィルム間の接着強度Bが
  A=5.0N/cm以上
  B=0.1N/cm未満
となるようなものが用いられる。
(Base film)
The base film used in the present invention includes an adhesive strength A between the phosphor layer and the base film at room temperature before heat treatment or ultraviolet irradiation, and the phosphor at room temperature after heat treatment or ultraviolet irradiation. The adhesive strength B between the layer and the substrate film is such that A = 5.0 N / cm or more and B = 0.1 N / cm or less.
 本発明においては、基材フィルムと蛍光体層との間の接着強度が熱処理または紫外線照射によって低下することが必要である。このような特徴を実現するための方法として基材フィルムに表面に粘着剤層が形成された公知のフィルムを用いる方法がある。ここで粘着剤層は熱処理や紫外線の照射により粘着力が低下する必要がある。 In the present invention, it is necessary that the adhesive strength between the base film and the phosphor layer is lowered by heat treatment or ultraviolet irradiation. As a method for realizing such characteristics, there is a method using a known film having a pressure-sensitive adhesive layer formed on the surface of a base film. Here, the pressure-sensitive adhesive layer needs to have a reduced adhesive strength by heat treatment or ultraviolet irradiation.
 このような基材フィルムの上に、蛍光体層が形成されていることにより、カッティングやダイシング等による個片化等の切断加工時は蛍光体層の基材フィルムからの剥がれを抑制するため一定の接着力を保つことができる。一方で、その後の蛍光体シートのピックアップ工程では、事前に熱処理または紫外線照射によって接着力を低下させることでピックアップを容易とすることができる。 Since a phosphor layer is formed on such a base film, it is constant in order to suppress peeling of the phosphor layer from the base film during cutting such as individualization by cutting or dicing. The adhesive strength of can be kept. On the other hand, in the subsequent phosphor sheet pick-up step, the pick-up can be facilitated by reducing the adhesive strength by heat treatment or ultraviolet irradiation in advance.
 このような特性を有する基材フィルムであれば材質には特に制限はなく、表面に粘着剤層の形成された公知のフィルム、コーティング紙等を使用することができる。当該フィルムやコーティング紙の具体例としては、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミド、ポリフェニレンサルファイドなどのプラスチックのフィルム、プラスチック(ポリエチレン、ポリプロピレン、ポリスチレンなど)がラミネートされた紙、プラスチックによりコーティングされた紙、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの公知の金属がラミネートもしくは蒸着された紙、またはそのような公知の金属がラミネートもしくは蒸着されたプラスチックフイルムなどが挙げられる。 The material is not particularly limited as long as it is a base film having such characteristics, and a known film having a pressure-sensitive adhesive layer formed on the surface, coated paper, or the like can be used. Specific examples of the film and coated paper include cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polystyrene, polypropylene, polycarbonate, polyvinyl acetal, aramid, polyphenylene sulfide, and other plastic films, plastic (polyethylene , Polypropylene, polystyrene, etc.), plastic-coated paper, aluminum (including aluminum alloys), zinc, copper, iron or other known metal laminated or vapor-deposited paper, or such known For example, a plastic film laminated or vapor-deposited can be used.
 これらの中でも、経済性、取り扱い性の面でPETフィルム、ポリオレフィンフィルム、ポリ塩化ビニルフィルムなどが好適である。さらに保存安定性の面からは可塑剤を含まないフィルムが特に好適である。例えば、フィルムに可塑剤としてフタル酸ジエステル系の低分子量の可塑剤が含まれている場合、蛍光体層中に可塑剤が浸透するため蛍光体層が軟化してしまうという問題があるからである。また、樹脂の硬化に高温を必要とする場合は、耐熱性の面でポリイミドフィルムが好ましい。 Among these, PET film, polyolefin film, polyvinyl chloride film and the like are preferable in terms of economy and handling. Furthermore, a film containing no plasticizer is particularly suitable from the viewpoint of storage stability. For example, when the film contains a low molecular weight plasticizer of phthalic acid diester type as a plasticizer, there is a problem that the phosphor layer softens because the plasticizer penetrates into the phosphor layer. . Moreover, when high temperature is required for hardening of resin, a polyimide film is preferable in terms of heat resistance.
 基材フィルムの引張弾性率は0.1MPa以上であることが好ましく、1MPa以上であることがより好ましい。また基材フィルムの引張弾性率は100MPa以下であることが好ましく、10MPa以下であることがより好ましい。上記範囲内にあることにより、基材フィルムを容易に延伸することができる。図4(b-2)に示したように、基材フィルムを延伸することで蛍光体層の個片パターン間に隙間ができるため、ピックアップを容易に行うことができる。また、基材フィルムは延伸時、塑性変形することが好ましい。 The tensile elastic modulus of the base film is preferably 0.1 MPa or more, and more preferably 1 MPa or more. Moreover, it is preferable that the tensile elasticity modulus of a base film is 100 Mpa or less, and it is more preferable that it is 10 Mpa or less. By being in the said range, a base film can be extended | stretched easily. As shown in FIG. 4B-2, since the gap is formed between the individual patterns of the phosphor layer by stretching the base film, the pickup can be easily performed. The base film is preferably plastically deformed when stretched.
 基材フィルムの引張破断点伸度は50%以上であることが好ましく、100%以上であることがより好ましい。引張破断点伸度が50%以上であることにより、延伸により形成される蛍光体層の個片パターン間の間隙を広くすることができ、ピックアップをより容易に行うことができる。 The tensile elongation at break of the substrate film is preferably 50% or more, and more preferably 100% or more. When the tensile elongation at break is 50% or more, the gap between the individual patterns of the phosphor layer formed by stretching can be widened, and pickup can be performed more easily.
 基材フィルムの膜厚は特に制限はないが、下限としては10μm以上が好ましく、20μm以上がより好ましい。また、上限としては1000μm以下が好ましく、500μm以下がより好ましい。 The film thickness of the substrate film is not particularly limited, but the lower limit is preferably 10 μm or more, and more preferably 20 μm or more. Moreover, as an upper limit, 1000 micrometers or less are preferable and 500 micrometers or less are more preferable.
 粘着剤層を形成する粘着材料としては紫外線の照射により粘着力が低下する紫外線硬化型粘着剤を使用することができ、例えばアクリル系粘着剤、シリコーン系粘着剤等の一般的な感圧性粘着剤に、紫外線硬化性のモノマー成分やオリゴマー成分を配合した粘着剤等を採用できる。 As the pressure-sensitive adhesive material for forming the pressure-sensitive adhesive layer, an ultraviolet curable pressure-sensitive adhesive whose adhesive strength is reduced by irradiation with ultraviolet rays can be used. For example, a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive. In addition, a pressure-sensitive adhesive containing an ultraviolet curable monomer component or oligomer component can be employed.
 また、加熱により中に含まれる成分が発泡することで被接着物との接触面積が小さくなり、結果として被接着物との接着力が低下する材料も使用することができる。例えばアクリル系粘着剤、シリコーン系粘着剤等の一般的な感圧性粘着剤に熱発泡剤を配合した粘着剤を粘着剤層として採用できる。熱発泡剤としては、熱分解型発泡剤や膨張黒鉛等が挙げられる。熱分解型発泡剤としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、アジド類、アゾ系化合物、ヒドラジン系化合物、セミカルバジド系化合物等が挙げられる。 In addition, a material in which the component contained therein is foamed by heating to reduce the contact area with the adherend, and as a result, a material whose adhesive force with the adherend is reduced can also be used. For example, a pressure-sensitive adhesive in which a thermal foaming agent is blended with a general pressure-sensitive pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a silicone pressure-sensitive adhesive can be used as the pressure-sensitive adhesive layer. Examples of the thermal foaming agent include a pyrolytic foaming agent and expanded graphite. Examples of the pyrolytic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, azides, azo compounds, hydrazine compounds, semicarbazide compounds, and the like.
