WO2017081921A1 - 車輪の滑り角推定装置及びその方法 - Google Patents

車輪の滑り角推定装置及びその方法 Download PDF

Info

Publication number
WO2017081921A1
WO2017081921A1 PCT/JP2016/076352 JP2016076352W WO2017081921A1 WO 2017081921 A1 WO2017081921 A1 WO 2017081921A1 JP 2016076352 W JP2016076352 W JP 2016076352W WO 2017081921 A1 WO2017081921 A1 WO 2017081921A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle body
road surface
coordinate system
axis
Prior art date
Application number
PCT/JP2016/076352
Other languages
English (en)
French (fr)
Inventor
幹雄 板東
幸彦 小野
佐藤 隆之
石本 英史
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP16863885.6A priority Critical patent/EP3375694B1/en
Priority to CN201680059002.5A priority patent/CN108137091B/zh
Priority to US15/771,150 priority patent/US10625747B2/en
Publication of WO2017081921A1 publication Critical patent/WO2017081921A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/101Side slip angle of tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/103Side slip angle of vehicle body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/22Suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/12Lateral speed
    • B60W2720/125Lateral acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/60Velocity or trajectory determination systems; Sense-of-movement determination systems wherein the transmitter and receiver are mounted on the moving object, e.g. for determining ground speed, drift angle, ground track
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers

Definitions

  • the present invention relates to a dump truck that moves at a mine or a construction site, and more particularly to an apparatus and method for estimating a slip angle of a wheel.
  • Patent Literature 1 discloses an inertial measurement device attached to a vehicle body having a wheel and a configuration for measuring the steering angle and estimating the slip angle of the wheel.
  • the technique for estimating the slip angle of a wheel in Patent Document 1 assumes that a flat road surface on which the four wheels are grounded is parallel to the vehicle body. With this assumption, the wheel that outputs the speed on the road surface matches the output shaft of the inertial measurement device such as the acceleration and angular velocity of the body on the spring, so that the slip angle of the wheel can be obtained correctly. And this assumption does not deviate greatly in many passenger cars.
  • a vehicle is configured by mounting a vehicle body on a wheel via a spring.
  • the spring contracts, and the vehicle body tilts with respect to the wheel and the wheel shaft due to the load.
  • the vehicle body on the spring is tilted by the contraction of the spring, so it cannot be assumed that the vehicle body and the road surface are parallel.
  • the value measured by the inertial measurement device attached to the vehicle body measures acceleration in a direction different from the road surface, and it is difficult to calculate an accurate wheel slip angle. Therefore, even if the technique described in Patent Document 1 is applied to a dump truck that has a larger weight than that of a passenger car, there remains a problem that it is difficult to accurately measure the slip angle of the car body.
  • the present invention has been made in view of the above problems, and in a dump truck in which the weight of the vehicle body varies greatly depending on the loaded state, the slip angle of the wheel is accurately estimated using an output value from an inertial measurement device attached to the vehicle body.
  • the purpose is to do.
  • an aspect of the present invention provides a vehicle body inertial measurement device that mounts a vehicle body via a suspension on the wheel and the wheel, and outputs acceleration and angular velocity of the vehicle body attached to the vehicle body, the vehicle body
  • a road surface distance measuring device for measuring a distance to a road surface including a grounding point of the wheel attached to a wheel, a wheel speed measuring device for outputting a wheel speed based on the rotation speed of the wheel, and a steering for measuring a steering angle of the wheel
  • a slip angle estimating device for a dump truck wheel provided with an angle measuring device, using a series of distances to a measurement point on the road surface measured by the road surface distance measuring device, and a longitudinal axis and a left / right axis of the vehicle body
  • an orthogonal triaxial vehicle body coordinate system composed of an upper and lower axis orthogonal to the front and rear axes and the left and right axes, an orthogonal two axes obtained by projecting the front
  • Gravity acceleration components are removed from acceleration and angular velocity to obtain acceleration and angular velocity due to the movement of the vehicle body, and acceleration and angular velocity due to the movement of the vehicle body are converted into the road surface coordinate system using the vehicle body-road surface coordinate conversion information.
  • a vector is obtained, and at the wheel contact point derived from the vehicle body inertial measurement device, the acceleration and angular velocity resulting from the movement of the vehicle body converted into the road surface coordinate system are used.
  • a wheel slip angle estimator that obtains an acceleration vector and estimates a side slip angle of the wheel based on a difference between the acceleration vector and a wheel acceleration vector at a wheel contact point derived from the wheel speed measuring device.
  • the slip angle of the wheel can be accurately estimated using the output value from the inertial measurement device attached to the vehicle body in the dump truck in which the vehicle body weight changes greatly.
  • LIDAR Laser Imaging Detection and Ranging
  • FIG. 1 is a diagram showing a schematic configuration of a dump truck.
  • the dump truck 100 includes front and rear wheels 101, a wheel shaft 102 that supports each wheel, and a vehicle body 103 that is a sturdy frame connected to the wheel shaft via a spring or the like (for example, a suspension (not shown)). Composed.
  • FIG. 2A and 2B are explanatory diagrams showing four coordinate systems, where FIG. 2A shows a global coordinate system, and FIG. 2B shows a road surface coordinate system, a vehicle body coordinate system, and road surface distance measurement unit coordinate systems L1 and L2.
  • FIG. 3 is a diagram showing a vehicle body coordinate system.
  • FIG. 4 is an explanatory view showing a road surface coordinate system.
  • a three-axis orthogonal coordinate system having an Xb axis in the longitudinal direction of the vehicle body, a Yb axis in the horizontal direction of the vehicle body, and a Zb axis in the upward direction is referred to as a vehicle body coordinate system b (see FIG. 2B).
  • the origin of the vehicle body coordinate system b is an arbitrary point fixed in the vehicle body.
  • the surface formed by the points where a plurality of wheels 101 contact is called a road surface, and it is assumed that the road surface on which the dump truck 100 operates is a flat surface at any moment.
  • the Xb axis and Yb axis of the vehicle body coordinate system b projected onto the road surface on the road surface are the Xr axis and Yr axis of the road surface coordinate system r, respectively, and the Zr axis in the direction that forms the right-handed system from the Xr axis and Yr axis.
  • a three-axis orthogonal coordinate system taking the above is called a road surface coordinate system r (see FIG. 4).
  • the road surface coordinate system r when viewed from the global coordinate system e, the road surface coordinate system r appears to move sequentially along with the vehicle body coordinate system b.
  • the directions of the Xr axis and the Yr axis coincide with the directions of the Xb axis and the Yb axis in the vehicle body coordinate system b.
  • the direction is perpendicular, the vehicle body 103 is not necessarily parallel to the road surface, and therefore does not necessarily coincide with the Zb axis of the vehicle body coordinate system b.
  • the measurement start point of the road surface distance measuring device for measuring the distance is the origin.
  • the road surface distance measuring device coordinate system is a three-axis orthogonal coordinate system with the XL axis in the direction to measure the distance, the YL axis in the direction perpendicular to the XL axis, and the ZL axis in the right-handed direction from the XL and YL axes. Call it L.
  • the road surface distance measuring device coordinate system L appears to move sequentially along with the vehicle body coordinate system b.
  • a coordinate system is defined for each of them, and the coordinate system defined by the i-th road surface distance measuring device among the n road surface distance measuring devices is the road surface. This is called a distance measuring device coordinate system Li.
  • the subscripts e, b, r, and Li on the right side of variables and values are the global coordinate system e, the vehicle body coordinate system b, the road surface coordinate system r, and the subscripted variables and values, respectively. This indicates that the variable or value is represented by the i-th road surface distance measuring device coordinate system Li.
  • the wheel slip angle refers to the angle formed by the direction of the wheel 101 and the wheel speed vector on the road surface coordinate system r.
  • FIG. 5 is a block diagram showing a functional configuration of the dump truck 100.
  • the body 103 of the dump truck 100 includes a vehicle body inertial measurement device 104 that measures acceleration including gravitational acceleration, angular velocity, and the like in the vehicle body coordinate system b, and one straight line that intersects the traveling direction of the vehicle body.
  • a road surface distance measuring device 105 capable of measuring two or more points on the road surface that can be connected or approximated at the time of the same sample, a steering angle measuring device 106 that measures the inclination of the vehicle body coordinate system b from the Xb axis, a wheel A wheel speed measuring device 107 for measuring a wheel speed based on the number of rotations, a horizontal plane stretched by the Xe and Ye axes of the global coordinate system e, and an inclination angle formed by the Xb and Yb axes of the vehicle body coordinate system b and a global coordinate system
  • a vehicle body posture measuring device 108 for measuring a vehicle posture expressed by a rotation angle from the Xe axis of e to the Xb axis of the vehicle body coordinate system b is attached.
  • the dump truck 100 further includes a vehicle body slip angle estimating device 120.
  • a vehicle body slip angle estimating device 120 Each of the vehicle body inertia measuring device 104, the road surface distance measuring device 105, the steering angle measuring device 106, the wheel speed measuring device 107, and the vehicle body posture measuring device 108 is provided. The measurement result of each device is output to the vehicle body slip angle estimating device 120.
  • the vehicle slip angle estimation device 120 includes a road-to-vehicle posture estimation unit 121, a road surface inertia amount calculation unit 122, and a wheel slip angle estimation unit 123.
  • the vehicle body slip angle estimation device 120 includes a CPU (Central Processing Unit) and other arithmetic / control devices, as well as a ROM (Read Only Memory) and HDD (Hard Disk Drive) that store programs executed by the vehicle body slip angle estimation device 120.
  • a hardware including a RAM (Random Access Memory) that is a work area when the CPU executes a program, a road-to-vehicle attitude estimation unit 121, a road surface inertia amount calculation unit 122, and a wheel slip angle It is configured by cooperation with software that realizes each function of the estimation unit 123.
  • the road-to-vehicle posture estimation unit 121 converts the relative inclination between the vehicle body 103 and the road surface from the vehicle body coordinate system b to the road surface coordinate system r using a series of distances from the road surface measured by the road surface distance measuring device 105. Estimate as matrix Crb.
  • the road surface inertia amount calculation unit 122 removes the gravitational acceleration component from the road-to-vehicle posture estimation unit 121, the vehicle body inertia measurement device 104, and the vehicle body posture measurement device 108, and calculates the vehicle inertia amount represented by the vehicle body coordinate system b as road surface coordinates. It converts into the inertial amount of the vehicle represented by the system r.
  • the wheel slip angle estimator 123 estimates the slip angle of each wheel with high accuracy using the on-road inertia amount calculator 122, the steering angle measuring device 106, and the wheel speed measuring device 107.
  • FIG. 6 is a diagram illustrating a processing flow of the road-to-vehicle posture estimation unit.
  • FIG. 7 is a diagram showing a coordinate system and measurement points of LIDAR.
  • FIG. 8 is a model diagram of the LIDAR measurement point sequence attached to the vehicle body.
  • step 601 the distance from the road surface distance measuring device 105 fixed to the vehicle body 103 to the road surface is measured by the road surface distance measuring device 105.
  • the lidar continuously scans the distance to a certain point in a linear manner. Further, the distance measured from the LIDAR is assumed to be the distance l from the scanned angle and the measurement point P.
  • the XL axis is in the direction of the LIDAR scanning laser emission surface
  • the YL axis is in the side direction forming the right hand system
  • the ZL axis is in the normal direction formed by these two axes. Stipulate.
  • the distance l to the point P can be expressed in three-dimensional coordinates (pxL, pyL, pzL) by the angle ⁇ formed with the XL axis when measured.
  • the coordinate transformation matrix C bL from the road surface distance measuring device coordinate system L to the vehicle body coordinate system b fixed to the LIDAR is given in advance by measuring the mounting angle of the LIDAR. It is assumed that the two LIDARs 801 and 802 are installed on the side surface of the vehicle body toward the road surface so that the lasers intersect each other (intersection 805) as shown in FIG.
  • a point coordinate series measured as points on the road surface is created only for the laser scanning line segment.
  • step 604 a normal vector of the road surface plane is obtained.
  • This normal vector represents a unit vector on the Zr axis of the road surface coordinate system r in the vehicle body coordinate system b.
  • n + m are obtained by combining two point sequences obtained from each distance measuring device by one scan. I can do it.
  • the normal vector U b can be obtained by the following equation (4) by the least square method.
  • step 605 a coordinate transformation matrix from the vehicle body coordinate system b to the road surface coordinate system r is calculated.
  • the road surface coordinate system r conforms to the above definition, and the two orthogonal vectors exr, eyr and the normal ezr vector obtained by projecting the Xb axis and Yb axis of the vehicle body coordinate system b onto the road surface match the Xr axis, Yr axis, and Zr axis, respectively. It is formed by doing.
  • the road surface expressed in the vehicle body coordinate system is the same as the Zb axis of the vehicle body coordinate system b.
  • the process of the road-to-vehicle posture estimation unit 121 is terminated through the above processing flow.
  • FIG. 9 is a diagram showing a processing flow of the road surface inertia amount calculation unit.
  • the posture of the vehicle body is measured by the vehicle body posture measuring device 108.
  • the posture is a parameter for obtaining a conversion from the global coordinate system e to the vehicle body coordinate system b set on a plane perpendicular to the direction of gravitational acceleration.
  • a method for estimating the posture by attaching three position estimation devices is disclosed in Japanese Patent Application Laid-Open No. 2010-190806, and the posture is measured by applying this to posture measuring means.
  • the posture measured by the above method is three conversion parameters from the global coordinate system e to the vehicle body coordinate system b, and is called a roll angle ⁇ , a pitch angle ⁇ , and a yaw angle ⁇ .
  • a coordinate transformation matrix C eb from the global coordinate system e to the vehicle body coordinate system b is obtained.
  • the angles measured in step 901 are the rotation angles of the Xe axis, the Ye axis, and the Ze axis for each axis of the global coordinate system e.
  • the respective angles in the order of the Ze axis, the Ye axis, and the Xe axis. Think of rotating by minutes.
