WO2017082043A1 - 光学式検体検出システム - Google Patents

光学式検体検出システム Download PDF

Info

Publication number
WO2017082043A1
WO2017082043A1 PCT/JP2016/081592 JP2016081592W WO2017082043A1 WO 2017082043 A1 WO2017082043 A1 WO 2017082043A1 JP 2016081592 W JP2016081592 W JP 2016081592W WO 2017082043 A1 WO2017082043 A1 WO 2017082043A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
dielectric member
excitation light
detection system
metal film
Prior art date
Application number
PCT/JP2016/081592
Other languages
English (en)
French (fr)
Inventor
史生 長井
野田 哲也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP22192526.6A priority Critical patent/EP4191235A1/en
Priority to JP2017550049A priority patent/JP6766820B2/ja
Priority to US15/773,910 priority patent/US10648914B2/en
Priority to EP16864007.6A priority patent/EP3376208A4/en
Priority to EP22195116.3A priority patent/EP4137799A1/en
Publication of WO2017082043A1 publication Critical patent/WO2017082043A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present invention relates to a surface plasmon resonance apparatus applying a surface plasmon resonance (SPR) phenomenon, and surface plasmon excitation based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS).
  • SPR surface plasmon resonance
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • the present invention relates to an optical specimen detection system that detects a measurement target substance contained in a sensor chip using an enhanced fluorescence measurement device or the like.
  • SPFS device based on the principle of surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) using surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher accuracy than SPR equipment.
  • SPFS device The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter referred to as “SPFS device”) is also one of such specimen detection devices.
  • surface plasmon excitation enhanced fluorescence spectroscopy SPFS
  • surface plasmon light is applied to the surface of the metal film under the condition that excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal film.
  • excitation light such as laser light emitted from a light source attenuates total reflection (ATR) on the surface of the metal film.
  • ATR total reflection
  • FIG. 13 is a schematic configuration diagram for explaining the configuration of a conventional SPFS system.
  • a conventional SPFS system 100 includes a prism-shaped dielectric member 102 having a substantially trapezoidal vertical cross-sectional shape, a metal film 104 formed on a horizontal upper surface 102 a of the dielectric member 102, and an upper surface of the metal film 104.
  • a sensor chip 114 including a flow path forming member 110 that forms a flow path 108 and a flow path lid member 112 so as to surround the reaction layer 106, and the sensor chip 114 includes SPFS.
  • a sensor chip loading unit 116 of the apparatus 101 is loaded.
  • the reaction layer 106 of the sensor chip 114 has a solid phase film for capturing an analyte labeled with a fluorescent substance, and the analyte liquid containing the analyte is sent to the flow path 108, whereby the analyte is collected. Can be fixed on the metal film 104.
  • the light receiving unit 120 of the SPFS device 101 is used to measure the intensity of the fluorescence 118 emitted by the fluorescent material excited by the surface plasmon light (dense wave) generated on the metal film 104. Is arranged.
  • a light source 122 of the SPFS device 101 is disposed on one side surface (incident surface 102 b) below the dielectric member 102, and excitation light 124 irradiated from the light source 122. Enters the incident surface 102b of the dielectric member 102 from below the outer side of the dielectric member 102, and irradiates the metal film 104 formed on the upper surface 102a of the dielectric member 102 through the dielectric member 102.
  • surface plasmon light (dense wave) is generated on the surface of the metal film 104 by irradiating the excitation light 124 from the light source 122 toward the metal film 104.
  • the fluorescent substance that labels the analyte is excited by light (dense wave), and the fluorescence 118 emits light.
  • the fluorescence 118 is detected by the light receiving unit 120, and the amount of the analyte is calculated based on the light amount of the fluorescence 118.
  • the light amount of the fluorescence 118 is about 10 orders of magnitude lower than the excitation light amount, so that even if the excitation light 124 is incident on the light receiving unit 120 even slightly, the S / N deteriorates and the detection accuracy deteriorates. Therefore, it is important to reduce stray light.
  • the excitation light 124 is incident from the incident surface 102 b of the dielectric member 102, reflected by the metal film 104, and emitted from the output surface 102 c of the dielectric member 102.
  • the exit surface reflected light 124 b when the exit surface reflected light 124 b enters the channel lid member 112, the exit surface reflected light 124 b becomes light that guides the inside of the channel lid member 112. If present, autofluorescence in the flow path lid member 112 is detected, leading to deterioration of S / N.
  • the exit surface reflected light 124b usually has a light amount of about 4% of the excitation light 124, and is a sufficiently large amount of light with respect to the fluorescence 118. Therefore, it can be said to be stray light to be removed.
  • Patent Document 1 In order to remove such stray light, in Patent Document 1, as shown in FIG. 14, a light absorbing portion 126 that absorbs the metal film reflected light reflected by the metal film 104 is provided in the optical path of the dielectric member 102. Yes.
  • excitation light is provided by providing an excitation light cut filter (wavelength filter) 128 for removing scattered light and reflected light inside the sensor chip 114 on the upper surface of the sensor chip 114. 124 is cut.
  • excitation light cut filter wavelength filter
  • the light absorption unit 126 does not absorb 100% of the reflected light from the metal film, and a minute amount of reflected light exists in the light absorption unit 126. The stray light could not be completely removed.
  • An object of the present invention is to provide an optical sample detection system capable of measuring a sample with high accuracy.
  • the present invention was invented in order to solve the above-described problems in the prior art, and in order to realize at least one of the above-described objects, an optical sample reflecting one aspect of the present invention.
  • the detection system includes a dielectric member, A metal film adjacent to the top surface of the dielectric member; A reaction layer adjacent to an upper surface of the metal film; A lid member disposed on the upper surface of the reaction layer, and a sensor chip, Chip holding means for holding the sensor chip; A light projecting unit that irradiates the metal film with excitation light through the dielectric member, and detects the specimen by irradiating the metal film with the excitation light through the dielectric member
  • a sample detection system comprising: In the optical path cross section of the excitation light, the width of the lid member is larger than the width of the dielectric member, After the excitation light is reflected on the exit surface of the dielectric member, the exit surface reflected light exiting the dielectric member is configured not to enter the lid member within the measurement scan angle of the excitation light.
  • the exit surface reflected light derived from the excitation light having a larger amount of light than fluorescence is designed not to enter the lid member, the exit surface reflected light is not guided into the lid member, The S / N can be greatly improved, and the specimen can be measured with high accuracy.
  • FIG. 1 is a schematic view schematically showing an outline of an SPFS system which is an embodiment of the optical analyte detection system of the present invention.
  • FIG. 2 is a schematic bottom view of a part of the SPFS system of FIG. 1 viewed from the bottom side.
  • FIG. 3 is a schematic cross-sectional view showing an example of a sensor chip.
  • FIG. 4 is a schematic cross-sectional view showing another example of the sensor chip.
  • FIG. 5 is a schematic diagram illustrating an example of the optical configuration of the light projecting unit in the SPFS system of the present embodiment.
  • FIG. 6 is a flowchart for explaining the flow of measurement in the SPFS system of this embodiment.
  • FIG. 7 is a schematic diagram showing an example of the shape of the dielectric member in the SPFS system of the present embodiment.
  • FIG. 8 is a graph showing the relationship between the incident angle of the excitation light and the exit angle of the exit surface reflected light.
  • FIG. 9 shows the relationship between the incident angle of the excitation light when the measurement scanning angle of the excitation light is changed from 60 ° to 72 °, and the exit angle of the exit surface reflected light and the reflection angle of the incident surface reflected light. It is a graph.
  • FIG. 10 shows the relationship between the incident angle of the excitation light when the measurement scan angle of the excitation light is 61 ° to 73 °, and the exit angle of the exit surface reflected light and the reflection angle of the incident surface reflected light. It is a graph.
  • FIG. 11 is a schematic bottom view showing still another example of the sensor chip.
  • FIG. 12 is a schematic view schematically showing another example of the SPFS system which is an aspect of the optical analyte detection system of the present invention.
  • FIG. 13 is a schematic diagram for explaining the configuration of a conventional SPFS system.
  • FIG. 14 is a schematic diagram for explaining the configuration of the sensor chip disclosed in Patent Document 1.
  • FIG. 15 is a schematic diagram for explaining the configuration of the SPFS system disclosed in Patent Document 2.
  • FIG. 1 is a schematic view schematically showing an outline of an SPFS system which is an embodiment of the optical analyte detection system of the present invention
  • FIG. 2 is a schematic view showing a part of the SPFS system of FIG. is there.
  • the directions of “up” and “down” are defined in the state of FIG.
  • the SPFS system 10 of this embodiment includes a prism-shaped dielectric member 12 having a substantially trapezoidal vertical cross-sectional shape, a metal film 14 formed on a horizontal upper surface 12a of the dielectric member 12, and an upper surface of the metal film 14. And a sensor chip 24 including a flow path forming member 20 that forms a flow path 18 and a flow path lid member 22 so as to surround the reaction layer 16. Are loaded in the chip loading section 26 of the SPFS device 11.
  • the reaction layer 16 of the sensor chip 24 has a solid phase film for thinning the analyte labeled with the fluorescent substance, and the analyte liquid containing the analyte is sent to the flow path 18, thereby the analyte. Can be fixed on the metal film 14.
  • the solid phase film is one in which a ligand for capturing an analyte is immobilized, for example, a SAM (Self-Assembled Monolayer) and a solid phase layer formed on the SAM. Can be configured.