 また、粘着剤層の厚みは例えば、10μm以上、好ましくは20μm以上であり、500μm以下、好ましくは200μm以下である。 The thickness of the pressure-sensitive adhesive layer is, for example, 10 μm or more, preferably 20 μm or more, and 500 μm or less, preferably 200 μm or less.
 粘着剤層を有する基材フィルムとしてこれらに限られたものではないが、例えば電気化学工業(株)製のUHPシリーズや、日東電工(株)製のリバアルファシリーズなどがある。 The base film having the pressure-sensitive adhesive layer is not limited to these, but includes, for example, UHP series manufactured by Denki Kagaku Kogyo Co., Ltd. and Riba Alpha series manufactured by Nitto Denko Corporation.
 また、基材フィルムは必ずしも粘着剤層が積層されたフィルムやコーティング紙である必要はなく、単一層からなるものも使用することができる。例えば、アクリル酸エステル共重合体ポリマーと光開始剤と紫外線吸収剤とを含有する樹脂をシート状に成形した後、シートの片面から紫外線を照射することで製造される粘着性のフィルムがある。紫外線の照射量を適正量とすることで紫外線が照射された面は架橋反応が促進されているため粘着力が小さく、紫外線が照射されていない面は十分な粘着力を保持している粘着性のフィルムが得られる。 Also, the base film is not necessarily a film in which an adhesive layer is laminated or a coated paper, and a single layer can also be used. For example, there is an adhesive film produced by forming a resin containing an acrylate copolymer polymer, a photoinitiator, and an ultraviolet absorber into a sheet, and then irradiating ultraviolet rays from one side of the sheet. By making the amount of UV irradiation appropriate, the surface irradiated with UV light has a low adhesive force because the crosslinking reaction is promoted, and the surface not irradiated with UV light has sufficient adhesive strength. Film is obtained.
 <蛍光体シートの作製方法>
 次に、蛍光体シートの作製方法について、詳細に説明する。なお、以下は一例であり、蛍光体シートの作製方法はこれに限定されない。
<Method for producing phosphor sheet>
Next, a method for producing the phosphor sheet will be described in detail. In addition, the following is an example and the preparation method of a fluorescent substance sheet is not limited to this.
 蛍光体シートを作製する一つの方法として蛍光体層を基材フィルムに直接塗布する方法がある。その方法はまず、蛍光体層形成用の塗布液として蛍光体を樹脂に分散した溶液(以下「蛍光体層作製用樹脂液」という)を作製する。蛍光体層作製用樹脂液は蛍光体と樹脂を溶媒中で混合することによって得られる。 There is a method of directly applying a phosphor layer to a substrate film as one method for producing a phosphor sheet. In the method, first, a solution in which a phosphor is dispersed in a resin (hereinafter referred to as “phosphor layer preparation resin solution”) is prepared as a coating solution for forming a phosphor layer. The resin liquid for producing the phosphor layer is obtained by mixing the phosphor and the resin in a solvent.
 粘度を調整するために溶媒を添加する必要がある場合には、流動状態の樹脂の粘度を調整できるものであれば、溶媒の種類は特に限定されない。例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、ヘプタン、シクロヘキサン、アセトン、テルピネオール、ブチルカルビトール、ブチルカルビトールアセテート、グライム、ジグライム等が挙げられる。 When it is necessary to add a solvent to adjust the viscosity, the type of the solvent is not particularly limited as long as the viscosity of the resin in a fluid state can be adjusted. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, heptane, cyclohexane, acetone, terpineol, butyl carbitol, butyl carbitol acetate, glyme, diglyme and the like can be mentioned.
 蛍光体層を構成するのに必要な成分と、必要に応じ添加される溶媒等の成分を所定の組成になるよう調合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、蛍光体層作製用樹脂液が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。 After preparing the components necessary for constituting the phosphor layer and components such as a solvent to be added as necessary to have a predetermined composition, a homogenizer, a self-revolving stirrer, three rollers, a ball mill, a planetary ball mill The resin solution for preparing the phosphor layer can be obtained by homogeneously mixing and dispersing with a stirrer / kneader such as a bead mill. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
 次に、蛍光体層作製用樹脂液を基材フィルム上に塗布し、乾燥させる。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、キスコーター、スクリーン印刷、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。蛍光体層膜厚の均一性を得るためにはスリットダイコーターで塗布することが好ましい。また、蛍光体層はスクリーン印刷やグラビア印刷、平版印刷などの印刷法を用いても作製することもできる。特にスクリーン印刷が好ましく用いられる。 Next, the phosphor layer preparation resin solution is applied on the base film and dried. Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, kiss coater, screen printing, natural roll coater, air knife coater, roll blade coater, two stream coater, rod coater, wire bar coater, An applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used. In order to obtain the uniformity of the phosphor layer thickness, it is preferable to apply with a slit die coater. The phosphor layer can also be produced using a printing method such as screen printing, gravure printing, or lithographic printing. In particular, screen printing is preferably used.
 蛍光体層の乾燥は熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。蛍光体層の加熱硬化には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱硬化条件は、通常、40~250℃で1分~5時間、好ましくは100℃~200℃で2分~3時間である。 The phosphor layer can be dried using a general heating device such as a hot air dryer or an infrared dryer. For heating and curing of the phosphor layer, a general heating device such as a hot air dryer or an infrared dryer is used. In this case, the heat curing conditions are usually 40 to 250 ° C. for 1 minute to 5 hours, preferably 100 ° C. to 200 ° C. for 2 minutes to 3 hours.
 蛍光体シートを作成するもう一つの方法として、予め剥離処理を行った基材フィルム上に蛍光体層を形成した後、剥離処理を行った基材フィルムから蛍光体層を剥離し、別の基材フィルム上に配置するという方法がある。この方法は目的とする接着強度A、Bを達成するために必要な基材フィルムが蛍光体層の加熱硬化条件に耐えられない場合、好適に用いられる。 Another method for creating a phosphor sheet is to form a phosphor layer on a substrate film that has been subjected to a release treatment in advance, and then peel the phosphor layer from the substrate film that has been subjected to a release treatment, There is a method of arranging on a material film. This method is preferably used when the substrate film necessary for achieving the desired adhesive strengths A and B cannot withstand the heat curing conditions of the phosphor layer.
 <発光装置>
 本発明の方法で製造できる発光装置は特に制限はなく、テレビ、パソコン、携帯電話、ゲーム機などに用いられるディスプレイのバックライトや、車のヘッドライト等の車載分野、一般照明等に幅広く適用できる。
<Light emitting device>
The light-emitting device that can be manufactured by the method of the present invention is not particularly limited, and can be widely applied to display backlights used in televisions, personal computers, mobile phones, game machines, etc., in-vehicle fields such as car headlights, and general lighting. .
 <表示装置の製造方法>
 表示装置は特に制限はなく、液晶ディスプレイ、信号機、電光掲示板、プロジェクタ等が挙げられる。本発明を好適に適用できる表示装置としては、液晶パネルとバックライトユニットを含むものが好ましい。
<Manufacturing method of display device>
The display device is not particularly limited, and examples include a liquid crystal display, a traffic light, an electric bulletin board, and a projector. A display device to which the present invention can be preferably applied preferably includes a liquid crystal panel and a backlight unit.
 液晶パネルは以下のように製造される。まず、透明基材を用意する。この透明基材の一方の面上に、非導電性ブラックマトリックスのパターンが形成され、導電性ブラックマトリックスのパターンが形成され、電極線が形成される。続いて、赤色カラーフィルタ、緑色カラーフィルタ、および青色カラーフィルタが、順次形成され、透明絶縁層が形成される。透明基材の他方の面上に、導電性電極層及び電極線が形成される。最後に、透明絶縁層の上に、液晶層及びTFT基板が順に貼り合わされる。以上の工程により、液晶パネルが完成する。 The liquid crystal panel is manufactured as follows. First, a transparent substrate is prepared. On one surface of the transparent substrate, a non-conductive black matrix pattern is formed, a conductive black matrix pattern is formed, and an electrode line is formed. Subsequently, a red color filter, a green color filter, and a blue color filter are sequentially formed to form a transparent insulating layer. A conductive electrode layer and an electrode wire are formed on the other surface of the transparent substrate. Finally, a liquid crystal layer and a TFT substrate are bonded together on the transparent insulating layer. The liquid crystal panel is completed through the above steps.
