WO2013114685A1 - Laminate, method for producing same, and method for producing device structure using same - Google Patents

Laminate, method for producing same, and method for producing device structure using same Download PDF

Info

Publication number
WO2013114685A1
WO2013114685A1 PCT/JP2012/076648 JP2012076648W WO2013114685A1 WO 2013114685 A1 WO2013114685 A1 WO 2013114685A1 JP 2012076648 W JP2012076648 W JP 2012076648W WO 2013114685 A1 WO2013114685 A1 WO 2013114685A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
film
treatment
support
laminate
Prior art date
Application number
PCT/JP2012/076648
Other languages
French (fr)
Japanese (ja)
Inventor
奥山 哲雄
渡辺 直樹
量之 應矢
俊之 土屋
郷司 前田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2013505254A priority Critical patent/JP6003883B2/en
Publication of WO2013114685A1 publication Critical patent/WO2013114685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6835Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • H01L2221/68386Separation by peeling

Definitions

  • the present invention relates to a method for producing a laminate comprising a polyimide film and a support made of an inorganic material (hereinafter also simply referred to as “support”). Specifically, the present invention relates to a method for producing a laminate in which a polyimide film is temporarily or semi-permanently bonded to an inorganic substrate serving as a support, and the laminate is a thin film such as a semiconductor element, a MEMS element, or a display element. This is useful when forming a device on the surface of the polyimide film, which requires fine processing.
  • the laminate according to the present invention includes a thin polyimide film excellent in heat resistance, insulation, and light transmittance, and an inorganic material (for example, one selected from a glass plate, a ceramic plate, a silicon wafer, and a metal plate). ), And a laminate that can mount a precise circuit and has excellent dimensional stability, heat resistance, and insulation. Therefore, the present invention relates to such a laminate, a method for producing the same, and a method for producing a device structure using the laminate.
  • an inorganic material for example, one selected from a glass plate, a ceramic plate, a silicon wafer, and a metal plate.
  • Patent Document 1 Conventionally, bonding of a polymer film to a support made of an inorganic material has been widely performed using an adhesive or an adhesive (Patent Document 1).
  • a desired functional element is formed on a laminate in which a polymer film and an inorganic support are bonded, surface smoothness, dimensional stability, and cleanliness that do not hinder the formation of the functional element.
  • the laminate is required to have resistance to process temperature, resistance to chemicals used for fine processing, and the like.
  • a process in a temperature range of about 200 to 500 ° C. is required.
  • heat treatment at 450 ° C.
  • the temperature is from about 200 ° C. to about 300 ° C. Temperature can be applied to the film.
  • the polymer film needs to have heat resistance, as well as the bonding surface of the polymer film and the support, that is, an adhesive or adhesive for bonding. Must withstand the processing temperature.
  • conventional adhesives and pressure-sensitive adhesives for bonding did not have sufficient heat resistance, they cannot be applied when the functional element is formed at a high temperature.
  • a film having a low melting point is not suitable from the viewpoint of heat resistance.
  • a polymer film made of polyethylene naphthalate, polyethylene terephthalate, polyimide, polytetrafluoroethylene, or glass fiber. Reinforced epoxy or the like is used.
  • a film made of polyimide has the advantage that it can be thinned because it has excellent heat resistance and is tough.
  • polyimide films usually have low light transmittance, there is a drawback that they are difficult to apply in applications such as liquid crystal display elements, touch panels, bottom emission type light emitting elements, substrate side light receiving photoelectric conversion elements, and color filters. . Therefore, a device using a polyimide film with sufficient physical properties for a substrate having heat resistance, high mechanical properties, flexibility, and light transmittance has not been obtained yet.
  • Patent Document 2 a display device having the same is manufactured (Patent Document 2).
  • Patent Document 3 It is known that polymer films are bonded to each other by UV irradiation, and it is disclosed that it is effective to use a coupling agent at this time (Patent Document 3). However, this technique is only related to the adhesion between polymer films, and does not control the adhesive peeling force of the coupling agent itself by UV light irradiation.
  • the present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is a laminate in which a polyimide film having high light transmittance as a base material for laminating various devices is laminated on a support. And it is providing the laminated body which can peel a polyimide film from a support body easily after producing a device on a polyimide film, without peeling also in the high temperature process at the time of device preparation.
  • the present inventors have performed a coupling agent treatment on at least one of the surfaces of the support and the polyimide film facing each other to form a coupling treatment layer. It is good if adhesion is made possible, and then a part of the coupling treatment layer is inactivated to form a predetermined pattern so that a good adhesive part and an easy peel part having different peel strengths exist. It is possible to easily peel off the polyimide film with the device from the support by expressing sufficient peel strength that does not peel off even in the high temperature process at the time of device production at the bonded part, and cutting into the easy peel part after device production.
  • a polymer formed using tetracarboxylic acids mainly composed of alicyclic tetracarboxylic acids. If imide film, it found that can also express high optical transparency in addition to heat resistance, and have completed the present invention.
  • the present invention has the following configuration.
  • a method for producing a laminate comprising at least a support and a polyimide film, wherein a coupling agent is used on at least one of the surfaces of the support and the polyimide film facing each other, and the peel strength Is subjected to a patterning treatment to form a different good adhesion portion and an easily peelable portion, and then the support and the polyimide film are overlapped and subjected to pressure heat treatment, as the polyimide film, diamines,
  • the manufacturing method of the laminated body characterized by using the film which is 150 micrometers.
  • the patterning treatment is performed by performing a coupling agent treatment to form a coupling treatment layer, and then performing a deactivation treatment on a part of the coupling treatment layer to form a predetermined pattern.
  • the manufacturing method of the laminated body as described in (1).
  • As the inactivation treatment at least one selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment and chemical treatment is performed ( The manufacturing method of the laminated body as described in 2).
  • the manufacturing method of the laminated body of description (8) The method for producing a laminate according to any one of (1) to (7), wherein a film having a tensile modulus of 0.3 to 7.0 GPa is used as the polyimide film. (9) The method for manufacturing a laminate according to any one of (1) to (8), wherein the pressure heat treatment is performed in an atmospheric pressure atmosphere using a roll. (10) The pressure heat treatment is performed separately in a pressure process and a heating process. After pressurizing at a temperature of less than 125 ° C., heating is performed at a low pressure or a normal pressure at a temperature of 125 ° C. or more. ) To (9). (11) The method for producing a laminate according to any one of (1) to (10), wherein the polyimide film has a coefficient of linear expansion (CTE) of 30 ppm / ° C. or less.
  • CTE coefficient of linear expansion
  • the 180 degree peel strength between the support and the polyimide film in the easily peelable part is 1 ⁇ 2 or less of the 180 degree peel strength between the support and the polyimide film in the good adhesion part ( The laminated body as described in 12).
  • a method of manufacturing a device structure (16) A device structure formed by the manufacturing method according to (15).
  • the laminate obtained by the production method of the present invention is a laminate in which one side of a support such as a glass plate, a ceramic plate, a silicon wafer, or a metal and one side of a polyimide film are bonded without interposing an adhesive layer. And because it is divided into a good adhesion part and an easy peel part where the peel strength of the support and the polyimide film is different according to a predetermined pattern, after making the device on the polyimide film, the polyimide film of the easy peel part A polyimide film with a device can be easily obtained by cutting and peeling.
  • the polyimide film is formed using tetracarboxylic acids mainly composed of alicyclic tetracarboxylic acids, a device is formed on a film having high light transmittance in addition to heat resistance.
  • a device is formed on a film having high light transmittance in addition to heat resistance.
  • it can be suitably used for applications such as a liquid crystal display element, a touch panel, a bottom emission type light emitting element, a substrate side light receiving photoelectric conversion element, and a color filter.
  • a circuit or the like can be formed on a thin polyimide film having insulating properties, flexibility, and heat resistance. Furthermore, when manufacturing electronic devices by mounting electronic components, even thin polyimide films can be positioned accurately by being laminated and fixed on a support with excellent dimensional stability, and thin film production in multiple layers. Circuit formation or the like can be performed.
  • the laminate of the present invention does not peel off even when heat is applied during the process, and when peeling from the support as necessary after device fabrication, the polyimide film and the support can be smoothly peeled off. Furthermore, since the laminate of the present invention is a laminate having a peel strength that does not peel in the process passing process, it is possible to use a conventional electronic device manufacturing process as it is.
  • the device when a device is manufactured on a polyimide film, the device can be stably and accurately manufactured because the surface properties of the polyimide film are excellent in adhesion and smoothness.
  • the laminate of the present invention is extremely useful for producing an electronic device in which a circuit or the like is formed on a thin polyimide film having insulating properties, flexibility, and heat resistance.
  • a plasma treatment and an acid treatment to the polyimide film original.
  • the process of this part can be made into a roll-to-roll process and can be processed efficiently.
  • a polyimide film roll that has been subjected to plasma treatment includes a lubricant
  • handling properties as a roll are equivalent to those before the plasma treatment.
  • roll conveyance becomes easy by attaching the protective film with an adhesive to the surface on the opposite side to the surface which performs an acid treatment. Since the surface opposite to the surface to be acid-treated is a surface on which a device is manufactured, a protective film may be attached to prevent scratches and the like, which does not increase the number of processes.
  • roll conveyance can be performed without any problem.
  • a lubricant in the protective film, since the plasma treatment can be performed with a roll and then the cut sheet can be used for the acid treatment, a simple implementation is possible. It is significant in implementation that the process is excellent in productivity.
  • the laminate of the present invention is supported by a support made of a heat-resistant inorganic material, precise positioning is performed at the time of circuit wiring fabrication and semiconductor formation, and thin film fabrication, circuit formation, device formation, etc. are performed in multiple layers.
  • thin film deposition can be performed without peeling even in a high-temperature process during semiconductor fabrication.
  • this laminated body can be easily peeled off when only the easy peeling portion of the pattern is peeled after the semiconductor is added, the produced semiconductor is not destroyed.
  • the device-added polyimide film having the circuit-added device and the semiconductor-added device-attached device having the semiconductor element are formed.
  • a polyimide film can be provided.
  • the laminate of the present invention is a laminate that is significant for circuit formation or the like at high temperatures or for precise circuit formation.
  • solar cells made of single crystal and polycrystal Si are easy to break as the thickness is reduced, and there are problems in handling during the process and durability after completion. These problems can be solved by using a laminate with a support as in the invention.
  • a reinforcing substrate capable of drawing out an electrode can be manufactured.
  • a polyimide varnish is applied to a support such as a glass plate or a wafer, dried, imidized, then processed on a polyimide film to form a device, and then peeled off from the support to form a device.
  • a support such as a glass plate or a wafer
  • the film thickness distribution inherent to the coating method for example, the film thickness distribution on the concentric circles in the spin coating method is inclined depending on the pulling direction and the holding direction during drying in the dip coating. There is a problem that a thickness distribution is possible.
  • the polyimide film warps when peeled, the adhesive strength between the polyimide film and the support is too strong, and the polyimide film is brittle For this reason, there is a problem that the peeling itself from the support is difficult and the film is often damaged at the time of peeling.
  • the film thickness in a narrow area is extremely high with respect to a support such as a wafer or glass, and the circuit or device is first attached. Affixing after fabrication or fabrication of circuits and devices after pasting is possible, which is suitable for the production of wiring boards and electronic devices.
  • FIG. 1 is a schematic view showing an embodiment of a method for producing a laminate according to the present invention.
  • FIG. 2 is a schematic view showing one embodiment of the method for producing a device structure of the present invention.
  • FIG. 3 is a schematic diagram showing a pattern example.
  • FIG. 4 is an AFM image showing the crater portion.
  • FIG. 5 is a cross-sectional AFM image of the straight portion of the crater portion shown in FIG.
  • FIG. 6 is an AFM image (10 ⁇ m square) including a crater portion.
  • FIG. 7 is an explanatory diagram for explaining a method of measuring the diameter of the crater portion.
  • FIG. 8 is an explanatory diagram for explaining a method of measuring the number of craters.
  • FIG. 9 is a cross-sectional view (a) and a top view (b) showing a display device (display panel) which is an example of a device structure.
  • the manufacturing method of the laminated body of this invention is a method of manufacturing the laminated body comprised from these using a support body and a polyimide film at least.
  • the support in the present invention may be a plate made of an inorganic material that can be used as a substrate.
  • the ceramic plate, silicon wafer, and metal composite include those obtained by laminating them, those in which they are dispersed, and those containing these fibers.
  • the glass plate examples include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (non-alkali), Borosilicate glass (microsheet), aluminosilicate glass and the like are included.
  • quartz glass high silicate glass (96% silica)
  • soda lime glass lead glass
  • aluminoborosilicate glass borosilicate glass (Pyrex (registered trademark)
  • borosilicate glass non-alkali
  • Borosilicate glass microsheet
  • aluminosilicate glass and the like examples of the glass plate.
  • those having a linear expansion coefficient of 5 ppm / ° C. or less are desirable, and commercially available products are “Corning 7059”, “Corning 1737”, “EAGLE”, and Asahi Glass Co.
  • AN100 “OA10” manufactured by Nippon
  • the ceramic plate examples include Al 2 O 3 , Mullite, AlN, SiC, Si 3 N 4 , BN, crystallized glass, Cordierite, Spodumene, Pb-BSG + CaZrO 3 + Al 2 O 3 , Crystallized glass + Al 2 O 3 , CrystallizedCalyzed.
  • Ceramics for substrates such as BSG, BSG + Quartz, BSG + Al 2 O 3 , Pb + BSG + Al 2 O 3 , Glass-ceramic, Zerodur material, TiO 2 , strontium titanate, calcium titanate, magnesium titanate, alumina, MgO, steatite, BaTi 4 O 9, BaTiO 3, BaTi 4 + CaZrO 3, BaSrCaZrTiO 3, Ba (TiZr) O 3, capacitor materials, such as PMN-PT or PFN-PFW , PbNb 2 O 6, Pb 0.5 Be 0.5 Nb 2 O 6, PbTiO 3, BaTiO 3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT-0.3BT, a piezoelectric material such as PLZT Is included.
  • the silicon wafer includes all of n-type or p-type doped silicon wafers, intrinsic silicon wafers, etc., and silicon wafers in which a silicon oxide layer or various thin films are deposited on the surface of the silicon wafer.
  • silicon wafers germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, and nitrogen-phosphorus-arsenic-antimony are often used.
  • general-purpose semiconductor wafers such as InP (indium phosphorus), InGaAs, GaInNAs, LT, LN, ZnO (zinc oxide), CdTe (cadmium tellurium), ZnSe (zinc selenide) are also included.
  • the metal examples include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy.
  • a multilayer metal plate formed by adding other metal layers and ceramic layers to these metals is also included. In this case, if the total CTE with the additional layer is low, Cu, Al or the like is also used for the main metal layer.
  • the metal used as the additional metal layer is limited as long as it has strong adhesion to the polyimide film, no diffusion, and good chemical resistance and heat resistance. Although it is not, chromium, nickel, TiN, and Mo containing Cu are mentioned as a suitable example.
  • the planar portion of the support is sufficiently flat.
  • the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and still more preferably 5 nm or less. If it is rougher than this, the peel strength between the polyimide film and the support may be insufficient.
  • the support it is preferable to use a support having a defect existence density of 100 ⁇ m / 100 cm 2 or less at a height of 1 ⁇ m or more on the surface facing the polyimide film.
  • the defect existence density of 1 ⁇ m or more at the surface facing the polyimide film of the support is more preferably 40 pieces / 100 square cm or less, further preferably 15 pieces / 100 square cm or less, and 8 pieces. / 100 square cm or less is still more preferable, and 5/100 square cm or less is most preferable. If the density of defects exceeds this range, the effective contact area between the polyimide film and the support may be reduced, and the required adhesive strength may not be obtained at the good adhesion area.
  • the adhesiveness of the part becomes strong, and trouble may occur at the time of peeling. If the defect density exceeds this range, the degree of light scattering on the surface of the support increases, and the boundary between the good adhesion part and the easy peeling part formed by the patterning process becomes unclear. There may be inconveniences such as making it difficult to cut properly.
  • the defect density exceeds this range when the temperature of the laminate is heated to 175 ° C. or higher during device processing, the defect part becomes the core and partial peeling such as blistering, floating, blistering, etc. May occur. If the density of defects exceeds this range, the number of defects with a relatively high height will increase.
  • an exposure process for forming a device fine pattern may cause image blurring and the like, and device formation may be hindered.
  • the defects of the support in the present invention are scratches, depressions, protrusions, and other irregularities formed by foreign matters such as dust adhering to the support surface.
  • the height of the defect means the vertical length from the support surface to the top or bottom of the unevenness.
  • the defect density in the present invention is measured by the method described in the examples. Note that the defect density of the support defined in the present invention is the defect density of the support surface provided with the coupling treatment layer after the coupling agent treatment when the support is subjected to patterning treatment. Yes, when the patterning process is performed only on the polyimide film and the support is not subjected to the patterning process, it is the defect density of the support in the state where the patterning process is not performed.
  • the density of defects of the original is 100.
  • a substrate having a low defect density is used in a clean environment.
  • filter the silane coupling agent solution is preferably performed immediately before application of the silane coupling agent solution.
  • application of the silane coupling agent solution after filtering is preferably performed within 5 minutes, more preferably within 1 minute.
  • the method of filtration is not particularly limited, but it is preferable to use a membrane filter.
  • the application liquid is dropped by a syringe equipped with a syringe filter, so that filtering just before application is literally performed. It becomes possible.
  • the filter opening is desirably 1 ⁇ m or less.
  • the polyimide film in the present invention is a film obtained by a reaction between a diamine and a tetracarboxylic acid mainly composed of an alicyclic tetracarboxylic acid.
  • a film is prepared by, for example, applying a polyamic acid (also referred to as “polyimide precursor”) solution obtained by reacting at least a diamine and a tetracarboxylic acid in a solvent to a support for preparing a polyimide film, and then drying.
  • a green film also referred to as “precursor film” or “polyamic acid film”
  • precursor film or “polyamic acid film”
  • polyamic acid film A green film (also referred to as “precursor film” or “polyamic acid film”), and further subjected to high-temperature heat treatment on the polyimide film production support or in a state of peeling off from the polyimide film production support.
  • a dehydration ring closure reaction is different from the “support” described above as a constituent member of the laminate of the present invention.
  • the polyimide film is prepared by reacting a polyamic acid solution obtained by reacting diamines and tetracarboxylic acids, followed by dehydration ring-closing reaction to form a polyimide solution.
  • the polyimide solution is applied to a polyimide film production support and dried. It can also be obtained by film formation.
  • diamine which comprises a polyamic acid there is no restriction
  • combination can be used.
  • aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable.
  • aromatic diamines having a benzoxazole structure are used, it is possible to develop a high elastic modulus, a low heat shrinkage, and a low linear expansion coefficient as well as a high heat resistance.
  • Diamines may be used alone or in combination of two or more.
  • the aromatic diamine having a benzoxazole structure is not particularly limited.
  • aromatic diamine other than the aromatic diamine having the benzoxazole structure described above examples include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl). ) -2-propyl] benzene (bisaniline P), 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4, 4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) Phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Enyl] propane, 2,2-bis [4-
  • Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane, and the like.
  • Examples of the alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (2,6-dimethylcyclohexylamine), diaminodicyclohexylmethane, and the like.
  • the total amount of diamines other than aromatic diamines is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less, based on the total diamines. It is.
  • the tetracarboxylic acids constituting the polyamic acid are mainly composed of alicyclic tetracarboxylic acids from the viewpoint of light transmittance.
  • the alicyclic tetracarboxylic acids are preferably 80% by mass or more of the total tetracarboxylic acids, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 100% by mass.
  • the laminate of the present invention is used for optical applications such as a liquid crystal display element, a touch panel, a bottom emission type light emitting element, a substrate side light receiving photoelectric conversion element, a color filter, and the like. It becomes possible.
  • alicyclic tetracarboxylic acids examples include cyclobutanetetracarboxylic acid, cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid.
  • Examples thereof include alicyclic tetracarboxylic acids such as acids, and acid anhydrides thereof.
  • These acid anhydrides may have one anhydride structure in the molecule or two.
  • a dianhydride having two anhydride structures is suitable, for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4 4,4'-bicyclohexyltetracarboxylic dianhydride and the like are preferable.
  • alicyclic tetracarboxylic acid may be used independently and may use 2 or more types together.
  • tetracarboxylic acids constituting the polyamic acid in addition to the alicyclic tetracarboxylic acids, other tetracarboxylic acids usually used for polyimide synthesis, for example, aromatic tetracarboxylic acids, aliphatic tetracarboxylic acids, or these An acid anhydride or the like can be used.
  • aromatic tetracarboxylic acids or acid anhydrides thereof are preferable in that heat resistance can be improved.
  • the number of anhydride structures in the molecule may be one or two, but preferably two anhydride structures (two Anhydride).
  • Other tetracarboxylic acids may be used alone or in combination of two or more.
  • aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues, that is, those having a structure derived from pyromellitic acid, and more preferably acid anhydrides thereof.
  • aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis [4- (3,4-di Carboxyphenoxy) phenyl] propanoic anhydride and the like.
  • the total amount of tetracarboxylic acids other than alicyclic tetracarboxylic acids may be in a range that does not impair the transparency. 20 mass% or less is preferable, More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less.
  • the polyamic acid is particularly preferably a film composed of diamines and tetracarboxylic acids in the following combinations. That is, A combination of 2,2′-dimethyl-4,4′-diaminobiphenyl and cyclobutanetetracarboxylic dianhydride. Combination of bisaniline P and cyclobutane tetracarboxylic dianhydride. A combination of 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene and cyclobutanetetracarboxylic dianhydride. A combination of 2,2'-bis (trifluoromethyl) benzidine and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • a combination of 4,4′-bis (4-aminophenoxy) biphenyl and 1,2,4,5-cyclohexanetetracarboxylic dianhydride A combination of phenylenediamine and 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride. Combination of 4,4′-methylenebis (2,6-dimethylcyclohexylamine) and 1,2,4,5-cyclohexanetetracarboxylic dianhydride. A combination of 4,4'-diaminodiphenyl ether and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
  • the ratio of diamines to tetracarboxylic acids is preferably 0.9 to 1.1 mol, more preferably 0.95 to 1.05 mol, and still more preferably tetracarboxylic acids with respect to 1 mol of diamines. 0.98 to 1.02 mol.
  • the solvent used in the reaction (polymerization) of diamines and tetracarboxylic acids to obtain a polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid.
  • Solvents are preferred, for example, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric Examples include amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols.
  • solvents may be used alone or in combination of two or more.
  • the amount of these solvents used may be an amount sufficient to dissolve the raw material monomer.
  • the amount of all monomers in the reaction solution (solution in which the monomer is dissolved) is usually The amount is 5 to 40% by mass, preferably 10 to 30% by mass.
  • the conditions for the polymerization reaction (hereinafter also simply referred to as “polymerization reaction”) for obtaining the polyamic acid may be conventionally known conditions. For example, in an organic solvent at a temperature range of 0 to 80 ° C. for 10 minutes. Stirring and / or mixing continuously for ⁇ 30 hours. If necessary, the polymerization reaction may be divided or the reaction temperature may be increased or decreased. Although there is no restriction
  • the polymerization may be controlled by adding a small amount of a terminal blocking agent to the diamine before the polymerization reaction.
  • the terminal blocking agent include dicarboxylic acid anhydrides, tricarboxylic acid anhydrides, and aniline derivatives.
  • phthalic anhydride, maleic anhydride, 4-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, and ethynyl aniline are preferable, and maleic anhydride is particularly preferable.
  • the amount used when the end-capping agent is used is preferably 0.001 to 1.0 mol with respect to 1 mol of the diamine.
  • the reduced viscosity of the polyamic acid obtained by the polymerization reaction is preferably in the range of 1.6 to 7.0 dl / g, more preferably in the range of 1.8 to 5.8 dl / g, and 2.1 to 5.3 dl / g. A range is still preferred.
  • the mass of the polyamic acid in the polyamic acid solution obtained by the polymerization reaction is preferably 5 to 40% by mass, more preferably 10 to 30% by mass.
  • the viscosity of the polyamic acid solution is preferably 10 to 2000 Pa ⁇ s, more preferably 100 to 1000 Pa ⁇ s, as measured with a Brookfield viscometer (25 ° C.), from the viewpoint of liquid feeding stability. preferable.
  • the mass of the polyamic acid in the polyamic acid solution is adjusted within a range not departing from the preferred range so that the viscosity of the polyamic acid solution falls within the above range.
  • additives such as an antifoaming agent, a leveling agent, and a flame retardant may be added to the polyamic acid solution obtained by the polymerization reaction for the purpose of further improving the performance of the polyimide film. These addition methods and addition times are not particularly limited.
  • a green film (self-supporting precursor film) is obtained by applying and drying the polyamic acid solution on a polyimide film production support.
  • a method of imidizing the green film by subjecting it to a heat treatment is preferably employed.
  • spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, etc., as well as application of the polyamic acid solution to the polyimide film production support can be performed from a slit-equipped die.
  • Including, but not limited to, extrusion using an extruder, conventionally known solution application means can be used as appropriate.
  • the heating temperature for drying the coated polyamic acid solution is preferably 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C.
  • the drying time is preferably 5 minutes to 3 hours, more preferably 15 minutes to 2 hours.
  • the amount of residual solvent in the green film after drying is preferably 25 to 50% by mass, more preferably 35 to 45% by mass.
  • the temperature at which the green film is heat-treated is, for example, preferably 150 to 550 ° C., more preferably 280 to 520 ° C.
  • the heat treatment time is preferably 0.05 to 10 hours.
  • the polyimide film in the present invention has a glass transition temperature (Tg) of 250 ° C. or higher.
  • Tg glass transition temperature
  • the glass transition temperature of a polyimide film becomes like this.
  • it is 270 degreeC or more, More preferably, it is 310 degreeC or more, More preferably, it is 360 degreeC or more.
  • the upper limit of the glass transition temperature of the polyimide film is not particularly limited, but is preferably 520 ° C. or lower, more preferably 480 ° C. or lower.
  • the glass transition temperature in the present invention is determined by differential thermal analysis (DSC).
  • the polyimide film in the present invention has an average light transmittance of 380 nm to 700 nm (hereinafter sometimes simply referred to as “average light transmittance”) of 85% or more. Since the polyimide film according to the present invention is composed mainly of alicyclic tetracarboxylic acids as described above, it has high transparency and has an average light transmittance of 85% or more.
  • the average light transmittance of the polyimide film is preferably 87% or more, and more preferably 89%.
  • the average light transmittance in the present invention can be measured, for example, by the method described later in Examples.
  • the polyimide film in the present invention preferably has a haze value (HAZE) of 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less. If the haze value is within the above range, good transparency can be maintained. In addition, the haze value of a film can be measured by the method mentioned later in an Example, for example.
  • HAZE haze value
  • the polyimide film in the present invention preferably has a YI value (yellow index) of 20 or less, more preferably 10 or less, further preferably 8 or less, more preferably 5 or less, and still more preferably 3 or less. If the YI value is within the above range, good transparency can be maintained. In addition, the YI value of a film can be measured by the method mentioned later in an Example, for example.
  • the polyimide film in the present invention preferably has a tensile modulus of 0.3 to 7.0 GPa. More preferably, it is 0.6 GPa or more and 6.3 GPa or less, More preferably, it is 1.2 GPa or more and 5.6 GPa or less. If the tensile modulus of the film is lower than the above range, the deformation may increase due to the tension applied by the conveying device, etc., and there is a risk of hindrance during handling and device formation. If it becomes too much, the tear strength and flexibility may be reduced. In addition, the tensile elasticity modulus of a film can be measured by the method mentioned later in an Example, for example.
  • the linear expansion coefficient (CTE) of the polyimide film is preferably 0 ppm / ° C. or more and 70 ppm / ° C. or less, more preferably 3 ppm / ° C. or more and 52 ppm / ° C. or less, and further preferably 6 ppm / ° C. or more and 36 ppm / ° C. ° C or less, particularly preferably 30 ppm / ° C or less.
  • the CTE is in the above-mentioned range, particularly 30 ppm / ° C.
  • the linear expansion coefficient (CTE) in this invention means the average linear expansion coefficient between 30 degreeC and 150 degreeC.
  • the thickness of the polyimide film in the present invention is 3 to 150 ⁇ m.
  • the thickness of the polyimide film is within the above range, it can be easily applied to a narrow portion, and can greatly contribute to high performance of elements such as sensors and weight reduction, size reduction, and thickness reduction of electronic components.
  • the thickness of the polyimide film is less than 3 ⁇ m, it is difficult to strictly control the thickness, and peeling from the support becomes difficult.
  • the thickness exceeds 150 ⁇ m, the polyimide film is bent when peeled off from the support. Is likely to occur.
  • the thickness of the polyimide film is preferably 6.5 ⁇ m or more, more preferably 11 ⁇ m or more, further preferably 20 ⁇ m or more, preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 80 ⁇ m or less, and most preferably 60 ⁇ m or less. It is.
  • the thickness unevenness of the polyimide film in the present invention is preferably 20% or less, more preferably 12% or less, further preferably 7% or less, particularly preferably 4% or less, and most preferably 2% or less. is there. When the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow portions.
  • the thickness unevenness of a film can be calculated
  • pieces positions from a film to be measured at random with a contact-type film thickness meter, measuring film thickness. Film thickness spots (%) 100 x (maximum film thickness-minimum film thickness) ⁇ average film thickness
  • the polyimide film is preferably obtained in the form of being wound as a long polyimide film having a width of 300 mm or more and a length of 10 m or more at the time of production, and a form of a roll-shaped polyimide film wound on a winding core Are more preferred.
  • a sliding material is added to and contained in the polyimide constituting the film to give the polyimide film a surface with fine irregularities to ensure slipperiness. It is preferable.
  • the lubricant (particles) are fine particles made of an inorganic substance, such as metals, metal oxides, metal nitrides, metal carbonides, metal acid salts, phosphates, carbonates, talc, mica, clay, and other clay minerals. Etc. can be used.
  • metal oxides such as silicon oxide, titanium oxide, aluminum oxide, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, zirconium pyrophosphate, calcium pyrophosphate, hydroxyapatite, calcium carbonate, glass filler, phosphates, Carbonates can be used. Only one type of lubricant may be used, or two or more types may be used.
  • the volume average particle diameter of the lubricant (particles) is usually 0.001 to 10 ⁇ m, preferably 0.03 ⁇ m or more and 2.5 ⁇ m or less, more preferably 0.05 ⁇ m or more and 0.7 ⁇ m or less, and still more preferably. It is 0.05 ⁇ m or more and 0.3 ⁇ m or less.
  • the volume average particle diameter is based on a measurement value obtained by a light scattering method. If the particle diameter is smaller than the lower limit, industrial production of the polyimide film becomes difficult, and if the upper limit is exceeded, the surface irregularities become excessively large and the bonding strength becomes weak, which may cause practical problems.
  • the addition amount of the lubricant is preferably 0.05% by mass or more and 50% by mass or less, more preferably 0.1% by mass or more and 3% by mass with respect to the polymer solid content in the polyamic acid solution. % Or less, more preferably 0.20 mass% or more and 1.0 mass% or less. If the amount of lubricant added is too small, it is difficult to expect the effect of lubricant addition, and the sliding property may not be sufficiently secured, which may hinder polyimide film production. Even if it becomes too large and the slipperiness is ensured, there is a risk that the smoothness is lowered, the breaking strength and breaking elongation of the polyimide film are lowered, and the CTE is raised. .
  • a lubricant When a lubricant (particle) is added to and contained in a polyimide film, it may be a single-layer polyimide film in which the lubricant is uniformly dispersed.
  • one surface is composed of a polyimide film containing a lubricant, Even if the other surface does not contain or contains a lubricant, a multilayer polyimide film composed of a polyimide film having a small amount of lubricant may be used.
  • fine irregularities are imparted to the surface of one layer (film), and slipperiness can be ensured with the layer (film), and good handling properties and productivity can be secured.
  • the production of such a multilayer polyimide film will be described.
  • the multilayer polyimide film is made of, for example, a polyamic acid solution (polyimide precursor solution) as a lubricant, preferably a lubricant having an average particle size of about 0.05 to 2.5 ⁇ m with respect to the solid content of the polymer in the polyamic acid solution. 0.05% by mass to 50% by mass, preferably 0.10% by mass to 3.0% by mass, more preferably 0.20% by mass to 1.0% by mass, and a polyamic acid solution (i), Two types of polyamic acid solutions (ii) that do not contain a material or whose content is preferably 60% by mass or less, more preferably 30% by mass or less of the amount of lubricant in the polyamic acid solution (i) are used. It is preferable to manufacture.
  • the multilayer (lamination) method of the multilayer polyimide film is not particularly limited as long as there is no problem in adhesion between both layers, and any method may be used as long as the adhesion is achieved without using an adhesive layer or the like.
  • the other polyamic acid solution is continuously applied onto the polyamic acid film, and then imidized, iii) a method by co-extrusion, iv) a polyamide containing no or a small amount of lubricant
  • a polyamic acid solution containing a large amount of a lubricant is applied on a film formed from an acid solution by spray coating, T-die coating, or the like, and imidized.
  • the methods i) and ii) are preferable.
  • the ratio of the thickness of each layer in the multilayer polyimide film is not particularly limited, but the film (layer) formed of the polyamic acid solution containing a large amount of the lubricant (a) layer, does not contain the lubricant or contains it
  • the layer (a) / (b) layer is preferably 0.05 to 0.95. If the (a) layer / (b) layer exceeds 0.95, the smoothness of the (b) layer tends to be lost. On the other hand, if it is less than 0.05, the effect of improving the surface properties is insufficient and the slipperiness is not good. May be enough.
  • the polyimide film is subjected to plasma treatment on at least the surface facing the support.
  • the plasma treatment By applying the plasma treatment, the surface of the polyimide film is modified to an activated state in which a functional group is present, and good adhesion to the support becomes possible.
  • the plasma treatment is not particularly limited, but includes RF plasma treatment in vacuum, microwave plasma treatment, microwave ECR plasma treatment, atmospheric pressure plasma treatment, corona treatment, etc., gas treatment containing fluorine, ion Also includes ion implantation using a source, processing using a PBII method, frame processing, intro processing, and the like. Among these, RF plasma treatment, microwave plasma treatment, and atmospheric pressure plasma treatment in vacuum are preferable.
  • Appropriate conditions for the plasma treatment include oxygen plasma, plasma containing fluorine such as CF 4 and C 2 F 6, plasma known to have a high etching effect, or physical energy such as Ar plasma. It is desirable to use plasma with a high effect of applying to the polyimide surface and physically etching. In addition, treatment with plasma such as CO 2 , H 2 , N 2 , or a mixed gas thereof, or treatment with addition of water vapor is also preferable. When aiming at processing in a short time, it is desirable to use plasma with high energy density, high kinetic energy of ions in the plasma, and plasma with high number density of active species. From this point of view, microwave plasma treatment, microwave ECR plasma treatment, plasma irradiation with an ion source that easily implants high-energy ions, PBII method, and the like are also desirable.
  • the effects of plasma treatment include the addition of the above-mentioned surface functional groups, the change in contact angle accompanying this, improvement in adhesion, removal of surface contamination, etc., as well as the removal of irregularly shaped objects associated with processing called desmear.
  • organic polymers and inorganic materials such as ceramics are completely different in etching, only organic polymers having a lower binding energy than inorganic materials are selectively etched. For this reason, when an etching gas type or discharge condition is used, only the organic polymer is selectively etched, and the lubricant is exposed.
  • polishing with a pad including the case where a chemical solution is used in combination, brush polishing, polishing with a sponge soaked with a chemical solution, and putting abrasive particles in the polishing pad
  • polishing with sand, sand blasting, wet blasting, and the like examples include polishing with sand, sand blasting, wet blasting, and the like, and these means may be employed together with plasma treatment.
  • the plasma treatment may be performed only on one side of the polyimide film or on both sides.
  • a polyimide film is placed in a state where it is electrically floated in the space between the two electrodes, plasma treatment can be performed on both sides.
  • single-sided processing becomes possible by performing plasma processing in the state which stuck the protective film on the single side
  • a protective film a PET film with adhesive or a polyolefin film can be used as a protective film.
  • the polyimide film is subjected to an acid treatment after the plasma treatment.
  • an acid treatment after the plasma treatment.
  • the polyimide film surface containing the lubricant (particles) even if the lubricant has a convex shape near the surface, a very thin polyimide layer exists on the surface. Since polyimide has strong resistance to acid, even if it is a very thin layer, if polyimide is on the surface of the lubricant, the acid will not be in direct contact with the surface of the lubricant and will not be eroded by the acid treatment. After only the organic polymer (polyimide) is selectively etched due to the effect, the acid will be in direct contact with the surface of the lubricant. Therefore, if an appropriate acid type is selected and acid treatment is performed, only the lubricant is obtained in a very short time. Can be dissolved and removed, and a crater is formed.
  • This crater is considered to be the remaining part in which the lubricant exposed from the polyimide film surface by the plasma treatment is eluted by the acid, and is not a mere dent but a dent with its edge raised.
  • FIG. 4 shows an AFM image showing the crater part
  • FIG. 5 shows a cross-sectional image of the straight part of the crater part shown in FIG. 4
  • FIG. 6 shows an AFM image (10 ⁇ m square) including the crater part.
  • the edge portion of the crater is softer than the protrusion in which the lubricant particles are encapsulated, and is deformed with a relatively weak force when the polyimide film and the support are brought into pressure contact.
  • the protrusion containing the lubricant is not easily deformed and inhibits the adhesion between the polyimide film and the support, but the adhesion between the polyimide film and the support is achieved by making the lubricant part into such a crater-like shape. And the peel strength between the polyimide film and the support can be further improved.
  • the acid treatment can be performed by immersing the plasma-treated polyimide film in a chemical solution containing acid, or by applying or spraying the chemical solution on the plasma-treated polyimide film. You may use washing together. Moreover, the acid treatment of only one side becomes possible by performing an acid treatment in the state which stuck the protective film on the single side
  • a PET film with a pressure-sensitive adhesive, a polyolefin film, or the like can be used as the protective film.
  • the acid used for the acid treatment is not particularly limited as long as only the lubricant can be etched.
  • HF, BHF and the like are preferably used, and these are usually used as an aqueous solution.
  • HF aqueous solution and BHF aqueous solution are generally known to have an action of dissolving SiO 2 and glass, and are frequently used in the semiconductor industry.
  • SiO 2 dissolution efficiency of HF has been well studied
  • 10% by weight of SiO 2 etching rate of the aqueous HF solution is known to be about 12 ⁇ / sec at room temperature
  • SiO 2 lubricant of about 80nm is It can be sufficiently processed by contact with a chemical solution for about 1 minute.
  • the type of the lubricant is not limited to SiO 2.
  • the acid concentration in the chemical solution is preferably 20% by mass or less, more preferably 3 to 10% by mass. If the acid concentration in the chemical solution is too thin, the etching time is increased and the productivity is lowered. If the acid concentration is too high, the etching time is too early, and the film is exposed to the chemical solution more than necessary.
  • the step of adding plasma treatment and acid treatment to the polyimide film (raw fabric) is preferably performed by roll-to-roll from the viewpoint of the efficiency of the treatment. Since the lubricant is also present in the polyimide film roll subjected to the plasma treatment, the handling property as a roll is equivalent to that before the plasma treatment. Moreover, after performing plasma treatment with a roll, it is also useful to perform acid treatment after making it into a cut sheet from the viewpoint that simple implementation is possible.
  • the surface form of the polyimide film subjected to the plasma treatment and the acid treatment has 2 to 100 craters having a diameter of 10 to 500 nm per 100 ⁇ m 2 when the treated surface is observed by the AFM method described later.
  • adhesiveness improves and it becomes a film which has the surface to which the smoothness suitable for the case where it joins and laminates to a support body without an adhesive agent was provided.
  • a polyimide film having 2 to 100 craters having a diameter of 10 to 500 nm on one side per 100 ⁇ m 2 has a more appropriate peel strength in bonding lamination without an adhesive. If the diameter of the crater is less than 10 nm, the effect of improving the adhesiveness will be reduced. It becomes difficult. When the number of craters is less than two, the effect of improving adhesiveness is reduced, and when it exceeds 100, the polyimide film strength is adversely affected and the effect of improving adhesiveness is hardly exhibited.
  • the number of craters is 5-30 per 100 ⁇ m 2 and the crater diameter is 30-100 nm.
  • the polyimide film has a surface on the opposite side to the surface facing the support, for example, the surface opposite to the treated surface in the case of performing the plasma treatment and the acid treatment, with Ra of 0.3 nm to 0.95 nm.
  • a smooth surface is preferred.
  • a smooth surface having a Ra of 0.3 nm to 0.95 nm on one surface of the polyimide film is particularly preferable in producing a precise electric circuit or semiconductor device. For example, when Ra is large, the smoothness required is high. It may not have a degree, and may adversely affect the metal foil film formed thereon in terms of adhesion and smoothness.
  • Such a polyimide film with one smooth surface should be used in combination with a polyamide acid solution for polyimide formation (polyimide precursor solution) with and without a lubricant added and with a very small amount added.
  • a polyamide acid solution for polyimide formation polyimide precursor solution
  • roll winding property and proper slipping property at the time of polyimide film production are also provided, and the polyimide film production becomes easy.
  • the surface facing the support in the polyimide film of the present invention preferably has a density of convex defects having a height of 1 ⁇ m or more of 100 pieces / square cm or less.
  • the density of convex defects having a height of 1 ⁇ m or more on the surface facing the support of the polyimide film is preferably 50 pieces / square cm or less, and more preferably 30 pieces / square cm or less.
  • the number is preferably 15 pieces / square cm or less, more preferably 8 pieces / square cm or less, and still more preferably 5 pieces / square cm or less.
  • the “convex defect” in the polyimide film refers to a singular point of the convex shape existing on the polyimide film surface that should be essentially flat, such as scratches, burrs, and protrusions, and foreign matters such as dust adhering to the film surface. .
  • the method for measuring the convex defect density of the polyimide film in the present invention is the same as the method for measuring the defect existing density on the support surface.
  • a coupling agent process is performed to at least one of the surface where the said support body and the said polyimide film oppose, and a coupling process layer is formed.
  • the coupling agent means a compound that is physically or chemically interposed between the support and the polyimide film and has an action of increasing the adhesive force between the two, and is generally a silane coupling.
  • the coupling agent is not particularly limited, but a silane coupling agent having an amino group or an epoxy group is particularly preferable.
  • the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-gly
  • the coupling agent used in the present invention includes, for example, 1-mercapto-2-propanol, methyl 3-mercaptopropionate, 3-mercapto-2-butanol, butyl 3-mercaptopropionate, 3 -(Dimethoxymethylsilyl) -1-propanethiol, 4- (6-mercaptohexaloyl) benzyl alcohol, 11-amino-1-undecenethiol, 11-mercaptoundecylphosphonic acid, 11-mercaptoundecyltrifluoroacetic acid 2,2 '-(ethylenedioxy) diethanethiol, 11-mercaptoundecyltri (ethylene glycol), (1-mercaptoundec-11-yl) tetra (ethylene glycol), 1- (methylcarboxy) undeck -11-yl) hexa (ethyl) Glycol), hydroxyundecyl disulfide, carboxyundecyl,
  • Particularly preferred coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, Aminophenethyltrimethoxy
  • a method of forming a coupling treatment layer by performing a coupling agent treatment a method in which the coupling agent is directly or diluted with a solvent or the like, applied to a support and / or a polyimide film, dried and heat-treated, or the coupling agent itself
  • a method in which a support and / or a polyimide film is immersed in a solution diluted with a solvent, followed by drying and heat treatment, a method of adding at the time of polyimide film production, and a method of treating with a coupling agent at the same time as polyimide film production may be adopted. it can.
  • the conditions for the heat treatment are preferably 50 to 250 ° C., more preferably 75 to 165 ° C., more preferably about 95 to 155 ° C., preferably 30 seconds or more, more preferably 2 minutes or more, and still more preferably What is necessary is just to heat for 5 minutes or more. If the heating temperature is too high, decomposition or inactivation of the coupling agent may occur, and if it is too low, fixing will be insufficient. Moreover, even if the heating time is too long, the same problem may occur. The upper limit of the heating time is preferably 5 hours, more preferably about 2 hours. In addition, when performing a coupling agent process, since it is known that pH during process will influence a performance large, it is desirable to adjust pH suitably.
  • a part of the coupling treatment layer is inactivated by etching to form a predetermined pattern.
  • the deactivation treatment of the coupling treatment layer is to physically remove the coupling treatment layer (so-called etching), to physically mask the coupling treatment layer microscopically, It includes chemically modifying the coupling layer.
  • the entire surface corresponding to the predetermined pattern is temporarily covered or shielded with a mask, and then the entire surface is etched. Then, the mask may be removed, or if possible, etching or the like may be performed according to a predetermined pattern by a direct drawing method.
  • a mask a material generally used as a resist, a photomask, a metal mask or the like may be appropriately selected and used according to an etching method.
  • the pattern shape may be appropriately set according to the type of device to be stacked, and is not particularly limited.
  • An example is as shown in FIG. 3.
  • the good adhesion portion 10 is arranged only on the outer peripheral portion of the laminate, and the easily peelable portion 20 is arranged inside the laminate.
  • FIG. 3 (2) a pattern in which the good adhesion portion 10 is linearly arranged inside the outer peripheral portion of the laminated body can be given.
  • the deactivation treatment is preferably performed by at least one selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment and chemical treatment.
  • the blast treatment refers to a treatment in which particles having an average particle diameter of 0.1 to 1000 ⁇ m are sprayed onto an object together with gas or liquid. In the present invention, it is preferable to use blasting using particles having a small average particle diameter as much as possible.
  • the vacuum plasma treatment refers to a treatment in which an object is exposed to plasma generated by discharge in a decompressed gas, or ions generated by the discharge collide with the object.
  • a decompressed gas or ions generated by the discharge collide with the object.
  • the gas neon, argon, nitrogen, oxygen, carbon fluoride, carbon dioxide, hydrogen or the like alone or a mixed gas can be used.
  • the atmospheric pressure plasma treatment is a treatment in which an object is exposed to plasma generated by a discharge generated in a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object.
  • a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object.
  • neon, argon, nitrogen, oxygen, carbon dioxide, hydrogen or the like alone or a mixed gas can be used.
  • the corona treatment refers to a treatment in which an object is exposed to a corona discharge atmosphere generated in a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object.
  • the actinic radiation irradiation treatment refers to a treatment for irradiating radiation such as electron beam, alpha ray, X-ray, beta ray, infrared ray, visible ray, ultraviolet ray, laser beam irradiation treatment.
  • a laser beam irradiation process it becomes easy to process especially by a direct drawing system. In this case, even a visible light laser has much larger energy than general visible light, and therefore can be treated as a kind of actinic radiation in the present invention.
  • the active gas treatment is a gas having an activity that causes a chemical or physical change in the coupling treatment layer, such as halogen gas, hydrogen halide gas, ozone, high-concentration oxygen gas, ammonia, organic alkali, organic acid. This refers to a process of exposing an object to a gas.
  • an object is exposed to a liquid or solution having an activity that causes a chemical or physical change in the coupling treatment layer, such as an alkaline solution, an acid solution, a reducing agent solution, or an oxidizing agent solution. Processing.
  • a liquid or solution having an activity that causes a chemical or physical change in the coupling treatment layer such as an alkaline solution, an acid solution, a reducing agent solution, or an oxidizing agent solution.
  • the inactivation treatment a method combining actinic radiation and a mask, or a method combining an atmospheric pressure plasma treatment and a mask is preferably used.
  • an ultraviolet irradiation treatment that is, a UV irradiation treatment is preferable from the viewpoints of economy and safety.
  • UV irradiation treatment by selecting a support having UV transparency, the support is treated with a coupling agent, and then drawn directly from the surface opposite to the treated surface. Or UV irradiation can also be performed through a mask. From the above, in the present invention, it is preferable to perform inactivation treatment by UV irradiation, which will be described in detail below.
  • the UV irradiation treatment in the present invention is a treatment in which a polyimide film and / or a support subjected to a coupling agent treatment is placed in an apparatus that generates ultraviolet rays (UV light) having a wavelength of 400 nm or less and UV irradiation is performed.
  • UV light ultraviolet rays
  • the UV light wavelength is preferably 260 nm or less, and more preferably 200 nm or less. Irradiation of such short-wavelength UV light in the presence of oxygen adds UV light energy to the sample (coupling layer) and generates active oxygen and ozone in an excited state near the sample.
  • the inactivation treatment of the coupling treatment layer of the present invention can be performed more effectively.
  • the method of controlling the absorption of UV light by controlling the amount of oxygen instead of the normal atmosphere the control of the UV light source, the gas flow between the coupling layers, etc. It is effective as a method for controlling the amount of ozone generated.
  • the irradiation intensity of the UV light is preferably 5 mW / cm 2 or more when measured using an ultraviolet light meter having a sensitivity peak in a wavelength range of at least 150 nm to 400 nm, and 200 mW / cm 2 or less is used for preventing alteration of the support. This is desirable.
  • the irradiation time of UV light is preferably 0.1 minutes or more and 30 minutes or less, more preferably 0.5 minutes or more, still more preferably 1 minute or more, particularly preferably 2 minutes or more, and more preferably 10 minutes or less. More preferably, it is 5 minutes or less, and particularly preferably 4 minutes or less.
  • integrated light quantity is preferably 30mJ / cm 2 ⁇ 360000mJ / cm 2, more preferably 300mJ / cm 2 ⁇ 120000mJ / cm 2, more preferably from 600mJ / cm 2 ⁇ 60000mJ / cm 2.
  • Pattern formation at the time of UV irradiation processing is performed by intentionally creating a portion that irradiates light and a portion that does not irradiate.
  • a method of forming a pattern a method of making a portion that shields UV light and a portion that does not shield UV light, a method of scanning UV light, or the like can be given.
  • it is effective to block the UV light and cover the support with a mask. It is also effective to scan with a parallel beam of a UV laser.
  • the light source that can be used for the UV irradiation treatment is not particularly limited.
  • Ar laser, D2 lamp and the like are preferable.
  • the coupling treatment layer that has been subjected to the deactivation treatment has a good adhesion portion that is a portion where the peel strength between the support and the polyimide film is strong, depending on whether or not the deactivation (etching) is performed.
  • a pattern composed of an easily peelable portion which is a portion where the peel strength between the body and the polyimide film is weak is formed. For example, as illustrated in the examples described later, when ⁇ -aminopropyltrimethoxysilane is applied to glass, the UV non-irradiated part becomes a good adhesive part with strong peel strength, and the amino group is broken by UV irradiation. As a result, the peel strength is weakened, and the UV irradiation part becomes an easy peel part.
  • the atomic percentage of the nitrogen (N) element is lowered by UV irradiation, and the carbon (C) is subsequently reduced, so that the amino group and the propyl group are broken. Can be inferred from this.
  • the coupling treatment layer is formed on the support with a coupling agent having no functional group such as n-propyltrimethoxysilane
  • the part that has not been irradiated with UV becomes an easily peelable part.
  • a good adhesion part is formed by irradiating light and breaking the propyl part. It is industrially advantageous to use glass as the substrate as the support. In this case, it is more practical to reduce the peel strength by UV irradiation, but depending on the application, the substrate used, and the required peel strength It is also conceivable that the UV light irradiated portion is a good adhesion portion.
  • ⁇ Pressurized heat treatment> In the manufacturing method of the laminated body of this invention, after the said etching, the said support body and the said polyimide film are overlap
  • a method of obtaining a laminate of a support and a polyimide film a method in which a polyimide varnish (polyamic acid solution described above) is directly applied on a support and imidized to form a film is also considered.
  • the polyimide is formed into a film and then laminated on the support.
  • a concentric film thickness distribution is easily formed, and the state of the front and back of the polyimide film (transfer of heat) This is because the film tends to be warped or lifted from the support due to the difference in the method, etc., whereas these problems can be avoided if the film is formed in advance.
  • a device circuit or the like
  • a method of the pressure heat treatment for example, pressing, laminating, roll laminating or the like may be performed while applying temperature.
  • a method of heating under pressure in a flexible bag can also be applied.
  • a method using a roll (roll lamination or the like) is preferable.
  • the pressure during the pressure and heat treatment is preferably 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is too high, the support may be damaged. If the pressure is too low, a portion that does not adhere to the surface may be formed, resulting in insufficient adhesion.
  • the temperature during the pressure heat treatment is 150 to 400 ° C., more preferably 250 to 350 ° C. If the temperature is too high, the polyimide film may be damaged.
  • the pressure heat treatment can be performed in the air, but it is preferably performed under vacuum in order to obtain a stable peel strength on the entire surface. At this time, the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
  • an apparatus that can be used for pressure heat treatment for example, “11FD” manufactured by Imoto Seisakusho can be used to perform pressing in a vacuum, and a roll-type film laminator in vacuum or a vacuum is used.
  • “MVLP” manufactured by Meiki Seisakusho Co., Ltd. can be used to perform vacuum lamination such as a film laminator that applies pressure to the entire glass surface at once with a thin rubber film.
  • the pressure heat treatment can be performed separately in a pressure process and a heating process.
  • the polyimide film and the support are pressurized (preferably about 0.2 to 50 MPa) at a relatively low temperature (for example, a temperature of less than 120 ° C., preferably less than 110 ° C., more preferably 95 ° C. or less).
  • a relatively low temperature for example, a temperature of less than 120 ° C., preferably less than 110 ° C., more preferably 95 ° C. or less.
  • the adhesion between the two is ensured, and then, at a low pressure (preferably less than 0.2 MPa, more preferably 0.1 MPa or less) or at a relatively high temperature (for example, 120 ° C. or more, more preferably 120 to 250 MPa) in an atmospheric environment.
  • a relatively high temperature for example, 120 ° C. or more, more preferably 120 to 250 MPa
  • a polyimide film in the laminate or a hole portion penetrating in the film thickness direction of the entire laminate is provided as necessary, thereby providing a non-polyimide portion.
  • the non-polyimide portion is not particularly limited, but is preferably filled with a metal whose main component is a metal such as Cu, Al, Ag, Au, or a mechanical drill or laser drilling. Examples include the formed holes, and those in which a metal film is formed on the wall surfaces of the holes by sputtering, electroless plating seed layer formation, or the like.
  • the laminate of the present invention is a laminate in which a support and a polyimide film having an average light transmittance at 380 nm to 700 nm of 85% or more are laminated via a coupling treatment layer, and the support and the polyimide are laminated.
  • the film has a good adhesion part and an easy peel part with different peel strengths from the film, and the good adhesion part and the easy peel part form a predetermined pattern.
  • the laminate of the present invention can be obtained by the method for producing a laminate of the present invention, and details of the support, the polyimide film, the coupling treatment layer and the like are as described above.
  • the good adhesion part and the easy peeling part are formed by changing the surface properties depending on the presence or absence of an inactivation treatment such as UV light irradiation. That is, the good adhesion portion in the present invention is a portion that has not been subjected to inactivation treatment such as UV light irradiation, and refers to a portion where the peel strength between the support and the polyimide film is strong.
  • the easy peeling part in this invention is a part to which inactivation processes, such as UV light irradiation, were given, and point out a part with weak peeling strength of a support body and a polyimide film.
  • the 180-degree peel strength between the support and the polyimide film may be appropriately set according to the type and process of the device laminated thereon, and is not particularly limited.
  • the 180-degree peel strength is preferably 1/2 or less, more preferably 1/5 or less of the 180-degree peel strength of the good adhesion portion.
  • the 180 degree peel strength of the good adhesion portion is preferably 0.5 N / cm or more and 5 N / cm or less, more preferably 0.8 N / cm or more and 2 N / cm or less.
  • the 180 degree peel strength of the easily peelable part is preferably 0.01 N / cm or more and 0.40 N / cm or less, more preferably 0.01 N / cm or more and 0.2 N / cm or less.
  • the lower limit of the 180-degree peel strength of the easily peelable portion is a value that takes into account the bending energy of the polyimide film.
  • 180 degree peel strength in this invention can be measured by the method mentioned later in an Example.
  • the heat-resistant peel strength, acid peel strength, and alkali peel strength, which will be described later in the examples are preferably 0.5 N / cm or more and 5 N / cm or less, respectively. There can be.
  • an adhesive layer or the like is not interposed between the support and the polyimide film as in the prior art, and the intervening is, for example, 10% by mass or more of Si derived from the coupling agent It contains only a lot.
  • the coupling treatment layer which is an intermediate layer between the support and the polyimide film, can be made very thin, there are few degassing components during heating, it is difficult to elute even in the wet process, and even if elution occurs, it will remain in a trace amount An effect is obtained.
  • the coupling treatment layer usually has many heat-resistant silicon oxide components, and heat resistance at a temperature of about 400 ° C. can be obtained.
  • the film thickness of the coupling treatment layer in the laminate of the present invention is extremely thin compared to the support, polyimide film or general adhesive or pressure-sensitive adhesive in the present invention, and is ignored from the viewpoint of mechanical design.
  • a thickness of the order of a monomolecular layer is sufficient as a minimum. Generally, it is less than 400 nm (less than 0.4 ⁇ m), preferably 200 nm or less (0.2 ⁇ m or less), more practically 100 nm or less (0.1 ⁇ m or less), more preferably 50 nm or less, further preferably 10 nm or less. It is. For processes that desire as few coupling agents as possible, 5 nm or less is possible.
  • the thickness is less than 1 nm, the peel strength may be reduced, or a portion that is not partially attached may appear, and therefore, 1 nm or more is preferable.
  • the film thickness of the coupling treatment layer can be determined by ellipsometry or calculation from the concentration of the coupling agent solution at the time of coating and the coating amount.
  • the method for producing a device structure of the present invention is a method for producing a structure in which a device is formed on a polyimide film as a substrate, using the laminate of the present invention having a support and a polyimide film. .
  • the polyimide film in the easily peelable portion of the laminate is cut and the polyimide film is used as the support. Peel from.
  • the method of cutting the polyimide film at the easy-release portion of the laminate includes a method of cutting the polyimide film with a blade, a method of cutting the polyimide film by relatively scanning the laser and the laminate, and water jet And a method of cutting the polyimide film by relatively scanning the laminate, a method of cutting the polyimide film while cutting slightly to the glass layer by a semiconductor chip dicing device, etc., but the method is not particularly limited Absent.
  • the position where the cut is made only needs to include at least a part of the easily peelable portion, and is basically cut according to the pattern.
  • an attempt is made to accurately cut according to the pattern at the boundary between the good adhesion portion and the easily peelable portion, an error also occurs. Therefore, it is preferable to cut slightly to the easily peelable portion side from the pattern in terms of increasing productivity.
  • the width of the good adhesion portion is set narrow, the polyimide film remaining on the good adhesion portion at the time of peeling can be reduced, the use efficiency of the film is improved, and the device area relative to the laminate area is large. Thus, productivity is improved. Furthermore, an easy peeling part is provided in a part of the outer peripheral part of the laminated body, and the method of peeling off the outer peripheral part as a cutting position without actually making a cut is also an extreme form of the present invention.
  • the method of peeling the polyimide film from the support is not particularly limited, but is a method of rolling from the end with tweezers, etc., and sticking an adhesive tape to one side of the cut portion of the polyimide film with a device, and then rolling from the tape portion.
  • a method a method in which one side of a cut portion of a polyimide film with a device is vacuum-adsorbed and then wound from that portion can be employed.
  • peeling if a bend with a small curvature occurs in the cut part of the polyimide film with the device, stress may be applied to the device in that part and the device may be destroyed. It is desirable to remove. For example, it is desirable to roll while winding on a roll having a large curvature, or to roll using a machine having a configuration in which the roll having a large curvature is located at the peeling portion.
  • the reinforcing member can be fixed before the device structure (polyimide film with a device) of the present invention is a final product.
  • the reinforcing member may be fixed after being peeled off from the support, but after fixing the reinforcing member, the polyimide film is cut off and peeled off from the support, or the polyimide film is cut into It is preferable that the reinforcing member is fixed to the cut portion and then peeled off.
  • the reinforcing member is fixed before peeling, it is possible to make the device part less susceptible to stress by considering the elastic modulus and film thickness of the polyimide film and the reinforcing member.
  • a polymer film, ultrathin glass, SUS or the like is preferably used as the reinforcing member.
  • the polymer film has an advantage that the lightness of the device is maintained, and further includes transparency, various workability, and difficulty in cracking.
  • Ultra-thin glass has the advantages of providing gas barrier properties, chemical stability, and transparency.
  • SUS has the advantage that it can be shielded electrically and is difficult to break.
  • these reinforcing members can be fixed by adhesion or adhesion.
  • a method for forming a device on a polyimide film as a substrate may be appropriately performed according to a conventionally known method.
  • the device in the present invention is not particularly limited, and examples thereof include only electronic circuit wiring, electrical resistance, passive devices such as coils and capacitors, active devices including semiconductor elements, and electronic circuit systems that combine these devices. is there.
  • the semiconductor element include a solar cell, a thin film transistor, a MEMS element, a sensor, and a logic circuit.
  • a film-like solar cell using the laminate of the present invention has the laminate X of the laminate of the present invention as a substrate, and a laminate X including a photoelectric conversion layer made of a semiconductor is formed on the substrate.
  • This laminated body X has a photoelectric conversion layer that converts sunlight energy into electric energy as an essential component, and usually further includes an electrode layer for taking out the obtained electric energy.
  • a laminated structure in which a photoelectric conversion layer is sandwiched between a pair of electrode layers will be described as a typical example of the laminate X formed to constitute a film-like solar cell.
  • a structure in which several photoelectric conversion layers are stacked can be said to be a solar cell of the present invention if it is produced by PVD or CVD.
  • the laminated structure of the laminated body X is not limited to the embodiment described below, and the structure of the laminated body of the solar cell of the prior art may be appropriately referred to, and a protective layer or a known auxiliary means may be added. It ’s good.
  • One electrode layer (hereinafter also referred to as a back electrode layer) of the pair of electrode layers is preferably formed on one main surface of the polyimide film substrate.
  • the back electrode layer is obtained by laminating a conductive inorganic material by a conventionally known method, for example, a CVD (chemical vapor deposition) method or a sputtering method.
  • conductive inorganic materials include metal thin films such as Al, Au, Ag, Cu, Ni, and stainless steel, and In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (adding Sn to In 2 O 3 Oxide semiconductor-based conductive materials and the like.
  • the back electrode layer is a metal thin film.
  • the thickness of the back electrode layer is not particularly limited, and is usually about 30 to 1000 nm.
  • a film forming method that does not use a vacuum, such as printing of an Ag paste may be employed with some electrode leads.
  • the photoelectric conversion layer for converting the energy of sunlight into electric energy is a layer made of a semiconductor, CuInSe 2 which is a compound semiconductor thin film (chalcopyrite structure semiconductor thin film) made of a group I element, a group III element, and a group VI element.
  • a (CIS) film, or a Cu (In, Ga) Se 2 (CIGS) film in which Ga is dissolved in the same are collectively referred to as a CIS film) and a silicon semiconductor layer.
  • the silicon-based semiconductor include a thin film silicon layer, an amorphous silicon layer, and a polycrystalline silicon layer.
  • the photoelectric conversion layer may be a laminate having a plurality of layers made of different semiconductors. Moreover, the photoelectric converting layer using a pigment
  • the thin film silicon layer is a silicon layer obtained by a plasma CVD method, a thermal CVD method, a sputtering method, a cluster ion beam method, a vapor deposition method, or the like.
  • the amorphous silicon layer is a layer made of silicon having substantially no crystallinity. The lack of crystallinity can be confirmed by not giving a diffraction peak even when irradiated with X-rays.
  • Means for obtaining an amorphous silicon layer are known, and examples of such means include a plasma CVD method and a thermal CVD method.
  • the polycrystalline silicon layer is a layer made of an aggregate of microcrystals made of silicon.
  • the amorphous silicon layer described above is distinguished by giving a diffraction peak by irradiation with X-rays.
  • Means for obtaining a polycrystalline silicon layer are known, and such means include means for heat-treating amorphous silicon.
  • the photoelectric conversion layer is not limited to the silicon-based semiconductor layer, and may be, for example, a thick film semiconductor layer.
  • the thick film semiconductor layer is a semiconductor layer formed from a paste of titanium oxide, zinc oxide, copper iodide or the like.
  • an a-Si (n layer) of about 20 nm is formed by performing high-frequency plasma discharge in a gas in which phosphine (PH 3 ) is added to SiH 4 at a temperature of 200 to 500 ° C., and subsequently SiH 4
  • phosphine (PH 3 ) is added to SiH 4 at a temperature of 200 to 500 ° C.
  • An a-Si (i layer) of about 500 nm can be formed using only gas, and then diborane (B 2 H 6 ) can be added to SiH 4 to form a p-Si (p layer) of about 10 nm.
  • an electrode layer (hereinafter also referred to as a current collecting electrode layer) provided on the side opposite to the polyimide film substrate is formed by consolidating a conductive paste containing a conductive filler and a binder resin.
  • the electrode layer may be a transparent electrode layer.
  • an oxide semiconductor material such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 added with Sn) can be preferably used.
  • a preferred embodiment of the present invention is a film-like solar cell in which transparent electrode / p-type a-Si / i-type a-Si / n-type a-Si / metal electrode / polyimide film are laminated in this order.
  • the p layer may be a-Si
  • the n layer may be polycrystalline silicon
  • a thin undoped a-Si layer may be inserted between them.
  • an antireflection layer, a surface protective layer, or the like may be added in addition to the above structure.
  • the thin film transistor In the thin film transistor (TFT), a semiconductor layer constituting the transistor and an insulating film, an electrode, a protective insulating film, etc. constituting the element are formed by depositing a thin film material, and an organic semiconductor material is used.
  • a printing transistor formed by a printing method. It is usually distinguished from silicon wafers that use silicon as the semiconductor layer.
  • the thin film material is produced by a technique using a vacuum such as PVD (physical vapor deposition) such as vacuum vapor deposition, or CVD (chemical vapor deposition) such as plasma CVD.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Organic semiconductor materials used in the printing method include polycyclic aromatic hydrocarbons such as pentacene, anthracene and rubrene, low-molecular compounds such as tetracyanoquinodimethane (TCNQ), polyacetylene, poly-3-hexylthiophene (P3HT). ), Organic polymers such as polyparaphenylene vinylene (PPV), organic charge transfer complexes, linear polymers such as polyacetylene, polypyrrole, polyaniline, and the like.
  • polycyclic aromatic hydrocarbons such as pentacene, anthracene and rubrene
  • TCNQ tetracyanoquinodimethane
  • P3HT poly-3-hexylthiophene
  • Organic polymers such as polyparaphenylene vinylene (PPV), organic charge transfer complexes, linear polymers such as polyacetylene, polypyrrole, polyaniline, and the like.
  • the MEMS element means an element manufactured using MEMS technology, and includes an inkjet printer head, a probe for a scanning probe microscope, a contactor for an LSI prober, an optical spatial modulator for maskless exposure, an optical integrated element, an infrared ray Includes video projectors using sensors, flow sensors, acceleration sensors, MEMS gyro sensors, RF MEMS switches, internal and external blood pressure sensors, grating light valves, and digital micromirror devices.
  • the sensors include strain gauges, load cells, semiconductor pressure sensors, optical sensors, photoelectric elements, photodiodes, magnetic sensors, contact temperature sensors, thermistor temperature sensors, resistance thermometer temperature sensors, thermocouple temperature sensors.
  • the logic circuit includes a logic circuit based on NAND and OR and a circuit synchronized by a clock.
  • FIG. 1 is a schematic view showing an embodiment of a method for producing a laminate according to the present invention, in which (1) shows a glass substrate 1 and (2) shows that a coupling agent is applied on the glass substrate 1 and dried. (3) shows the stage of irradiating the UV light after the UV light blocking mask 3 is installed, and (4) shows the stage of irradiating the UV light blocking mask 3 after irradiating the UV light. The removed stage is shown.
  • FIG. 2 is a schematic view showing an embodiment of the method for producing a device structure of the present invention, where (1) shows a glass substrate 1 and (2) shows a coating agent coated on the glass substrate 1 and dried. (3) shows the stage of irradiating the UV light after the UV light blocking mask 3 is installed, and (4) shows the stage of the UV light blocking mask 3 after irradiating the UV light. The stage which removed is shown.
  • the UV exposure part is the UV irradiation part 5, and the remaining part is the UV non-irradiation part 4.
  • (5) shows a stage in which the polyimide film 6 is pasted, and then the device 8 is produced on the surface of the polyimide film 7 on the UV irradiation section. The stage which peeled from the board
  • ⁇ Reduced viscosity of polyamic acid solution> A solution dissolved in N-methyl-2-pyrrolidone or N, N-dimethylacetamide so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. using an Ubbelohde type viscosity tube. At this time, if the solvent used for the preparation of the polyamic acid solution is N, N-dimethylacetamide, the polymer is dissolved using N, N-dimethylacetamide; otherwise, N-methyl-2- The polymer was dissolved using pyrrolidone and measured.
  • ⁇ Thickness of polyimide film> The thickness of the polyimide film was measured using a micrometer (“Millitron 1245D” manufactured by FineLuf).
  • ⁇ Average light transmittance of polyimide film> Using a spectrophotometer (“U-2001” manufactured by Hitachi, Ltd.), the light transmittance in a wavelength region of 380 nm to 700 nm was measured at a scanning speed of 100 nm / min, and the transmittance value every 10 nm was arithmetically averaged. The value was converted to a thickness of 20 ⁇ m according to the Lambert-Beer law, and the obtained value was taken as the average light transmittance of the polyimide film.
  • ⁇ Haze value of polyimide film (HAZE)> The measurement was performed using a haze meter (“NDH-300A turbidimeter” manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K7105 “Testing method for optical properties of plastic” haze (cloudiness value).
  • the glass transition temperature was determined from the presence or absence of heat absorption / dissipation due to structural changes in the range from room temperature to 500 ° C.
  • ⁇ Tension modulus, tensile strength and tensile elongation at break of polyimide film From the polyimide film to be measured, strip-shaped test pieces each having a flow direction (MD direction) and a width direction (TD direction) of 100 mm ⁇ 10 mm were cut out, and a tensile tester (manufactured by Shimadzu Corporation “Autograph (R); Model name AG-5000A "), tensile modulus, tensile strength and tensile elongation at break in each of MD and TD directions were measured under the conditions of a tensile speed of 50 mm / min and a distance between chucks of 40 mm.
  • MD direction flow direction
  • TD direction width direction
  • the film test pieces (a) to (c) were left to be concave on the plane, and the distances from the four corner planes (h1, h2, h3, h4: unit mm) were measured, and the average The value was the amount of warpage (mm).
  • Measurement was performed by the following AFM method. That is, the number of craters on the surface of the polyimide film was measured using a scanning probe microscope with a surface property evaluation function (“SPA300 / nonavivi” manufactured by SII Nanotechnology Inc.). The measurement is performed in DFM mode, the cantilever is “DF3” or “DF20” manufactured by SII Nanotechnology, the scanner is “FS-20A” manufactured by SII Nanotechnology, and the scanning range is The measurement resolution was 1024 ⁇ 512 pixels. After the quadratic inclination correction was performed on the measurement image with the software attached to the apparatus, the crater portion was observed. As shown in FIG.
  • the crater has a shape in which the center of the convex portion raised from the flat portion is depressed. Therefore, the diameter of the cross section (the distance between the maximum heights) at the position of the maximum height of the swell was used as the diameter of the crater part.
  • (1) is the figure which represented the height of the unevenness
  • (2) is a cross-sectional display example of the unevenness
  • the number of craters was measured by analyzing the obtained 10 ⁇ m square measurement image (AFM image) with image processing software “ImageJ”.
  • “ImageJ” is an open source public domain image processing software developed by the National Institutes of Health (NIH). Specifically, first, a binarization operation is performed in which a certain threshold value is used to separate a higher portion and a lower portion (see (2) and (3) in FIG. 8). At this time, the threshold value is a position 12% higher than the particle size of the lubricant used from the maximum point of the distribution of the information in the height direction of the AFM image, for example, 10 nm when the lubricant diameter is 80 nm. A high position was set as a threshold value.
  • (2) is a cross-sectional display example of the unevenness
  • (3) is an example binarized with a threshold value
  • (4) is an example in which an annular portion is filled
  • (5) is an example in which (3) is inverted.
  • (6) is the logical product of (4) and (5).
  • the number of craters was calculated by counting craters with a diameter of 10 to 500 nm from the image logical product image obtained by this operation. And it measured about arbitrary three places, calculated
  • Ra value surface morphology
  • the Ra value (surface morphology) on the surface of the polyimide film was measured using a scanning probe microscope with a surface physical property evaluation function (“SPA300 / nanoavi” manufactured by SII Nanotechnology Inc.). Measurement is performed in DFM mode, the cantilever is “DF3” or “DF20” manufactured by SII Nanotechnology, the scanner is “FS-20A” manufactured by SII Nanotechnology, and the scanning range is The measurement resolution was 512 ⁇ 512 pixels. After performing secondary tilt correction on the measurement image with the software attached to the device, if noise accompanying measurement is included, apply other flattening processing such as flat processing as appropriate, and use the software included with the device. Ra value was calculated. Measurement was performed at arbitrary three locations to determine the Ra value, and an average value thereof was adopted.
  • the thickness (nm) of the coupling treatment layer (SC layer) was determined by measuring the thickness of the coupling treatment layer formed on the cleaned Si wafer using an ellipsometry method. ) Using the following conditions. In addition, when glass was used as the support, a sample obtained by applying and drying a coupling agent on a separately cleaned Si wafer in the same manner as in each example and comparative example was used.
  • Reflection angle range 45 ° to 80 ° Wavelength range: 250 nm to 800 nm Wavelength resolution: 1.25 nm Spot diameter: 1mm tan ⁇ ; Measurement accuracy ⁇ 0.01 cos ⁇ ; Measurement accuracy ⁇ 0.01 Measurement: Method Rotating analyzer method Deflector angle: 45 ° Incident angle: 70 ° fixed Analyzer: 0-360 ° in 11.25 ° increments Wavelength: 250 nm to 800 nm The film thickness was calculated by fitting by a non-linear least square method.
  • the wavelength dependence C1 to C6 was obtained by the following formula.
  • ⁇ Defect abundance density of the support First, an inspection area having a side of 5 cm was arbitrarily extracted from the surface of the support opposite to the polyimide film, and a reference point serving as the origin of coordinates was marked. Next, using a differential interference microscope having an XY stage capable of observing the entire inspection area, the inspection area was observed at 200 times, the defect position was detected visually, and the position coordinates were recorded. When the number of defects visually recognized at this time exceeded 500, the support was determined to have a defect density of 100/100 square cm or more with a height of 1 ⁇ m or more.
  • the vicinity of the defect position coordinates recorded in the inspection area was re-observed with a laser microscope ("VK-9700" manufactured by Keyence Corporation), and the plane direction of each defect The number of defects having a height of 1 ⁇ m or more was counted, and the number of defects obtained was multiplied by 4 to obtain the number of defects per 100 cm 2.
  • the peel strength (180 degree peel strength) was measured under the following conditions according to the 180 degree peel method described in JIS C6471.
  • the sample used for this measurement is provided with an unadhered portion of the polyimide film on one side by designing the size of the polyimide film to 110 mm ⁇ 2000 mm with respect to a 100 mm ⁇ 1000 mm support (glass).
  • “Grasp” (clamping part).
  • peel strength of UV non-irradiated part For measuring the peel strength of the UV non-irradiated part, a laminate produced separately in the same manner as in each of the examples and comparative examples was used except that UV irradiation was not performed.
  • Peeling strength of UV irradiated part The peeling strength of the UV irradiated part was measured on the UV irradiated part of the laminate subjected to UV irradiation.
  • Acid peel strength The acid peel strength was measured by immersing the laminate (laminated with UV irradiation) in an 18% by mass hydrochloric acid solution at room temperature (23 ° C) for 30 minutes and washing with water three times. And then using a sample obtained by air drying.
  • Alkali resistance peel strength The alkali resistance peel strength was measured by placing the laminate (laminated body subjected to UV irradiation) in a 2.38 mass% aqueous tetramethylammonium hydroxide (TMAH) solution at room temperature (23 ° C). The sample was obtained by dipping for 30 minutes, washing with water three times and then air-drying.
  • TMAH aqueous tetramethylammonium hydroxide
  • a cut is made in the UV irradiation part of the laminate corresponding to the easily peelable part to peel the polyimide film from the support, and a 50 mm ⁇ 50 mm square is cut out from the central part of the peeled polyimide film to form a film test piece.
  • the degree of warpage (%) was measured in the same manner as the degree of warpage of the polyimide film.
  • ⁇ Lubricant particle size> The particle size of the lubricant (silica) used in each production example was in the state of dispersion in a solvent (dimethylacetamide) using a laser scattering particle size distribution analyzer “LB-500” manufactured by HORIBA, Ltd. The particle size distribution was determined, and the calculated volume average particle size was taken as the particle size.
  • ⁇ Surface composition ratio> The surface composition ratio was measured by X-ray photoelectron spectroscopy (ESCA). The measurement was performed under the following conditions using “ESCA5801MC” manufactured by ULVAC-PHI. In the measurement, first, all elements were scanned to confirm the presence or absence of other elements, and then the abundance ratio was measured by performing a narrow scan of the existing elements. Note that the sample to be used for measurement is put into the measurement chamber after sufficient preliminary evacuation, and the operation of scraping the sample surface before measurement by ion irradiation or the like is not performed.
  • ESCA5801MC manufactured by ULVAC-PHI
  • Excitation X-ray Mg, K ⁇ -ray Photoelectron escape angle: 45 ° Analysis diameter: ⁇ 800 ⁇ m Pass energy: 29.35 eV (narrow scan), 187.75 eV (all element scan) Step: 0.125 eV (narrow scan), 1.6 eV (all element scan) Analytical elements: C, O, N, Si, all elements Vacuum degree: 1 ⁇ 10 ⁇ 8 Torr or less
  • xylene was added as an azeotropic solvent, the temperature was raised to 180 ° C., the reaction was performed for 3 hours, and the azeotropic product water was separated. After confirming that the water had been distilled off, the temperature was raised to 190 ° C. over 1 hour to remove xylene to obtain a reaction solution.
  • a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm as a lubricant in dimethylacetamide (“Snowtex (registered trademark) DMAC-ST30” manufactured by NISSAN CHEMICAL INDUSTRY CO., LTD.) Is added to a polyamide.
  • a dispersion formed by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added to the silica.
  • Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added to the silica.
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • the polyamic acid solution was added so that the total amount of polymer solids was 0.2% by mass, and the resulting reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B3. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant ("Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica.
  • Polyamide acid solution B4 was obtained by adding 0.2% by mass to the total polymer solid content in the polyamic acid solution and then diluting with 500 parts by mass of N, N-dimethylacetamide.
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • Polyamide acid solution B6 was obtained by adding 0.2% by mass to the total amount of polymer solids in the polyamic acid solution and then diluting with 250 parts by mass of N, N-dimethylacetamide.
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica.
  • the polyamic acid solution was added so as to be 0.2% by mass with respect to the total solid content of the polymer, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B7. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a carboxylic acid component 109.1 parts by mass of cyclobutanetetracarboxylic dianhydride (CBDA) (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and stirred at room temperature for 12 hours.
  • CBDA cyclobutanetetracarboxylic dianhydride
  • the polyamic acid solution was added so that the total amount of polymer solids was 0.2% by mass, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B8. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • cyclobutanetetracarboxylic dianhydride (CBDA) (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and stirred at room temperature for 12 hours.
  • CBDA cyclobutanetetracarboxylic dianhydride
  • the polyamic acid solution was added so as to be 0.2% by mass relative to the total amount of polymer solids, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B9. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries, Ltd.) has an added amount of silica.
  • the polyamic acid solution was added so as to be 0.2% by mass with respect to the total solid content of the polymer, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B10. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries, Ltd.) has an added amount of silica.
  • the polyamic acid solution was added so as to be 0.2% by mass relative to the total amount of polymer solids, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B11. .
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • TMDC 4,4′-methylenebis (2,6-dimethylcyclohexylamine)
  • a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica. It added so that it might become 0.2 mass% with respect to the polymer solid content total amount in a polyimide solution, Then, it cooled and diluted with 500 mass parts of N, N- dimethylacetamide, and obtained the polyimide solution C1.
  • the solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
  • a polyamic acid solution A1 obtained by carrying out the method described in Production Example 1-1 on a 50-fold scale by mass ratio was used as a polyethylene terephthalate (PET) film (“A” manufactured by Toyobo Co., Ltd.). -4100 ”) on a non-slip material surface, coated with a comma coater so that the film thickness after imidization is 38 ⁇ m, dried at 110 ° C. for 5 minutes, and together with the PET film, in other words The single-layer polyamic acid film was wound up without peeling off from the PET film.
  • PET polyethylene terephthalate
  • the obtained single-layer polyamic acid film is peeled off from the PET film as the film-forming support, passed through a pin tenter having three heat treatment zones, and the first stage 150 ° C. ⁇ 2 minutes, the second stage 220 ° C. ⁇ 2 minutes.
  • a third stage heat treatment at 280 ° C. for 4 minutes was performed and slit to a width of 500 mm to obtain a polyimide film AF1 having a thickness of 38 ⁇ m.
  • the properties of the obtained film are shown in Table 2.
  • the said protective film is stuck for the purpose of preventing adhesion of foreign matter or scratches on the film surface, and is handled manually when transported by roll-to-roll at a relatively low temperature. At that time, the operation was performed with the protective film adhered. However, for example, when pressing, laminating, or the like under conditions exceeding 130 ° C., or when performing various treatments on the surface to which the protective film is attached, each operation was performed after the protective film was removed.
  • Polyimide films BF1 to BF11 were produced using the polyamic acid solutions B1 to B11 obtained in Production Examples 2-1 to 2-11, respectively.
  • the thickness of each polyamic acid solution after imidization is expressed on the smooth surface (non-sliding material surface) of a long polyester film (“A-4100” manufactured by Toyobo Co., Ltd.) having a width of 1050 mm using a slit die. After coating at a thickness of 2 and drying at 80 ° C. for 8 minutes, the polyester film was peeled off to obtain a self-supporting polyamic acid film having a width of 920 mm.
  • the temperature was raised stepwise in an inert oven in a temperature range of 150 ° C. to 350 ° C. in a nitrogen gas atmosphere (first stage 150 (C.times.4 minutes, second stage 220.degree. C..times.8 minutes, third stage 350.degree. C..times.4 minutes) was subjected to imidization to obtain a long polyimide film (1000 m roll) having a width of 840 mm.
  • the properties of the obtained film are shown in Table 2.
  • ⁇ Film Production Example 3-1 Self-supporting with a width of 920 mm by applying onto a polyester film, drying, and peeling from the polyester film in the same manner as in Film Production Example 2-1, except that the polyimide solution C1 obtained in Production Example 3-1 was used.
  • the polyimide film was obtained.
  • the temperature was raised stepwise in a temperature range of 150 ° C. to 300 ° C. in a nitrogen gas atmosphere in an inert oven (first stage 150 ° C. ⁇ 4 minutes, 2nd stage 180 ° C. ⁇ 4 minutes, 3rd stage 300 ° C. ⁇ 10 minutes) heat treatment was performed to obtain a long polyimide film CF1 (250 m roll) having a width of 840 mm.
  • Table 2 The properties of the obtained film are shown in Table 2.
  • ⁇ Film Processing Example 1-1 One surface of the polyimide film AF1 obtained above was subjected to vacuum plasma treatment, and then the same surface was acid-treated, then air-dried, and placed on a 110 ° C. hot plate for 1 hour for dehydration treatment.
  • As the vacuum plasma processing RIE mode using parallel plate type electrodes and RF plasma processing are adopted, O 2 gas is introduced into the vacuum chamber, high frequency power of 13.54 MHz is introduced, and processing time is increased. Was 3 minutes.
  • the subsequent acid treatment was performed by immersing in a 10% by mass HF aqueous solution for 1 minute, and then washing and drying.
  • the obtained surface-treated polyimide film ATF1 after treatment has a crater number of 35/10 ⁇ m square on the surface subjected to plasma / acid treatment, a crater diameter of 115 nm on the surface subjected to plasma / acid treatment, and a plasma / acid-treated surface.
  • the Ra on the opposite side of the surface was 0.6 nm.
  • the number of craters is the average value of craters having a diameter of 10 nm to 500 nm per 100 ⁇ m 2 , and the crater diameter is the average value.
  • Examples of film processing 2-13 to 2-19 The polyimide films BF1, BF3, and BF7 to BF11 obtained in Film Preparation Examples 2-1, 2-3, and 2-7 to 2-11 were each subjected to vacuum plasma treatment on one side of the film, and then The plasma-treated surface was subjected to an acid treatment to obtain surface-treated polyimide films BTF1, BTF3, and BTF7 to BTF11.
  • the vacuum plasma treatment was performed in the same manner as in the film treatment examples 2-1 to 2-12.
  • the subsequent acid treatment was performed by immersing in a 10% by mass HF aqueous solution for 1 minute, and then washing and drying. Drying was performed by placing on a hot plate at 110 ° C. for 1 hour after air drying.
  • Table 3 shows the number of craters on the surface of the obtained surface-treated polyimide film subjected to plasma / acid treatment and the Ra value on the surface opposite to the plasma / acid-treated surface.
  • the number of craters is an average value of craters having a diameter of 10 nm to 500 nm per 100 ⁇ m 2 .
  • Example 1-1 While flowing nitrogen gas in a nitrogen-substituted glove box, 3-aminopropyltrimethoxysilane, which is a silane coupling agent (SC agent), is diluted to 0.5% by mass with isopropyl alcohol, and then a support made of an inorganic substance ( A glass (Corning EAGLE XG manufactured by Corning; 100 mm x 100 mm x 0.7 mm thick) that has been cleaned and dried in advance as a substrate is placed on a spin coater, and a silane coupling agent (SC agent) is rotated. It was dropped in the center and rotated at 500 rpm, and then rotated at 2000 rpm so that the entire surface of the support was wetted, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C. placed in a clean bench to obtain a coupling agent-treated support having a coupling treatment layer having a thickness of 11 nm.
  • SC agent silane coupling agent
  • a polyimide film cut out in a 70 mm ⁇ 70 mm ( ⁇ 70 mm) pattern is placed as a mask on the coupling treatment layer surface of the support provided with the coupling treatment layer obtained above, and the periphery of the laminate is 15 mm apart.
  • UV irradiation treatment was performed within a range of 70 mm ⁇ 70 mm ( ⁇ 70 mm).
  • a UV / O 3 cleaning and reforming apparatus (“SKB1102N-01”) manufactured by Run Technical Service Co., Ltd. and a UV lamp (“SE-1103G05”) were used, and about 3 cm away from the UV lamp. 4 minutes from the distance.
  • UV irradiation At the time of irradiation, no special gas was put in the UV / O 3 cleaning and reforming apparatus, and UV irradiation was performed in an air atmosphere and at room temperature.
  • the UV lamp emits an emission line with a wavelength of 254 nm and a short wavelength of 185 nm that can generate ozone that promotes the inactivation treatment. When measured by wavelength, it was about 20 mW / cm 2 .
  • the surface of the support after the UV irradiation treatment was superposed so that the coupling agent treatment / UV irradiation treatment surface and the plasma treatment surface of the surface-treated polyimide film ATF1 obtained in the film treatment example 1-1 were opposed to each other.
  • a pressurizing heat treatment was performed by vacuum pressing with a rotary pump at a pressure of 10 +2 Pa or less and a pressure of 10 MPa at 300 ° C. to obtain a laminate S1-1 of the present invention.
  • Table 4 shows the evaluation results of the obtained laminate.
  • the coupling agent-treated surface of the support provided with the coupling-treated layer obtained above is opposed to the plasma-treated surface of the surface-treated polyimide film ATF1 obtained in Film Processing Example 1-1.
  • the samples were stacked and subjected to pressure and heat treatment by a vacuum press similar to the above to prepare a sample for measuring the peel strength of the UV non-irradiated part.
  • Example 2-1 to 2-19 As the surface-treated polyimide film, BPF1 to BPF11 and CPF1 obtained in Film Processing Examples 2-1 to 2-12, or BTF1, BTF3, and BTF7 to BTF11 obtained in Film Processing Examples 2-13 to 2-19 are used.
  • the laminates S2-1 to S2-19 of the present invention were obtained in the same manner as in Example 1-1 except that the vacuum press conditions (temperature, pressure, time) were as shown in Table 4, respectively. Table 4 shows the evaluation results of the obtained laminate.
  • Comparative laminates CS1-1 to CS1-3 were obtained in the same manner as in Examples 1-1, 2-3, and 2-19, except that the support was not treated with the coupling agent.
  • Table 5 shows the evaluation results of the obtained laminate.
  • “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
  • Comparative laminates CS1-4 to CS1-6 were obtained in the same manner as in Examples 1-1, 2-3, and 2-19, except that the UV irradiation treatment was not performed.
  • Table 5 shows the evaluation results of the obtained laminate.
  • “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement. For these laminates, a cut was made in the polyimide film and the film was peeled off from the support. However, the film could not be peeled off successfully, and the film was torn if it was forcibly removed.
  • Example 1-7 A glass coating (“Corning EAGLE XG” manufactured by Corning; 100 mm ⁇ 100 mm ⁇ 0.7 mm thickness) was placed on a spin coater with a protective film made of a circular PET film having a diameter of 80 mm attached to a spin coater. The same silane coupling agent as in No. 1 was dropped on the center of rotation and rotated at 500 rpm, and then rotated at 2000 rpm to apply a wet state to the entire support, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C.
  • the protective film was peeled off to obtain a glass substrate coated with a silane coupling agent only on the periphery (outer periphery).
  • the plasma-treated surface of the surface-treated polyimide film ATF1 obtained in the film treatment example 1-1 was overlaid on the silane coupling agent-coated surface, and the degree of vacuum was 10 +2 Pa or less with a rotary pump.
  • a pressure heating treatment was performed by vacuum pressing at a pressure for 10 minutes to obtain a comparative laminate CS1-7.
  • UV irradiation is not performed.
  • the peel strength at the silane coupling agent-treated portion of the obtained laminate was 2.7 N / cm, which is equivalent to the UV unirradiated portion of Example 1-1.
  • Example 1-8 A support subjected to the coupling agent treatment and the UV irradiation treatment was prepared in the same manner as in Example 1-1, and the coupling agent treatment / UV irradiation treatment surface of this support was obtained in Production Example 1-1.
  • the polyamic acid solution A1 was applied using a spin coater so that the film thickness after imidization was about 25 ⁇ m, then dried at 110 ° C. for 10 minutes, further at 150 ° C. for 30 minutes, and at 220 ° C. for 15 minutes. Heat treatment was performed at 280 ° C. for 15 minutes to obtain a polyimide / glass laminate CS1-8.
  • the obtained laminate had a UV non-irradiated part peel strength of 2.3 N / cm, and a UV irradiated part peel strength of 1.5 N / cm.
  • the warpage of the polyimide film peeled off from the UV irradiation part was as large as 24%, which was a numerical value suggesting that the degree of orientation of the polyimide film was different.
  • the average thickness of the polyimide film at the peeled portion was 24 ⁇ m, and the thickness unevenness was 22%.
  • Example 3-1 While flowing nitrogen gas through a nitrogen-substituted glove box, 3-aminopropyltrimethoxysilane, which is a silane coupling agent (SC agent), is diluted to 0.5% by mass with isopropyl alcohol and placed in a syringe.
  • SC agent silane coupling agent
  • Examples 3-2 to 3-13 Polyimide films BF1 to BF11 obtained in Film Preparation Examples 2-1 to 2-11 and the polyimide film CF1 obtained in Film Preparation Example 3-1, and used as a mask during UV irradiation in Example 3-1.
  • Example 3-1 except that a stainless plate having a square opening of 70 mm ⁇ 70 mm was used instead of the film, and the pressure heating treatment by vacuum press was changed to the pressure heating treatment shown below, The laminates S3-2 to S3-13 of the present invention were obtained. The defect density on the glass substrate surface was measured each time.
  • the pressure heat treatment used in this example is as follows.
  • a polyimide film was set on the screen surface of a laminator “SE650nH” manufactured by Prime Products having a preheating function, and a glass substrate was set on the heater surface side set to 100 ° C.
  • the glass substrate was preheated by holding for 5 minutes after setting the glass substrate.
  • the heater surface is tilted to the screen surface side, the silane coupling agent-treated surface of the glass substrate and the polyimide film are opposed to each other with a gap of 1.5 mm, and the polyimide film is pressed against the glass substrate surface using a roll from the back side of the screen. Then, temporary lamination was performed.
  • the coupling agent-treated surface of the support provided with the coupling treatment layer obtained above and each polyimide film were overlaid, and similarly to the above, pressure heating treatment using a laminate roll was performed, and UV was applied. A sample for measuring peel strength of an unirradiated part was prepared.
  • Example 3-14 In Example 3-1, the same operation was performed except that the syringe filter was not used when applying the silane coupling agent solution, to obtain a laminate S3-14.
  • the defect density on the surface of the glass substrate was measured after applying the silane coupling agent, it was 132 pieces / 100 square cm.
  • Table 7 shows the evaluation results of the obtained laminate. When measuring the heat-resistant peel strength, swelling of about 3 to 5 mm was generated, and the polyimide film surface was greatly waved.
  • Example 3-15 In Example 3-2, a laminate S3-15 was obtained in the same manner as in Example 3-2 except that the syringe filter was not attached when the silane coupling agent solution was applied. The defect density on the surface of the glass substrate after application of the silane coupling agent was measured and found to be 184/100 square cm. Table 7 shows the evaluation results of the obtained laminate. When measuring the heat-resistant peel strength, blisters having a size exceeding 10 mm were generated on the entire surface, and the peel strength could not be measured.
  • Comparative Examples 2-1 to 2-3 Comparative laminates CS2-1 to CS2-3 were obtained in the same manner as in Examples 3-1, 3-4, and 3-12 except that the support was not treated with the coupling agent. The defect density on the glass substrate surface was measured each time. Table 7 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
  • Comparative laminates CS2-4 to CS2-6 were obtained in the same manner as in Examples 3-1, 3-4, and 3-12, except that the UV irradiation treatment was not performed. In addition, about the defect existence density of the glass plate surface, it measured each time. Table 7 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement. With respect to this laminate, a cut was made in the polyimide film and the film was peeled off from the support.
  • Example 2--7 A glass PET (Corning EAGLE XG manufactured by Corning; 100 mm ⁇ 100 mm ⁇ 0.7 mm thickness) was placed on a spin coater with a protective film made of a PET film having a diameter of 80 mm attached to the center, and Example 3- The same silane coupling agent as in No. 1 was dropped on the center of rotation and rotated at 500 rpm, and then rotated at 2000 rpm to apply a wet state to the entire support, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C.
  • the polyimide film AF1 obtained in Film Production Example 1-1 was placed on the silane coupling agent-coated surface, and the degree of vacuum was 10 +2 Pa or less with a rotary pump, and vacuum was applied at 300 ° C. and a pressure of 10 MPa for 10 minutes. Pressing and heating were performed to obtain a comparative laminate CS2-7. Here, UV irradiation is not performed. In addition, about the fault presence density of the glass substrate surface, it measured only about the outer peripheral part.
  • the peel strength at the silane coupling agent-treated portion of the obtained laminate was 2.9 N / cm, which is equivalent to the UV unirradiated portion of Example 3-1.
  • the uncoated portion of the silane coupling agent at the center of the glass substrate was not adhered at all.
  • the degree of warpage of the film specimen peeled from the silane coupling agent-uncoated portion corresponding to the easily peeled portion was 0.2%.
  • the heat resistance peel strength test of this laminated body was done, the film / glass space of the center part of the laminated body swelled greatly.
  • blisters were generated between the film and the glass.
  • the plasma treatment conditions were argon gas, frequency 13.56 MHz, output 200 W, gas pressure 1 ⁇ 10 ⁇ 3 Torr, treatment temperature 2 ° C., treatment time 2 minutes.
  • a nickel-chromium (chrome 10 mass%) alloy target under the conditions of a frequency of 13.56 MHz, an output of 450 W, and a gas pressure of 3 ⁇ 10 ⁇ 3 Torr, 1 nm by DC magnetron sputtering in an argon atmosphere.
  • a nickel-chromium alloy film (underlayer) having a thickness of 11 nm was formed at a rate of / sec.
  • the temperature of the film of the laminate is set to 2 ° C., and sputtering is performed. went.
  • copper was vapor-deposited at a rate of 10 nm / second to form a copper thin film having a thickness of 0.22 ⁇ m.
  • the laminated board with a base metal thin film formation film was obtained from each film.
  • the thicknesses of the copper and NiCr layers were confirmed by the fluorescent X-ray method.
  • a laminated board with a base metal thin film forming film from each film is fixed to a Cu frame, and an electrolytic plating solution (copper sulfate 80 g / l, sulfuric acid 210 g / l, HCl, luster, using a copper sulfate plating bath).
  • a thick copper plating layer (thickening layer) having a thickness of 4 ⁇ m was formed by immersing in a small amount of the agent and flowing 1.5 Adm 2 of electricity. Then, it heat-processed for 10 minutes at 120 degreeC, and it dried, and obtained the metallized polyimide film and the support body laminated body.
  • annealing treatment was performed at 125 ° C. for 1 hour. Then, the formed pattern was observed with an optical microscope, and the presence or absence of drool, pattern residue, pattern peeling, etc. was evaluated.
  • any of the laminates a good pattern with no sagging, no pattern residue, no pattern peeling was obtained. Further, after the temperature is raised to 400 ° C. at a rate of temperature rise of 10 ° C./min in a muffle furnace further substituted with nitrogen, swelling and peeling occur even if the temperature is kept at 400 ° C. for 1 hour and then naturally cooled. There was nothing. Further, when an attempt was made to peel the polyimide film on which the pattern was formed from the laminate, the laminates S1-1, S2-3, S2-9, S2-19, S3-1, S3-4, S3-10, S3 In -11, the film could be peeled off without problems at the UV irradiated part.
  • the laminate in which the peel strength between the support and the polyimide film is appropriately adjusted by the production method of the present invention can withstand each process such as metallization. It was confirmed that a good pattern can be formed also in pattern production.
  • FIG. 9A shows a schematic cross-sectional view of the TFT substrate
  • FIG. 9B shows a top view thereof.
  • the laminate of the present invention is used as a substrate 101, and Al (aluminum) 102 is patterned by 200 nm sputtering on the UV irradiation region (region subjected to UV irradiation treatment at the time of polyimide film production) on the polyimide film surface of the laminate.
  • the gate wiring bus line 111, the gate electrode (not shown), and the gate wiring 109 were formed. At this time, each gate wiring 109 is connected to the gate wiring bus line 111, and this gate wiring bus line 111 is used as a power supply line during anodization. Next, 3 ⁇ m of photoresist was applied, and the TFT portion (region A) and the wiring intersection (region B) were removed by a photoetching process. In this state, the entire substrate 101 is immersed in a chemical conversion solution (a solution adjusted to PH 7.0 by diluting a 3% tartaric acid solution with ethylene glycol and adding ammonia water), and a voltage of +72 V is applied to the gate wiring bus line 111.
  • a chemical conversion solution a solution adjusted to PH 7.0 by diluting a 3% tartaric acid solution with ethylene glycol and adding ammonia water
  • Al 2 O 3 film (anodizing film) 103 of about 100 nm.
  • the leakage current of the Al 2 O 3 film 103 was reduced by heating in the atmosphere at 200 ° C. for 1 hour.
  • a 300 nm first silicon nitride film 104 is formed on the Al 2 O 3 film 103 by plasma CVD, and subsequently a 100 nm hydrogenated amorphous silicon (a-Si) 105 film and a 200 nm second nitride film are formed. Silicon 106 was formed. At this time, the temperature of the substrate 101 was 380 ° C.
  • the second silicon nitride 106 was patterned so that only the wiring intersections were formed on the TFT channels.
  • an amorphous silicon n layer 107 doped with about 2% phosphorus was deposited to 50 nm, and then patterned to leave only the source / drain portion of the TFT.
  • hydrogenated amorphous silicon (a-Si) 105 was also removed.
  • depositing 100 nm of Cr (chromium) and 500 nm of Al (aluminum) by sputtering to form a Cr / Al layer 108 patterning is performed, and then signal lines 110, TFT drains, and source wires (not shown) are formed. Etc.).
  • the previously formed gate wiring bus line 111 was removed, and each gate wiring 109 was separated. Thereafter, 100 nm ITO is formed as a transparent electrode 112 by sputtering to form pixel electrodes, terminals and the like. Finally, about 1 ⁇ m of silicon nitride is deposited by plasma CVD, and silicon nitride on the terminal portion is formed by a photoetching process. Was removed. As described above, after mounting the device (TFT) on the UV irradiation region of the polyimide film surface of the laminates S1-1 and S3-1 of the present invention, the UV irradiation of the polyimide film surface is applied to protect the device (TFT).
  • TFT device
  • a protective film (polyester film) is pasted so as to cover the region, and then a notch is made at the boundary line between the UV irradiation region and the UV non-irradiation region, and the TFT portion (device mounting portion) of the polyimide film is removed from the support. It peeled and the TFT substrate was obtained. At the time of peeling, the polyimide film was not torn and the TFT portion was not damaged, and was able to be peeled off satisfactorily.
  • the laminate obtained by the production method of the present invention can be easily peeled from the support by cutting out the polyimide film at the easily peelable portion when the devices are laminated. Moreover, these laminates can withstand a process such as metallization, and a good pattern can be obtained in subsequent pattern fabrication. Therefore, the laminate of the present invention can be used effectively in the production process of a device structure on an ultra-thin polyimide film, on an ultra-thin polymer film excellent in insulation, heat resistance, and dimensional stability. Circuits and devices can be formed with high accuracy.
  • sensors, display devices, probes, integrated circuits, and composite devices thereof, amorphous Si thin film solar cells, Se and CIGS compound semiconductor thin film solar cell substrates, solar cells using these, and semiconductors using polycrystalline silicon It is useful for manufacturing device structures such as devices, display devices, display devices using oxide semiconductors, touch panels, touch switches, and the like, and greatly contributes to the industry.