  • a ligand for capturing an analyte for example, a SAM (Self-Assembled Monolayer) and a solid phase layer formed on the SAM. Can be configured.
  • solid phase layer examples include glucose, carboxymethylated glucose, and vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic diesters, malee, and the like.
  • hydrophilic polymers such as dextran and dextran derivatives and vinyl esters, acrylic esters, methacrylic esters, olefins, styrenes, crotonic esters, itaconic diesters, maleic diesters, fumaric acid Jie
  • the dielectric member 12 is not particularly limited as long as it is a material that is optically transparent at least with respect to the excitation light 40. However, in order to obtain a sensor chip that is inexpensive and excellent in handleability, it is injection molded. It is formed from the resin material.
  • Examples of the resin material forming the dielectric member 12 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE) and polypropylene (PP), cyclic olefin copolymer (COC), and cyclic.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • polyolefins such as polyethylene (PE) and polypropylene (PP)
  • PP polypropylene
  • COC cyclic olefin copolymer
  • Polycyclic olefins such as olefin polymer (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate ( PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), and the like can be used.
  • COP olefin polymer
  • vinyl resins such as polyvinyl chloride and polyvinylidene chloride
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • PC polyamide
  • polyimide acrylic resin
  • TAC triacetyl cellulose
  • the metal film 14 is not particularly limited, but is preferably made of at least one metal selected from the group consisting of gold, silver, aluminum, copper, and platinum, and more preferably made of gold. Furthermore, you may comprise from the alloy of these metals.
  • such a metal is suitable as the metal film 14 because it is stable against oxidation and has an increased electric field enhancement effect by surface plasmon light (dense wave) as described later.
  • the method for forming the metal film 14 is not particularly limited, and examples thereof include sputtering, vapor deposition (resistance heating vapor deposition, electron beam vapor deposition, etc.), electrolytic plating, electroless plating, and the like. It is done.
  • the sputtering method or the vapor deposition method is used because it is easy to adjust the thin film formation conditions.
  • the thickness of the metal film 14 is not particularly limited, but is preferably in the range of 5 nm to 500 nm. From the viewpoint of the electric field enhancing effect, more preferably, gold: 20 nm to 70 nm, silver: 20 nm to 70 nm, aluminum: 10 to 50 nm, copper: 20 to 70 nm, platinum: 20 to 70 nm, and alloys thereof: It is desirable to be within the range of 10 to 70 nm.
  • the thickness of the metal film 14 is within the above range, surface plasmon light (dense wave) is likely to be generated, which is preferable. Moreover, if it is the metal film 14 which has such thickness, a shape will not be specifically limited.
  • an acrylic pressure-sensitive adhesive sheet in which flow path grooves having a predetermined width and a predetermined length are punched can be used as the flow path forming member 20, for example.
  • the thickness of such an acrylic pressure-sensitive adhesive sheet is not particularly limited, but is preferably about 0.1 mm.
  • the flow path lid member 22 is not particularly limited as long as it is a material having translucency with respect to the excitation light 40 and the fluorescence 48, but the same resin material as that of the dielectric member 12 described above is used. Can be used.
  • the channel lid member 22 is provided with a sample inlet 28 and a sample outlet 30 for sending the sample liquid containing the analyte through the channel 18. By connecting the sample inlet 28 and the sample outlet 30 by a circulating liquid feeding means such as a pump, the sample liquid can be circulated in one direction.
  • a liquid reservoir 32 is provided at the sample discharge port 30, and for example, the sample liquid is injected into the sample inlet 28 using a pipette or the like, and the aspiration and injection of the sample liquid are repeated with the pipette.
  • the sample liquid can be reciprocated in the pipette, the flow path 18 and the liquid reservoir 32, and the analyte in the sample liquid is quickly and efficiently captured by the ligand immobilized on the solid phase membrane. It will be.
  • the reaction efficiency between the analyte and the solid phase membrane is increased even with a small amount of sample liquid, and the detection accuracy of the analyte can be improved. it can.
  • the reaction layer 16 is provided in the flow path 18 and the sample liquid is sent to the flow path 18.
  • the sample liquid is retained in the well portion 19.
  • a well lid member 23 is used as the lid member instead of the flow path lid member 22.
  • the width of the flow path lid member 22 is designed to be larger than the width of the dielectric member 12 in the optical path cross section of the excitation light 40.
  • the holding region 34 can be provided in the flow path lid member 22, and the sensor chip 24 is configured so that the holding region 34 and the chip holding means 36 of the chip loading unit 26 are in contact with each other.
  • the loading unit 26 can be loaded.
  • the “optical path cross section” means an optical path of the excitation light 40 (a metal film reflected light 40a, which will be described later, and an exit surface reflection) when the excitation light 40 is irradiated from the light projecting unit 38 toward the metal film 14. It means a cross section that coincides with a plane including the optical path of the light 40c.
  • a light projecting unit 38 of the SPFS device 11 that irradiates the excitation light 40 is provided on one side surface below the sensor chip 24.
  • the light projecting unit 38 is irradiated with a light source composed of, for example, an LD (Laser Diode), an LED (Light Emitting Diode), an HID (High Intensity Discharge) lamp, and the like.
  • a collimating lens that converts the reflected light into a parallel light beam.
  • FIG. 5 is a schematic diagram illustrating an example of an optical configuration of the light projecting unit 38 in the SPFS system 10 of the present embodiment.
  • the optical system of the light projecting unit 38 includes an LD (laser diode) 54 as a light source, a collimating lens 56 for collimating light emitted from the LD 54, and the metal film 14 of the sensor chip 24.
  • the excitation light 40 emitted from such a light projecting unit 38 is substantially parallel light.
  • the emission wavelength of the LD 54 includes at least a wavelength that generates surface plasmons on the metal film 14.
  • the amount of light emitted from the LD 54 changes depending on the measurement environment temperature or the like, and therefore it is necessary to measure the absolute light amount as the light amount correlated with the amount of the subject. In this case, accurate measurement cannot be performed.
  • an APC (Auto Power Control) optical system 64 is provided in the light projecting unit 38 in order to keep the emitted light quantity of the light projecting unit 38 constant.
  • an APC photodiode 66 and a beam splitter 68 that reflects a part of the excitation light 40 emitted from the aperture 62 to the APC photodiode 66 and emits the remaining light to the metal film 14 are provided. It is an optical system.
  • the amount of light reflected by the beam splitter 68 is detected by the APC photodiode 66, and the input current value of the LD 54 is fed back according to the detected amount of light so that the detected amount of light of the APC photodiode 66 becomes constant. That is, control is performed by a control unit (not shown) so that the amount of light emitted from the light projecting unit 38 is constant.
  • the beam splitter 68 is desirably formed of, for example, a high refractive index material having a refractive index of 1.6 or more, and the incident angle of the excitation light 40 to the beam splitter 68 is desirably small, for example, 40 ° The following is desirable.
  • the optical element such as the LD 54 and the collimating lens 56 in the light projecting unit 38 is decentered due to environmental changes and changes with time, so that the incident angle of the excitation light 40 to the beam splitter 68 changes. Even if it does, since the variation
  • the light projecting unit 38 includes an irradiation angle variable mechanism (not shown) so that the incident angle of the excitation light 40 on the metal film 14 can be changed within a predetermined measurement scanning angle range.
  • the measurement scanning angle means that the excitation light 40 is emitted from the light projecting unit 38 and the light receiving unit 50 measures scattered light such as fluorescence 48 or plasmon scattered light, or both fluorescence 48 and scattered light.
  • the emission angle of the excitation light 40 that scans and emits the light projecting unit 38 (the zero reference for the angle is a perpendicular to the plane of the metal film 14).
  • the plasmon scattered light is light scattered by the surface plasmon itself generated on the metal film 14, and its wavelength is equal to the wavelength of the excitation light 40. Note that when the emission angle of the excitation light 40 is scanned, the angle at which the amount of plasmon scattered light is maximized is the enhancement angle, and strong fluorescence intensity due to surface plasmons is obtained at angles near this enhancement angle.
  • the enhancement angle depends on the shape and refractive index of the dielectric member 12 in the sensor chip 24, the material and film thickness of the metal film 14, the fluid refractive index in the flow path 18, etc. Considering this, it is desirable to obtain an optimal enhancement angle for each measurement.
  • the excitation light 40 is irradiated from the light projecting unit 38 toward the incident surface 12 b of the dielectric member 12 and is incident on the metal film 14 adjacent to the upper surface of the dielectric member 12.
  • the fluorescence 48 emitted from the fluorescent material excited by the surface plasmon light (dense wave) generated on the metal film 14 is detected by the light receiving unit 50 provided above the sensor chip 24.
  • a photodiode that is a light receiving element for receiving scattered light (plasmon scattered light) or fluorescence 48 generated by surface plasmons, a lens for condensing the photodiode, An excitation light cut filter for cutting light having the wavelength of the excitation light 40 is provided.
  • the excitation light cut filter When measuring the fluorescence 48, the excitation light cut filter is installed on the optical path in the light receiving unit 50.
  • the plasmon scattered light can be incident on the photodiode while at least a part of the light path in the light receiving unit 50 is retracted.
  • the excitation light cut filter is, for example, a bandpass filter made of a dielectric multilayer film, and is installed at a position where the fluorescence 48 becomes a substantially parallel light beam in the optical path in the light receiving unit 50.
