JP2012039013A - Manufacturing method of light-emitting devices - Google Patents

Manufacturing method of light-emitting devices Download PDF

Info

Publication number
JP2012039013A
JP2012039013A JP2010179759A JP2010179759A JP2012039013A JP 2012039013 A JP2012039013 A JP 2012039013A JP 2010179759 A JP2010179759 A JP 2010179759A JP 2010179759 A JP2010179759 A JP 2010179759A JP 2012039013 A JP2012039013 A JP 2012039013A
Authority
JP
Japan
Prior art keywords
light emitting
ceramic ink
led
light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010179759A
Other languages
Japanese (ja)
Inventor
Megumi Horiuchi
恵 堀内
Mizue Fukushima
瑞恵 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2010179759A priority Critical patent/JP2012039013A/en
Publication of JP2012039013A publication Critical patent/JP2012039013A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of LED light-emitting devices capable of easily mass-producing LED light-emitting devices having uniform light-emitting characteristics (chromaticity).SOLUTION: A manufacturing method of light-emitting devices comprises: a step B of selecting LEDs 1 with uniform characteristics; a step C of aligning the LEDs 1 on an adhesive tape 40 at predetermined intervals; a step D of applying a ceramic ink 30 in which phosphors are decentralized to the aligned LEDs 1 for temporary curing; a step E of adjusting light-emitting conditions of an LED light-emitting device 10 by grinding the ceramic ink 30 on the LEDs 1; a step F of cutting and separating the LEDs 1 with the ceramic ink 30 existing on top faces and side faces of the LEDs 1; and a step G of mainly curing the ceramic ink 30 by heating each of the separated light-emitting elements.

Description

本発明はLED素子等の発光素子を備えた発光装置の製造方法に関するものであり、詳しくは発光素子周辺だけに蛍光体を局在化させ、蛍光体の無駄を省いた発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a light-emitting device including a light-emitting element such as an LED element, and more particularly to a method for manufacturing a light-emitting device that localizes phosphors only around the light-emitting elements and eliminates waste of the phosphors. .

近年、LED素子(以下LEDと略記する)は半導体素子であるため、長寿命で優れた駆動特性を有し、さらに小型で発光効率が良く、鮮やかな発光色を有することから、カラー表示装置のバックライトや照明等に広く利用されるようになってきた。本発明においてもLED発光装置を実施形態として説明する。   In recent years, since an LED element (hereinafter abbreviated as LED) is a semiconductor element, it has a long life and excellent driving characteristics, is small in size, has high luminous efficiency, and has a bright emission color. Widely used for backlights and lighting. In the present invention, an LED light emitting device will be described as an embodiment.

特に近年、LED周辺だけに蛍光体を局在させ、蛍光体を節約するとともに視野角に依存する色ムラを解消したLED装置が提案されている。このLED装置において蛍光体をLED周辺に局在させる手法としては電気泳動法や噴霧法、印刷法がよく知られているが、ウェハー状態で蛍光体層を形成し、そのウェハーからLEDを個片化する製造方法もある。(例えば引用文献1)   In particular, in recent years, LED devices have been proposed in which phosphors are localized only around the LED to save phosphors and eliminate color unevenness that depends on the viewing angle. Electrophoresis, spraying, and printing methods are well known as methods for localizing the phosphor around the LED in this LED device. The phosphor layer is formed in a wafer state, and the LED is separated from the wafer. There is also a manufacturing method to make it. (For example, cited reference 1)

以下従来の封止部材付のLED発光装置に付いて説明する。図4は特許文献1における図1及び段落0090〜0098に開示されている従来のLEDウェハーの平面図、図5は断面図である。LEDウェハー120は、大判のサフイアヤ基板110の上に複数の半導体層100が形成されており、それぞれP電極102とN電極103が設けられている。半導体層100の主な発光面はサファイヤ基板110側であり、図面では3個のLED100のみ示した。しかし実際の大判サファイヤ基板110上にはもっと多数の半導体層100が形成されてLEDウェハー120を構成している。   A conventional LED light emitting device with a sealing member will be described below. FIG. 4 is a plan view of a conventional LED wafer disclosed in FIG. 1 and paragraphs 0090 to 0098 in Patent Document 1, and FIG. 5 is a cross-sectional view. In the LED wafer 120, a plurality of semiconductor layers 100 are formed on a large sapphire substrate 110, and a P electrode 102 and an N electrode 103 are provided respectively. The main light emitting surface of the semiconductor layer 100 is the sapphire substrate 110 side, and only three LEDs 100 are shown in the drawing. However, a larger number of semiconductor layers 100 are formed on the actual large format sapphire substrate 110 to constitute the LED wafer 120.

図6は特許文献1における従来のLED発光装置を製造する工程図であり、趣旨を逸脱しない範囲で簡素化している。図6において工程AはLEDウェハーを準備する工程である。-図5に対しLEDウェハー120を反転させているので大判のサフイアヤ基板110の下側に半導体層100が形成配置されている。工程Bはサフイアヤ基板110の上面において半導体層100間に切削工具を使用し溝111を形成する溝加工工程である。この溝111は半導体層100が含まれるLED200の発光面積を大きくしているもので、LED200の発光面積が溝111によって形成される側面の分だけ大きくなっている。   FIG. 6 is a process diagram for manufacturing a conventional LED light-emitting device in Patent Document 1, which is simplified without departing from the spirit of the process. In FIG. 6, step A is a step of preparing an LED wafer. Since the LED wafer 120 is inverted with respect to FIG. 5, the semiconductor layer 100 is formed and disposed below the large-sized sapphire substrate 110. Process B is a groove machining process in which a groove 111 is formed between the semiconductor layers 100 on the upper surface of the sapphire substrate 110 using a cutting tool. The groove 111 increases the light emitting area of the LED 200 including the semiconductor layer 100, and the light emitting area of the LED 200 is increased by the side surface formed by the groove 111.

工程C及び工程Dは溝111を含むサファイヤ基板110の上面に蛍光体ペースト(固化前の蛍光体層130)を流し込み、その蛍光体ペーストをスキージー140により平坦にならした後、加熱固化させて蛍光体層130を形成する蛍光体層形成工程である。なお、この蛍光体ペーストとしては青色LEDの場合にはエポキシ樹脂やシリコン樹脂に蛍光体を含有させたものを使用することが出来る。   In Step C and Step D, a phosphor paste (phosphor layer 130 before solidification) is poured onto the upper surface of the sapphire substrate 110 including the groove 111, and the phosphor paste is flattened by the squeegee 140 and then solidified by heating to cause fluorescence. This is a phosphor layer forming step for forming the body layer 130. As the phosphor paste, in the case of a blue LED, an epoxy resin or silicon resin containing a phosphor can be used.