  • the coordinate transformation matrix C eb is obtained as in the following equation (6).
  • the amount of inertia in the vehicle body coordinate system b is measured.
  • the inertia amount means acceleration or angular velocity.
  • the vehicle body inertial measurement device 104 measures acceleration and angular velocity including gravitational acceleration with respect to each axis of the vehicle body coordinate system b.
  • a three-axis acceleration sensor and a three-axis gyro sensor provided on each of the Xb axis, Yb axis, and Zb axis of the vehicle body coordinate system b are considered as the vehicle body inertial measurement device 104.
  • step 904 acceleration and angular velocity due to movement of the vehicle body 103 are calculated.
  • the gravity term in the vehicle body coordinate system b is removed from the output value vector ⁇ b of the acceleration sensor obtained in step 903, and the vehicle body An acceleration vector ab generated by the movement of 103 is calculated.
  • Vehicle acceleration in vehicle body coordinate system b) (acceleration sensor output value measured in vehicle body coordinate system b) ⁇ (coordinate transformation matrix from global coordinate system e to vehicle body coordinate system b) ⁇ (global coordinate system e Gravity acceleration vector)
  • the vehicle body angular velocity uses the gyro sensor output value vector ⁇ b (see the following equation (8)) obtained in step 903 as it is.
  • step 905 the acceleration and angular velocity generated by the vehicle body motion at the contact point of the wheel are represented by the road surface coordinate system r.
  • Calculated acceleration vector acting on the vehicle body represented by the vehicle body coordinate system b obtained in step 904 a b and the vehicle body coordinate system output value vector omega b of the gyro sensor is an angular velocity of each axis at the road-vehicle posture estimation unit 121 This is expressed in the road surface coordinate system r using the coordinate transformation matrix C rb .
  • the acceleration vector a r and the angular velocity vector ⁇ r on the vehicle body inertial measurement device 104 represented by the road surface coordinate system r are expressed by the following equation (9). Represented.
  • acceleration vector a tr represented by the road surface coordinate system r of the wheel contact point is represented by the following equation (10).
  • FIG. 10 is a diagram illustrating a processing flow of the wheel slip angle estimation unit.
  • FIG. 11 is a diagram illustrating the relationship among the speed, acceleration, steering angle, and slip angle of the wheels.
  • step 1001 the inclination ⁇ b of the vehicle body coordinate system b with respect to the Xb axis measured by the steering angle measuring device 106 is acquired.
  • step 1002 the wheel inclination ⁇ b is converted into an inclination ⁇ r1101 with respect to the Xr axis of the road surface coordinate system r.
  • ⁇ b ⁇ r1101
  • the wheel speed measuring device 107 acquires the wheel speed V at the wheel contact point.
  • the wheel speed at the wheel contact point is the traveling speed (scalar value) on the road surface.
  • step 1004 a speed vector V r 1102 at the wheel contact point expressed in the road surface coordinate system r is obtained. If the wheel rotation amount represents rotation in the tilt direction of the wheel, the wheel speed V obtained in step 1003 can be said to be the magnitude of the speed vector V r 1102 at the wheel contact point of the road surface coordinate system r.
  • the velocity vector V r 1102 at the wheel contact point of the road surface coordinate system r can be expressed as the following equation (11).
  • (Velocity vector at wheel contact point in road surface coordinate system r) (size of wheel speed in road surface coordinate system r) ⁇ (road surface coordinate system distribution component due to wheel inclination)
  • V is obtained from wheel speed measuring device 107.
  • ⁇ r is the slope of the road surface coordinate system r obtained in step 1002 with respect to the Xr axis.
  • an acceleration vector (dVr / dt) 1103 at the wheel contact point represented by the road surface coordinate system r is obtained. Since the acceleration vector may be a value obtained by differentiating the velocity vector V r 1102 calculated in step 1004 with respect to time, it can be expressed as follows.
  • a centripetal acceleration vector ⁇ tr 1104 at the wheel contact point in the road surface coordinate system r is calculated.
  • a centripetal acceleration vector ⁇ tr 1104 at the wheel contact point in the road surface coordinate system r is calculated as in the following equation (13).
  • the wheel slip angle is obtained. Since a turning speed component and a vector v tr 1105 are generated in the direction perpendicular to the centripetal acceleration vector ⁇ tr 1104 at the wheel contact point in the road surface coordinate system r calculated in step 1006, the side slip angle ⁇ 1106 of the wheel is calculated based on the road surface coordinate system.
  • the side slip angle ⁇ 1106, which is the angle formed by the centripetal acceleration vector ⁇ tr 1104 at the wheel contact point at r and the vector perpendicular to the wheel traveling direction, can be obtained according to the following equation (14).
  • the processing of the wheel slip angle estimating unit 123 is completed through the above processing flow.
  • FIG. 12 is a diagram showing a two-dimensional velocity vector when the vehicle is viewed from above.
  • the wheel slip angle estimation unit 123 can obtain the slip angle of the left front wheel 1202, the slip angle of the right front wheel 1203, the slip angle of the left rear wheel 1204, and the slip angle of the right rear wheel 1205 by the above-described method.
  • the slip angle may be obtained by taking the space between the wheels.
  • the wheel slip angle estimation unit 123 can estimate the slip angle with high accuracy using the output value of the vehicle body inertial measurement device 104 attached to the vehicle body.
  • the wheel slip angle estimating unit 123 uses the output value of the vehicle body inertial measurement device attached to the vehicle body so that the vehicle body and the road surface are not parallel. In both cases, the slip angle at each wheel can be estimated with high accuracy.
  • FIG. 13 is a block diagram showing a functional configuration of the dump truck in the second embodiment.
  • the dump truck 100a includes a wheel shaft 102 that connects a wheel 101 and left and right wheels, and a vehicle body 103 that has a wheel shaft connected by a spring or the like.
  • the vehicle body inertial measurement device 104 attached to the vehicle body 103 of the dump truck 100a includes a yaw rate sensor 1301 that measures an angular velocity around the Zb axis of the vehicle body coordinate system b as shown in FIG.
  • a stroke sensor 1302 that measures a stroke attached to the wheel shaft 102 is used as the road surface distance measuring device 105.
  • a steering angle measuring device 106 that measures the inclination of the wheel is provided, and a vehicle body speed measuring device 1303 that measures the speed of the vehicle body 103 with respect to the road surface in the vehicle body coordinate system b is attached instead of the wheel speed measuring device 107.
  • the vehicle body speed measurement device 1303 uses a vehicle body coordinate system such as the vehicle body posture measurement device used in the first embodiment to estimate the speed of the global coordinate system e estimated using a Doppler frequency measured by a GNSS antenna attached to the vehicle body. Conversion to b, or measuring the relative speed between the vehicle body and the road surface with a millimeter wave radar attached directly to the vehicle body.
  • the steering angle measuring device 106 measures the steering angle of at least one of the left front wheel 1202 or the right front wheel 1203 which is a steering wheel.
  • the road-to-vehicle posture estimation unit 1321 uses the measurement value of the stroke sensor 1302 to estimate the inclination between the road surface and the plane stretched by the Xb axis Yb axis of the vehicle body coordinate system b, and the road surface coordinate system r from the vehicle body coordinate system b. Calculated as a coordinate transformation matrix Crb to.
  • the road surface inertia amount calculation unit 1322 measures the angular velocity around the Zb axis of the vehicle body 103 measured by the yaw rate sensor 1301 and the vehicle body speed measured by the vehicle body speed measurement device 1303, and the road-to-vehicle attitude estimation unit 1321. From the estimated coordinate conversion matrix Crb from the vehicle body coordinate system b to the road surface coordinate system r, the speed is converted into the speed and angular velocity of the wheel contact point represented by the road surface coordinate system r.
  • a wheel slip angle estimation unit 1323 that estimates a slip angle of each wheel is a wheel contact point speed and an angular velocity represented by the road surface coordinate system r obtained by the steering angle measurement device 106 and the road surface inertia amount calculation unit 1322. The wheel slip angle is estimated with high accuracy by obtaining the lateral speed of the wheel contact point using.
  • FIG. 14 is a diagram illustrating a processing flow of the road-to-vehicle posture estimation unit in the road-to-vehicle posture estimation unit according to the second embodiment.
  • step 1401 the distance from the start point of the stroke sensor 1302 attached to the vehicle body 103 to the wheel shaft 102 is measured by the stroke sensor 1302 attached to each wheel.
  • the stroke sensor 1302 measures the distance between the wheel shaft 102 and the position of the start point where the stroke sensor 1302 of the vehicle body 103 is attached while maintaining a perpendicular or constant angle to the wheel shaft 102. Since the final value to be estimated is the inclination between the road surface coordinate system r and the vehicle body coordinate system b, the distortion of the wheel 101 is considered negligible, and it is directly assumed that the unsprung wheel axis is parallel to the road surface plane. There is no need to measure points on the road surface.
  • step 1402 the position of the wheel shaft 102 represented by the vehicle body coordinate system b is obtained. If the coordinate transformation matrix C bL from the road surface distance measuring device coordinate system L to the vehicle body coordinate system b fixed to the total n stroke sensors 1302 is given in advance by measuring the mounting position and direction, The position (pixb, piyb, pizb) of the wheel shaft 102 measured by the output l iL from the i-th stroke sensor i (0 ⁇ i ⁇ n) represented by the road surface distance measuring device coordinate system L is represented by the vehicle body coordinate system b. In this case, the attachment position of the stroke sensor can be obtained from the point Pi (Pixb, Piyb, Pizb) expressed in the vehicle body coordinate system b as follows.
  • a normal vector of the road surface plane is obtained.
  • the plane closest to these points can be obtained as a plane parallel to the road surface, and a vector obtained by translating the normal vector U b of the road surface can also be obtained. Since the starting point of the normal vector of this plane is not important when obtaining the slope at the subsequent stage, the normal vector of the plane parallel to the road surface may be used as the normal vector U b of the road surface.
  • the normal vector U b of the road surface is obtained by the least square method, it is expressed as the following equation (16).
  • the normal vector U is obtained by the least square method. b can be obtained as follows.
  • a coordinate transformation matrix from the vehicle body coordinate system b to the road surface coordinate system r is calculated.
  • the road surface coordinate system r considers two orthogonal vectors obtained by projecting the Xb axis and Yb axis of the vehicle body coordinate system b onto the road surface in accordance with the above definition, and exr, eyr and its normal ezr vector are the Xr axis, Yr axis, Zr axis and Formed by matching.
  • the rotation matrix R b with the normal vector U b (A, B, C) obtained from the plane equation parallel to the road surface expressed in the vehicle body coordinate system as well as the Zb axis of the vehicle body coordinate system b obtained in step 1403
  • the coordinate transformation matrix C rb from the vehicle body coordinate system b to the road surface coordinate system r can be obtained in the same manner as in Step 605 of the first embodiment.
  • FIG. 15 is a diagram illustrating a processing flow of a road surface inertia amount calculation unit according to the second embodiment.
  • a vehicle body speed vector Vb is acquired from the vehicle body speed measuring device 1303. What can be measured by the vehicle body speed measuring device 1303 is the speed in the direction of each axis of the vehicle body coordinate system b with respect to the road surface of the vehicle body 103 at the position where the vehicle body speed measuring device 1303 is attached.
  • the yaw rate sensor 1301 measures the angular velocity represented by the vehicle body coordinate system b around the Zb axis of the vehicle body coordinate system b.
  • the road-vehicle attitude estimation unit 1321 indicates the vehicle body speed vector Vb acquired in step 1501 from the obtained coordinate transformation matrix C rb and the angular velocity of the vehicle body coordinate system Zb axis acquired in step 1502.
  • An output value ⁇ zb of the gyro sensor is represented by a road surface coordinate system r.
  • FIG. 16 is a diagram showing a processing flow of the wheel slip angle estimating means in Example 2 in the second embodiment.
  • FIG. 17 is a model diagram showing the relationship between the speed and slip angle of the wheel in the second embodiment.
  • step 1601 the inclination ⁇ b of the vehicle body coordinate system b with respect to the Xb axis measured by the steering angle measuring device 106 is acquired.
  • step 1602 the wheel inclination ⁇ b is converted into an inclination ⁇ r1701 with respect to the Xr axis of the road surface coordinate system r.
  • ⁇ b ⁇ r1701
  • step 1603 the velocity vector V tr at each wheel axis position represented by the road surface coordinate system r on a plane parallel to the road surface of each wheel shaft 102 calculated by the on-road inertia amount calculation unit 1322. To get.
  • step 1604 from the inclination ⁇ 1701 of the wheel 101 with respect to the road surface coordinate system r acquired in step 1602, and the velocity vector V tr at each wheel shaft position on a plane parallel to the road surface obtained in step 1603, Calculate the wheel slip angle.
  • the side slip angle ⁇ 1702 of the wheel can be obtained by the following equation (20).
  • the wheel slip angle estimation unit 123 uses the output value of the vehicle body inertial measurement device attached to the vehicle body to determine the vehicle body and the road surface. Even if they are not parallel to each other, the slip angle at each wheel can be estimated with high accuracy. In addition, the wheel slip angle can be estimated with a configuration of the measuring device that is smaller than that of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