  • the light receiving element is not limited to a photodiode as long as it can measure the amount of received light, such as a photomultiplier tube or an avalanche photodiode (APD).
  • a photodiode such as a photomultiplier tube or an avalanche photodiode (APD).
  • the excitation light 40 the light reflected by the metal film 14 (metal film reflected light 40 a) is emitted from the emission surface 12 c of the dielectric member 12.
  • a part of the metal film reflected light 40a is reflected by the emission surface 12c, and this emission surface reflected light 40b depends on the incident angle of the excitation light 40 to the metal film 14, The light travels straight toward the incident surface 12b, and exits from the dielectric member 12 through the incident surface 12b.
  • the exit surface reflected light 40b is configured not to enter the flow path lid member 22 within the measurement scanning angle. Specifically, by configuring as follows, the exit surface reflected light 40b can be prevented from entering the channel lid member 22 within the measurement scanning angle.
  • FIG. 6 is a flowchart for explaining the flow of measurement in the SPFS system of this embodiment.
  • the sensor chip 24 is prepared and attached to the chip loading unit 26 of the SPFS system 10.
  • the sensor chip 24 is replaced and disposable for each specimen of the biochemical test.
  • As a specimen, blood or the like is generally used.
  • the enhancement angle is measured.
  • the emission angle of the excitation light 40 emitted from the light projecting unit 38 is scanned, the plasmon scattered light is detected by the light receiving unit 50, and the enhancement angle is obtained.
  • an excitation light cut filter used in fluorescence measurement described later is retracted from the optical path in the light receiving unit 50.
  • plasmon scattered light having the same wavelength as the excitation light 40 can reach the light receiving element in the light receiving unit 50, and the light amount of the plasmon scattered light can be measured by the light receiving unit 50.
  • an excitation light cut filter is arranged in the optical path of the light receiving unit 50, the excitation light 40 is irradiated from the light projecting unit 38, the light quantity detected by the light receiving unit 50 is measured, and this light quantity is calculated as an optical blank value. Record as (oB). At this time, the angle of the light projecting unit 38 is set so that the emission angle of the excitation light 40 becomes the enhancement angle obtained by the enhancement angle measurement.
  • a fluorescence labeling reaction (secondary reaction) is performed by introducing a fluorescence labeling solution into the flow path 18 and contacting and binding the fluorescence labeled antibody contained in the fluorescence labeling solution to the analyte. This adds a fluorescent label to the analyte. Thereafter, the inside of the flow path 18 is washed to remove excess fluorescently labeled antibody.
  • the angle of the light projecting unit 38 is set so that the emission angle of the excitation light 40 becomes an enhancement angle, and the excitation light 40 is placed in the state where the excitation light cut filter is disposed on the optical path in the light receiving unit 50.
  • the fluorescence signal value (S) detected by the light receiving unit 50 is measured.
  • operations such as movement of the sensor chip 24 and the excitation light cut filter, introduction of the sample liquid into the flow path 18, suction, and washing may be performed manually by the measurer or the SPFS system.
  • 10 may have a drive mechanism and a control mechanism which are automatically performed.
  • the SPFS system 10 may be provided with a recording means for recording the measurement result and an output means for outputting the result.
  • FIG. 7 is a schematic diagram showing an example of the shape of the dielectric member in the SPFS system of the present embodiment.
  • the incident surface 12b and the exit surface 12c are smooth surfaces, and the angle formed between the upper surface 12a adjacent to the metal film 14 of the dielectric member 12 and the incident surface 12b.
  • ⁇ a and the angle ⁇ b formed by the upper surface 12 a adjacent to the metal film 14 of the dielectric member 12 and the emission surface 12 c are the same angle, in the embodiment shown in FIG. 7, ⁇ a and ⁇ The angle is different from b .
  • ⁇ a is smaller than ⁇ b .
  • the metal film reflected light 40a is reflected by the emission surface 12c, then reflected by the upper surface 12a, and emitted from the incident surface 12b.
  • the outgoing surface reflected light 40b reflected by the upper surface 12a does not travel toward the flow path lid member 22, so that the outgoing surface reflected light 40b does not enter the flow path lid member 22 within the measurement scanning angle.
  • ⁇ a is an angle larger than ⁇ b and an obtuse angle.
  • the metal film reflected light 40a is reflected from the emission surface 12c and then emitted from the bottom surface 12d.
  • the exit surface reflected light 40b can be prevented from entering the flow path lid member 22.
  • the output surface 12c may be comprised by the several surface, and in this case, if (theta) a is an angle larger than (theta) b , FIG.7 (b) ), The exit surface reflected light 40b can be prevented from entering the flow path lid member 22.
  • the bottom surface 12d of the dielectric member 12 be a scattering surface or a non-planar surface so that the outgoing surface reflected light 40b does not go from the bottom surface 12d to the incident surface 12b.
  • the outgoing surface reflected light 40b is more horizontal than the horizontal at the incident surface 12b.
  • the light is emitted to the bottom surface side, and the outgoing surface reflected light 40b can be prevented from entering the flow path lid member 22.
  • n 1 is the refractive index of the dielectric member 12
  • n 0 is the refractive index of the incident surface 12 b of the dielectric member 12 on the excitation light incident side
  • is the incident angle of the excitation light 40 to the metal film 14.
  • the incident surface 12b of the dielectric member 12 when the excitation light 40 is incident, a part of the excitation light 40 is reflected on the incident surface 12b. If such incident surface reflected light 40c enters the channel lid member 22, the same problem as the exit surface reflected light 40b as described above occurs, and therefore the incident surface reflected light 40c becomes the channel lid member 22. It is better not to enter.
  • the emission angle ⁇ c of the exit surface reflected light 40b on the entrance surface 12b and the reflection angle ⁇ d of the entrance surface reflected light 40c on the entrance surface 12b are configured to match. It is preferable.
  • FIG. 9 shows that the measurement scanning angle of the excitation light 40 is 60 ° to 72 °
  • 2 shows the relationship between the emission angle ⁇ c and the reflection angle ⁇ d of the incident surface reflected light 40 c .
  • FIG. 10 shows that the measurement scanning angle of the excitation light 40 is 61 ° to 73 °
  • 2 shows the relationship between the emission angle ⁇ c and the reflection angle ⁇ d of the incident surface reflected light 40 c .
  • a cutout portion 22 a may be provided in a part of the flow path lid member 22 in the cross section of the optical path of the excitation light 40.
  • the outgoing surface reflected light 40b emitted from the dielectric member 12 may be reflected on, for example, the wall surface of the SPFS system 10 and cause stray light. For this reason, as shown in FIG. 1, a light shielding member 52 is provided for absorbing the outgoing surface reflected light 40 b emitted from the incident surface 12 b of the dielectric member 12 or reflecting it in a direction that has no influence. Is preferred.
  • FIG. 12 is a schematic view schematically showing another example of the SPFS system which is an aspect of the optical analyte detection system of the present invention. Since the SPFS system 10 of this embodiment has basically the same configuration as that of the SPFS system 10 shown in FIG. 1, the same reference numerals are given to the same components and the detailed description thereof is omitted. .
  • the sensor chip 24 includes a reagent well 42 formed of a material that is transparent to the excitation light 40.
  • the reagent well 42 is a container for storing, for example, a sample liquid or a chemical liquid.
  • the sensor chip 24 is loaded into a sensor chip loading hole 44 provided in the reagent well 42.
  • the sensor chip 24 and the reagent are loaded by loading the sensor chip 24 into the sensor chip loading hole 44 so that the holding region 34 of the flow path lid member 22 and the holding portion 44a of the sensor chip loading hole 44 are in contact with each other.
  • the positional relationship with the well 42 can be kept constant.
  • the positional relationship between the sensor chip 24 and the light projecting unit 38 is fixed by loading the chip loading unit 26 so that the holding region 46 of the reagent well 42 and the chip holding unit 36 of the chip loading unit 26 are in contact with each other. Measurement error can be reduced.
  • the exit surface reflected light 40b is within the measurement scanning angle of the excitation light 40, and the flow path lid member 22 is used.
  • the shape of the dielectric member 12 such as the angles of ⁇ a and ⁇ b can be designed so that the exit surface reflected light 40 b does not enter the reagent well 42.
  • a cutout portion 42 a may be provided in a part of the reagent well 42 in the optical path cross section of the excitation light 40.
  • the present invention has been described above, but the present invention is not limited to this.
  • the SPFS system is taken as an example of one embodiment of the optical specimen detection system.
  • various modifications can be made without departing from the object of the present invention, such as being applicable to other aspects such as an SPR system.
  • the present invention performs specimen detection with high accuracy and speed in a field that requires high accuracy detection, such as a clinical test such as blood test using surface plasmon excitation enhanced fluorescence spectroscopy (SPFS). be able to.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • SPFS system 11 SPFS apparatus 12 Dielectric member 12a Upper surface 12b Incident surface 12c Output surface 12d Bottom surface 14 Metal film 16 Reaction layer 18 Channel 20 Channel formation member 22 Channel lid member 22a Notch 24 Sensor chip 26 Chip loading part 28 Specimen inlet 30 Specimen outlet 32 Liquid reservoir 34 Holding area 36 Chip holding means 38 Projection unit 40 Excitation light 40a Metal film reflected light 40b Emission surface reflected light 40c Incident surface reflected light 42 Reagent well 42a Notch 44 Sensor chip loading Hole 44a Holding portion 46 Holding region 48 Fluorescence 50 Light receiving unit 52 Light shielding member 54 LD (Laser diode) 56 Collimating lens 58 Polarizing plate 60 Short pass filter 62 Aperture 64 APC optical system 66 APC photodiode 68 Beam splitter 100 SPFS system 101 SPFS device 102 Dielectric member 102a Upper surface 102b Incident surface 102c Output surface 104 Metal film 106 Reaction layer 108 Flow