 バックライトユニットにはエッジ型と直下型がある。エッジ型バックライトは発光装置、反射板、導光板、構成される。導光板と反射板は対向する形で配置されている。導光板は、発光装置からの光が入射される入射面を端面に有し、発光装置から入射面に入射した光の進行方向を、発光装置と直行する方向に変更する。バックライトユニットはプリズムシートや拡散板、プリズムフィルムなどの光学フィルムが挿入されてなることが好ましい。 There are two types of backlight units: edge type and direct type. The edge type backlight includes a light emitting device, a reflection plate, and a light guide plate. The light guide plate and the reflection plate are arranged to face each other. The light guide plate has an incident surface on which light from the light emitting device is incident on its end surface, and changes the traveling direction of the light incident on the incident surface from the light emitting device to a direction perpendicular to the light emitting device. The backlight unit is preferably formed by inserting an optical film such as a prism sheet, a diffusion plate, or a prism film.
 直下型バックライトユニットは、PCB(printed circuit board)などの基板上に所定の間隔で複数の発光装置が配列されてなる。PCBと対向する形で拡散板が配置されていることが好ましい。 The direct type backlight unit includes a plurality of light emitting devices arranged at predetermined intervals on a substrate such as a PCB (printed circuit board). It is preferable that the diffusing plate is disposed so as to face the PCB.
 バックライトユニットの光取り出し面上に液晶パネルを配置することで表示装置が完成する。 The display device is completed by placing a liquid crystal panel on the light extraction surface of the backlight unit.
 以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to these.
 <シリコーン樹脂>
 シリコーン樹脂1:OE-6630A/B(東レ・ダウコーニング社製)
 シリコーン樹脂2:熱融着シリコーン樹脂。
<Silicone resin>
Silicone resin 1: OE-6630A / B (manufactured by Dow Corning Toray)
Silicone resin 2: heat-sealing silicone resin.
 熱融着シリコーン樹脂とは少なくとも下記の(A)~(D)の組成を含む架橋性シリコーン組成物をヒドロシリル化反応してなる架橋物である。
(A)平均単位式:
(R SiO2/2)(RSiO3/2)(R1/2)
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの65~75モル%はフェニルであり、Rの10~20モル%はアルケニル基であり、R2は水素原子または炭素原子数1~6のアルキル基であり、a、b、およびcは、0.5≦a≦0.6、0.4≦b≦0.5、0≦c≦0.1、かつa+b=1を満たす数である。)で表されるオルガノポリシロキサン
(B)一般式:
SiO(R SiO) mSiR
(式中、Rはフェニル基、炭素原子数1~6のアルキル基もしくはシクロアルキル基、または炭素原子数2~6のアルケニル基であり、ただし、Rの40~70モル%はフェニルであり、Rの少なくとも1個はアルケニル基であり、mは5~50の整数である。)で表されるオルガノポリシロキサン{(A)成分100重量部に対して5~15重量部}
(C)一般式:
(HR SiO)SiR
(式中、Rはフェニル基、または炭素原子数1~6のアルキル基もしくはシクロアルキ
ル基であり、ただし、Rの30~70モル%はフェニルである。)で表されるオルガノトリシロキサン{(A)成分中と(B)成分中のアルケニル基の合計に対する本成分中のケイ素原子結合水素原子のモル比が0.5~2となる量}、および(D)ヒドロシリル化反応用触媒{(A)成分と(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}から少なくともなる架橋性シリコーン組成物。
The heat-sealing silicone resin is a crosslinked product obtained by hydrosilylation reaction of a crosslinkable silicone composition containing at least the following compositions (A) to (D).
(A) Average unit formula:
(R 1 2 SiO 2/2 ) a (R 1 SiO 3/2 ) b (R 2 O 1/2 ) c
(Wherein R 1 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 65 to 75 mol% of R 1 is phenyl. 10 to 20 mol% of R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, and c are 0.5 ≦ a ≦ 0.6. , 0.4 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.1, and a + b = 1.) Organopolysiloxane (B) General formula:
R 3 3 SiO (R 3 2 SiO) m SiR 3 3
(Wherein R 3 is a phenyl group, an alkyl or cycloalkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 40 to 70 mol% of R 3 is phenyl. And at least one of R 3 is an alkenyl group, and m is an integer of 5 to 50.) {5 to 15 parts by weight relative to 100 parts by weight of component (A)}
(C) General formula:
(HR 4 2 SiO) 2 SiR 4 2
Wherein R 4 is a phenyl group, or an alkyl or cycloalkyl group having 1 to 6 carbon atoms, provided that 30 to 70 mol% of R 4 is phenyl. {Amount in which the molar ratio of silicon atom-bonded hydrogen atoms in this component to the total of alkenyl groups in component (A) and (B) is 0.5 to 2}, and (D) catalyst for hydrosilylation reaction A crosslinkable silicone composition comprising at least {a sufficient amount for promoting a hydrosilylation reaction between an alkenyl group in component (A) and component (B) and a silicon atom-bonded hydrogen atom in component (C)}.
 <蛍光体>
 蛍光体1:NYAG-02(Intematix社製:Ce付活のYAG系蛍光体)
 蛍光体2:KSF蛍光体(株式会社ネモトルミマテリアル製)。
<Phosphor>
Phosphor 1: NYAG-02 (manufactured by Intematix: Ce-activated YAG phosphor)
Phosphor 2: KSF phosphor (manufactured by Nemotomi Material Co., Ltd.).
 <シリコーン微粒子>
 シリコーン微粒子:製造方法は以下のとおり
 2L四つ口丸底フラスコに攪拌機、温度計、環流管、滴下ロートを取り付け、フラスコに、界面活性剤としてポリエーテル変性シロキサン“BYK333”を7ppm含む2.5%のアンモニア水2Lを入れ、300rpmで攪拌しつつ、オイルバスにて昇温した。内温50℃に到達したところで滴下ロートからメチルトリメトキシシランとフェニルトリメトキシシランの混合物(23/77mol%)200gを30分かけ滴下した。そのままの温度で、さらに60分間撹拌を続けた後、酢酸(試薬特級)約5gを添加、撹拌混合した後、濾過を行った。濾過器上の生成粒子に水600mLを2回、メタノール200mLを1回添加し、濾過、洗浄を行った。濾過器上のケークを取り出し、解砕後、10時間かけ凍結乾燥することにより、白色粉末40gを得た。得られた粒子は、SEMで観察したところ単分散球状微粒子であった。この微粒子を液浸法により屈折率測定した結果、1.54であった。この粒子を断面TEMで観察した結果、粒子内が単一構造の粒子であることが確認できた。
<Silicon fine particles>
Silicone fine particles: Production method is as follows: A 2 L four-necked round bottom flask is equipped with a stirrer, thermometer, reflux tube, and dropping funnel, and the flask contains 2.5 ppm of polyether-modified siloxane “BYK333” as a surfactant. 2 L of aqueous ammonia was added, and the temperature was raised in an oil bath while stirring at 300 rpm. When the internal temperature reached 50 ° C., 200 g of a mixture of methyltrimethoxysilane and phenyltrimethoxysilane (23/77 mol%) was dropped from the dropping funnel over 30 minutes. Stirring was continued for 60 minutes at the same temperature, then about 5 g of acetic acid (special grade reagent) was added, mixed with stirring, and then filtered. 600 mL of water was added twice to the produced particles on the filter and 200 mL of methanol was added once, followed by filtration and washing. The cake on the filter was taken out, crushed, and freeze-dried for 10 hours to obtain 40 g of white powder. The obtained particles were monodisperse spherical fine particles as observed by SEM. As a result of measuring the refractive index of this fine particle by the immersion method, it was 1.54. As a result of observing the particles with a cross-sectional TEM, it was confirmed that the particles had a single structure.