路面距離計測装置105が計測した路面上の計測点までの距離の系列を用いて、車体座標系から路面座標系に変換する車体―路面座標変換情報を推定する路車間姿勢推定部121と、車体座標系で定義された車体慣性計測装置104が計測した車体の慣性量から重力加速度成分を取り除いて車体103の運動に起因する慣性量を求め、車体103の運動に起因する慣性量を車体―路面座標変換情報を用いて路面座標系に変換する路面上慣性量計算部122と、操舵角計測装置106からの操舵角及び車輪速度計測装置107が計測した車輪速度に基づいて車輪の傾き方向に沿った車輪速度ベクトルを求め、車輪速度ベクトルを基に車輪速度計測装置由来の車輪加速度ベクトルを求め、車輪速度計測装置由来の車輪加速度ベクトル及び車体慣性計測装置由来の路面座標系に変換された加速度ベクトルの差分を基に車輪の横滑り角度を推定する車輪滑り角推定部123とを備える。

Description

車輪の滑り角推定装置及びその方法
 本発明は、鉱山や建設現場で移動するダンプトラックに関し、特に車輪の滑り角推定装置及びその方法に関する。
 ダンプトラックにおいて車輪の滑り角は車体の安定化を図るためにも重要なパラメータである。車輪の滑り角を推定する技術として、特許文献1には、車輪を有する車体に取り付けられた慣性計測装置と操舵角を計測し、車輪の滑り角を推定する構成が開示されている。特許文献1における車輪の滑り角の推定技術は、4つの車輪が接地する平坦な路面が車体と平行であることを仮定している。この仮定によって、路面上での速度を出力する車輪と、ばね上の車体の加速度や角速度といった慣性計測装置の出力軸が合うため、車輪の滑り角を正しく求めることが出来る。そして、多くの乗用車ではこの仮定は大きくずれることは無い。これは、該文献の0038段落に記載のある「ロール角が発生すると(中記省略)タイヤ接地点が左右に移動するため、これと車速Vとの関係でタイヤスリップ角が発生する。」の文言からも判る通り、車体が傾くとタイヤも呼応して傾くことを用いて滑り角を求めていることに相当する。
特開2010-076617号公報
 一般に車両は車輪上にばねを介して車体を搭載して構成される。ダンプトラックのようにばね上の車体に対して積荷により大きな荷重が加えられる場合、ばねが収縮し、車輪及び車輪軸に対して車体が荷重で傾く。車輪及び車輪軸が路面と平行であっても、ばねの収縮によってばね上の車体は傾くので、車体と路面が平行であると仮定をおくことが出来なくなる。このため、車体に取り付けられた慣性計測装置で計測される値は、路面とは違った方向の加速度を計測することになり、正確な車輪滑り角を算出することが難しい。そのため、特許文献1に記載の技術を、乗用車と比べて車体に大きな重量がかかるダンプトラックに適用しても、車体の滑り角を正確に測定することは難しいという課題が残る。
 本発明は上記課題に鑑みてなされたものであり、積載状態によって車体重量が大きく変化するダンプトラックにおいて、車体に取り付けられた慣性計測装置からの出力値を用いて車輪の滑り角を精度よく推定することを目的とする。
 上記課題を解決するために、本発明の一態様は、車輪及び当該車輪上にサスペンションを介して車体を搭載し、当該車体に取り付けられ車体の加速度及び角速度を出力する車体慣性計測装置、前記車体に取り付けられた前記車輪の接地点を含む路面までの距離を計測する路面距離計測装置、前記車輪の回転数に基づく車輪速度を出力する車輪速度計測装置、及び前記車輪の操舵角を計測する操舵角計測装置を備えたダンプトラックの車輪の滑り角推定装置であって、前記路面距離計測装置が計測した前記路面上の計測点までの距離の系列を用いて、前記車体の前後軸、左右軸、及び前後軸と左右軸とに直交する上下軸からなる直交3軸系の車体座標系から、前記前後軸及び前記左右軸を前記路面に投影した直交2軸及びこの直交2軸に垂直な路面垂直軸からなる直交3軸系の路面座標系に変換する車体―路面座標変換情報を推定する路車間姿勢推定部と、前記車体座標系で定義された前記車体慣性計測装置が計測した車体の加速度及び角速度から重力加速度成分を取り除いて前記車体の運動に起因する加速度及び角速度を求め、当該車体の運動に起因する加速度及び角速度を前記車体―路面座標変換情報を用いて前記路面座標系に変換する路面上慣性量計算部と、前記操舵角計測装置からの操舵角及び前記車輪速度計測装置が計測した車輪速度に基づいて前記車輪の傾き方向に沿った前記車輪速度計測装置に由来する車輪加速度ベクトルを求め、前記路面座標系に変換された車体の運動に起因する加速度及び角速度を用いて前記車体慣性計測装置に由来する前記車輪接地点における加速度ベクトルを求め、当該加速度ベクトルと前記車輪速度計測装置に由来する車輪接地点における車輪加速度ベクトルとの差分を基に前記車輪の横滑り角度を推定する車輪滑り角推定部と、を備えることを特徴とする。
 本発明によれば、車体重量が大きく変化するダンプトラックにおいて、車体に取り付けられた慣性計測装置からの出力値を用いて車輪の滑り角を精度よく推定することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ダンプトラックの概略構成を示す図 4つの座標系を示す説明図であって、(a)はグローバル座標系、(b)は路面座標系、車体座標系、及び路面距離計測部座標系L1、L2を示す。 車体座標系を示す図 路面座標系を示す説明図 ダンプトラックの機能構成を示すブロック図 路車間姿勢推定部の処理フローを示した図 LIDAR(Laser Imaging Detection and Ranging)の座標系および計測点を示す図 車体に取り付けたLIDARの計測点列のモデル図 路面上慣性量計算部の処理フローを示した図 車輪滑り角推定部の処理フローを示した図 車輪における速度・加速度・舵角・滑り角の関係を示す図 車両を上面からみた2次元速度ベクトルを示した図 第二実施形態におけるダンプトラックの機能構成を示すブロック図 第二実施形態に係る路車間姿勢推定部のおける路車間姿勢推定部の処理フローを示した図 第二実施形態における路面上慣性量計算部の処理フローを示した図 第二実施形態における実施例2における車輪滑り角推定手段の処理フローを示した図 第二実施形態における車輪における速度・滑り角の関係を示すモデル図
 以下、路面上の各車輪位置における滑り角を精度よく算出するための処理について説明する。
<第一実施形態>
 まず、センサからの計測値を主に使用し、推定値が可能な限り少ない構成での車輪滑り角推定方法について説明する。図1は、ダンプトラックの概略構成を示す図である。ダンプトラック100は、前後左右の車輪101と各々の車輪を支持する車輪軸102と、車輪軸とばね等(例えば不図示のサスペンション)を介してつながった頑丈なフレームである車体103とを含んで構成される。
 ここで説明に使用する4つの座標系を定義する。図2は、4つの座標系を示す説明図であって、(a)はグローバル座標系、(b)は路面座標系、車体座標系、及び路面距離計測部座標系L1、L2を示す。図3は車体座標系を示す図である。図4は路面座標系を示す説明図である。
 第一に、車両の現在地から遠くない、地球上のある点を原点とし、重力方向に対して垂直に交わる平面上にXe軸、Ye軸を設定し、Xe軸とYe軸から右手系を成す向きにZe軸をとった3軸直交座標系を、グローバル座標系eと呼ぶ(図2(a)参照)。
 第二に、車体前後方向にXb軸、車体左右方向Yb軸、上方向にZb軸を取った3軸直交座標系を車体座標系bと呼ぶ(図2(b)参照)。図3に示すに車体座標系bの原点は、車体内に固定された任意の点とする。
 第三に、複数個の車輪101が接地する点により構成される面上を路面と呼び、ダンプトラック100が動作する路面は、どの瞬間を見てもおおむね平坦な平面であると仮定する。この路面上に車体座標系bのXb軸、Yb軸を上記平面に射影した軸をそれぞれ路面座標系rのXr軸、Yr軸とし、上記Xr軸とYr軸から右手系を成す向きにZr軸をとった3軸直交座標系を路面座標系rと呼ぶ(図4参照)。この定義から、グローバル座標系eからみると、路面座標系rは、車体座標系bとともに逐次移動しているように見える。また、Xr軸とYr軸の方向は、車体座標系bにおけるXb軸、Yb軸の方向と一致しているが、Zr軸は上記複数個の車輪が接地する点により構成される面に対して垂直となる方向とはなるが、車体103が必ずしも上記路面に対し平行とはならないので、車体座標系bのZb軸と必ずしも一致するとは限らない。
 第四に、車体103の任意の点に固定された路面までの距離を計測する構成(路面距離計測装置という。詳細は後述する。)において、距離を計測する路面距離計測装置の計測始点を原点とし、距離を計測する方向にXL軸、XL軸と垂直な方向にYL軸、XL軸とYL軸から右手系を成す向きにZL軸をとった3軸直交座標系を路面距離計測装置座標系Lと呼ぶ。この定義から、グローバル座標系eからみると、路面距離計測装置座標系Lは、車体座標系bとともに逐次移動しているように見える。車体103に複数の路面距離計測装置が固定されていた場合、それぞれに対して座標系が定義され、n個の路面距離計測装置中のi番目の路面距離計測装置によって定義される座標系を路面距離計測装置座標系Liと呼ぶ。
 以下の説明において、変数や値の右側についたe、b、r、Liの添え字は、添え字ついた変数や値が、それぞれ、グローバル座標系e、車体座標系b、路面座標系r、i番目の路面距離計測装置座標系Liで表わされた変数や値であることを示している。
 車輪の滑り角とは、上記路面座標系r上にて、車輪101の向いている向きと車輪速度ベクトルが成す角のことをいうものとする。
 図5は、ダンプトラック100の機能構成を示すブロック図である。ダンプトラック100の車体103には、図5に示すように、重力加速度を含んだ加速度や角速度などを車体座標系bで計測する車体慣性計測装置104と、車体の進行方向と交わる1本の直線で連結もしくは近似することができる路面上の2点以上を同サンプル時に計測可能な路面距離計測装置105と、車輪の車体座標系bのXb軸からの傾きを計測する操舵角計測装置106、車輪の回転数に基づく車輪速度を計測する車輪速度計測装置107と、グローバル座標系eのXe軸とYe軸によって張られる水平面と車体座標系bのXb軸およびYb軸が成す傾斜角度およびグローバル座標系eのXe軸から車体座標系bのXb軸までの回転角度で表わされる車体姿勢を計測する車体姿勢計測装置108とが取り付けられている。
 またダンプトラック100は、車体滑り角推定装置120を更に備え、上記車体慣性計測装置104、路面距離計測装置105、操舵角計測装置106、車輪速度計測装置107、車体姿勢計測装置108の其々は車体滑り角推定装置120に各装置の計測結果を出力する。車体滑り角推定装置120は、路車間姿勢推定部121、路面上慣性量計算部122、及び車輪滑り角推定部123を含む。車体滑り角推定装置120は、CPU(Central Processing Unit)等の演算・制御装置の他、車体滑り角推定装置120で実行されるプログラムを格納するROM(Read Only Memory)やHDD(Hard Disk Drive)等の記憶装置、また、CPUがプログラムを実行する際の作業領域となるRAM(Random Access Memory)を含むハードウェアと、路車間姿勢推定部121、路面上慣性量計算部122、及び車輪滑り角推定部123の各機能を実現するソフトウェアとが協働することにより構成される。
 路車間姿勢推定部121は、路面距離計測装置105にて計測した路面との距離の系列を用いて車体103と路面との相対的な傾きを車体座標系bから路面座標系rへの座標変換行列Crbとして推定する。