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

[課題]流路蓋部材などの蓋部材に入射する迷光を除去し、受光ユニットの視野範囲に蛍光よりも光量の大きい励起光由来の光が存在しないようにして、高精度に検体を測定することができる光学式検体検出システムを提供する。 [解決手段] 誘電体部材と、誘電体部材の上面に隣接する金属膜と、金属膜の上面に隣接する反応層と、反応層の上面に配置される蓋部材とを備えたセンサーチップと、センサーチップを保持するためのチップ保持手段と、金属膜に誘電体部材を介して励起光を照射する投光ユニットとを備え、金属膜に誘電体部材を介して励起光を照射することで検体の検出を行う光学式検体検出システムであって、励起光の光路断面において、蓋部材の幅が、誘電体部材の幅よりも大きく、励起光が誘電体部材の出射面に反射した後、誘電体部材外に出射する出射面反射光が、励起光の測定走査角度内において、蓋部材に入射しないように構成する。

Description

光学式検体検出システム
 本発明は、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象を応用した表面プラズモン共鳴装置や、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づいた表面プラズモン励起増強蛍光測定装置などを用いてセンサーチップ内に含まれる測定対象物質の検出を行う光学式検体検出システムに関する。
 従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出装置が用いられている。
 このような検体検出装置の一つとして、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン現象(SPR:Surface Plasmon Resonance))を応用し、例えば、生体内の極微少なアナライトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」と言う)が挙げられる。
 また、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高精度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」と言う)も、このような検体検出装置の一つである。
 この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属膜表面で全反射減衰(ATR:Attenuated Total Reflectance)する条件において、金属膜表面に表面プラズモン光(疎密波)を発生させることによって、光源より照射した励起光が有するフォトン量を数十倍~数百倍に増やして、表面プラズモン光の電場増強効果を得るようになっている。
 図13は、従来のSPFSシステムの構成を説明するための概略構成図である。
 従来のSPFSシステム100は、鉛直断面形状が略台形であるプリズム形状の誘電体部材102と、この誘電体部材102の水平な上面102aに形成された金属膜104と、金属膜104の上面に形成された反応層106と、反応層106を囲繞するように流路108を形成する流路形成部材110及び流路蓋部材112とからなるセンサーチップ114を備えており、このセンサーチップ114は、SPFS装置101のセンサーチップ装填部116に装填されている。
 センサーチップ114の反応層106は、蛍光物質で標識されたアナライトを捕捉するための固相膜を有しており、アナライトを含む検体液を流路108に送液することにより、アナライトを金属膜104上に固定することができる。
 また、センサーチップ114の上方には、金属膜104上に発生した表面プラズモン光(疎密波)により励起された蛍光物質により発光される蛍光118の強度を測定するため、SPFS装置101の受光ユニット120が配置されている。
 また、誘電体部材102の下方の一方の側面(入射面102b)側には、図13に示すように、SPFS装置101の光源122が配置されており、この光源122から照射される励起光124が、誘電体部材102の外側下方から、誘電体部材102の入射面102bに入射し、誘電体部材102を介して、誘電体部材102の上面102aに形成された金属膜104に照射される。
 このように構成された従来のSPFSシステム100では、光源122から金属膜104に向かって励起光124を照射することにより、金属膜104表面に表面プラズモン光(疎密波)が発生し、この表面プラズモン光(疎密波)によって、アナライトを標識する蛍光物質が励起され、蛍光118が発光する。この蛍光118を受光ユニット120によって検出し、蛍光118の光量に基づき、アナライトの量を算出している。
 このようなSPFS測定では、蛍光118の光量は、励起光量に対して10桁程度低いため、受光ユニット120に励起光124が僅かでも入射するとS/Nが悪化し、検出精度が劣化してしまうため、迷光を低減することが重要となる。
 励起光124は、図13に示すように、誘電体部材102の入射面102bから入射した後、金属膜104で反射し、誘電体部材102の出射面102cから出射するようになっている。
 しかしながら、図13に示すように、誘電体部材102の出射面102cにおいて、励起光124の一部が反射し、誘電体部材102の入射面102bから出射する出射面反射光124bが存在する。
 この出射面反射光124bが、図13に示すように、流路蓋部材112に入射すると、流路蓋部材112内を導光する光となり、受光ユニット120の視野範囲に出射面反射光124bが存在すると、流路蓋部材112内の自家蛍光を検出してしまい、S/Nの悪化に繋がる。
 なお、出射面反射光124bは、通常、励起光124の4%程度の光量があり、蛍光118に対して十分大きな光量であるため、除去すべき迷光と言える。
 このような迷光を除去するために、特許文献1では、図14に示すように、金属膜104で反射した金属膜反射光を吸収する光吸収部126を誘電体部材102の光路中に設けている。
 また、特許文献2では、図15に示すように、センサーチップ114内部の散乱光や反射光を除去するための励起光カットフィルタ(波長フィルタ)128をセンサーチップ114の上面に設けることで励起光124をカットしている。
特開2014-167479号公報 特開2012-202911号公報
 しかしながら、特許文献1のような構成では、光吸収部126において金属膜反射光が100%吸収されるわけではなく、光吸収部126において微小な反射光が存在してしまい、このような反射光の迷光を完全に除去することは出来なかった。
 また、図13に示すような構成では、誘電体部材外に出射した出射面反射光などをカットすることはできず、やはり迷光が発生してしまっていた。
 さらに、特許文献1のように、流路蓋部材112の幅が、誘電体部材102の幅よりも大きい場合には、上述したように、発生した迷光が流路蓋部材112に入射することで、測定精度に大きな影響を及ぼしていた。
 本発明では、このような現状に鑑み、流路蓋部材などの蓋部材に入射する迷光を除去し、受光ユニットの視野範囲に蛍光よりも光量の大きい励起光由来の光が存在しないようにして、高精度に検体を測定することができる光学式検体検出システムを提供することを目的とする。
 本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学式検体検出システムは、誘電体部材と、
 前記誘電体部材の上面に隣接する金属膜と、
 前記金属膜の上面に隣接する反応層と、
 前記反応層の上面に配置される蓋部材と、を備えたセンサーチップと、
 前記センサーチップを保持するためのチップ保持手段と、
 前記金属膜に前記誘電体部材を介して励起光を照射する投光ユニットと、を備え、前記金属膜に前記誘電体部材を介して前記励起光を照射することで検体の検出を行う光学式検体検出システムであって、
 前記励起光の光路断面において、前記蓋部材の幅が、前記誘電体部材の幅よりも大きく、
 前記励起光が前記誘電体部材の出射面に反射した後、前記誘電体部材外に出射する出射面反射光が、前記励起光の測定走査角度内において、前記蓋部材に入射しないように構成される。
 本発明によれば、蛍光に比べて光量の大きい励起光に由来する出射面反射光が蓋部材に入射しないように設計されているため、蓋部材内に出射面反射光が導光されず、大幅にS/Nを向上させることができ、高精度に検体を測定することができる。
図1は、本発明の光学式検体検出システムの一態様であるSPFSシステムの概略を模式的に示す概略図である。 図2は、図1のSPFSシステムの一部を底面側から見た概略底面図である。 図3は、センサーチップの一例を示す概略断面図である。 図4は、センサーチップの別の一例を示す概略断面図である。 図5は、本実施例のSPFSシステムにおける投光ユニットの光学構成の一例を示す模式図である。 図6は、本実施例のSPFSシステムにおける測定の流れを説明するフローチャートである。 図7は、本実施例のSPFSシステムにおける誘電体部材の形状の一例を示す模式図である。 図8は、励起光の入射角度と、出射面反射光の出射角度との関係を示すグラフである。 図9は、励起光の測定走査角度を60°から72°とした場合における励起光の入射角度と、出射面反射光の入射面における出射角度及び入射面反射光の反射角度との関係を示すグラフである。 図10は、励起光の測定走査角度を61°から73°とした場合における励起光の入射角度と、出射面反射光の入射面における出射角度及び入射面反射光の反射角度との関係を示すグラフである。 図11は、センサーチップのさらに別の一例を示す概略底面図である。 図12は、本発明の光学式検体検出システムの一態様であるSPFSシステムの別の一例を模式的に示す概略図である。 図13は、従来のSPFSシステムの構成を説明するための概略図である。 図14は、特許文献1に開示されたセンサーチップの構成を説明するための概略図である。 図15は、特許文献2に開示されたSPFSシステムの構成を説明するための概略図である。
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本発明の光学式検体検出システムの一態様であるSPFSシステムの概略を模式的に示す概略図、図2は、図1のSPFSシステムの一部を底面側から見た概略図である。
 なお、本明細書では、図1の状態において、「上」、「下」の方向を規定する。
 この実施例のSPFSシステム10は、鉛直断面形状が略台形であるプリズム形状の誘電体部材12と、この誘電体部材12の水平な上面12aに形成された金属膜14と、金属膜14の上面に形成された反応層16と、反応層16を囲繞するように流路18を形成する流路形成部材20及び流路蓋部材22とからなるセンサーチップ24を備えており、このセンサーチップ24は、SPFS装置11のチップ装填部26に装填されている。
 センサーチップ24の反応層16は、蛍光物質で標識されたアナライトを細くするための固相膜を有しており、アナライトを含む検体液を流路18に送液することにより、アナライトを金属膜14上に固定することができる。
 固相膜は、アナライトを捕捉するためのリガンドが固定化されたものであって、例えば、SAM(Self-Assembled Monolayer:自己組織化単分子膜)及びSAM上に形成された固相化層によって構成することができる。
