WO2017082009A1 - セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 - Google Patents
セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 Download PDFInfo
- Publication number
- WO2017082009A1 WO2017082009A1 PCT/JP2016/081063 JP2016081063W WO2017082009A1 WO 2017082009 A1 WO2017082009 A1 WO 2017082009A1 JP 2016081063 W JP2016081063 W JP 2016081063W WO 2017082009 A1 WO2017082009 A1 WO 2017082009A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylate
- semi
- meth
- producing
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/006—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/52—Amides or imides
- C08F220/54—Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
- C08F220/56—Acrylamide; Methacrylamide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/08—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/06—Polyurethanes from polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/08—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/04—Polymer mixtures characterised by other features containing interpenetrating networks
Definitions
- the present invention relates to a production method for obtaining a semi-IPN type composite having excellent moisture permeability, water-swelling resistance and antifouling property.
- polyurethane Since polyurethane has good mechanical strength and elasticity, it is widely used in various fields such as coating agents, molding materials, paints, optical films, etc., and it is also actively used as a material for moisture-permeable and waterproof fabrics and synthetic leather. Research has been done.
- the problem to be solved by the present invention is to provide a method for producing a semi-IPN composite having excellent moisture permeability, water-swelling resistance and antifouling properties.
- the present invention relates to a semi-IPN type composite characterized by polymerizing a hydrophilic monofunctional acrylate (b1) and a polyfunctional acrylate (b2) in a polyurethane (A) solution using an aromatic polyisocyanate as a raw material. It relates to a manufacturing method.
- the present invention also relates to a method for producing a moisture permeable film, which is obtained by drying the semi-IPN type composite obtained by the above production method.
- the semi-INP type composite obtained by the production method of the present invention is excellent in moisture permeability, water swell resistance and antifouling property. Therefore, the semi-IPN type composite can be suitably used as a moisture permeable and waterproof fabric for clothing, medicine, hygiene, etc .; a skin layer or a top coat layer of synthetic leather.
- the semi-IPN (Interpenetrating polymer network) type composite is a composite having a network structure in which a heterogeneous cross-linked polymer has penetrated into a non-crosslinkable polymer, and the non-crosslinkable polyurethane (A) is produced by the above production method. Then, a composite in which a polymer of the hydrophilic monofunctional acrylate (b1) and the polyfunctional acrylate (b2) is intertwined is produced.
- the polyurethane (A) is made from an aromatic polyisocyanate.
- polyurethane made from aliphatic or alicyclic polyisocyanate is used in place of the polyurethane (A)
- desired moisture permeability and water swell resistance cannot be obtained. This is probably because the semi-IPN acrylic component is unevenly distributed on the surface.
- the polyurethane (A) can be a reaction product of a polyol and an aromatic polyisocyanate.
- excellent moisture permeability, water-swelling resistance and antifouling properties can be exhibited by forming a semi-IPN structure by polymerization of hydrophilic monofunctional acrylate (b1) and polyfunctional acrylate (b2). Therefore, the kind of the polyol can be freely designed together with other physical properties such as durability.
- polyether polyol for example, polyether polyol, polycarbonate polyol, polyester polyol, polyacryl polyol, polybutadiene polyol, hydrogenated polybutadiene polyol and the like can be used. These polyols may be used alone or in combination of two or more.
- the number average molecular weight of the polyol can be appropriately determined in the range of 500 to 8,000 depending on the desired physical properties.
- the number average molecular weight of the said polyol shows the value obtained by measuring on condition of the following by gel permeation chromatography (GPC) method.
- Measuring device High-speed GPC device (“HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000” (7.8 mm ID x 30 cm) x 1 “TSKgel G2000” (7.8 mm ID ⁇ 30 cm) ⁇ 1 detector: RI (differential refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection amount: 100 ⁇ L (tetrahydrofuran solution with a sample concentration of 0.4 mass%) Standard sample: A calibration curve was prepared using the following standard polystyrene.
- the polyol may be used in combination with a chain extender having a number average molecular weight in the range of 50 to 450, if necessary.