工程Eはサファイヤ基板110の上面に形成された蛍光体層130の上面を目的の厚みになるように、研削具を用いて均一に研削する研削工程である。この研削工程の後に色度測定を行い目的の色度に正確に調整する。なお、この状態で目的の色度が得られていない場合は、前記工程C及び工程Dの蛍光体層形成工程及び、工程Eの研削工程をやり直すことによって、最終的に最適色度への調整を行う。   Step E is a grinding step in which the upper surface of the phosphor layer 130 formed on the upper surface of the sapphire substrate 110 is uniformly ground using a grinding tool so as to have a target thickness. After this grinding step, the chromaticity is measured and accurately adjusted to the desired chromaticity. In addition, when the target chromaticity is not obtained in this state, the adjustment to the optimum chromaticity is finally performed by redoing the phosphor layer forming process in the process C and the process D and the grinding process in the process E. I do.

次に工程Fでは、LEDウェハー120を蛍光体層130が上になる向きで加工テーブルにセットし、半導体層100の境界(溝111の中央)を切断治具(ブレード)150を用いて切断分離し、工程Gに示す個片化したLED200を量産する。   Next, in step F, the LED wafer 120 is set on the processing table with the phosphor layer 130 facing upward, and the boundary of the semiconductor layer 100 (the center of the groove 111) is cut and separated using a cutting jig (blade) 150. Then, the individualized LEDs 200 shown in the process G are mass-produced.

また引用文献1の図4及び段落0112〜0120には、他の実施形態として、前記図6と同様のLED発光装置の製造方法が開示されている。図6と異なる部分は大判サファイヤ基板に含まれるLEDが紫外線LEDであることと、LED上に形成される蛍光体層が紫外線LEDの発光によって劣化しないガラス系バインダーを用いて形成されていることである。そして前記図6の工程C,Dと同様に蛍光体層(ペースト状)を形成し加熱硬化させてから、同じく工程Eの研削及び工程Fの切断分離を行っている。   Further, in FIG. 4 and paragraphs 0112 to 0120 of the cited document 1, as another embodiment, a manufacturing method of the LED light emitting device similar to that of FIG. 6 is disclosed. The difference from FIG. 6 is that the LED included in the large sapphire substrate is an ultraviolet LED, and that the phosphor layer formed on the LED is formed using a glass-based binder that does not deteriorate due to the emission of the ultraviolet LED. is there. Then, the phosphor layer (paste-like) is formed and heat-cured in the same manner as in Steps C and D of FIG. 6, and then grinding in Step E and cutting and separation in Step F are performed.

以上のように特許文献1の提案では、1枚の大判サファイヤ基板に複数のLEDを形成し、この複数のLED上にまとめて蛍光体層を設け、この蛍光体層を研削しながら色度調整をおこなっている。また所望の色度が得られない場合、特性測定後に形成した蛍光体層を剥がして再形成を行っている。   As described above, in the proposal of Patent Document 1, a plurality of LEDs are formed on a single large sapphire substrate, a phosphor layer is provided on the plurality of LEDs, and chromaticity adjustment is performed while grinding the phosphor layer. Is doing. When the desired chromaticity cannot be obtained, the phosphor layer formed after the characteristic measurement is peeled off and re-formed.

特開2004−221536号公報JP 2004-221536 A

最近ではLED発光素子の薄型化にともない、サファイヤ基板110の厚さも100μm前後になっている。しかしながら依然としてサファイヤ基板110内における上面及び下面での全反射成分は減らないためサファイヤ基板110の側面から出射する光量が多い。ところがLED200にはサファイヤ基板110の側面に蛍光体層130のない部分があるため発光効率を落としている。とくにサファイヤ基板110の薄型化が進むにつれこの損失の影響が大きくなってくる。この対策としてサイファイヤ基板110の露出部を薄くしようとすると製造工程中でサファイヤ基板110が割れやすくなる。   Recently, the thickness of the sapphire substrate 110 has become around 100 μm as the LED light-emitting element becomes thinner. However, since the total reflection components on the upper surface and the lower surface in the sapphire substrate 110 are not reduced, the amount of light emitted from the side surface of the sapphire substrate 110 is large. However, since the LED 200 has a portion without the phosphor layer 130 on the side surface of the sapphire substrate 110, the luminous efficiency is lowered. In particular, as the sapphire substrate 110 becomes thinner, the influence of this loss increases. As a countermeasure, if the exposed portion of the sapphire substrate 110 is thinned, the sapphire substrate 110 is easily broken during the manufacturing process.

そこで本発明の目的は、上記問題点を解決しようとするものであり、蛍光体層として高信頼性のセラミックインクを使用して一括生産を行うLED発光装置の製造方法において、高価な蛍光体材料の使用量を節約し、発光効率の良いLED発光素子を簡便に製造できる製造方法を提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and in an LED light emitting device manufacturing method that performs batch production using a highly reliable ceramic ink as a phosphor layer, an expensive phosphor material is used. The manufacturing method which can manufacture the LED light emitting element with good luminous efficiency easily can be provided.

上記目的を達成するため本発明における製造方法は、
回路基板上に半導体発光素子をフリップチップ実装し、該半導体発光素子の周辺に蛍光体を備える半導体発光素子の製造方法において、
前記発光素子を所定の間隔で粘着シート上に整列させる工程と、
前記発光素子に前記蛍光体が分散されたセラミックインクを塗布し硬化させる工程と、
前記発光素子の上面に塗布されたセラミックインクの厚さと側面に残すセラミックインクの厚さとが略等しくなるように前記発光素子間の前記セラミックインクを切断分離する工程と、
該発光素子を回路基板にフリップチップ実装する工程と
を有することを特徴とする。
In order to achieve the above object, the production method of the present invention comprises:
In a method for manufacturing a semiconductor light emitting device, a semiconductor light emitting device is flip-chip mounted on a circuit board, and a phosphor is provided around the semiconductor light emitting device.
Aligning the light emitting elements on the adhesive sheet at a predetermined interval;
Applying and curing a ceramic ink in which the phosphor is dispersed in the light emitting element; and
Cutting and separating the ceramic ink between the light emitting elements so that the thickness of the ceramic ink applied to the upper surface of the light emitting element is substantially equal to the thickness of the ceramic ink left on the side surface;
And a step of flip-chip mounting the light emitting element on a circuit board.

前記発光素子を所定の間隔で粘着シート上に整列させる工程において、予め特性の揃った発光素子を選別しておき、該発光素子を前記所定の間隔で前記粘着シート上に整列させることが好ましい。   In the step of aligning the light emitting elements on the adhesive sheet at a predetermined interval, it is preferable to select light emitting elements having uniform characteristics in advance and align the light emitting elements on the adhesive sheet at the predetermined interval.