 <基材フィルム>
 PETフィルム1:“セラピール”HP2(東レフィルム加工株式会社製)
 PETフィルム2:“セラピール”BX9(東レフィルム加工株式会社)
 粘着フィルム1:NO.636095(日立マクセル株式会社製)
 粘着フィルム2:TRO-9520(ツカサトレーディング株式会社製)
 粘着フィルム3:TRV214C(UV)(ツカサトレーディング株式会社製)
 粘着フィルム4:TRV-9925(ツカサトレーディング株式会社製)
 粘着フィルム5:UC3004M-80(古河電気工業株式会社製)。
<Base film>
PET film 1: “Therapy” HP2 (manufactured by Toray Film Processing Co., Ltd.)
PET film 2: “Therapy” BX9 (Toray Film Processing Co., Ltd.)
Adhesive film 1: NO. 636095 (manufactured by Hitachi Maxell)
Adhesive film 2: TRO-9520 (manufactured by Tsukasa Trading Co., Ltd.)
Adhesive film 3: TRV214C (UV) (manufactured by Tsukasa Trading Co., Ltd.)
Adhesive film 4: TRV-9925 (manufactured by Tsukasa Trading Co., Ltd.)
Adhesive film 5: UC3004M-80 (Furukawa Electric Co., Ltd.).
 <引張弾性率および引張破断点伸度の測定>
 基材フィルムの引張弾性率および引張破断点伸度の測定は、以下のように実施した。各基材フィルムをカミソリで切断して10mm×60mm(内、つかみ部は両端の5mm)の寸法の試験片を10枚作製した。試験装置として、JIS-B-7721(2009)に準ずる引張試験機であるテンシロンUTM-II-20(東洋ボールドウィン(株)製)を使用して、前記試験片の両端の5mmを、試験機のつかみ具(つかみ具間隔15mm)に取りつけて固定し、50mm/分 (25℃、50%RHの環境下)の引張速度で引張試験を実施した。引張弾性率および引張破断点伸度はJIS-K-7127(1999)に準じて求めた。
<Measurement of tensile modulus and elongation at break>
Measurement of the tensile modulus of elasticity and tensile elongation at break of the substrate film was carried out as follows. Each base film was cut with a razor to prepare 10 test pieces having a size of 10 mm × 60 mm (inside, gripping part is 5 mm at both ends). Using Tensilon UTM-II-20 (manufactured by Toyo Baldwin Co., Ltd.), which is a tensile tester according to JIS-B-7721 (2009), 5 mm at both ends of the test piece The sample was attached and fixed to a gripping tool (15 mm spacing between gripping tools), and a tensile test was performed at a tensile speed of 50 mm / min (under an environment of 25 ° C. and 50% RH). Tensile modulus and tensile elongation at break were determined according to JIS-K-7127 (1999).
 <平均粒子径測定>
 合成したシリコーン微粒子の平均粒子径測定は、各蛍光体層サンプルの断面SEMを測定しそこから得られた画像から算出した。蛍光体層の断面を、走査型電子顕微鏡(日立ハイテクノロジーズ高分解能電界放射型走査電子顕微鏡S-4800)にて観察した。得られた画像を解析ソフト(Image version6.2)を用いて解析し、粒径分布を求めた。このとき、粒子が球形である場合、粒子直径を粒径とした。粒子が球形でない場合、最も長い径の長さと最も短い径の長さの平均値を粒径とした。粒径分布において小粒径側からの通過分積算50%の粒子径をメジアン径(D50)として求めた。
<Average particle size measurement>
The average particle size of the synthesized silicone fine particles was calculated from an image obtained by measuring a cross-sectional SEM of each phosphor layer sample. The cross section of the phosphor layer was observed with a scanning electron microscope (Hitachi High-Technologies high resolution field emission scanning electron microscope S-4800). The obtained image was analyzed using analysis software (Image version 6.2) to determine the particle size distribution. At this time, when the particles were spherical, the particle diameter was taken as the particle size. When the particles were not spherical, the average value of the longest diameter and the shortest diameter was taken as the particle size. In the particle size distribution, the particle diameter of 50% accumulated from the small particle diameter side was determined as the median diameter (D50).
 <接着強度測定>
 接着強度A、接着強度BはJIS C6471(1995)フレキシブルプリント配線板用銅張積層板試験方法における銅箔の引き剥がし強さの測定方法Aに基づき、デジタルフォースゲージ“FGN-5B”(日本電産シンポ社製)、電動式縦型フォースゲージテストスタンド“FGS-50-VB-L(H)”(日本電産シンポ社製)、90度剥離治具“FGTT-12”(日本電産シンポ社製)を測定装置として用い、両面テープ“NW-R15”(ニチバン社製)をサンプルの固定に使用して、基材フィルムと蛍光体層間の接着強度を測定した。
<Measurement of adhesive strength>
Bond strength A and bond strength B are based on the digital force gauge “FGN-5B” (NEC) based on the measurement method A for peel strength of copper foil in the JIS C6471 (1995) copper-clad laminate test method for flexible printed wiring boards. Manufactured by Sanpo Shinpo Co., Ltd.), electric vertical force gauge test stand “FGS-50-VB-L (H)” (manufactured by Nidec Shinpo Co., Ltd.), 90 ° peeling jig “FGTT-12” (Nidec Symposium) Was used as a measuring device, and double-sided tape “NW-R15” (manufactured by Nichiban Co., Ltd.) was used to fix the sample, and the adhesive strength between the base film and the phosphor layer was measured.
 <貯蔵弾性率の測定>
 作製した蛍光体層を直径15mmφに切り抜いて測定サンプルとし、英弘精機株式会社製動的粘弾性測定装置(HAAKE MARS III)を用いて室温(25℃)での貯蔵弾性率を測定した。
<Measurement of storage modulus>
The produced phosphor layer was cut into a diameter of 15 mmφ to obtain a measurement sample, and the storage elastic modulus at room temperature (25 ° C.) was measured using a dynamic viscoelasticity measuring device (HAAKE MARS III) manufactured by Eiko Seiki Co., Ltd.
 <加工性評価>
 作製した蛍光体シートをカッティング装置(UHT社製GCUT)により略正方形にカットし、一辺の大きさが0.1mm、0.3mm、1mmの蛍光体層を有する個片化シートをそれぞれ400個作成した。顕微鏡にて、蛍光体層の切断面にバリやシートの欠けが見られるもの、切断箇所において蛍光体シート断面の再付着が見られるもの、および基材フィルムから蛍光体層が剥離したものの総数(以下加工不良数)を確認した。加工不良数が少ないほど加工性に優れていることを示す。評価B以上であれば、実用上問題ないと判断できる。
S:加工不良数 0~20個     加工性が非常に良い。
A:加工不良数 21~60個    加工性が良好。
B:加工不良数 61~120個   加工性が実用上問題ない。
C:加工不良数 121~240個  加工性が悪い。
D:加工不良数 241個以上    加工性が非常に悪い。
<Processability evaluation>
The prepared phosphor sheets are cut into a substantially square shape with a cutting device (GCUT manufactured by UHT), and 400 individual sheets having phosphor layers with sides of 0.1 mm, 0.3 mm, and 1 mm are prepared. did. Under the microscope, the number of burrs and sheet chips observed on the cut surface of the phosphor layer, the re-attachment of the phosphor sheet cross section at the cut location, and the total number of the phosphor layer peeled off from the substrate film ( The number of processing defects was confirmed below. The smaller the number of processing defects, the better the workability. If it is more than evaluation B, it can be judged that there is no problem in practical use.