 なお、固相化層としては、例えば、グルコース,カルボキシメチル化グルコース,ならびにビニルエステル類,アクリル酸エステル類,メタクリル酸エステル類,オレフィン類,スチレン類,クロトン酸エステル類,イタコン酸ジエステル類,マレイン酸ジエステル類,フマル酸ジエステル類,アリル化合物類,ビニルエーテル類およびビニルケトン類それぞれに包含される単量体からなる群より選択される少なくとも1種の単量体から構成される高分子を含むことが好ましく、デキストランおよびデキストラン誘導体などの親水性高分子ならびにビニルエステル類,アクリル酸エステル類,メタクリル酸エステル類,オレフィン類,スチレン類,クロトン酸エステル類,イタコン酸ジエステル類,マレイン酸ジエステル類,フマル酸ジエステル類,アリル化合物類,ビニルエーテル類およびビニルケトン類それぞれに包含される疎水性単量体から構成される疎水性高分子を含むことがより好ましく、カルボキシメチルデキストラン(CMD)などのデキストランが生体親和性、非特異的な吸着反応の抑制性、高い親水性の観点から特に好適である。
 また、誘電体部材12としては、少なくとも励起光40に対して光学的に透明な材料であれば、特に限定されるものではないが、安価で取り扱い性に優れるセンサーチップとする上で、射出成型による樹脂材料から形成されている。
 誘電体部材12を形成する樹脂材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。
 また、金属膜14としては、特に限定されるものではないが、好ましくは、金、銀、アルミニウム、銅、および白金からなる群から選ばれる少なくとも1種の金属からなり、より好ましくは、金からなり、さらに、これら金属の合金から構成してもよい。
 すなわち、このような金属は、酸化に対して安定であり、かつ、後述するような表面プラズモン光(疎密波)による電場増強効果が大きくなるため、金属膜14として好適である。
 また、金属膜14の形成方法としては、特に限定されるものではなく、例えば、スパッタリング法、蒸着法(抵抗加熱蒸着法、電子線蒸着法など)、電解メッキ法、無電解メッキ法などが挙げられる。好ましくは、スパッタリング法、蒸着法を使用するのが、薄膜形成条件の調整が容易である点で望ましい。
 さらに、金属膜14の厚さとしては、特に限定されるものではないが、好ましくは、5nm~500nmの範囲内であることが望ましい。なお、電場増強効果の観点からは、より好ましくは、金:20nm~70nm、銀:20nm~70nm、アルミニウム:10~50nm、銅:20~70nm、白金:20~70nm、および、これらの合金:10~70nmの範囲内であることが望ましい。
 金属膜14の厚さが上記範囲内であれば、表面プラズモン光(疎密波)が発生しやすく好適である。また、このような厚さを有する金属膜14であれば、形状は、特に限定されない。
 また、流路形成部材20としては、例えば、所定幅、所定長さの流路溝が打ち抜かれたアクリル系粘着シートなどを用いることができる。このようなアクリル系粘着シートの厚さとしては、特に限定されるものではないが、0.1mm程度であることが好ましい。
 また、流路蓋部材22としては、励起光40や蛍光48に対して透光性を有する素材であれば、特に限定されるものではないが、上述する誘電体部材12と同様な樹脂材料を用いることができる。
 なお、流路蓋部材22には、アナライトを含む検体液を流路18の送液するための検体流入口28及び検体排出口30を備えている。この検体流入口28と検体排出口30とを、例えば、ポンプなどの循環送液手段によって接続することで、検体液を一方向に循環送液することができる。
 また、図3に示すように、検体排出口30に液溜部32を設け、例えば、ピペットなどを用いて検体液を検体流入口28に注入するとともに、ピペットによって検体液の吸引・注入を繰り返すことで、ピペット、流路18、液溜部32において、検体液を往復移動させることができ、固相膜に固定化されたリガンドに、迅速かつ効率良く検体液中のアナライトが捕捉されることになる。特に、固相膜に対して検体液を往復移動させることによって、少量の検体液であっても、アナライトと固相膜との反応効率が高くなり、アナライトの検出精度を向上させることができる。
 なお、本実施例では、流路18に反応層16を設け、検体液を流路18に送液する構成で説明しているが、例えば、図4に示すように、ウェル部19に反応層16を設け、検体液をこのウェル部19に滞留させるようにしてもよい。この場合、蓋部材としては、流路蓋部材22の代わりに、ウェル蓋部材23が用いられる。
 また、本実施例では、励起光40の光路断面において、流路蓋部材22の幅が、誘電体部材12の幅よりも大きく設計されている。このように構成することによって、流路蓋部材22に保持領域34を設けることができ、センサーチップ24は、この保持領域34とチップ装填部26のチップ保持手段36とが接触するように、チップ装填部26に装填することができる。
 このように装填することにより、センサーチップ24の交換を行った場合にも、センサーチップ24と後述する投光ユニットとの位置関係を一定に保つことができ、測定誤差を少なくすることができる。
 なお、本明細書において「光路断面」とは、投光ユニット38から金属膜14に向かって励起光40を照射した場合に、励起光40の光路(後述する金属膜反射光40a、出射面反射光40cの光路を含む)を含む面と一致する断面を意味している。
 センサーチップ24の下方の一方の側面側には、図1に示すように、励起光40を照射するSPFS装置11の投光ユニット38が設けられている。
 投光ユニット38は、例えば、LD(Laser Diode:レーザーダイオード)やLED(Light Emitting Diode:発光ダイオード)、HID(High Intensity Discharge)ランプ(高輝度放電ランプ)などからなる光源と、光源から照射された光を平行光束とするコリメートレンズなどを含んで構成される。
 図5は、本実施例のSPFSシステム10における投光ユニット38の光学構成の一例を示す模式図である。
 図5に示すように、投光ユニット38の光学系は、光源であるLD(レーザーダイオード)54と、LD54から出射した光をコリメートするためのコリメートレンズ56と、センサーチップ24の金属膜14へ照射する励起光40をP偏光とするための偏光板58と、LD54の散乱光や迷光が受光ユニット50により検出されないように一部の波長の光をカットするためのショートパスフィルター60と、金属膜14への照射スポットサイズを規制するためのアパーチャー62とを備えている。
 このような投光ユニット38から出射する励起光40は略平行光となっている。なお、LD54の出射波長は、少なくとも金属膜14上で表面プラズモンを発生させる波長を含んでいる。
 ここで、LD54に定電流を流していたとしても、測定環境温度等によりLD54の出射光量が変化するため、被検体の量に相関する光量として絶対光量を計測する必要がある光学式検体検出システムにおいては、正確な測定ができなくなる。
 このため、本実施例のSPFSシステム10では、投光ユニット38の出射光量を一定に保つためにAPC(Auto Power Control)用光学系64が投光ユニット38内に設けられている。具体的には、APC用フォトダイオード66と、アパーチャー62から出射した励起光40の一部をAPC用フォトダイオード66へ反射させ、残りの光を金属膜14へ出射させるビームスプリッタ68とを備えてなる光学系である。
 ビームスプリッタ68で反射した光の光量をAPC用フォトダイオード66で検出し、検出した光量に応じて、LD54の投入電流値にフィードバックをかけて、APC用フォトダイオード66の検出光量が一定となるよう、すなわち、投光ユニット38の出射光量が一定となるように図示しない制御部により制御している。
 さらに、ビームスプリッタ68は、例えば、屈折率1.6以上の高屈折率材料で形成することが望ましく、また、ビームスプリッタ68への励起光40の入射角度は小さい方が望ましく、例えば、40°以下であることが望ましい。
 このように構成することにより、投光ユニット38内のLD54やコリメートレンズ56などの光学素子が、環境変化や経時変化によって偏芯することで、ビームスプリッタ68への励起光40の入射角度が変化したとしても、ビームスプリッタ68の反射/透過の分岐比率の変動量を小さく抑えられるため、投光ユニット38の出射光量を安定させることができる。
 この投光ユニット38は、励起光40の金属膜14への入射角度を、所定の測定走査角度の範囲で変更可能なように、照射角度可変機構(図示せず)を備えている。
 ここで、測定走査角度とは、投光ユニット38から励起光40を出射し、受光ユニット50で蛍光48またはプラズモン散乱光などの散乱光、もしくは蛍光48と散乱光の両方を計測している間に、投光ユニット38を走査し出射する励起光40の出射角度(角度のゼロ基準は、金属膜14平面の垂線)を言う。
 ここで、プラズモン散乱光とは、金属膜14上で発生する表面プラズモン自体が散乱する光であり、その波長は励起光40の波長に等しい。なお、励起光40の出射角度を走査した場合に、プラズモン散乱光の光量が最大となる角度が増強角度であり、この増強角度の近傍の角度において、表面プラズモンによる強い蛍光強度が得られる。
 増強角度は、センサーチップ24における誘電体部材12の形状や屈折率、金属膜14の材料や膜厚、流路18内の流体屈折率などに依存するため、センサーチップ24の製造時の誤差を考慮すると、測定ごとに最適な増強角度を求めることが望ましい。
 投光ユニット38から、誘電体部材12の入射面12bに向けて励起光40が照射され、誘電体部材12の上面に隣接する金属膜14に入射する。これにより、金属膜14上に発生した表面プラズモン光(疎密波)により励起された蛍光物質により発光される蛍光48を、センサーチップ24の上方に設けられた受光ユニット50により検出する。
 受光ユニット50の光学系としては、例えば、表面プラズモンにより発生した散乱光(プラズモン散乱光)や蛍光48を受光するための受光素子であるフォトダイオードと、フォトダイオードへ集光するためのレンズと、励起光40の波長の光をカットするための励起光カットフィルタとを備えてなる。
 励起光カットフィルタは、蛍光48を測定する場合には、受光ユニット50内の光路上に設置してあり、プラズモン散乱光を測定する場合には、例えば、励起光カットフィルタ駆動機構を用いて、受光ユニット50内の光路上から少なくとも一部分を待避して、プラズモン散乱光がフォトダイオードへ入射できるように構成されている。
 励起光カットフィルタは、例えば、誘電体多層膜からなるバンドパスフィルタであり、受光ユニット50内における光路のうち、蛍光48が略平行光束となる位置に設置されている。
 また、受光素子としては、例えば、光電子倍増管やアバランシェ・フォトダイオード(APD)など受光光量を測定できるものであればフォトダイオードに限らない。
 一方で、励起光40のうち、金属膜14において反射した光(金属膜反射光40a)は、誘電体部材12の出射面12cより出射する。
 また、図1に示すように、金属膜反射光40aの一部は、出射面12cにおいて反射し、この出射面反射光40bは、励起光40の金属膜14への入射角度にもよるが、入射面12bに向けて直進し、入射面12bより誘電体部材12外へ出射する。
 本実施例のSPFSシステム10では、この出射面反射光40bが、測定走査角度内において、流路蓋部材22に入射しないように構成されている。
 具体的には、以下のように構成することによって、出射面反射光40bが、測定走査角度内において、流路蓋部材22に入射しないようにできる。
 以下に、本実施例のSPFSシステム10における測定の流れの一例を示す。
 図6は、本実施例のSPFSシステムにおける測定の流れを説明するフローチャートである。
 (S101)センサーチップ24が準備され、SPFSシステム10のチップ装填部26に取り付けられる。センサーチップ24は、生化学検査の1検体ごとに交換され使い捨てされる。検体は一般的には血液などが使用される。
 (S102)次に、センサーチップ24の流路18内の洗浄を行う。センサーチップ24の流路18内には、固相膜においてアナライトを捕捉する感度を保つために保湿剤が塗布されている。流路18内に洗浄液を導入することで、この保湿剤を洗浄する。また、洗浄により、固相膜周辺の汚染物も除去される。