前記セラミックインクを塗布し硬化させる工程において該セラミックインクを仮硬化させ、前記発光素子間のセラミックインクを切断分離する工程の後に、前記セラミックインクを本硬化させる工程を備えることが好ましい。   In the step of applying and curing the ceramic ink, the method preferably includes a step of temporarily curing the ceramic ink after the step of temporarily curing the ceramic ink and cutting and separating the ceramic ink between the light emitting elements.

前記セラミックインクを塗布し硬化させる工程の後に、前記発光素子上のセラミックインクを研削して発光素子の発光条件を調整する工程を備えることが好ましい。   After the step of applying and curing the ceramic ink, it is preferable to provide a step of adjusting the light emission conditions of the light emitting element by grinding the ceramic ink on the light emitting element.

前記発光素子を所定の間隔で粘着シート上に整列させる工程の前に、ウェハー状態の発光素子にバンプ電極を形成する工程と、個別の発光素子に切断分離する工程と、該発光素子の特性を測定する工程とを有すると良い。   Before the step of aligning the light emitting elements on the adhesive sheet at a predetermined interval, a step of forming bump electrodes on the light emitting elements in a wafer state, a step of cutting and separating into individual light emitting elements, and the characteristics of the light emitting elements And a measuring step.

前記セラミックインクを塗布し硬化させる工程と、前記発光素子間のセラミックインクを切断分離する工程との間に、前記発光素子にバンプ電極を形成する工程を有すると良い。   A step of forming a bump electrode on the light emitting element may be provided between the step of applying and curing the ceramic ink and the step of cutting and separating the ceramic ink between the light emitting elements.

上記の如く本発明の製造方法によれば、粘着シート上に整列された発光素子に対し一括して蛍光体を含有したセラミックインクの塗布を行い、セラミックインクを硬化後、LED発光素子の上面及び側面のセラミックインク層を略同じ厚みとなるようにセラミックインクを切断している。この結果、高価な蛍光体材料をLED発光素子周辺に局在化させ使用量を節約しながら、蛍光体を含有したセラミックインクで発光素子側面を覆い発光効率の低下を抑えたLED発光装置を、塗布と切断をベースとした簡便な方法により製造できる。   As described above, according to the manufacturing method of the present invention, the ceramic ink containing the phosphor is collectively applied to the light emitting elements arranged on the adhesive sheet, and after the ceramic ink is cured, the upper surface of the LED light emitting element and The ceramic ink is cut so that the side ceramic ink layers have substantially the same thickness. As a result, the LED light-emitting device that covers the side of the light-emitting element with the ceramic ink containing the phosphor and suppresses the decrease in the light emission efficiency while localizing the expensive phosphor material around the LED light-emitting element and saving the usage amount, It can be produced by a simple method based on coating and cutting.

本発明の第1実施形態におけるLED発光装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the LED light-emitting device in 1st Embodiment of this invention. 本発明の第2実施形態におけるLED発光装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the LED light-emitting device in 2nd Embodiment of this invention. 図1に示すLED発光装置にレンズを構成した状態を示す断面図である。It is sectional drawing which shows the state which comprised the lens in the LED light-emitting device shown in FIG. 従来のLEDウェハーの平面図である。It is a top view of the conventional LED wafer. 図4に示すLEDウェハーのA−A断面図である。It is AA sectional drawing of the LED wafer shown in FIG. 従来のLED発光装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the conventional LED light-emitting device.

(第1実施形態)
以下図面により、本発明の実施形態を説明する。図1は本発明の第1実施形態におけるLED発光装置の製造方法を示す工程図である。図1において工程Aはウェハー状態のLED(発光素子)にバンプを形成する工程である。粘着シート40に接着されたLEDウェハー20に含まれる各LED領域のP電極2及びN電極3にメッキ法によりP電極バンプ2a及びN電極バンプ3aを形成する。工程Bは個別のLEDに切断分離する工程と各LEDの特性を測定する工程を示している。先ずLEDウェハー20の各LED領域をスクライブによって切断分離して複数のLED1を形成する。次に粘着シート40を引き伸ばして、操作性を良くした状態で、各LED1のP電極バンプ2a及びN電極バンプ3aに検査用のプローブを当接して各LED1の発光特性を測定し、ランク毎に分別する。なお、必要に応じてスクライブの前にLEDウェハー20の裏面(サファイヤ基板)側を研削しても良い。
(First embodiment)
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a process diagram showing a method for manufacturing an LED light emitting device according to a first embodiment of the present invention. In FIG. 1, step A is a step of forming bumps on a wafer LED (light emitting element). P electrode bumps 2a and N electrode bumps 3a are formed on the P electrode 2 and N electrode 3 in each LED region included in the LED wafer 20 bonded to the adhesive sheet 40 by plating. Step B shows a step of cutting and separating individual LEDs and a step of measuring the characteristics of each LED. First, each LED area of the LED wafer 20 is cut and separated by scribing to form a plurality of LEDs 1. Next, in a state where the adhesive sheet 40 is stretched and the operability is improved, a probe for inspection is brought into contact with the P electrode bump 2a and the N electrode bump 3a of each LED 1, and the light emission characteristics of each LED 1 are measured. Sort. If necessary, the back surface (sapphire substrate) side of the LED wafer 20 may be ground before scribing.

工程CはLEDを所定の間隔で粘着シート上に整列させる工程である。工程Bでランク分けられたLED1の同一ランクのものを支持板50(粘着シート)上に所定の間隔で整列配置する。工程Dはセラミックインクを塗布し硬化させる工程である。工程Cで支持板50上に所定の間隔で整列配置された複数のLED1の上面及び素子(LED1)の間に蛍光体が分散混入されたセラミックインク30を塗布する。さらにこの塗布されたセラミックインクを約90℃で加熱することによりセラミックインクの仮硬化を行う。セラミックインクとは架橋するとガラス状になるバインダ中に蛍光体等の粒子を触媒や溶媒とともに混練したものである。本実施形態ではバインダとしてオルガノポリシロキサンを使った。このセラミックインクは約90℃(30分)で仮硬化させ、約160℃(2時間30分)で本硬化させる。   Step C is a step of aligning the LEDs on the adhesive sheet at a predetermined interval. The LEDs 1 of the same rank ranked in the process B are aligned and arranged on the support plate 50 (adhesive sheet) at a predetermined interval. Step D is a step of applying and curing the ceramic ink. In step C, the ceramic ink 30 in which the phosphor is dispersed and mixed is applied between the upper surfaces of the plurality of LEDs 1 and the elements (LEDs 1) arranged and arranged on the support plate 50 at predetermined intervals. Further, the applied ceramic ink is heated at about 90 ° C. to perform temporary curing of the ceramic ink. The ceramic ink is obtained by kneading particles such as a phosphor together with a catalyst and a solvent in a binder that becomes glassy when crosslinked. In this embodiment, organopolysiloxane is used as the binder. This ceramic ink is temporarily cured at about 90 ° C. (30 minutes), and is finally cured at about 160 ° C. (2 hours 30 minutes).