- the number average molecular weight of the chain extender indicates a value obtained by measurement in the same manner as the number average molecular weight of the polyol.
- chain extender examples include ethylene glycol, diethylene recall, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, saccharose, methylene Chain extenders having hydroxyl groups such as glycol, glycerin, sorbitol, bisphenol A, 4,4′-dihydroxydiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylsulfone, hydrogenated bisphenol A, hydroquinone; ethylenediamine 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2-methylpiperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylme Having amino groups such as diamine, 3,3'-dimethyl-4,4'-dicyclohexylmethanediamine, 1,2-cyclo
- the amount used when the chain extender is used is preferably in the range of 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyol from the viewpoint of mechanical strength and texture.
- aromatic polyisocyanate examples include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1-methyl-2,4-phenylene diisocyanate, 1-methyl-2,6-phenylene diisocyanate, 1-methyl- 2,5-phenylene diisocyanate, 1-methyl-3,5-phenylene diisocyanate, 1-ethyl-2,4-phenylene diisocyanate, 1-isopropyl-2,4-phenylene diisocyanate, 1,3-dimethyl-2,4- Phenylene diisocyanate, 1,3-dimethyl-4,6-phenylene diisocyanate, 1,4-dimethyl-2,5-phenylene diisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, 1-methyl-3, Diethylbenzene diisocyanate, 3-methyl-1,5-diethylbenzene-2,4-diiso
- the aromatic polyisocyanate may be used in combination with other polyisocyanates as necessary.
- content of the aromatic polyisocyanate in that case, it is preferable that it is 50 mass% or more in the polyisocyanate whole quantity to be used, and it is more preferable that it is 80 mass% or more.
- polyisocyanates examples include tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, trimethylhexamethylene diisocyanate, 1,3-cyclopentylene diisocyanate, 1,3-cyclohexylene diisocyanate, 1, 4-cyclohexylene diisocyanate, 1,3-di (isocyanatemethyl) cyclohexane, 1,4-di (isocyanatemethyl) cyclohexane, lysine diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane Diisocyanate, 2,2'-dicyclohexylmethane diisocyanate, 3,3'-dimethyl-4,4'-dicyclohexyl Or the like can be used aliphatic or alicyclic poly
- the said polyurethane (A) for example, the said polyol, the said aromatic polyisocyanate, the organic solvent, and the said chain extender as needed are prepared, and a polyurethane (A) solution is made by making a urethanation reaction.
- the method of manufacturing is mentioned. These reactions can be carried out, for example, at a temperature of 50 to 100 ° C. for 3 to 10 hours.
- organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, methyl ethyl ketone, methyl n-propyl ketone, acetone, methyl isobutyl ketone, methyl formate, and ethyl formate.
- Propyl formate, methyl acetate, ethyl acetate, isopropyl acetate, isobutyl acetate, isobutyl acetate, sec-butyl acetate, methanol, ethanol, isopropyl alcohol, butanol and the like can be used.
- These organic solvents may be used alone or in combination of two or more.
- the amount of the organic solvent used is preferably in the range of 10 to 1,000 parts by mass and more preferably in the range of 20 to 600 parts by mass with respect to 100 parts by mass of the polyurethane (A).
- the molar ratio [isocyanate group / hydroxyl group and amino group] of the total hydroxyl group and amino group of the polyol and chain extender and the isocyanate group of the aromatic polyisocyanate includes production stability and mechanical strength. From this point, the range of 0.8 to 1.2 is preferable, and the range of 0.9 to 1.1 is more preferable.
- the weight average molecular weight of the polyurethane (A) can be appropriately determined in the range of 500 to 500,000 according to the intended physical properties.
- the weight average molecular weight of the said polyurethane (A) shows the value obtained by measuring similarly to the number average molecular weight of the said polyol.
- the hydrophilic monofunctional acrylate (b1) can provide moisture permeability and water-swelling resistance and antifouling properties by making the coating film hydrophilic
- the polyfunctional acrylate (b2) can provide a semi-IPN structure. Can be further improved in moisture permeability, water-swelling resistance and antifouling property.
- by forming a semi-IPN type structure it is possible to prevent the removal of hydrophilic components from the coating film even during continuous actual use, durability of the coating film strength, and long-term moisture permeability. Maintenance is possible.
- hydrophilicity of the hydrophilic monofunctional acrylate (b1) means that it has an affinity for water. Specifically, the solubility in 100 g of water (20 ° C.) is preferable. Indicates 5% by mass or more, more preferably 10% by mass or more, and still more preferably 20% by mass or more.
- the “monofunctional” in (b1) indicates that it has one (meth) acryloyl group.
- hydrophilic monofunctional acrylate (b1) examples include an acrylic monomer (b1-1) having an amide group, an acrylic monomer (b1-2) having an oxyethylene group, an acrylic monomer having a sulfonic acid group, and a quaternary ammonium.
- an acrylic monomer having a group, an acrylic monomer having a carboxyl group, an acrylic monomer having an amino group, an acrylic monomer having a cyano group, an acrylic monomer having a hydroxyl group, an acrylic monomer having an imide group, an acrylic monomer having a methoxy group, etc. Can do.
- acrylic monomer (b1-1) having an amide group examples include (meth) acrylamide, (meth) acryloylmorpholine, N-methylol (meth) acrylamide, N-methoxyethyl (meth) acrylamide, and N, N-dimethyl.
- Acrylamide, N, N-diethylacrylamide, N-isopropylacrylamide and the like can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer (b1-2) having an oxyethylene group for example, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate and the like can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a sulfonic acid group examples include sodium sulfopropyl (meth) acrylate, sodium 2-sulfoethyl (meth) acrylate, sodium 2-acrylamido-2-methylpropanesulfonate, and the like. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a quaternary ammonium group examples include tetrabutylammonium (meth) acrylate and trimethylbenzylammonium (meth) acrylate. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a carboxyl group for example, (meth) acrylic acid, propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, crotonic acid, fumaric acid and the like can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having an amino group examples include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, N-tert-butylaminoethyl (meth) acrylate, methacryloxyethyltrimethylammonium chloride (meth) acrylate, and the like. Can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a cyano group examples include acrylonitrile, cyanomethyl acrylate, 2-cyanoethyl acrylate, cyanopropyl acrylate, 1-cyanomethylethyl acrylate, 2-cyanopropyl acrylate, 1-cyanocyclopropyl acrylate, 1-cyano.
- Cycloheptyl acrylate, 1,1-dicyanoethyl acrylate, 2-cyanophenyl acrylate, 3-cyanophenyl acrylate, 4-cyanophenyl acrylate, 3-cyanobenzyl acrylate, 4-cyanobenzyl acrylate, and the like can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a hydroxyl group examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono ( A (meth) acrylate etc. can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having an imide group examples include (meth) acrylimide, N-methylol maleimide, N-hydroxyethyl maleimide, N-glycidyl maleimide, N-4-chloromethylphenyl maleimide, N-acetoxyethyl maleimide, and the like. Can be used. These monomers may be used alone or in combination of two or more.
- acrylic monomer having a methoxy group examples include 3-methoxybutyl (meth) acrylate), 2-methoxyethyl (meth) acrylate, 3-methoxypropyl (meth) acrylate, 2-methoxybutyl (meth) acrylate, and the like. Can be used. These monomers may be used alone or in combination of two or more.
- hydrophilic monofunctional acrylates (b1) among them, an amide group having a highly hydrophilic alkyl-substituted nitrogen atom and polyoxyethylene glycol are included in the side chain.
- an acrylic monomer (b1-1) having an amide group and an acrylic monomer (b1-2) having an oxyethylene group In order to obtain soiling properties, it is preferable to use an acrylic monomer (b1-1) having an amide group and an acrylic monomer (b1-2) having an oxyethylene group.
- the total amount of the acrylic monomer (b1-1) having an amide group and the acrylic monomer (b1-2) having an oxyethylene group is preferably 70% by mass or more in the hydrophilic monofunctional acrylate (b1). 80% by mass or more, more preferably 90% by mass or more.
- the durability of the coating film and the moisture permeability can be maintained for a long period of time.
- the range is preferably from 5 to 13 mol, more preferably from 8 to 10 mol.
- polyfunctional acrylate (b2) examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, polyethylene glycol di ( (Meth) acrylate, hexamethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, ethoxy Bisphenol A di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, tricyclodecane dimethanol diacrylate, dipropylene glycol di (meth) acrylate Tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, tri
- polyfunctional acrylates (b2) among those described above, it is preferable to use those having an oxyalkylene group, since compatibility and flexibility with the polyurethane (A) superior in amorphous properties can be obtained. It is more preferable to use one having an oxypropylene group.
- the average addition mole number of the oxyalkylene group of the polyfunctional acrylate (b2) is preferably in the range of 2 to 10 moles from the viewpoint of compatibility with the polyurethane (A). A range is more preferable.
- the polymerization ratio (molar ratio) between the hydrophilic monofunctional acrylate (b1) and the polyfunctional acrylate (b2)
- moisture permeability, water swell resistance and antifouling properties can be achieved at a high level.
- the range is preferably 99.5 / 0.5 to 90/10, and more preferably 99/1 to 95/5.
- the polyurethane (A) can achieve a high level of moisture permeability, water swell resistance and antifouling property. It is preferably in the range of 10 to 70 parts by mass, more preferably in the range of 20 to 40 parts by mass with respect to 100 parts by mass.
- hydrophilic polymerizable monomers may be used in combination with the hydrophilic monofunctional acrylate (b1) and the polyfunctional acrylate (b2) as necessary.
- Examples of the other radical polymerizable monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, sec-butyl (meth) acrylate, Isobutyl (meth) acrylate, 2-ethylbutyl (meth) acrylate, n-pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, n-octyl (meth) acrylate, Nonyl (meth) acrylate, dodecyl (meth) acrylate, 3-methylbutyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, tridecy
- a known radical polymerization can be used as a polymerization method of the hydrophilic monofunctional acrylate (b1) and the polyfunctional acrylate (b2).
- a known radical polymerization can be used.
- B1, the polyfunctional acrylate (b2), a polymerization initiator, and, if necessary, the other radical polymerizable monomer and an organic solvent are added, for example, mixed and stirred at a temperature in the range of 40 to 90 ° C., or
- a method of allowing radical polymerization to proceed for 1 to 20 hours is allowed to stand.
- polymerization initiator examples include peroxides such as hydrogen peroxide, potassium persulfate, sodium persulfate, and ammonium persulfate; benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, cumene hydroperoxide
- Organic peroxides such as 2,2′-azobis- (2-aminodipropane) dihydrochloride, 2,2′-azobis- (N, N′-dimethyleneisobutylamidine) dihydrochloride, azobisiso
- An azo compound such as butyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleric nitrile), or the like can be used.
- polymerization initiators may be used alone or in combination of two or more.
- the amount of the polymerization initiator used is, for example, in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the hydrophilic acrylic monomer (b1) and the polyfunctional acrylate (b2).
- the semi-IPN type composite obtained by the above method may be used in combination with other additives as necessary when producing a moisture-permeable film described later.
- additives examples include pigments, flame retardants, plasticizers, softeners, stabilizers, waxes, antifoaming agents, dispersants, penetrants, surfactants, fillers, antifungal agents, antibacterial agents, and ultraviolet rays.
- Absorbers, antioxidants, weathering stabilizers, fluorescent brighteners, anti-aging agents, thickeners and the like can be used. These additives may be used alone or in combination of two or more.
- Examples of the method for producing the moisture permeable film include a method in which the semi-IPN type composite is applied onto a substrate and dried at a temperature in the range of 40 to 150 ° C., for example, for 1 to 30 minutes.
- the substrate on which the semi-IPN composite is applied for example, glass; release paper; plastic film; substrate made of nonwoven fabric, woven fabric or knitted fabric; resin film; paper or the like can be used.
- constituents of the substrate include chemical fibers such as polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, and polylactic acid fiber; cotton, hemp, silk, wool, and blended fibers thereof. Etc. can be used.
- the base material which consists of a nonwoven fabric, a woven fabric, and a knitted fabric is used as the said base material, the state in which the dried material of the said semi IPN type composite body soaked in the said base material is formed. In the present invention, such an embodiment is also called a film.
- the surface of the base material may be subjected to treatments such as antistatic processing, mold release processing, water repellent processing, water absorption processing, antibacterial and deodorizing processing, antibacterial processing, and ultraviolet blocking processing as necessary.
- Examples of the method of applying the semi-IPN type composite to the substrate surface include a gravure coater method, a knife coater method, a pipe coater method, and a comma coater method.
- the thickness of the moisture permeable film can be determined according to the intended use and is, for example, in the range of 0.01 to 10 mm.
- the semi-INP type composite obtained by the production method of the present invention is excellent in moisture permeability, water-swelling resistance and antifouling property. Therefore, the semi-IPN type composite can be suitably used as a moisture permeable and waterproof fabric for clothing, medicine, hygiene, etc .; a skin layer or a top coat layer of synthetic leather.
- a method for producing a moisture permeable waterproof fabric when the moisture permeable film is used for producing a moisture permeable waterproof fabric for example, a method of adhering the moisture permeable film to a fabric using a known adhesive; Examples include a method of directly applying the semi-IPN type composite and drying it.
- the fabric include chemical fibers such as polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, and polylactic acid fiber; those obtained from cotton, hemp, silk, wool, and blended fibers thereof. Can be used.
- the base fabric is obtained from, for example, chemical fibers such as polyester fiber, nylon fiber, acrylic fiber, polyurethane fiber, acetate fiber, rayon fiber, polylactic acid fiber; cotton, hemp, silk, wool, and blended fibers thereof. Things can be used.
- Example 1 In a reactor equipped with a stirrer, a thermometer, and a nitrogen gas introduction tube, an N, N-dimethylformamide solution of polyester urethane using diphenylmethane diisocyanate as a raw material (“Crisbon MP-856” manufactured by DIC Corporation, solid content: 20 mass) %, Hereinafter abbreviated as “PEs-based Pu”.) 100 parts by mass, 2.37 parts by mass of N, N-dimethylacrylamide (hereinafter abbreviated as “DMAA”), methoxypolyethylene glycol acrylate (Shin Nakamura Chemical) "AM-90G” manufactured by Kogyo Co., Ltd., with an average addition mole number of oxyethylene groups of 9 mol) is 3.63 parts by mass, and tripropylene glycol diacrylate (“APG-200” manufactured by Shin-Nakamura Chemical Co., Ltd.) is 0.
- DMAA N, N-dimethylacrylamide
- AM-90G methoxy
- PEs-based Pu 100 parts by mass of PEs-based Pu, 3.96 parts by mass of DMAA, 6.04 parts by mass of AM-90G, 0.9% of APG-200 Parts by mass (above, polymerization ratio (molar ratio) of
- PEs-based Pu 100 parts by mass of PEs-based Pu, 1.84 parts by mass of DMAA, methoxy
- Examples 1 to 7 which are moisture permeable films of the present invention were excellent in moisture permeability, water swell resistance and antifouling property.
- Comparative Example 1 is an embodiment using an aliphatic polyurethane, but good moisture permeability was not obtained as a semi-IPN type composite.
- Comparative Examples 2 to 4 are films formed of general polyurethane, but have poor moisture permeability and antifouling properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度0.4質量%のテトラヒドロフラン溶液)
標準試料:下記の標準ポリスチレンを用いて検量線を作成した。
東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、ジフェニルメタンジイソシアネートを原料としたポリエステル系ウレタンのN,N-ジメチルホルムアミド溶液(DIC株式会社製「クリスボンMP-856」、固形分;20質量%、以下「PEs系Pu」と略記する。)100質量部に、N,N-ジメチルアクリルアミド(以下、「DMAA」と略記する。)を2.37質量部、メトキシポリエチレングリコールアクリレート(新中村化学工業株式会社製「AM-90G」、オキシエチレン基の平均付加モル数が9モル)を3.63質量部、トリプロピレングリコールジアクリレート(新中村化学工業株式会社製「APG-200」)を0.54質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、ジフェニルメタンジイソシアネートを原料としたポリエーテル系ウレタンのN,N-ジメチルホルムアミド溶液(DIC株式会社製「クリスボンUST-135」、固形分;25質量%、以下「PEt系Pu」と略記する。)100質量部に、DMAAを2.97質量部、AM-90Gを4.53質量部、APG-200を0.68質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、ジフェニルメタンジイソシアネートを原料としたポリカーボネート系ウレタンのN,N-ジメチルホルムアミド溶液(DIC株式会社製「クリスボンS-705」、固形分;30質量%、以下「PC系Pu」と略記する。)100質量部に、DMAAを3.56質量部、AM-90Gを5.44質量部、APG-200を0.81質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、PEs系Puを100質量部に、DMAAを2.37質量部、AM-90Gを3.63質量部、APG-200を0.06質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=74/25/1、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、PEs系Puを100質量部に、DMAAを3.96質量部、AM-90Gを6.04質量部、APG-200を0.9質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、PEs系Puを100質量部に、DMAAを1.84質量部、メトキシポリエチレングリコールアクリレート(新中村化学工業株式会社製「AM-130G」、オキシエチレン基の平均付加モル数が13モル)を4.16質量部、APG-200を0.42質量部、(以上、DMAA/AM-130G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、PEs系Puを100質量部に、DMAAを2.37質量部、AM-90Gを3.63質量部、ポリプロピレングリコール#400ジアクリレート(新中村化学工業株式会社製「APG-400」、オキシプロピレン基の平均付加モル数;7)を0.84質量部、(以上、DMAA/AM-90G/APG-400の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
攪拌機、温度計及び窒素ガス導入管を備えた反応装置に、イソホロンジイソシアネートを原料としたポリカーボネート系ウレタンのN,N-ジメチルホルムアミド溶液(DIC株式会社製「クリスボンNY-393」、固形分;25質量%、以下「脂肪族系Pu」と略記する。)を100質量部に、DMAAを2.97質量部、AM-90Gを4.53質量部、APG-200を0.68質量部、(以上、DMAA/AM-90G/APG-200の重合比率(モル比)=71/24/5、小数点第1位を四捨五入。)、和光純薬工業株式会社製アゾ系重合開始剤「V-601」をモノマー総量に対し2質量%加え、均一に混合した後、60℃で15時間静置してラジカル重合を行うことでセミIPN型複合体を得た。
前記PEs系Pu単独で以下の評価を行った。
前記PEt系Pu単独で以下の評価を行った。
前記PC系Pu単独で以下の評価を行った。
実施例及び比較例で得たセミIPN型複合体又はポリウレタン溶液を、乾燥後の厚さが15μmとなるように離型紙に塗布し、乾燥機を使用して70℃で2分間、次いで120℃で2分間乾燥させることでフィルムを得た。
得られた透湿フィルムを、JISL1099:2012のB-1法(酢酸カリウム法)に準拠して透湿度(g/m2/24h)を測定した。
実施例、及び比較例で得られた透湿フィルム、及びフィルムを、2cm(縦)×5cm(横)に裁断したものを試験片とした。得られた試験片を25℃のイオン交換水中に1時間浸漬し、取出した透湿フィルム、及びフィルムの横方向の長さを測定し、下記式(1)により膨潤率(%)を算出した。
膨潤率(%)=浸漬後の透湿フィルム及びフィルムの長さ(cm)-5(cm)/5(cm)×100 (1)
得られた透湿フィルムの表面に、油性ボールペン(ゼブラ株式会社製「JIM-KNOCK油性」)で点を打つようにインクを付け、室温で10分放置した後に、水で濡らしたティッシュペーパーで拭き取った際のインクの有無で以下のように評価した。
「○」;インクが全て拭き取られている。
「×」;インクが確認される。
Claims (6)
- 芳香族ポリイソシアネートを原料としたポリウレタン(A)溶液中で、親水性単官能アクリレート(b1)及び多官能アクリレート(b2)を重合することを特徴とするセミIPN型複合体の製造方法。
- 前記親水性単官能アクリレート(b1)が、アミド基を有するアクリルモノマー(b1-1)、及び、オキシエチレン基を有するアクリルモノマー(b1-2)を含有するものである請求項1記載のセミIPN型複合体の製造方法。
- 多官能アクリレート(b2)が、オキシアルキレン基を有するものである請求項1記載のセミIPN型複合体の製造方法。
- 前記アミド基を有するアクリルモノマー(b1-1)、前記オキシエチレン基を有するアクリルモノマー(b1-2)、及び、前記多官能アクリレート(b2)の重合比率(モル比)が、(b1-1)/(b1-2)/(b2)=50/49.5/0.5~89/1/10の範囲である請求項2記載のセミIPN型複合体の製造方法。
- 前記親水性単官能アクリレート(b1)及び前記多官能アクリレート(b2)の合計量が、前記ポリウレタン(A)100質量部に対して、10~70質量部の範囲である請求項1記載のセミIPN型複合体の製造方法。
- 請求項1~5の何れか1項記載の製造方法により得られるセミIPN型複合体を乾燥させてフィルム状とすることを特徴とする透湿フィルムの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187011954A KR102020264B1 (ko) | 2015-11-11 | 2016-10-20 | 세미 ipn형 복합체의 제조 방법, 및, 투습 필름의 제조 방법 |
JP2017501335A JP6112284B1 (ja) | 2015-11-11 | 2016-10-20 | セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 |
CN201680064338.0A CN108350132B (zh) | 2015-11-11 | 2016-10-20 | 半ipn型复合体的制造方法和透湿膜的制造方法 |
EP16863973.0A EP3375799A4 (en) | 2015-11-11 | 2016-10-20 | PROCESS FOR PRODUCING SEMI-IPN COMPOSITE AND PROCESS FOR PRODUCING MOISTURE PERMEABLE FILM |
US15/774,924 US10626272B2 (en) | 2015-11-11 | 2016-10-20 | Method for producing semi-IPN composite and method for producing moisture-permeable film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-221296 | 2015-11-11 | ||
JP2015221296 | 2015-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017082009A1 true WO2017082009A1 (ja) | 2017-05-18 |
Family
ID=58696100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/081063 WO2017082009A1 (ja) | 2015-11-11 | 2016-10-20 | セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10626272B2 (ja) |
EP (1) | EP3375799A4 (ja) |
KR (1) | KR102020264B1 (ja) |
CN (1) | CN108350132B (ja) |
TW (1) | TWI727993B (ja) |
WO (1) | WO2017082009A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109691713A (zh) * | 2018-12-26 | 2019-04-30 | 深圳德邦界面材料有限公司 | 一种雨衣用丙烯酸酯基散热透湿膜及其制备方法 |
JP6962509B1 (ja) * | 2020-04-07 | 2021-11-05 | Dic株式会社 | 水性樹脂組成物及びコーティング剤 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328957A (en) * | 1991-08-28 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Polyurethane-acrylic interpenetrating polymer network acoustic damping material |
JP2011527377A (ja) * | 2008-07-07 | 2011-10-27 | バイオミメディカ インコーポレイテッド | 疎水性ポリマーに由来する親水性相互貫入ポリマーネットワーク |
JP2013231097A (ja) * | 2012-04-27 | 2013-11-14 | Hitachi Chemical Co Ltd | 回路接続材料、フィルム状回路接続材料、回路接続シート、回路接続体及び回路部材の接続方法 |
JP2015086366A (ja) * | 2013-09-24 | 2015-05-07 | 三洋化成工業株式会社 | 複合樹脂粒子及び複合樹脂粒子水性分散体 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5314945A (en) * | 1990-12-03 | 1994-05-24 | E. I. Du Pont De Nemours And Company | Waterbased coating compositions of methylol(meth)acrylamide acrylic polymer, polyurethane and melamine crosslinking agent |
DE4315269A1 (de) * | 1993-05-07 | 1994-11-10 | Rotta Gmbh | Wäßrige Polymerdispersionen und ihre Verwendung zur Herstellung wasserdampfdurchlässiger Textilbeschichtungen |
US6436540B1 (en) * | 2000-02-18 | 2002-08-20 | Omnova Solutions Inc. | Co-mingled polyurethane-polyvinyl ester polymer compositions and laminates |
JP4760040B2 (ja) | 2004-02-16 | 2011-08-31 | 東レ株式会社 | 透湿防水フィルムおよび透湿防水複合材 |
CN101939395B (zh) * | 2008-02-08 | 2014-12-31 | 3M创新有限公司 | 半互穿聚合物网络聚氨酯/聚脲保护膜 |
US8277930B2 (en) | 2008-02-27 | 2012-10-02 | Dic Corporation | Moisture-permeable film, production method of same and laminate using same |
JP2014030863A (ja) | 2012-08-01 | 2014-02-20 | Filwel:Kk | 片面研磨用保持材 |
-
2016
- 2016-10-20 CN CN201680064338.0A patent/CN108350132B/zh active Active
- 2016-10-20 US US15/774,924 patent/US10626272B2/en active Active
- 2016-10-20 WO PCT/JP2016/081063 patent/WO2017082009A1/ja active Application Filing
- 2016-10-20 EP EP16863973.0A patent/EP3375799A4/en active Pending
- 2016-10-20 KR KR1020187011954A patent/KR102020264B1/ko active IP Right Grant
- 2016-11-10 TW TW105136547A patent/TWI727993B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5328957A (en) * | 1991-08-28 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Polyurethane-acrylic interpenetrating polymer network acoustic damping material |
JP2011527377A (ja) * | 2008-07-07 | 2011-10-27 | バイオミメディカ インコーポレイテッド | 疎水性ポリマーに由来する親水性相互貫入ポリマーネットワーク |
JP2013231097A (ja) * | 2012-04-27 | 2013-11-14 | Hitachi Chemical Co Ltd | 回路接続材料、フィルム状回路接続材料、回路接続シート、回路接続体及び回路部材の接続方法 |
JP2015086366A (ja) * | 2013-09-24 | 2015-05-07 | 三洋化成工業株式会社 | 複合樹脂粒子及び複合樹脂粒子水性分散体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3375799A4 * |
Also Published As
Publication number | Publication date |
---|---|
KR20180061294A (ko) | 2018-06-07 |
US10626272B2 (en) | 2020-04-21 |
TW201728677A (zh) | 2017-08-16 |
CN108350132B (zh) | 2021-05-28 |
EP3375799A1 (en) | 2018-09-19 |
CN108350132A (zh) | 2018-07-31 |
KR102020264B1 (ko) | 2019-09-11 |
EP3375799A4 (en) | 2019-07-03 |
TWI727993B (zh) | 2021-05-21 |
US20180334565A1 (en) | 2018-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120125B1 (ja) | 透湿フィルム | |
KR102020265B1 (ko) | 세미 ipn형 복합체의 제조 방법, 및, 합성 피혁의 제조 방법 | |
WO2017082009A1 (ja) | セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 | |
CN109790371B (zh) | 半ipn型复合体的制造方法 | |
JP6112284B1 (ja) | セミipn型複合体の製造方法、及び、透湿フィルムの製造方法 | |
JP6112285B1 (ja) | セミipn型複合体の製造方法、及び、合成皮革の製造方法 | |
JP6304467B1 (ja) | セミipn型複合体の製造方法 | |
JP7289314B2 (ja) | 水性樹脂組成物、皮膜、及び、透湿性防水布帛 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017501335 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16863973 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187011954 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15774924 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016863973 Country of ref document: EP |