 (S103)次に、アナライトが混在している検体液を流路18内に導入し、抗原抗体反応(1次反応)によって、流路18中の固相膜にアナライトが捕捉される。捕捉後、余剰な検体液は流路18内から吸引することで除去される。また、必要に応じて適当な洗浄液で流路18内の残留物を除去する。
 (S104)次に、増強角測定を行う。増強角測定では、投光ユニット38から出射する励起光40の出射角度を走査し、受光ユニット50によってプラズモン散乱光を検出し、増強角度を求める。このとき、受光ユニット50における光路から、後述する蛍光測定で用いる励起光カットフィルタは待避させておく。これにより、励起光40と同じ波長であるプラズモン散乱光が受光ユニット50内の受光素子まで到達でき、受光ユニット50でプラズモン散乱光の光量を測定することが可能となる。
 (S105)次に、受光ユニット50における光路内に励起光カットフィルタを配置させ、投光ユニット38から励起光40を照射し、受光ユニット50で検出した光量を計測し、この光量を光学ブランク値(oB)として記録する。このとき、励起光40の出射角度は、増強角測定で求めた増強角度となるように、投光ユニット38の角度を設定する。
 (S106)次に、流路18内に蛍光標識液を導入し、蛍光標識液に含まれる蛍光標識抗体をアナライトに接触、結合させて蛍光標識化反応(2次反応)を行う。これにより、蛍光標識がアナライトに付加される。その後、余剰な蛍光標識抗体を除去するために流路18内を洗浄する。
 (S107)次に、励起光40の出射角度を増強角度となるように投光ユニット38の角度を設定し、受光ユニット50内における光路上に励起光カットフィルタを配置した状態で、励起光40を照射し、受光ユニット50で検出した蛍光シグナル値(S)を計測する。
 さらに、蛍光シグナル値(S)から、光学ブランク値測定S105で得られた光学ブランク値(oB)を引いた値を算出する。これにより、アナライトの量に相関する蛍光強度(ΔS)が求まる。
 (S108)最後に、センサーチップ24をSPFSシステム10から取り外し、測定が終了する。
 以上の過程において、センサーチップ24や励起光カットフィルタなどの移動や、流路18内への検体液の導入や吸引、洗浄などの作業は、測定者が手動で行ってもよいし、SPFSシステム10内において自動で行う駆動機構や制御機構を有してもよい。また、測定結果を記録する記録手段や結果を出力する出力手段をSPFSシステム10に設けてもよい。
 図7は、本実施例のSPFSシステムにおける誘電体部材の形状の一例を示す模式図である。
 図1に示す実施例では、誘電体部材12において、入射面12bと出射面12cがそれぞれ平滑面であり、誘電体部材12の金属膜14に隣接する上面12aと、入射面12bとがなす角度θaと、誘電体部材12の金属膜14に隣接する上面12aと、出射面12cとがなす角度θbとが同じ角度になっているが、図7に示す実施例では、θaとθbとが異なる角度となっている。
 図7(a)の例では、θaがθbよりも小さい角度となっている。この場合、金属膜反射光40aは、出射面12cで反射した後、上面12aで反射し、入射面12bから出射する。このように、上面12aで反射した出射面反射光40bは、流路蓋部材22側に向かうことはないため、測定走査角度内において、出射面反射光40bを流路蓋部材22に入射しないようにできる。
 図7(b)の例では、θaがθbよりも大きい角度であり鈍角となっている。この場合、金属膜反射光40aは、出射面12cで反射した後、底面12dから出射する。このように、誘電体部材12の底面12dから出射面反射光40bを出射させることにより、出射面反射光40bが流路蓋部材22に入射しないようにすることができる。
 なお、図7(c)に示すように、出射面12cを複数の面で構成していてもよく、この場合も、θaがθbよりも大きい角度となっていれば、図7(b)と同様に、出射面反射光40bが流路蓋部材22に入射しないようにすることができる。
 このように、θaをθbよりも大きい角度にすることによって、図6に示すように、入射面12bに向かう出射面反射光40bは、底面12d寄りとなるため、センサーチップ24を構成しやすくなる。
 なお、図8(a)は、θa=80°,θb=82°の場合、図8(b)は、θa=80°,θb=80°の場合、図8(c)は、θa=80°,θb=78°の場合の励起光40の入射角度と出射面反射光40bの入射面12bにおける出射角度θcとの関係を示している。
 なお、出射面反射光40bの底面12dへの入射角によっては、一部の光が入射面12bに向かい、流路蓋部材22に入射してしまうことがある。このため、誘電体部材12の底面12dを散乱面や非平面とすることで底面12dから入射面12bに出射面反射光40bが向かわないようにすることが好ましい。
 また、励起光40の測定走査角度内の少なくとも一部の角度において、下記式(1)を満たすように誘電体部材12を形成することで、入射面12bにおいて出射面反射光40bが水平よりも底面側に出射することになり、出射面反射光40bが流路蓋部材22に入射しないようにすることができる。
Figure JPOXMLDOC01-appb-M000002
 但し、n1は誘電体部材12の屈折率、n0は誘電体部材12の入射面12bにおける励起光入射側の屈折率、θは励起光40の金属膜14への入射角度である。
 なお、誘電体部材12の入射面12bにおいては、励起光40の入射時に、励起光40の一部が入射面12bに反射してしまう。このような入射面反射光40cが、流路蓋部材22に入射してしまうと、上述するような出射面反射光40bと同様な問題が生じるため、入射面反射光40cが流路蓋部材22に入射しないようした方がよい。
 また、励起光40の測定走査角度内において、入射面12bにおける出射面反射光40bの出射角度θcと、入射面12bにおける入射面反射光40cの反射角度θdとが一致するように構成することが好ましい。
 このように構成することによって、図9,10に示すように、励起光40の測定走査角度内において、出射面反射光40bの出射角度θcの範囲と、入射面反射光40cの反射角度θdの範囲とが重複するため、出射面反射光40b及び入射面反射光40cが通過する光の存在範囲が狭くなり、センサーチップ24を、出射面反射光40b及び入射面反射光40cが流路蓋部材22に入射しないように構成しやすくなる。
 なお、図9は、励起光40の測定走査角度を60°から72°とし、図9(a)は、θa=80°,θb=82°の場合、図9(b)は、θa=80°,θb=80°の場合、図9(c)は、θa=80°,θb=78°の場合の励起光40の入射角度と、出射面反射光40bの入射面における出射角度θc及び入射面反射光40cの反射角度θdとの関係を示している。
 また、図10は、励起光40の測定走査角度を61°から73°とし、図10(a)は、θa=80°,θb=82°の場合、図10(b)は、θa=80°,θb=80°の場合、図10(c)は、θa=80°,θb=78°の場合の励起光40の入射角度と、出射面反射光40bの入射面における出射角度θc及び入射面反射光40cの反射角度θdとの関係を示している。
 また、図11に示すように、励起光40の光路断面において、流路蓋部材22の一部に切欠部22aを設けることもできる。
 このように切欠部22aを設けることによって、流路蓋部材22に保持領域34を設けることができるとともに、出射面反射光40bが流路蓋部材22に入射することがない。
 なお、誘電体部材12から出射した出射面反射光40bは、例えば、SPFSシステム10の壁面などに反射して、これが迷光の原因となってしまうことがある。このため、図1に示すように、誘電体部材12の入射面12bから出射した出射面反射光40bを吸光したり、もしくは、影響のない方向へ反射させたりするための遮光部材52を設けることが好ましい。
 図12は、本発明の光学式検体検出システムの一態様であるSPFSシステムの別の一例を模式的に示す概略図である。
 この実施例のSPFSシステム10は、基本的には、図1に示すSPFSシステム10と同様な構成であるため、同一の構成部材には同一の符号を付して、その詳細な説明を省略する。
 本実施例では、センサーチップ24が、励起光40に対して透光性を有する素材により形成された試薬ウェル42を備えている。
 試薬ウェル42は、例えば、検体液や薬液などが収容される容器である。センサーチップ24は、試薬ウェル42に設けられたセンサーチップ装填孔44に装填される。
 この時、流路蓋部材22の保持領域34と、センサーチップ装填孔44の保持部44aとが接触するように、センサーチップ24をセンサーチップ装填孔44に装填することによって、センサーチップ24と試薬ウェル42との位置関係を一定に保つことができる。
 さらに、試薬ウェル42の保持領域46とチップ装填部26のチップ保持手段36とが接触するように、チップ装填部26に装填することによって、センサーチップ24と投光ユニット38との位置関係を一定に保つことができ、測定誤差を少なくすることができる。
 このように励起光40に対して透光性を有する素材により形成された試薬ウェル42を備える場合には、出射面反射光40bが、励起光40の測定走査角度内において、流路蓋部材22のみならず、試薬ウェル42にも入射しないように構成することが好ましい。
 具体的には、上述するように、θa及びθbの角度など誘電体部材12の形状を、出射面反射光40bが試薬ウェル42に入射しないように設計することで対応可能である。
 また、図12に示すように、励起光40の光路断面において、試薬ウェル42の一部に切欠部42aを設けることもできる。
 このように切欠部42aを設けることによって、試薬ウェル42に保持領域46を設けることができるとともに、出射面反射光40bが試薬ウェル42に入射することがない。
 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、例えば、上記実施例では、光学式検体検出システムの一態様としてSPFSシステムを例に挙げて説明したが、他の態様として例えば、SPRシステムなどにも適用可能であるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。
 本発明は、例えば、表面プラズモン励起増強蛍光分光法(SPFS)を用いた、血液検査などの臨床試験のような、高精度の検出が要求される分野において、検体検出を高精度かつ迅速に行うことができる。
10   SPFSシステム
11   SPFS装置
12   誘電体部材
12a  上面
12b  入射面
12c  出射面
12d  底面
14   金属膜
16   反応層
18   流路
20   流路形成部材
22   流路蓋部材
22a  切欠部
24   センサーチップ
26   チップ装填部
28   検体流入口
30   検体排出口
32   液溜部
34   保持領域
36   チップ保持手段
38   投光ユニット
40   励起光
40a  金属膜反射光
40b  出射面反射光
40c  入射面反射光
42   試薬ウェル
42a  切欠部
44   センサーチップ装填孔
44a  保持部
46   保持領域
48   蛍光
50   受光ユニット
52   遮光部材
54   LD(レーザーダイオード)
56   コリメートレンズ
58   偏光板
60   ショートパスフィルター
62   アパーチャー
64   APC用光学系
66   APC用フォトダイオード
68   ビームスプリッタ
100  SPFSシステム
101  SPFS装置
102  誘電体部材
102a 上面
102b 入射面
102c 出射面
104  金属膜
106  反応層
108  流路
110  流路形成部材
112  流路蓋部材
114  センサーチップ
116  センサーチップ装填部
118  蛍光
120  受光ユニット
122  光源
124  励起光
124b 出射面反射光
126  光吸収部
128  励起光カットフィルタ