工程Eは発光素子上のセラミックインクを研削し発光素子の発光条件を調整する工程である。工程Dで仮硬化されたセラミックインク30の一部30aを研削して、支持板50上に所定の間隔で整列配置された複数のLED1の特性(ピーク波長など)に合わせてセラミックインク30の厚さを調整し、セラミックインク層30を備えたLED1の発光特性(色度)を希望の値に合わせ込む。この場合予め支持板50上に整列配置された複数のLED1の特性は一定のランク(ピーク波長など)内に収まっているので、所定の間隔で整列配置された複数のLED1を覆うセラミックインク層30の厚さを一定の厚さに揃えることによって、セラミックインク層30を備えた全てのLED1の発光特性(色度)は一定のランク(色度)内に収まった合格品とすることが可能となる。この場合、整列配置された複数のLED1の発光特性(ピーク波長など)に合わせて予め計算(例えばピーク波長に対し目標とする色度とセラミックインク厚の関係を実験で確認しておく)された厚さにセラミックインク30の研削をおこなっても良いし、また研削を行いながらLED1の発光特性を測定し規格内に追い込んでいくことも可能である。   Step E is a step of grinding the ceramic ink on the light emitting element to adjust the light emission conditions of the light emitting element. A portion 30a of the ceramic ink 30 temporarily cured in the process D is ground, and the thickness of the ceramic ink 30 is adjusted in accordance with characteristics (such as peak wavelengths) of the plurality of LEDs 1 arranged on the support plate 50 at predetermined intervals. The light emission characteristic (chromaticity) of the LED 1 provided with the ceramic ink layer 30 is adjusted to a desired value. In this case, since the characteristics of the plurality of LEDs 1 arranged in advance on the support plate 50 are within a certain rank (peak wavelength, etc.), the ceramic ink layer 30 covering the plurality of LEDs 1 arranged at predetermined intervals. By aligning the thickness of the LED with a constant thickness, the light emission characteristics (chromaticity) of all the LEDs 1 provided with the ceramic ink layer 30 can be accepted products that fall within a certain rank (chromaticity). Become. In this case, the calculation is performed in advance according to the light emission characteristics (such as peak wavelength) of the plurality of LEDs 1 arranged in alignment (for example, the relationship between the target chromaticity and the ceramic ink thickness with respect to the peak wavelength is confirmed in an experiment). The ceramic ink 30 may be ground to a thickness, or the light emission characteristics of the LED 1 may be measured while being ground to keep it within the standard.

工程FはLED間のセラミックインクを切断分離する工程である。所定の間隔で整列配置された複数のLED1間を、LED1の上面を覆うセラミックインク30の厚さと側面のセラミックインク30の厚さが略同じ厚さで残るように、切断治具(ブレード)150を用いてセラミックインク30を切断しLED1を分離する。このとき支持板50は切断しないようにする。工程Gはセラミックインクを本硬化させる工程である。高温(約160℃)で加熱処理を行うことによりセラミックインク30をガラス化させる。これでLED10が完成する。   Step F is a step of cutting and separating the ceramic ink between the LEDs. A cutting jig (blade) 150 is provided so that the thickness of the ceramic ink 30 covering the upper surface of the LED 1 and the thickness of the ceramic ink 30 on the side surface remain substantially the same between the plurality of LEDs 1 arranged in alignment at a predetermined interval. Is used to cut the ceramic ink 30 and separate the LED 1. At this time, the support plate 50 is not cut. Step G is a step of fully curing the ceramic ink. The ceramic ink 30 is vitrified by performing a heat treatment at a high temperature (about 160 ° C.). This completes the LED 10.

工程Hは発光素子を回路基板にフリップチップ実装する工程である。完成したLED1をサブ基板60(回路基板)にフリップチップ実装を行ってLED発光装置10を完成させる。実際には個別のサブ基板60上にLED1を実装するのではなく、切断分離すると複数のサブ基板60が得られる集合基板(図示せず)に、複数のLED1をフリップチップ実装してから集合基板を切断分離し個別のLED発光装置10を得ることが多い。蛍光体の加水分解や電極の腐食などを防止するためにも、集合基板状態でLED1を透明樹脂(図示せず)で封止することが好ましい。   Step H is a step of flip-chip mounting the light emitting element on the circuit board. The completed LED 1 is flip-chip mounted on the sub-board 60 (circuit board) to complete the LED light emitting device 10. Actually, the LEDs 1 are not mounted on the individual sub-boards 60, but the plurality of LEDs 1 are flip-chip mounted on a collective board (not shown) from which a plurality of sub-boards 60 can be obtained by cutting and separating. In many cases, individual LED light emitting devices 10 are obtained by cutting and separating the LED. In order to prevent phosphor hydrolysis and electrode corrosion, it is preferable to seal the LED 1 with a transparent resin (not shown) in a collective substrate state.

上記の如く本実施形態によれば、予め発光特性(ピーク波長等)の揃ったLED1を支持板50上に整列させていた。工程Eの研削を行なわなくてもLED1上のセラミックインク層30の厚さは、各LED装置10で等しくなるから、各LED装置10の発光特性(色度)も等しくなる。色度管理が厳しくない場合は、予め特性の揃った発光素子を選別しその発光素子を所定の間隔で前記粘着シート上に整列させる必要はない。   As described above, according to this embodiment, the LEDs 1 having the same emission characteristics (peak wavelength, etc.) are aligned on the support plate 50 in advance. Even without grinding in step E, the thickness of the ceramic ink layer 30 on the LED 1 is the same for each LED device 10, so that the light emission characteristics (chromaticity) of the LED devices 10 are also equal. When chromaticity management is not strict, it is not necessary to select light emitting elements having uniform characteristics in advance and align the light emitting elements on the adhesive sheet at a predetermined interval.

また本実施形態では、工程Eにおいて蛍光体混入セラミックインク30を研削する厚さをロット(支持板50)毎に決めることが出来る。このため、支持板が異なっても所望の発光特性(色度)のLED発光装置10が得られるため量産に適している。なおこの工程も色度管理が厳しくない場合は省くことができる。   In the present embodiment, the thickness for grinding the phosphor-containing ceramic ink 30 in step E can be determined for each lot (support plate 50). For this reason, since the LED light-emitting device 10 having desired light emission characteristics (chromaticity) can be obtained even if the support plates are different, it is suitable for mass production. This process can also be omitted when chromaticity management is not strict.

本実施形態ではセラミックインク30の研削及び切断を半硬化の柔らかい状態で行い、LED1間のセラミックインクを切断分離する工程の後に、セラミックインクを本硬化させる工程(工程F)を備えていた。このため、加工が容易で生産コストの低減及び歩留りの向上が可能となる。なお、セラミックインク30を工程Dにおいて本硬化させても、セラミックインク30の研削や切断が可能な製造装置を準備できれば工程Fを省略できる。   In the present embodiment, the ceramic ink 30 is ground and cut in a semi-cured soft state, and after the step of cutting and separating the ceramic ink between the LEDs 1, the step of fully curing the ceramic ink (step F) is provided. For this reason, processing is easy, and production cost can be reduced and yield can be improved. Even if the ceramic ink 30 is fully cured in the process D, the process F can be omitted if a manufacturing apparatus capable of grinding and cutting the ceramic ink 30 can be prepared.

本実施形態では、発光素子を所定の間隔で粘着シート上に整列させる工程(工程C)の前に、ウェハー状態の発光素子にバンプ電極を形成する工程(工程A)と、個別の発光素子に切断分離する工程(工程B)と、発光素子の特性を測定する工程(工程B)を備えていた。この工程A,BはパッケージメーカーがLEDの素子メーカーよりLEDウェハーでの供給を受ける場合に適している。特性(ピーク波長等)が判明し、P及びN電極バンプ2a,3aの付いた個別のLED1を入手できる場合は、工程A,Bを省略できる。   In the present embodiment, before the step of aligning the light emitting elements on the adhesive sheet at a predetermined interval (step C), a step of forming bump electrodes on the light emitting elements in the wafer state (step A), and an individual light emitting element A process of cutting and separating (process B) and a process of measuring characteristics of the light emitting element (process B) were provided. Processes A and B are suitable when the package maker receives supply from the LED element maker on the LED wafer. If the characteristics (such as peak wavelength) are known and individual LEDs 1 with P and N electrode bumps 2a and 3a are available, steps A and B can be omitted.

ふつうフリップチップ実装用のLED1はP及びN電極バンプ2a,3a側に反射層を備えているので、LED1からサブ基板60側に出射する光は少ない。このため、ここに蛍光体層がなくでも発光損失は大きくならない。
(第2実施形態)
Usually, the LED 1 for flip chip mounting includes a reflective layer on the P and N electrode bumps 2a, 3a side, so that the light emitted from the LED 1 to the sub-board 60 side is small. For this reason, even if there is no phosphor layer here, the light emission loss does not increase.
(Second Embodiment)

次に図2により本発明の第2実施形態におけるLED発光装置の製造方法を説明する。図2は本発明の第2実施形態におけるLED発光装置の製造方法を示す工程図であり、第1実施形態におけるLED発光装置の製造方法を示す工程図である図1と同一部材及び工程には同一番号を付し、重複する説明を省略する。   Next, the manufacturing method of the LED light-emitting device in 2nd Embodiment of this invention is demonstrated using FIG. FIG. 2 is a process diagram showing a method for manufacturing an LED light-emitting device according to a second embodiment of the present invention, and is a process diagram showing a method for manufacturing an LED light-emitting device according to the first embodiment. The same numbers are assigned and duplicate descriptions are omitted.

工程AはLED素子を所定の間隔で粘着シート上に整列させる工程である。予めランク分けされたLED1の同一ランクのものを粘着シート40上に所定の間隔で整列配置する。この時LED1の電極形成面、すなわちP電極及びN電極(図示せず)面側を下向きにして粘着シート40に貼り付ける。工程Bはセラミックインクを塗布し硬化させる工程である。工程Aで粘着シート40上に所定の間隔で整列配置された複数のLED1の上面と、素子間に蛍光体が分散混入されたセラミックインク30を塗布する。さらにこの塗布されたセラミックインク30を約90℃で加熱することによりセラミックインク30の仮硬化を行う。   Step A is a step of aligning the LED elements on the adhesive sheet at a predetermined interval. The LEDs 1 of the same rank, which are ranked in advance, are arranged and arranged on the adhesive sheet 40 at a predetermined interval. At this time, the electrode forming surface of the LED 1, that is, the P electrode and N electrode (not shown) side is attached to the adhesive sheet 40 with the surface facing downward. Step B is a step of applying and curing the ceramic ink. In step A, the ceramic ink 30 in which phosphors are dispersed and mixed between the upper surfaces of the plurality of LEDs 1 arranged and arranged at predetermined intervals on the adhesive sheet 40 is applied. Further, the applied ceramic ink 30 is heated at about 90 ° C., whereby the ceramic ink 30 is temporarily cured.

工程CはLED1上のセラミックインクを研削してLED1の発光条件を調整する工程である。工程Bで仮硬化されたセラミックインク30の一部30aを研削して、粘着シート40上に所定の間隔で整列配置された複数のLED1の特性(ピーク波長等)に合わせてセラミックインク30の厚さを調整し、LED1の発光特性(色度)を希望の値に合わせ込む。この場合予め支持板50上に整列配置された複数のLED1の特性は一定のランク内に収まっているので、所定の間隔で整列配置された複数のLED1を覆うセラミックインク30の厚さを一定の厚さに揃えることによって、全てのLED1の発光特性(色度)は一定のランク内に収まった合格品とすることが可能となる。   Step C is a step of adjusting the light emission conditions of the LED 1 by grinding the ceramic ink on the LED 1. A portion 30a of the ceramic ink 30 temporarily cured in the process B is ground, and the thickness of the ceramic ink 30 is adjusted according to the characteristics (peak wavelength, etc.) of the plurality of LEDs 1 arranged on the adhesive sheet 40 at a predetermined interval. The light emission characteristic (chromaticity) of the LED 1 is adjusted to a desired value. In this case, since the characteristics of the plurality of LEDs 1 arranged in advance on the support plate 50 are within a certain rank, the thickness of the ceramic ink 30 covering the plurality of LEDs 1 arranged at predetermined intervals is constant. By aligning the thickness, it becomes possible to make the light emission characteristics (chromaticity) of all the LEDs 1 acceptable products within a certain rank.