 路面上慣性量計算部122は、路車間姿勢推定部121と車体慣性計測装置104と車体姿勢計測装置108から、重力加速度成分が取り除き車体座標系bで表わされた車両の慣性量を路面座標系rで表わされた車両の慣性量に変換する。
 車輪滑り角推定部123は、路面上慣性量計算部122と操舵角計測装置106および車輪速度計測装置107を用いて、各車輪の滑り角を高精度に推定する。
 以下に路車間姿勢推定部121での、路面と車体との相対姿勢を推定する方法を図6~図8を参照して説明する。図6は、路車間姿勢推定部の処理フローを示した図である。図7は、LIDARの座標系および計測点を示す図である。図8は、車体に取り付けたLIDARの計測点列のモデル図である。
 まず、ステップ601にて、路面距離計測装置105によって車体103に固定された路面距離計測装置105から路面までの距離を計測する。第一実施形態では距離計測装置として、レーザーにより線走査を行うLIDARを2つ用いた場合を例に説明する。LIDARは図7に示すように、ある点までの距離を連続的に線状に走査する。また、LIDARから計測される距離は、走査した角度と計測点Pまでの距離lであるとする。上記、路面距離計測装置座標系Lの定義に従い、LIDARの走査レーザー射出面方向にXL軸、それと右手系を成す側面方向にYL軸、それら2つの軸によって形成される法線方向にZL軸を規定する。点Pまでの距離lは、計測した際のXL軸と成す角度θによって、3次元座標(pxL、pyL、pzL)で表わすことが可能である。LIDARに固定された路面距離計測装置座標系Lから車体座標系bへの座標変換行列CbLはLIDARの取り付け角度を計測することで事前に与えられる。2つのLIDAR801、802は図8に示すように互いのレーザーが交差するように(交点805)、路面に向けて車体側面に設置されているものとする。
 次にステップ602にて、路面上の点として計測された点座標系列をレーザーの走査線分だけ作る。本実施形態では2つのLIDAR801、802で合計2本のレーザー走査を行ったとして記す。路面点座標系列は、P11=(p11xL、p11yL、p11zL)、P12=(p12xL、p12yL、p12zL)、…、P1i=(p1ixL、p1iyL、p1izL)のように作成される。
 次にステップ603にて、ステップ602で生成した路面点座標系列を車体座標系で表わす。LIDAR801によってn個の計測点列が計測され、それぞれの値が路面距離計測装置座標系LでP1i=(p1ixL、p1iyL、p1izL)(0<i<=n)であったとする。このとき、各点を車体座標系bで表すには、LIDAR801の取り付けられている位置を車体座標系bで表わした点(P1xb、P1yb、P1zb)により、次式(1)のように求めることができる。
Figure JPOXMLDOC01-appb-M000001
 (車体座標系bで表わされた路面上の計測点座標)=(路面距離計測装置座標系Lから車体座標系bへの変換行列)×(路面距離計測装置座標系Lで表わされた計測点座標)+(LIDAR801の取り付けられている位置を車体座標系bで表わした点)
 同様にLIDAR802でもm個の計測点列が計測され、それぞれの値が路面距離計測装置座標系LでP2i=(p2ixL、p2iyL、p2izL)(0<i<=m)であったとする。このとき、各点を車体座標系bで表すには、LIDAR802の取り付けられている位置を車体座標系bで表わした点(P2xb、P2yb、P2zb)により、次式(2)のように求めることができる。
Figure JPOXMLDOC01-appb-M000002
 (車体座標系bで表わされた路面上の計測点座標)=(路面距離計測装置座標系Lから車体座標系bへの変換行列)×(路面距離計測装置座標系Lで表わされた計測点座標)+(LIDAR802の取り付けられている位置を車体座標系bで表わした点)
 次にステップ604にて路面平面の法線ベクトルを求める。この法線ベクトルは路面座標系rのZr軸上の単位ベクトルを車体座標系bで表わしていることになる。
 2つの距離計測装置(本実施形態ではLIDAR801、802)は計測の同期がとれているものとすると、1回の走査によって、各距離計測装置から得られた2つの点列合わせてn+m個を得ることが出来る。これらの点が成す平面を路面として、最小二乗法により路面の法線ベクトルUを求める。法線ベクトルUは路面を表わす平面方程式Ax+By+Cz+D=0の法線単位ベクトルであり、次式(3)のように表される。
Figure JPOXMLDOC01-appb-M000003
 ステップ603で求めた、2つの路面距離計測装置105によって計測された車体座標系bで表わされた路面上の計測点座標であるP1i=(p1ixL、p1iyL、p1izL)(0<i<=n)およびP2i=(p2ixL、p2iyL、p2izL)(0<i<=m)から、最小二乗法により法線ベクトルUは次式(4)で求めることができる。
Figure JPOXMLDOC01-appb-M000004
 次にステップ605にて、車体座標系bから路面座標系rへの座標変換行列を計算する。路面座標系rは上述の定義に従い、車体座標系bのXb軸、Yb軸を路面に射影した2つの直交ベクトルexr、eyrとその法線ezrベクトルがそれぞれXr軸、Yr軸、Zr軸と合致することで形成される。ステップ604で求めた車体座標系bで表わされた法線ベクトルUは路面座標系rのZr軸上に存在するため、車体座標系bのZb軸と同じく車体座標系で表された路面の平面方程式から得られた法線ベクトルU=(A、B、C)との回転行列Rは四元数(q0、q1、q2、q3)により次式(5)のように求めることが出来る。
Figure JPOXMLDOC01-appb-M000005
 上述のように、車体座標系bで表わされた路面の法線ベクトルUは路面座標系のZr軸と重なるため、車体座標系bから路面座標系rへの座標変換行列Crb=R と求めることができる。以上の処理フローを経て路車間姿勢推定部121の処理を終了する。
 次に路面上慣性量計算部122の処理を図9に示すフローに従って説明する。図9は路面上慣性量計算部の処理フローを示した図である。
 まず、ステップ901にて、車体姿勢計測装置108により車体の姿勢を計測する。本実施形態では姿勢は重力加速度の向きに垂直に交わる平面上に設定されたグローバル座標系eに対する車体座標系bへの変換を求めるパラメータである。一例として、位置推定装置を3つ取り付けることにより姿勢を推定する方法が特開2010-190806号公報に示されており、これを姿勢計測手段に適用することで姿勢を計測する。上記方法により計測される姿勢はグローバル座標系eから車体座標系bへの3つの変換パラメータであり、ロール角ψ、ピッチ角φ、ヨー角θと呼ぶ。 
 次にステップ902にて、グローバル座標系eから車体座標系bへの座標変換行列Cebを求める。ステップ901で計測された角度は、グローバル座標系eの各軸をXe軸、Ye軸、Ze軸の回転角度であり、本実施形態では、Ze軸、Ye軸、Xe軸の順番にそれぞれの角度分だけ回転させることを考える。このとき、座標変換行列Cebは次式(6)のように求まる。
Figure JPOXMLDOC01-appb-M000006
 次にステップ903にて、車体座標系bにおける慣性量を計測する。ここで慣性量とは加速度や角速度をいう。車体慣性計測装置104は車体座標系bの各軸に対する重力加速度を含めた加速度と角速度を計測する。本実施形態では車体慣性計測装置104として、車体座標系bのXb軸、Yb軸、Zb軸それぞれに備えられた3軸加速度センサ、3軸ジャイロセンサを考える。
 次にステップ904にて、車体103の運動による加速度および角速度を計算する。ステップ902にて算出したグローバル座標系eから車体座標系bへの座標変換行列を用いて、ステップ903で得られた加速度センサの出力値ベクトルαより車体座標系bにおける重力項を取り除き、車体103が運動することによって生じる加速度ベクトルaを算出する。
Figure JPOXMLDOC01-appb-M000007
 (車体座標系bの車体加速度)=(車体座標系bで計測された加速度センサ出力値)―(グローバル座標系eから車体座標系bへの座標変換行列)×(グローバル座標系eで表わされた重力加速度ベクトル)
 車体角速度はグローバル座標系eで表わされた誤差入力がない限り、ステップ903で得られたジャイロセンサの出力値ベクトルω(次式(8)参照)をそのまま用いる。
Figure JPOXMLDOC01-appb-M000008
 次にステップ905にて、車輪の接地点における、車体運動によって生じる加速度および角速度を路面座標系rで表わす。ステップ904にて求めた車体座標系bで表わされた車体に加わる加速度ベクトルaと車体座標系各軸の角速度であるジャイロセンサの出力値ベクトルωを路車間姿勢推定部121にて求めた座標変換行列Crbを用いて路面座標系rで表わす。車体座標系bから路面座標系rへの座標変換行列Crbにより、路面座標系rで表わされる車体慣性計測装置104上の加速度ベクトルaおよび角速度ベクトルωは次式(9)のように表わされる。
Figure JPOXMLDOC01-appb-M000009
 よって、車輪接地点の路面座標系rで表わされた加速度ベクトルatrは次式(10)のように表される。
Figure JPOXMLDOC01-appb-M000010
 以上の処理フローを経て路面上慣性量計算部122の処理を終了する。
 次に車輪滑り角推定部123の処理を図10及び図11を参照して説明する。図10は、車輪滑り角推定部の処理フローを示した図である。図11は、車輪における速度・加速度・舵角・滑り角の関係を示す図である。路面上の加速度・角速度が求まれば、車輪滑り角推定部123において以下のように各車輪101における滑り角を求める。
 まず、ステップ1001にて、操舵角計測装置106にて計測した車輪の車体座標系bのXb軸に対する傾きδbを取得する。
 次に、ステップ1002にて、車輪の傾きδbを路面座標系rのXr軸に対する傾きδr1101に変換する。ここでは、車体座標系bと路面座標系rの定義から、Xb軸とXr軸の向きは合致しているため、δb=δr1101としてもよいことが明らかである。
 次に、ステップ1003にて、車輪速度計測装置107にて車輪接地点における車輪速度Vを取得する。前述のように車輪接地点における車輪速度は路面上の進行速度(スカラー値)である。
 次に、ステップ1004にて、路面座標系rで表わした車輪接地点での速度ベクトルV1102を求める。車輪回転量が車輪の傾き方向の回転を表わしているとすると、ステップ1003で得られた車輪速度Vは路面座標系rの車輪接地点での速度ベクトルV1102の大きさであると言えるので、路面座標系rの車輪接地点での速度ベクトルV1102は次式(11)のように表わすことができる。
Figure JPOXMLDOC01-appb-M000011
 (路面座標系rにおける車輪接地点での速度ベクトル)=(路面座標系rにおける車輪速度の大きさ)×(車輪傾きによる路面座標系分配成分)ただし、Vは車輪速度計測装置107から得られた速度であり、δは、ステップ1002にて得られた路面座標系rのXr軸に対する傾きである。
 次にステップ1005にて、路面座標系rで表わした車輪接地点での加速度ベクトル(dVr/dt)1103を求める。加速度ベクトルはステップ1004にて計算された速度ベクトルV1102を時間微分した値とすればよいので以下のように表わすことができる。
Figure JPOXMLDOC01-appb-M000012