Claims (16)

  1.  誘電体部材と、
     前記誘電体部材の上面に隣接する金属膜と、
     前記金属膜の上面に隣接する反応層と、
     前記反応層の上面に配置される蓋部材と、を備えたセンサーチップと、
     前記センサーチップを保持するためのチップ保持手段を有するチップ装填部と、
     前記金属膜に前記誘電体部材を介して励起光を照射する投光ユニットと、を備え、前記金属膜に前記誘電体部材を介して前記励起光を照射することで検体の検出を行う光学式検体検出システムであって、
     前記励起光の光路断面において、前記蓋部材の幅が、前記誘電体部材の幅よりも大きく、
     前記励起光が前記誘電体部材の出射面に反射した後、前記誘電体部材外に出射する出射面反射光が、前記励起光の測定走査角度内において、前記蓋部材に入射しないように構成されている光学式検体検出システム。
  2.  前記誘電体部材の入射面と出射面が、それぞれ平滑面であり、
     前記誘電体部材の前記金属膜に隣接する面と前記入射面とがなす角度θaと、
     前記誘電体部材の前記金属膜に隣接する面と前記出射面とがなす角度θbと、が異なる請求項1に記載の光学式検体検出システム。
  3.  前記誘電体部材の前記金属膜に隣接する面と前記出射面とがなす角度θbが、前記誘電体部材の前記金属膜に隣接する面と前記入射面とがなす角度θaよりも大きい請求項2に記載の光学式検体検出システム。
  4.  前記誘電体部材の入射面と出射面が、それぞれ平滑面であり、
     前記励起光の測定走査角度内の少なくとも一部の角度において、前記誘電体部材の前記金属膜に隣接する面と前記入射面とがなす角度θa、前記誘電体部材の前記金属膜に隣接する面と前記出射面とがなす角度θb、前記誘電体部材の屈折率n1が、下記式を満たす請求項1から3のいずれかに記載の光学式検体検出システム。
    Figure JPOXMLDOC01-appb-M000001
     ここで、θは前記励起光の前記金属膜への入射角度、n0は前記誘電体部材の前記入射面における励起光入射側の屈折率である。
  5.  前記励起光の測定走査角度内において、前記入射面における前記出射面反射光の出射角度と、前記入射面における前記励起光の反射角度とが一致する請求項1から4のいずれかに記載の光学式検体検出システム。
  6.  前記出射面反射光が、前記出射面から前記入射面に向けて直進し、前記誘電体部材外へ出射するように構成されている請求項1から5のいずれかに記載の光学式検体検出システム。
  7.  前記蓋部材の保持領域と、前記チップ保持手段とが接することで、前記センサーチップと前記投光ユニットとの位置決めがなされる請求項1から6のいずれかに記載の光学式検体検出システム。
  8.  前記センサーチップが、試薬ウェルをさらに備える請求項1から7のいずれかに記載の光学式検体検出システム。
  9.  前記試薬ウェルが、前記励起光に対して透光性を有する素材により形成されており、
     前記出射面反射光が、前記励起光の測定走査角度内において、前記試薬ウェルに入射しないように構成されている請求項8に記載の光学式検体検出システム。
  10.  前記試薬ウェルの保持領域と、前記チップ保持手段とが接することで、前記センサーチップと前記投光ユニットとの位置決めがなされる請求項8または9に記載の光学式検体検出システム。
  11.  前記励起光の光路断面において、前記試薬ウェルの一部に切欠部を有する請求項8から10のいずれかに記載の光学式検体検出システム。
  12.  前記励起光の光路断面において、前記蓋部材の一部に切欠部を有する請求項1から11のいずれかに記載の光学式検体検出システム。
  13.  前記誘電体部材の底面が散乱面である請求項1から12のいずれかに記載の光学式検体検出システム。
  14.  前記誘電体部材の底面が非平面である請求項1から13のいずれかに記載の光学式検体検出システム。
  15.  前記出射面反射光の光量が、前記励起光の光量の2%よりも大きい請求項1から14のいずれかに記載の光学式検体検出システム。
  16.  前記光学式検体検出システムが、遮光部材をさらに備え、
     前記入射面から出射した前記出射面反射光が、前記遮光部材に照射されるように構成されている請求項1から15のいずれかに記載の光学式検体検出システム。
PCT/JP2016/081592 2015-11-11 2016-10-25 光学式検体検出システム WO2017082043A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22192526.6A EP4191235A1 (en) 2015-11-11 2016-10-25 Optical sample detection system
JP2017550049A JP6766820B2 (ja) 2015-11-11 2016-10-25 光学式検体検出システム
US15/773,910 US10648914B2 (en) 2015-11-11 2016-10-25 Optical sample detection system
EP16864007.6A EP3376208A4 (en) 2015-11-11 2016-10-25 OPTICAL SAMPLE DETECTION SYSTEM
EP22195116.3A EP4137799A1 (en) 2015-11-11 2016-10-25 Optical sample detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-221070 2015-11-11
JP2015221070 2015-11-11