S: Number of processing defects 0 to 20 Excellent workability.
A: Number of processing defects 21 to 60 Good workability.
B: Number of processing defects 61 to 120 There is no practical problem in workability.
C: 121-240 processing defects The processability is poor.
D: Number of processing defects 241 or more Processability is very poor.
 <ピックアップ性評価>
 個片化された蛍光体層100個に対し、ピックアップ装置(東レエンジニアリング製)にてピックアップを行った。ピックアップ不良の発生数が少ないほどピックアップ性に優れていることを示す。ここでいうピックアップ不良とは、ピックアップ時に個片化された蛍光体層に割れや欠けが発生したか、または、ピックアップしようとする蛍光体層以外の部分で剥離が発生した数の総数である。評価B以上であれば、実用上優れていると判断できる。
S:ピックアップ不良数 0~5個    ピックアップ性が非常に良い。
A:ピックアップ不良数 6~15個   ピックアップ性が良好。
B:ピックアップ不良数 16~30個  ピックアップ性が実用上問題ない。
C:ピックアップ不良数 31~60個  ピックアップ性が悪い。
D:ピックアップ不良数 61個以上   ピックアップ性が非常に悪い。
<Pickup evaluation>
Pickup was performed on 100 individual phosphor layers by a pickup device (manufactured by Toray Engineering). The smaller the number of pickup failures, the better the pickup performance. The term “pickup failure” as used herein refers to the total number of cracks or chips generated in the individual phosphor layers at the time of pick-up or the occurrence of peeling in portions other than the phosphor layer to be picked up. If it is more than evaluation B, it can be judged that it is excellent practically.
S: Number of pick-up defects 0-5 Pick-up property is very good.
A: Number of pick-up defects 6-15 Good pick-up performance.
B: Number of pick-up defects 16 to 30 Pick-up property has no practical problem.
C: 31-60 pick-up defects The pick-up property is poor.
D: Number of pick-up defects 61 or more Pick-up property is very bad.
 <蛍光体シートの作製>
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂、蛍光体、シリコーン微粒子を所定の比率で混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡して蛍光体層作製用シリコーン樹脂液を得た。スリットダイコーターを用いて蛍光体層作製用蛍光体分散シリコーン樹脂液をPETフィルム2上に塗布し、120℃にて所定の時間保持して乾燥させた。次いで、必要に応じて、ニチゴーモートン製のラミネーターV160を用いて蛍光体層を粘着フィルムの粘着層側に貼り替えた。
<Preparation of phosphor sheet>
Using a polyethylene container having a volume of 300 ml, silicone resin, phosphor and silicone fine particles were mixed at a predetermined ratio. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a silicone resin liquid for preparing a phosphor layer. A phosphor-dispersed silicone resin solution for preparing a phosphor layer was applied onto the PET film 2 using a slit die coater, and kept at 120 ° C. for a predetermined time to be dried. Then, if necessary, the phosphor layer was pasted to the adhesive layer side of the adhesive film using a Nichigo Morton laminator V160.
 本検討にて作成した蛍光体層の組成は表1に示す通りである。 The composition of the phosphor layer prepared in this study is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <発光装置の製造方法>
 ダイボンディング装置(東レエンジニアリング製)を用いて、1mm角にカットした蛍光体層をコレットで真空吸着して基材から剥離して、フリップチップ型青色LED発光素子が実装された基板へ搬送し、LED発光素子表面に位置合わせして貼り付けた。このとき蛍光体層が熱融着性を有する場合は100℃で加熱しながらコレットを加圧することで貼り付けた。蛍光体層が熱融着性を有さない場合は、フリップチップ型青色LED発光素子上に予め接着剤を塗布し、接着剤を介して蛍光体層を貼り付けた。接着剤にはシリコーン樹脂1を使用した。同一の蛍光体シート付きLEDを透明樹脂で封止したものを作成し、直流電源につないだ。
<Method for manufacturing light emitting device>
Using a die bonding apparatus (manufactured by Toray Engineering Co., Ltd.), the phosphor layer cut into 1 mm square is vacuum-adsorbed with a collet and peeled off from the base material, and conveyed to the substrate on which the flip chip type blue LED light emitting element is mounted. The LED light emitting element surface was aligned and pasted. At this time, when the phosphor layer had heat-fusibility, it was attached by pressing the collet while heating at 100 ° C. When the phosphor layer did not have heat-fusibility, an adhesive was applied in advance on the flip-chip blue LED light-emitting element, and the phosphor layer was attached via the adhesive. Silicone resin 1 was used as the adhesive. An LED with the same phosphor sheet was sealed with a transparent resin and connected to a DC power source.
 <発光装置の色度、全光束測定>
 作製した発光装置に1Wの電力を投入してLED素子を点灯させ、全光束測定システム(HM-3000、大塚電子社製)を用いて、CIE1931 XYZ表色系の色度(x,y)および全光束(lm)を測定した。
<Measurement of chromaticity and total luminous flux of light emitting device>
The manufactured light-emitting device was turned on by turning on the LED element, and using the total luminous flux measurement system (HM-3000, manufactured by Otsuka Electronics Co., Ltd.), the chromaticity (x, y) of the CIE1931 XYZ color system and Total luminous flux (lm) was measured.
 (実施例1~8)-蛍光体シートの貯蔵弾性率比較-
 表2に示した乾燥時間にて上述の方法で蛍光体シートを作製した。なおラミネーターによる蛍光体層の貼り替えでは実施例1~8の全てにおいて粘着フィルム1を使用した。
(Examples 1 to 8) -Comparison of storage modulus of phosphor sheet-
The phosphor sheet was produced by the above-described method at the drying time shown in Table 2. In addition, the adhesive film 1 was used in all of Examples 1 to 8 when the phosphor layer was replaced by a laminator.
 それぞれの蛍光体層を基材フィルムから剥離し、一部を15mmφに切り抜いて測定サンプルとし、上述の方法で貯蔵弾性率を測定した。それぞれの蛍光体シートの一部を切り取り、上述の方法で接着強度Aを測定した。さらにそれぞれの蛍光体シートの一部を切り取り、Electro Lite社製紫外線照射器ELC-500を用いて、365nmの紫外線を300mJ/cm照射した後、上述の方法で接着強度Bを測定した。 Each phosphor layer was peeled off from the base film, and a part was cut out to 15 mmφ to obtain a measurement sample, and the storage elastic modulus was measured by the method described above. A part of each phosphor sheet was cut out, and the adhesive strength A was measured by the method described above. Further, a part of each phosphor sheet was cut out and irradiated with 300 mJ / cm 2 of ultraviolet light of 365 nm using an ultraviolet irradiator ELC-500 manufactured by Electro Lite, and the adhesive strength B was measured by the method described above.
 それぞれの蛍光体シートを2cm角に切り取り、カッティング装置(UHT社製GCUT)を用いて蛍光体層側から刃を入れ、蛍光体層が0.1mm角、0.3mm角、1mm角に個片化された蛍光体シート(以下、個片化シート)をそれぞれ400個ずつ作製した。このとき蛍光体層部分は刃が貫通しているが、基材フィルム部分は貫通していない所謂ハーフカットとした。各蛍光体シートに対し上述の方法で加工性を評価した。 Each phosphor sheet is cut into 2 cm squares, and a blade is inserted from the phosphor layer side using a cutting device (GCUT manufactured by UHT). The phosphor layers are individually divided into 0.1 mm square, 0.3 mm square, and 1 mm square. 400 pieces of phosphor sheets (hereinafter referred to as individualized sheets) were produced. At this time, the phosphor layer portion was so-called half cut that the blade penetrated but the base film portion did not penetrate. The processability of each phosphor sheet was evaluated by the method described above.