工程Dは新たな支持板(粘着シート)に取り付ける工程である。工程Cで研削されたセラミックインク30の上面に支持板50(粘着シート)を貼り付け、この状態から反転させて上面の粘着シート40を剥離する。工程Eはメッキ電極を形成する工程である。粘着シート40の剥離によって露出したLED1の電極面に、全面を覆うメッキ電極膜5を形成する。工程Fはレジスト膜を形成する工程である。バンプ形成領域、すなわち各LED1のP電極及びN電極部分に開口を有するレジスト膜6を形成する。このレジスト膜6は、全面に塗布したレジスト膜6をフォトリソグラフィ法によりP電極2に対応して開口6P及びN電極3に対応した開口6Nを形成する   Process D is a process of attaching to a new support plate (adhesive sheet). A support plate 50 (adhesive sheet) is affixed to the upper surface of the ceramic ink 30 ground in step C, and the adhesive sheet 40 on the upper surface is peeled by reversing from this state. Step E is a step of forming a plated electrode. A plated electrode film 5 that covers the entire surface is formed on the electrode surface of the LED 1 exposed by peeling off the adhesive sheet 40. Step F is a step of forming a resist film. A resist film 6 having openings in the bump formation region, that is, the P electrode and N electrode portions of each LED 1 is formed. The resist film 6 is formed by applying the resist film 6 applied on the entire surface to the P electrode 2 and the opening 6P corresponding to the P electrode 2 and the N electrode 3 by photolithography.

工程Gはバンプ電極を形成する工程である。工程Eで形成したメッキ電極膜5を共通電極としてレジスト膜6の開口6P及び6Nの部分に電解メッキ法によりバンプ電極を成長させることによって、それぞれ開口6P及び6Nの部分にP電極バンプ2a及びN電極バンプ3aを形成する。工程Hはレジスト膜6を除去する工程である。処理液を用いてレジスト膜6を除去する。さらにP及びN電極バンプ2a,3aをマスクとして露出しているメッキ電極5も除去する。   Step G is a step of forming bump electrodes. By using the plated electrode film 5 formed in the step E as a common electrode, bump electrodes are grown on the openings 6P and 6N of the resist film 6 by electrolytic plating, whereby P electrode bumps 2a and N are formed on the openings 6P and 6N, respectively. Electrode bumps 3a are formed. Step H is a step of removing the resist film 6. The resist film 6 is removed using a processing solution. Further, the exposed plating electrode 5 is also removed using the P and N electrode bumps 2a and 3a as a mask.

工程Iは支持板50(新たに貼りなおした粘着シート)を切断しないように、且つLED1の上面に塗布されたセラミックインクの厚さと側面に残すセラミックインクの厚さとが略等しくなるようにLED1間のセラミックインクを切断分離する工程である。図1に示す工程Fのセラミックインクを切断分離する工程と同様、所定の間隔で整列配置された複数のLED1間を、LED1の側面に残る蛍光体が混入されたセラミックインク30が所定の厚さで残るように、切断治具(ブレード)150を用いてセラミックインク30を切断分離し、LED1を量産する。工程Iは切断後セラミックインクを本硬化させる工程を含む。ここでは高温(約160℃)で加熱処理を行うことによりセラミックインク30をガラス化させる。これでLED1が完成する。工程JはLED1をサブ基板10(回路基板)にフリップチップ実装する工程である。完成したLED1をサブ基板60にフリップチップ実装してLED発光装置10を完成させる。   In Step I, between the LEDs 1, the thickness of the ceramic ink applied to the upper surface of the LED 1 and the thickness of the ceramic ink left on the side surface are substantially equal so as not to cut the support plate 50 (newly re-adhered adhesive sheet). This is a step of cutting and separating the ceramic ink. Similar to the step of cutting and separating the ceramic ink in step F shown in FIG. 1, the ceramic ink 30 mixed with the phosphor remaining on the side surface of the LED 1 has a predetermined thickness between the plurality of LEDs 1 arranged at predetermined intervals. Then, the ceramic ink 30 is cut and separated using a cutting jig (blade) 150 so that the LED 1 is mass-produced. Step I includes a step of fully curing the ceramic ink after cutting. Here, the ceramic ink 30 is vitrified by performing a heat treatment at a high temperature (about 160 ° C.). This completes LED1. Process J is a process in which the LED 1 is flip-chip mounted on the sub-board 10 (circuit board). The completed LED 1 is flip-chip mounted on the sub-board 60 to complete the LED light emitting device 10.

この第2実施形態における製造方法は、セラミックインクを塗布し硬化させる工程Bと、LED間のセラミックインクを切断分離する工程Iとの間に、LEDにバンプ電極を形成する工程(工程D〜H)を備えている。これはパッケージメーカーがLEDの素子メーカーよりバンプを備えていないLEDでの供給を受ける場合に適した製造方法である。   In the manufacturing method according to the second embodiment, a bump electrode is formed on the LED (steps D to H) between the step B of applying and curing the ceramic ink and the step I of cutting and separating the ceramic ink between the LEDs. ). This is a manufacturing method suitable for a case where a package maker receives supply of an LED having no bumps from an LED element maker.

本発明における製造方法は蛍光体のバインダとして高熱に耐えるセラミックインクを用いることにより、フリップチップ実装時にLEDや回路基板にかかる高温に対し耐熱性を保証している。またLEDに反射層が備えられていない場合はメッキ電極5に高反射アルミ層を使うと、P及びN電極バンプ部の反射効率が上がりLED装置10の発光効率が改善する。
(第3実施形態)
The manufacturing method of the present invention uses a ceramic ink that can withstand high heat as a phosphor binder, thereby ensuring heat resistance against high temperatures applied to the LED and circuit board during flip-chip mounting. If the LED is not provided with a reflective layer, the use of a highly reflective aluminum layer for the plated electrode 5 increases the reflection efficiency of the P and N electrode bumps and improves the light emission efficiency of the LED device 10.
(Third embodiment)

次に図3により、本発明の第3実施形態のLED発光装置について説明する。
図3は図1に示す製造方法により作成されたLED発光装置10にレンズ80を設けたLED発光装置の断面図である。すなわち図1の工程Hで作成されたLED発光装置10に透明樹脂の型成形により半球状のレンズ80を形成したもので、LED発光装置10の発光形状(光束分布)を改善している。第1実施形態で説明したように集合基板でLED1を封止しながらレンズ80を同時に形成すると製造効率がよくなる。
Next, an LED light-emitting device according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a cross-sectional view of an LED light emitting device in which a lens 80 is provided on the LED light emitting device 10 produced by the manufacturing method shown in FIG. That is, the LED light-emitting device 10 created in the process H of FIG. 1 is formed with a hemispherical lens 80 by molding a transparent resin, and the light-emitting shape (light flux distribution) of the LED light-emitting device 10 is improved. As described in the first embodiment, when the lens 80 is simultaneously formed while the LEDs 1 are sealed with the collective substrate, the manufacturing efficiency is improved.

1、200 LED
2、102 P電極
2a P電極バンプ
3、103 N電極
3a N電極バンプ
5 メッキ電極膜
6 レジスト膜
6P、6N 開口
10、200 LED発光装置
20、120 LEDウェハー
30、30a セラミックインク
40 粘着シ−ト
50 支持板
60 サブ基板
80 レンズ
100 半導体層
110 サファイヤ基板
111 溝
130 蛍光体ペ−スト
140 スキ−ジ−
150 切断治具
1,200 LED
2, 102 P electrode 2a P electrode bump 3, 103 N electrode 3a N electrode bump 5 Plating electrode film 6 Resist film 6P, 6N Opening 10, 200 LED light emitting device 20, 120 LED wafer 30, 30a Ceramic ink 40 Adhesive sheet 50 support plate 60 sub-substrate 80 lens 100 semiconductor layer 110 sapphire substrate 111 groove 130 phosphor paste 140 squeegee
150 cutting jig

Claims (6)

回路基板上に半導体発光素子をフリップチップ実装し、該半導体発光素子の周辺に蛍光体を備える半導体発光素子の製造方法において、
前記発光素子を所定の間隔で粘着シート上に整列させる工程と、
前記発光素子に前記蛍光体が分散されたセラミックインクを塗布し硬化させる工程と、
前記発光素子の上面に塗布されたセラミックインクの厚さと側面に残すセラミックインクの厚さとが略等しくなるように前記発光素子間の前記セラミックインクを切断分離する工程と、
該発光素子を回路基板にフリップチップ実装する工程と
を有することを特徴とする発光装置の製造方法。
In a method for manufacturing a semiconductor light emitting device, a semiconductor light emitting device is flip-chip mounted on a circuit board, and a phosphor is provided around the semiconductor light emitting device.
Aligning the light emitting elements on the adhesive sheet at a predetermined interval;
Applying and curing a ceramic ink in which the phosphor is dispersed in the light emitting element; and
Cutting and separating the ceramic ink between the light emitting elements so that the thickness of the ceramic ink applied to the upper surface of the light emitting element is substantially equal to the thickness of the ceramic ink left on the side surface;
And a step of flip-chip mounting the light-emitting element on a circuit board.
前記発光素子を所定の間隔で粘着シート上に整列させる工程において、予め特性の揃った発光素子を選別しておき、該発光素子を前記所定の間隔で前記粘着シート上に整列させることを特徴とする請求項1に記載の発光装置の製造方法。   In the step of aligning the light emitting elements on the adhesive sheet at a predetermined interval, light emitting elements having uniform characteristics are selected in advance, and the light emitting elements are aligned on the adhesive sheet at the predetermined interval. The manufacturing method of the light-emitting device of Claim 1. 前記セラミックインクを塗布し硬化させる工程において該セラミックインクを仮硬化させ、前記発光素子間のセラミックインクを切断分離する工程の後に、前記セラミックインクを本硬化させる工程を備えることを特徴とする請求項1又は2のいずれか一項に記載の発光装置の製造方法。   The step of pre-curing the ceramic ink in the step of applying and curing the ceramic ink, and the step of fully curing the ceramic ink after the step of cutting and separating the ceramic ink between the light emitting elements. The manufacturing method of the light-emitting device as described in any one of 1 or 2. 前記セラミックインクを塗布し硬化させる工程の後に、前記発光素子上のセラミックインクを研削して発光素子の発光条件を調整する工程を備えることを特徴とする請求項1から3のいずれか一項に記載の発光装置の製造方法。   4. The method according to claim 1, further comprising a step of adjusting a light emission condition of the light emitting element by grinding the ceramic ink on the light emitting element after the step of applying and curing the ceramic ink. 5. The manufacturing method of the light-emitting device of description. 前記発光素子を所定の間隔で粘着シート上に整列させる工程の前に、ウェハー状態の発光素子にバンプ電極を形成する工程と、個別の発光素子に切断分離する工程と、該発光素子の特性を測定する工程とを有することを特徴とする請求項1から4のいずれか一項に記載の発光装置の製造方法。   Before the step of aligning the light emitting elements on the adhesive sheet at a predetermined interval, a step of forming bump electrodes on the light emitting elements in a wafer state, a step of cutting and separating into individual light emitting elements, and the characteristics of the light emitting elements The method for manufacturing a light emitting device according to claim 1, further comprising a step of measuring. 前記セラミックインクを塗布し硬化させる工程と、前記発光素子間のセラミックインクを切断分離する工程との間に、前記発光素子にバンプ電極を形成する工程を有することを特徴とする請求項1から4のいずれか一項に記載の発光装置の製造方法。
5. A bump electrode is formed on the light emitting element between the step of applying and curing the ceramic ink and the step of cutting and separating the ceramic ink between the light emitting elements. The manufacturing method of the light-emitting device as described in any one of these.
JP2010179759A 2010-08-10 2010-08-10 Manufacturing method of light-emitting devices Pending JP2012039013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179759A JP2012039013A (en) 2010-08-10 2010-08-10 Manufacturing method of light-emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179759A JP2012039013A (en) 2010-08-10 2010-08-10 Manufacturing method of light-emitting devices

Publications (1)

Publication Number Publication Date
JP2012039013A true JP2012039013A (en) 2012-02-23

Family

ID=45850649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179759A Pending JP2012039013A (en) 2010-08-10 2010-08-10 Manufacturing method of light-emitting devices

Country Status (1)

Country Link
JP (1) JP2012039013A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248672A (en) * 2011-05-27 2012-12-13 Citizen Holdings Co Ltd Semiconductor light-emitting element manufacturing method
EP2680327A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Reflecting layer-phosphor layer-covered LED, producing method thereof, LED device, and producing method thereof
EP2680329A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Phosphor layer-covered LED, producing method thereof, and LED device
EP2680331A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
EP2750211A2 (en) 2012-12-28 2014-07-02 Nitto Denko Corporation Encapsulating layer-covered optical semiconductor element, producing method thereof, and optical semiconductor device
JP2014168035A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device
WO2014175682A1 (en) * 2013-04-24 2014-10-30 주식회사 씨티랩 Semiconductor device structure and method for manufacturing same
KR101476771B1 (en) * 2013-04-24 2014-12-29 주식회사 씨티랩 Semiconductor device structure and method of manufacutruing the same
JP2015156522A (en) * 2012-08-24 2015-08-27 台積固態照明股▲ふん▼有限公司 Method and device for packaging led coated with phosphor
JP2015207605A (en) * 2014-04-17 2015-11-19 株式会社ディスコ Formation method of package substrate
JP2016021570A (en) * 2014-07-14 2016-02-04 新世紀光電股▲ふん▼有限公司Genesis Photonics Inc. Method of manufacturing light emission unit
JP2016518713A (en) * 2013-04-11 2016-06-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Top emission type semiconductor light emitting device
JP2016525799A (en) * 2013-07-19 2016-08-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. PCLED with optical element without substrate carrier
CN106090772A (en) * 2015-04-27 2016-11-09 福特全球技术公司 Luminescence generated by light printing LED profiled member
WO2017086206A1 (en) * 2015-11-20 2017-05-26 日東電工株式会社 Manufacturing methods for sealed semiconductor element and semiconductor device
EP3136454A4 (en) * 2014-04-23 2017-08-30 Nitto Denko Corporation Wavelength conversion joining member, wavelength conversion heat-radiating member, and light emission device
JP2018050082A (en) * 2017-12-28 2018-03-29 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2018107285A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
CN110364610A (en) * 2019-06-20 2019-10-22 昆山芯乐光光电科技有限公司 A kind of Ceramic Luminescence face CSP LED packaging technology
TWI691102B (en) * 2014-12-17 2020-04-11 晶元光電股份有限公司 Manufacturing method of coated optical semiconductor element