 次にステップ1006にて、路面座標系rでの車輪接地点における向心加速度ベクトルαtr1104を計算する。車体慣性計測装置104由来の路面座標系rでの車輪接地点での加速度ベクトルatr1112と、 車輪速度計測装置107由来の路面座標系rで表わした車輪接地点での加速度ベクトル(dVr/dt)1103との差から、路面座標系rでの車輪接地点における向心加速度ベクトルαtr1104を次式(13)のように計算する。 
Figure JPOXMLDOC01-appb-M000013
 次にステップ1007にて、車輪滑り角を求める。 ステップ1006にて計算した、路面座標系rでの車輪接地点における向心加速度ベクトルαtr1104と垂直な方向に旋回速度成分、ベクトルvtr1105が生じるので、車輪の横滑り角β1106は路面座標系rでの車輪接地点における向心加速度ベクトルαtr1104と車輪進行方向と垂直に交わるベクトルとの成す角である横滑り角β1106として次式(14)に従って求めることができる。
Figure JPOXMLDOC01-appb-M000014
(横滑り角度)=arccos{(路面座標系rでの車輪接地点における向心加速度ベクトルと車輪横方向の単位ベクトルとの内積)/(路面座標系rでの車輪接地点における向心加速度ベクトルの大きさ)}
 以上の処理フローを経て車輪滑り角推定部123の処理を終了する。
 図12は車両を上面からみた2次元速度ベクトルを示した図である。車輪滑り角推定部123は、上述の方法で、左前輪1202の滑り角、右前輪1203の滑り角、左後輪1204の滑り角、右後輪1205の滑り角を求めることができる。ただし、左後輪1204、右後輪1205のように複数の車輪が連なって構成されている場合は、車輪と車輪との間をとって滑り角を求めてもよい。
 以上の処理により、車輪滑り角推定部123では車体に取り付けられた車体慣性計測装置104の出力値を用いて高精度に滑り角を推定することができる。
 第一実施形態によれば、車体重量が大きく変化するダンプトラックにおいて、車輪滑り角推定部123では車体に取り付けられた車体慣性計測装置の出力値を用いて車体と路面が平行になっておらずとも高精度に各車輪における滑り角を推定することができる。
<第二実施形態>
 次に、第一実施形態と異なった少ない計測装置の構成で車輪滑り角推定方法について説明する。第二実施形態でもダンプトラックが動作する路面は、どの瞬間を見てもおおむね平坦な平面であると仮定する。また、各座標系の定義は第一実施形態と同じである。
 図13は第二実施形態におけるダンプトラックの機能構成を示すブロック図である。ダンプトラック100aは、第一実施形態と同様、車輪101と左右の車輪を繋いだ車輪軸102と、車輪軸がばね等によりつながった車体103とで構成される。
 ダンプトラック100aの車体103に取り付けられた車体慣性計測装置104として、図13に示すように、車体座標系bのZb軸周りの角速度を計測するヨーレートセンサ1301を備えた場合を考える。また、路面距離計測装置105として、車輪軸102に取り付けられたストロークを計測するストロークセンサ1302を用いる。車輪の傾きを計測する操舵角計測装置106を有し、車輪速度計測装置107に代わり車体103の路面に対する速度を車体座標系bで計測する車体速度計測装置1303が取り付けられている。車体速度計測装置1303は、例えば車体に取り付けたGNSSアンテナで計測されるドップラー周波数を用いて推定したグローバル座標系eの速度を第一実施形態で用いたような車体姿勢計測装置等により車体座標系bに変換したり、直接車体に取り付けたミリ波レーダーで車体と路面との相対速度を計測するなどが当たる。操舵角計測装置106は操舵輪である左前輪1202あるいは、右前輪1203の少なくともいずれか1つの操舵角を計測する。
 第二実施形態における車輪滑り角の推定方法について述べる。まず、路車間姿勢推定部1321はストロークセンサ1302の計測値を用いて、路面と車体座標系bのXb軸Yb軸で張られる平面との傾きを推定し、車体座標系bから路面座標系rへの座標変換行列Crbとして算出する。
 次に、路面上慣性量計算部1322はヨーレートセンサ1301で計測される車体103のZb軸周りの角速度と車体速度計測装置1303で計測される車体の速度を計測し、路車間姿勢推定部1321にて推定された車体座標系bから路面座標系rへの座標変換行列Crbから、路面座標系rで表わされた車輪接地点の速度および角速度に変換する。そして、各車輪の滑り角を推定する車輪滑り角推定部1323は操舵角計測装置106と路面上慣性量計算部1322で得られた路面座標系rで表わされた車輪接地点の速度および角速度を用いて、車輪接地点の横速度を求めることで、車輪滑り角を高精度に推定する。
 上述の構成で車輪滑り角を推定する一つの方法を例示する。
 初めに、路車間姿勢推定部1321の処理について図14のフローに従い説明する。図14は第二実施形態に係る路車間姿勢推定部のおける路車間姿勢推定部の処理フローを示した図である。
 ステップ1401にて、各車輪に対して取り付けられたストロークセンサ1302によって車体103に取り付けられたストロークセンサ1302の始点から車輪軸102までの距離を計測する。ストロークセンサ1302は車輪軸102に垂直もしくは一定の角度を保ったまま車輪軸102と車体103のストロークセンサ1302が取り付けられた始点の位置との距離を計測するものとする。最終的に推定したい値は路面座標系rと車体座標系bとの傾きであるので、車輪101のひずみは無視できると考え、ばね下の車輪軸は路面平面と平行であると仮定すれば直接路面上の点を計測する必要はない。
 次に、ステップ1402にて、車体座標系bで表わされた車輪軸102の位置を求める。合計n個のストロークセンサ1302に固定された路面距離計測装置座標系Lから車体座標系bへの座標変換行列CbLは取り付け位置や方向を計測することで事前に与えられているとすれば、路面距離計測装置座標系Lで表わされるi番目のストロークセンサi(0<i<n)からの出力liLによって、計測される車輪軸102の位置(pixb、piyb、pizb)を車体座標系bで表すと、ストロークセンサの取り付け位置を車体座標系bで表わした点Pi(Pixb、Piyb、Pizb)により、以下のように求めることができる。
Figure JPOXMLDOC01-appb-M000015
 次にステップ1403にて、路面平面の法線ベクトルを求める。合計n個の点を計測した場合、これらに最も近い平面を路面と平行な平面として求めることができ、路面の法線ベクトルUbを平行移動したベクトルを求めることもできる。後段での傾きを求める際にはこの平面の法線ベクトルの始点は重要でないため、路面と平行な平面の法線ベクトルを路面の法線ベクトルUbとしてもよい。最小二乗法により路面の法線ベクトルUを求めると、次式(16)以下のように表される。
Figure JPOXMLDOC01-appb-M000016
 ステップ1402で求めた、ストロークセンサ1302によって計測された車体座標系bで表わされた車輪軸102の点座標(pixb、piyb、pizb)(3<i)から、最小二乗法により法線ベクトルUは以下で求めることができる。
Figure JPOXMLDOC01-appb-M000017
 次にステップ1404にて、車体座標系bから路面座標系rへの座標変換行列を計算する。路面座標系rは上述の定義に従い車体座標系bのXb軸、Yb軸を路面に射影した2つの直交ベクトルを考えexr、eyrとその法線ezrベクトルがそれぞれXr軸、Yr軸、Zr軸と合致することで形成される。ステップ1403で求めた車体座標系bのZb軸と同じく車体座標系で表された路面に平行な平面方程式から得られた法線ベクトルU=(A、B、C)との回転行列Rから車体座標系bから路面座標系rへの座標変換行列Crbは第一実施形態のステップ605と同様にして求めることが出来る。
 以上で路車間姿勢推定部1321の処理を終了する。
 次に路面上慣性量計算部1322の処理を図15のフローに従って説明する。図15は、第二実施形態における路面上慣性量計算部の処理フローを示した図である。
 まずステップ1501にて、車体速度計測装置1303から車体速度ベクトルVを取得する。車体速度計測装置1303で計測できるのは、車体速度計測装置1303が取り付けられた位置における車体103の路面に対する車体座標系bの各軸方向の速度である。
 次にステップ1502にて、ヨーレートセンサ1301により、車体座標系bのZb軸周りの車体座標系bで表わされた角速度を計測する。
 次にステップ1503にて、路車間姿勢推定部1321にて、求めた座標変換行列Crbからステップ1501で取得した車体速度ベクトルVと、ステップ1502で取得した車体座標系Zb軸の角速度であるジャイロセンサの出力値ωzbを路面座標系rで表わす。車体座標系bから路面座標系rへの座標変換行列Crbにより、路面と平行な平面上の速度ベクトルVおよび角速度ベクトルωは次式(18)のように表わされる。
Figure JPOXMLDOC01-appb-M000018
 よって、路面と平行な平面上の路面座標系rで表わされた各車輪軸位置での速度ベクトルVtrは次式(19)のように表される。
Figure JPOXMLDOC01-appb-M000019
 以上の処理フローを経て路面上慣性量計算部1322の処理を終了する。
 次に、車輪滑り角推定部1323において図16及び図17を参照した第二実施形態における車輪滑り角推定部の処理について説明する。図16は、第二実施形態における実施例2における車輪滑り角推定手段の処理フローを示した図である。図17は、第二実施形態における車輪における速度・滑り角の関係を示すモデル図である。
 まず、ステップ1601にて、操舵角計測装置106にて計測した車輪の車体座標系bのXb軸に対する傾きδbを取得する。
 次に、ステップ1602にて、車輪の傾きδbを路面座標系rのXr軸に対する傾きδr1701に変換する。ここでは、車体座標系bと路面座標系rの定義から、Xb軸とXr軸の向きは合致しているため、δb=δr1701としてもよいことが明らかである。
 次に、ステップ1603にて、路面上慣性量計算部1322にて計算した各車輪軸102における路面と平行な平面上の路面座標系rで表わされた各車輪軸位置での速度ベクトルVtrを取得する。
 次に、ステップ1604にて、ステップ1602にて取得した車輪101の路面座標系rに対する傾きδ1701と、ステップ1603で求めた路面と平行な平面上の各車輪軸位置での速度ベクトルVtrから、車輪滑り角を計算する。車輪の横滑り角β1702は次式(20)により求めることができる。
Figure JPOXMLDOC01-appb-M000020
 第二実施形態によれば、第一実施形態と同様、車体重量が大きく変化するダンプトラックにおいて、車輪滑り角推定部123では車体に取り付けられた車体慣性計測装置の出力値を用いて車体と路面が平行になっておらずとも高精度に各車輪における滑り角を推定することができる。それに加えて、第一実施形態よりも少ない計測装置の構成で車輪滑り角を推定することができる。
 上記実施形態は、本発明を限定するものではなく本発明の趣旨を逸脱しない範囲での様々な変更態様がありうる。例えば、本発明の構成として、第一実施形態の一部と第二実施形態の一部を入れ替えもしくは組み合わせたとしても同様の効果が得られる。
 100、100a ダンプトラック
 101 車輪
 102 車輪軸
 103 車体
 104 車体慣性計測装置
 105 路面距離計測装置
 106 操舵角計測装置
 107 車輪速度計測装置
 120、120a 車輪滑り角算出装置
 121 路車間姿勢推定部
 122 路面上慣性量計算部
 123 車輪滑り角推定部