Publications (1)

Publication Number Publication Date
WO2017082043A1 true WO2017082043A1 (ja) 2017-05-18

Family

ID=58695356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081592 WO2017082043A1 (ja) 2015-11-11 2016-10-25 光学式検体検出システム

Country Status (4)

Country Link
US (1) US10648914B2 (ja)
EP (3) EP4191235A1 (ja)
JP (1) JP6766820B2 (ja)
WO (1) WO2017082043A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020204540A (ja) * 2019-06-18 2020-12-24 矢崎総業株式会社 金属の腐食検出装置及び腐食検出方法
US11630071B2 (en) 2017-09-26 2023-04-18 Otsuka Pharmaceutical Co., Ltd. Analysis method and analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565074A (en) * 2017-07-31 2019-02-06 Univ Bristol Method and apparatus for bacterial analysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095927A1 (ja) * 2004-03-31 2005-10-13 Omron Corporation 局在プラズモン共鳴センサ及び検査装置
JP2006308511A (ja) * 2005-05-02 2006-11-09 Canon Inc 化学分析装置及びその分析方法
JP2014032148A (ja) * 2012-08-06 2014-02-20 Arkray Inc 表面プラズモン励起増強蛍光取得構造体および表面プラズモン励起増強蛍光測定システム
JP2014167479A (ja) * 2014-04-14 2014-09-11 Konica Minolta Inc 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992770B2 (en) * 2001-01-25 2006-01-31 Fuji Photo Film Co., Ltd. Sensor utilizing attenuated total reflection
JP4341810B2 (ja) 2001-03-14 2009-10-14 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 内部全反射分光法のための装置及び方法
JP2008102117A (ja) * 2006-09-21 2008-05-01 Fujifilm Corp 表面プラズモン増強蛍光センサおよび蛍光検出方法
JP2009204486A (ja) 2008-02-28 2009-09-10 Fujifilm Corp センシング装置及び物質検出方法
JP5450993B2 (ja) 2008-07-14 2014-03-26 富士フイルム株式会社 検出方法、検出用試料セルおよび検出用キット
JP2010139332A (ja) 2008-12-10 2010-06-24 Beckman Coulter Inc 自動分析装置
KR101067348B1 (ko) 2009-03-04 2011-09-23 한국과학기술원 편광각 투과 유도 프리즘 및 이를 이용한 신호 대 잡음비 향상을 위한 형광검출장치
US8163561B2 (en) * 2009-11-30 2012-04-24 Corning Incorporated Method for depth resolved sensing of biological entities based on surface plasmon resonance sensors
US8243276B2 (en) * 2009-11-30 2012-08-14 Corning Incorporated Variable penetration depth biosensor
JP5351815B2 (ja) * 2010-03-31 2013-11-27 富士フイルム株式会社 光学部材および表面プラズモン共鳴測定装置
US9207117B2 (en) 2010-07-28 2015-12-08 University Of Delaware Apparatus and method for performing surface plasmon resonance (SPR) spectroscopy with an infrared (IR) spectrometer
JP5853961B2 (ja) 2011-01-31 2016-02-09 コニカミノルタ株式会社 検査チップを備えた検査チップセット
JP2012202911A (ja) 2011-03-28 2012-10-22 Fujifilm Corp 分析チップ
JP6098523B2 (ja) * 2011-12-26 2017-03-22 コニカミノルタ株式会社 Spfs測定用センサーチップ、およびspfs測定用センサーチップを用いたspfs測定方法、ならびにspfs測定用センサーチップを備えたspfs測定装置
US9778184B2 (en) 2014-02-25 2017-10-03 Konica Minolta, Inc. Measurement method and measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095927A1 (ja) * 2004-03-31 2005-10-13 Omron Corporation 局在プラズモン共鳴センサ及び検査装置
JP2006308511A (ja) * 2005-05-02 2006-11-09 Canon Inc 化学分析装置及びその分析方法
JP2014032148A (ja) * 2012-08-06 2014-02-20 Arkray Inc 表面プラズモン励起増強蛍光取得構造体および表面プラズモン励起増強蛍光測定システム
JP2014167479A (ja) * 2014-04-14 2014-09-11 Konica Minolta Inc 表面プラズモン増強蛍光センサおよび表面プラズモン増強蛍光センサに用いられるチップ構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3376208A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11630071B2 (en) 2017-09-26 2023-04-18 Otsuka Pharmaceutical Co., Ltd. Analysis method and analysis device
EP3674694B1 (en) * 2017-09-26 2024-02-14 Otsuka Pharmaceutical Co., Ltd. Analysis method and analysis device
JP2020204540A (ja) * 2019-06-18 2020-12-24 矢崎総業株式会社 金属の腐食検出装置及び腐食検出方法

Also Published As

Publication number Publication date
JPWO2017082043A1 (ja) 2018-08-30
US10648914B2 (en) 2020-05-12
EP3376208A1 (en) 2018-09-19
JP6766820B2 (ja) 2020-10-14
EP4191235A1 (en) 2023-06-07
EP3376208A4 (en) 2019-02-20
EP4137799A1 (en) 2023-02-22
US20180321152A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6587024B2 (ja) 検出方法および検出装置
US10495576B2 (en) Surface-plasmon enhanced fluorescence measurement method, surface-plasmon enhanced fluorescence measurement device, and analytical chip
JP6766820B2 (ja) 光学式検体検出システム
EP3321688B1 (en) Detection device and detection method
JP6733664B2 (ja) 検出チップの製造方法および検出チップ
JP6098523B2 (ja) Spfs測定用センサーチップ、およびspfs測定用センサーチップを用いたspfs測定方法、ならびにspfs測定用センサーチップを備えたspfs測定装置
JPWO2018034143A1 (ja) 測定方法、測定装置および測定システム
JP6421821B2 (ja) 検出装置
JP6848975B2 (ja) 測定方法
JPWO2017057136A1 (ja) 表面プラズモン励起増強蛍光分光測定方法、および測定用キット
JP7050776B2 (ja) 検体検出装置及び検体検出方法
US11169090B2 (en) Diffracted light removal slit and optical sample detection system using same
JP6885458B2 (ja) 検体検出システム用センサーチップ
WO2014021171A1 (ja) センサー部材の製造方法およびセンサーチップの製造方法ならびにセンサー部材の使用方法
JP6922907B2 (ja) 反応方法、ならびにこれを行う反応システムおよび反応装置
JP7093727B2 (ja) 光学式検体検出システムにおけるセンサーチップの位置検出方法及び位置検出装置
JPWO2019221040A1 (ja) 検体検出チップ及びこれを用いた検体検出装置
JP6493412B2 (ja) 検出装置および検出方法
JP6638343B2 (ja) センサーチップおよびこのセンサーチップを備えた光学式検体検出システム
JP6221785B2 (ja) 検出装置および検出方法
WO2013191090A1 (ja) マイクロチップおよびマイクロチップを用いた分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773910

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016864007

Country of ref document: EP