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248672A (en) * 2011-05-27 2012-12-13 Citizen Holdings Co Ltd Semiconductor light-emitting element manufacturing method
EP2680330A3 (en) * 2012-06-29 2016-01-20 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
EP2680331A3 (en) * 2012-06-29 2016-01-20 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
CN103531697A (en) * 2012-06-29 2014-01-22 日东电工株式会社 Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
EP2680327A3 (en) * 2012-06-29 2016-03-09 Nitto Denko Corporation Reflecting layer-phosphor layer-covered LED, producing method thereof, LED device, and producing method thereof
JP2014168036A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device
JP2014168035A (en) * 2012-06-29 2014-09-11 Nitto Denko Corp Sealing layer covered semiconductor element, manufacturing method of the same, and semiconductor device
EP2680331A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
EP2680329A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Phosphor layer-covered LED, producing method thereof, and LED device
US9082940B2 (en) 2012-06-29 2015-07-14 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
EP2680327A2 (en) 2012-06-29 2014-01-01 Nitto Denko Corporation Reflecting layer-phosphor layer-covered LED, producing method thereof, LED device, and producing method thereof
JP2015156522A (en) * 2012-08-24 2015-08-27 台積固態照明股▲ふん▼有限公司 Method and device for packaging led coated with phosphor
EP2750211A3 (en) * 2012-12-28 2016-01-20 Nitto Denko Corporation Encapsulating layer-covered optical semiconductor element, producing method thereof, and optical semiconductor device
US9117984B2 (en) 2012-12-28 2015-08-25 Nitto Denko Corporation Encapsulating layer-covered optical semiconductor element, producing method thereof, and optical semiconductor device
EP2750211A2 (en) 2012-12-28 2014-07-02 Nitto Denko Corporation Encapsulating layer-covered optical semiconductor element, producing method thereof, and optical semiconductor device
JP2016518713A (en) * 2013-04-11 2016-06-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Top emission type semiconductor light emitting device
KR101476771B1 (en) * 2013-04-24 2014-12-29 주식회사 씨티랩 Semiconductor device structure and method of manufacutruing the same
WO2014175682A1 (en) * 2013-04-24 2014-10-30 주식회사 씨티랩 Semiconductor device structure and method for manufacturing same
JP2016525799A (en) * 2013-07-19 2016-08-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. PCLED with optical element without substrate carrier
JP2015207605A (en) * 2014-04-17 2015-11-19 株式会社ディスコ Formation method of package substrate
EP3136454A4 (en) * 2014-04-23 2017-08-30 Nitto Denko Corporation Wavelength conversion joining member, wavelength conversion heat-radiating member, and light emission device
JP2016021570A (en) * 2014-07-14 2016-02-04 新世紀光電股▲ふん▼有限公司Genesis Photonics Inc. Method of manufacturing light emission unit
US10164145B2 (en) 2014-07-14 2018-12-25 Genesis Photonics Inc. Method for manufacturing light emitting unit
TWI691102B (en) * 2014-12-17 2020-04-11 晶元光電股份有限公司 Manufacturing method of coated optical semiconductor element
CN106090772A (en) * 2015-04-27 2016-11-09 福特全球技术公司 Luminescence generated by light printing LED profiled member
WO2017086206A1 (en) * 2015-11-20 2017-05-26 日東電工株式会社 Manufacturing methods for sealed semiconductor element and semiconductor device
JP2018107285A (en) * 2016-12-27 2018-07-05 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US10535794B2 (en) 2016-12-27 2020-01-14 Nichia Corporation Method for manufacturing light emitting device using a releasable base material
US11114583B2 (en) 2016-12-27 2021-09-07 Nichia Corporation Light emitting device encapsulated above electrodes
JP2018050082A (en) * 2017-12-28 2018-03-29 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
CN110364610A (en) * 2019-06-20 2019-10-22 昆山芯乐光光电科技有限公司 A kind of Ceramic Luminescence face CSP LED packaging technology

Similar Documents

Publication Publication Date Title
JP2012039013A (en) Manufacturing method of light-emitting devices
CN112713142B (en) Luminous display unit and display device
US8987774B2 (en) Semiconductor light-emitting device and producing method thereof
US8956887B2 (en) Method for manufacturing semiconductor light-emitting element
KR100665121B1 (en) Method of producing wavelength-converted light emitting diode package
TWI568028B (en) Deposition of phosphor on die top by stencil printing
TWI550904B (en) System and methods providing semiconductor light emitters
JP2014110333A (en) Led device and manufacturing method thereof
US8900892B2 (en) Printing phosphor on LED wafer using dry film lithography
JP2015506591A (en) Light emitting die incorporating wavelength converting material and associated method
JP3978514B2 (en) LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE
CN104393154A (en) Wafer level packaging method for LED (Light-Emitting Diode) chip level white light source
US11538785B2 (en) Method of using optoelectronic semiconductor stamp to manufacture optoelectronic semiconductor device
JP6107060B2 (en) Method for manufacturing light emitting device
JP2012094578A (en) Manufacturing method of semiconductor light emitting device
TW201338213A (en) Method for manufacturing LED package
CN113380776A (en) Manufacturing method of LED display module
JP2012164902A (en) Method of manufacturing semiconductor light-emitting device
KR101769356B1 (en) Method and device for forming phosphor layer in light emitting device
CN110047824A (en) Double-colored temperature COB light source and its manufacturing method
JP2002368289A (en) Resin forming element, image display, and illumination equipment, and method of manufacturing the same
CN117594726A (en) Preparation method of LED packaging device
CN101894889B (en) Method for preparing white light LED
CN116154048A (en) Method for preparing LED device based on surface patch
CN112018098B (en) Pixel array substrate and manufacturing method thereof