 つぎに個片化シートにElectro Lite社製紫外線照射器ELC-500を用いて、365nmの紫外線を300mJ/cm照射した後、蛍光体層が1mm角に個片化された蛍光体シートを使用し、上述の方法でピックアップ性評価を行った。 Next, a phosphor sheet with a phosphor layer separated into 1 mm square is used after irradiating ultraviolet light of 365 nm with 300 mJ / cm 2 using an ELL-500 UV irradiator manufactured by Electro Lite. Then, the pickup property was evaluated by the method described above.
 それぞれの蛍光体シートの貯蔵弾性率、接着強度A、接着強度B、加工性評価結果、ピックアップ性評価結果を表2に示す。1mm角の個片化シートを作製するためには蛍光体シートの貯蔵弾性率は0.1Mpa以上であることが好ましく、1Mpa以上であることがより好ましく、また、2000MPa以下であることが好ましいことがわかった。0.3mm角の個片化シートを作製するためには蛍光体シートの貯蔵弾性率は1Mpa以上であることが好ましく、100Mpa以上であることがより好ましく、また、1000MPa以下であることが好ましいことがわかった。0.1mm角の個片化シートを作製するためには蛍光体シートの貯蔵弾性率は100Mpa以上であることが好ましく、また、1000MPa以下であることが好ましいことがわかった。 Table 2 shows the storage elastic modulus, adhesive strength A, adhesive strength B, processability evaluation result, and pickup property evaluation result of each phosphor sheet. In order to produce a 1 mm square individualized sheet, the storage elastic modulus of the phosphor sheet is preferably 0.1 Mpa or more, more preferably 1 Mpa or more, and preferably 2000 MPa or less. I understood. In order to produce a 0.3 mm square individualized sheet, the storage elastic modulus of the phosphor sheet is preferably 1 Mpa or more, more preferably 100 Mpa or more, and preferably 1000 MPa or less. I understood. It was found that the storage elastic modulus of the phosphor sheet is preferably 100 Mpa or more and more preferably 1000 MPa or less in order to produce a 0.1 mm square individualized sheet.
 実施例4の蛍光体シートを使用して10個のLED発光装置を作製し、10個の発光装置の色度の平均値と、全光束の平均値を求めた。発光装置の色度、全光束評価結果は後述の実施例12、13、14とともに表5に示す。 Ten LED light-emitting devices were manufactured using the phosphor sheet of Example 4, and the average value of chromaticity and the average value of all luminous fluxes of the ten light-emitting devices were obtained. The chromaticity and total luminous flux evaluation results of the light emitting device are shown in Table 5 together with Examples 12, 13, and 14 described later.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (実施例5、9、比較例1~4)-接着強度について-
 実施例9では蛍光体層を貼り替える粘着フィルムを粘着フィルム2としたこと以外は実施例5と同様の操作にて蛍光体シートを作製した。
(Examples 5 and 9, Comparative Examples 1 to 4) -Adhesive strength-
In Example 9, a phosphor sheet was prepared in the same manner as in Example 5 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 2.
 比較例1では基材フィルムにPETフィルム1を使用し、粘着フィルムに貼り替えないこととした以外は実施例5と同様の操作にて蛍光体シートを作製した。 In Comparative Example 1, a phosphor sheet was prepared in the same manner as in Example 5 except that PET film 1 was used as the base film and the adhesive film was not replaced.
 比較例2では粘着フィルムに貼り替えないこと以外は実施例5と同様の操作にて蛍光体シートを作製した。 In Comparative Example 2, a phosphor sheet was prepared in the same manner as in Example 5 except that the adhesive film was not replaced.
 比較例3では蛍光体層を貼り替える粘着フィルムを粘着フィルム5としたこと以外は実施例5と同様の操作にて蛍光体シートを作製した。 In Comparative Example 3, a phosphor sheet was produced in the same manner as in Example 5 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 5.
 比較例4では実施例5と同様の操作にて蛍光体シートを作製し、ピックアップ性評価前の紫外線照射量を50mJ/cmとしたこと以外は実施例5と同様の操作を行った。 In Comparative Example 4, a phosphor sheet was prepared by the same operation as in Example 5, and the same operation as in Example 5 was performed except that the amount of ultraviolet irradiation before evaluation of the pickup property was 50 mJ / cm 2 .
 得られた蛍光体シートに対し実施例5と同様の操作にて接着強度A、接着強度Bの測定および加工性評価、ピックアップ性評価を行った。結果は表3に示す通りである。なお、実施例5の結果を再掲する。比較例2に関してはピックアップ性評価をするためのサンプルを得ることができなかった。 The measurement of adhesive strength A and adhesive strength B, workability evaluation, and pickup property evaluation were performed on the obtained phosphor sheet in the same manner as in Example 5. The results are as shown in Table 3. The results of Example 5 are shown again. As for Comparative Example 2, a sample for evaluating the pickup property could not be obtained.
 接着強度Aは5.0N/cm以上が好ましいことがわかった。特に、0.1mm角の個片化シートを作製するためには、接着強度Aは10N/cm以上がより好ましいことがわかった。また、接着強度Bは0.1N/cm以下が好ましいことがわかった
 それぞれの実施例の蛍光体シートを使用して発光装置を作製したところ発光強度が良好な発光装置が得られた。
It was found that the adhesive strength A is preferably 5.0 N / cm or more. In particular, it was found that the adhesive strength A is more preferably 10 N / cm or more in order to produce a 0.1 mm square singulated sheet. Further, it was found that the adhesive strength B is preferably 0.1 N / cm or less. When the light emitting device was manufactured using the phosphor sheets of the respective examples, a light emitting device having good light emission intensity was obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例5、10、11)-延伸度の影響について-
 実施例10および11では、ピックアップ評価前に個片化シートの基材フィルムを放射状に延伸したこと以外は実施例5と同様の操作をおこなった。延伸度は下記の計算式によって算出した。
(Examples 5, 10, and 11) -Effect of stretching degree-
In Examples 10 and 11, the same operation as in Example 5 was performed except that the base film of the singulated sheet was stretched radially before pickup evaluation. The degree of stretching was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 基材の延伸度とピックアップ性評価結果を4に示す。延伸度が0.5以上であることが好ましく、1.0以上であることがより好ましいことが分かった。 4 shows the degree of stretching of the substrate and the evaluation results of pickup properties. It was found that the degree of stretching was preferably 0.5 or more, and more preferably 1.0 or more.
 それぞれの実施例の蛍光体シートを使用して発光装置を作製したところ発光強度が良好な発光装置が得られた。 When a light emitting device was produced using the phosphor sheet of each example, a light emitting device having good light emission intensity was obtained.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例12、13、14)-微粒子を含む場合および熱融着樹脂の場合-
 実施例12および13では、蛍光体層の組成を表1に示す組成としたこと以外は実施例4と同様の操作を行った。
(Examples 12, 13, and 14) -In the case of containing fine particles and in the case of heat-sealing resin-
In Examples 12 and 13, the same operation as in Example 4 was performed except that the composition of the phosphor layer was changed to the composition shown in Table 1.
 実施例14では個片化された蛍光体シートを貼り付ける工程を真空雰囲気化で行ったこと以外は実施例13と同様の操作を行った。 In Example 14, the same operation as in Example 13 was performed except that the step of attaching the singulated phosphor sheet was performed in a vacuum atmosphere.
 それぞれの実施例につき10個のLED発光装置を作製し、10個の発光装置の色度の平均値と、全光束の平均値を求めた。結果を表5に示す。なお、実施例4の結果を再掲する。 10 LED light emitting devices were produced for each example, and the average value of chromaticity and the average value of all luminous fluxes of the 10 light emitting devices were obtained. The results are shown in Table 5. The results of Example 4 are shown again.
 シリコーン微粒子の有無が蛍光体シートの加工性、ピックアップ性に影響しないことがわかった。 It was found that the presence or absence of silicone fine particles did not affect the processability and pickup properties of the phosphor sheet.
 蛍光体シートを加熱して貼りつけることにより全光束が向上し、貼り付けを真空雰囲気下にて行うことによりさらに向上することがわかった。 It was found that the total luminous flux was improved by heating and sticking the phosphor sheet, and further improved by sticking in a vacuum atmosphere.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (実施例15、16)-保存安定性-
 実施例15では、蛍光体層を貼り替える粘着フィルムを粘着フィルム3としたこと以外は実施例4と同様の操作にて蛍光体シートを作製した。
(Examples 15 and 16) -Storage stability-
In Example 15, a phosphor sheet was produced in the same manner as in Example 4 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 3.
 実施例16では、蛍光体層を貼り替える粘着フィルムを粘着フィルム4としたこと以外は実施例4と同様の操作にて蛍光体シートを作製した。 In Example 16, a phosphor sheet was produced in the same manner as in Example 4 except that the adhesive film for replacing the phosphor layer was changed to the adhesive film 4.
 実施例4、15および16で作製した蛍光体シートについて作製直後および6か月保管後に貯蔵弾性率、接着強度A、接着強度Bの測定および加工性評価、ピックアップ性評価を行った。結果は表6に示す通りである。 The phosphor sheets produced in Examples 4, 15 and 16 were subjected to storage elastic modulus, adhesion strength A, adhesion strength B measurement, workability evaluation, and pickup property evaluation immediately after production and after storage for 6 months. The results are as shown in Table 6.
 実施例15で作成した蛍光体シートは6か月保管後、蛍光体層の貯蔵弾性率が著しく低下していた。これは粘着フィルムに含まれる可塑剤が蛍光体層に染み出したことに起因する。その結果加工性評価、ピックアップ性評価も悪いものとなった。 The phosphor sheet prepared in Example 15 had the storage elastic modulus of the phosphor layer significantly decreased after 6 months storage. This is because the plasticizer contained in the adhesive film oozes into the phosphor layer. As a result, the processability evaluation and pickup evaluation were also poor.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (実施例17)-個片化サイズのピックアップへの影響について-
 実施例17では蛍光体層が0.1mm、0.3mm、1mm角に個片化された蛍光体シートを使用しピックアップ評価を行ったこと以外は実施例10と同様の操作を行った。結果を表7に示す。個片化サイズが0.3mm角以下であることにより、ピックアップ性が向上することがわかった。
(Example 17) -Effects of individualized size on pickup-
In Example 17, the same operation as in Example 10 was performed, except that the phosphor layer was 0.1 mm, 0.3 mm, and phosphor sheets separated into 1 mm squares were used for pickup evaluation. The results are shown in Table 7. It has been found that the pick-up property is improved when the individualized size is 0.3 mm square or less.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
1     蛍光体
2     蛍光体層
3     粘着層
4     フィルム
5     粘着フィルム
6     蛍光体シート
7     拡散層
8     透明層
9     刃物
10   個片化シート
11   コレット
12   LEDチップ
13   リフレクター
14   実装基板
15   透明封止材
16   分断ライン
17   間隙
DESCRIPTION OF SYMBOLS 1 Phosphor 2 Phosphor layer 3 Adhesive layer 4 Film 5 Adhesive film 6 Phosphor sheet 7 Diffusion layer 8 Transparent layer 9 Cutlery 10 Separated sheet 11 Collet 12 LED chip 13 Reflector 14 Mounting substrate 15 Transparent sealing material 16 Dividing line 17 gap

Claims (12)

  1. 基材フィルム上に蛍光体層を有する蛍光体シートにおいて前記蛍光体層を個片化する工程と、前記蛍光体層が個片化された蛍光体シートに熱処理または紫外線照射を行う工程と、前記個片化された蛍光体層をピックアップする工程と、前記個片化された蛍光体層をLEDチップに貼り付ける工程を含む製造方法であって、前記熱処理または紫外線照射の前における室温での前記蛍光体層と前記基材フィルム間の接着強度Aと、前記熱処理または紫外線照射の後における室温での前記蛍光体層と前記基材フィルム間の接着強度Bが、
      A=5.0N/cm以上
      B=0.1N/cm以下
    であることを特徴とする発光装置の製造方法。
    A step of separating the phosphor layer in a phosphor sheet having a phosphor layer on a base film, a step of performing heat treatment or ultraviolet irradiation on the phosphor sheet in which the phosphor layer is separated, and A manufacturing method including a step of picking up an individualized phosphor layer and a step of attaching the individualized phosphor layer to an LED chip, wherein the method is performed at room temperature before the heat treatment or ultraviolet irradiation. Adhesive strength A between the phosphor layer and the substrate film, and an adhesive strength B between the phosphor layer and the substrate film at room temperature after the heat treatment or ultraviolet irradiation,
    A = 5.0 N / cm or more and B = 0.1 N / cm or less.
  2. 前記個片化された蛍光体層の少なくとも一辺の長さが0.1mm以上、0.3mm以下である請求項1に記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to claim 1, wherein a length of at least one side of the separated phosphor layer is 0.1 mm or more and 0.3 mm or less.
  3. 前記蛍光体層の25℃での貯蔵弾性率が100MPa以上、2000MPa以下である請求項1または2記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the phosphor layer has a storage elastic modulus at 25 ° C. of 100 MPa or more and 2000 MPa or less.
  4. 前記基材フィルムが可塑剤を含まない基材フィルムである請求項1~3のいずれかに記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 3, wherein the base film is a base film containing no plasticizer.
  5. 前記蛍光体層を個片化する工程の後に基材フィルムを延伸する工程を含むことを特徴とする請求項1~4のいずれかに記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 4, further comprising a step of stretching a base film after the step of separating the phosphor layers into individual pieces.
  6. 前記基材フィルムを延伸する工程において、前記基材フィルムの延伸度が0.5以上である請求項5に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 5, wherein in the step of stretching the base film, the stretch degree of the base film is 0.5 or more.
  7. 前記蛍光体層の個片化方法がドライカットによる切断である請求項1~6のいずれかに記載の発光装置の製造方法。 The method for manufacturing a light-emitting device according to any one of claims 1 to 6, wherein the method of dividing the phosphor layer into pieces is cutting by dry cutting.
  8. 前記蛍光体層をLEDチップに貼り付ける工程において、前記蛍光体層を加熱して貼り付ける請求項1~7のいずれかに記載の発光装置の製造方法。 8. The method for manufacturing a light emitting device according to claim 1, wherein in the step of attaching the phosphor layer to the LED chip, the phosphor layer is heated and attached.
  9. 前記蛍光体層を加熱して貼り付ける工程を真空雰囲気下にて行う請求項8記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 8, wherein the step of heating and attaching the phosphor layer is performed in a vacuum atmosphere.
  10. 前記蛍光体層における全固形分に占める蛍光体の割合が60重量%以上、90重量%以下である、請求項1~9のいずれかに記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 9, wherein a ratio of the phosphor in the total solid content in the phosphor layer is 60 wt% or more and 90 wt% or less.
  11. 前記蛍光体層が一般式AMF:Mn(ここで、AはLi、Na、K、Rb及びCsからなる群より選ばれ、かつ少なくともNa及び/又はKを含む1種以上のアルカリ金属であり、MはSi、Ti、Zr、Hf、Ge及びSnからなる群より選ばれる1種以上の4価元素である。)で表される複フッ化物蛍光体を含む請求項1~10のいずれかに記載の発光装置の製造方法。 The phosphor layer has the general formula A 2 MF 6 : Mn (where A is selected from the group consisting of Li, Na, K, Rb and Cs, and at least one alkali metal containing Na and / or K) And M is one or more tetravalent elements selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn.) The manufacturing method of the light-emitting device in any one.
  12. 請求項1~11のいずれかに記載の製造方法によって発光装置を製造する工程を含む表示装置の製造方法。 A method for manufacturing a display device, comprising a step of manufacturing a light emitting device by the manufacturing method according to any one of claims 1 to 11.
PCT/JP2016/078612 2015-09-30 2016-09-28 Method for manufacturing light-emitting device, and method for manufacturing display device WO2017057454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560608A JPWO2017057454A1 (en) 2015-09-30 2016-09-28 Method for manufacturing light emitting device and method for manufacturing display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-193005 2015-09-30
JP2015193005 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057454A1 true WO2017057454A1 (en) 2017-04-06

Family

ID=58427717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078612 WO2017057454A1 (en) 2015-09-30 2016-09-28 Method for manufacturing light-emitting device, and method for manufacturing display device

Country Status (3)

Country Link
JP (1) JPWO2017057454A1 (en)
TW (1) TWI693730B (en)
WO (1) WO2017057454A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766244A (en) * 2018-06-06 2018-11-06 京东方科技集团股份有限公司 A kind of flexible display panels and preparation method thereof, display device
JP2019026505A (en) * 2017-07-28 2019-02-21 日本電気硝子株式会社 Production method of glass sheet, production method of wavelength conversion member, and glass assembly
JP2019106502A (en) * 2017-12-14 2019-06-27 日亜化学工業株式会社 Light emitting device manufacturing method
JP2019153728A (en) * 2018-03-06 2019-09-12 日亜化学工業株式会社 Light-emitting device and light-source device
KR102038616B1 (en) * 2018-05-03 2019-10-30 유한회사 지에스케이테크놀로지 Method for manufacturing media pannel and media pannel thereby
JP2020021910A (en) * 2018-08-03 2020-02-06 日亜化学工業株式会社 Method of manufacturing light-emitting module and light-emitting module
CN110875344A (en) * 2018-08-31 2020-03-10 昆山工研院新型平板显示技术中心有限公司 Preparation method of LED display device and LED display device
KR20200100736A (en) * 2017-12-20 2020-08-26 루미레즈 엘엘씨 Monolithic segmented LED array architecture
CN112236618A (en) * 2018-11-01 2021-01-15 株式会社Lg化学 Vehicle lamp and method for manufacturing same
TWI802097B (en) * 2021-09-24 2023-05-11 南韓商羅茨股份有限公司 A manufacturing method of a fluorescent substance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102149988B1 (en) * 2018-09-07 2020-08-31 대주전자재료 주식회사 Laminated body for preparing wavelength conversion member and preparation method of wavelength conversion member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543280A (en) * 2010-11-18 2013-11-28 スリーエム イノベイティブ プロパティズ カンパニー Light emitting diode component comprising a polysilazane junction layer
JP2014501454A (en) * 2010-12-30 2014-01-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing a plurality of semiconductor components
JP2014022704A (en) * 2012-07-24 2014-02-03 Toray Ind Inc Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP2014075450A (en) * 2012-10-03 2014-04-24 Nitto Denko Corp Sealing sheet coated semiconductor element, manufacturing method therefor, semiconductor device and manufacturing method therefor
WO2014065358A1 (en) * 2012-10-25 2014-05-01 東レ株式会社 Fluorescent-material-containing resin sheet and light-emitting device
JP2014116587A (en) * 2012-11-16 2014-06-26 Toray Ind Inc Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5287935B2 (en) * 2011-06-16 2013-09-11 東レ株式会社 Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
WO2013114685A1 (en) * 2012-02-01 2013-08-08 東洋紡株式会社 Laminate, method for producing same, and method for producing device structure using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543280A (en) * 2010-11-18 2013-11-28 スリーエム イノベイティブ プロパティズ カンパニー Light emitting diode component comprising a polysilazane junction layer
JP2014501454A (en) * 2010-12-30 2014-01-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing a plurality of semiconductor components
JP2014022704A (en) * 2012-07-24 2014-02-03 Toray Ind Inc Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP2014075450A (en) * 2012-10-03 2014-04-24 Nitto Denko Corp Sealing sheet coated semiconductor element, manufacturing method therefor, semiconductor device and manufacturing method therefor
WO2014065358A1 (en) * 2012-10-25 2014-05-01 東レ株式会社 Fluorescent-material-containing resin sheet and light-emitting device
JP2014116587A (en) * 2012-11-16 2014-06-26 Toray Ind Inc Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019026505A (en) * 2017-07-28 2019-02-21 日本電気硝子株式会社 Production method of glass sheet, production method of wavelength conversion member, and glass assembly
JP2019106502A (en) * 2017-12-14 2019-06-27 日亜化学工業株式会社 Light emitting device manufacturing method
US11652134B2 (en) 2017-12-20 2023-05-16 Lumileds Llc Monolithic segmented LED array architecture
KR102445351B1 (en) * 2017-12-20 2022-09-21 루미레즈 엘엘씨 Monolithic Segmented LED Array Architecture
US11355548B2 (en) 2017-12-20 2022-06-07 Lumileds Llc Monolithic segmented LED array architecture
KR20200100736A (en) * 2017-12-20 2020-08-26 루미레즈 엘엘씨 Monolithic segmented LED array architecture
JP2021508940A (en) * 2017-12-20 2021-03-11 ルミレッズ リミテッド ライアビリティ カンパニー Monolithic segmented array architecture
US10903400B2 (en) 2018-03-06 2021-01-26 Nichia Corporation Light emitting device and light source device
JP2019153728A (en) * 2018-03-06 2019-09-12 日亜化学工業株式会社 Light-emitting device and light-source device
KR102038616B1 (en) * 2018-05-03 2019-10-30 유한회사 지에스케이테크놀로지 Method for manufacturing media pannel and media pannel thereby
CN108766244A (en) * 2018-06-06 2018-11-06 京东方科技集团股份有限公司 A kind of flexible display panels and preparation method thereof, display device
JP2020021910A (en) * 2018-08-03 2020-02-06 日亜化学工業株式会社 Method of manufacturing light-emitting module and light-emitting module
JP7208470B2 (en) 2018-08-03 2023-01-19 日亜化学工業株式会社 Light-emitting module manufacturing method and light-emitting module
CN110875344A (en) * 2018-08-31 2020-03-10 昆山工研院新型平板显示技术中心有限公司 Preparation method of LED display device and LED display device
CN112236618A (en) * 2018-11-01 2021-01-15 株式会社Lg化学 Vehicle lamp and method for manufacturing same
US11745641B2 (en) 2018-11-01 2023-09-05 Lg Chem, Ltd. Vehicle lamp and method for manufacturing same
TWI802097B (en) * 2021-09-24 2023-05-11 南韓商羅茨股份有限公司 A manufacturing method of a fluorescent substance

Also Published As

Publication number Publication date
TW201712902A (en) 2017-04-01
TWI693730B (en) 2020-05-11
JPWO2017057454A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
WO2017057454A1 (en) Method for manufacturing light-emitting device, and method for manufacturing display device
JP6852401B2 (en) A phosphor sheet, a light emitter using the phosphor sheet, a light source unit, a display, and a method for manufacturing the light emitter.
US8946983B2 (en) Phosphor-containing sheet, LED light emitting device using the same, and method for manufacturing LED
JP6287212B2 (en) Phosphor-containing resin sheet and light emitting device
US9117979B2 (en) Phosphor sheet, LED and light emitting device using the same and method for manufacturing LED
JP6641997B2 (en) Laminated body and method for manufacturing light emitting device using the same
JP5862066B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
JP5488761B2 (en) Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
WO2014014008A1 (en) Production method for sealing layer-coated semiconductor element and semiconductor device
JP2014022704A (en) Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP6497072B2 (en) Laminated body and method of manufacturing light emitting device using the same
JP5953797B2 (en) Manufacturing method of semiconductor light emitting device
JP2013252637A (en) Fluorescent substance sheet laminate
JP2016146375A (en) Phosphor containing resin sheet, and light-emitting device including the same, and manufacturing method thereof
WO2015029664A1 (en) Method for producing sealed semiconductor element and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560608

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851625

Country of ref document: EP

Kind code of ref document: A1