Claims (9)

  1.  車輪及び当該車輪上にサスペンションを介して車体を搭載し、当該車体に取り付けられ車体の加速度及び角速度を出力する車体慣性計測装置、前記車体に取り付けられた前記車輪の接地点を含む路面までの距離を計測する路面距離計測装置、前記車輪の回転数に基づく車輪速度を出力する車輪速度計測装置、及び前記車輪の操舵角を計測する操舵角計測装置を備えたダンプトラックの車輪の滑り角推定装置であって、
     前記路面距離計測装置が計測した前記路面上の計測点までの距離の系列を用いて、前記車体の前後軸、左右軸、及び前後軸と左右軸とに直交する上下軸からなる直交3軸系の車体座標系から、前記前後軸及び前記左右軸を前記路面に投影した直交2軸及びこの直交2軸に垂直な路面垂直軸からなる直交3軸系の路面座標系に変換する車体―路面座標変換情報を推定する路車間姿勢推定部と、
     前記車体座標系で定義された前記車体慣性計測装置が計測した車体の加速度から重力加速度成分を取り除いて前記車体の運動に起因する加速度及び角速度を求め、当該車体の運動に起因する加速度及び角速度を前記車体―路面座標変換情報を用いて前記路面座標系に変換する路面上慣性量計算部と、
     前記操舵角計測装置からの操舵角及び前記車輪速度計測装置が計測した車輪速度に基づいて前記車輪の傾き方向に沿った前記車輪速度計測装置に由来する車輪加速度ベクトルを求め、前記路面座標系に変換された車体の運動に起因する加速度及び角速度を用いて前記車体慣性計測装置に由来する車輪接地点における加速度ベクトルを求め、当該加速度ベクトルと前記車輪速度計測装置に由来する車輪接地点における車輪加速度ベクトルとの差分を基に前記車輪の横滑り角度を推定する車輪滑り角推定部と、
     を備えることを特徴とするダンプトラックの車輪の滑り角推定装置。
  2.  請求項1に記載のダンプトラックの車輪の滑り角推定装置であって、
     前記路車間姿勢推定部は、前記路面上の計測点までの距離の系列に基づいて、前記車体座標系で定義された前記路面の法線ベクトルを求め、前記路面垂直軸及び前記法線ベクトルの傾き角を算出し、当該傾き角を用いて前記車体―路面座標変換情報を推定する、
     ことを特徴とするダンプトラックの車輪の滑り角推定装置。
  3.  請求項1に記載のダンプトラックの車輪の滑り角推定装置であって、
     前記車体のグローバル座標系からのずれ量を計測する車体姿勢計測装置を更に備え、
     前記路面上慣性量計算部は、前記車体姿勢計測装置の計測値を基に姿勢すなわち前記グローバル座標系から前記車体座標系に変換するグローバル―車体座標変換情報を推定し、当該グローバル―車体座標変換情報を用いて重力加速度を前記車体座標系に変換し、変換後の重力加速度を前記車体慣性計測装置が計測した前記車体の加速度から取り除く、
     ことを特徴とするダンプトラックの車輪の滑り角推定装置。
  4.  請求項1に記載のダンプトラックの車輪の滑り角推定装置であって、
     前記車輪滑り角推定部は、前記車輪速度計測装置に由来する車輪加速度ベクトル及び前記車体慣性計測装置に由来する加速度ベクトルの差分から前記路面座標系での向心加速度ベクトルを求め、前記路面上において前記車輪速度計測装置に由来する車輪加速度ベクトルに垂直に交わるベクトル及び前記向心加速度ベクトルのなす角を車輪の横滑り角度として推定する、
     ことを特徴とするダンプトラックの車輪の滑り角推定装置。
  5.  請求項1に記載のダンプトラックの車輪の滑り角推定装置において、
     前記ダンプトラックは、左前輪、右前輪、左後輪、及び右後輪を備え、
     前記車輪の滑り角推定部は、左前輪、右前輪、左後輪、及び右後輪のそれぞれについて、各車輪が前記路面に接地する各車輪接地点での前記車輪速度計測装置に由来する車輪加速度ベクトル、及び前記各車輪接地点での前記車体慣性計測装置に由来する加速度ベクトルを求め、これらを基に前記各車輪の横滑り角度を推定する、
     ことを特徴とするダンプトラックの車輪の滑り角推定装置。
  6.  請求項1に記載のダンプトラックの車輪の滑り角推定装置において、
     前記路面距離計測装置は、前記車体の進行方向と交わる1本の直線で連結もしくは近似することができる前記路面上の2点以上を同サンプル時に計測する、
     ことを特徴とするダンプトラックの車輪の滑り角推定装置。
  7.  車輪及び当該車輪上にサスペンションを介して車体を搭載し、前記車輪及び前記車体とのストローク距離を計測するストロークセンサ、前記車体の速度を計測する車体速度計測装置、及び前記車体のヨーレートを計測するヨーレートセンサ、及び前記車輪の操舵角を計測する操舵角計測装置を備えたダンプトラックの車輪の滑り角推定装置であって、
     前記ストローク距離を用いて、前記車体の前後軸、左右軸、及び前後軸と左右軸とに直交する上下軸からなる直交3軸系の車体座標系から、前記車輪を連結する車輪軸位置における前記車輪が接地する路面に平行な平面に前記前後軸及び前記左右軸を投影した直交2軸及びこの直交2軸に垂直な路面垂直軸からなる直交3軸系の路面座標系に変換する車体―路面座標変換情報を推定する路車間姿勢推定部と、
     前記ヨーレートセンサが出力する前記車体の角速度及び前記車体速度計測装置が計測した車体速度ベクトルを前記車体―路面座標変換情報に基づき前記路面座標系に変換し、これら路面座標系に変換された前記車体の角速度及び前記車体速度ベクトルを基に前記平面上の前記車輪軸位置における前記路面座標系で表されたける車体速度ベクトルを推定する路面上慣性量計算部と、
     前記車輪軸位置における車体速度ベクトルの横方向成分を前記車体速度ベクトルの大きさで除算した値、及び前記操舵角計測装置から取得した操舵角に基づいて前記車輪の横滑り角度を推定する車輪滑り角推定部と、
     を備えることを特徴とするダンプトラックの車輪の滑り角推定装置。
  8.  車輪及び当該車輪上にサスペンションを介して車体を搭載したダンプトラックにおける車輪の滑り角推定方法であって、
     前記車体に取り付けられた前記車体及び前記車輪が接地する路面までの距離を測定する路面距離計測装置が計測した前記路面上の計測点までの距離の系列を用いて、前記車体の前後軸、左右軸、及び前後軸と左右軸とに直交する上下軸からなる直交3軸系の車体座標系から、前記前後軸及び前記左右軸を前記路面に投影した直交2軸及びこの直交2軸に垂直な路面垂直軸からなる直交3軸系の路面座標系に変換する車体―路面座標変換情報を推定するステップと、
     前記車体に取り付けられた車体慣性計測装置が計測した加速度及び角速度を取得し、当該加速度から重力加速度成分を取り除いて前記車体の運動に起因する加速度及び角速度を求め、当該車体の運動に起因する加速度及び角速度を前記車体―路面座標変換情報を用いて前記路面座標系に変換するステップと、
     前記車輪の操舵角を計測する操舵角計測装置から操舵角を取得し、前記車輪の回転数に基づく車輪速度を計測する車輪速度計測装置から車輪速度を取得し、前記車輪の傾き方向に沿った前記車輪速度計測装置に由来する車輪加速度ベクトルを求め、前記路面座標系に変換された車体の運動に起因する加速度及び角速度を用いて前記車体慣性計測装置に由来する車輪接地点における加速度ベクトルを求め、当該加速度ベクトルと前記車輪速度計測装置に由来する車輪接地点における車輪加速度ベクトルとの差分を基に前記車輪の横滑り角度を推定するステップと、
     を含むことを特徴とするダンプトラックの車輪の滑り角推定方法。
  9.  車輪及び当該車輪上にサスペンションを介して車体を搭載したダンプトラックにおける車輪の滑り角推定方法であって、
     前記車輪及び前記車体とのストローク距離を計測するストロークセンサから取得した前記ストローク距離を用いて、前記車体の前後軸、左右軸、及び前後軸と左右軸とに直交する上下軸からなる直交3軸系の車体座標系から、前記車輪を連結する車輪軸位置における前記車輪が接地する路面に平行な平面に前記前後軸及び前記左右軸を投影した直交2軸及びこの直交2軸に垂直な路面垂直軸からなる直交3軸系の路面座標系に変換する車体―路面座標変換情報を推定するステップと、
     前記車体のヨーレートを計測するヨーレートセンサから前記車体の角速度を取得し、前記車体の速度を計測する車体速度計測装置から車体速度ベクトルを取得し、前記取得した角速度及び車体速度ベクトルを前記車体―路面座標変換情報に基づき前記路面座標系に変換し、これら路面座標系に変換された前記角速度及び前記車体速度ベクトルを基に前記平面上の前記車輪軸位置における前記路面座標系で表された車体速度ベクトルを推定するステップと、
     前記車輪軸位置における車体速度ベクトルの横方向成分を前記車体速度ベクトルの大きさで除算した値及び前記車輪の操舵角を計測する操舵角計測装置から取得した操舵角に基づいて前記車輪の横滑り角度を推定するステップと、
     を含むことを特徴とするダンプトラックの車輪の滑り角推定方法。
PCT/JP2016/076352 2015-11-11 2016-09-07 車輪の滑り角推定装置及びその方法 WO2017081921A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16863885.6A EP3375694B1 (en) 2015-11-11 2016-09-07 Device and method for estimating slip angle of vehicle wheel
CN201680059002.5A CN108137091B (zh) 2015-11-11 2016-09-07 车轮的偏滑角推定装置及其方法
US15/771,150 US10625747B2 (en) 2015-11-11 2016-09-07 Device and method for estimating slip angle of vehicle wheel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-221359 2015-11-11
JP2015221359A JP6473684B2 (ja) 2015-11-11 2015-11-11 車輪の滑り角推定装置及びその方法