Abstract

Provided is a laminate of a support (1) and a highly optically transparent polyimide film (6) serving as a base material on which a variety of devices are laminated, wherein the laminate does not delaminate even during a high-temperature process in the manufacture of a device but does allow for the polyimide film to be readily peeled from the support after a device has been manufactured on the polyimide film. A method for producing a laminate comprises: using a polyimide film (6) obtained by reacting together diamines and tetracarboxylic acids principally made of alicyclic tetracarboxylic acids, the polyimide film (6) having a mean light transmittance, glass transition temperature, and thickness within specific ranges; using a coupling agent on at least one of the surfaces where the support (1) and the polyimide film (6) face each other; implementing a patterning treatment for forming a favorably adhered portion and a readily delaminated portion of different peel strengths; and thereafter placing the support (1) and the polyimide film (6) on top of each other and applying heat and pressure.

Description

積層体とその製造方法及びそれを用いたデバイス構造体の製造方法LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
 本発明は、ポリイミドフィルムと無機物からなる支持体(以下単に「支持体」と称することもある)とから構成されてなる積層体の製造方法に関するものである。詳しくは、本発明は、ポリイミドフィルムを支持体となる無機基板に一時的ないし半永久的に貼り合わせた積層体を製造する方法に関し、かかる積層体は、半導体素子、MEMS素子、ディスプレイ素子など、薄膜からなり且つ微細な加工が必要となるデバイスをポリイミドフィルム表面に形成する際に有用である。さらに詳しくは、本発明にかかる積層体は、耐熱性と絶縁性と光透過性に優れた薄いポリイミドフィルムと、無機物(例えば、ガラス板、セラミック板、シリコンウエハ、金属板から選ばれた1種)からなる支持体との積層体であって、精緻な回路をマウントできる、寸法安定性と耐熱性と絶縁性に優れた積層体である。よって、本発明は、このような積層体、その製造方法、および該積層体を利用したデバイス構造体の製造方法に関する。 The present invention relates to a method for producing a laminate comprising a polyimide film and a support made of an inorganic material (hereinafter also simply referred to as “support”). Specifically, the present invention relates to a method for producing a laminate in which a polyimide film is temporarily or semi-permanently bonded to an inorganic substrate serving as a support, and the laminate is a thin film such as a semiconductor element, a MEMS element, or a display element. This is useful when forming a device on the surface of the polyimide film, which requires fine processing. More specifically, the laminate according to the present invention includes a thin polyimide film excellent in heat resistance, insulation, and light transmittance, and an inorganic material (for example, one selected from a glass plate, a ceramic plate, a silicon wafer, and a metal plate). ), And a laminate that can mount a precise circuit and has excellent dimensional stability, heat resistance, and insulation. Therefore, the present invention relates to such a laminate, a method for producing the same, and a method for producing a device structure using the laminate.
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。例えば、放送機器、移動体無線、携帯通信機器等の情報通信機器、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域のGHz帯に達する高周波数化にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があった。 Recently, for the purpose of reducing the weight, size and thickness of functional elements such as semiconductor elements, MEMS elements, and display elements, and increasing flexibility, technological development for forming these elements on a polymer film has been actively conducted. For example, as a material for a base material of an electronic component such as a broadcasting device, a mobile radio device, an information communication device such as a portable communication device, a radar or a high-speed information processing device, the signal band of the information communication device has conventionally been heat resistant Although ceramics that can cope with higher frequencies reaching the GHz band of 1 GHz have been used, the ceramics are not flexible and difficult to reduce in thickness, so that there is a drawback that applicable fields are limited.
 半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・トゥ・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業界では、これまでウエハベースないしガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そのため、現実的な選択としては、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせし、所望の素子を形成した後に支持体から剥離することが考えられ、これにより既存インフラを利用して高分子フィルム上に形成した機能素子を得ることが可能となる。 When functional elements such as semiconductor elements, MEMS elements, and display elements are formed on the surface of polymer films, it is ideal to process them using a so-called roll-to-roll process that uses the flexibility of polymer films. It is said that. However, in the semiconductor industry, the MEMS industry, and the display industry, a process technology for a rigid flat substrate such as a wafer base or a glass substrate base has been constructed so far. Therefore, as a practical choice, the polymer film is bonded to a rigid support made of an inorganic material such as a glass plate, a ceramic plate, a silicon wafer, or a metal plate, and after forming a desired element, the support film is used. It is conceivable to peel off, thereby making it possible to obtain a functional element formed on a polymer film using existing infrastructure.
 従来、無機物からなる支持体への高分子フィルムの貼り合わせは、粘着剤や接着剤を用いて広く行われてきた(特許文献1)。しかしながら、高分子フィルムと無機物からなる支持体とを貼り合わせた積層体に所望の機能素子を形成する場合、機能素子の形成を行う上で支障ないレベルの表面平滑性、寸法安定性、クリーン性、プロセス温度への耐性、微細加工に用いられる薬液への耐性等が当該積層体に求められる。特にポリシリコンや酸化物半導体などの機能素子の形成においては200~500℃程度の温度域でのプロセスが必要となる。例えば低温ポリシリコン薄膜トランジスターの作製においては、脱水素化のために450℃、2時間程度の加熱処理が必要な場合があり、水素化アモルファスシリコン薄膜の作製においては、200℃から300℃程度の温度がフィルムに加わる可能性がある。このように機能素子の形成温度が高い場合には、高分子フィルムに耐熱性が必要であることは勿論、高分子フィルムと支持体との接合面、すなわち貼り合せ用の接着剤や粘着剤がその加工温度に耐えなければならない。しかしながら、従来の貼り合せ用の接着剤や粘着剤は十分な耐熱性を有していなかったため、機能素子の形成温度が高い場合には適用できないのが現状であった。 Conventionally, bonding of a polymer film to a support made of an inorganic material has been widely performed using an adhesive or an adhesive (Patent Document 1). However, when a desired functional element is formed on a laminate in which a polymer film and an inorganic support are bonded, surface smoothness, dimensional stability, and cleanliness that do not hinder the formation of the functional element. The laminate is required to have resistance to process temperature, resistance to chemicals used for fine processing, and the like. In particular, in the formation of functional elements such as polysilicon and oxide semiconductor, a process in a temperature range of about 200 to 500 ° C. is required. For example, in the production of a low-temperature polysilicon thin film transistor, heat treatment at 450 ° C. for about 2 hours may be required for dehydrogenation, and in the production of a hydrogenated amorphous silicon thin film, the temperature is from about 200 ° C. to about 300 ° C. Temperature can be applied to the film. Thus, when the formation temperature of the functional element is high, the polymer film needs to have heat resistance, as well as the bonding surface of the polymer film and the support, that is, an adhesive or adhesive for bonding. Must withstand the processing temperature. However, since conventional adhesives and pressure-sensitive adhesives for bonding did not have sufficient heat resistance, they cannot be applied when the functional element is formed at a high temperature.
 無機物からなる支持体へ貼り合せる高分子フィルムとしては、耐熱性の観点から融点の低いフィルムは適さず、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリイミド、ポリテトラフルオロエチレンからなる高分子フィルム、ガラス繊維強化エポキシ等が用いられる。特にポリイミドからなるフィルムは、耐熱性に優れ、しかも強靭であるので薄膜化が可能になるという長所を備えている。しかしながら、ポリイミドフィルムは、通常、光透過性が低いため、液晶表示素子、タッチパネル、ボトムエミッション型の発光素子、基板側受光の光電変換素子、カラーフィルター等の用途においては適用し難いという欠点がある。よって、耐熱性、高機械的物性、フレキシブル性、光透過性を具備した基材用として十分な物性のポリイミドフィルムを使ったデバイスは未だ得られていない。 As a polymer film to be bonded to a support made of an inorganic material, a film having a low melting point is not suitable from the viewpoint of heat resistance. For example, a polymer film made of polyethylene naphthalate, polyethylene terephthalate, polyimide, polytetrafluoroethylene, or glass fiber. Reinforced epoxy or the like is used. In particular, a film made of polyimide has the advantage that it can be thinned because it has excellent heat resistance and is tough. However, since polyimide films usually have low light transmittance, there is a drawback that they are difficult to apply in applications such as liquid crystal display elements, touch panels, bottom emission type light emitting elements, substrate side light receiving photoelectric conversion elements, and color filters. . Therefore, a device using a polyimide film with sufficient physical properties for a substrate having heat resistance, high mechanical properties, flexibility, and light transmittance has not been obtained yet.
 なお無機物からなる支持体へ高分子フィルムを貼り合せる場合、高分子フィルムと支持体との線膨張係数の差が大きいと、加熱プロセス中に反りや剥がれを招くことがあるので、高分子フィルムは、支持体と同程度の線膨張係数を有していることが望ましい。ところが、一般に無機物は温度が変化しても線膨張係数が大きく変わることはないが、ポリイミドフィルムは温度によって線膨張係数が大きく変化する傾向がある。この点も、無機物からなる支持体へ貼り合せる高分子フィルムとしてポリイミドフィルムを適用する際には改良が求められる。 When a polymer film is bonded to a support made of an inorganic substance, if the difference in linear expansion coefficient between the polymer film and the support is large, warping or peeling may occur during the heating process. It is desirable to have a linear expansion coefficient comparable to that of the support. However, in general, the linear expansion coefficient of inorganic materials does not change greatly even when the temperature changes, but the polyimide film tends to change greatly depending on the temperature. In this respect as well, improvement is required when a polyimide film is applied as a polymer film to be bonded to a support made of an inorganic material.
 他方、樹脂基板を用いた柔軟性を有する表示装置として、固定基板上に、剥離層となる非晶質シリコン膜を介して樹脂基板を形成する工程と、前記樹脂基板上に少なくともTFT素子を形成する工程と、前記非晶質シリコン膜にレーザー光を照射することにより、前記非晶質シリコン膜において前記固定基板から前記樹脂基板を剥離する工程とを行い、前記樹脂基板を用いた柔軟性を有する表示装置を作製することが開示されている(特許文献2)。しかし、剥離に際して接着剤層をレーザー照射やエッチング手段を用いる必要があり、工程が煩雑になり且つ高コストになる。
 なお、UV照射によって高分子フィルム同士を接着することは知られており、このときにカップリング剤を使うことが有効であることは開示されている(特許文献3)。しかし、この技術は、あくまで高分子フィルム同士の接着に関することであり、UV光照射によりカップリング剤自体の接着剥離力の制御を行ったものではない。
On the other hand, as a flexible display device using a resin substrate, a step of forming a resin substrate on a fixed substrate through an amorphous silicon film serving as a release layer, and at least a TFT element is formed on the resin substrate And a step of detaching the resin substrate from the fixed substrate in the amorphous silicon film by irradiating the amorphous silicon film with a laser beam, thereby providing flexibility using the resin substrate. It is disclosed that a display device having the same is manufactured (Patent Document 2). However, it is necessary to use laser irradiation or etching means for the adhesive layer at the time of peeling, which makes the process complicated and expensive.
It is known that polymer films are bonded to each other by UV irradiation, and it is disclosed that it is effective to use a coupling agent at this time (Patent Document 3). However, this technique is only related to the adhesion between polymer films, and does not control the adhesive peeling force of the coupling agent itself by UV light irradiation.
特開2008-159935号公報JP 2008-159935 A 特開2009-260387号公報JP 2009-260387 A 特開2008-19348号公報JP 2008-19348 A
 本発明は上記の様な事情に着目してなされたものであって、その目的は、各種デバイスを積層するための基材とする光透過性が高いポリイミドフィルムを、支持体に積層した積層体であって、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体を提供することである。 The present invention has been made paying attention to the above-mentioned circumstances, and the purpose thereof is a laminate in which a polyimide film having high light transmittance as a base material for laminating various devices is laminated on a support. And it is providing the laminated body which can peel a polyimide film from a support body easily after producing a device on a polyimide film, without peeling also in the high temperature process at the time of device preparation.
 本発明者らは前記課題を解決するために鋭意検討した結果、支持体とポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤処理を施してカップリング処理層を形成することにより両者の接着を可能にするとともに、その後カップリング処理層の一部を不活性化して所定のパターンを形成することにより、剥離強度が異なる良好接着部分と易剥離部分とを存在させるようにすれば、良好接着部分にてデバイス作製時の高温プロセスにおいても剥がれることない十分な剥離強度を発現させ、デバイス作製後には易剥離部分に切り込みを入れることで、デバイス付きポリイミドフィルムを支持体から容易に剥がすことができること、さらに、脂環族テトラカルボン酸類を主成分とするテトラカルボン酸類を用いて形成されるポリイミドフィルムであれば、耐熱性に加え高い光透過性をも発現しうることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have performed a coupling agent treatment on at least one of the surfaces of the support and the polyimide film facing each other to form a coupling treatment layer. It is good if adhesion is made possible, and then a part of the coupling treatment layer is inactivated to form a predetermined pattern so that a good adhesive part and an easy peel part having different peel strengths exist. It is possible to easily peel off the polyimide film with the device from the support by expressing sufficient peel strength that does not peel off even in the high temperature process at the time of device production at the bonded part, and cutting into the easy peel part after device production. In addition, a polymer formed using tetracarboxylic acids mainly composed of alicyclic tetracarboxylic acids. If imide film, it found that can also express high optical transparency in addition to heat resistance, and have completed the present invention.
 すなわち本発明は以下の構成からなる。
 (1)少なくとも支持体とポリイミドフィルムとから構成されてなる積層体の製造方法であって、前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、剥離強度が異なる良好接着部分と易剥離部分とを形成するパターン化処理を施し、その後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理することとし、前記ポリイミドフィルムとして、ジアミン類と、脂環族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムであり、380nm~700nmの平均光線透過率が85%以上、ガラス転移点が250℃以上、厚さが3~150μmであるフィルムを用いることを特徴とする積層体の製造方法。
 (2)前記パターン化処理は、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う前記(1)に記載の積層体の製造方法。
 (3)前記不活性化処理として、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行う前記(2)に記載の積層体の製造方法。
 (4)前記不活性化処理として、少なくともUV照射処理を行う前記(3)に記載の積層体の製造方法。
 (5)前記ポリイミドフィルムとして、少なくとも前記支持体に対向させる面にプラズマ処理が施されたフィルムを用いる前記(1)~(4)のいずれかに記載の積層体の製造方法。
 (6)前記ポリイミドフィルムとして、前記プラズマ処理の後に酸処理を施したフィルムを用いる前記(5)に記載の積層体の製造方法。
 (7)前記支持体として、前記ポリイミドフィルムと対向する面における高さ1μm以上の欠点存在密度が100個/100平方cm以下である支持体を用いる前記(1)~(6)のいずれかに記載の積層体の製造方法。
 (8)前記ポリイミドフィルムとして、引張弾性率が0.3~7.0GPaであるフィルムを用いる前記(1)~(7)のいずれかに記載の積層体の製造方法。
 (9)前記加圧加熱処理はロールを用いて大気圧雰囲気下で行う前記(1)~(8)のいずれかに記載の積層体の製造方法。
 (10)前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行い、125℃未満の温度で加圧した後に、低圧もしくは常圧にて125℃以上の温度で加熱する前記(1)~(9)のいずれかに記載の積層体の製造方法。
 (11)前記ポリイミドフィルムの線膨張係数(CTE)が30ppm/℃以下である前記(1)~(10)のいずれかに記載の積層体の製造方法。
That is, the present invention has the following configuration.
(1) A method for producing a laminate comprising at least a support and a polyimide film, wherein a coupling agent is used on at least one of the surfaces of the support and the polyimide film facing each other, and the peel strength Is subjected to a patterning treatment to form a different good adhesion portion and an easily peelable portion, and then the support and the polyimide film are overlapped and subjected to pressure heat treatment, as the polyimide film, diamines, A film obtained by reaction with tetracarboxylic acids containing alicyclic tetracarboxylic acids as a main component, having an average light transmittance of 380 nm to 700 nm of 85% or more, a glass transition point of 250 ° C. or more, and a thickness of 3 to The manufacturing method of the laminated body characterized by using the film which is 150 micrometers.
(2) The patterning treatment is performed by performing a coupling agent treatment to form a coupling treatment layer, and then performing a deactivation treatment on a part of the coupling treatment layer to form a predetermined pattern. The manufacturing method of the laminated body as described in (1).
(3) As the inactivation treatment, at least one selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment and chemical treatment is performed ( The manufacturing method of the laminated body as described in 2).
(4) The method for manufacturing a laminate according to (3), wherein at least UV irradiation treatment is performed as the inactivation treatment.
(5) The method for producing a laminate according to any one of (1) to (4), wherein a film having a plasma treatment applied to at least a surface facing the support is used as the polyimide film.
(6) The manufacturing method of the laminated body as described in said (5) using the film which gave the acid treatment after the said plasma treatment as said polyimide film.
(7) The support according to any one of the above (1) to (6), wherein a support having a defect existence density of 100 μm / 100 cm 2 or less at a height of 1 μm or more on the surface facing the polyimide film is used as the support. The manufacturing method of the laminated body of description.
(8) The method for producing a laminate according to any one of (1) to (7), wherein a film having a tensile modulus of 0.3 to 7.0 GPa is used as the polyimide film.
(9) The method for manufacturing a laminate according to any one of (1) to (8), wherein the pressure heat treatment is performed in an atmospheric pressure atmosphere using a roll.
(10) The pressure heat treatment is performed separately in a pressure process and a heating process. After pressurizing at a temperature of less than 125 ° C., heating is performed at a low pressure or a normal pressure at a temperature of 125 ° C. or more. ) To (9).
(11) The method for producing a laminate according to any one of (1) to (10), wherein the polyimide film has a coefficient of linear expansion (CTE) of 30 ppm / ° C. or less.
 (12)支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であって、前記ポリイミドフィルムの380nm~700nmにおける平均光線透過率が85%以上であり、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする積層体。
 (13)前記易剥離部分における支持体とポリイミドフィルムとの間の180度剥離強度が、前記良好接着部分における支持体とポリイミドフィルムとの間の180度剥離強度の1/2以下である前記(12)に記載の積層体。
 (14)前記ポリイミドフィルムの厚さ斑が20%以下である前記(12)または(13)に記載の積層体。
(12) A laminate in which a support and a polyimide film are laminated via a coupling treatment layer, wherein the polyimide film has an average light transmittance at 380 nm to 700 nm of 85% or more, A laminate having a good adhesion portion and an easy peel portion having different peel strengths from the polyimide film, and the good adhesion portion and the easy peel portion form a predetermined pattern body.
(13) The 180 degree peel strength between the support and the polyimide film in the easily peelable part is ½ or less of the 180 degree peel strength between the support and the polyimide film in the good adhesion part ( The laminated body as described in 12).
(14) The laminate according to (12) or (13), wherein the thickness unevenness of the polyimide film is 20% or less.
 (15)ポリイミドフィルム上に配線パターンおよび/またはデバイスが形成されてなる構造体を製造する方法であって、支持体とポリイミドフィルムとを有する前記(12)~(14)のいずれかに記載の積層体を用いることとし、該積層体のポリイミドフィルム上に配線パターンおよび/またはデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離することを特徴とするデバイス構造体の製造方法。
 (16)前記(15)に記載の製造方法で形成されたことを特徴とするデバイス構造体。
(15) A method for producing a structure in which a wiring pattern and / or a device is formed on a polyimide film, wherein the structure has a support and a polyimide film. After using a laminate and forming a wiring pattern and / or device on the polyimide film of the laminate, the polyimide film is peeled off from the support by incising the polyimide film at the easily peelable portion of the laminate. A method of manufacturing a device structure.
(16) A device structure formed by the manufacturing method according to (15).
 本発明の製造方法で得られる積層体は、ガラス板、セラミック板、シリコンウエハ、金属等の支持体の一面と、ポリイミドフィルムの一面とが、接着剤層を介することなく貼り合わされた積層体であって、あらかじめ決めたパターンによって支持体とポリイミドフィルムの剥離強度が異なる良好接着部分と易剥離部分とに分かれているので、ポリイミドフィルムの上にデバイスを作製した後、易剥離部分のポリイミドフィルムに切り込みを入れて剥離することによって、容易にデバイス付きのポリイミドフィルムを得ることができる。さらに、本発明によれば、ポリイミドフィルムが脂環族テトラカルボン酸類を主成分とするテトラカルボン酸類を用いて形成されるので、耐熱性に加え高い光透過性をも有するフィルム上にデバイスを形成することができ、例えば、液晶表示素子、タッチパネル、ボトムエミッション型の発光素子、基板側受光の光電変換素子、カラーフィルター等の用途にも好適に利用できる。 The laminate obtained by the production method of the present invention is a laminate in which one side of a support such as a glass plate, a ceramic plate, a silicon wafer, or a metal and one side of a polyimide film are bonded without interposing an adhesive layer. And because it is divided into a good adhesion part and an easy peel part where the peel strength of the support and the polyimide film is different according to a predetermined pattern, after making the device on the polyimide film, the polyimide film of the easy peel part A polyimide film with a device can be easily obtained by cutting and peeling. Furthermore, according to the present invention, since the polyimide film is formed using tetracarboxylic acids mainly composed of alicyclic tetracarboxylic acids, a device is formed on a film having high light transmittance in addition to heat resistance. For example, it can be suitably used for applications such as a liquid crystal display element, a touch panel, a bottom emission type light emitting element, a substrate side light receiving photoelectric conversion element, and a color filter.
 本発明によれば、絶縁性で可撓性、耐熱性を兼ね備えた薄いポリイミドフィルムに回路などを形成できる。さらに電子部品を搭載して電子デバイスを作製する時に、薄いポリイミドフィルムであっても、寸法安定性に優れた支持体に積層され固定されていることで精密な位置決めができ、多層に薄膜作製、回路形成などを行うことができる。しかも本発明の積層体は、プロセス中には熱が加わっても剥がれず、デバイス作製後に必要に応じてこの支持体から剥がす際には、ポリイミドフィルムと支持体との剥離がスムースに実施できる。さらに本発明の積層体は、プロセス通過過程において剥離することのない剥離強度を有する積層体であるため、従来の電子デバイス作製プロセスをそのまま使うことが可能である。特に、ポリイミドフィルム上にデバイスを作製するに際しては、ポリイミドフィルムの表面特性から、密着性に優れ、平滑性にも優れるので、安定的に精度よくデバイス作製を実施することができる。このように、本発明の積層体は、絶縁性で可撓性、耐熱性を兼ね備えた、薄いポリイミドフィルムに回路などを形成した電子デバイス作製などに極めて有意義である。 According to the present invention, a circuit or the like can be formed on a thin polyimide film having insulating properties, flexibility, and heat resistance. Furthermore, when manufacturing electronic devices by mounting electronic components, even thin polyimide films can be positioned accurately by being laminated and fixed on a support with excellent dimensional stability, and thin film production in multiple layers. Circuit formation or the like can be performed. In addition, the laminate of the present invention does not peel off even when heat is applied during the process, and when peeling from the support as necessary after device fabrication, the polyimide film and the support can be smoothly peeled off. Furthermore, since the laminate of the present invention is a laminate having a peel strength that does not peel in the process passing process, it is possible to use a conventional electronic device manufacturing process as it is. In particular, when a device is manufactured on a polyimide film, the device can be stably and accurately manufactured because the surface properties of the polyimide film are excellent in adhesion and smoothness. As described above, the laminate of the present invention is extremely useful for producing an electronic device in which a circuit or the like is formed on a thin polyimide film having insulating properties, flexibility, and heat resistance.
 本発明によれば、ポリイミドフィルム原反にプラズマ処理と酸処理を加えることも可能である。この部分の工程はロールトゥロールでの工程化が可能であり、効率的に処理が行える。特に、プラズマ処理まで行ったポリイミドフィルムロールは、滑材を含むと、ロールとしてのハンドリング性はプラズマ処理前と同等である。酸処理後のロール搬送についても、酸処理を行う面と反対側の面に粘着剤付の保護フィルムをつけることで、ロール搬送は容易になる。酸処理を行う面の反対側の面はデバイス作製などを行う面となるので、傷つきなどを防ぐため保護フィルムを付けることもあるため、工程の増加にはつながらない。この保護フィルムに滑材を含むことで、ロール搬送もまったく問題なく行える。また、これとは別の工程構成として、ロールでプラズマ処理を行った後、カットシートにしてから酸処理を行うことも出来るため、簡便な実施も可能となる。生産性に優れた処理であることは、実施において有意義である。 According to the present invention, it is also possible to add a plasma treatment and an acid treatment to the polyimide film original. The process of this part can be made into a roll-to-roll process and can be processed efficiently. In particular, when a polyimide film roll that has been subjected to plasma treatment includes a lubricant, handling properties as a roll are equivalent to those before the plasma treatment. Also about the roll conveyance after an acid treatment, roll conveyance becomes easy by attaching the protective film with an adhesive to the surface on the opposite side to the surface which performs an acid treatment. Since the surface opposite to the surface to be acid-treated is a surface on which a device is manufactured, a protective film may be attached to prevent scratches and the like, which does not increase the number of processes. By including a lubricant in the protective film, roll conveyance can be performed without any problem. Further, as another process configuration, since the plasma treatment can be performed with a roll and then the cut sheet can be used for the acid treatment, a simple implementation is possible. It is significant in implementation that the process is excellent in productivity.
 本発明の積層体は、耐熱性の無機物からなる支持体に支持されているので、回路配線作製および半導体形成時に、精密な位置決めをして、多層に薄膜作製、回路形成、デバイス形成などを行うことができ、半導体作製時に高温のプロセスでも剥がれる事無く、薄膜堆積などが行える。またこの積層体は、半導体付加後にパターンの易剥離部分のみを剥離する場合は容易に剥離できるため、作製した半導体を破壊することがない。そして、この回路付加積層体および半導体素子が形成された半導体付加積層体に使用されるポリイミドフィルム積層体を剥がす事により、回路付加したデバイス付きポリイミドフィルムおよび半導体素子が形成された半導体付加したデバイス付きポリイミドフィルムを提供することができる。 Since the laminate of the present invention is supported by a support made of a heat-resistant inorganic material, precise positioning is performed at the time of circuit wiring fabrication and semiconductor formation, and thin film fabrication, circuit formation, device formation, etc. are performed in multiple layers. In addition, thin film deposition can be performed without peeling even in a high-temperature process during semiconductor fabrication. Moreover, since this laminated body can be easily peeled off when only the easy peeling portion of the pattern is peeled after the semiconductor is added, the produced semiconductor is not destroyed. Then, by removing the polyimide film laminate used for the circuit-added laminate and the semiconductor-added laminate in which the semiconductor element is formed, the device-added polyimide film having the circuit-added device and the semiconductor-added device-attached device having the semiconductor element are formed. A polyimide film can be provided.
 回路配線作製時に、精密な位置決めをして、多層に薄膜作製、回路形成などを行う際、寸法安定性に劣り形状変化の大きいポリイミドフィルムを単独で基板とすると、デバイス作製のための位置決めが困難になる。それに対して、剛性や寸法安定性に優れた固い支持体に固定し、デバイス作製後にポリイミドフィルムを固い支持体から剥がす本発明の方法においては、デバイス作製のための位置決めが容易であり、従来の電子デバイス作製プロセスをそのまま使い、ポリイミドフィルム上のデバイス作製を安定的に精度よく実施することができる。特に、本発明の積層体は、回路形成などが高温でなされる場合や精緻な回路形成に有意な積層体である。 Positioning for device fabrication is difficult if a polyimide film with poor dimensional stability and large shape change is used as a substrate when performing precise positioning during circuit wiring fabrication, when forming thin films in multiple layers, forming circuits, etc. become. On the other hand, in the method of the present invention in which the polyimide film is peeled off from the hard support after the device is manufactured and fixed to a hard support having excellent rigidity and dimensional stability, positioning for device manufacture is easy. Using the electronic device manufacturing process as it is, device manufacturing on a polyimide film can be carried out stably and accurately. In particular, the laminate of the present invention is a laminate that is significant for circuit formation or the like at high temperatures or for precise circuit formation.
 また、単結晶および多結晶Siによる太陽電池などは、薄型化が進むなか、割れ易く、プロセス中のハンドリング、そして、出来上がった後の耐久性に問題があったが、基板とするポリイミドフィルムを本発明のように支持体との積層体とすることにより、これら問題も解消できる。またこのときに容易に剥がせる部分があるため、電極引き出しも可能な補強基板を作製しうる。 Also, solar cells made of single crystal and polycrystal Si are easy to break as the thickness is reduced, and there are problems in handling during the process and durability after completion. These problems can be solved by using a laminate with a support as in the invention. In addition, since there is a portion that can be easily peeled off at this time, a reinforcing substrate capable of drawing out an electrode can be manufactured.
 また、例えば、ガラス板、ウエハなどの支持体にポリイミドワニスを塗布、乾燥し、イミド化した後、ポリイミド膜上で加工を行いデバイス等を形成し、その後に支持体から剥がすことによりデバイス形成されたポリイミドフィルムを得た場合には、塗布方法に固有の膜厚分布、例えばスピンコート法においては同心円上の膜厚分布が、ディップコートにおいては引き上げ方向と乾燥時の保持方向によっては傾斜した膜厚分布ができるという問題がある。また、ポリイミドフィルムの表と裏での分子配向度などの構造の違いから、剥がしたときにポリイミドフィルムに反りが生じたり、ポリイミドフィルムと支持体との接着強度が強すぎ、かつポリイミドフィルムが脆いために、支持体からの剥離自体に困難を伴い、剥離時にフィルムを損傷することが多いといった問題がある。これに対して、本発明のように、別途作製したフィルムを貼る場合には、ウエハやガラスなどの支持体に対して狭い面積での膜厚はきわめて同一性が高く、先に回路やデバイスを作製した後で貼り付けることも、貼り付けた後で回路やデバイスを作製することも可能となり、配線基板や電子デバイスの製作に適している。 In addition, for example, a polyimide varnish is applied to a support such as a glass plate or a wafer, dried, imidized, then processed on a polyimide film to form a device, and then peeled off from the support to form a device. When the polyimide film is obtained, the film thickness distribution inherent to the coating method, for example, the film thickness distribution on the concentric circles in the spin coating method is inclined depending on the pulling direction and the holding direction during drying in the dip coating. There is a problem that a thickness distribution is possible. Also, due to structural differences such as the degree of molecular orientation between the front and back of the polyimide film, the polyimide film warps when peeled, the adhesive strength between the polyimide film and the support is too strong, and the polyimide film is brittle For this reason, there is a problem that the peeling itself from the support is difficult and the film is often damaged at the time of peeling. On the other hand, when pasting a separately produced film as in the present invention, the film thickness in a narrow area is extremely high with respect to a support such as a wafer or glass, and the circuit or device is first attached. Affixing after fabrication or fabrication of circuits and devices after pasting is possible, which is suitable for the production of wiring boards and electronic devices.
図1は、本発明の積層体の製造方法の一実施態様を示す模式図である。FIG. 1 is a schematic view showing an embodiment of a method for producing a laminate according to the present invention. 図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図である。FIG. 2 is a schematic view showing one embodiment of the method for producing a device structure of the present invention. 図3は、パターン例を示す模式図である。FIG. 3 is a schematic diagram showing a pattern example. 図4は、クレーター部を示すAFM像である。FIG. 4 is an AFM image showing the crater portion. 図5は、図4に示すクレーター部の直線部分における断面AFM像である。FIG. 5 is a cross-sectional AFM image of the straight portion of the crater portion shown in FIG. 図6は、クレーター部を含むAFM像(10μm四方)である。FIG. 6 is an AFM image (10 μm square) including a crater portion. 図7は、クレーター部の直径の測定方法を説明するための説明図である。FIG. 7 is an explanatory diagram for explaining a method of measuring the diameter of the crater portion. 図8は、クレーター数の測定方法を説明するための説明図である。FIG. 8 is an explanatory diagram for explaining a method of measuring the number of craters. 図9は、デバイス構造体の一例である表示装置(表示用パネル)を示す断面図(a)および上面図(b)である。FIG. 9 is a cross-sectional view (a) and a top view (b) showing a display device (display panel) which is an example of a device structure.
(積層体の製造方法)
 本発明の積層体の製造方法は、少なくとも支持体とポリイミドフィルムとを用いて、これらから構成される積層体を製造する方法である。
(Laminate manufacturing method)
The manufacturing method of the laminated body of this invention is a method of manufacturing the laminated body comprised from these using a support body and a polyimide film at least.
<支持体>
 本発明における支持体は、無機物からなり基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、シリコンウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、シリコンウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
<Support>
The support in the present invention may be a plate made of an inorganic material that can be used as a substrate. Examples of the ceramic plate, silicon wafer, and metal composite include those obtained by laminating them, those in which they are dispersed, and those containing these fibers.
 前記ガラス板としては、石英ガラス、高ケイ酸ガラス(96%シリカ)、ソーダ石灰ガラス、鉛ガラス、アルミノホウケイ酸ガラス、ホウケイ酸ガラス(パイレックス(登録商標))、ホウケイ酸ガラス(無アルカリ)、ホウケイ酸ガラス(マイクロシート)、アルミノケイ酸塩ガラス等が含まれる。これらの中でも、線膨張係数が5ppm/℃以下のものが望ましく、市販品であれば、液晶用ガラスであるコーニング社製の「コーニング7059」や「コーニング1737」、「EAGLE」、旭硝子社製の「AN100」、日本電気硝子社製の「OA10」、SCHOTT社製の「AF32」などが望ましい。 Examples of the glass plate include quartz glass, high silicate glass (96% silica), soda lime glass, lead glass, aluminoborosilicate glass, borosilicate glass (Pyrex (registered trademark)), borosilicate glass (non-alkali), Borosilicate glass (microsheet), aluminosilicate glass and the like are included. Among these, those having a linear expansion coefficient of 5 ppm / ° C. or less are desirable, and commercially available products are “Corning 7059”, “Corning 1737”, “EAGLE”, and Asahi Glass Co. “AN100”, “OA10” manufactured by Nippon Electric Glass Co., Ltd., “AF32” manufactured by SCHOTT, etc. are desirable.
 前記セラミック板としては、Al23、Mullite、AlN、SiC、Si34、BN、結晶化ガラス、Cordierite、Spodumene、Pb-BSG+CaZrO3+Al23、Crystallized glass+Al23、Crystallized Ca-BSG、BSG+Quartz、BSG+Al23、Pb+BSG+Al23、Glass-ceramic、ゼロデュア材などの基板用セラミックス、TiO2、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、アルミナ、MgO、ステアタイト、BaTi49、BaTiO3、BaTi4+CaZrO3、BaSrCaZrTiO3、Ba(TiZr)O3、PMN-PTやPFN-PFWなどのキャパシター材料、PbNb26、Pb0.5Be0.5Nb26、PbTiO3、BaTiO3、PZT、0.855PZT-95PT-0.5BT、0.873PZT-0.97PT-0.3BT、PLZTなどの圧電材料が含まれる。 Examples of the ceramic plate include Al 2 O 3 , Mullite, AlN, SiC, Si 3 N 4 , BN, crystallized glass, Cordierite, Spodumene, Pb-BSG + CaZrO 3 + Al 2 O 3 , Crystallized glass + Al 2 O 3 , CrystallizedCalyzed. Ceramics for substrates such as BSG, BSG + Quartz, BSG + Al 2 O 3 , Pb + BSG + Al 2 O 3 , Glass-ceramic, Zerodur material, TiO 2 , strontium titanate, calcium titanate, magnesium titanate, alumina, MgO, steatite, BaTi 4 O 9, BaTiO 3, BaTi 4 + CaZrO 3, BaSrCaZrTiO 3, Ba (TiZr) O 3, capacitor materials, such as PMN-PT or PFN-PFW , PbNb 2 O 6, Pb 0.5 Be 0.5 Nb 2 O 6, PbTiO 3, BaTiO 3, PZT, 0.855PZT-95PT-0.5BT, 0.873PZT-0.97PT-0.3BT, a piezoelectric material such as PLZT Is included.
 前記シリコンウエハとしては、n型或はp型にドーピングされたシリコンウエハ、イントリンシックシリコンウエハ等の全てが含まれ、また、シリコンウエハの表面に酸化シリコン層や各種薄膜が堆積されたシリコンウエハも含まれ、シリコンウエハのほか、ゲルマニウム、シリコン-ゲルマニウム、ガリウム-ヒ素、アルミニウム-ガリウム-インジウム、窒素-リン-ヒ素-アンチモンがよく用いられている。さらに、InP(インジウム燐)、InGaAs、GaInNAs、LT、LN、ZnO(酸化亜鉛)やCdTe(カドミウムテルル)、ZnSe(セレン化亜鉛)などの汎用の半導体ウエハも含まれる。 The silicon wafer includes all of n-type or p-type doped silicon wafers, intrinsic silicon wafers, etc., and silicon wafers in which a silicon oxide layer or various thin films are deposited on the surface of the silicon wafer. In addition to silicon wafers, germanium, silicon-germanium, gallium-arsenic, aluminum-gallium-indium, and nitrogen-phosphorus-arsenic-antimony are often used. Furthermore, general-purpose semiconductor wafers such as InP (indium phosphorus), InGaAs, GaInNAs, LT, LN, ZnO (zinc oxide), CdTe (cadmium tellurium), ZnSe (zinc selenide) are also included.
 前記金属としては、W、Mo、Pt、Fe、Ni、Auといった単一元素金属、インコネル、モネル、ニモニック、炭素銅、Fe-Ni系インバー合金、スーパーインバー合金といった合金等が含まれる。また、これら金属に、他の金属層、セラミック層を付加してなる多層金属板も含まれる。この場合、付加層との全体のCTEが低ければ、主金属層にCu、Alなども用いられる。付加金属層として使用される金属としては、ポリイミドフィルムとの密着性を強固にするもの、拡散がないこと、耐薬品性や耐熱性が良いこと等の特性を有するものであれば限定されるものではないが、クロム、ニッケル、TiN、Mo含有Cuが好適な例として挙げられる。 Examples of the metal include single element metals such as W, Mo, Pt, Fe, Ni, and Au, alloys such as Inconel, Monel, Nimonic, carbon copper, Fe—Ni-based Invar alloy, and Super Invar alloy. In addition, a multilayer metal plate formed by adding other metal layers and ceramic layers to these metals is also included. In this case, if the total CTE with the additional layer is low, Cu, Al or the like is also used for the main metal layer. The metal used as the additional metal layer is limited as long as it has strong adhesion to the polyimide film, no diffusion, and good chemical resistance and heat resistance. Although it is not, chromium, nickel, TiN, and Mo containing Cu are mentioned as a suitable example.
 前記支持体の平面部分は、充分に平坦である事が望ましい。具体的には、表面粗さのP-V値が50nm以下、より好ましくは20nm以下、さらに好ましくは5nm以下である。これより粗いと、ポリイミドフィルムと支持体との剥離強度が不充分となる虞がある。 It is desirable that the planar portion of the support is sufficiently flat. Specifically, the PV value of the surface roughness is 50 nm or less, more preferably 20 nm or less, and still more preferably 5 nm or less. If it is rougher than this, the peel strength between the polyimide film and the support may be insufficient.
 本発明においては、前記支持体として、前記ポリイミドフィルムと対向する面における高さ1μm以上の欠点存在密度が100個/100平方cm以下である支持体を用いることが好ましい。支持体のポリイミドフィルムと対向する面における高さ1μm以上の欠点存在密度は、40個/100平方cm以下であることがより好ましく、15個/100平方cm以下であることがさらに好ましく、8個/100平方cm以下であることがなおさらに好ましく、5個/100平方cm以下であることが最も好ましい。欠点存在密度がこの範囲を超えると、ポリイミドフィルムと支持体との実効的な接触面積が減少し、良好接着部分において必要な接着強度を得られないことがあり、また逆にアンカー効果により易剥離部分の接着性が強くなり、剥離時に支障が出る場合がある。また欠点存在密度がこの範囲を超えると、支持体表面での光の散乱度合いが大きくなり、パターン化処理によって形成される良好接着部分と易剥離部分との境界が不明瞭となり、剥離の際に適切に切り込みを入れることが難しくなるなどの不都合が起こる場合がある。また欠点存在密度がこの範囲を超えると、デバイス加工の際に積層体の温度が175℃以上に加熱された場合、欠点部分が核となって、フクレや浮き、ブリスターなどの部分的な剥離が生じる場合がある。さらに欠点存在密度がこの範囲を超えると、確率的に高さが高い欠点が増えることになり、その結果、フィルムのデバイス形成面の凹凸が大きくなり、先のフクレや浮きと相まって、デバイスを形成する際にデバイス微細パターン形成のための露光工程において画像のぼやけ等の原因となり、デバイス形成が阻害されることがある。 In the present invention, as the support, it is preferable to use a support having a defect existence density of 100 μm / 100 cm 2 or less at a height of 1 μm or more on the surface facing the polyimide film. The defect existence density of 1 μm or more at the surface facing the polyimide film of the support is more preferably 40 pieces / 100 square cm or less, further preferably 15 pieces / 100 square cm or less, and 8 pieces. / 100 square cm or less is still more preferable, and 5/100 square cm or less is most preferable. If the density of defects exceeds this range, the effective contact area between the polyimide film and the support may be reduced, and the required adhesive strength may not be obtained at the good adhesion area. The adhesiveness of the part becomes strong, and trouble may occur at the time of peeling. If the defect density exceeds this range, the degree of light scattering on the surface of the support increases, and the boundary between the good adhesion part and the easy peeling part formed by the patterning process becomes unclear. There may be inconveniences such as making it difficult to cut properly. When the defect density exceeds this range, when the temperature of the laminate is heated to 175 ° C. or higher during device processing, the defect part becomes the core and partial peeling such as blistering, floating, blistering, etc. May occur. If the density of defects exceeds this range, the number of defects with a relatively high height will increase. As a result, the unevenness of the film device formation surface will increase, and the device will be formed in combination with the blisters and floats. In this case, an exposure process for forming a device fine pattern may cause image blurring and the like, and device formation may be hindered.
 本発明における支持体の欠点とは、キズ、窪み、突起などの、本来平面であるべき支持体表面の形状的な特異点、および、支持体表面に付着したゴミなどの異物により形成された凹凸を云う。また欠点の高さとは、支持体表面から、前記凹凸の頂点または底部までの垂直長さを意味する。本発明における欠点密度は実施例記載の方法によって測定される。
 なお、本発明で規定される支持体の欠点密度は、支持体にパターン化処理を施す場合には、カップリング剤処理を施した後のカップリング処理層を備えた支持体表面の欠点密度であり、ポリイミドフィルムのみにパターン化処理を施して、支持体にはパターン化処理を施さない場合には、パターン化処理を施さない状態における支持体の欠点密度である。
The defects of the support in the present invention are scratches, depressions, protrusions, and other irregularities formed by foreign matters such as dust adhering to the support surface. Say. The height of the defect means the vertical length from the support surface to the top or bottom of the unevenness. The defect density in the present invention is measured by the method described in the examples.
Note that the defect density of the support defined in the present invention is the defect density of the support surface provided with the coupling treatment layer after the coupling agent treatment when the support is subjected to patterning treatment. Yes, when the patterning process is performed only on the polyimide film and the support is not subjected to the patterning process, it is the defect density of the support in the state where the patterning process is not performed.
 支持体表面の欠点存在密度を所定範囲内に収めるには、元々欠点の存在密度が低い基板を用い、さらにクリーン環境下で取り扱うことが望ましく、具体的には、元々の欠点の存在密度が100個/100平方cm未満、好ましくは20個/100平方cm未満の基板を用い、米国連邦規格(Federal Standard 209D(1988年))でクラス1000以下、好ましくはクラス100以下に管理されたクリーン環境下でハンドリングすることが好ましい。また、元々の欠点の存在密度が100個/100平方cm未満、好ましくは20個/100平方cm未満の基板とするために、基板を洗浄することも好ましい選択肢のひとつである。特に、支持体にパターン化処理を施す場合、カップリング処理層を備えた支持体表面の欠点存在密度を所定範囲内に収める方法としては、元々欠点の存在密度が低い基板を用い、クリーン環境下でハンドリングすることはもちろんであるが、さらには、シランカップリング剤溶液をフィルタリングすることが好ましい。この濾過はシランカップリング剤溶液の塗布直前に行うことが好ましく、例えば、フィルタリング後のシランカップリング剤溶液の塗布は5分以内に行うことが好ましく、1分以内に行うことがより好ましい。濾過の手法は特に限定されないが、メンブレンフィルターを用いることが好ましく、特にスピンコート法で塗布する場合には、シリンジフィルターを装着したシリンジにて塗布液を滴下することにより、文字通り塗布直前のフィルタリングが可能となる。フィルター開口は1μm以下とすることが望ましい。 In order to keep the defect density of the support surface within a predetermined range, it is desirable to use a substrate having a low density of defects and handle it in a clean environment. Specifically, the density of defects of the original is 100. Using a substrate of less than 100 pieces / 100 square centimeters, preferably less than 20 pieces / 100 square centimeters, in a clean environment controlled by the Federal Standard (Federal Standard 209D (1988)) class 1000 or lower, preferably class 100 or lower. It is preferable to handle with. It is also a preferable option to clean the substrate in order to obtain a substrate having an original defect density of less than 100/100 square cm, preferably less than 20/100 square cm. In particular, when the support is subjected to patterning, as a method of keeping the defect density of the support surface provided with the coupling treatment layer within a predetermined range, a substrate having a low defect density is used in a clean environment. Of course, it is preferable to filter the silane coupling agent solution. This filtration is preferably performed immediately before application of the silane coupling agent solution. For example, application of the silane coupling agent solution after filtering is preferably performed within 5 minutes, more preferably within 1 minute. The method of filtration is not particularly limited, but it is preferable to use a membrane filter. In particular, when applying by a spin coat method, the application liquid is dropped by a syringe equipped with a syringe filter, so that filtering just before application is literally performed. It becomes possible. The filter opening is desirably 1 μm or less.
<ポリイミドフィルム>
 本発明におけるポリイミドフィルムは、ジアミン類と、脂環族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムである。このようなフィルムは、例えば、溶媒中でジアミン類とテトラカルボン酸類とを少なくとも反応させて得られるポリアミド酸(「ポリイミド前駆体」ともいう)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」ともいう)となし、さらにポリイミドフィルム作製用支持体上で、あるいは該ポリイミドフィルム作製用支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることによって得られる。なお、ここで言う「ポリイミドフィルム作製用支持体」は、本発明の積層体の構成部材として上述した「支持体」とは異なる。また、ポリイミドフィルムは、ジアミン類とテトラカルボン酸類とを反応させて得られたポリアミド酸溶液を、引き続き脱水閉環反応させてポリイミド溶液とし、該ポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して製膜することによっても得られる。
<Polyimide film>
The polyimide film in the present invention is a film obtained by a reaction between a diamine and a tetracarboxylic acid mainly composed of an alicyclic tetracarboxylic acid. Such a film is prepared by, for example, applying a polyamic acid (also referred to as “polyimide precursor”) solution obtained by reacting at least a diamine and a tetracarboxylic acid in a solvent to a support for preparing a polyimide film, and then drying. A green film (also referred to as “precursor film” or “polyamic acid film”), and further subjected to high-temperature heat treatment on the polyimide film production support or in a state of peeling off from the polyimide film production support. To obtain a dehydration ring closure reaction. Note that the “support for polyimide film production” referred to here is different from the “support” described above as a constituent member of the laminate of the present invention. In addition, the polyimide film is prepared by reacting a polyamic acid solution obtained by reacting diamines and tetracarboxylic acids, followed by dehydration ring-closing reaction to form a polyimide solution. The polyimide solution is applied to a polyimide film production support and dried. It can also be obtained by film formation.
 ポリアミド酸を構成するジアミン類としては、特に制限はなく、ポリイミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、芳香族ジアミン類の中では、ベンゾオキサゾール構造を有する芳香族ジアミン類がより好ましい。ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類は、単独で用いてもよいし二種以上を併用してもよい。 There is no restriction | limiting in particular as diamine which comprises a polyamic acid, The aromatic diamine, aliphatic diamine, alicyclic diamine etc. which are normally used for a polyimide synthesis | combination can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and among aromatic diamines, aromatic diamines having a benzoxazole structure are more preferable. When aromatic diamines having a benzoxazole structure are used, it is possible to develop a high elastic modulus, a low heat shrinkage, and a low linear expansion coefficient as well as a high heat resistance. Diamines may be used alone or in combination of two or more.
 ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。 The aromatic diamine having a benzoxazole structure is not particularly limited. For example, 5-amino-2- (p-aminophenyl) benzoxazole, 6-amino-2- (p-aminophenyl) benzoxazole, 5 -Amino-2- (m-aminophenyl) benzoxazole, 6-amino-2- (m-aminophenyl) benzoxazole, 2,2'-p-phenylenebis (5-aminobenzoxazole), 2,2 ' -P-phenylenebis (6-aminobenzoxazol), 1- (5-aminobenzoxazolo) -4- (6-aminobenzoxazolo) benzene, 2,6- (4,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d ′] bisoxazole, 2,6- (4,4′-diaminodiphenyl) benzo [1,2- : 4,5-d '] bisoxazole, 2,6- (3,4'-diaminodiphenyl) benzo [1,2-d: 5,4-d'] bisoxazole, 2,6- (3,4 '-Diaminodiphenyl) benzo [1,2-d: 4,5-d'] bisoxazole, 2,6- (3,3'-diaminodiphenyl) benzo [1,2-d: 5,4-d ' Bisoxazole, 2,6- (3,3′-diaminodiphenyl) benzo [1,2-d: 4,5-d ′] bisoxazole, and the like.
 上述したベンゾオキサゾール構造を有する芳香族ジアミン類以外の芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリンP)、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。 Examples of the aromatic diamine other than the aromatic diamine having the benzoxazole structure described above include 2,2′-dimethyl-4,4′-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl). ) -2-propyl] benzene (bisaniline P), 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene, 2,2′-ditrifluoromethyl-4,4′-diaminobiphenyl, 4, 4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) Phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Enyl] propane, 2,2-bis [4- (3-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, m-phenylenediamine, o-phenylenediamine, p-phenylene Diamine, m-aminobenzylamine, p-aminobenzylamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,3 '-Diaminodiphenyl sulfoxide, 3,4'-diaminodiphenyl sulfoxide, 4,4'-diaminodiphenyl sulfoxide, 3,3'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone 3,3'-Diaminobenzof Non, 3,4′-diaminobenzophenone, 4,4′-diaminobenzophenone, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, bis [4- (4-amino Phenoxy) phenyl] methane, 1,1-bis [4- (4-aminophenoxy) phenyl] ethane, 1,2-bis [4- (4-aminophenoxy) phenyl] ethane, 1,1-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,3-bis [4- (4-aminophenoxy) phenyl] propane, 2,2- Bis [4- (4-aminophenoxy) phenyl] propane, 1,1-bis [4- (4-aminophenoxy) phenyl] butane, 1, 3-bis [4- (4-aminophenoxy) phenyl] butane, 1,4-bis [4- (4-aminophenoxy) phenyl] butane, 2,2-bis [4- (4-aminophenoxy) phenyl] Butane, 2,3-bis [4- (4-aminophenoxy) phenyl] butane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3-methylphenyl ] Propane, 2,2-bis [4- (4-aminophenoxy) -3-methylphenyl] propane, 2- [4- (4-aminophenoxy) phenyl] -2- [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] propane, 2,2-bis [4- (4-aminophenoxy) fe ] -1,1,1,3,3,3-hexafluoropropane, 1,4-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenoxy) phenyl] sulfide, Bis [4- (4-aminophenoxy) phenyl] sulfoxide, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-amino Phenoxy) phenyl] ether, 1,3-bis [4- (4-aminophenoxy) benzoyl] benzene, 1,3-bis [4- (3-amino Enoxy) benzoyl] benzene, 1,4-bis [4- (3-aminophenoxy) benzoyl] benzene, 4,4′-bis [(3-aminophenoxy) benzoyl] benzene, 1,1-bis [4- ( 3-aminophenoxy) phenyl] propane, 1,3-bis [4- (3-aminophenoxy) phenyl] propane, 3,4'-diaminodiphenyl sulfide, 2,2-bis [3- (3-aminophenoxy) Phenyl] -1,1,1,3,3,3-hexafluoropropane, bis [4- (3-aminophenoxy) phenyl] methane, 1,1-bis [4- (3-aminophenoxy) phenyl] ethane 1,2-bis [4- (3-aminophenoxy) phenyl] ethane, bis [4- (3-aminophenoxy) phenyl] sulfoxide, 4,4′-bi [3- (4-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [3- (3-aminophenoxy) benzoyl] diphenyl ether, 4,4′-bis [4- (4-amino-α, α -Dimethylbenzyl) phenoxy] benzophenone, 4,4′-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] diphenylsulfone, bis [4- {4- (4-aminophenoxy) phenoxy} phenyl ] Sulfone, 1,4-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-aminophenoxy) phenoxy-α, α-dimethylbenzyl Benzene, 1,3-bis [4- (4-amino-6-trifluoromethylphenoxy) -α, α-dimethylbenzyl] benze 1,3-bis [4- (4-amino-6-fluorophenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-methylphenoxy) -α, α-dimethylbenzyl] benzene, 1,3-bis [4- (4-amino-6-cyanophenoxy) -α, α-dimethylbenzyl] benzene, 3,3′-diamino-4,4′-diphenoxybenzophenone 4,4′-diamino-5,5′-diphenoxybenzophenone, 3,4′-diamino-4,5′-diphenoxybenzophenone, 3,3′-diamino-4-phenoxybenzophenone, 4,4′- Diamino-5-phenoxybenzophenone, 3,4'-diamino-4-phenoxybenzophenone, 3,4'-diamino-5'-phenoxybenzophenone, 3,3'-dia Mino-4,4′-dibiphenoxybenzophenone, 4,4′-diamino-5,5′-dibiphenoxybenzophenone, 3,4′-diamino-4,5′-dibiphenoxybenzophenone, 3,3′-diamino- 4-biphenoxybenzophenone, 4,4'-diamino-5-biphenoxybenzophenone, 3,4'-diamino-4-biphenoxybenzophenone, 3,4'-diamino-5'-biphenoxybenzophenone, 1,3- Bis (3-amino-4-phenoxybenzoyl) benzene, 1,4-bis (3-amino-4-phenoxybenzoyl) benzene, 1,3-bis (4-amino-5-phenoxybenzoyl) benzene, 1,4 -Bis (4-amino-5-phenoxybenzoyl) benzene, 1,3-bis (3-amino-4-biphenoxy) Nzoyl) benzene, 1,4-bis (3-amino-4-biphenoxybenzoyl) benzene, 1,3-bis (4-amino-5-biphenoxybenzoyl) benzene, 1,4-bis (4-amino-) 5-biphenoxybenzoyl) benzene, 2,6-bis [4- (4-amino-α, α-dimethylbenzyl) phenoxy] benzonitrile, and some or all of the hydrogen atoms on the aromatic ring of the aromatic diamine Is a halogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group, a cyano group, or an alkyl halide having 1 to 3 carbon atoms in which part or all of the hydrogen atoms of the alkyl group or alkoxyl group are substituted with a halogen atom. An aromatic diamine substituted with a group or an alkoxyl group.
 前記脂肪族ジアミン類としては、例えば、1,2-ジアミノエタン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,8-ジアミノオクタン等が挙げられる。
 前記脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)、ジアミノジシクロヘキシルメタン等が挙げられる。
 芳香族ジアミン類以外のジアミン(脂肪族ジアミン類および脂環式ジアミン類)の合計量は、全ジアミン類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。
Examples of the aliphatic diamines include 1,2-diaminoethane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,8-diaminooctane, and the like.
Examples of the alicyclic diamines include 1,4-diaminocyclohexane, 4,4′-methylenebis (2,6-dimethylcyclohexylamine), diaminodicyclohexylmethane, and the like.
The total amount of diamines other than aromatic diamines (aliphatic diamines and alicyclic diamines) is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less, based on the total diamines. It is.
 ポリアミド酸を構成するテトラカルボン酸類は、光透過性の観点から、脂環族テトラカルボン酸類を主成分とする。具体的には、脂環族テトラカルボン酸類は、全テトラカルボン酸類の80質量%以上が好ましく、より好ましくは90質量%以上、さらに好ましくは95質量%以上、最も好ましくは100質量%である。これにより、光線透過率が高いポリイミドフィルムとなり、本発明の積層体を、例えば液晶表示素子、タッチパネル、ボトムエミッション型の発光素子、基板側受光の光電変換素子、カラーフィルター等の光学用途に使用することが可能になる。 The tetracarboxylic acids constituting the polyamic acid are mainly composed of alicyclic tetracarboxylic acids from the viewpoint of light transmittance. Specifically, the alicyclic tetracarboxylic acids are preferably 80% by mass or more of the total tetracarboxylic acids, more preferably 90% by mass or more, still more preferably 95% by mass or more, and most preferably 100% by mass. Thereby, it becomes a polyimide film with high light transmittance, and the laminate of the present invention is used for optical applications such as a liquid crystal display element, a touch panel, a bottom emission type light emitting element, a substrate side light receiving photoelectric conversion element, a color filter, and the like. It becomes possible.
 脂環族テトラカルボン酸類としては、例えば、シクロブタンテトラカルボン酸、シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、テトラシクロ[6.2.1.1.02,7]ドデカ-4,5,9,10-テトラカルボン酸、等の脂環族テトラカルボン酸、およびこれらの酸無水物が挙げられる。これらの酸無水物は、分子内に無水物構造が1個であるものであってもよいし、2個であるものであってもよい。好ましくは2個の無水物構造を有する二無水物が好適であり、例えば、シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物等が好ましい。なお、脂環族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 Examples of the alicyclic tetracarboxylic acids include cyclobutanetetracarboxylic acid, cyclopentanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic acid. , Bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid, tetracyclo [6.2.1.1.0 2,7 ] dodeca-4,5,9,10-tetracarboxylic Examples thereof include alicyclic tetracarboxylic acids such as acids, and acid anhydrides thereof. These acid anhydrides may have one anhydride structure in the molecule or two. Preferably, a dianhydride having two anhydride structures is suitable, for example, cyclobutanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4 4,4'-bicyclohexyltetracarboxylic dianhydride and the like are preferable. In addition, alicyclic tetracarboxylic acid may be used independently and may use 2 or more types together.
 ポリアミド酸を構成するテトラカルボン酸類としては、前記脂環族テトラカルボン酸類のほかに、ポリイミド合成に通常用いられるその他のテトラカルボン酸類、例えば、芳香族テトラカルボン酸類、脂肪族テトラカルボン酸類、またはこれらの酸無水物等を用いることができる。これらの中では、耐熱性を向上させうる点で、芳香族テトラカルボン酸類またはその酸無水物が好ましい。その他のテトラカルボン酸類が酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。その他のテトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。 As the tetracarboxylic acids constituting the polyamic acid, in addition to the alicyclic tetracarboxylic acids, other tetracarboxylic acids usually used for polyimide synthesis, for example, aromatic tetracarboxylic acids, aliphatic tetracarboxylic acids, or these An acid anhydride or the like can be used. Among these, aromatic tetracarboxylic acids or acid anhydrides thereof are preferable in that heat resistance can be improved. When other tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but preferably two anhydride structures (two Anhydride). Other tetracarboxylic acids may be used alone or in combination of two or more.
 芳香族テトラカルボン酸類としては、特に限定されないが、ピロメリット酸残基、すなわちピロメリット酸由来の構造を有するものであることが好ましく、その酸無水物であることがより好ましい。このような芳香族テトラカルボン酸類としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン酸無水物等が挙げられる。 The aromatic tetracarboxylic acids are not particularly limited, but are preferably pyromellitic acid residues, that is, those having a structure derived from pyromellitic acid, and more preferably acid anhydrides thereof. Examples of such aromatic tetracarboxylic acids include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride, 3 , 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 2,2-bis [4- (3,4-di Carboxyphenoxy) phenyl] propanoic anhydride and the like.
 脂環式テトラカルボン酸類以外のテトラカルボン酸類の合計量、すなわち芳香族テトラカルボン酸類および脂肪族テトラカルボン酸類の合計量は、透明性を損なわない範囲であればよく、例えば、全テトラカルボン酸類の20質量%以下が好ましく、より好ましくは10質量%以下、さらに好ましくは5質量%以下である。 The total amount of tetracarboxylic acids other than alicyclic tetracarboxylic acids, that is, the total amount of aromatic tetracarboxylic acids and aliphatic tetracarboxylic acids may be in a range that does not impair the transparency. 20 mass% or less is preferable, More preferably, it is 10 mass% or less, More preferably, it is 5 mass% or less.
 ポリアミド酸は、特に、下記の組み合わせのジアミン類とテトラカルボン酸類とから構成されるフィルムであることが好ましい。すなわち、
 2,2’-ジメチル-4,4’-ジアミノビフェニルと、シクロブタンテトラカルボン酸二無水物との組合せ。
 ビスアニリンPと、シクロブタンテトラカルボン酸二無水物との組合せ。
 1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼンと、シクロブタンテトラカルボン酸二無水物との組合せ。
 2,2’-ビス(トリフルオロメチル)ベンジジンと、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物との組合せ。
 4,4’-ビス(4-アミノフェノキシ)ビフェニルと、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物との組合せ。
 フェニレンジアミンと、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物との組合せ。
 4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)と、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物との組合せ。
 4,4’-ジアミノジフェニルエーテルと、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物との組合せ。
 ジアミノジシクロヘキシルメタンと、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物またはテトラシクロ[6.2.1.1.02,7]ドデカ-4,5,9,10-テトラカルボン酸二無水物との組合せ。
The polyamic acid is particularly preferably a film composed of diamines and tetracarboxylic acids in the following combinations. That is,
A combination of 2,2′-dimethyl-4,4′-diaminobiphenyl and cyclobutanetetracarboxylic dianhydride.
Combination of bisaniline P and cyclobutane tetracarboxylic dianhydride.
A combination of 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene and cyclobutanetetracarboxylic dianhydride.
A combination of 2,2'-bis (trifluoromethyl) benzidine and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
A combination of 4,4′-bis (4-aminophenoxy) biphenyl and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
A combination of phenylenediamine and 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride.
Combination of 4,4′-methylenebis (2,6-dimethylcyclohexylamine) and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
A combination of 4,4'-diaminodiphenyl ether and 1,2,4,5-cyclohexanetetracarboxylic dianhydride.
Diaminodicyclohexylmethane and bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic dianhydride or tetracyclo [6.2.1.1.0 2,7 ] dodeca-4,5 , 9,10-tetracarboxylic dianhydride combination.
 ジアミン類とテトラカルボン酸類との割合は、ジアミン類1モルに対して、テトラカルボン酸類が、好ましくは0.9~1.1モル、より好ましくは0.95~1.05モル、さらに好ましくは0.98~1.02モルである。 The ratio of diamines to tetracarboxylic acids is preferably 0.9 to 1.1 mol, more preferably 0.95 to 1.05 mol, and still more preferably tetracarboxylic acids with respect to 1 mol of diamines. 0.98 to 1.02 mol.
 ジアミン類とテトラカルボン酸類とを反応(重合)させてポリアミド酸を得る際に用いる溶媒は、原料となるモノマーおよび生成するポリアミド酸のいずれをも溶解するものであれば特に限定されないが、極性有機溶媒が好ましく、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリックアミド、エチルセロソルブアセテート、ジエチレングリコールジメチルエーテル、スルホラン、ハロゲン化フェノール類等が挙げられる。これらの溶媒は、単独で用いてもよいし二種以上を併用して用いてもよい。これら溶媒の使用量は、原料となるモノマーを溶解するのに十分な量であればよく、具体的な使用量としては、反応液(モノマーを溶解した溶液)に占める全モノマーの量が、通常5~40質量%、好ましくは10~30質量%となるような量が挙げられる。 The solvent used in the reaction (polymerization) of diamines and tetracarboxylic acids to obtain a polyamic acid is not particularly limited as long as it dissolves both the raw material monomer and the produced polyamic acid. Solvents are preferred, for example, N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric Examples include amide, ethyl cellosolve acetate, diethylene glycol dimethyl ether, sulfolane, and halogenated phenols. These solvents may be used alone or in combination of two or more. The amount of these solvents used may be an amount sufficient to dissolve the raw material monomer. As a specific amount used, the amount of all monomers in the reaction solution (solution in which the monomer is dissolved) is usually The amount is 5 to 40% by mass, preferably 10 to 30% by mass.
 ポリアミド酸を得るための重合反応(以下、単に「重合反応」ともいう)の条件は、従来公知の条件を適用すればよく、例えば、有機溶媒中、0~80℃の温度範囲で、10分~30時間連続して撹拌および/または混合することが挙げられる。必要により重合反応を分割して行ったり、反応温度を上下させてもかまわない。モノマーの添加順序には特に制限はないが、ジアミン類の溶液中にテトラカルボン酸類を添加するのが好ましい。 The conditions for the polymerization reaction (hereinafter also simply referred to as “polymerization reaction”) for obtaining the polyamic acid may be conventionally known conditions. For example, in an organic solvent at a temperature range of 0 to 80 ° C. for 10 minutes. Stirring and / or mixing continuously for ˜30 hours. If necessary, the polymerization reaction may be divided or the reaction temperature may be increased or decreased. Although there is no restriction | limiting in particular in the addition order of a monomer, It is preferable to add tetracarboxylic acids in the solution of diamines.
 また重合反応中に真空脱泡することも、良質なポリアミド酸溶液を製造するのに有効である。さらに重合反応の前にジアミン類に少量の末端封止剤を添加して重合を制御してもよい。末端封止剤としては、ジカルボン酸無水物、トリカルボン酸無水物、アニリン誘導体などが挙げられる。これらの中でも具体的には、無水フタル酸、無水マレイン酸、4-エチニル無水フタル酸、4-フェニルエチニル無水フタル酸、エチニルアニリンが好ましく、特に好ましくは無水マレイン酸がよい。末端封止剤を使用する場合の使用量は、ジアミン類1モルに対して、好ましくは0.001~1.0モルである。 Also, vacuum defoaming during the polymerization reaction is effective for producing a good quality polyamic acid solution. Further, the polymerization may be controlled by adding a small amount of a terminal blocking agent to the diamine before the polymerization reaction. Examples of the terminal blocking agent include dicarboxylic acid anhydrides, tricarboxylic acid anhydrides, and aniline derivatives. Among these, phthalic anhydride, maleic anhydride, 4-ethynyl phthalic anhydride, 4-phenylethynyl phthalic anhydride, and ethynyl aniline are preferable, and maleic anhydride is particularly preferable. The amount used when the end-capping agent is used is preferably 0.001 to 1.0 mol with respect to 1 mol of the diamine.
 重合反応によって得られるポリアミド酸の還元粘度は1.6~7.0dl/gの範囲が好ましく、1.8~5.8dl/gの範囲がさらに好ましく、2.1~5.3dl/gの範囲がなお好ましい。
 重合反応によって得られるポリアミド酸溶液に占めるポリアミド酸の質量は、好ましくは5~40質量%、より好ましくは10~30質量%である。前記ポリアミド酸溶液の粘度は、送液の安定性の点から、ブルックフィールド粘度計による測定(25℃)においては10~2000Pa・sであることが好ましく、100~1000Pa・sであることがさらに好ましい。ポリアミド酸溶液に占めるポリアミド酸の質量は、ポリアミド酸溶液の粘度が前記範囲に入るように、好ましい範囲を逸脱しない範囲で調整される。
The reduced viscosity of the polyamic acid obtained by the polymerization reaction is preferably in the range of 1.6 to 7.0 dl / g, more preferably in the range of 1.8 to 5.8 dl / g, and 2.1 to 5.3 dl / g. A range is still preferred.
The mass of the polyamic acid in the polyamic acid solution obtained by the polymerization reaction is preferably 5 to 40% by mass, more preferably 10 to 30% by mass. The viscosity of the polyamic acid solution is preferably 10 to 2000 Pa · s, more preferably 100 to 1000 Pa · s, as measured with a Brookfield viscometer (25 ° C.), from the viewpoint of liquid feeding stability. preferable. The mass of the polyamic acid in the polyamic acid solution is adjusted within a range not departing from the preferred range so that the viscosity of the polyamic acid solution falls within the above range.
 重合反応によって得られるポリアミド酸溶液には、さらにポリイミドフィルムの性能向上を目的として、消泡剤、レベリング剤、難燃剤などの各種添加物を加えてもよい。これらの添加方法、添加時期は特に限定されるものではない。 Various additives such as an antifoaming agent, a leveling agent, and a flame retardant may be added to the polyamic acid solution obtained by the polymerization reaction for the purpose of further improving the performance of the polyimide film. These addition methods and addition times are not particularly limited.
 重合反応により得られるポリアミド酸溶液からポリイミドフィルムを形成するには、ポリアミド酸溶液をポリイミドフィルム作製用支持体上に塗布して乾燥することによりグリーンフィルム(自己支持性の前駆体フィルム)を得、次いでグリーンフィルムを熱処理に供することでイミド化反応させる方法が好ましく採用される。ポリイミドフィルム作製用支持体へのポリアミド酸溶液の塗布は、例えば、スピンコート、ドクターブレード、アプリケーター、コンマコーター、スクリーン印刷法、スリットコート、リバースコート、ディップコート等のほか、スリット付き口金からの流延、押出機による押出し等を含むが、これらに限られず、従来公知の溶液の塗布手段を適宜用いることができる。ポリアミド酸溶液の塗布量は、所望するポリイミドフィルムの膜厚に応じて適宜設定すればよい。塗布したポリアミド酸溶液を乾燥する際の加熱温度は、50℃~120℃が好ましく、80℃~100℃がさらに好ましい。乾燥時間は5分~3時間が好ましく、15分~2時間がさらに好ましい。乾燥後のグリーンフィルム中の残溶媒量は25~50質量%が好ましく、35~45質量%がさらに好ましい。グリーンフィルムを熱処理する際の温度は、例えば150~550℃が好ましく、より好ましくは280~520℃である。熱処理時間は、0.05~10時間が望ましい。 In order to form a polyimide film from the polyamic acid solution obtained by the polymerization reaction, a green film (self-supporting precursor film) is obtained by applying and drying the polyamic acid solution on a polyimide film production support, Next, a method of imidizing the green film by subjecting it to a heat treatment is preferably employed. For example, spin coating, doctor blade, applicator, comma coater, screen printing method, slit coating, reverse coating, dip coating, etc., as well as application of the polyamic acid solution to the polyimide film production support, can be performed from a slit-equipped die. Including, but not limited to, extrusion using an extruder, conventionally known solution application means can be used as appropriate. What is necessary is just to set the application quantity of a polyamic-acid solution suitably according to the film thickness of the desired polyimide film. The heating temperature for drying the coated polyamic acid solution is preferably 50 ° C. to 120 ° C., more preferably 80 ° C. to 100 ° C. The drying time is preferably 5 minutes to 3 hours, more preferably 15 minutes to 2 hours. The amount of residual solvent in the green film after drying is preferably 25 to 50% by mass, more preferably 35 to 45% by mass. The temperature at which the green film is heat-treated is, for example, preferably 150 to 550 ° C., more preferably 280 to 520 ° C. The heat treatment time is preferably 0.05 to 10 hours.
 本発明におけるポリイミドフィルムは、ガラス転移温度(Tg)が250℃以上である。フィルムのガラス転移温度が250℃未満であると、耐熱性が不足することになり、積層体の用途が制限されることになる。ポリイミドフィルムのガラス転移温度は、好ましくは270℃以上、より好ましくは310℃以上であり、さらに好ましくは360℃以上である。ポリイミドフィルムのガラス転移温度の上限は特に制限されないが、好ましくは520℃以下、より好ましくは480℃以下である。本発明におけるガラス転移温度は、示差熱分析(DSC)により求めるものである。 The polyimide film in the present invention has a glass transition temperature (Tg) of 250 ° C. or higher. When the glass transition temperature of the film is less than 250 ° C., the heat resistance is insufficient, and the use of the laminate is limited. The glass transition temperature of a polyimide film becomes like this. Preferably it is 270 degreeC or more, More preferably, it is 310 degreeC or more, More preferably, it is 360 degreeC or more. The upper limit of the glass transition temperature of the polyimide film is not particularly limited, but is preferably 520 ° C. or lower, more preferably 480 ° C. or lower. The glass transition temperature in the present invention is determined by differential thermal analysis (DSC).
 本発明におけるポリイミドフィルムは、380nm~700nmの平均光線透過率(以下、単に「平均光線透過率」と称することもある)が85%以上である。本発明にかかるポリイミドフィルムは上述したように脂環族テトラカルボン酸類を主成分として構成されるので、透明性が高く、85%以上の平均光線透過率を有するものとなる。ポリイミドフィルムの平均光線透過率は、好ましくは87%以上、さらに好ましくは89%である。本発明における平均光線透過率は、例えば実施例で後述する方法により測定することができる。 The polyimide film in the present invention has an average light transmittance of 380 nm to 700 nm (hereinafter sometimes simply referred to as “average light transmittance”) of 85% or more. Since the polyimide film according to the present invention is composed mainly of alicyclic tetracarboxylic acids as described above, it has high transparency and has an average light transmittance of 85% or more. The average light transmittance of the polyimide film is preferably 87% or more, and more preferably 89%. The average light transmittance in the present invention can be measured, for example, by the method described later in Examples.
 本発明におけるポリイミドフィルムは、ヘイズ値(HAZE)が1.0%以下であることが好ましく、より好ましくは0.8%以下、さらに好ましくは0.6%以下である。ヘイズ値が前記範囲であれば、良好な透明性を保持することができる。なお、フィルムのヘイズ値は、例えば実施例で後述する方法により測定することができる。 The polyimide film in the present invention preferably has a haze value (HAZE) of 1.0% or less, more preferably 0.8% or less, and still more preferably 0.6% or less. If the haze value is within the above range, good transparency can be maintained. In addition, the haze value of a film can be measured by the method mentioned later in an Example, for example.
 本発明におけるポリイミドフィルムは、YI値(イエローインデックス)が20以下であることが好ましく、さらに好ましくは10以下、さらに好ましくは8以下、さらに好ましくは5以下、なおさらに好ましくは3以下である。YI値が前記範囲であれば、良好な透明性を保持することができる。なお、フィルムのYI値は、例えば実施例で後述する方法により測定することができる。 The polyimide film in the present invention preferably has a YI value (yellow index) of 20 or less, more preferably 10 or less, further preferably 8 or less, more preferably 5 or less, and still more preferably 3 or less. If the YI value is within the above range, good transparency can be maintained. In addition, the YI value of a film can be measured by the method mentioned later in an Example, for example.
 本発明におけるポリイミドフィルムは、引張弾性率が0.3~7.0GPaであることが好ましい。より好ましくは0.6GPa以上、6.3GPa以下であり、さらに好ましくは1.2GPa以上、5.6GPa以下である。フィルムの引張弾性率が前記範囲より低いと、搬送機器等で加わる張力により変形が大きくなり、ハンドリング性やデバイス形成時に支障が出る虞があり、一方、前記範囲より高いと、フィルムの剛性が強くなりすぎ、引き裂き強度やフレキシビリティが低下する虞がある。なお、フィルムの引張弾性率は、例えば実施例で後述する方法により測定することができる。 The polyimide film in the present invention preferably has a tensile modulus of 0.3 to 7.0 GPa. More preferably, it is 0.6 GPa or more and 6.3 GPa or less, More preferably, it is 1.2 GPa or more and 5.6 GPa or less. If the tensile modulus of the film is lower than the above range, the deformation may increase due to the tension applied by the conveying device, etc., and there is a risk of hindrance during handling and device formation. If it becomes too much, the tear strength and flexibility may be reduced. In addition, the tensile elasticity modulus of a film can be measured by the method mentioned later in an Example, for example.
 ポリイミドフィルムの線膨張係数(CTE)は、好ましくは0ppm/℃以上、70ppm/℃以下であり、より好ましくは3ppm/℃以上、52ppm/℃以下であり、さらに好ましくは6ppm/℃以上、36ppm/℃以下であり、特に好ましくは30ppm/℃以下である。CTEが前記範囲、特に30ppm/℃以下であると、一般的な支持体との線膨張係数の差を小さく保つことができ、熱を加えるプロセスに供してもポリイミドフィルムと無機物からなる支持体とが剥がれることを回避できる。なお本発明における線膨張係数(CTE)は、30℃から150℃の間の平均の線膨張係数を意味する。 The linear expansion coefficient (CTE) of the polyimide film is preferably 0 ppm / ° C. or more and 70 ppm / ° C. or less, more preferably 3 ppm / ° C. or more and 52 ppm / ° C. or less, and further preferably 6 ppm / ° C. or more and 36 ppm / ° C. ° C or less, particularly preferably 30 ppm / ° C or less. When the CTE is in the above-mentioned range, particularly 30 ppm / ° C. or less, the difference in linear expansion coefficient from a general support can be kept small, and the support made of a polyimide film and an inorganic substance even when subjected to a heating process Can be prevented from peeling off. In addition, the linear expansion coefficient (CTE) in this invention means the average linear expansion coefficient between 30 degreeC and 150 degreeC.
 本発明におけるポリイミドフィルムの厚さは、3~150μmである。ポリイミドフィルムの厚さが前記範囲であると、狭小部への適用が容易になり、センサーなどの素子の高性能化や電子部品の軽量化、小型化、薄型化に大きく貢献できる。ポリイミドフィルムの厚さが3μm未満では、厳密に厚さを制御することが難しく、また支持体からの剥離が困難になり、一方、150μmを超えると、支持体から剥がす際にポリイミドフィルムの折れ曲がりなどが起こり易くなる。ポリイミドフィルムの厚さは、好ましくは6.5μm以上、より好ましくは11μm以上、さらに好ましくは20μm以上であり、好ましくは120μm以下、より好ましくは100μm以下、さらに好ましくは80μm以下、最も好ましくは60μm以下である。 The thickness of the polyimide film in the present invention is 3 to 150 μm. When the thickness of the polyimide film is within the above range, it can be easily applied to a narrow portion, and can greatly contribute to high performance of elements such as sensors and weight reduction, size reduction, and thickness reduction of electronic components. If the thickness of the polyimide film is less than 3 μm, it is difficult to strictly control the thickness, and peeling from the support becomes difficult. On the other hand, if the thickness exceeds 150 μm, the polyimide film is bent when peeled off from the support. Is likely to occur. The thickness of the polyimide film is preferably 6.5 μm or more, more preferably 11 μm or more, further preferably 20 μm or more, preferably 120 μm or less, more preferably 100 μm or less, still more preferably 80 μm or less, and most preferably 60 μm or less. It is.
 本発明におけるポリイミドフィルムの厚さ斑は、20%以下であることが好ましく、より好ましくは12%以下、さらに好ましくは7%以下、特に好ましくは4%以下であり、最も好ましくは2%以下である。厚さ斑が20%を超えると、狭小部へ適用し難くなる傾向がある。なお、フィルムの厚さ斑は、例えば接触式の膜厚計にて被測定フィルムから無作為に10点程度の位置を抽出してフィルム厚を測定し、下記式に基づき求めることができる。
 フィルムの厚さ斑(%)
 =100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
The thickness unevenness of the polyimide film in the present invention is preferably 20% or less, more preferably 12% or less, further preferably 7% or less, particularly preferably 4% or less, and most preferably 2% or less. is there. When the thickness unevenness exceeds 20%, it tends to be difficult to apply to narrow portions. In addition, the thickness unevenness of a film can be calculated | required based on the following formula, for example, extracting about 10 points | pieces positions from a film to be measured at random with a contact-type film thickness meter, measuring film thickness.
Film thickness spots (%)
= 100 x (maximum film thickness-minimum film thickness) ÷ average film thickness
 ポリイミドフィルムは、その製造時において幅が300mm以上、長さが10m以上の長尺ポリイミドフィルムとして巻き取られた形態で得られるものが好ましく、巻取りコアに巻き取られたロール状ポリイミドフィルムの形態のものがより好ましい。 The polyimide film is preferably obtained in the form of being wound as a long polyimide film having a width of 300 mm or more and a length of 10 m or more at the time of production, and a form of a roll-shaped polyimide film wound on a winding core Are more preferred.
 ポリイミドフィルムにおいては、ハンドリング性および生産性を確保する為、フィルムを構成するポリイミド中に滑材(粒子)を添加・含有させて、ポリイミドフィルム表面に微細な凹凸を付与して滑り性を確保することが好ましい。
 前記滑材(粒子)とは、無機物からなる微粒子であり、金属、金属酸化物、金属窒化物、金属炭素化物、金属酸塩、リン酸塩、炭酸塩、タルク、マイカ、クレイ、その他粘土鉱物等からなる粒子を用いることができる。好ましくは、酸化珪素、酸化チタン、酸化アルミニウム、リン酸カルシウム、リン酸水素カルシウム、リン酸二水素カルシウム、ピロリン酸ジルコニウム、ピロリン酸カルシウム、ヒドロキシアパタイト、炭酸カルシウム、ガラスフィラーなどの金属酸化物、リン酸塩、炭酸塩を用いることができる。滑材は1種のみであってもよいし、2種以上であってもよい。
In the polyimide film, in order to ensure handling and productivity, a sliding material (particles) is added to and contained in the polyimide constituting the film to give the polyimide film a surface with fine irregularities to ensure slipperiness. It is preferable.
The lubricant (particles) are fine particles made of an inorganic substance, such as metals, metal oxides, metal nitrides, metal carbonides, metal acid salts, phosphates, carbonates, talc, mica, clay, and other clay minerals. Etc. can be used. Preferably, metal oxides such as silicon oxide, titanium oxide, aluminum oxide, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, zirconium pyrophosphate, calcium pyrophosphate, hydroxyapatite, calcium carbonate, glass filler, phosphates, Carbonates can be used. Only one type of lubricant may be used, or two or more types may be used.
 前記滑材(粒子)の体積平均粒子径は、通常0.001~10μmであり、好ましくは0.03μm以上、2.5μm以下、より好ましくは0.05μm以上、0.7μm以下、さらに好ましくは0.05μm以上、0.3μm以下である。かかる体積平均粒子径は光散乱法で得られる測定値を基準とする。粒子径が下限より小さいと、ポリイミドフィルムの工業的生産が困難となり、また上限を超えると、表面の凹凸が大きくなりすぎて貼り付け強度が弱くなり、実用上の支障が出る虞がある。 The volume average particle diameter of the lubricant (particles) is usually 0.001 to 10 μm, preferably 0.03 μm or more and 2.5 μm or less, more preferably 0.05 μm or more and 0.7 μm or less, and still more preferably. It is 0.05 μm or more and 0.3 μm or less. The volume average particle diameter is based on a measurement value obtained by a light scattering method. If the particle diameter is smaller than the lower limit, industrial production of the polyimide film becomes difficult, and if the upper limit is exceeded, the surface irregularities become excessively large and the bonding strength becomes weak, which may cause practical problems.
 前記滑材の添加量は、ポリアミド酸溶液中のポリマー固形分に対する添加量として、0.05質量%以上、50質量%以下であることが好ましく、より好ましくは0.1質量%以上、3質量%以下、さらに好ましくは0.20質量%以上、1.0質量%以下である。滑材の添加量が少なすぎると、滑材添加の効果が期待し難く、滑り性の確保が十分ではなくポリイミドフィルム製造に支障をきたす場合があり、一方、多すぎると、フィルムの表面凹凸が大きくなり過ぎて、滑り性の確保が見られても平滑性の低下を招いたり、ポリイミドフィルムの破断強度や破断伸度の低下を招いたり、CTEの上昇を招くなどの課題を招く虞がある。 The addition amount of the lubricant is preferably 0.05% by mass or more and 50% by mass or less, more preferably 0.1% by mass or more and 3% by mass with respect to the polymer solid content in the polyamic acid solution. % Or less, more preferably 0.20 mass% or more and 1.0 mass% or less. If the amount of lubricant added is too small, it is difficult to expect the effect of lubricant addition, and the sliding property may not be sufficiently secured, which may hinder polyimide film production. Even if it becomes too large and the slipperiness is ensured, there is a risk that the smoothness is lowered, the breaking strength and breaking elongation of the polyimide film are lowered, and the CTE is raised. .
 ポリイミドフィルムに滑材(粒子)を添加・含有させる場合、滑材が均一に分散した単層のポリイミドフィルムとしてもよいが、例えば、一方の面が滑材を含有させたポリイミドフィルムで構成され、他方の面が滑材を含有しないか含有していても滑材含有量が少量であるポリイミドフィルムで構成された多層のポリイミドフィルムとしてもよい。このような多層のポリイミドフィルムにおいては、一方の層(フィルム)表面に微細な凹凸が付与されて該層(フィルム)で滑り性を確保することができ、良好なハンドリング性や生産性を確保できる。以下、かかる多層のポリイミドフィルムの製造について説明する。 When a lubricant (particle) is added to and contained in a polyimide film, it may be a single-layer polyimide film in which the lubricant is uniformly dispersed. For example, one surface is composed of a polyimide film containing a lubricant, Even if the other surface does not contain or contains a lubricant, a multilayer polyimide film composed of a polyimide film having a small amount of lubricant may be used. In such a multilayer polyimide film, fine irregularities are imparted to the surface of one layer (film), and slipperiness can be ensured with the layer (film), and good handling properties and productivity can be secured. . Hereinafter, the production of such a multilayer polyimide film will be described.
 多層のポリイミドフィルムは、例えば、ポリアミド酸溶液(ポリイミドの前駆体溶液)として、滑材、好ましくは平均粒子径0.05~2.5μm程度の滑材をポリアミド酸溶液中のポリマー固形分に対して0.05質量%~50質量%、好ましくは0.10質量%~3.0質量%、より好ましくは0.20質量%~1.0質量%含有したポリアミド酸溶液(i)と、滑材を含有しないか又はその含有量が前記ポリアミド酸溶液(i)中の滑材量の好ましくは60質量%以下、より好ましくは30質量%以下であるポリアミド酸溶液(ii)の2種を用いて製造することが好ましい。 The multilayer polyimide film is made of, for example, a polyamic acid solution (polyimide precursor solution) as a lubricant, preferably a lubricant having an average particle size of about 0.05 to 2.5 μm with respect to the solid content of the polymer in the polyamic acid solution. 0.05% by mass to 50% by mass, preferably 0.10% by mass to 3.0% by mass, more preferably 0.20% by mass to 1.0% by mass, and a polyamic acid solution (i), Two types of polyamic acid solutions (ii) that do not contain a material or whose content is preferably 60% by mass or less, more preferably 30% by mass or less of the amount of lubricant in the polyamic acid solution (i) are used. It is preferable to manufacture.
 多層ポリイミドフィルムの多層化(積層)方法は、両層の密着に問題が生じなければ、特に限定されるものではなく、かつ接着剤層などを介することなく密着するものであればよい。例えば、i)一方のポリイミドフィルムを作製後、このポリイミドフィルム上に他方のポリアミド酸溶液を連続的に塗布してイミド化する方法、ii)一方のポリアミド酸溶液を流延しポリアミド酸フィルムを作製後、このポリアミド酸フィルム上に他方のポリアミド酸溶液を連続的に塗布し、その後イミド化する方法、iii)共押し出しによる方法、iv)滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成したフィルムの上に、滑材を多く含有するポリアミド酸溶液をスプレーコート、Tダイ塗工などで塗布してイミド化する方法などが挙げられる。好ましくは、上記i)や上記ii)の方法がよい。 The multilayer (lamination) method of the multilayer polyimide film is not particularly limited as long as there is no problem in adhesion between both layers, and any method may be used as long as the adhesion is achieved without using an adhesive layer or the like. For example, i) a method in which one polyimide film is prepared and then the other polyamic acid solution is continuously applied onto the polyimide film to imidize; ii) one polyamic acid solution is cast to produce a polyamic acid film. Thereafter, the other polyamic acid solution is continuously applied onto the polyamic acid film, and then imidized, iii) a method by co-extrusion, iv) a polyamide containing no or a small amount of lubricant Examples thereof include a method in which a polyamic acid solution containing a large amount of a lubricant is applied on a film formed from an acid solution by spray coating, T-die coating, or the like, and imidized. The methods i) and ii) are preferable.
 多層のポリイミドフィルムにおける各層の厚さの比率は、特に限定されないが、滑材を多く含有するポリアミド酸溶液で形成されたフィルム(層)を(a)層、滑材を含有しないか又はその含有量が少量であるポリアミド酸溶液で形成されたフィルム(層)を(b)層とすると、(a)層/(b)層は0.05~0.95が好ましい。(a)層/(b)層が0.95を超えると(b)層の平滑性が失われる傾向となり、一方0.05未満の場合、表面特性の改良効果が不足し易滑性が不十分になることがある。 The ratio of the thickness of each layer in the multilayer polyimide film is not particularly limited, but the film (layer) formed of the polyamic acid solution containing a large amount of the lubricant (a) layer, does not contain the lubricant or contains it When the film (layer) formed of the polyamic acid solution with a small amount is the layer (b), the layer (a) / (b) layer is preferably 0.05 to 0.95. If the (a) layer / (b) layer exceeds 0.95, the smoothness of the (b) layer tends to be lost. On the other hand, if it is less than 0.05, the effect of improving the surface properties is insufficient and the slipperiness is not good. May be enough.
 前記ポリイミドフィルムには、少なくとも前記支持体に対向させる面にプラズマ処理を施しておくことが好ましい。プラズマ処理を施すことにより、ポリイミドフィルム表面は官能基が存在する活性化した状態に改質され、支持体に対する良好な接着が可能になる。 It is preferable that the polyimide film is subjected to plasma treatment on at least the surface facing the support. By applying the plasma treatment, the surface of the polyimide film is modified to an activated state in which a functional group is present, and good adhesion to the support becomes possible.
 プラズマ処理は、特に限定されるものではないが、真空中でのRFプラズマ処理、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、大気圧プラズマ処理、コロナ処理などがあり、フッ素を含むガス処理、イオン源を使ったイオン打ち込み処理、PBII法を使った処理、フレーム処理、イトロ処理なども含める。これらの中でも真空中でのRFプラズマ処理、マイクロ波プラズマ処理、大気圧プラズマ処理が好ましい。 The plasma treatment is not particularly limited, but includes RF plasma treatment in vacuum, microwave plasma treatment, microwave ECR plasma treatment, atmospheric pressure plasma treatment, corona treatment, etc., gas treatment containing fluorine, ion Also includes ion implantation using a source, processing using a PBII method, frame processing, intro processing, and the like. Among these, RF plasma treatment, microwave plasma treatment, and atmospheric pressure plasma treatment in vacuum are preferable.
 プラズマ処理の適当な条件としては、酸素プラズマ、CF4やC26などフッ素を含むプラズマなど化学的にエッチング効果が高いことが知られるプラズマ、或はArプラズマのように物理的なエネルギーをポリイミド表面に与えて物理的にエッチングする効果の高いプラズマによる処理が望ましい。また、CO2、H2、N2などのプラズマ、およびこれらの混合気体による処理や、さらに水蒸気を付加して行う処理も好ましい。短時間での処理を目指す場合、エネルギー密度が高く、プラズマ中のイオンの持つ運動エネルギーが高いプラズマ、活性種の数密度が高いプラズマによる処理が望ましい。この観点からは、マイクロ波プラズマ処理、マイクロ波ECRプラズマ処理、高いエネルギーのイオンを打ち込みやすいイオン源によるプラズマ照射、PBII法なども望ましい。 Appropriate conditions for the plasma treatment include oxygen plasma, plasma containing fluorine such as CF 4 and C 2 F 6, plasma known to have a high etching effect, or physical energy such as Ar plasma. It is desirable to use plasma with a high effect of applying to the polyimide surface and physically etching. In addition, treatment with plasma such as CO 2 , H 2 , N 2 , or a mixed gas thereof, or treatment with addition of water vapor is also preferable. When aiming at processing in a short time, it is desirable to use plasma with high energy density, high kinetic energy of ions in the plasma, and plasma with high number density of active species. From this point of view, microwave plasma treatment, microwave ECR plasma treatment, plasma irradiation with an ion source that easily implants high-energy ions, PBII method, and the like are also desirable.
 プラズマ処理の持つ効果としては、上述した表面官能基の付加、およびこれに伴う接触角の変化、接着性の向上、表面汚染の除去などのほか、デスミアと呼ばれる、加工に伴う不規則形状物の除去などの表面のエッチング効果がある。特に有機高分子とセラミックなどの無機物ではエッチングされやすさが全く異なる為、無機物に比べて結合エネルギーの低い有機高分子のみが選択的にエッチングされることになる。このため、エッチング作用のあるガス種や放電条件を用いると、選択的に有機高分子のみがエッチングされて、滑材を露出させるという作用も生じる。 The effects of plasma treatment include the addition of the above-mentioned surface functional groups, the change in contact angle accompanying this, improvement in adhesion, removal of surface contamination, etc., as well as the removal of irregularly shaped objects associated with processing called desmear. There is a surface etching effect such as removal. In particular, since organic polymers and inorganic materials such as ceramics are completely different in etching, only organic polymers having a lower binding energy than inorganic materials are selectively etched. For this reason, when an etching gas type or discharge condition is used, only the organic polymer is selectively etched, and the lubricant is exposed.
 なお、前記プラズマ処理以外にフィルム表面のエッチング作用を得られる手段として、薬液を併用した場合も含めたパッドによる研磨、ブラシ研磨、薬液をしみこませたスポンジによる研磨、研磨パッド中に研磨粒子を入れたものによる研磨、サンドブラスト、ウェットブラストなどが挙げられ、これら手段をプラズマ処理とともに採用してもよい。 In addition to the above plasma treatment, as a means of obtaining an etching effect on the film surface, polishing with a pad including the case where a chemical solution is used in combination, brush polishing, polishing with a sponge soaked with a chemical solution, and putting abrasive particles in the polishing pad Examples include polishing with sand, sand blasting, wet blasting, and the like, and these means may be employed together with plasma treatment.
 前記プラズマ処理は、ポリイミドフィルムの片面のみに施してもよいし、両面に施してもよい。片面にプラズマ処理を行う場合、並行平板型電極でのプラズマ処理で片側の電極上にポリイミドフィルムを接して置くことにより、ポリイミドフィルムの電極と接していない側の面のみにプラズマ処理を施すことができる。また2枚の電極間の空間に電気的に浮かせる状態でポリイミドフィルムを置くようにすれば、両面にプラズマ処理が行える。また、ポリイミドフィルムの片面に保護フィルムを貼った状態でプラズマ処理を行うことで片面処理が可能となる。なお保護フィルムとしては粘着剤付のPETフィルムやポリオレフィンフィルムなどが使用できる。 The plasma treatment may be performed only on one side of the polyimide film or on both sides. When performing plasma treatment on one side, it is possible to perform plasma treatment only on the side of the polyimide film that is not in contact with the electrode by placing the polyimide film in contact with the electrode on one side in the plasma treatment with parallel plate electrodes. it can. If a polyimide film is placed in a state where it is electrically floated in the space between the two electrodes, plasma treatment can be performed on both sides. Moreover, single-sided processing becomes possible by performing plasma processing in the state which stuck the protective film on the single side | surface of the polyimide film. In addition, as a protective film, a PET film with adhesive or a polyolefin film can be used.
 前記ポリイミドフィルムには、プラズマ処理の後に酸処理を施すことが好ましい。滑材(粒子)を含有したポリイミドフィルム表面では、滑材は表面付近で凸形状を形成していても、その表面にはごく薄いポリイミド層が存在する。ポリイミドは酸に対する耐性が強い為、極薄い層でもポリイミドが滑材表面にあると、酸処理を施した際に酸は滑材表面と直接接することはなく酸によって侵食されないが、プラズマ処理によるエッチング効果により選択的に有機高分子(ポリイミド)のみがエッチングされた後では、酸は滑材表面と直接接するため、適切な酸の種類を選んで酸処理を行えば、ごく短時間で滑材のみの溶解除去を行うことができ、クレーターが形成される。 It is preferable that the polyimide film is subjected to an acid treatment after the plasma treatment. On the polyimide film surface containing the lubricant (particles), even if the lubricant has a convex shape near the surface, a very thin polyimide layer exists on the surface. Since polyimide has strong resistance to acid, even if it is a very thin layer, if polyimide is on the surface of the lubricant, the acid will not be in direct contact with the surface of the lubricant and will not be eroded by the acid treatment. After only the organic polymer (polyimide) is selectively etched due to the effect, the acid will be in direct contact with the surface of the lubricant. Therefore, if an appropriate acid type is selected and acid treatment is performed, only the lubricant is obtained in a very short time. Can be dissolved and removed, and a crater is formed.
 このクレーターは、プラズマ処理によってポリイミドフィルム表面から露出した滑材が酸によって溶出された残部と考えられ、単なる凹みではなく、その縁部が盛り上がった状態の窪みである。参考として、図4に、クレーター部を示すAFM像を、図5に、図4に示すクレーター部の直線部分における断面像を、図6に、クレーター部を含むAFM像(10μm四方)を示す。クレーターの縁部分は、中に滑材粒子が内包された状態の突起に比較して柔らかく、ポリイミドフィルムと支持体とを加圧密着させる際に比較的弱い力で変形する。滑材を内包した突起は変形しがたく、ポリイミドフィルムと支持体との密着を阻害するが、滑材部分をこのようなクレーター様の形状にすることにより、ポリイミドフィルムと支持体との密着性が高まり、ポリイミドフィルムと支持体との剥離強度をより向上させることができる。 This crater is considered to be the remaining part in which the lubricant exposed from the polyimide film surface by the plasma treatment is eluted by the acid, and is not a mere dent but a dent with its edge raised. As a reference, FIG. 4 shows an AFM image showing the crater part, FIG. 5 shows a cross-sectional image of the straight part of the crater part shown in FIG. 4, and FIG. 6 shows an AFM image (10 μm square) including the crater part. The edge portion of the crater is softer than the protrusion in which the lubricant particles are encapsulated, and is deformed with a relatively weak force when the polyimide film and the support are brought into pressure contact. The protrusion containing the lubricant is not easily deformed and inhibits the adhesion between the polyimide film and the support, but the adhesion between the polyimide film and the support is achieved by making the lubricant part into such a crater-like shape. And the peel strength between the polyimide film and the support can be further improved.
 前記酸処理は、酸を含む薬液中にプラズマ処理を施したポリイミドフィルムを浸漬するか、もしくはプラズマ処理を施したポリイミドフィルムに該薬液を塗布またはスプレーすることにより行うことができる、このとき超音波洗浄などを併用しても良い。またポリイミドフィルムの片面に保護フィルムを貼った状態で酸処理を行うことで片面のみの酸処理も可能となる。保護フィルムとしては粘着剤付のPETフィルムやポリオレフィンフィルムなどが使用できる。 The acid treatment can be performed by immersing the plasma-treated polyimide film in a chemical solution containing acid, or by applying or spraying the chemical solution on the plasma-treated polyimide film. You may use washing together. Moreover, the acid treatment of only one side becomes possible by performing an acid treatment in the state which stuck the protective film on the single side | surface of the polyimide film. As the protective film, a PET film with a pressure-sensitive adhesive, a polyolefin film, or the like can be used.
 前記酸処理に用いる酸としては、滑材のみをエッチングできるものであればよく、例えば、HF、BHF等が好ましく挙げられ、これらは通常水溶液として用いられる。これは、HF水溶液やBHF水溶液はSiO2やガラスを溶解する作用を有することが一般に知られており、半導体業界では頻繁に使われているからである。例えば、HFのSiO2溶解効率は良く研究されており、10質量%のHF水溶液のSiO2エッチングレートは常温で12Å/sec程度であることが知られており、80nm程度のSiO2滑材は1分程度の薬液との接触で充分に処理できる事になる。このような知見、使用実績から、HF水溶液やBHF水溶液による酸処理を行う場合には、SiO2を滑材とすることが好ましいが、勿論、滑材種類はSiO2に限られたものではない。
 薬液中の酸濃度は、20質量%以下が好ましく、より好ましくは3~10質量%である。薬液中の酸濃度が薄すぎるとエッチング時間がかかり生産性が落ち、濃すぎるとエッチング時間が早すぎて必要以上にフィルムを薬液に曝すことになる。
The acid used for the acid treatment is not particularly limited as long as only the lubricant can be etched. For example, HF, BHF and the like are preferably used, and these are usually used as an aqueous solution. This is because HF aqueous solution and BHF aqueous solution are generally known to have an action of dissolving SiO 2 and glass, and are frequently used in the semiconductor industry. For example, SiO 2 dissolution efficiency of HF has been well studied, 10% by weight of SiO 2 etching rate of the aqueous HF solution is known to be about 12 Å / sec at room temperature, SiO 2 lubricant of about 80nm is It can be sufficiently processed by contact with a chemical solution for about 1 minute. From such knowledge and results of use, when performing acid treatment with an HF aqueous solution or a BHF aqueous solution, it is preferable to use SiO 2 as a lubricant, but of course, the type of the lubricant is not limited to SiO 2. .
The acid concentration in the chemical solution is preferably 20% by mass or less, more preferably 3 to 10% by mass. If the acid concentration in the chemical solution is too thin, the etching time is increased and the productivity is lowered. If the acid concentration is too high, the etching time is too early, and the film is exposed to the chemical solution more than necessary.
 ポリイミドフィルム(原反)にプラズマ処理と酸処理を加える工程は、処理の効率化の点からはロールツーロールで行うことが好ましい。プラズマ処理を行ったポリイミドフィルムロールにも滑材が存在するので、ロールとしてのハンドリング性はプラズマ処理前と同等である。また、ロールでプラズマ処理を行った後、カットシートにしてから酸処理を行うことも、簡便な実施が可能となる点で有用である。 The step of adding plasma treatment and acid treatment to the polyimide film (raw fabric) is preferably performed by roll-to-roll from the viewpoint of the efficiency of the treatment. Since the lubricant is also present in the polyimide film roll subjected to the plasma treatment, the handling property as a roll is equivalent to that before the plasma treatment. Moreover, after performing plasma treatment with a roll, it is also useful to perform acid treatment after making it into a cut sheet from the viewpoint that simple implementation is possible.
 以上のようにプラズマ処理および酸処理を施したポリイミドフィルムの表面形態は、その処理面を後述するAFM法で観察したときに、直径10~500nmのクレーターを100μm2当り2~100個有していることが好ましい。これにより、接着性が向上し、支持体に接着剤なしで接合積層する場合に好適な平滑度合いが付与された面を有するフィルムとなる。 As described above, the surface form of the polyimide film subjected to the plasma treatment and the acid treatment has 2 to 100 craters having a diameter of 10 to 500 nm per 100 μm 2 when the treated surface is observed by the AFM method described later. Preferably it is. Thereby, adhesiveness improves and it becomes a film which has the surface to which the smoothness suitable for the case where it joins and laminates to a support body without an adhesive agent was provided.
 片面に直径10~500nmのクレーターを100μm2当り2~100個有しているポリイミドフィルムは、支持体との接着剤なしでの接合積層において、より適正な剥離強度を有するものとなる。クレーターの直径が10nmに満たない場合は、接着性向上効果が小さくなり、500nmを超える場合は、過度なエッチングをすることとなり、ポリイミドフィルム強度に悪影響を及ぼしたり、接着性向上にも効果が現れにくくなる。クレーターの数が2個に満たない場合は、接着性向上効果が小さくなり、100個を超える場合は、ポリイミドフィルム強度に悪影響を及ぼし、かつ接着性向上にも効果が現れにくくなる。好ましくは、クレーターの数は100μm2当り5~30個であり、クレーターの直径は30~100nmである。 A polyimide film having 2 to 100 craters having a diameter of 10 to 500 nm on one side per 100 μm 2 has a more appropriate peel strength in bonding lamination without an adhesive. If the diameter of the crater is less than 10 nm, the effect of improving the adhesiveness will be reduced. It becomes difficult. When the number of craters is less than two, the effect of improving adhesiveness is reduced, and when it exceeds 100, the polyimide film strength is adversely affected and the effect of improving adhesiveness is hardly exhibited. Preferably, the number of craters is 5-30 per 100 μm 2 and the crater diameter is 30-100 nm.
 本発明においてポリイミドフィルムは、支持体と対向する面と反対側の表面、例えば前記プラズマ処理および酸処理を施す場合には処理面の反対側の面が、Raが0.3nm~0.95nmの平滑面であることが好ましい。ポリイミドフィルムの一方の面のRaが0.3nm~0.95nmの平滑面であることは、精緻な電気回路や半導体デバイスを作製するうえで特に好ましく、例えばRaが大きい場合には、必要な平滑度合いを有さないことになり、その上に形成された金属箔膜などに接着性、平滑性などの点で悪影響を及ぼすことがある。このような一方の表面が平滑なポリイミドフィルムは、ポリイミド形成用ポリアミド酸溶液(ポリイミド前駆体溶液)として、滑材を添加したものと、添加しないか極めて少量のみ添加したものとを併用使用することで製造することができ、ポリイミドフィルム作製時のロール巻き取り性や適宜のすべり性も付与されポリイミドフィルム製造も容易となる。 In the present invention, the polyimide film has a surface on the opposite side to the surface facing the support, for example, the surface opposite to the treated surface in the case of performing the plasma treatment and the acid treatment, with Ra of 0.3 nm to 0.95 nm. A smooth surface is preferred. A smooth surface having a Ra of 0.3 nm to 0.95 nm on one surface of the polyimide film is particularly preferable in producing a precise electric circuit or semiconductor device. For example, when Ra is large, the smoothness required is high. It may not have a degree, and may adversely affect the metal foil film formed thereon in terms of adhesion and smoothness. Such a polyimide film with one smooth surface should be used in combination with a polyamide acid solution for polyimide formation (polyimide precursor solution) with and without a lubricant added and with a very small amount added. In addition, roll winding property and proper slipping property at the time of polyimide film production are also provided, and the polyimide film production becomes easy.
 本発明のポリイミドフィルムにおける支持体と対向する面は、高さ1μm以上の凸欠点の存在密度が100個/平方cm以下である事が好ましい。本発明においては、ポリイミドフィルムの支持体と対向する面の、高さ1μm以上の凸欠点存在密度は、50個/平方cm以下であることが好ましく、30個/平方cm以下であることがより好ましく、15個/平方cm以下であることがさらに好ましく、8個/平方cm以下であることがなお好ましく、5個/平方cm以下であることがなおさらに好ましい。凸欠点存在密度がこの範囲を超えると、ポリイミドフィルムと支持体との実効的な接触面積が減少し、良好接着部分における必要な接着強度を得られないことがある。
 なお、ポリイミドフィルムにおける「凸欠点」とは、キズ、バリ、突起などの、本来平面であるべきポリイミドフィルム表面に存在する凸形状の特異点、および、フィルム表面に付着したゴミなどの異物を云う。本発明におけるポリイミドフィルムの凸欠点密度の測定方法は、支持体面の欠点存在密度の測定方法と同じである。
The surface facing the support in the polyimide film of the present invention preferably has a density of convex defects having a height of 1 μm or more of 100 pieces / square cm or less. In the present invention, the density of convex defects having a height of 1 μm or more on the surface facing the support of the polyimide film is preferably 50 pieces / square cm or less, and more preferably 30 pieces / square cm or less. The number is preferably 15 pieces / square cm or less, more preferably 8 pieces / square cm or less, and still more preferably 5 pieces / square cm or less. If the density of convex defects exceeds this range, the effective contact area between the polyimide film and the support may be reduced, and the necessary adhesive strength at the good adhesion portion may not be obtained.
The “convex defect” in the polyimide film refers to a singular point of the convex shape existing on the polyimide film surface that should be essentially flat, such as scratches, burrs, and protrusions, and foreign matters such as dust adhering to the film surface. . The method for measuring the convex defect density of the polyimide film in the present invention is the same as the method for measuring the defect existing density on the support surface.
 <カップリング剤処理>
 本発明の積層体の製造方法においては、前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方にカップリング剤処理を施してカップリング処理層を形成する。本発明においてカップリング剤とは、支持体とポリイミドフィルムとの間に物理的ないし化学的に介在し、両者間の接着力を高める作用を有する化合物を意味し、一般的にはシラン系カップリング剤、リン系カップリング剤、チタネート系カップリング剤等として知られている化合物を含む。
<Coupling agent treatment>
In the manufacturing method of the laminated body of this invention, a coupling agent process is performed to at least one of the surface where the said support body and the said polyimide film oppose, and a coupling process layer is formed. In the present invention, the coupling agent means a compound that is physically or chemically interposed between the support and the polyimide film and has an action of increasing the adhesive force between the two, and is generally a silane coupling. Compounds known as agents, phosphorus coupling agents, titanate coupling agents and the like.
 カップリング剤は、特に限定されるものではないが、特に、アミノ基あるいはエポキシ基を持ったシランカップリング剤が好ましい。シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシランなどが挙げられる。 The coupling agent is not particularly limited, but a silane coupling agent having an amino group or an epoxy group is particularly preferable. Preferable specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- ( Aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2 -(3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane vinyltrichlorosilane, Vinyltrimethoxysilane, vinyltriethoxysilane 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltri Methoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N -Phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropylto Methoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate, Examples include chloromethylphenethyltrimethoxysilane and chloromethyltrimethoxysilane.
 本発明で用いられるカップリング剤としては、上記のほかにも、例えば、1-メルカプト-2-プロパノール、3-メルカプトプロピオン酸メチル、3-メルカプト-2-ブタノール、3-メルカプトプロピオン酸ブチル、3-(ジメトキシメチルシリル)-1-プロパンチオール、4-(6-メルカプトヘキサロイル)ベンジルアルコール、11-アミノ-1-ウンデセンチオール、11-メルカプトウンデシルホスホン酸、11-メルカプトウンデシルトリフルオロ酢酸、2,2’-(エチレンジオキシ)ジエタンチオール、11-メルカプトウンデシルトリ(エチレングリコール)、(1-メルカプトウンデイック-11-イル)テトラ(エチレングリコール)、1-(メチルカルボキシ)ウンデック-11-イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2-エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレートなどを使用することもできる。 In addition to the above, the coupling agent used in the present invention includes, for example, 1-mercapto-2-propanol, methyl 3-mercaptopropionate, 3-mercapto-2-butanol, butyl 3-mercaptopropionate, 3 -(Dimethoxymethylsilyl) -1-propanethiol, 4- (6-mercaptohexaloyl) benzyl alcohol, 11-amino-1-undecenethiol, 11-mercaptoundecylphosphonic acid, 11-mercaptoundecyltrifluoroacetic acid 2,2 '-(ethylenedioxy) diethanethiol, 11-mercaptoundecyltri (ethylene glycol), (1-mercaptoundec-11-yl) tetra (ethylene glycol), 1- (methylcarboxy) undeck -11-yl) hexa (ethyl) Glycol), hydroxyundecyl disulfide, carboxyundecyl disulfide, hydroxyhexadodecyl disulfide, carboxyhexadecyl disulfide, tetrakis (2-ethylhexyloxy) titanium, titanium dioctyloxybis (octylene glycolate), zirconium tributoxy monoacetylacetate Nate, zirconium monobutoxyacetylacetonate bis (ethyl acetoacetate), zirconium tributoxy monostearate, acetoalkoxyaluminum diisopropylate and the like can also be used.
 特に好ましいカップリング剤としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3―トリエトキシシリルーN-(1,3-ジメチルーブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族でつないだものが望ましい。 Particularly preferred coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, aminophenyltrimethoxysilane, Aminophenethyltrimethoxysilane, aminophene Such as Le aminomethyl phenethyltrimethoxysilane the like. In the case where particularly high heat resistance is required in the process, it is desirable to use an aromatic group between Si and an amino group.
 カップリング剤処理を施してカップリング処理層を形成する方法としては、カップリング剤を直接もしくは溶剤などで希釈して、支持体および/またはポリイミドフィルムに塗布乾燥し熱処理する方法、カップリング剤そのものもしくは溶剤などで希釈した溶液中に支持体および/またはポリイミドフィルムを浸漬した後に乾燥し熱処理する方法、ポリイミドフィルム作製時に添加し、ポリイミドフィルム作製と同時にカップリング剤処理する方法等を採用することができる。カップリング剤の塗布量(付着量または含有量)は、形成されるカップリング処理層の膜厚が後述する厚さになるよう適宜設定すればよい。熱処理の際の条件は、50~250℃が好ましく、より好ましくは75~165℃、さらに好ましくは95~155℃程度の温度で、好ましくは30秒以上、より好ましくは2分以上、さらに好ましくは5分以上、加熱すればよい。加熱温度が高すぎると、カップリング剤の分解ないし不活性化が生じる場合があり、低すぎると定着が不十分となる。また加熱時間が長すぎても同様の問題が生じる場合があり、加熱時間の上限は好ましくは5時間、さらに好ましくは2時間程度である。なお、カップリング剤処理を行う際には、処理中のpHが性能に大きく影響する事が知られているので、適宜pHを調整することが望ましい。 As a method of forming a coupling treatment layer by performing a coupling agent treatment, a method in which the coupling agent is directly or diluted with a solvent or the like, applied to a support and / or a polyimide film, dried and heat-treated, or the coupling agent itself Alternatively, a method in which a support and / or a polyimide film is immersed in a solution diluted with a solvent, followed by drying and heat treatment, a method of adding at the time of polyimide film production, and a method of treating with a coupling agent at the same time as polyimide film production may be adopted. it can. What is necessary is just to set suitably the application quantity (adhesion amount or content) of a coupling agent so that the film thickness of the coupling process layer formed may become the thickness mentioned later. The conditions for the heat treatment are preferably 50 to 250 ° C., more preferably 75 to 165 ° C., more preferably about 95 to 155 ° C., preferably 30 seconds or more, more preferably 2 minutes or more, and still more preferably What is necessary is just to heat for 5 minutes or more. If the heating temperature is too high, decomposition or inactivation of the coupling agent may occur, and if it is too low, fixing will be insufficient. Moreover, even if the heating time is too long, the same problem may occur. The upper limit of the heating time is preferably 5 hours, more preferably about 2 hours. In addition, when performing a coupling agent process, since it is known that pH during process will influence a performance large, it is desirable to adjust pH suitably.
 <パターン形成>
 本発明の積層体の製造方法においては、前記カップリング剤処理に次いで、エッチングによりカップリング処理層の一部を不活性化して所定のパターンを形成する。これにより、支持体とポリイミドフィルムの間の剥離強度が強い部分と弱い部分を意図的に作り出すことができる。なお、カップリング処理層を不活性化処理するとは、物理的にカップリング処理層を部分的に除去する(いわゆるエッチングする)こと、物理的にカップリング処理層を微視的にマスキングすること、カップリング処理層を化学的に変性することを包含する。
 カップリング処理層の一部を選択的に不活性化処理して所定のパターンを形成する手段としては、所定のパターンに応じた部分をマスクで一時的に被覆ないし遮蔽したうえで全面にエッチング等を施し、その後マスクを取り去るようにしてもよいし、可能であれば直描方式で所定のパターンに応じてエッチング等を行うようにしてもよい。マスクとしては、一般的にレジスト、フォトマスク、メタルマスクなどとして使われている物をエッチング方法に応じて適宜選択して用いればよい。
<Pattern formation>
In the method for producing a laminate of the present invention, after the coupling agent treatment, a part of the coupling treatment layer is inactivated by etching to form a predetermined pattern. Thereby, the part with strong peeling strength between a support body and a polyimide film and a weak part can be produced intentionally. The deactivation treatment of the coupling treatment layer is to physically remove the coupling treatment layer (so-called etching), to physically mask the coupling treatment layer microscopically, It includes chemically modifying the coupling layer.
As a means for selectively inactivating a part of the coupling processing layer to form a predetermined pattern, the entire surface corresponding to the predetermined pattern is temporarily covered or shielded with a mask, and then the entire surface is etched. Then, the mask may be removed, or if possible, etching or the like may be performed according to a predetermined pattern by a direct drawing method. As a mask, a material generally used as a resist, a photomask, a metal mask or the like may be appropriately selected and used according to an etching method.
 パターン形状は、積層するデバイスの種類等に応じて適宜設定すればよく、特に限定されない。一例を挙げると図3に示す通りであり、図3の(1)に示すように、積層体の外周部のみに良好接着部分10が配置され、積層体の内部に易剥離部分20が配置されているパターンや、図3の(2)に示すように、積層体の外周部とともに内部にも線状に良好接着部分10が配置されたパターンが挙げられる。 The pattern shape may be appropriately set according to the type of device to be stacked, and is not particularly limited. An example is as shown in FIG. 3. As shown in FIG. 3 (1), the good adhesion portion 10 is arranged only on the outer peripheral portion of the laminate, and the easily peelable portion 20 is arranged inside the laminate. As shown in FIG. 3 (2), a pattern in which the good adhesion portion 10 is linearly arranged inside the outer peripheral portion of the laminated body can be given.
 前記不活性化処理としては、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行うことが好ましい。 The deactivation treatment is preferably performed by at least one selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment and chemical treatment.
 前記ブラスト処理とは、平均粒子径が0.1~1000μmの粒子を、気体ないし液体と共に対象物に吹き付ける処理を云う。本発明では、可能な範囲で平均粒子径が小さい粒子を用いたブラスト処理を使用することが好ましい。 The blast treatment refers to a treatment in which particles having an average particle diameter of 0.1 to 1000 μm are sprayed onto an object together with gas or liquid. In the present invention, it is preferable to use blasting using particles having a small average particle diameter as much as possible.
 前記真空プラズマ処理とは、減圧されたガス中での放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。ガスとしては、ネオン、アルゴン、窒素、酸素、フッ化炭素、二酸化炭素、水素等の単独、ないし混合ガスを用いることができる。 The vacuum plasma treatment refers to a treatment in which an object is exposed to plasma generated by discharge in a decompressed gas, or ions generated by the discharge collide with the object. As the gas, neon, argon, nitrogen, oxygen, carbon fluoride, carbon dioxide, hydrogen or the like alone or a mixed gas can be used.
 前記大気圧プラズマ処理とは、概ね大気圧雰囲気下におかれた気体中で生じる放電によって生じるプラズマ中に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。気体としてはネオン、アルゴン、窒素、酸素、二酸化炭素、水素等の単独ないし混合ガスを用いることができる。 The atmospheric pressure plasma treatment is a treatment in which an object is exposed to plasma generated by a discharge generated in a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object. say. As the gas, neon, argon, nitrogen, oxygen, carbon dioxide, hydrogen or the like alone or a mixed gas can be used.
 前記コロナ処理とは概ね大気圧雰囲気下におかれた気体中で生じるコロナ放電雰囲気に対象物を曝露するか、ないしは、同放電によって生じたイオンを対象物に衝突させる処理を云う。 The corona treatment refers to a treatment in which an object is exposed to a corona discharge atmosphere generated in a gas that is generally in an atmospheric pressure atmosphere, or ions generated by the discharge collide with the object.
 前記活性放射線照射処理とは、電子線、アルファ線、X線、ベータ線、赤外線、可視光線、紫外線、レーザー光照射処理などの放射線を照射する処理を云う。なお、レーザー光照射処理を行う場合には、特に直描方式で処理を行うことが容易になる。なおこの場合、可視光レーザーであっても、一般の可視光線と比較して遙かに大きなエネルギーを有するため、本発明では活性放射線の一種として扱うことができる。 The actinic radiation irradiation treatment refers to a treatment for irradiating radiation such as electron beam, alpha ray, X-ray, beta ray, infrared ray, visible ray, ultraviolet ray, laser beam irradiation treatment. In addition, when performing a laser beam irradiation process, it becomes easy to process especially by a direct drawing system. In this case, even a visible light laser has much larger energy than general visible light, and therefore can be treated as a kind of actinic radiation in the present invention.
 前記活性ガス処理とは、カップリング処理層に化学的ないし物理的変化を生じせしめる活性を有する気体、例えばハロゲンガス、ハロゲン化水素ガス、オゾン、高濃度の酸素ガス、アンモニア、有機アルカリ、有機酸などのガスに対象物を曝露する処理を云う。 The active gas treatment is a gas having an activity that causes a chemical or physical change in the coupling treatment layer, such as halogen gas, hydrogen halide gas, ozone, high-concentration oxygen gas, ammonia, organic alkali, organic acid. This refers to a process of exposing an object to a gas.
 前記薬液処理とは、カップリング処理層に化学的ないし物理的変化を生じせしめる活性を有する液体、例えばアルカリ溶液、酸溶液、還元剤溶液、酸化剤溶液などの液体ないし溶液に対象物を曝露する処理を云う。 In the chemical treatment, an object is exposed to a liquid or solution having an activity that causes a chemical or physical change in the coupling treatment layer, such as an alkaline solution, an acid solution, a reducing agent solution, or an oxidizing agent solution. Processing.
 特に、生産性の観点からは、前記不活性化処理としては、活性放射線とマスクを組み合わせた方法を、または大気圧プラズマ処理とマスクを組み合わせた方法が好ましく用いられる。活性放射線処理としては経済性、安全性の観点から、紫外線照射処理、すなわちUV照射処理が好ましい。またUV照射処理であれば、支持体としてUV透過性を有するものを選択することにより、支持体にカップリング剤処理を行った後、該処理を行った面とは逆の面から、直接描画ないしマスクを介してUV照射を行うこともできる。以上のことから、本発明においては、UV照射により不活性化処理を行うことが好ましく、以下詳細に説明する。 In particular, from the viewpoint of productivity, as the inactivation treatment, a method combining actinic radiation and a mask, or a method combining an atmospheric pressure plasma treatment and a mask is preferably used. As the actinic radiation treatment, an ultraviolet irradiation treatment, that is, a UV irradiation treatment is preferable from the viewpoints of economy and safety. Further, in the case of UV irradiation treatment, by selecting a support having UV transparency, the support is treated with a coupling agent, and then drawn directly from the surface opposite to the treated surface. Or UV irradiation can also be performed through a mask. From the above, in the present invention, it is preferable to perform inactivation treatment by UV irradiation, which will be described in detail below.
 本発明におけるUV照射処理とは、400nm以下の波長の紫外線(UV光)を発生する装置中に、カップリング剤処理を施したポリイミドフィルムおよび/または支持体を入れて、UV照射する処理であり、UV光波長は、好ましくは260nm以下であり、さらに好ましくは200nm以下の短波長であるのがよい。かかる短波長のUV光を酸素が存在する環境下で照射すると、試料(カップリング処理層)にUV光のエネルギーが加わるとともに、試料近傍に励起状態にある活性な酸素やオゾンが発生することとなり、本発明のカップリング処理層の不活性化処理をより効果的に行うことができる。ただし170nm以下の波長では、酸素によるUV光の吸収が著しいため、カップリング処理層にUV光を到達させるための考慮が必要となる。完全に酸素の無い雰囲気での照射では、活性酸素やオゾンによる表面改質(不活性化)の効果が現れないため、UV光が通過しつつ、活性酸素やオゾンも到達するような工夫を要する。例えば、窒素雰囲気中にUV光源を置き、石英ガラスを透過させてUV光を当てるといった装置上の工夫により、石英ガラスからカップリング処理層までの距離を短くして、UV光の吸収を抑えるといった工夫のほか、雰囲気を通常の大気ではなく酸素量をコントロールしたものとしてUV光の酸素吸収をコントロールする方法、UV光源、カップリング処理層間の気体の流れを制御することなども、UV光の透過とオゾンの発生量を制御する方法として有効である。 The UV irradiation treatment in the present invention is a treatment in which a polyimide film and / or a support subjected to a coupling agent treatment is placed in an apparatus that generates ultraviolet rays (UV light) having a wavelength of 400 nm or less and UV irradiation is performed. The UV light wavelength is preferably 260 nm or less, and more preferably 200 nm or less. Irradiation of such short-wavelength UV light in the presence of oxygen adds UV light energy to the sample (coupling layer) and generates active oxygen and ozone in an excited state near the sample. The inactivation treatment of the coupling treatment layer of the present invention can be performed more effectively. However, at a wavelength of 170 nm or less, the absorption of UV light by oxygen is significant, so that it is necessary to consider the UV light reaching the coupling layer. Irradiation in a completely oxygen-free atmosphere does not show the effect of surface modification (inactivation) with active oxygen or ozone, so it must be devised to allow active oxygen and ozone to reach while UV light passes. . For example, by placing a UV light source in a nitrogen atmosphere and transmitting UV light through quartz glass, the distance from the quartz glass to the coupling treatment layer is shortened to suppress UV light absorption. In addition to ingenuity, the method of controlling the absorption of UV light by controlling the amount of oxygen instead of the normal atmosphere, the control of the UV light source, the gas flow between the coupling layers, etc. It is effective as a method for controlling the amount of ozone generated.
 UV光の照射強度は、少なくとも150nm~400nmの波長範囲に感度のピークを持つ紫外線光量計を用いて測定した際に5mW/cm2以上が好ましく、200mW/cm2以下が支持体の変質防止のため望ましい。UV光の照射時間は、0.1分以上、30分以下が好ましく、より好ましくは0.5分以上、さらに好ましくは1分以上、特に好ましくは2分以上であり、より好ましくは10分以下、さらに好ましくは5分以下、特に好ましくは4分以下である。積算光量に換算すると、30mJ/cm2~360000mJ/cm2が好ましく、より好ましくは300mJ/cm2~120000mJ/cm2であり、さらに好ましくは600mJ/cm2~60000mJ/cm2である。 The irradiation intensity of the UV light is preferably 5 mW / cm 2 or more when measured using an ultraviolet light meter having a sensitivity peak in a wavelength range of at least 150 nm to 400 nm, and 200 mW / cm 2 or less is used for preventing alteration of the support. This is desirable. The irradiation time of UV light is preferably 0.1 minutes or more and 30 minutes or less, more preferably 0.5 minutes or more, still more preferably 1 minute or more, particularly preferably 2 minutes or more, and more preferably 10 minutes or less. More preferably, it is 5 minutes or less, and particularly preferably 4 minutes or less. In terms of integrated light quantity is preferably 30mJ / cm 2 ~ 360000mJ / cm 2, more preferably 300mJ / cm 2 ~ 120000mJ / cm 2, more preferably from 600mJ / cm 2 ~ 60000mJ / cm 2.
 UV照射処理時のパターン形成は、光を照射する部分と、照射しない部分を意図的に作ることによって行う。パターンを形成する方法としてはUV光を遮蔽する部分と遮蔽しない部分を作るか、UV光をスキャンさせる方法などが挙げられる。パターンの端部を明確にするためには、UV光を遮断するとともにマスクで支持体を覆うことが有効である。また、UVレーザーの平行光線によってスキャンすることも有効である。 Pattern formation at the time of UV irradiation processing is performed by intentionally creating a portion that irradiates light and a portion that does not irradiate. As a method of forming a pattern, a method of making a portion that shields UV light and a portion that does not shield UV light, a method of scanning UV light, or the like can be given. In order to clarify the end of the pattern, it is effective to block the UV light and cover the support with a mask. It is also effective to scan with a parallel beam of a UV laser.
 UV照射処理に使える光源としては、特に制限はないが、例えば、エキシマランプ、低圧水銀ランプ、高圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザー、Xeランプ、XeClエキシマレーザー、XeFエキシマレーザー、Arレーザー、D2ランプなどが挙げられる。中でも、エキシマランプ、低圧水銀ランプ、Xeエキシマレーザー、ArFエキシマレーザー、KrFエキシマレーザーなどが好ましい。 The light source that can be used for the UV irradiation treatment is not particularly limited. For example, an excimer lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an Xe excimer laser, an ArF excimer laser, a KrF excimer laser, an Xe lamp, an XeCl excimer laser, and an XeF excimer laser. , Ar laser, D2 lamp and the like. Among these, excimer lamps, low-pressure mercury lamps, Xe excimer lasers, ArF excimer lasers, KrF excimer lasers, and the like are preferable.
 以上のように不活性化処理されたカップリング処理層には、不活性化(エッチング)されているか否かによって、支持体とポリイミドフィルムとの剥離強度が強い部分である良好接着部分と、支持体とポリイミドフィルムとの剥離強度が弱い部分である易剥離部分とからなるパターンが形成される。例えば、後述の実施例に例示するように、γ-アミノプロピルトリメトキシシランをガラスに塗布した場合は、UV未照射部が剥離強度の強い良好接着部分となり、UV照射によってアミノ基を壊してしまうことで剥離強度が弱まり、UV照射部が易剥離部分となる。これは、後述の測定例1~5に示すように、UV照射によって窒素(N)元素のAtomic percentは下がり、続いて炭素(C)も減ることから、アミノ基、プロピル基が壊れていることが示唆されることから推察できる。他方、例えばn-プロピルトリメトキシシランのように官能基のないカップリング剤により支持体にカップリング処理層を形成した場合には、逆に、UV照射していない部分が易剥離部分となり、UV光を照射してプロピル部分を壊してしまうことによって良好接着部分が形成される。支持体としてはガラスを基板とすることが工業的に有利であり、この場合、UV照射によって剥離強度を低下させることがより実用的であるが、用途、使用基板、必要とする剥離強度によっては、UV光照射部分を良好接着部分とすることも考えられる。 As described above, the coupling treatment layer that has been subjected to the deactivation treatment has a good adhesion portion that is a portion where the peel strength between the support and the polyimide film is strong, depending on whether or not the deactivation (etching) is performed. A pattern composed of an easily peelable portion which is a portion where the peel strength between the body and the polyimide film is weak is formed. For example, as illustrated in the examples described later, when γ-aminopropyltrimethoxysilane is applied to glass, the UV non-irradiated part becomes a good adhesive part with strong peel strength, and the amino group is broken by UV irradiation. As a result, the peel strength is weakened, and the UV irradiation part becomes an easy peel part. This is because, as shown in measurement examples 1 to 5 described later, the atomic percentage of the nitrogen (N) element is lowered by UV irradiation, and the carbon (C) is subsequently reduced, so that the amino group and the propyl group are broken. Can be inferred from this. On the other hand, when the coupling treatment layer is formed on the support with a coupling agent having no functional group such as n-propyltrimethoxysilane, on the other hand, the part that has not been irradiated with UV becomes an easily peelable part. A good adhesion part is formed by irradiating light and breaking the propyl part. It is industrially advantageous to use glass as the substrate as the support. In this case, it is more practical to reduce the peel strength by UV irradiation, but depending on the application, the substrate used, and the required peel strength It is also conceivable that the UV light irradiated portion is a good adhesion portion.
<加圧加熱処理>
 本発明の積層体の製造方法においては、前記エッチングの後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理する。これにより、支持体とポリイミドフィルムとを接着させることができる。
 また一般に、支持体とポリイミドフィルムとの積層体を得る方法としては、支持体の上にポリイミドワニス(上述したポリアミド酸溶液)を直接塗布しイミド化させて製膜する方法も考えられるが、本発明では、ポリイミドをフィルム化した後、支持体に積層する。これは、ポリアミド酸溶液を支持体上で加熱してイミド化すると、例えば、支持体にもよるが同心円状の膜厚分布ができやすくなったり、ポリイミドフィルムの表と裏の状態(熱の伝わり方等)が異なるために反りや支持体からの浮きがあるフィルムになりやすいのに対して、予めフィルム化しておけば、これらの問題を回避できるからである。さらに、支持体にフィルムを重ね合わせるようにすることで、後述する加圧加熱処理を行い得る範囲において、重ね合わせる前にフィルムにデバイス(回路等)を形成しておくことも可能になる。
<Pressurized heat treatment>
In the manufacturing method of the laminated body of this invention, after the said etching, the said support body and the said polyimide film are overlap | superposed, and it heat-processes by pressure. Thereby, a support body and a polyimide film can be adhere | attached.
In general, as a method of obtaining a laminate of a support and a polyimide film, a method in which a polyimide varnish (polyamic acid solution described above) is directly applied on a support and imidized to form a film is also considered. In the invention, the polyimide is formed into a film and then laminated on the support. For example, when a polyamic acid solution is heated and imidized on a support, for example, although it depends on the support, a concentric film thickness distribution is easily formed, and the state of the front and back of the polyimide film (transfer of heat) This is because the film tends to be warped or lifted from the support due to the difference in the method, etc., whereas these problems can be avoided if the film is formed in advance. Furthermore, by superimposing the film on the support, it is also possible to form a device (circuit or the like) on the film before superposition within a range where pressure heating treatment described later can be performed.
 加圧加熱処理の方法としては、例えば、プレス、ラミネート、ロールラミネート等を、温度を加えながら行えばよい。またフレキシブルなバッグに入れた状態で加圧加熱する方法も応用できる。特にロールを用いて行う方法(ロールラミネート等)が好ましい。
 加圧加熱処理の際の圧力としては、1MPa~20MPaが好ましく、さらに好ましくは3MPa~10MPaである。圧力が高すぎると、支持体を破損する虞があり、圧力が低すぎると、密着しない部分が生じ、接着が不充分になる場合がある。加圧加熱処理の際の温度としては、150℃~400℃、さらに好ましくは250℃~350℃である。温度が高すぎると、ポリイミドフィルムにダメージを与える虞があり、温度が低すぎると、密着力が弱くなる傾向がある。
 また加圧加熱処理は、大気中で行うこともできるが、全面の安定した剥離強度を得る為には、真空下で行うことが好ましい。このとき真空度は、通常の油回転ポンプによる真空度で充分であり、10Torr以下程度あれば充分である。
 加圧加熱処理に使用することができる装置としては、真空中でのプレスを行うには、例えば井元製作所製の「11FD」等を使用でき、真空中でのロール式のフィルムラミネーターあるいは真空にした後に薄いゴム膜によりガラス全面に一度に圧力を加えるフィルムラミネーター等の真空ラミネートを行うには、例えば名機製作所製の「MVLP」等を使用できる。
As a method of the pressure heat treatment, for example, pressing, laminating, roll laminating or the like may be performed while applying temperature. A method of heating under pressure in a flexible bag can also be applied. In particular, a method using a roll (roll lamination or the like) is preferable.
The pressure during the pressure and heat treatment is preferably 1 MPa to 20 MPa, more preferably 3 MPa to 10 MPa. If the pressure is too high, the support may be damaged. If the pressure is too low, a portion that does not adhere to the surface may be formed, resulting in insufficient adhesion. The temperature during the pressure heat treatment is 150 to 400 ° C., more preferably 250 to 350 ° C. If the temperature is too high, the polyimide film may be damaged. If the temperature is too low, the adhesion tends to be weak.
The pressure heat treatment can be performed in the air, but it is preferably performed under vacuum in order to obtain a stable peel strength on the entire surface. At this time, the degree of vacuum by a normal oil rotary pump is sufficient, and about 10 Torr or less is sufficient.
As an apparatus that can be used for pressure heat treatment, for example, “11FD” manufactured by Imoto Seisakusho can be used to perform pressing in a vacuum, and a roll-type film laminator in vacuum or a vacuum is used. For example, “MVLP” manufactured by Meiki Seisakusho Co., Ltd. can be used to perform vacuum lamination such as a film laminator that applies pressure to the entire glass surface at once with a thin rubber film.
 前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行うことが可能である。この場合、まず、比較的低温(例えば120℃未満、好ましくは110℃未満、より好ましくは95℃以下の温度)でポリイミドフィルムと支持体とを加圧(好ましくは0.2~50MPa程度)して両者の密着性を確保し、その後、低圧(好ましくは0.2MPa未満、より好ましくは0.1MPa以下)もしくは常圧雰囲気下にて比較的高温(例えば120℃以上、より好ましくは120~250℃、さらに好ましくは150~230℃)で加熱することにより、密着界面の化学反応が促進されてポリイミドフィルムと支持体とを積層できる。 The pressure heat treatment can be performed separately in a pressure process and a heating process. In this case, first, the polyimide film and the support are pressurized (preferably about 0.2 to 50 MPa) at a relatively low temperature (for example, a temperature of less than 120 ° C., preferably less than 110 ° C., more preferably 95 ° C. or less). After that, the adhesion between the two is ensured, and then, at a low pressure (preferably less than 0.2 MPa, more preferably 0.1 MPa or less) or at a relatively high temperature (for example, 120 ° C. or more, more preferably 120 to 250 MPa) in an atmospheric environment. (Preferably 150 to 230 ° C.), the chemical reaction at the adhesion interface is promoted and the polyimide film and the support can be laminated.
<応用>
 本発明の積層体の製造方法においては、応用例として、必要に応じて、積層体中のポリイミドフィルムまたは積層体全体の膜厚方向に貫通する孔部分を設けることにより、非ポリイミド部分を設けてもよい。該非ポリイミド部分としては、特に限定はされるものではないが、好ましくは、Cu、Al、Ag、Auなどの金属を主たる成分としている金属で充填されているもの、機械式のドリルやレーザー穴あけによって形成された空孔、および、空孔の壁面に金属膜がスパッタリングや無電解めっきシード層形成などにより形成されているもの等が挙げられる。
<Application>
In the method for producing a laminate of the present invention, as an application example, a polyimide film in the laminate or a hole portion penetrating in the film thickness direction of the entire laminate is provided as necessary, thereby providing a non-polyimide portion. Also good. The non-polyimide portion is not particularly limited, but is preferably filled with a metal whose main component is a metal such as Cu, Al, Ag, Au, or a mechanical drill or laser drilling. Examples include the formed holes, and those in which a metal film is formed on the wall surfaces of the holes by sputtering, electroless plating seed layer formation, or the like.
(積層体)
 本発明の積層体は、支持体と380nm~700nmにおける平均光線透過率が85%以上であるポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であり、前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成している。これにより、デバイス作製時の高温プロセスにおいても剥がれることなく、しかもポリイミドフィルム上にデバイスを作製した後には容易に支持体からポリイミドフィルムを剥離することができる積層体となる。本発明の積層体は、本発明の積層体の製造方法により得ることができ、支持体、ポリイミドフィルム、カップリング処理層等の詳細については、上述した通りである。
(Laminate)
The laminate of the present invention is a laminate in which a support and a polyimide film having an average light transmittance at 380 nm to 700 nm of 85% or more are laminated via a coupling treatment layer, and the support and the polyimide are laminated. The film has a good adhesion part and an easy peel part with different peel strengths from the film, and the good adhesion part and the easy peel part form a predetermined pattern. Thereby, after producing a device on a polyimide film, it becomes a laminated body which can peel a polyimide film from a support body easily, without peeling also in the high temperature process at the time of device preparation. The laminate of the present invention can be obtained by the method for producing a laminate of the present invention, and details of the support, the polyimide film, the coupling treatment layer and the like are as described above.
 本発明において、良好接着部分と易剥離部分は、UV光照射等の不活性化処理の有無によって表面の性質を変えることで、形成される。つまり、本発明における良好接着部分とは、UV光照射等の不活性化処理が施されていない部分であり、支持体とポリイミドフィルムの剥離強度が強い部分を指す。本発明における易剥離部分とは、UV光照射等の不活性化処理が施された部分であり、支持体とポリイミドフィルムの剥離強度が弱い部分を指す。 In the present invention, the good adhesion part and the easy peeling part are formed by changing the surface properties depending on the presence or absence of an inactivation treatment such as UV light irradiation. That is, the good adhesion portion in the present invention is a portion that has not been subjected to inactivation treatment such as UV light irradiation, and refers to a portion where the peel strength between the support and the polyimide film is strong. The easy peeling part in this invention is a part to which inactivation processes, such as UV light irradiation, were given, and point out a part with weak peeling strength of a support body and a polyimide film.
 本発明において、支持体とポリイミドフィルムとの間の180度剥離強度は、この上に積層するデバイスの種類やプロセスに応じて適宜設定すればよく、特に制限されないが、少なくとも、前記易剥離部分の180度剥離強度は、良好接着部分の180度剥離強度の1/2以下であることが好ましく、より好ましくは、1/5以下である。一般論としては、良好接着部分の180度剥離強度は、0.5N/cm以上、5N/cm以下であることが好ましく、より好ましくは0.8N/cm以上、2N/cm以下である。前記易剥離部分の180度剥離強度は、0.01N/cm以上、0.40N/cm以下であることが好ましく、より好ましくは0.01N/cm以上、0.2N/cm以下である。ここで易剥離部分の180度剥離強度の下限は、ポリイミドフィルムの曲げエネルギーなども加味された値となっている。本発明における180度剥離強度は、実施例で後述する方法で測定することができる。また、実施例で後述する耐熱剥離強度、耐酸剥離強度および耐アルカリ剥離強度についても、それぞれ0.5N/cm以上、5N/cm以下であることが望ましいが、プロセスによってこの要請の数字は変わることがありえる。 In the present invention, the 180-degree peel strength between the support and the polyimide film may be appropriately set according to the type and process of the device laminated thereon, and is not particularly limited. The 180-degree peel strength is preferably 1/2 or less, more preferably 1/5 or less of the 180-degree peel strength of the good adhesion portion. As a general theory, the 180 degree peel strength of the good adhesion portion is preferably 0.5 N / cm or more and 5 N / cm or less, more preferably 0.8 N / cm or more and 2 N / cm or less. The 180 degree peel strength of the easily peelable part is preferably 0.01 N / cm or more and 0.40 N / cm or less, more preferably 0.01 N / cm or more and 0.2 N / cm or less. Here, the lower limit of the 180-degree peel strength of the easily peelable portion is a value that takes into account the bending energy of the polyimide film. 180 degree peel strength in this invention can be measured by the method mentioned later in an Example. In addition, the heat-resistant peel strength, acid peel strength, and alkali peel strength, which will be described later in the examples, are preferably 0.5 N / cm or more and 5 N / cm or less, respectively. There can be.
 本発明の積層体においては、支持体とポリイミドフィルムとの間には、従来のように接着剤層等は介在せず、介在するのは、例えばカップリング剤に由来するSiを10質量%以上多く含むもののみである。そして支持体とポリイミドフィルムとの中間層であるカップリング処理層は非常に薄くできるので、加熱中の脱ガス成分が少なく、ウェットプロセスにおいても溶出しにくく、仮に溶出が起きても微量にとどまるという効果が得られる。またカップリング処理層は、通常、耐熱性がある酸化ケイ素成分が多く、400℃程度の温度での耐熱性が得られる。 In the laminate of the present invention, an adhesive layer or the like is not interposed between the support and the polyimide film as in the prior art, and the intervening is, for example, 10% by mass or more of Si derived from the coupling agent It contains only a lot. And since the coupling treatment layer, which is an intermediate layer between the support and the polyimide film, can be made very thin, there are few degassing components during heating, it is difficult to elute even in the wet process, and even if elution occurs, it will remain in a trace amount An effect is obtained. In addition, the coupling treatment layer usually has many heat-resistant silicon oxide components, and heat resistance at a temperature of about 400 ° C. can be obtained.
 本発明の積層体におけるカップリング処理層の膜厚は、本発明における支持体、ポリイミドフィルムもしくは一般的な接着剤や粘着剤と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。一般には400nm未満(0.4μm未満)であり、200nm以下(0.2μm以下)が好ましく、さらに実用上は100nm以下(0.1μm以下)が好ましく、より好ましくは50nm以下、さらに好ましくは10nm以下である。極力カップリング剤が少ないことを望むプロセスでは、5nm以下も可能である。ただし、1nm未満では、剥離強度が低下するか、部分的に付かない部分が出る虞があるため、1nm以上が好ましい。なお、カップリング処理層の膜厚は、エリプソメトリー法または塗布時のカップリング剤溶液の濃度と塗布量から計算して求めることができる。 The film thickness of the coupling treatment layer in the laminate of the present invention is extremely thin compared to the support, polyimide film or general adhesive or pressure-sensitive adhesive in the present invention, and is ignored from the viewpoint of mechanical design. In principle, a thickness of the order of a monomolecular layer is sufficient as a minimum. Generally, it is less than 400 nm (less than 0.4 μm), preferably 200 nm or less (0.2 μm or less), more practically 100 nm or less (0.1 μm or less), more preferably 50 nm or less, further preferably 10 nm or less. It is. For processes that desire as few coupling agents as possible, 5 nm or less is possible. However, if the thickness is less than 1 nm, the peel strength may be reduced, or a portion that is not partially attached may appear, and therefore, 1 nm or more is preferable. The film thickness of the coupling treatment layer can be determined by ellipsometry or calculation from the concentration of the coupling agent solution at the time of coating and the coating amount.
(デバイス構造体の製造方法)
 本発明のデバイス構造体の製造方法は、支持体とポリイミドフィルムとを有する本発明の積層体を用いて、基材であるポリイミドフィルム上にデバイスが形成されてなる構造体を製造する方法である。
 本発明のデバイス構造体の製造方法においては、本発明の積層体のポリイミドフィルム上にデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離する。
(Device structure manufacturing method)
The method for producing a device structure of the present invention is a method for producing a structure in which a device is formed on a polyimide film as a substrate, using the laminate of the present invention having a support and a polyimide film. .
In the method for producing a device structure of the present invention, after forming a device on the polyimide film of the laminate of the present invention, the polyimide film in the easily peelable portion of the laminate is cut and the polyimide film is used as the support. Peel from.
 前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れる方法としては、刃物によってポリイミドフィルムを切断する方法や、レーザーと該積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、ウェータージェットと該積層体を相対的にスキャンさせることによりポリイミドフィルムを切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつポリイミドフィルムを切断する方法などがあるが、特に方法は限定されるものではない。 The method of cutting the polyimide film at the easy-release portion of the laminate includes a method of cutting the polyimide film with a blade, a method of cutting the polyimide film by relatively scanning the laser and the laminate, and water jet And a method of cutting the polyimide film by relatively scanning the laminate, a method of cutting the polyimide film while cutting slightly to the glass layer by a semiconductor chip dicing device, etc., but the method is not particularly limited Absent.
 前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れるにあたり、切り込みを入れる位置は、少なくとも易剥離部分の一部を含んでいればよく、基本的にはパターンに従って切断するのが通常である。ただし、正確にパターンに従い良好接着部分と易剥離部分の境で切断しようとすると誤差も生じることから、パターンより若干易剥離部分側に切り込むことが生産性を上げる点で好ましい。また、剥離させるまでに勝手に剥離してしまうことを防ぐうえでは、該パターンより若干良好接着部分に切り込む生産方式もありえる。更には、良好接着部分の巾を狭く設定するようにすれば、剥離時に良好接着部分に残存するポリイミドフィルムを減らすことができ、フィルムの利用効率が向上し、該積層体面積に対するデバイス面積が多くなり、生産性が向上する。更には、積層体の外周部の一部に易剥離部分を設けるようにしておき、該外周部を切断位置として、実際には切り込みを入れずに剥がす方式も、本発明の極端な一形式となりえる。 When making a cut in the polyimide film of the easily peelable portion of the laminate, the position where the cut is made only needs to include at least a part of the easily peelable portion, and is basically cut according to the pattern. However, if an attempt is made to accurately cut according to the pattern at the boundary between the good adhesion portion and the easily peelable portion, an error also occurs. Therefore, it is preferable to cut slightly to the easily peelable portion side from the pattern in terms of increasing productivity. Moreover, in order to prevent peeling without permission before peeling, there may be a production system that cuts into a bonded portion slightly better than the pattern. Furthermore, if the width of the good adhesion portion is set narrow, the polyimide film remaining on the good adhesion portion at the time of peeling can be reduced, the use efficiency of the film is improved, and the device area relative to the laminate area is large. Thus, productivity is improved. Furthermore, an easy peeling part is provided in a part of the outer peripheral part of the laminated body, and the method of peeling off the outer peripheral part as a cutting position without actually making a cut is also an extreme form of the present invention. Yeah.
 ポリイミドフィルムを支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、デバイス付きのポリイミドフィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。なお、剥離の際に、デバイス付きのポリイミドフィルムの切り込み部分に曲率が小さい曲がりが生じると、その部分のデバイスに応力が加わることになりデバイスを破壊する虞があるため、極力曲率の大きな状態で剥がすことが望ましい。例えば、曲率の大きなロールに巻き取りながら捲るか、あるいは曲率の大きなロールが剥離部分に位置するような構成の機械を使って捲ることが望ましい。 The method of peeling the polyimide film from the support is not particularly limited, but is a method of rolling from the end with tweezers, etc., and sticking an adhesive tape to one side of the cut portion of the polyimide film with a device, and then rolling from the tape portion. A method, a method in which one side of a cut portion of a polyimide film with a device is vacuum-adsorbed and then wound from that portion can be employed. In the case of peeling, if a bend with a small curvature occurs in the cut part of the polyimide film with the device, stress may be applied to the device in that part and the device may be destroyed. It is desirable to remove. For example, it is desirable to roll while winding on a roll having a large curvature, or to roll using a machine having a configuration in which the roll having a large curvature is located at the peeling portion.
 なお、本発明のデバイス構造体(デバイス付きのポリイミドフィルム)は、最終製品とするまでに補強部材を固定しておくことができる。この場合、支持体から剥離した後に補強部材を固定してもよいが、補強部材を固定させた後にポリイミドフィルムに切り込みを入れて支持体から剥離するか、もしくはポリイミドフィルムに切り込みを入れた後に該切り込み部分に補強部材を固定させ、その後剥離することが好ましい。剥離する前に補強部材を固定させる場合には、ポリイミドフィルムおよび補強部材の弾性率や膜厚を考慮することにより、デバイス部分に極力応力が加わりにくい構成とすることが可能となる。 In addition, the reinforcing member can be fixed before the device structure (polyimide film with a device) of the present invention is a final product. In this case, the reinforcing member may be fixed after being peeled off from the support, but after fixing the reinforcing member, the polyimide film is cut off and peeled off from the support, or the polyimide film is cut into It is preferable that the reinforcing member is fixed to the cut portion and then peeled off. In the case where the reinforcing member is fixed before peeling, it is possible to make the device part less susceptible to stress by considering the elastic modulus and film thickness of the polyimide film and the reinforcing member.
 剥離する前に補強部材を固定させる場合には、補強部材としては、高分子フィルム、極薄ガラス、SUSなどが好ましく用いられる。高分子フィルムには、デバイスの軽量性が保たれる利点があり、さらに透明性、各種加工性、割れ難さも利点として挙げられる。極薄ガラスには、ガスバリア性、対薬品安定性、透明性が得られるという利点がある。SUSには、電気的にシールドできる点、割れ難さといった利点がある。なお、高分子フィルムとしては、既に高温を必要とするプロセスを通過した後であるため、耐熱性の制約は少なく、さまざまな高分子フィルムを選択しうる。これら補強部材の固定は、接着あるいは粘着により行うことができる。 When the reinforcing member is fixed before peeling, a polymer film, ultrathin glass, SUS or the like is preferably used as the reinforcing member. The polymer film has an advantage that the lightness of the device is maintained, and further includes transparency, various workability, and difficulty in cracking. Ultra-thin glass has the advantages of providing gas barrier properties, chemical stability, and transparency. SUS has the advantage that it can be shielded electrically and is difficult to break. In addition, since it is after passing the process which already requires high temperature as a polymer film, there are few restrictions of heat resistance, and various polymer films can be selected. These reinforcing members can be fixed by adhesion or adhesion.
 本発明において、基材であるポリイミドフィルム上にデバイスを形成する方法は、従来公知の方法に従い適宜行えばよい。
 本発明におけるデバイスとしては、特に制限はなく、例えば、電子回路用配線のみ、電気抵抗のほか、コイル、コンデンサーといった受動デバイス、半導体素子などを含む能動デバイス、およびそれらを組み合わせてなる電子回路システムがある。半導体素子としては、太陽電池、薄膜トランジスター、MEMS素子、センサー、論理回路等が挙げられる。
In the present invention, a method for forming a device on a polyimide film as a substrate may be appropriately performed according to a conventionally known method.
The device in the present invention is not particularly limited, and examples thereof include only electronic circuit wiring, electrical resistance, passive devices such as coils and capacitors, active devices including semiconductor elements, and electronic circuit systems that combine these devices. is there. Examples of the semiconductor element include a solar cell, a thin film transistor, a MEMS element, a sensor, and a logic circuit.
 例えば、本発明の積層体を使用したフィルム状太陽電池は、本発明の積層体のポリイミドフィルムを基材とし、該基材上に半導体からなる光電変換層を含む積層体Xが形成されてなる。この積層体Xは、太陽光のエネルギーを電気エネルギーに変換する光電変換層を必須の構成として有し、通常、得られた電気エネルギーを取出すための電極層などをさらに有するものである。
 以下、フィルム状太陽電池を構成するよう形成される上記積層体Xの典型例として、光電変換層を一対の電極層で挟んでなる積層構造を説明する。しかし、光電変換層を何層か積み重ねた構成なども、PVDやCVDでの作製ならば、本発明の太陽電池といえる。勿論、積層体Xの積層構造は、以下に記載される態様に限定されず、従来技術の太陽電池が有する積層体の構成を適宜参照してよく、保護層や公知補助手段を付加してもよいものである。
For example, a film-like solar cell using the laminate of the present invention has the laminate X of the laminate of the present invention as a substrate, and a laminate X including a photoelectric conversion layer made of a semiconductor is formed on the substrate. . This laminated body X has a photoelectric conversion layer that converts sunlight energy into electric energy as an essential component, and usually further includes an electrode layer for taking out the obtained electric energy.
Hereinafter, a laminated structure in which a photoelectric conversion layer is sandwiched between a pair of electrode layers will be described as a typical example of the laminate X formed to constitute a film-like solar cell. However, a structure in which several photoelectric conversion layers are stacked can be said to be a solar cell of the present invention if it is produced by PVD or CVD. Of course, the laminated structure of the laminated body X is not limited to the embodiment described below, and the structure of the laminated body of the solar cell of the prior art may be appropriately referred to, and a protective layer or a known auxiliary means may be added. It ’s good.
 前記一対の電極層における一方の電極層(以下、裏面電極層とも記載する)は、好ましくは、ポリイミドフィルム基材の一主面上に形成される。裏面電極層は従来公知の方法、例えばCVD(ケミカル・ベーパー・デポジション)法やスパッタ法によって導電性無機材料を積層することによって得られる。導電性無機材料としては、Al、Au、Ag、Cu、Ni、ステンレス鋼などの金属薄膜や、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の導電材料などが挙げられる。好ましくは、裏面電極層は金属薄膜であるのがよい。裏面電極層の厚さは特に限定はなく、通常、30~1000nm程度である。また、一部の電極引き出しで、Agペーストの印刷といった真空を利用しない膜形成法を採用してもよい。 One electrode layer (hereinafter also referred to as a back electrode layer) of the pair of electrode layers is preferably formed on one main surface of the polyimide film substrate. The back electrode layer is obtained by laminating a conductive inorganic material by a conventionally known method, for example, a CVD (chemical vapor deposition) method or a sputtering method. Examples of conductive inorganic materials include metal thin films such as Al, Au, Ag, Cu, Ni, and stainless steel, and In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (adding Sn to In 2 O 3 Oxide semiconductor-based conductive materials and the like. Preferably, the back electrode layer is a metal thin film. The thickness of the back electrode layer is not particularly limited, and is usually about 30 to 1000 nm. Alternatively, a film forming method that does not use a vacuum, such as printing of an Ag paste, may be employed with some electrode leads.
 太陽光のエネルギーを電気エネルギーに変換する光電変換層は、半導体からなる層であり、I族元素とIII族元素とVI族元素とからなる化合物半導体薄膜(カルコパイライト構造半導体薄膜)であるCuInSe2(CIS)膜、またはこれにGaを固溶したCu(In,Ga)Se2(CIGS)膜(以下、両者をまとめてCIS系膜ともいう)、シリコン系半導体からなる層である。シリコン系半導体には、薄膜シリコン層、無定形シリコン層、多結晶シリコン層などが挙げられる。光電変換層は、異なる半導体からなる複数の層を有する積層体であってもよい。また、色素を用いた光電変換層であってもよい。さらに導電性ポリマーやフラーレンなどの有機化合物よる有機薄膜半導体を用いるものでもよい。 The photoelectric conversion layer for converting the energy of sunlight into electric energy is a layer made of a semiconductor, CuInSe 2 which is a compound semiconductor thin film (chalcopyrite structure semiconductor thin film) made of a group I element, a group III element, and a group VI element. A (CIS) film, or a Cu (In, Ga) Se 2 (CIGS) film in which Ga is dissolved in the same (hereinafter, both are collectively referred to as a CIS film) and a silicon semiconductor layer. Examples of the silicon-based semiconductor include a thin film silicon layer, an amorphous silicon layer, and a polycrystalline silicon layer. The photoelectric conversion layer may be a laminate having a plurality of layers made of different semiconductors. Moreover, the photoelectric converting layer using a pigment | dye may be sufficient. Further, an organic thin film semiconductor made of an organic compound such as a conductive polymer or fullerene may be used.
 薄膜シリコン層は、プラズマCVD法、熱CVD法、スパッタリング法、クラスタイオンビーム法、蒸着法などによって得られるシリコン層である。
 無定形シリコン層は、実質的に結晶性をもたないシリコンからなる層である。実質的に結晶性をもたないことは、X線を照射しても回折ピークを与えないことによって確かめることができる。無定形シリコン層を得る手段は公知であり、そのような手段には、例えば、プラズマCVD法や熱CVD法などが含まれる。
 多結晶シリコン層は、シリコンからなる微小結晶の集合体からなる層である。上述の無定形シリコン層とは、X線の照射により回折ピークを与えることによって区別される。多結晶シリコン層を得る手段は公知であり、そのような手段には、無定形シリコンを熱処理する手段などが含まれる。
 光電変換層は、シリコン系半導体層に限られず、例えば、厚膜半導体層であってもよい。厚膜半導体層とは、酸化チタン、酸化亜鉛、ヨウ化銅などのペーストから形成される半導体層である。
The thin film silicon layer is a silicon layer obtained by a plasma CVD method, a thermal CVD method, a sputtering method, a cluster ion beam method, a vapor deposition method, or the like.
The amorphous silicon layer is a layer made of silicon having substantially no crystallinity. The lack of crystallinity can be confirmed by not giving a diffraction peak even when irradiated with X-rays. Means for obtaining an amorphous silicon layer are known, and examples of such means include a plasma CVD method and a thermal CVD method.
The polycrystalline silicon layer is a layer made of an aggregate of microcrystals made of silicon. The amorphous silicon layer described above is distinguished by giving a diffraction peak by irradiation with X-rays. Means for obtaining a polycrystalline silicon layer are known, and such means include means for heat-treating amorphous silicon.
The photoelectric conversion layer is not limited to the silicon-based semiconductor layer, and may be, for example, a thick film semiconductor layer. The thick film semiconductor layer is a semiconductor layer formed from a paste of titanium oxide, zinc oxide, copper iodide or the like.
 半導体材料を光電変換層として構成する手段としては、公知の方法を適宜採用すればよい。例えば、200~500℃の温度下で、SiH4にフォスフィン(PH3)を添加したガス中で高周波プラズマ放電を行うことにより約20nmのa-Si(n層)を形成し、続いてSiH4ガスのみで約500nmのa-Si(i層)を形成し、続いてSiH4にジボラン(B26)を添加して約10nmのp-Si(p層)を形成することができる。 As a means for constituting the semiconductor material as the photoelectric conversion layer, a known method may be adopted as appropriate. For example, an a-Si (n layer) of about 20 nm is formed by performing high-frequency plasma discharge in a gas in which phosphine (PH 3 ) is added to SiH 4 at a temperature of 200 to 500 ° C., and subsequently SiH 4 An a-Si (i layer) of about 500 nm can be formed using only gas, and then diborane (B 2 H 6 ) can be added to SiH 4 to form a p-Si (p layer) of about 10 nm.
 光電変換層を挟む一対の電極層のうち、ポリイミドフィルム基材とは反対側に設けられる電極層(以下、集電電極層ともいう)は、導電フィラーとバインダー樹脂を含む導電性ペーストを固めてなる電極層であってもよいし、透明電極層であってもよい。透明電極層としては、In23、SnO2、ZnO、Cd2SnO4、ITO(In23にSnを添加したもの)などの酸化物半導体系の材料を好ましく用いることができる。
 かくして、本発明の好適な態様例である、透明電極/p型a-Si/i型a-Si/n型a-Si/金属電極/ポリイミドフィルムの順で積層されてなるフィルム状太陽電池が得られる。また、p層をa-Si、n層を多結晶シリコンとして、両者の間に薄いアンドープa-Si層を挿入した構造にしてもよい。特に、a-Si/多結晶シリコン系のハイブリッド型にすると、太陽光スペクトルに対する感度が改善される。太陽電池の作製においては、上記構成に加えて、反射防止層、表面保護層などを付加せしめてもよい。
Of the pair of electrode layers sandwiching the photoelectric conversion layer, an electrode layer (hereinafter also referred to as a current collecting electrode layer) provided on the side opposite to the polyimide film substrate is formed by consolidating a conductive paste containing a conductive filler and a binder resin. The electrode layer may be a transparent electrode layer. As the transparent electrode layer, an oxide semiconductor material such as In 2 O 3 , SnO 2 , ZnO, Cd 2 SnO 4 , ITO (In 2 O 3 added with Sn) can be preferably used.
Thus, a preferred embodiment of the present invention is a film-like solar cell in which transparent electrode / p-type a-Si / i-type a-Si / n-type a-Si / metal electrode / polyimide film are laminated in this order. can get. Alternatively, the p layer may be a-Si, the n layer may be polycrystalline silicon, and a thin undoped a-Si layer may be inserted between them. In particular, when an a-Si / polycrystalline silicon hybrid type is used, sensitivity to the sunlight spectrum is improved. In manufacturing a solar cell, an antireflection layer, a surface protective layer, or the like may be added in addition to the above structure.
 前記薄膜トランジスター(TFT)は、トランジスターを構成する半導体層および素子を構成する絶縁膜、電極、保護絶縁膜などが、薄膜材料を堆積させて作製されているもの、および、有機半導体材料を用いた印刷法にて形成された印刷トランジスターをいう。通常シリコンウエハのシリコンを半導体層として使用するものとは区別する。一般に薄膜材料は真空蒸着などのPVD(物理的蒸着)、プラズマCVDなどのCVD(化学的蒸着)といった真空を利用する手法によって作製されるもので、無定型シリコンTFT、微結晶シリコンTFT、高温ポリシリコンTFT、低温ポリシリコンTFT、化合物半導体TFT、酸化物半導体TFT、有機半導体TFTなどを含む。印刷法にて用いられる有機半導体材料には、ペンタセン、アントラセン、ルブレンなどの多環芳香族炭化水素、テトラシアノキノジメタン(TCNQ)などの低分子化合物、ポリアセチレン、ポリ-3-ヘキシルチオフェン(P3HT)、ポリパラフェニレンビニレン(PPV)など有機高分子、有機電荷移動錯体、ポリアセチレン、ポリピロール、ポリアニリンのような直鎖状高分子等を例示することができる。 In the thin film transistor (TFT), a semiconductor layer constituting the transistor and an insulating film, an electrode, a protective insulating film, etc. constituting the element are formed by depositing a thin film material, and an organic semiconductor material is used. A printing transistor formed by a printing method. It is usually distinguished from silicon wafers that use silicon as the semiconductor layer. In general, the thin film material is produced by a technique using a vacuum such as PVD (physical vapor deposition) such as vacuum vapor deposition, or CVD (chemical vapor deposition) such as plasma CVD. Including silicon TFT, low-temperature polysilicon TFT, compound semiconductor TFT, oxide semiconductor TFT, organic semiconductor TFT, and the like. Organic semiconductor materials used in the printing method include polycyclic aromatic hydrocarbons such as pentacene, anthracene and rubrene, low-molecular compounds such as tetracyanoquinodimethane (TCNQ), polyacetylene, poly-3-hexylthiophene (P3HT). ), Organic polymers such as polyparaphenylene vinylene (PPV), organic charge transfer complexes, linear polymers such as polyacetylene, polypyrrole, polyaniline, and the like.
 前記MEMS素子とは、MEMS技術を利用して作製した物を意味し、インクジェットプリンターヘッド、走査型プローブ顕微鏡用プローブ、LSIプローバー用コンタクタ、マスクレス露光用光空間変調器、光集積化素子、赤外線センサー、流量センサー、加速度センサー、MEMSジャイロセンサー、RF MEMS スイッチ、体内・体外血圧センサーそして、グレーティングライトバルブ、デジタルマイクロミラーデバイスなどを使ったビデオプロジェクターなどを含む。 The MEMS element means an element manufactured using MEMS technology, and includes an inkjet printer head, a probe for a scanning probe microscope, a contactor for an LSI prober, an optical spatial modulator for maskless exposure, an optical integrated element, an infrared ray Includes video projectors using sensors, flow sensors, acceleration sensors, MEMS gyro sensors, RF MEMS switches, internal and external blood pressure sensors, grating light valves, and digital micromirror devices.
 前記センサーとしては、ストレインゲージ(ひずみゲージ)、ロードセル、半導体圧力センサー、光センサー、光電素子、フォトダイオード、磁気センサー、接触式温度センサー、サーミスタ温度センサー、抵抗測温体温度センサー、熱電対温度センサー、非接触式温度センサー、放射温度計、マイクロフォン、イオン濃度センサー、ガス濃度センサー、変位センサー、ポテンショメータ、差動トランス変位センサー、回転角センサー、リニアエンコーダ、タコジェネレータ、ロータリエンコーダ、光位置センサー(PSD)、超音波距離計、静電容量変位計、レーザードップラー振動速度計、レーザードップラー流速計、ジャイロセンサー、加速度センサー、地震センサー、一次元画像・リニアイメージセンサー、二次元画像・CCDイメージセンサー、CMOSイメージセンサー、液・漏液センサー(リークセンサー)、液検知センサー(レベルセンサー)、硬度センサー、電場センサー、電流センサー、電圧センサー、電力センサー、赤外線センサー、放射線センサー、湿度センサー、においセンサー、流量センサー、傾斜センサー、振動センサー、時間センサー、およびこれらのセンサーを複合した複合センサーや、これらのセンサーで検出した値から何らかの計算式に基づき別の物理量や感性値などを出力するセンサーなどを含む。 The sensors include strain gauges, load cells, semiconductor pressure sensors, optical sensors, photoelectric elements, photodiodes, magnetic sensors, contact temperature sensors, thermistor temperature sensors, resistance thermometer temperature sensors, thermocouple temperature sensors. Non-contact temperature sensor, radiation thermometer, microphone, ion concentration sensor, gas concentration sensor, displacement sensor, potentiometer, differential transformer displacement sensor, rotation angle sensor, linear encoder, tachometer generator, rotary encoder, optical position sensor (PSD) ), Ultrasonic distance meter, capacitance displacement meter, laser Doppler vibration velocity meter, laser Doppler velocimeter, gyro sensor, acceleration sensor, earthquake sensor, one-dimensional image / linear image sensor, two-dimensional image / CCD image Sensor, CMOS image sensor, liquid / leak sensor (leak sensor), liquid sensor (level sensor), hardness sensor, electric field sensor, current sensor, voltage sensor, power sensor, infrared sensor, radiation sensor, humidity sensor, odor sensor , Flow sensor, tilt sensor, vibration sensor, time sensor, composite sensor that combines these sensors, sensors that output other physical quantities or sensitivity values based on some calculation formula from the values detected by these sensors, etc. Including.
 前記論理回路としては、NAND、ORを基本とした論理回路および、クロックにより、同期が取られたものも含む。 The logic circuit includes a logic circuit based on NAND and OR and a circuit synchronized by a clock.
 以上に詳述した本発明の積層体の製造方法および本発明のデバイス構造体の製造方法について、各々の一実施態様を図面を用いて説明すると、図1、図2に示す通りである。
 図1は、本発明の積層体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けした段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
 図2は、本発明のデバイス構造体の製造方法の一実施態様を示す模式図であり、(1)はガラス基板1を示し、(2)はガラス基板1上にカップリング剤を塗布乾燥してカップリング処理層2を形成した段階を示し、(3)はUV光遮断マスク3を設置した後にUV光を照射した段階を示し、(4)はUV光を照射後に、UV光遮断マスク3を除去した段階を示している。ここでカップリング処理層2のうちUV露光部はUV照射部5となり、残りの部分はUV未照射部4となっている。(5)はポリイミドフィルム6を貼り付けし、その後にUV照射部上のポリイミドフィルム7表面へデバイス8を作製した段階を示し、(6)はUV照射部上のポリイミドフィルム7に切り込みを入れガラス基板1から剥離した段階を示す。
Each embodiment of the method for producing a laminate of the present invention and the method for producing a device structure of the present invention described in detail above will be described with reference to the drawings as shown in FIGS.
FIG. 1 is a schematic view showing an embodiment of a method for producing a laminate according to the present invention, in which (1) shows a glass substrate 1 and (2) shows that a coupling agent is applied on the glass substrate 1 and dried. (3) shows the stage of irradiating the UV light after the UV light blocking mask 3 is installed, and (4) shows the stage of irradiating the UV light blocking mask 3 after irradiating the UV light. The removed stage is shown. Here, in the coupling processing layer 2, the UV exposure part is the UV irradiation part 5, and the remaining part is the UV non-irradiation part 4. (5) shows the stage where the polyimide film 6 is pasted, and (6) shows the stage where the polyimide film 7 on the UV irradiation part is cut and peeled from the glass substrate 1.
FIG. 2 is a schematic view showing an embodiment of the method for producing a device structure of the present invention, where (1) shows a glass substrate 1 and (2) shows a coating agent coated on the glass substrate 1 and dried. (3) shows the stage of irradiating the UV light after the UV light blocking mask 3 is installed, and (4) shows the stage of the UV light blocking mask 3 after irradiating the UV light. The stage which removed is shown. Here, in the coupling processing layer 2, the UV exposure part is the UV irradiation part 5, and the remaining part is the UV non-irradiation part 4. (5) shows a stage in which the polyimide film 6 is pasted, and then the device 8 is produced on the surface of the polyimide film 7 on the UV irradiation section. The stage which peeled from the board | substrate 1 is shown.
 本願は、2012年2月1日に出願された日本国特許出願第2012-020371号に基づく優先権および2012年3月8日に出願された日本国特許出願第2012-051461号に基づく優先権の利益を主張するものである。2012年2月1日に出願された日本国特許出願第2012-020371号の明細書の全内容および2012年3月8日に出願された日本国特許出願第2012-051461号の明細書の全内容が、本願に参考のため援用される。 The present application is based on priority based on Japanese Patent Application No. 2012-020371 filed on February 1, 2012 and priority on Japanese Patent Application No. 2012-05461 filed on March 8, 2012. That insists on the benefits of The entire contents of the specification of Japanese Patent Application No. 2012-020371 filed on February 1, 2012 and the entire specification of the Japanese Patent Application No. 2012-05461 filed on March 8, 2012 The contents are incorporated herein by reference.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性の評価方法は下記の通りである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples. In addition, the evaluation method of the physical property in the following examples is as follows.
<ポリアミド酸等の溶液の還元粘度>
 ポリマー濃度が0.2g/dlとなるようにN-メチル-2-ピロリドン又はN,N-ジメチルアセトアミドに溶解した溶液について、ウベローデ型の粘度管を用いて30℃で測定した。このとき、ポリアミド酸溶液の調製に使用した溶媒がN,N-ジメチルアセトアミドの場合は、N,N-ジメチルアセトアミドを使用してポリマーを溶解し、それ以外の場合は、N-メチル-2-ピロリドンを使用してポリマーを溶解し、測定した。
<Reduced viscosity of polyamic acid solution>
A solution dissolved in N-methyl-2-pyrrolidone or N, N-dimethylacetamide so that the polymer concentration was 0.2 g / dl was measured at 30 ° C. using an Ubbelohde type viscosity tube. At this time, if the solvent used for the preparation of the polyamic acid solution is N, N-dimethylacetamide, the polymer is dissolved using N, N-dimethylacetamide; otherwise, N-methyl-2- The polymer was dissolved using pyrrolidone and measured.
<ポリイミドフィルムの厚さ>
 ポリイミドフィルムの厚さは、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて測定した。
<Thickness of polyimide film>
The thickness of the polyimide film was measured using a micrometer (“Millitron 1245D” manufactured by FineLuf).
<ポリイミドフィルムの厚さ斑>
 ポリイミドフィルムの厚さ斑は、マイクロメーター(ファインリューフ社製「ミリトロン1245D」)を用いて、被測定フィルムから無作為に10点を抽出してフィルム厚を測定し、得られた10個の値の最大値を「最大フィルム厚」とし、最小値を「最小フィルム厚」とし、および平均値を「平均フィルム厚」とし、それらから下記式に基づき算出した。
 フィルムの厚さ斑(%)=100×(最大フィルム厚-最小フィルム厚)÷平均フィルム厚
<Thickness unevenness of polyimide film>
The thickness unevenness of the polyimide film was obtained by randomly extracting 10 points from the film to be measured using a micrometer ("Millitron 1245D" manufactured by Finelfu), and measuring the film thickness. The maximum value was “maximum film thickness”, the minimum value was “minimum film thickness”, and the average value was “average film thickness”.
Film thickness unevenness (%) = 100 × (maximum film thickness−minimum film thickness) ÷ average film thickness
<ポリイミドフィルムの平均光線透過率>
 分光光度計(日立製作所製「U-2001」)を用いて波長領域380nmから700nmにおける光線透過率をスキャン速度100nm/分で測定し、10nm毎の透過率値を算術平均し、得られた平均値をランベルト・ベールの法則に従うものとして20μmの厚みに換算し、得られた値をポリイミドフィルムの平均光線透過率とした。
<Average light transmittance of polyimide film>
Using a spectrophotometer (“U-2001” manufactured by Hitachi, Ltd.), the light transmittance in a wavelength region of 380 nm to 700 nm was measured at a scanning speed of 100 nm / min, and the transmittance value every 10 nm was arithmetically averaged. The value was converted to a thickness of 20 μm according to the Lambert-Beer law, and the obtained value was taken as the average light transmittance of the polyimide film.
<ポリイミドフィルムのヘイズ値(HAZE)>
 JIS K7105「プラスチックの光学的特性試験方法」ヘーズ(曇価)に準拠し、ヘーズメーター(日本電色工業社製「NDH-300A型濁度計」)を用いて測定した。
<Haze value of polyimide film (HAZE)>
The measurement was performed using a haze meter (“NDH-300A turbidimeter” manufactured by Nippon Denshoku Industries Co., Ltd.) in accordance with JIS K7105 “Testing method for optical properties of plastic” haze (cloudiness value).
<ポリイミドフィルムのYI値(黄色度指数、イエローインデックス)>
 色差計(東京電色工業(株)製「TC1500MC-88型」)およびC光源を使用して、ASTM D1925に準じてポリイミドフィルムの三刺激値XYZ値を測定し、下記式により黄色度指数(YI)を算出した。
 YI=100×(1.28X-1.06Z)/Y
<YI value of polyimide film (yellowness index, yellow index)>
Using a color difference meter (“TC1500MC-88 type” manufactured by Tokyo Denshoku Industries Co., Ltd.) and a C light source, the tristimulus XYZ values of the polyimide film were measured according to ASTM D1925, and the yellowness index ( YI) was calculated.
YI = 100 × (1.28X−1.06Z) / Y
<ポリイミドフィルムの線膨張係数(CTE)>
 測定対象とするポリイミドフィルムの流れ方向(MD方向)および幅方向(TD方向)について、下記条件にて伸縮率を測定し、15℃の間隔(30℃~45℃、45℃~60℃、…)での伸縮率/温度を測定し、この測定を150℃まで行って、MD方向およびTD方向で測定した全測定値の平均値を線膨張係数(CTE)として算出した。
  機器名    ; MACサイエンス社製「TMA4000S」
  試料長さ   ; 20mm
  試料幅    ; 2mm
  昇温開始温度 ; 25℃
  昇温終了温度 ; 400℃
  昇温速度   ; 5℃/分
  雰囲気    ; アルゴン
  初荷重    ; 34.5g/mm2
<Linear expansion coefficient (CTE) of polyimide film>
With respect to the flow direction (MD direction) and width direction (TD direction) of the polyimide film to be measured, the expansion / contraction rate is measured under the following conditions, and intervals of 15 ° C. (30 ° C. to 45 ° C., 45 ° C. to 60 ° C.,... ) Was measured up to 150 ° C., and the average value of all measured values measured in the MD and TD directions was calculated as the coefficient of linear expansion (CTE).
Device name: “TMA4000S” manufactured by MAC Science
Sample length; 20mm
Sample width: 2 mm
Temperature rise start temperature: 25 ° C
Temperature rising end temperature: 400 ° C
Temperature rising rate: 5 ° C./min Atmosphere: Argon initial load: 34.5 g / mm 2
<ポリイミドフィルムのガラス転移温度>
 DSC示差熱分析装置を用いて、室温から500℃までの範囲での構造変化に起因する吸放熱の有無からガラス転移温度を求めた。
<Glass transition temperature of polyimide film>
Using a DSC differential thermal analyzer, the glass transition temperature was determined from the presence or absence of heat absorption / dissipation due to structural changes in the range from room temperature to 500 ° C.
<ポリイミドフィルムの引張弾性率、引張強度および引張破断伸度>
 測定対象とするポリイミドフィルムから、流れ方向(MD方向)及び幅方向(TD方向)がそれぞれ100mm×10mmである短冊状の試験片を切り出し、引張試験機(島津製作所製「オートグラフ(R);機種名AG-5000A」)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向、TD方向それぞれについて、引張弾性率、引張強度および引張破断伸度を測定した。
<Tension modulus, tensile strength and tensile elongation at break of polyimide film>
From the polyimide film to be measured, strip-shaped test pieces each having a flow direction (MD direction) and a width direction (TD direction) of 100 mm × 10 mm were cut out, and a tensile tester (manufactured by Shimadzu Corporation “Autograph (R); Model name AG-5000A "), tensile modulus, tensile strength and tensile elongation at break in each of MD and TD directions were measured under the conditions of a tensile speed of 50 mm / min and a distance between chucks of 40 mm.
<ポリイミドフィルムの評価:滑り性>
 ポリイミドフィルム2枚を、異なる面同士で重ね合わせ、すなわち同じ面同士ではなく、フィルムロールとして巻いた場合の巻き外面と巻き内面とを重ね合わせ、重ねたポリイミドフィルムを親指と人差し指で挟み、軽く摺り合わせたときに、ポリイミドフィルムとポリイミドフィルムが滑る場合を「○」、滑らない場合を「×」と評価した。なお、巻き外面同士あるいは巻き内面同士では滑らない場合もあるが、これは評価項目とはしない。また滑り性を評価する際には、ポリイミドフィルムの片面の保護フィルムは取り除くこととした。
<Evaluation of polyimide film: slipperiness>
Two polyimide films are overlapped on different surfaces, that is, not on the same surface, but on the wound outer surface and the wound inner surface when they are wound as a film roll. When combined, the case where the polyimide film and the polyimide film slip was evaluated as “◯”, and the case where the polyimide film did not slip was evaluated as “x”. In addition, although it may not slip on winding outer surfaces or between winding inner surfaces, this is not made into an evaluation item. Further, when evaluating the slipperiness, the protective film on one side of the polyimide film was removed.
<ポリイミドフィルムの評価:ロール巻取り性>
 長尺状のポリイミドフィルムを、外径15cmの心棒を有する巻取りロ-ルに2m/分の速度で巻取る際に、皺が生じず円滑に巻取りが可能である場合を「○」、部分的に皺が発生する場合を「△」、皺が発生したり、ロ-ルに巻きついて円滑に巻取りができない場合を「×」と評価した。
<Evaluation of polyimide film: roll winding property>
When a long polyimide film is wound around a winding roll having a mandrel having an outer diameter of 15 cm at a speed of 2 m / min, “皺” indicates that wrinkles do not occur and smooth winding is possible. A case where wrinkles were partially generated was evaluated as “△”, and a case where wrinkles were generated or winding was not possible smoothly due to winding was evaluated as “x”.
<ポリイミドフィルムの評価:反り度>
 得られたポリイミドフィルムから、50mm×50mmの正方形を切り出し、フィルム試験片とした。フィルム試験片を切り出すに際しては、正方形の各辺がフィルムの長手方向および幅方向と一致するようにし、かつ正方形の中心がフィルムの幅方向において(a)中央、(b)左端から全幅長の1/3に当たる点、(c)右端から全幅長の1/3に当たる点、に位置するように、3箇所から切り出した。
 上記フィルム試験片(a)~(c)をそれぞれ平面上に凹状となるように静置し、四隅の平面からの距離(h1、h2、h3、h4:単位mm)を測定して、その平均値を反り量(mm)とした。この反り量を試験片の各頂点から中心までの距離(35.36mm)で除して百分率(%)で表わした値(100×(反り量(mm))/35.36)を反り度(%)とし、フィルム試験片(a)~(c)の反り度を平均して求めた。
<Evaluation of polyimide film: Degree of warpage>
From the obtained polyimide film, a 50 mm × 50 mm square was cut out to obtain a film test piece. When the film test piece is cut out, each side of the square coincides with the longitudinal direction and the width direction of the film, and the center of the square is (a) the center in the film width direction, and (b) 1 of the full width length from the left end. It was cut out from three places so as to be located at a point corresponding to / 3, and (c) a point corresponding to 1 / of the full width from the right end.
The film test pieces (a) to (c) were left to be concave on the plane, and the distances from the four corner planes (h1, h2, h3, h4: unit mm) were measured, and the average The value was the amount of warpage (mm). A value (100 × (warp amount (mm)) / 35.36) expressed as a percentage (%) obtained by dividing the warp amount by the distance (35.36 mm) from each vertex to the center of the test piece is the warp degree ( %), And the degree of warpage of the film test pieces (a) to (c) was averaged.
<ポリイミドフィルムの評価:カール度>
 ポリイミドフィルムの反り度の測定に用いたのと同様のフィルム試験片(a)~(c)に250℃のドライオーブンにて30分間熱処理を施し、その後、熱処理後のフィルムについて上記と同様に反り度を測定し、熱処理後のフィルムの反り度(%)をカール度とした。
<Evaluation of polyimide film: degree of curl>
The same film test pieces (a) to (c) used for the measurement of the degree of warpage of the polyimide film were heat-treated in a dry oven at 250 ° C. for 30 minutes, and then the heat-treated film was warped in the same manner as described above. The degree of curling was defined as the degree of warpage (%) of the film after heat treatment.
<ポリイミドフィルム表面のクレーター数およびクレーター直径>
 以下のAFM法により測定した。すなわち、ポリイミドフィルム表面のクレーター数の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS-20A」を使用し、走査範囲は10μm四方とし、測定分解能は1024×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、クレーター部を観測した。図7に示すように、クレーターは平坦部から盛り上がった凸状部の中心が窪んだ形状をしている。よって、盛り上がりの最大高さの位置における断面の直径(最大高さ間の距離)をクレーター部の直径とした。図7において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図であり、白が高い位置、黒が低い位置である。また図7において、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例であり、(3)は、クレーター部の直径を示す。そして任意の3個のクレーター部について計測を行ってクレーター部の直径を求め、それらの平均値を採用した。
<Number of craters and crater diameter on polyimide film surface>
Measurement was performed by the following AFM method. That is, the number of craters on the surface of the polyimide film was measured using a scanning probe microscope with a surface property evaluation function (“SPA300 / nonavivi” manufactured by SII Nanotechnology Inc.). The measurement is performed in DFM mode, the cantilever is “DF3” or “DF20” manufactured by SII Nanotechnology, the scanner is “FS-20A” manufactured by SII Nanotechnology, and the scanning range is The measurement resolution was 1024 × 512 pixels. After the quadratic inclination correction was performed on the measurement image with the software attached to the apparatus, the crater portion was observed. As shown in FIG. 7, the crater has a shape in which the center of the convex portion raised from the flat portion is depressed. Therefore, the diameter of the cross section (the distance between the maximum heights) at the position of the maximum height of the swell was used as the diameter of the crater part. In FIG. 7, (1) is the figure which represented the height of the unevenness | corrugation of a polyimide film with the color shade, and is a position where white is high and black is low. Moreover, in FIG. 7, (2) is a cross-sectional display example of the unevenness | corrugation of the polyimide film of the white line part of (1), (3) shows the diameter of a crater part. And it measured about arbitrary three crater parts, the diameter of the crater part was calculated | required, and those average values were employ | adopted.
 クレーター数は、得られた10μm四方の計測像(AFM像)を画像処理ソフト「ImageJ」にて粒子解析することにより測定した。なお「ImageJ」はアメリカ国立衛生研究所(NIH)で開発されたオープンソースでパブリックドメインの画像処理ソフトウェアである。詳しくは、まず、ある閾値によってそれより位置の高い部分と低い部分の2つに分別する2値化操作を行った(図8の(2)、(3)参照)。このとき閾値としては、AFM像の高さ方向の情報について分布の最大点を基準に、そこから使用した滑材の粒径の12%高い位置、例えば、滑材直径が80nmの場合には10nm高い位置を閾値とした。この2値化により白黒のみの画像(図8の(3)参照)を得、この中の円環形状の部分の数を画像処理によって求めた。すなわち、円環形状の認識は、取り囲まれた円環内を塗りつぶす操作を行い、円環内を塗りつぶした画像(図8の(4)参照)と塗りつぶさない画像を反転したもの(図8の(5)参照)との画像論理積(図8の(6)参照)を求めることで、円環内のみが抽出できる。図8において、(1)は、ポリイミドフィルムの凹凸の高さを色の濃淡で表した図であり、白が高い位置、黒が低い位置である。また図8において、(2)は、(1)の白線部のポリイミドフィルムの凹凸の断面表示例であり、直線は閾値を示す。また図8において、(3)は、閾値にて2値化した例であり、(4)は、円環部を塗りつぶした例であり、(5)は、(3)を反転した例であり、(6)は、(4)と(5)の論理積である。この操作で得た画像論理積の画像から直径が10~500nmのクレーターを数えてクレーター数を算出した。そして任意の3箇所について計測を行ってクレーター数を求め、それらの平均値を採用した。 The number of craters was measured by analyzing the obtained 10 μm square measurement image (AFM image) with image processing software “ImageJ”. “ImageJ” is an open source public domain image processing software developed by the National Institutes of Health (NIH). Specifically, first, a binarization operation is performed in which a certain threshold value is used to separate a higher portion and a lower portion (see (2) and (3) in FIG. 8). At this time, the threshold value is a position 12% higher than the particle size of the lubricant used from the maximum point of the distribution of the information in the height direction of the AFM image, for example, 10 nm when the lubricant diameter is 80 nm. A high position was set as a threshold value. By this binarization, an image of only black and white (see (3) in FIG. 8) was obtained, and the number of ring-shaped portions therein was obtained by image processing. That is, the recognition of the annular shape is performed by performing an operation of filling the enclosed circle, and reversing the image filled in the circle (see (4) of FIG. 8) and the image not filled ((( By calculating the image logical product (refer to (6) in FIG. 8) with 5), only the inside of the ring can be extracted. In FIG. 8, (1) is the figure which represented the height of the unevenness | corrugation of a polyimide film with the shading of a color, and is a position where white is high and black is low. Moreover, in FIG. 8, (2) is a cross-sectional display example of the unevenness | corrugation of the polyimide film of the white line part of (1), and a straight line shows a threshold value. In FIG. 8, (3) is an example binarized with a threshold value, (4) is an example in which an annular portion is filled, and (5) is an example in which (3) is inverted. , (6) is the logical product of (4) and (5). The number of craters was calculated by counting craters with a diameter of 10 to 500 nm from the image logical product image obtained by this operation. And it measured about arbitrary three places, calculated | required the number of craters, and employ | adopted those average values.
<ポリイミドフィルム表面のRa値>
 ポリイミドフィルム表面のRa値(表面形態)の計測は、表面物性評価機能付走査型プローブ顕微鏡(エスアイアイ・ナノテクノロジー株式会社製「SPA300/nanonavi」)を用いて行った。計測はDFMモードで行い、カンチレバーはエスアイアイ・ナノテクノロジー株式会社製「DF3」又は「DF20」を使用し、スキャナーはエスアイアイ・ナノテクノロジー株式会社製「FS-20A」を使用し、走査範囲は10μm四方とし、測定分解能は512×512ピクセルとした。計測像について装置付属のソフトウエアで二次傾き補正を行った後、測定に伴うノイズが含まれる場合には適宜、例えばフラット処理などのその他の平坦化処理を適用し、装置付属のソフトウエアでRa値を算出した。任意の3箇所について計測を行ってRa値を求め、それらの平均値を採用した。
<Ra value of polyimide film surface>
The Ra value (surface morphology) on the surface of the polyimide film was measured using a scanning probe microscope with a surface physical property evaluation function (“SPA300 / nanoavi” manufactured by SII Nanotechnology Inc.). Measurement is performed in DFM mode, the cantilever is “DF3” or “DF20” manufactured by SII Nanotechnology, the scanner is “FS-20A” manufactured by SII Nanotechnology, and the scanning range is The measurement resolution was 512 × 512 pixels. After performing secondary tilt correction on the measurement image with the software attached to the device, if noise accompanying measurement is included, apply other flattening processing such as flat processing as appropriate, and use the software included with the device. Ra value was calculated. Measurement was performed at arbitrary three locations to determine the Ra value, and an average value thereof was adopted.
<カップリング処理層の厚さ>
 カップリング処理層(SC層)の厚さ(nm)は、洗浄したSiウエハ上に形成したカップリング処理層の膜厚について、エリプソメトリー法にて、分光エリプソメータ(Photal社製「FE-5000」)を用いて下記の条件で測定した。なお、支持体としてガラスを用いた場合には、別途、洗浄したSiウエハ上に各実施例、比較例と同様の方法でカップリング剤を塗布乾燥させて得たサンプルを用いた。
  反射角度範囲 ; 45°から80°
  波長範囲   ; 250nmから800nm
  波長分解能  ; 1.25nm
  スポット径  ; 1mm
  tanΨ   ; 測定精度±0.01
  cosΔ   ; 測定精度±0.01
  測定     ; 方式回転検光子法
  偏向子角度  ; 45°
  入射角度   ; 70°固定
  検光子    ; 11.25°刻みで0~360°
  波長     ; 250nm~800nm
  非線形最小2乗法によるフィッティングで膜厚を算出した。このとき、モデルとしては、Air/薄膜/Siのモデルで、
   n=C3/λ4+C2/λ2+C1
   k=C6/λ4+C5/λ2+C4
の式で波長依存C1~C6を求めた。
<Thickness of coupling layer>
The thickness (nm) of the coupling treatment layer (SC layer) was determined by measuring the thickness of the coupling treatment layer formed on the cleaned Si wafer using an ellipsometry method. ) Using the following conditions. In addition, when glass was used as the support, a sample obtained by applying and drying a coupling agent on a separately cleaned Si wafer in the same manner as in each example and comparative example was used.
Reflection angle range: 45 ° to 80 °
Wavelength range: 250 nm to 800 nm
Wavelength resolution: 1.25 nm
Spot diameter: 1mm
tan Ψ; Measurement accuracy ± 0.01
cosΔ; Measurement accuracy ± 0.01
Measurement: Method Rotating analyzer method Deflector angle: 45 °
Incident angle: 70 ° fixed Analyzer: 0-360 ° in 11.25 ° increments
Wavelength: 250 nm to 800 nm
The film thickness was calculated by fitting by a non-linear least square method. At this time, the model is Air / thin film / Si,
n = C3 / λ4 + C2 / λ2 + C1
k = C6 / λ4 + C5 / λ2 + C4
The wavelength dependence C1 to C6 was obtained by the following formula.
<支持体の欠点存在密度>
 まず、支持体のポリイミドフィルムと対向する側の面から任意に一辺5cmの検査エリアを抽出し、座標の元となる基準点をマーキングした。次いで、検査エリア全面が観察可能なXYステージを有する微分干渉顕微鏡を用い、検査エリアを200倍にて観察し、欠点位置を目視にて検出して位置座標を記録した。この時点で目視認識された欠点個数が500個を超える場合には、その支持体は、実質的に、高さが1μm以上の欠点存在密度が100個/100平方cm以上であると判別した。欠点個数が500個以下であった支持体については、さらに検査エリアに記録された欠点位置座標の近傍をレーザー顕微鏡(キーエンス社製「VK-9700」)にて再観察し、各欠点の平面方向の大きさと高さを求め、高さが1μm以上の欠点数をカウントし、得られた欠点数を4倍して100平方cmあたりの欠点数とした。
<Defect abundance density of the support>
First, an inspection area having a side of 5 cm was arbitrarily extracted from the surface of the support opposite to the polyimide film, and a reference point serving as the origin of coordinates was marked. Next, using a differential interference microscope having an XY stage capable of observing the entire inspection area, the inspection area was observed at 200 times, the defect position was detected visually, and the position coordinates were recorded. When the number of defects visually recognized at this time exceeded 500, the support was determined to have a defect density of 100/100 square cm or more with a height of 1 μm or more. For the support having 500 defects or less, the vicinity of the defect position coordinates recorded in the inspection area was re-observed with a laser microscope ("VK-9700" manufactured by Keyence Corporation), and the plane direction of each defect The number of defects having a height of 1 μm or more was counted, and the number of defects obtained was multiplied by 4 to obtain the number of defects per 100 cm 2.
<剥離強度>
 剥離強度(180度剥離強度)は、JIS C6471に記載の180度剥離法に従い、下記条件で測定した。なお、この測定に供するサンプルには、100mm×1000mmの支持体(ガラス)に対してポリイミドフィルムのサイズを110mm×2000mmに設計することにより片側にポリイミドフィルムの未接着部分を設け、この部分を“つかみしろ”(挟持部分)とした。
  装置名     ; 島津製作所社製「オートグラフAG-IS」
  測定温度    ; 室温
  剥離速度    ; 50mm/分
  雰囲気     ; 大気
  測定サンプル幅 ; 1cm
<Peel strength>
The peel strength (180 degree peel strength) was measured under the following conditions according to the 180 degree peel method described in JIS C6471. In addition, the sample used for this measurement is provided with an unadhered portion of the polyimide film on one side by designing the size of the polyimide film to 110 mm × 2000 mm with respect to a 100 mm × 1000 mm support (glass). “Grasp” (clamping part).
Device name: “Autograph AG-IS” manufactured by Shimadzu Corporation
Measurement temperature: Room temperature Peeling speed: 50 mm / min Atmosphere: Air Measurement sample width: 1 cm
(1)UV未照射部の剥離強度
 UV未照射部の剥離強度の測定には、UV照射を行わないこと以外は各実施例・比較例と同様にして別途作製した積層体を用いた。
(2)UV照射部の剥離強度
 UV照射部の剥離強度の測定は、UV照射を行った積層体のUV照射部について行った。
(3)耐熱剥離強度
 耐熱剥離強度の測定は、積層体(UV照射を行った積層体)を窒素雰囲気としたマッフル炉に入れ、これを昇温速度10℃/分で400℃まで加熱し、そのまま400℃で1時間保持した後、マッフル炉の扉を開放して大気中で放冷することにより得たサンプルを用いて行った。
(4)耐酸性剥離強度
 耐酸性剥離強度の測定は、積層体(UV照射を行った積層体)を18質量%の塩酸溶液中に室温(23℃)にて30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
(5)耐アルカリ性剥離強度
 耐アルカリ性剥離強度の測定は、積層体(UV照射を行った積層体)を2.38質量%の水酸化テトラメチルアンモニウム(TMAH)水溶液中に室温(23℃)にて30分間浸漬し、3回水洗した後に風乾することにより得たサンプルを用いて行った。
(1) Peel strength of UV non-irradiated part For measuring the peel strength of the UV non-irradiated part, a laminate produced separately in the same manner as in each of the examples and comparative examples was used except that UV irradiation was not performed.
(2) Peeling strength of UV irradiated part The peeling strength of the UV irradiated part was measured on the UV irradiated part of the laminate subjected to UV irradiation.
(3) Heat-resistant peel strength The heat-resistant peel strength was measured by placing the laminate (laminated with UV irradiation) in a muffle furnace in a nitrogen atmosphere and heating it to 400 ° C at a temperature rising rate of 10 ° C / min. After maintaining at 400 ° C. for 1 hour, the sample obtained by opening the door of the muffle furnace and allowing to cool in the atmosphere was used.
(4) Acid peel strength The acid peel strength was measured by immersing the laminate (laminated with UV irradiation) in an 18% by mass hydrochloric acid solution at room temperature (23 ° C) for 30 minutes and washing with water three times. And then using a sample obtained by air drying.
(5) Alkali resistance peel strength The alkali resistance peel strength was measured by placing the laminate (laminated body subjected to UV irradiation) in a 2.38 mass% aqueous tetramethylammonium hydroxide (TMAH) solution at room temperature (23 ° C). The sample was obtained by dipping for 30 minutes, washing with water three times and then air-drying.
<剥離後のフィルム反り度>
 易剥離部分に相当する積層体のUV照射部に切り込みを入れてポリイミドフィルムを支持体から剥離し、剥離したポリイミドフィルムの中央部分から50mm×50mmの正方形を切り出してフィルム試験片とし、該試験片の反り度(%)を上記ポリイミドフィルムの反り度と同様にして測定した。
<Degree of film warpage after peeling>
A cut is made in the UV irradiation part of the laminate corresponding to the easily peelable part to peel the polyimide film from the support, and a 50 mm × 50 mm square is cut out from the central part of the peeled polyimide film to form a film test piece. The degree of warpage (%) was measured in the same manner as the degree of warpage of the polyimide film.
<滑材粒子径>
 各製造例で用いた滑材(シリカ)の粒子径は、溶媒(ジメチルアセトアミド)に分散させた分散体の状態で、堀場製作所社製のレーザー散乱式粒度分布計「LB-500」を用いて粒子径分布を求め、算出した体積平均粒子径を粒子径とした。
<Lubricant particle size>
The particle size of the lubricant (silica) used in each production example was in the state of dispersion in a solvent (dimethylacetamide) using a laser scattering particle size distribution analyzer “LB-500” manufactured by HORIBA, Ltd. The particle size distribution was determined, and the calculated volume average particle size was taken as the particle size.
<表面組成比>
 表面組成比は、X線光電子分光分析(ESCA)にて測定した。測定は、アルバック・ファイ社製「ESCA5801MC」を用いて下記の条件で行った。測定に際しては、まず全元素スキャンを行って他の元素の有無を確認した後に、存在する元素のナロースキャンを行って存在比率を測定した。なお、測定に供する試料は、予備排気を十分に行った後に測定室に投入するようにしており、イオン照射等により測定前にサンプル表面を削り取るといった操作は行っていない。
  励起X線:Mg、Kα線
  光電子脱出角度:45°
  分析径:φ800μm
  パスエネルギー:29.35eV(ナロースキャン)、187.75eV(全元素スキャン)
  ステップ:0.125eV(ナロースキャン)、1.6eV(全元素スキャン)
  分析元素:C,O,N,Si,全元素
  真空度:1×10‐8Torr以下
<Surface composition ratio>
The surface composition ratio was measured by X-ray photoelectron spectroscopy (ESCA). The measurement was performed under the following conditions using “ESCA5801MC” manufactured by ULVAC-PHI. In the measurement, first, all elements were scanned to confirm the presence or absence of other elements, and then the abundance ratio was measured by performing a narrow scan of the existing elements. Note that the sample to be used for measurement is put into the measurement chamber after sufficient preliminary evacuation, and the operation of scraping the sample surface before measurement by ion irradiation or the like is not performed.
Excitation X-ray: Mg, Kα-ray Photoelectron escape angle: 45 °
Analysis diameter: φ800μm
Pass energy: 29.35 eV (narrow scan), 187.75 eV (all element scan)
Step: 0.125 eV (narrow scan), 1.6 eV (all element scan)
Analytical elements: C, O, N, Si, all elements Vacuum degree: 1 × 10 −8 Torr or less
〔製造例1-1〕
(ポリアミド酸溶液A1の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)16.1g(0.05mol)と、N-メチル-2-ピロリドン109gとを仕込んで溶解させ、次いで、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDA-H)11.2g(0.05mol)を室温にて固体のまま分割添加し、室温下で12時間攪拌した。次に、共沸溶媒としてキシレン40.0gを添加し、180℃に昇温して3時間反応を行い、共沸してくる生成水を分離した。水の留去が終わったことを確認した後、1時間かけて190℃に昇温することによりキシレンを除去して反応溶液を得た。この反応溶液に、滑材として体積平均粒子径80nmのコロイダルシリカをジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、ポリアミド酸溶液A1を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 1-1]
(Preparation of polyamic acid solution A1)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 16.1 g (0.05 mol) of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and N-methyl- Charge and dissolve 109 g of 2-pyrrolidone, then add 11.2 g (0.05 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (PMDA-H) in a solid form at room temperature in divided portions. And stirred for 12 hours at room temperature. Next, 40.0 g of xylene was added as an azeotropic solvent, the temperature was raised to 180 ° C., the reaction was performed for 3 hours, and the azeotropic product water was separated. After confirming that the water had been distilled off, the temperature was raised to 190 ° C. over 1 hour to remove xylene to obtain a reaction solution. In this reaction solution, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm as a lubricant in dimethylacetamide (“Snowtex (registered trademark) DMAC-ST30” manufactured by NISSAN CHEMICAL INDUSTRY CO., LTD.) Is added to a polyamide. It added so that it might become 0.2 mass% with respect to the polymer solid content total amount in an acid solution, and the polyamic-acid solution A1 was obtained.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-1〕
(ポリアミド酸溶液B1の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB-HG)155.9質量部と、N,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)142.9質量部(ジアミン成分1モルに対して0.992モルに相当)を固体のまま分割添加し、室温で5時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)を、シリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、その後、N,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B1を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-1]
(Preparation of polyamic acid solution B1)
The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB-HG) 155.9 parts by mass as a diamine component N, N-dimethylacetamide and 1200 parts by mass of N, N-dimethylacetamide were dissolved, and then, while cooling the reaction vessel, 142.9 parts by mass of a cyclobutanetetracarboxylic dianhydride (CBDA) as a tetracarboxylic acid component (diamine component) (Corresponding to 0.992 mol relative to 1 mol) was added in portions as a solid and stirred at room temperature for 5 hours. Next, a dispersion formed by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added to the silica. Was added so as to be 0.2% by mass with respect to the total polymer solid content in the polyamic acid solution, and then diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B1.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-2〕
(ポリアミド酸溶液B2の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(ビスアニリンP:CAS No2716-10-1)(BAP)191.2質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)108.3質量部(ジアミン成分1モルに対して1モルに相当)を固体のまま分割添加し、室温で10時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド500質量部で希釈して、ポリアミド酸溶液B2を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-2]
(Preparation of polyamic acid solution B2)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene (bisaniline P: CAS No2716) as a diamine component. -10-1) After 191.2 parts by weight of (BAP) and 1200 parts by weight of N, N-dimethylacetamide were charged and dissolved, cyclobutanetetracarboxylic dianhydride was added as a tetracarboxylic acid component while cooling the reaction vessel. 108.3 parts by mass (CBDA) (corresponding to 1 mol with respect to 1 mol of the diamine component) were added in portions as solids and stirred at room temperature for 10 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant ("Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica. The polyamic acid solution was added so that the total amount of polymer solids was 0.2% by mass, and the obtained reaction solution was diluted with 500 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B2. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-3〕
(ポリアミド酸溶液B3の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン(p-6FAPB)205.8質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)93.8質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B3を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-3]
(Preparation of polyamic acid solution B3)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring bar was purged with nitrogen, and then 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene (p-6FAPB) 205.8 as a diamine component. After charging and dissolving 1 part by mass and 1200 parts by mass of N, N-dimethylacetamide, 93.8 parts by mass (diamine) of cyclobutanetetracarboxylic dianhydride (CBDA) as a tetracarboxylic acid component while cooling the reaction vessel (Corresponding to 0.995 mol with respect to 1 mol of the component) was added in portions as a solid and stirred at room temperature for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica. The polyamic acid solution was added so that the total amount of polymer solids was 0.2% by mass, and the resulting reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B3. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-4〕
(ポリアミド酸溶液B4の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)176.5質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDA-H)122.9質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で18時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、その後N,N-ジメチルアセトアミド500質量部で希釈して、ポリアミド酸溶液B4を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-4]
(Preparation of polyamic acid solution B4)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was substituted with nitrogen, 176.5 parts by mass of 2,2′-bis (trifluoromethyl) benzidine (TFMB) as a diamine component and N, N-dimethyl 1,200 parts by mass of acetamide was charged and dissolved, and then, while cooling the reaction vessel, 122.9 parts by mass of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (PMDA-H) as a tetracarboxylic acid component (Corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions as solids and stirred at room temperature for 18 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant ("Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica. Polyamide acid solution B4 was obtained by adding 0.2% by mass to the total polymer solid content in the polyamic acid solution and then diluting with 500 parts by mass of N, N-dimethylacetamide.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-5〕
(ポリアミド酸溶液B5の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)186.5質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDA-H)112.9質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で15時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、その後N,N-ジメチルアセトアミド500質量部で希釈して、ポリアミド酸溶液B5を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-5]
(Preparation of polyamic acid solution B5)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, 186.5 parts by mass of 4,4′-bis (4-aminophenoxy) biphenyl (BAPB) as a diamine component and N, N— 1,200 parts by weight of dimethylacetamide was charged and dissolved, and then the reaction vessel was cooled, and 1,2.9,4,5-cyclohexanetetracarboxylic dianhydride (PMDA-H) as the tetracarboxylic acid component was 112.9 parts by weight. Parts (corresponding to 0.995 mol with respect to 1 mol of the diamine component) were added in portions in the form of a solid and stirred at room temperature for 15 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant ("Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica. Polyamide acid solution B5 was obtained by adding 0.2% by mass to the total amount of polymer solids in the polyamic acid solution and then diluting with 500 parts by mass of N, N-dimethylacetamide.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-6〕
(ポリアミド酸溶液B6の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分としてフェニレンジアミン(PDA)78.3質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分として3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物(BPDA-H)220.6質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で15時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、その後、N,N-ジメチルアセトアミド250質量部で希釈して、ポリアミド酸溶液B6を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-6]
(Preparation of polyamic acid solution B6)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 78.3 parts by mass of phenylenediamine (PDA) and 1200 parts by mass of N, N-dimethylacetamide were charged and dissolved as diamine components. Then, while cooling the reaction vessel, 220.6 parts by mass of 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride (BPDA-H) as a tetracarboxylic acid component (based on 1 mol of diamine component (Corresponding to 0.995 mol) was added in portions as a solid and stirred at room temperature for 15 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica. Polyamide acid solution B6 was obtained by adding 0.2% by mass to the total amount of polymer solids in the polyamic acid solution and then diluting with 250 parts by mass of N, N-dimethylacetamide.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-7〕
(ポリアミド酸溶液B7の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン(p-6FAPB)104.1質量部および2、2’-ジメチル-4、4’-ジアミノビフェニル(m-TB-HG)77.3質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)118.6質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B7を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-7]
(Preparation of polyamic acid solution B7)
The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 1,4-bis (4-amino-2-trifluoromethylphenoxy) benzene (p-6FAPB) 104.1 as a diamine component. Then, 77.3 parts by mass of 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB-HG) and 1200 parts by mass of N, N-dimethylacetamide were charged and dissolved, and then the reaction vessel As the tetracarboxylic acid component, 118.6 parts by mass of cyclobutanetetracarboxylic dianhydride (CBDA) (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and at room temperature. Stir for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica. The polyamic acid solution was added so as to be 0.2% by mass with respect to the total solid content of the polymer, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B7. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-8〕
(ポリアミド酸溶液B8の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)143.1質量部および1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン(p-6FAPB)47.8質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)109.1質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B8を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-8]
(Preparation of polyamic acid solution B8)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, 2,2′-bis (trifluoromethyl) benzidine (TFMB) 143.1 parts by mass and 1,4-bis were used as the diamine component. 47.8 parts by mass of (4-amino-2-trifluoromethylphenoxy) benzene (p-6FAPB) and 1200 parts by mass of N, N-dimethylacetamide were charged and dissolved. As a carboxylic acid component, 109.1 parts by mass of cyclobutanetetracarboxylic dianhydride (CBDA) (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and stirred at room temperature for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica. The polyamic acid solution was added so that the total amount of polymer solids was 0.2% by mass, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B8. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-9〕
(ポリアミド酸溶液B9の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)122.7質量部および1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン(p-6FAPB)70.3質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)107.0質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B9を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-9]
(Preparation of polyamic acid solution B9)
After the inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, 122.7 parts by mass of 2,2′-bis (trifluoromethyl) benzidine (TFMB) as a diamine component and 1,4-bis 70.3 parts by mass of (4-amino-2-trifluoromethylphenoxy) benzene (p-6FAPB) and 1200 parts by mass of N, N-dimethylacetamide were charged and dissolved. As a carboxylic acid component, 107.0 parts by mass of cyclobutanetetracarboxylic dianhydride (CBDA) (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and stirred at room temperature for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle diameter of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries) was added in silica. The polyamic acid solution was added so as to be 0.2% by mass relative to the total amount of polymer solids, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B9. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-10〕
(ポリアミド酸溶液B10の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)146.3質量部および4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)42.1質量部、とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)111.6質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B10を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-10]
(Preparation of polyamic acid solution B10)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then, as a diamine component, 146.3 parts by mass of 2,2′-bis (trifluoromethyl) benzidine (TFMB) and 4,4′- After charging and dissolving 42.1 parts by mass of bis (4-aminophenoxy) biphenyl (BAPB) and 1200 parts by mass of N, N-dimethylacetamide, the reaction vessel was cooled and cyclobutanetetra Carboxylic dianhydride (CBDA) 111.6 parts by mass (corresponding to 0.995 mol with respect to 1 mol of the diamine component) was added in portions while being solid, and stirred at room temperature for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries, Ltd.) has an added amount of silica. The polyamic acid solution was added so as to be 0.2% by mass with respect to the total solid content of the polymer, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B10. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例2-11〕
(ポリアミド酸溶液B11の調製)
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、ジアミン成分として2,2’-ビス(トリフルオロメチル)ベンジジン(TFMB)65.9質量部、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン(p-6FAPB)75.6質量部、および2、2’-ジメチル-4、4’-ジアミノビフェニル(m-TB-HG)43.6質量部とN,N-ジメチルアセトアミド1200質量部とを仕込んで溶解させた後、反応容器を冷却しながら、テトラカルボン酸成分としてシクロブタンテトラカルボン酸二無水物(CBDA)114.9質量部(ジアミン成分1モルに対して0.995モルに相当)を固体のまま分割添加し、室温で12時間攪拌した。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリアミド酸溶液中のポリマー固形分総量に対して0.2質量%となるように加え、得られた反応溶液をN,N-ジメチルアセトアミド1000質量部で希釈して、ポリアミド酸溶液B11を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 2-11]
(Preparation of polyamic acid solution B11)
The inside of a reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod was purged with nitrogen, and then 65.9 parts by mass of 2,2′-bis (trifluoromethyl) benzidine (TFMB) as a diamine component, 1,4-bis 75.6 parts by mass of (4-amino-2-trifluoromethylphenoxy) benzene (p-6FAPB) and 43.6 parts by mass of 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB-HG) And 1200 parts by mass of N, N-dimethylacetamide were dissolved, and then, while cooling the reaction vessel, 114.9 parts by mass (diamine component) of cyclobutanetetracarboxylic dianhydride (CBDA) as a tetracarboxylic acid component (Corresponding to 0.995 mol with respect to 1 mol) was added in portions as a solid and stirred at room temperature for 12 hours. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant (“Snowtex (registered trademark) DMAC-ST30” manufactured by Nissan Chemical Industries, Ltd.) has an added amount of silica. The polyamic acid solution was added so as to be 0.2% by mass relative to the total amount of polymer solids, and the obtained reaction solution was diluted with 1000 parts by mass of N, N-dimethylacetamide to obtain a polyamic acid solution B11. .
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
〔製造例3-1〕
(ポリイミド溶液C1の調製)
 窒素導入管、温度計、攪拌棒、滴下ロート、分縮器付き冷却管を備えた反応容器内を窒素置換した後、テトラカルボン酸成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDA-H)137.1質量部(ジアミン成分1モルに対して0.995モルに相当)と、γ-ブチロラクトン600質量部と、N,N-ジメチルアセトアミド100質量部とを仕込んで溶解させた後、反応容器を冷却しながら、ジアミン成分として4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)(TMDC)162.1質量部を滴下し、室温で4時間攪拌した。次いで、メタキシレン150質量部と、トリエチルアミン3.09質量部(ジアミン成分1モルに対して0.05モルに相当)とを添加して180℃で生成する水を系外に除去しながら3時間反応させた。次いで、滑材として体積平均粒子径80nmのコロイダルシリカをN,N-ジメチルアセトアミドに分散してなる分散体(日産化学工業製「スノーテックス(登録商標)DMAC-ST30」)をシリカの添加量がポリイミド溶液中のポリマー固形分総量に対して0.2質量%となるように加え、その後、冷却してN,N-ジメチルアセトアミド500質量部で希釈して、ポリイミド溶液C1を得た。
 得られたポリアミド酸溶液の固形分濃度および還元粘度は表1に示す通りであった。
[Production Example 3-1]
(Preparation of polyimide solution C1)
The inside of the reaction vessel equipped with a nitrogen introduction tube, a thermometer, a stirring rod, a dropping funnel, and a condenser tube with a condenser is replaced with nitrogen, and then 1,2,4,5-cyclohexanetetracarboxylic dianhydride as a tetracarboxylic acid component (PMDA-H) 137.1 parts by mass (corresponding to 0.995 mol per 1 mol of the diamine component), γ-butyrolactone 600 parts by mass and N, N-dimethylacetamide 100 parts by mass were dissolved. After cooling, while cooling the reaction vessel, 162.1 parts by mass of 4,4′-methylenebis (2,6-dimethylcyclohexylamine) (TMDC) as a diamine component was added dropwise and stirred at room temperature for 4 hours. Next, 150 parts by weight of metaxylene and 3.09 parts by weight of triethylamine (corresponding to 0.05 moles relative to 1 mole of the diamine component) are added, and the water produced at 180 ° C. is removed from the system for 3 hours. Reacted. Next, a dispersion obtained by dispersing colloidal silica having a volume average particle size of 80 nm in N, N-dimethylacetamide as a lubricant ("Snowtex (registered trademark) DMAC-ST30" manufactured by Nissan Chemical Industries) is added in silica. It added so that it might become 0.2 mass% with respect to the polymer solid content total amount in a polyimide solution, Then, it cooled and diluted with 500 mass parts of N, N- dimethylacetamide, and obtained the polyimide solution C1.
The solid content concentration and reduced viscosity of the obtained polyamic acid solution were as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
《フィルム作製例1-1》
 製造例1-1に記載の方法を質量比にて50倍スケールで実施して得たポリアミド酸溶液A1を、製膜支持体としてのポリエチレンテレフタレート(PET)製フィルム(東洋紡績株式会社製「A-4100」)の無滑材面上に、イミド化後の膜厚が38μmとなるようにコンマコーターを用いてコーティングし、110℃にて5分間乾燥した後、PET製フィルムとともに、換言すればPET製フィルムから剥がさずに、単層ポリアミド酸フィルムを巻き取った。
<< Film Production Example 1-1 >>
A polyamic acid solution A1 obtained by carrying out the method described in Production Example 1-1 on a 50-fold scale by mass ratio was used as a polyethylene terephthalate (PET) film (“A” manufactured by Toyobo Co., Ltd.). -4100 ") on a non-slip material surface, coated with a comma coater so that the film thickness after imidization is 38 μm, dried at 110 ° C. for 5 minutes, and together with the PET film, in other words The single-layer polyamic acid film was wound up without peeling off from the PET film.
 次に、得られた単層ポリアミド酸フィルムを製膜支持体のPET製フィルムから剥離し、3つの熱処理ゾーンを有するピンテンターに通し、一段目150℃×2分、2段目220℃×2分、3段目280℃×4分間の熱処理を行い、500mm幅にスリットして、厚さ38μmのポリイミドフィルムAF1を得た。なお、熱処理後、剥離可能な非ポリイミド保護フィルムとして、片面に微粘着層を備えたPETフィルム(保護フィルム)をラミネートしてから巻き取った。
 得られたフィルムの特性を表2に示す。
 なお、前記保護フィルムは、フィルム表面への異物付着や傷付き等を防止する目的で貼着しているものであり、比較的低温でロールトゥロールにて搬送する際や、人手によるハンドリングを行う際には、保護フィルムは貼着した状態で操作を行った。しかしながら、例えば130℃を超える条件下でプレスやラミネートなどを行う際、または、保護フィルムを貼着した面に各処理を施す際には、かかる保護フィルムを剥がした後に各操作を行った。
Next, the obtained single-layer polyamic acid film is peeled off from the PET film as the film-forming support, passed through a pin tenter having three heat treatment zones, and the first stage 150 ° C. × 2 minutes, the second stage 220 ° C. × 2 minutes. A third stage heat treatment at 280 ° C. for 4 minutes was performed and slit to a width of 500 mm to obtain a polyimide film AF1 having a thickness of 38 μm. In addition, it wound up, after laminating PET film (protective film) provided with the slightly adhesion layer on one side as a non-polyimide protective film which can peel after heat processing.
The properties of the obtained film are shown in Table 2.
In addition, the said protective film is stuck for the purpose of preventing adhesion of foreign matter or scratches on the film surface, and is handled manually when transported by roll-to-roll at a relatively low temperature. At that time, the operation was performed with the protective film adhered. However, for example, when pressing, laminating, or the like under conditions exceeding 130 ° C., or when performing various treatments on the surface to which the protective film is attached, each operation was performed after the protective film was removed.
《フィルム作製例2-1~2-11》
 製造例2-1~2-11で得られたポリアミド酸溶液B1~B11を用い、それぞれポリイミドフィルムBF1~BF11を作製した。
 各ポリアミド酸溶液を、スリットダイを用いて幅1050mmの長尺ポリエステルフィルム(東洋紡績株式会社製「A-4100」)の平滑面(無滑材面)上に、イミド化後の膜厚が表2に示す厚さとなるように塗布し、80℃にて8分間乾燥した後、ポリエステルフィルムから剥離して、幅920mmの自己支持性のポリアミド酸フィルムを得た。
 次いで、得られた自己支持性ポリアミド酸フィルムをテンターに固定した状態で、イナートオーブンにて、窒素ガス雰囲気下、150℃~350℃の温度領域で段階的に昇温させて(1段目150℃×4分、2段目220℃×8分、3段目350℃×4分間)熱処理を施してイミド化させ、幅840mmの長尺ポリイミドフィルム(1000m巻き)を得た。
 得られたフィルムの特性を表2に示す。
<< Film Production Examples 2-1 to 2-11 >>
Polyimide films BF1 to BF11 were produced using the polyamic acid solutions B1 to B11 obtained in Production Examples 2-1 to 2-11, respectively.
The thickness of each polyamic acid solution after imidization is expressed on the smooth surface (non-sliding material surface) of a long polyester film (“A-4100” manufactured by Toyobo Co., Ltd.) having a width of 1050 mm using a slit die. After coating at a thickness of 2 and drying at 80 ° C. for 8 minutes, the polyester film was peeled off to obtain a self-supporting polyamic acid film having a width of 920 mm.
Next, with the obtained self-supporting polyamic acid film fixed to a tenter, the temperature was raised stepwise in an inert oven in a temperature range of 150 ° C. to 350 ° C. in a nitrogen gas atmosphere (first stage 150 (C.times.4 minutes, second stage 220.degree. C..times.8 minutes, third stage 350.degree. C..times.4 minutes) was subjected to imidization to obtain a long polyimide film (1000 m roll) having a width of 840 mm.
The properties of the obtained film are shown in Table 2.
《フィルム作製例3-1》
 製造例3-1で得られたポリイミド溶液C1を用いたこと以外フィルム作製例2-1と同様に、ポリエステルフィルム上への塗布、乾燥、ポリエステルフィルムからの剥離を行い、幅920mmの自己支持性のポリイミドフィルムを得た。
 次いで、得られた自己支持性ポリイミドフィルムをテンターに固定した状態で、イナートオーブンにて、窒素ガス雰囲気下、150℃~300℃の温度領域で段階的に昇温させて(1段目150℃×4分、2段目180℃×4分、3段目300℃×10分間)熱処理を行い、幅840mmの長尺ポリイミドフィルムCF1(250m巻き)を得た。
 得られたフィルムの特性を表2に示す。
<< Film Production Example 3-1 >>
Self-supporting with a width of 920 mm by applying onto a polyester film, drying, and peeling from the polyester film in the same manner as in Film Production Example 2-1, except that the polyimide solution C1 obtained in Production Example 3-1 was used. The polyimide film was obtained.
Next, with the obtained self-supporting polyimide film fixed to a tenter, the temperature was raised stepwise in a temperature range of 150 ° C. to 300 ° C. in a nitrogen gas atmosphere in an inert oven (first stage 150 ° C. × 4 minutes, 2nd stage 180 ° C. × 4 minutes, 3rd stage 300 ° C. × 10 minutes) heat treatment was performed to obtain a long polyimide film CF1 (250 m roll) having a width of 840 mm.
The properties of the obtained film are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
《フィルム処理例1-1》
 上記で得られたポリイミドフィルムAF1の片面に真空プラズマ処理を施し、続いて同面を酸処理した後、風乾し、110℃のホットプレート上に1時間載置することにより脱水処理を行った。真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内にOガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。続く酸処理は、10質量%のHF水溶液中に1分間浸漬した後、洗浄し、乾燥することにより行った。
 得られた処理後の表面処理ポリイミドフィルムATF1は、プラズマ・酸処理を施した表面のクレーター数が35個/10μm四方、プラズマ・酸処理を施した表面のクレーター直径が115nm、プラズマ・酸処理面の反対側の表面のRaが0.6nmであった。なお、クレーター数は、100μm2当りの直径10nm~500nmのクレーターの平均数値であり、クレーター直径はその平均値である。
<< Film Processing Example 1-1 >>
One surface of the polyimide film AF1 obtained above was subjected to vacuum plasma treatment, and then the same surface was acid-treated, then air-dried, and placed on a 110 ° C. hot plate for 1 hour for dehydration treatment. As the vacuum plasma processing, RIE mode using parallel plate type electrodes and RF plasma processing are adopted, O 2 gas is introduced into the vacuum chamber, high frequency power of 13.54 MHz is introduced, and processing time is increased. Was 3 minutes. The subsequent acid treatment was performed by immersing in a 10% by mass HF aqueous solution for 1 minute, and then washing and drying.
The obtained surface-treated polyimide film ATF1 after treatment has a crater number of 35/10 μm square on the surface subjected to plasma / acid treatment, a crater diameter of 115 nm on the surface subjected to plasma / acid treatment, and a plasma / acid-treated surface. The Ra on the opposite side of the surface was 0.6 nm. The number of craters is the average value of craters having a diameter of 10 nm to 500 nm per 100 μm 2 , and the crater diameter is the average value.
《フィルム処理例2-1~2-12》
 フィルム作製例2-1~2-11で得られたポリイミドフィルムBF1~BF11およびフィルム作製例3-1で得られたポリイミドフィルムCF1に対し、それぞれ、フィルムの片面に真空プラズマ処理を施して、表面処理ポリイミドフィルムBPF1~BPF11およびCPF1を得た。
 真空プラズマ処理としては、平行平板型の電極を使ったRIEモード、RFプラズマによる処理を採用し、真空チャンバー内にアルゴンガスを導入し、13.54MHzの高周波電力を導入するようにし、処理時間は3分間とした。
 得られた表面処理ポリイミドフィルムのプラズマ処理を施した表面のクレーター数と、プラズマ処理面の反対側の表面のRa値を表3に示す。なお、クレーター数は、100μm2当りの直径10nm~500nmのクレーターの平均数値である。
<< Film Processing Examples 2-1 to 2-12 >>
The polyimide films BF1 to BF11 obtained in Film Preparation Examples 2-1 to 2-11 and the polyimide film CF1 obtained in Film Preparation Example 3-1 were each subjected to vacuum plasma treatment on one side of the film, Treated polyimide films BPF1 to BPF11 and CPF1 were obtained.
As the vacuum plasma processing, RIE mode using parallel plate type electrodes and RF plasma processing are adopted, argon gas is introduced into the vacuum chamber, high frequency power of 13.54 MHz is introduced, and the processing time is 3 minutes.
Table 3 shows the number of craters on the surface of the obtained surface-treated polyimide film subjected to plasma treatment and the Ra value on the surface opposite to the plasma-treated surface. The number of craters is an average value of craters having a diameter of 10 nm to 500 nm per 100 μm 2 .
《フィルム処理例2-13~2-19》
 フィルム作製例2-1、2-3、および2-7~2-11で得られたポリイミドフィルムBF1、BF3、およびBF7~BF11に対し、それぞれ、フィルムの片面に真空プラズマ処理を施し、その後、プラズマ処理面に酸処理を施して、表面処理ポリイミドフィルムBTF1、BTF3、およびBTF7~BTF11を得た。
 真空プラズマ処理は、フィルム処理例2-1~2-12と同様に行った。続く酸処理は、10質量%のHF水溶液中に1分間浸漬した後、洗浄し、乾燥することにより行った。乾燥は、風乾の後、110℃のホットプレート上に1時間載置することにより行った。
 得られた表面処理ポリイミドフィルムのプラズマ・酸処理を施した表面のクレーター数と、プラズマ・酸処理面の反対側の表面のRa値を表3に示す。なお、クレーター数は、100μm2当りの直径10nm~500nmのクレーターの平均数値である。
<< Examples of film processing 2-13 to 2-19 >>
The polyimide films BF1, BF3, and BF7 to BF11 obtained in Film Preparation Examples 2-1, 2-3, and 2-7 to 2-11 were each subjected to vacuum plasma treatment on one side of the film, and then The plasma-treated surface was subjected to an acid treatment to obtain surface-treated polyimide films BTF1, BTF3, and BTF7 to BTF11.
The vacuum plasma treatment was performed in the same manner as in the film treatment examples 2-1 to 2-12. The subsequent acid treatment was performed by immersing in a 10% by mass HF aqueous solution for 1 minute, and then washing and drying. Drying was performed by placing on a hot plate at 110 ° C. for 1 hour after air drying.
Table 3 shows the number of craters on the surface of the obtained surface-treated polyimide film subjected to plasma / acid treatment and the Ra value on the surface opposite to the plasma / acid-treated surface. The number of craters is an average value of craters having a diameter of 10 nm to 500 nm per 100 μm 2 .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例1-1)
 窒素置換したグローブボックス内で窒素ガスを流しながら、シランカップリング剤(SC剤)である3-アミノプロピルトリメトキシシランをイソプロピルアルコールによって0.5質量%に希釈した後、無機物からなる支持体(基板)として予め別途洗浄、乾燥しておいたガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)をスピンコーターに設置して、シランカップリング剤(SC剤)を回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱して、厚さ11nmのカップリング処理層を備えたカップリング剤処理済支持体を得た。
Example 1-1
While flowing nitrogen gas in a nitrogen-substituted glove box, 3-aminopropyltrimethoxysilane, which is a silane coupling agent (SC agent), is diluted to 0.5% by mass with isopropyl alcohol, and then a support made of an inorganic substance ( A glass (Corning EAGLE XG manufactured by Corning; 100 mm x 100 mm x 0.7 mm thick) that has been cleaned and dried in advance as a substrate is placed on a spin coater, and a silane coupling agent (SC agent) is rotated. It was dropped in the center and rotated at 500 rpm, and then rotated at 2000 rpm so that the entire surface of the support was wetted, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C. placed in a clean bench to obtain a coupling agent-treated support having a coupling treatment layer having a thickness of 11 nm.
 次に、上記で得たカップリング処理層を備えた支持体のカップリング処理層面に、70mm×70mm(□70mm)のパターンに切り抜いたポリイミドフィルムをマスクとして載置し、積層体の周辺15mmずつを残して70mm×70mm(□70mm)の範囲内にUV照射処理を行った。
 なお、UV照射は、ランテクニカルサービス株式会社製のUV/O3洗浄改質装置(「SKB1102N-01」)とUVランプ(「SE-1103G05」)とを用い、該UVランプから3cm程度離れた距離から4分間行った。照射時にはUV/O洗浄改質装置内には特別な気体は入れず、UV照射は、大気雰囲気、室温で行った。なお、UVランプは254nmの波長および不活性化処理を促進するオゾンを発生させうる185nmの短波長の輝線を出しており、このとき照度を照度計(「ORC UV-M03AUV」)にて254nmの波長で測定したところ、20mW/cm2程度であった。
Next, a polyimide film cut out in a 70 mm × 70 mm (□ 70 mm) pattern is placed as a mask on the coupling treatment layer surface of the support provided with the coupling treatment layer obtained above, and the periphery of the laminate is 15 mm apart. UV irradiation treatment was performed within a range of 70 mm × 70 mm (□ 70 mm).
For UV irradiation, a UV / O 3 cleaning and reforming apparatus (“SKB1102N-01”) manufactured by Run Technical Service Co., Ltd. and a UV lamp (“SE-1103G05”) were used, and about 3 cm away from the UV lamp. 4 minutes from the distance. At the time of irradiation, no special gas was put in the UV / O 3 cleaning and reforming apparatus, and UV irradiation was performed in an air atmosphere and at room temperature. The UV lamp emits an emission line with a wavelength of 254 nm and a short wavelength of 185 nm that can generate ozone that promotes the inactivation treatment. When measured by wavelength, it was about 20 mW / cm 2 .
 次に、UV照射処理後の支持体のカップリング剤処理・UV照射処理面と、フィルム処理例1-1で得られた表面処理ポリイミドフィルムATF1のプラズマ処理面とが対向するように重ね合わせ、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行い、本発明の積層体S1-1を得た。
 得られた積層体の評価結果を表4に示す。
 なお、別途、上記で得たカップリング処理層を備えた支持体のカップリング剤処理面と、フィルム処理例1-1で得られた表面処理ポリイミドフィルムATF1のプラズマ処理面とが対向するように重ね合わせ、上記と同様の真空プレスにより加圧加熱処理を行い、UV未照射部の剥離強度測定用サンプルを作製した。
Next, the surface of the support after the UV irradiation treatment was superposed so that the coupling agent treatment / UV irradiation treatment surface and the plasma treatment surface of the surface-treated polyimide film ATF1 obtained in the film treatment example 1-1 were opposed to each other. A pressurizing heat treatment was performed by vacuum pressing with a rotary pump at a pressure of 10 +2 Pa or less and a pressure of 10 MPa at 300 ° C. to obtain a laminate S1-1 of the present invention.
Table 4 shows the evaluation results of the obtained laminate.
Separately, the coupling agent-treated surface of the support provided with the coupling-treated layer obtained above is opposed to the plasma-treated surface of the surface-treated polyimide film ATF1 obtained in Film Processing Example 1-1. The samples were stacked and subjected to pressure and heat treatment by a vacuum press similar to the above to prepare a sample for measuring the peel strength of the UV non-irradiated part.
(実施例2-1~2-19)
 表面処理ポリイミドフィルムとして、フィルム処理例2-1~2-12で得られたBPF1~BPF11およびCPF1、もしくはフィルム処理例2-13~2-19で得られたBTF1、BTF3、およびBTF7~BTF11を用い、真空プレス条件(温度、圧力、時間)をそれぞれ表4に示す通りとしたこと以外、実施例1-1と同様にして、本発明の積層体S2-1~S2-19を得た。
 得られた積層体の評価結果を表4に示す。
(Examples 2-1 to 2-19)
As the surface-treated polyimide film, BPF1 to BPF11 and CPF1 obtained in Film Processing Examples 2-1 to 2-12, or BTF1, BTF3, and BTF7 to BTF11 obtained in Film Processing Examples 2-13 to 2-19 are used. The laminates S2-1 to S2-19 of the present invention were obtained in the same manner as in Example 1-1 except that the vacuum press conditions (temperature, pressure, time) were as shown in Table 4, respectively.
Table 4 shows the evaluation results of the obtained laminate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例1-1~1-3)
 支持体にカップリング剤処理を施さないこと以外は、実施例1-1、2-3、2-19と同様にして、比較用の積層体CS1-1~CS1-3を得た。
 得られた積層体の評価結果を表5に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
(Comparative Examples 1-1 to 1-3)
Comparative laminates CS1-1 to CS1-3 were obtained in the same manner as in Examples 1-1, 2-3, and 2-19, except that the support was not treated with the coupling agent.
Table 5 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
(比較例1-4~1-6)
 UV照射処理を行わないこと以外は、実施例1-1、2-3、2-19と同様にして、比較用の積層体CS1-4~CS1-6を得た。
 得られた積層体の評価結果を表5に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
 これらの積層体について、ポリイミドフィルムに切り込みを入れ、該フィルムを支持体から剥がそうとしたが、上手く剥がすことができず、無理に剥がそうとしたらフィルムが破れてしまった。
(Comparative Examples 1-4 to 1-6)
Comparative laminates CS1-4 to CS1-6 were obtained in the same manner as in Examples 1-1, 2-3, and 2-19, except that the UV irradiation treatment was not performed.
Table 5 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
For these laminates, a cut was made in the polyimide film and the film was peeled off from the support. However, the film could not be peeled off successfully, and the film was torn if it was forcibly removed.
(比較例1-7)
 ガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)の中央部に直径80mmの円形のPETフィルム製保護フィルムを貼り付けた状態でスピンコーターに設置し、実施例1-1と同じシランカップリング剤を回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱した後に保護フィルムを剥離し、周囲(外周部)にのみシランカップリング剤が塗布されたガラス基板を得た。
 次いで、シランカップリング剤塗布面に、フィルム処理例1-1で得られた表面処理ポリイミドフィルムATF1のプラズマ処理面を重ね、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行い、比較用の積層体CS1-7を得た。ここでUV照射は行っていない。
 得られた積層体のシランカップリング剤処理部分の剥離強度は実施例1-1のUV未照射部分と同等の2.7N/cmであった。ガラス基板中央部のシランカップリング剤未塗布部分については全く接着していなかった。またこの積層体の耐熱剥離強度試験を行ったところ、積層体の中央部分のフィルム/ガラス間が大きく膨んだ。また、耐酸性剥離強度試験、耐アルカリ性剥離強度試験についても同様にフィルム/ガラス間にフクレが生じた。
(Comparative Example 1-7)
A glass coating (“Corning EAGLE XG” manufactured by Corning; 100 mm × 100 mm × 0.7 mm thickness) was placed on a spin coater with a protective film made of a circular PET film having a diameter of 80 mm attached to a spin coater. The same silane coupling agent as in No. 1 was dropped on the center of rotation and rotated at 500 rpm, and then rotated at 2000 rpm to apply a wet state to the entire support, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C. placed in a clean bench, and then the protective film was peeled off to obtain a glass substrate coated with a silane coupling agent only on the periphery (outer periphery).
Next, the plasma-treated surface of the surface-treated polyimide film ATF1 obtained in the film treatment example 1-1 was overlaid on the silane coupling agent-coated surface, and the degree of vacuum was 10 +2 Pa or less with a rotary pump. A pressure heating treatment was performed by vacuum pressing at a pressure for 10 minutes to obtain a comparative laminate CS1-7. Here, UV irradiation is not performed.
The peel strength at the silane coupling agent-treated portion of the obtained laminate was 2.7 N / cm, which is equivalent to the UV unirradiated portion of Example 1-1. The uncoated portion of the silane coupling agent at the center of the glass substrate was not adhered at all. Moreover, when the heat resistance peel strength test of this laminated body was done, the film / glass space of the center part of the laminated body swelled greatly. Similarly, in the acid resistance peel strength test and the alkali resistance peel strength test, blisters were generated between the film and the glass.
(比較例1-8)
 実施例1-1と同様にして、カップリング剤処理およびUV照射処理を施した支持体を作製し、この支持体のカップリング剤処理・UV照射処理面に、製造例1-1で得たポリアミド酸溶液A1を、イミド化後の膜厚が25μm程度となるようにスピンコーターを用いて塗布した後、110℃で10分間乾燥し、さらに150℃にて30分間、220℃にて15分間、280℃にて15分間熱処理を行い、ポリイミド/ガラス積層体CS1-8を得た。
 得られた積層体のUV未照射部剥離強度は2.3N/cm、UV照射部の剥離強度は1.5N/cmであった。なお、UV照射部から剥離したポリイミド膜の反りは24%と大きく、ポリイミド膜表裏の配向度合いが異なることを示唆する数値であった。また剥離部分のポリイミド膜の平均厚さは24μm、厚さ斑は22%であった。
(Comparative Example 1-8)
A support subjected to the coupling agent treatment and the UV irradiation treatment was prepared in the same manner as in Example 1-1, and the coupling agent treatment / UV irradiation treatment surface of this support was obtained in Production Example 1-1. The polyamic acid solution A1 was applied using a spin coater so that the film thickness after imidization was about 25 μm, then dried at 110 ° C. for 10 minutes, further at 150 ° C. for 30 minutes, and at 220 ° C. for 15 minutes. Heat treatment was performed at 280 ° C. for 15 minutes to obtain a polyimide / glass laminate CS1-8.
The obtained laminate had a UV non-irradiated part peel strength of 2.3 N / cm, and a UV irradiated part peel strength of 1.5 N / cm. The warpage of the polyimide film peeled off from the UV irradiation part was as large as 24%, which was a numerical value suggesting that the degree of orientation of the polyimide film was different. Further, the average thickness of the polyimide film at the peeled portion was 24 μm, and the thickness unevenness was 22%.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例3-1)
 窒素置換したグローブボックス内で窒素ガスを流しながら、シランカップリング剤(SC剤)である3-アミノプロピルトリメトキシシランをイソプロピルアルコールによって0.5質量%に希釈してシリンジに入れ、無機物からなる支持体(基板)として予め別途洗浄、乾燥しておいたガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)をスピンコーターに設置して、前記シリンジに入れたシランカップリング剤(SC剤)溶液を、孔径0.45μmのシリンジフィルターを通して回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱して、厚さ11nmのカップリング処理層を備えたカップリング剤処理済支持体を得た。得られたガラス基板の欠点存在密度は24個/100平方cmであった。
Example 3-1
While flowing nitrogen gas through a nitrogen-substituted glove box, 3-aminopropyltrimethoxysilane, which is a silane coupling agent (SC agent), is diluted to 0.5% by mass with isopropyl alcohol and placed in a syringe. A silane cup that was previously washed and dried separately as a support (substrate) ("Corning EAGLE XG" manufactured by Corning; 100 mm x 100 mm x 0.7 mm thick) on a spin coater and placed in the syringe After applying the ring agent (SC agent) solution in a wet state by dripping the solution through a syringe filter with a pore diameter of 0.45 μm onto the center of rotation and rotating at 500 rpm, and then rotating at 2000 rpm, It was set as the dry state. This was heated for 1 minute on a hot plate heated to 110 ° C. placed in a clean bench to obtain a coupling agent-treated support having a coupling treatment layer having a thickness of 11 nm. The obtained glass substrate had a defect density of 24/100 square cm.
 次に、上記で得たカップリング処理層を備えた支持体のカップリング処理層面に、実施例1-1と同様にしてUV照射処理を行った。 Next, a UV irradiation treatment was performed on the coupling treatment layer surface of the support provided with the coupling treatment layer obtained in the same manner as in Example 1-1.
 次に、UV照射処理後の支持体のカップリング剤処理・UV照射処理面と、フィルム作成例1-1で得られたポリイミドフィルムAF1とを重ね合わせ、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行い、本発明の積層体S3-1を得た。
 得られた積層体の評価結果を表6に示す。
Next, the coupling agent-treated / UV-irradiated surface of the support after the UV irradiation treatment and the polyimide film AF1 obtained in Film Preparation Example 1-1 were superposed, and 10 +2 Pa or less with a rotary pump. A pressure heat treatment was performed by vacuum pressing at 300 ° C. and a pressure of 10 MPa for 10 minutes to obtain a laminate S3-1 of the present invention.
Table 6 shows the evaluation results of the obtained laminate.
(実施例3-2~3-13)
 フィルム作製例2-1~2-11で得られたポリイミドフィルムBF1~BF11、フィルム作製例3-1で得られたポリイミドフィルムCF1を用い、実施例3-1においてUV照射時にマスクとして用いたポリイミドフィルムの代わりに、同じく70mm×70mmの正方形の開口部を有するステンレス板を用い、真空プレスによる加圧加熱処理を以下に示す加圧加熱処理とした以外、実施例3-1と同様にして、本発明の積層体S3-2~S3-13を得た。なお、ガラス基板表面の欠点存在密度については、都度、測定を行った。
 本実施例で用いた加圧加熱処理は以下の通りである。予熱機能を有するプライムプロダクツ社製のラミネーター「SE650nH」のスクリーン面にポリイミドフィルムをセットし、100℃に設定されたヒーター面側にガラス基板をセットした。ガラス基板セット後に5分間保持することによりガラス基板の予熱を行った。次いで、ヒーター面をスクリーン面側に倒し、ガラス基板のシランカップリング剤処理面とポリイミドフィルムをギャップ1.5mmにて対向させ、スクリーンの裏側からロールを用いてポリイミドフィルムをガラス基板面に押しつけることで仮ラミネートを行った。仮ラミネート後のポリイミドフィルムはガラス基板に、極々弱いながらも、フィルムの自重は剥離しない程度に接着した。この仮ラミネート品を目視で状態を確認した後、クリーンオーブン内に厚さ7mmの板ガラスを置き、その上にラミネート品をフィルム側が上になるように置き、さらにフィルム上にウエイトとして厚さ5mmの板ガラス置き、5℃/分の昇温速度で室温から80℃まで温度を上げ、15分間保持した後、温度を200℃まで上げて45分間保持し、その後、室温まで冷却して積層体を得た。
 得られた積層体の評価結果を表6に示す。
 なお、別途、上記で得たカップリング処理層を備えた支持体のカップリング剤処理面と、各ポリイミドフィルムとを重ね合わせ、上記と同様、ラミネートロールを用いた加圧加熱処理を行い、UV未照射部の剥離強度測定用サンプルを作製した。
(Examples 3-2 to 3-13)
Polyimide films BF1 to BF11 obtained in Film Preparation Examples 2-1 to 2-11 and the polyimide film CF1 obtained in Film Preparation Example 3-1, and used as a mask during UV irradiation in Example 3-1. Similarly to Example 3-1, except that a stainless plate having a square opening of 70 mm × 70 mm was used instead of the film, and the pressure heating treatment by vacuum press was changed to the pressure heating treatment shown below, The laminates S3-2 to S3-13 of the present invention were obtained. The defect density on the glass substrate surface was measured each time.
The pressure heat treatment used in this example is as follows. A polyimide film was set on the screen surface of a laminator “SE650nH” manufactured by Prime Products having a preheating function, and a glass substrate was set on the heater surface side set to 100 ° C. The glass substrate was preheated by holding for 5 minutes after setting the glass substrate. Next, the heater surface is tilted to the screen surface side, the silane coupling agent-treated surface of the glass substrate and the polyimide film are opposed to each other with a gap of 1.5 mm, and the polyimide film is pressed against the glass substrate surface using a roll from the back side of the screen. Then, temporary lamination was performed. The polyimide film after temporary lamination was adhered to a glass substrate to such an extent that the weight of the film did not peel off, although it was extremely weak. After confirming the state of this temporary laminate product visually, a plate glass having a thickness of 7 mm is placed in a clean oven, and the laminate product is placed thereon so that the film side is on top. Place the plate glass, raise the temperature from room temperature to 80 ° C. at a rate of 5 ° C./min, hold for 15 minutes, then raise the temperature to 200 ° C. and hold for 45 minutes, then cool to room temperature to obtain a laminate It was.
Table 6 shows the evaluation results of the obtained laminate.
Separately, the coupling agent-treated surface of the support provided with the coupling treatment layer obtained above and each polyimide film were overlaid, and similarly to the above, pressure heating treatment using a laminate roll was performed, and UV was applied. A sample for measuring peel strength of an unirradiated part was prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(実施例3-14)
 実施例3-1において、シランカップリング剤溶液の塗布時にシリンジフィルターを使用しなかったこと以外は同様に操作し、積層体S3-14を得た。なお、シランカップリング剤塗布後にガラス基板表面の欠点存在密度を測定したところ、132個/100平方cmであった。
 得られた積層体の評価結果を表7に示す。なお耐熱剥離強度測定時には3~5mm程度のフクレが生じ、ポリイミドフィルム面が大きく波打った。
(Example 3-14)
In Example 3-1, the same operation was performed except that the syringe filter was not used when applying the silane coupling agent solution, to obtain a laminate S3-14. When the defect density on the surface of the glass substrate was measured after applying the silane coupling agent, it was 132 pieces / 100 square cm.
Table 7 shows the evaluation results of the obtained laminate. When measuring the heat-resistant peel strength, swelling of about 3 to 5 mm was generated, and the polyimide film surface was greatly waved.
(実施例3-15)
 実施例3-2において、シランカップリング剤溶液の塗布時にシリンジフィルターを装着しなかった以外は同様に操作し、積層体S3-15を得た。なお、シランカップリング剤塗布後にガラス基板表面の欠点存在密度を測定したところ、184個/100平方cmであった。
 得られた積層体の評価結果を表7に示す。なお耐熱剥離強度測定時には10mmを超えるサイズのフクレが全面に生じ、剥離強度を測定することが出来なかった。
(Example 3-15)
In Example 3-2, a laminate S3-15 was obtained in the same manner as in Example 3-2 except that the syringe filter was not attached when the silane coupling agent solution was applied. The defect density on the surface of the glass substrate after application of the silane coupling agent was measured and found to be 184/100 square cm.
Table 7 shows the evaluation results of the obtained laminate. When measuring the heat-resistant peel strength, blisters having a size exceeding 10 mm were generated on the entire surface, and the peel strength could not be measured.
(比較例2-1~2-3)
 支持体にカップリング剤処理を施さないこと以外は、実施例3-1、3-4、3-12と同様にして、比較用の積層体CS2-1~CS2-3を得た。なお、ガラス基板表面の欠点存在密度については、都度、測定を行った。
 得られた積層体の評価結果を表7に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
(Comparative Examples 2-1 to 2-3)
Comparative laminates CS2-1 to CS2-3 were obtained in the same manner as in Examples 3-1, 3-4, and 3-12 except that the support was not treated with the coupling agent. The defect density on the glass substrate surface was measured each time.
Table 7 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
(比較例2-4~2-6)
 UV照射処理を行わないこと以外は、実施例3-1、3-4、3-12と同様にして、比較用の積層体CS2-4~CS2-6を得た。なお、ガラス板表面の欠点存在密度については、都度、測定を行った。
 得られた積層体の評価結果を表7に示す。なお、表中「測定不能」は、処理ないし測定途中でポリイミドフィルムが剥がれてしまった場合をさす。
 この積層体について、ポリイミドフィルムに切り込みを入れ、該フィルムを支持体から剥がそうとしたが、上手く剥がすことができず、無理に剥がそうとしたらフィルムが破れてしまった。
(Comparative Examples 2-4 to 2-6)
Comparative laminates CS2-4 to CS2-6 were obtained in the same manner as in Examples 3-1, 3-4, and 3-12, except that the UV irradiation treatment was not performed. In addition, about the defect existence density of the glass plate surface, it measured each time.
Table 7 shows the evaluation results of the obtained laminate. In the table, “impossible to measure” refers to the case where the polyimide film is peeled off during processing or measurement.
With respect to this laminate, a cut was made in the polyimide film and the film was peeled off from the support.
(比較例2-7)
 ガラス(コーニング社製「コーニングEAGLE XG」;100mm×100mm×0.7mm厚)の中央部に直径80mmの円形のPETフィルム製保護フィルムを貼り付けた状態でスピンコーターに設置し、実施例3-1と同じシランカップリング剤を回転中央部に滴下させて500rpmにて回転させ、次いで2000rpmにて回転させることにより支持体全面を濡らした状態として塗布した後に、乾燥状態とした。これをクリーンベンチ内に載置した110℃に加熱したホットプレート上で1分間加熱した後に保護フィルムを剥離し、周囲(外周部)にのみシランカップリング剤が塗布されたガラス基板を得た。
 次いで、シランカップリング剤塗布面に、フィルム作製例1-1で得られたポリイミドフィルムAF1を重ね、ロータリーポンプにて10+2Pa以下の真空度とし300℃で10MPaの圧力にて10分間真空プレスすることにより加圧加熱処理を行い、比較用の積層体CS2-7を得た。ここでUV照射は行っていない。なお、ガラス基板表面の欠点存在密度については、外周部のみについて測定を行った。
 得られた積層体のシランカップリング剤処理部分の剥離強度は実施例3-1のUV未照射部分と同等の2.9N/cmであった。ガラス基板中央部のシランカップリング剤未塗布部分については全く接着していなかった。この易剥離部分に相当するシランカップリング剤未塗布部分から剥離したフィルム試験片の反り度は0.2%であった。またこの積層体の耐熱剥離強度試験を行ったところ、積層体の中央部分のフィルム/ガラス間が大きく膨んだ。また、耐酸性剥離強度試験、耐アルカリ性剥離強度試験についても同様にフィルム/ガラス間にフクレが生じた。
(Comparative Example 2-7)
A glass PET (Corning EAGLE XG manufactured by Corning; 100 mm × 100 mm × 0.7 mm thickness) was placed on a spin coater with a protective film made of a PET film having a diameter of 80 mm attached to the center, and Example 3- The same silane coupling agent as in No. 1 was dropped on the center of rotation and rotated at 500 rpm, and then rotated at 2000 rpm to apply a wet state to the entire support, and then dried. This was heated for 1 minute on a hot plate heated to 110 ° C. placed in a clean bench, and then the protective film was peeled off to obtain a glass substrate coated with a silane coupling agent only on the periphery (outer periphery).
Next, the polyimide film AF1 obtained in Film Production Example 1-1 was placed on the silane coupling agent-coated surface, and the degree of vacuum was 10 +2 Pa or less with a rotary pump, and vacuum was applied at 300 ° C. and a pressure of 10 MPa for 10 minutes. Pressing and heating were performed to obtain a comparative laminate CS2-7. Here, UV irradiation is not performed. In addition, about the fault presence density of the glass substrate surface, it measured only about the outer peripheral part.
The peel strength at the silane coupling agent-treated portion of the obtained laminate was 2.9 N / cm, which is equivalent to the UV unirradiated portion of Example 3-1. The uncoated portion of the silane coupling agent at the center of the glass substrate was not adhered at all. The degree of warpage of the film specimen peeled from the silane coupling agent-uncoated portion corresponding to the easily peeled portion was 0.2%. Moreover, when the heat resistance peel strength test of this laminated body was done, the film / glass space of the center part of the laminated body swelled greatly. Similarly, in the acid resistance peel strength test and the alkali resistance peel strength test, blisters were generated between the film and the glass.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(測定例1~5)
 支持体(基板)としてSiウエハを50mm×50mm(□50mm)に切断したものを5枚用意し、これを十分に洗浄した後に、実施例1-1と同様にして、シランカップリング剤を塗布した後に110℃のホットプレートで加熱して、厚さ11nmのカップリング処理層を形成した。次いで、このカップリング処理層の面に、UV照射時間を変更したこと以外は実施例1-1と同じ条件でUV照射を行い、得られた各サンプルの表面組成比を測定した。結果を表6に示す。なお、窒素表面組成比率は、UV照射前(測定例1)の窒素Atomic percentを100%として、UV照射後の窒素のAtomic
 percent(%)の値をパーセント表示したものである。
(Measurement examples 1 to 5)
Prepare 5 wafers of Si wafer cut to 50 mm x 50 mm (□ 50 mm) as the support (substrate), wash them thoroughly, and apply silane coupling agent in the same way as in Example 1-1. Then, it was heated on a hot plate at 110 ° C. to form a coupling treatment layer having a thickness of 11 nm. Next, the surface of this coupling treatment layer was irradiated with UV under the same conditions as in Example 1-1 except that the UV irradiation time was changed, and the surface composition ratio of each obtained sample was measured. The results are shown in Table 6. Note that the nitrogen surface composition ratio was determined by setting the atomic atomic percentage before UV irradiation (Measurement Example 1) to 100%, and the atomic nitrogen concentration after UV irradiation.
The percentage (%) value is displayed as a percentage.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
(応用例1)
 各実施例および比較例で得られた積層体S1-1、S2-3、S2-9、S2-19、CS1-5、CS1-8、S3-1、S3-4、S3-10、S3-11、CS2-5の各々を、開口部を有するステンレス製の枠を被せてスパッタリング装置内の基板ホルダーに固定した。基板ホルダーと積層体の支持体とを密着するように固定して、基板ホルダー内に冷媒を流すことによって、積層体のフィルムの温度を設定できるようにし、積層体のフィルムの温度を2℃に設定した。まず、フィルム表面にプラズマ処理を施した。プラズマ処理条件は、アルゴンガス中で、周波数13.56MHz、出力200W、ガス圧1×10-3Torrの条件とし、処理時の温度は2℃、処理時間は2分間とした。次いで、周波数13.56MHz、出力450W、ガス圧3×10-3Torrの条件で、ニッケル-クロム(クロム10質量%)合金のターゲットを用いて、アルゴン雰囲気下にてDCマグネトロンスパッタリング法により、1nm/秒のレートで厚さ11nmのニッケル-クロム合金被膜(下地層)を形成した。次いで、基板のスパッタ面の裏面が、3℃に温度コントロールした冷媒を中に流した基板ホルダーのSUSプレートと接する状態とすることで、積層体のフィルムの温度を2℃に設定し、スパッタリングを行った。そして、10nm/秒のレートで銅を蒸着させ、厚さ0.22μmの銅薄膜を形成した。このようにして、各フィルムから下地金属薄膜形成フィルム付きの積層板を得た。なお、銅およびNiCr層の厚さは蛍光X線法によって確認した。
(Application 1)
The laminates S1-1, S2-3, S2-9, S2-19, CS1-5, CS1-8, S3-1, S3-4, S3-10, S3- obtained in each Example and Comparative Example Each of 11 and CS2-5 was covered with a stainless steel frame having an opening and fixed to a substrate holder in the sputtering apparatus. By fixing the substrate holder and the support of the laminate so that they are in close contact with each other, and allowing a coolant to flow in the substrate holder, the temperature of the laminate can be set, and the temperature of the laminate is set to 2 ° C. Set. First, plasma treatment was performed on the film surface. The plasma treatment conditions were argon gas, frequency 13.56 MHz, output 200 W, gas pressure 1 × 10 −3 Torr, treatment temperature 2 ° C., treatment time 2 minutes. Next, using a nickel-chromium (chrome 10 mass%) alloy target under the conditions of a frequency of 13.56 MHz, an output of 450 W, and a gas pressure of 3 × 10 −3 Torr, 1 nm by DC magnetron sputtering in an argon atmosphere. A nickel-chromium alloy film (underlayer) having a thickness of 11 nm was formed at a rate of / sec. Next, by setting the back surface of the sputter surface of the substrate in contact with the SUS plate of the substrate holder in which a coolant controlled to 3 ° C. is flowed, the temperature of the film of the laminate is set to 2 ° C., and sputtering is performed. went. Then, copper was vapor-deposited at a rate of 10 nm / second to form a copper thin film having a thickness of 0.22 μm. Thus, the laminated board with a base metal thin film formation film was obtained from each film. The thicknesses of the copper and NiCr layers were confirmed by the fluorescent X-ray method.
 次に、各フィルムからの下地金属薄膜形成フィルム付きの積層板をCu製の枠に固定し、硫酸銅めっき浴を用い、電解めっき液(硫酸銅80g/l、硫酸210g/l、HCl、光沢剤少量)に浸漬し、電気を1.5Adm2流すことにより、厚さ4μmの厚付け銅メッキ層(厚付け層)を形成した。引き続き120℃で10分間熱処理して乾燥し、金属化ポリイミドフィルム・支持体積層体を得た。 Next, a laminated board with a base metal thin film forming film from each film is fixed to a Cu frame, and an electrolytic plating solution (copper sulfate 80 g / l, sulfuric acid 210 g / l, HCl, luster, using a copper sulfate plating bath). A thick copper plating layer (thickening layer) having a thickness of 4 μm was formed by immersing in a small amount of the agent and flowing 1.5 Adm 2 of electricity. Then, it heat-processed for 10 minutes at 120 degreeC, and it dried, and obtained the metallized polyimide film and the support body laminated body.
 得られた各金属化ポリイミドフィルム・支持体積層体に対して、フォトレジスト(シプレー社製「FR-200」)を塗布乾燥した後に、ガラスフォトマスクで密着露光し、さらに1.2質量%KOH水溶液にて現像した。次に、HClおよび過酸化水素を含む塩化第二銅のエッチングラインで、40℃、2kgf/cm2のスプレー圧でエッチングし、ライン/スペース=20μm/20μmのライン列をテストパターンとして形成した。次いで、0.5μm厚に無電解スズメッキを施した後、125℃で1時間のアニール処理を行った。そして、形成したパターンを光学顕微鏡で観察し、だれ、パターン残り、パターン剥がれなどの有無を評価した。 After applying and drying a photoresist (“FR-200” manufactured by Shipley Co., Ltd.) to each metallized polyimide film / support laminate, the resulting metallized polyimide film / support laminate was contact-exposed with a glass photomask, and further 1.2 mass% KOH. Developed with an aqueous solution. Next, etching was performed with a cupric chloride etching line containing HCl and hydrogen peroxide at 40 ° C. and a spray pressure of 2 kgf / cm 2 to form a line row of lines / spaces = 20 μm / 20 μm as a test pattern. Next, after electroless tin plating was performed to a thickness of 0.5 μm, annealing treatment was performed at 125 ° C. for 1 hour. Then, the formed pattern was observed with an optical microscope, and the presence or absence of drool, pattern residue, pattern peeling, etc. was evaluated.
 いずれの積層体においても、だれ、パターン残り、パターン剥がれなどの無い良好なパターンが得られた。また、この後、さらに窒素置換したマッフル炉内で昇温速度10℃/分で400℃まで昇温した後、400℃で1時間保持し、その後自然降温させても、膨れ、剥がれなど発生することは無かった。
 さらに、積層体からパターンが形成されたポリイミドフィルムを剥がそうとしたところ、積層体S1-1、S2-3、S2-9、S2-19、S3-1、S3-4、S3-10、S3-11においては、UV照射部分で問題なくフィルムを剥がすことができた。一方、積層体CS1-5、CS2-5においては、フィルムの剥離時に力を要したために剥離後のフィルムのライン列の極一部に折れが生じた。積層体CS1-8においては、剥離のきっかけをつかむのが難しく、ライン列を形成した部分に破れが生じてしまった。
In any of the laminates, a good pattern with no sagging, no pattern residue, no pattern peeling was obtained. Further, after the temperature is raised to 400 ° C. at a rate of temperature rise of 10 ° C./min in a muffle furnace further substituted with nitrogen, swelling and peeling occur even if the temperature is kept at 400 ° C. for 1 hour and then naturally cooled. There was nothing.
Further, when an attempt was made to peel the polyimide film on which the pattern was formed from the laminate, the laminates S1-1, S2-3, S2-9, S2-19, S3-1, S3-4, S3-10, S3 In -11, the film could be peeled off without problems at the UV irradiated part. On the other hand, in the laminates CS1-5 and CS2-5, since force was required at the time of peeling of the film, a fold occurred in a part of the line row of the film after peeling. In the laminated body CS1-8, it was difficult to grasp the trigger of peeling, and the portion where the line row was formed was torn.
 以上の応用例1の結果から、本発明の製造方法により、支持体とポリイミドフィルムとの剥離強度が適正に調整された積層体は、金属化などの各工程に耐え得るものであり、その後のパターン作製においても良好なパターンを形成し得ることが確認できた。 From the results of the application example 1 described above, the laminate in which the peel strength between the support and the polyimide film is appropriately adjusted by the production method of the present invention can withstand each process such as metallization. It was confirmed that a good pattern can be formed also in pattern production.
(応用例2)
 本発明のデバイス構造体の一例である表示装置(表示用パネル)の作製例として、実施例1-1で得られた本発明の積層体S1-1および実施例3-1で得られた本発明の積層体S3-1を用い、TFT基板を作製した。図9(a)にはTFT基板の概略断面図を、図9(b)にはその上面図をそれぞれ示す。
 まず本発明の積層体を基板101とし、該積層体のポリイミドフィルム面のUV照射領域(ポリイミドフィルム作製時にUV照射処理を施した領域)の上に、Al(アルミニウム)102を200nmスパッタにてパターン化して蒸着させ、ゲート配線バスライン111、ゲート電極(図示せず)及びゲート配線109を形成した。この時点では、各ゲート配線109はゲート配線バスライン111に接続しておき、このゲート配線バスライン111は、陽極化成時に電源供給ラインとして使用することとした。次いでフォトレジストを3μm塗布しフォトエッチングプロセスにより、TFTの部分(領域A)と配線交差部(領域B)をレジスト除去した。この状態で、基板全体101を化成液(3%酒石酸溶液をエチレングリコールで希釈し、アンモニア水を添加して、PH7.0に調整した液)に浸し、ゲート配線バスライン111に+72Vの電圧を30分間加えることにより、領域A、BにおけるAlのうち70nmをAl23に変化させ、100nm程度のAl23膜(陽極化成膜)103を形成した。レジストを除去した後、大気中、200℃で1時間加熱を行うことにより、Al23膜103のリーク電流の低減を図った。次いでこのAl23膜103の上に、プラズマCVD法によって300nmの第一窒化シリコン104を製膜し、引き続き、100nmの水素化非晶質シリコン(a-Si)105、200nmの第二窒化シリコン106を製膜した。このとき基板101の温度は380℃とした。その後、第二窒化シリコン106をパターン化して、TFTのチャネル上を配線交差部のみとした。次いで、2%程度のリンをドープした非晶質シリコンn層107を50nm堆積させた後、パターン化して、TFTのソース・ドレイン部のみに残した。このとき水素化非晶質シリコン(a-Si)105も同時に除去した。次に、100nmのCr(クロム)と500nmのAl(アルミニウム)をスパッタリングにて堆積してCr・Al層108を形成した後、パターン化して、信号線110、TFTのドレイン、ソース電線(図示せず)などを形成した。ここで、先に形成したゲート配線バスライン111は除去して、各々のゲート配線109を分離した。その後、透明電極112として100nmのITOをスパッタリングにて形成して画素電極、端子等を形成し、最後に、プラズマCVDにて窒化シリコンを1μm程度堆積させ、フォトエッチングプロセスによって端子部上の窒化シリコンを除去した。
 以上のようにして、本発明の積層体S1-1、S3-1のポリイミドフィルム面のUV照射領域の上にデバイス(TFT)を搭載した後、これを保護するためにポリイミドフィルム面のUV照射領域を覆うように保護フィルム(ポリエステルフィルム)を貼り付けておき、その後、UV照射領域とUV未照射領域との境界線に切り込みを入れ、ポリイミドフィルムのTFT部分(デバイス搭載部分)を支持体から剥離して、TFT基板を得た。剥離に際しては、ポリイミドフィルムが破れたり、TFT部分が破損したりすることなく、良好に剥離できた。
(Application example 2)
As an example of manufacturing a display device (display panel) which is an example of the device structure of the present invention, the laminate S1-1 of the present invention obtained in Example 1-1 and the book obtained in Example 3-1. A TFT substrate was produced using the laminate S3-1 of the invention. FIG. 9A shows a schematic cross-sectional view of the TFT substrate, and FIG. 9B shows a top view thereof.
First, the laminate of the present invention is used as a substrate 101, and Al (aluminum) 102 is patterned by 200 nm sputtering on the UV irradiation region (region subjected to UV irradiation treatment at the time of polyimide film production) on the polyimide film surface of the laminate. The gate wiring bus line 111, the gate electrode (not shown), and the gate wiring 109 were formed. At this time, each gate wiring 109 is connected to the gate wiring bus line 111, and this gate wiring bus line 111 is used as a power supply line during anodization. Next, 3 μm of photoresist was applied, and the TFT portion (region A) and the wiring intersection (region B) were removed by a photoetching process. In this state, the entire substrate 101 is immersed in a chemical conversion solution (a solution adjusted to PH 7.0 by diluting a 3% tartaric acid solution with ethylene glycol and adding ammonia water), and a voltage of +72 V is applied to the gate wiring bus line 111. by adding 30 minutes, the area a, the 70nm of Al is changed to Al 2 O 3 in B, to form an Al 2 O 3 film (anodizing film) 103 of about 100 nm. After removing the resist, the leakage current of the Al 2 O 3 film 103 was reduced by heating in the atmosphere at 200 ° C. for 1 hour. Next, a 300 nm first silicon nitride film 104 is formed on the Al 2 O 3 film 103 by plasma CVD, and subsequently a 100 nm hydrogenated amorphous silicon (a-Si) 105 film and a 200 nm second nitride film are formed. Silicon 106 was formed. At this time, the temperature of the substrate 101 was 380 ° C. Thereafter, the second silicon nitride 106 was patterned so that only the wiring intersections were formed on the TFT channels. Next, an amorphous silicon n layer 107 doped with about 2% phosphorus was deposited to 50 nm, and then patterned to leave only the source / drain portion of the TFT. At this time, hydrogenated amorphous silicon (a-Si) 105 was also removed. Next, after depositing 100 nm of Cr (chromium) and 500 nm of Al (aluminum) by sputtering to form a Cr / Al layer 108, patterning is performed, and then signal lines 110, TFT drains, and source wires (not shown) are formed. Etc.). Here, the previously formed gate wiring bus line 111 was removed, and each gate wiring 109 was separated. Thereafter, 100 nm ITO is formed as a transparent electrode 112 by sputtering to form pixel electrodes, terminals and the like. Finally, about 1 μm of silicon nitride is deposited by plasma CVD, and silicon nitride on the terminal portion is formed by a photoetching process. Was removed.
As described above, after mounting the device (TFT) on the UV irradiation region of the polyimide film surface of the laminates S1-1 and S3-1 of the present invention, the UV irradiation of the polyimide film surface is applied to protect the device (TFT). A protective film (polyester film) is pasted so as to cover the region, and then a notch is made at the boundary line between the UV irradiation region and the UV non-irradiation region, and the TFT portion (device mounting portion) of the polyimide film is removed from the support. It peeled and the TFT substrate was obtained. At the time of peeling, the polyimide film was not torn and the TFT portion was not damaged, and was able to be peeled off satisfactorily.
 本発明の製造方法で得られる積層体は、デバイスを積層した際に易剥離部分のポリイミドフィルムを切り抜くことにより、容易に支持体から剥離することができる。しかも、これら積層体は、金属化などの工程にも耐え得るものであり、その後のパターン作製においても良好なパターンを得ることができる。したがって、本発明の積層体は、極小薄のポリイミドフィルム上のデバイス構造体などの製造過程に有効に使用でき、極薄の絶縁性、耐熱性、寸法安定性に優れた高分子フィルム上に、精度よく回路やデバイス形成ができる。それ故に、センサー、表示デバイス、プローブ、集積回路、およびこれらの複合デバイス、アモルファスSi薄膜太陽電池、SeやCIGS系化合物半導体薄膜太陽電池基板およびこれらを使った太陽電池、多結晶シリコンを用いた半導体デバイス、表示機器、酸化物半導体を用いた表示機器、その他タッチパネル、タッチスイッチ、などのデバイス構造体の製造に有用であり、産業界への寄与は大きい。 The laminate obtained by the production method of the present invention can be easily peeled from the support by cutting out the polyimide film at the easily peelable portion when the devices are laminated. Moreover, these laminates can withstand a process such as metallization, and a good pattern can be obtained in subsequent pattern fabrication. Therefore, the laminate of the present invention can be used effectively in the production process of a device structure on an ultra-thin polyimide film, on an ultra-thin polymer film excellent in insulation, heat resistance, and dimensional stability. Circuits and devices can be formed with high accuracy. Therefore, sensors, display devices, probes, integrated circuits, and composite devices thereof, amorphous Si thin film solar cells, Se and CIGS compound semiconductor thin film solar cell substrates, solar cells using these, and semiconductors using polycrystalline silicon It is useful for manufacturing device structures such as devices, display devices, display devices using oxide semiconductors, touch panels, touch switches, and the like, and greatly contributes to the industry.
1:ガラス基板
2:カップリング処理層
3:UV光遮断マスク
4:カップリング処理層UV未照射部
5:カップリング処理層UV照射部
6:ポリイミドフィルム
7:カップリング処理層UV照射部上のポリイミドフィルム
8:デバイス
10:良好接着部分
20:易剥離部分
101:積層体(基板)
102:Al
103:陽極化成膜(Al23
104:第一窒化シリコン
105:水素化非晶質シリコン
106:第二窒化シリコン
107:非晶質シリコンn層
108:Cr・Al層
109:ゲート配線
110:信号線
111:ゲート配線バスライン
112:透明電極
1: Glass substrate 2: Coupling treatment layer 3: UV light blocking mask 4: Coupling treatment layer UV non-irradiated part 5: Coupling treatment layer UV irradiation part 6: Polyimide film 7: Coupling treatment layer on UV irradiation part Polyimide film 8: Device 10: Good adhesion part 20: Easy peeling part 101: Laminate (substrate)
102: Al
103: Anodized film (Al 2 O 3 )
104: first silicon nitride 105: hydrogenated amorphous silicon 106: second silicon nitride 107: amorphous silicon n layer 108: Cr / Al layer 109: gate wiring 110: signal line 111: gate wiring bus line 112: Transparent electrode

Claims (16)

  1.  少なくとも支持体とポリイミドフィルムとから構成されてなる積層体の製造方法であって、
     前記支持体と前記ポリイミドフィルムとが対向する面の少なくとも一方に、カップリング剤を用いて、剥離強度が異なる良好接着部分と易剥離部分とを形成するパターン化処理を施し、その後、前記支持体と前記ポリイミドフィルムとを重ね合わせて加圧加熱処理することとし、
     前記ポリイミドフィルムとして、ジアミン類と、脂環族テトラカルボン酸類を主成分とするテトラカルボン酸類との反応によって得られるフィルムであり、380nm~700nmの平均光線透過率が85%以上、ガラス転移点が250℃以上、厚さが3~150μmであるフィルムを用いることを特徴とする積層体の製造方法。
    A method for producing a laminate comprising at least a support and a polyimide film,
    At least one of the surfaces of the support and the polyimide film facing each other is subjected to a patterning treatment using a coupling agent to form a good adhesion portion and an easy peel portion having different peel strengths, and then the support. And the polyimide film and the pressure heating treatment,
    The polyimide film is a film obtained by a reaction between a diamine and a tetracarboxylic acid mainly composed of an alicyclic tetracarboxylic acid, and has an average light transmittance of 380 nm to 700 nm of 85% or more and a glass transition point. A method for producing a laminate, comprising using a film having a thickness of 250 to 150 ° C. and a thickness of 3 to 150 μm.
  2.  前記パターン化処理は、カップリング剤処理を施してカップリング処理層を形成し、次いでカップリング処理層の一部に不活性化処理を施して所定のパターンを形成することにより行う請求項1に記載の積層体の製造方法。 The patterning treatment is performed by performing a coupling agent treatment to form a coupling treatment layer, and then performing a deactivation treatment on a part of the coupling treatment layer to form a predetermined pattern. The manufacturing method of the laminated body of description.
  3.  前記不活性化処理として、ブラスト処理、真空プラズマ処理、大気圧プラズマ処理、コロナ処理、活性放射線照射処理、活性ガス処理および薬液処理からなる群より選択される少なくとも1種を行う請求項2に記載の積層体の製造方法。 3. The at least one selected from the group consisting of blast treatment, vacuum plasma treatment, atmospheric pressure plasma treatment, corona treatment, actinic radiation irradiation treatment, active gas treatment, and chemical treatment is performed as the inactivation treatment. The manufacturing method of the laminated body.
  4.  前記不活性化処理として、少なくともUV照射処理を行う請求項3に記載の積層体の製造方法。 The method for producing a laminate according to claim 3, wherein at least UV irradiation treatment is performed as the inactivation treatment.
  5.  前記ポリイミドフィルムとして、少なくとも前記支持体に対向させる面にプラズマ処理が施されたフィルムを用いる請求項1~4のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein a film having a plasma treatment applied to at least a surface facing the support is used as the polyimide film.
  6.  前記ポリイミドフィルムとして、前記プラズマ処理の後に酸処理を施したフィルムを用いる請求項5に記載の積層体の製造方法。 The manufacturing method of the laminated body of Claim 5 using the film which gave the acid treatment after the said plasma treatment as said polyimide film.
  7.  前記支持体として、前記ポリイミドフィルムと対向する面における高さ1μm以上の欠点存在密度が100個/100平方cm以下である支持体を用いる請求項1~6のいずれかに記載の積層体の製造方法。 The production of a laminate according to any one of claims 1 to 6, wherein a support having a defect existence density of 1 μm or more in height on the surface facing the polyimide film is 100/100 cm 2 or less. Method.
  8.  前記ポリイミドフィルムとして、引張弾性率が0.3~7.0GPaであるフィルムを用いる請求項1~7のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 7, wherein a film having a tensile modulus of 0.3 to 7.0 GPa is used as the polyimide film.
  9.  前記加圧加熱処理はロールを用いて大気圧雰囲気下で行う請求項1~8のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 8, wherein the pressurizing and heating treatment is performed in an atmospheric pressure atmosphere using a roll.
  10.  前記加圧加熱処理は加圧プロセスと加熱プロセスとに分離して行い、125℃未満の温度で加圧した後に、低圧もしくは常圧にて125℃以上の温度で加熱する請求項1~9のいずれかに記載の積層体の製造方法。 The pressure heat treatment is performed separately in a pressurization process and a heating process. After pressurizing at a temperature of less than 125 ° C, heating is performed at a low pressure or normal pressure at a temperature of 125 ° C or higher. The manufacturing method of the laminated body in any one.
  11.  前記ポリイミドフィルムの線膨張係数(CTE)が30ppm/℃以下である請求項1~10のいずれかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 10, wherein the polyimide film has a coefficient of linear expansion (CTE) of 30 ppm / ° C or less.
  12.  支持体とポリイミドフィルムとがカップリング処理層を介して積層されてなる積層体であって、
     前記ポリイミドフィルムの380nm~700nmにおける平均光線透過率が85%以上であり、
     前記支持体と前記ポリイミドフィルムとの間の剥離強度が異なる良好接着部分と易剥離部分とを有しており、該良好接着部分と該易剥離部分とが所定のパターンを形成していることを特徴とする積層体。
    A laminated body in which a support and a polyimide film are laminated via a coupling treatment layer,
    The polyimide film has an average light transmittance at 380 nm to 700 nm of 85% or more,
    It has a good adhesion part and an easy peeling part with different peel strengths between the support and the polyimide film, and the good adhesion part and the easy peeling part form a predetermined pattern. A featured laminate.
  13.  前記易剥離部分における支持体とポリイミドフィルムとの間の180度剥離強度が、前記良好接着部分における支持体とポリイミドフィルムとの間の180度剥離強度の1/2以下である請求項12に記載の積層体。 The 180-degree peel strength between the support and the polyimide film in the easily peelable portion is ½ or less of the 180-degree peel strength between the support and the polyimide film in the good adhesion portion. Laminated body.
  14.  前記ポリイミドフィルムの厚さ斑が20%以下である請求項12または13に記載の積層体。 The laminate according to claim 12 or 13, wherein the thickness unevenness of the polyimide film is 20% or less.
  15.  ポリイミドフィルム上に配線パターンおよび/またはデバイスが形成されてなる構造体を製造する方法であって、支持体とポリイミドフィルムとを有する請求項12~14のいずれかに記載の積層体を用いることとし、該積層体のポリイミドフィルム上に配線パターンおよび/またはデバイスを形成した後、前記積層体の易剥離部分のポリイミドフィルムに切り込みを入れて該ポリイミドフィルムを前記支持体から剥離することを特徴とするデバイス構造体の製造方法。 A method for producing a structure in which a wiring pattern and / or a device is formed on a polyimide film, wherein the laminate according to any one of claims 12 to 14 having a support and a polyimide film is used. After forming the wiring pattern and / or device on the polyimide film of the laminate, the polyimide film is peeled off from the support by cutting into the polyimide film of the easy-release portion of the laminate. A method for manufacturing a device structure.
  16.  請求項15に記載の製造方法で形成されたことを特徴とするデバイス構造体。 A device structure formed by the manufacturing method according to claim 15.
PCT/JP2012/076648 2012-02-01 2012-10-15 Laminate, method for producing same, and method for producing device structure using same WO2013114685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013505254A JP6003883B2 (en) 2012-02-01 2012-10-15 LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012020371 2012-02-01
JP2012-020371 2012-02-01
JP2012051461 2012-03-08
JP2012-051461 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013114685A1 true WO2013114685A1 (en) 2013-08-08

Family

ID=48904751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076648 WO2013114685A1 (en) 2012-02-01 2012-10-15 Laminate, method for producing same, and method for producing device structure using same

Country Status (3)

Country Link
JP (1) JP6003883B2 (en)
TW (1) TWI574843B (en)
WO (1) WO2013114685A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119648A1 (en) * 2013-02-04 2014-08-07 東洋紡株式会社 Laminate, method for producing laminate, and method for manufacturing flexible electronic device
JP2015182393A (en) * 2014-03-25 2015-10-22 新日鉄住金化学株式会社 Polyimide laminate structure and method for producing the same
US20170033249A1 (en) * 2014-04-10 2017-02-02 Sumitomo Electric Industries, Ltd. Flexible printed circuit, and concentrator photovoltaic module and concentrator photovoltaic panel using same
KR20170072885A (en) * 2014-10-17 2017-06-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, polyimide film and laminate
JPWO2016043180A1 (en) * 2014-09-19 2017-07-06 ユニチカ株式会社 Laminate and flexible device manufacturing method
EP3187331A4 (en) * 2014-08-25 2018-04-25 Toyobo Co., Ltd. Polymer film coated with layer of silane coupling agent
WO2018088543A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminate comprising polyimide film and hard coat layer
WO2018117551A1 (en) * 2016-12-19 2018-06-28 주식회사 두산 Transparent polyimide film
TWI631228B (en) * 2015-09-24 2018-08-01 日商Jx金屬股份有限公司 Metal foil, release layer metal foil, laminate, printed circuit board, semiconductor package, electronic device, and printed circuit board manufacturing method
KR101912738B1 (en) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 High Transparency polyimide precursor resin composition having excellent Optical Characteristics and phase Retardation, method for manufacturing polyimide film using the same, and polyimide film thereof
CN109049931A (en) * 2018-06-11 2018-12-21 广东宸景光电科技有限公司 Applying method, laminating apparatus and system of processing
JP2019145663A (en) * 2018-02-20 2019-08-29 株式会社フジクラ Photoelectric conversion element
JP2020506084A (en) * 2017-02-08 2020-02-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polyimide film and manufacturing method thereof
WO2021124865A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Laminate body
US11383485B2 (en) 2016-12-27 2022-07-12 Lg Chem, Ltd. Plastic laminated film
CN115621686A (en) * 2022-12-19 2023-01-17 中国科学院长春光学精密机械与物理研究所 Polyaniline-based dual-polarized radar switch device and preparation method thereof
EP4043215A4 (en) * 2019-10-08 2023-10-25 Toyobo Co., Ltd. Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201606059WA (en) * 2014-01-27 2016-08-30 Corning Inc Articles and methods for controlled bonding of polymer surfaces with carriers
JPWO2017057454A1 (en) * 2015-09-30 2018-07-19 東レ株式会社 Method for manufacturing light emitting device and method for manufacturing display device
JP6746908B2 (en) * 2015-12-25 2020-08-26 大日本印刷株式会社 See-through type LED display device and LED display system using the same
CN107606586B (en) * 2017-09-21 2019-12-24 友达光电(厦门)有限公司 Backlight unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141936A (en) * 2001-11-02 2003-05-16 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP2004111152A (en) * 2002-09-17 2004-04-08 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP2006117903A (en) * 2004-09-24 2006-05-11 Fuji Photo Film Co Ltd Polymer, method for producing the same, optical film, and image display device
JP2006232960A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Optical film and image display device
JP2007002023A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Film and image display
WO2010071145A1 (en) * 2008-12-19 2010-06-24 東洋紡績株式会社 Laminated body, manufacturing method thereof, and laminated circuit board
JP2011011455A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Laminate and method for manufacturing the same
JP2011245674A (en) * 2010-05-25 2011-12-08 Toyobo Co Ltd Laminate, laminated sheet with electric circuit, laminate with semiconductor, and manufacturing method of the same
WO2012141248A1 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, method for producing same, and method for producing device structure using same
WO2012141293A2 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, production method for same, and method of creating device structure using laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481764B (en) * 2009-09-08 2014-11-05 旭硝子株式会社 Glass/resin laminate, and electronic device using same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141936A (en) * 2001-11-02 2003-05-16 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP2004111152A (en) * 2002-09-17 2004-04-08 Mitsubishi Gas Chem Co Inc Transparent conductive film
JP2006117903A (en) * 2004-09-24 2006-05-11 Fuji Photo Film Co Ltd Polymer, method for producing the same, optical film, and image display device
JP2006232960A (en) * 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd Optical film and image display device
JP2007002023A (en) * 2005-06-21 2007-01-11 Fujifilm Holdings Corp Film and image display
WO2010071145A1 (en) * 2008-12-19 2010-06-24 東洋紡績株式会社 Laminated body, manufacturing method thereof, and laminated circuit board
JP2011011455A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Laminate and method for manufacturing the same
JP2011245674A (en) * 2010-05-25 2011-12-08 Toyobo Co Ltd Laminate, laminated sheet with electric circuit, laminate with semiconductor, and manufacturing method of the same
WO2012141248A1 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, method for producing same, and method for producing device structure using same
WO2012141293A2 (en) * 2011-04-15 2012-10-18 東洋紡績株式会社 Laminate, production method for same, and method of creating device structure using laminate

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014119648A1 (en) * 2013-02-04 2017-01-26 東洋紡株式会社 LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING FLEXIBLE ELECTRONIC DEVICE
WO2014119648A1 (en) * 2013-02-04 2014-08-07 東洋紡株式会社 Laminate, method for producing laminate, and method for manufacturing flexible electronic device
JP2015182393A (en) * 2014-03-25 2015-10-22 新日鉄住金化学株式会社 Polyimide laminate structure and method for producing the same
US20170033249A1 (en) * 2014-04-10 2017-02-02 Sumitomo Electric Industries, Ltd. Flexible printed circuit, and concentrator photovoltaic module and concentrator photovoltaic panel using same
US10937918B2 (en) * 2014-04-10 2021-03-02 Sumitomo Electric Industries, Ltd. Flexible printed circuit, and concentrator photovoltaic module and concentrator photovoltaic panel using same
EP3187331A4 (en) * 2014-08-25 2018-04-25 Toyobo Co., Ltd. Polymer film coated with layer of silane coupling agent
JP2020006691A (en) * 2014-09-19 2020-01-16 ユニチカ株式会社 Method for producing laminate and flexible device
JPWO2016043180A1 (en) * 2014-09-19 2017-07-06 ユニチカ株式会社 Laminate and flexible device manufacturing method
KR20170072885A (en) * 2014-10-17 2017-06-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, polyimide film and laminate
KR102277807B1 (en) 2014-10-17 2021-07-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, polyimide film and laminate
TWI631228B (en) * 2015-09-24 2018-08-01 日商Jx金屬股份有限公司 Metal foil, release layer metal foil, laminate, printed circuit board, semiconductor package, electronic device, and printed circuit board manufacturing method
WO2018088543A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminate comprising polyimide film and hard coat layer
CN109922956A (en) * 2016-11-11 2019-06-21 宇部兴产株式会社 Laminate comprising polyimide film and hard conating
JPWO2018088543A1 (en) * 2016-11-11 2019-10-10 宇部興産株式会社 Laminated body including polyimide film and hard coat layer
WO2018088542A1 (en) * 2016-11-11 2018-05-17 宇部興産株式会社 Laminted body including polyimide film and hard coat layer
WO2018117551A1 (en) * 2016-12-19 2018-06-28 주식회사 두산 Transparent polyimide film
US11383485B2 (en) 2016-12-27 2022-07-12 Lg Chem, Ltd. Plastic laminated film
JP2020506084A (en) * 2017-02-08 2020-02-27 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polyimide film and manufacturing method thereof
KR101912738B1 (en) * 2017-05-23 2018-10-30 주식회사 대림코퍼레이션 High Transparency polyimide precursor resin composition having excellent Optical Characteristics and phase Retardation, method for manufacturing polyimide film using the same, and polyimide film thereof
JP2020523427A (en) * 2017-05-23 2020-08-06 デリム コーポレイション カンパニー リミテッド Highly transparent polyimide precursor resin composition having excellent optical characteristics and phase delay characteristics, a method for producing a polyimide resin film using the same, and a polyimide resin film produced thereby
JP2019145663A (en) * 2018-02-20 2019-08-29 株式会社フジクラ Photoelectric conversion element
CN109049931A (en) * 2018-06-11 2018-12-21 广东宸景光电科技有限公司 Applying method, laminating apparatus and system of processing
EP4043215A4 (en) * 2019-10-08 2023-10-25 Toyobo Co., Ltd. Laminate, method for manufacturing laminate, and method for manufacturing flexible electronic device
WO2021124865A1 (en) * 2019-12-17 2021-06-24 東洋紡株式会社 Laminate body
JPWO2021124865A1 (en) * 2019-12-17 2021-12-16 東洋紡株式会社 Laminate
CN113950409A (en) * 2019-12-17 2022-01-18 东洋纺株式会社 Laminated body
JP7151904B2 (en) 2019-12-17 2022-10-12 東洋紡株式会社 laminate
JP2022180528A (en) * 2019-12-17 2022-12-06 東洋紡株式会社 Laminate body
JP7268791B2 (en) 2019-12-17 2023-05-08 東洋紡株式会社 laminate
CN115621686A (en) * 2022-12-19 2023-01-17 中国科学院长春光学精密机械与物理研究所 Polyaniline-based dual-polarized radar switch device and preparation method thereof
CN115621686B (en) * 2022-12-19 2023-03-10 中国科学院长春光学精密机械与物理研究所 Polyaniline-based dual-polarized radar switch device and preparation method thereof

Also Published As

Publication number Publication date
TWI574843B (en) 2017-03-21
JPWO2013114685A1 (en) 2015-05-11
JP6003883B2 (en) 2016-10-05
TW201341198A (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP6003883B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
JP5224011B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
JP5862238B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
JP6217631B2 (en) LAMINATE MANUFACTURING METHOD, LAMINATE, MANUFACTURING METHOD OF LAMINATE WITH DEVICE, AND LAMINATE WITH DEVICE
JP6550752B2 (en) Rigid composite laminate, method of manufacturing the same, laminate, and method of manufacturing device using the laminate
KR101911574B1 (en) Laminate, production method for same, and method of creating device structure using laminate
JP6447135B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING FLEXIBLE ELECTRONIC DEVICE
CN107073891B (en) Laminated polymer film of silane coupling agent layer
JP5742725B2 (en) Polyimide film, production method thereof, and laminate production method
JP6354310B2 (en) Polyimide film for laminate formation
JPWO2016031746A6 (en) Silane coupling agent layer laminated polymer film
JP2015178237A (en) Laminated inorganic substrate, laminate, method of producing laminate and method of producing flexible electronic device
KR102476038B1 (en) Manufacturing method of polymer film laminated substrate and flexible electronic device
JP2013226784A (en) Laminate, method for manufacturing the same, and method for manufacturing device structure body using the same
JP6201513B2 (en) LAMINATE MANUFACTURING METHOD AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013505254

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867476

Country of ref document: EP

Kind code of ref document: A1