Publications (1)

Publication Number Publication Date
WO2017081921A1 true WO2017081921A1 (ja) 2017-05-18

Family

ID=58695163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076352 WO2017081921A1 (ja) 2015-11-11 2016-09-07 車輪の滑り角推定装置及びその方法

Country Status (5)

Country Link
US (1) US10625747B2 (ja)
EP (1) EP3375694B1 (ja)
JP (1) JP6473684B2 (ja)
CN (1) CN108137091B (ja)
WO (1) WO2017081921A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433699A (zh) * 2017-12-05 2020-07-17 日本电产株式会社 移动机器人的控制装置和移动机器人系统
CN115218860A (zh) * 2022-09-20 2022-10-21 四川高速公路建设开发集团有限公司 一种基于Mems加速度传感器的道路形变预测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10308259B1 (en) * 2018-06-11 2019-06-04 Caterpillar Inc. Slip determining system and methods for a machine
WO2020090863A1 (ja) * 2018-10-30 2020-05-07 東京計器株式会社 誤差補正装置
US11187719B2 (en) * 2019-01-08 2021-11-30 Qualcomm Incorporated In-motion initialization of accelerometer for accurate vehicle positioning
CN110705120B (zh) * 2019-10-12 2023-05-23 中国水利水电第七工程局有限公司 一种隧道无轨自行式变质量平台车的重心位置动态计算方法
US20210156881A1 (en) * 2019-11-26 2021-05-27 Faro Technologies, Inc. Dynamic machine vision sensor (dmvs) that performs integrated 3d tracking
WO2022056816A1 (zh) * 2020-09-18 2022-03-24 中国科学院重庆绿色智能技术研究院 一种车辆防抖稳定器感知方法、应用、系统
JP2022104270A (ja) * 2020-12-28 2022-07-08 本田技研工業株式会社 車両状態推定装置、車両状態推定方法、及び、車両状態推定プログラム
US11872994B2 (en) * 2021-10-30 2024-01-16 Zoox, Inc. Estimating vehicle velocity
WO2023169652A1 (en) * 2022-03-07 2023-09-14 Volvo Truck Corporation Radar systems for determining vehicle speed over ground

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059034A1 (en) * 2006-08-30 2008-03-06 Ford Global Technologies, Llc Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
US20080264709A1 (en) * 2007-04-16 2008-10-30 Oliver Fenker Truck
JP2010188762A (ja) * 2009-02-16 2010-09-02 Honda Motor Co Ltd 路面摩擦係数推定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4213994B2 (ja) * 2003-05-28 2009-01-28 株式会社豊田中央研究所 タイヤグリップ度推定装置及び方法、走行状態制御方法
US8712639B2 (en) * 2006-08-30 2014-04-29 Ford Global Technologies Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine longitudinal velocity
DE102008013102A1 (de) * 2007-10-19 2009-04-23 Robert Bosch Gmbh Verfahren zur Fahrzustandsbeobachtung
JP2010076617A (ja) 2008-09-26 2010-04-08 Toyota Motor Corp 車両用操舵角制御装置
US9221439B2 (en) * 2009-02-16 2015-12-29 Honda Motor Co., Ltd. Road surface frictional coefficient estimating apparatus
JP5706253B2 (ja) * 2011-07-04 2015-04-22 日立建機株式会社 電気駆動ダンプトラック
MX2015004135A (es) * 2012-10-04 2015-07-06 Nissan Motor Dispositivo para control de la direccion.
JP6095065B2 (ja) * 2013-09-13 2017-03-15 日立建機株式会社 ダンプトラック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080059034A1 (en) * 2006-08-30 2008-03-06 Ford Global Technologies, Llc Integrated control system for stability control of yaw, roll and lateral motion of a driving vehicle using an integrated sensing system to determine a sideslip angle
US20080264709A1 (en) * 2007-04-16 2008-10-30 Oliver Fenker Truck
JP2010188762A (ja) * 2009-02-16 2010-09-02 Honda Motor Co Ltd 路面摩擦係数推定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3375694A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111433699A (zh) * 2017-12-05 2020-07-17 日本电产株式会社 移动机器人的控制装置和移动机器人系统
CN115218860A (zh) * 2022-09-20 2022-10-21 四川高速公路建设开发集团有限公司 一种基于Mems加速度传感器的道路形变预测方法

Also Published As

Publication number Publication date
EP3375694B1 (en) 2020-10-21
CN108137091B (zh) 2020-04-28
US10625747B2 (en) 2020-04-21
JP6473684B2 (ja) 2019-02-20
EP3375694A4 (en) 2019-07-17
CN108137091A (zh) 2018-06-08
EP3375694A1 (en) 2018-09-19
JP2017087997A (ja) 2017-05-25
US20180312170A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2017081921A1 (ja) 車輪の滑り角推定装置及びその方法
CN106476728B (zh) 用于车载的车辆传感器的运动补偿
EP3306429B1 (en) Position estimation device and position estimation method
JP2017087997A5 (ja)
JP7036080B2 (ja) 慣性航法装置
CN113432553B (zh) 一种挂车夹角的测量方法、装置及车辆
CN113819914A (zh) 一种地图构建方法及装置
CN111183370A (zh) 车辆传感器的校准和定位
JP2010165352A (ja) 多重3次元ワーピングに基づく物体運動検出システムおよび方法とこのようなシステムを備えた車両
US11796414B2 (en) Determining vehicle load center of mass
CN113819905A (zh) 一种基于多传感器融合的里程计方法及装置
JP6380550B2 (ja) 表示装置及び表示方法
KR20160120467A (ko) 차량용 2차원 레이더의 방위각 보정 장치 및 방법
US20190283760A1 (en) Determining vehicle slope and uses thereof
Parra-Tsunekawa et al. A kalman-filtering-based approach for improving terrain mapping in off-road autonomous vehicles
JP2015215299A (ja) 対象物位置推定装置
JP5895682B2 (ja) 障害物検出装置及びそれを備えた移動体
Yang et al. Inertial-aided vision-based localization and mapping in a riverine environment with reflection measurements
JP7225079B2 (ja) 障害物認識装置
WO2020075412A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
TWI394944B (zh) 車輛姿態估測系統與方法
WO2022033139A1 (zh) 一种自运动估计方法及相关装置
US20230215026A1 (en) On-vehicle spatial monitoring system
JP5916559B2 (ja) 車両の操舵制御装置
JP2018160848A (ja) 表示装置の制御方法および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863885

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15771150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE