WO2022056816A1 - 一种车辆防抖稳定器感知方法、应用、系统 - Google Patents

一种车辆防抖稳定器感知方法、应用、系统 Download PDF

Info

Publication number
WO2022056816A1
WO2022056816A1 PCT/CN2020/116136 CN2020116136W WO2022056816A1 WO 2022056816 A1 WO2022056816 A1 WO 2022056816A1 CN 2020116136 W CN2020116136 W CN 2020116136W WO 2022056816 A1 WO2022056816 A1 WO 2022056816A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inertial sensor
angle
shake compensation
coordinate system
Prior art date
Application number
PCT/CN2020/116136
Other languages
English (en)
French (fr)
Inventor
朱帆
陈琳
尚明生
Original Assignee
中国科学院重庆绿色智能技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院重庆绿色智能技术研究院 filed Critical 中国科学院重庆绿色智能技术研究院
Priority to CN202080068853.2A priority Critical patent/CN114521239A/zh
Priority to PCT/CN2020/116136 priority patent/WO2022056816A1/zh
Publication of WO2022056816A1 publication Critical patent/WO2022056816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention belongs to the technical field of vehicle data information perception, and in particular relates to a vehicle anti-shake stabilizer perception method, application and system.
  • the perception sensor (camera, lidar) of the vehicle often needs to be installed in a relatively high position of the vehicle due to the requirements of the field of view. For trucks, it is often necessary to install near the front of the truck, such as near the upper edge of the windshield.
  • the front of the truck often has a relatively soft air suspension to ensure the body feeling of passengers and drivers.
  • the senor is installed behind the soft air suspension and is far away from the rigid part of the vehicle body, and the vibration of the suspension will be amplified at the sensor. It can have a very bad effect on the perceived results. Because it is difficult for the sensor to determine whether the angle of the vehicle has actually changed, or whether it is just the noise caused by the vehicle suspension, it cannot be well compensated.
  • one of the objectives of the present invention is to provide a vehicle anti-shake stabilizer sensing method, application and system.
  • the technical scheme of the present invention is:
  • a vehicle shake compensation method comprising the following steps:
  • the sensing device and the second inertial sensor are installed on a rigid structure, and then fixed on the front of the vehicle as a whole;
  • a three-dimensional coordinate system is established with the center of the rear axle of the vehicle as the origin, and the position A1 (x 1 , y 1 , z 1 ) of the second inertial sensor at the front of the vehicle is obtained, and the position of the first inertial sensor at the body B1 (x 2 , y ) 2 , z 2 ), the center position of the rigid body structure at the front A2 (x 3 , y 3 , z 3 ), the suspension center position B2 (x 4 , y 4 , z 4 );
  • Angle subtract the three-dimensional angle value of A1 from the three-dimensional angle value of B1 to obtain the angle value, and then convert the angle value to the rotation information of roll, yaw or pitch;
  • iv. Position vector
  • the length scalar of B2 is the origin, the three-dimensional coordinate position obtained by rotating according to the angle in iii, plus the vector
  • the data of the sensing device is converted into the coordinate system, and converted into the body/global coordinate system with B1 as the standard in the static state or in the moving state of the vehicle.
  • the sensing device is a sensing sensor for sensing obstacles in front of the vehicle.
  • the orientation angles of the second inertial sensor position A1 and the center position A2 of the rigid body structure are the same.
  • a vehicle shake compensation device comprising a first inertial sensor installed on a vehicle body, a rigid body structure installed on the front of the vehicle, a sensing device and a second inertial sensor are installed on the rigid body structure, and a computing module, the computing module is used for:
  • a three-dimensional coordinate system is established with the center of the rear axle of the vehicle as the origin, and the position A1 (x 1 , y 1 , z 1 ) of the second inertial sensor at the front of the vehicle is obtained, and the position of the first inertial sensor at the body B1 (x 2 , y ) 2 , z 2 ), the center position of the rigid body structure at the front A2 (x 3 , y 3 , z 3 ), the suspension center position B2 (x 4 , y 4 , z 4 );
  • Angle subtract the three-dimensional angle value of A1 from the three-dimensional angle value of B1 to obtain the angle value, and then convert the angle value to the rotation information of roll, yaw or pitch;
  • iv. Position vector
  • the length scalar of B2 is the origin, the three-dimensional coordinate position obtained by rotating according to the angle in iii, plus the vector
  • the data of the sensing device is converted into a coordinate system, and converted into a body/global coordinate system with B1 as the standard in a stationary state or in a moving state of the vehicle.
  • the sensing device is a sensing sensor for sensing obstacles in front of the vehicle.
  • the orientation angles of the second inertial sensor position A1 and the center position A2 of the rigid body structure are the same.
  • the present invention provides a vehicle anti-shake stabilizer sensing method, application, system and truck, by installing an additional second inertial sensor at the position of the sensing device, and simultaneously installing the inertial sensor and the sensing device at the position of the sensing device.
  • a rigid body structure with the center of the rear axle of the vehicle as the origin to establish a three-dimensional coordinate system, calculate the coordinate transformation information from the second inertial sensor to the first inertial sensor, and perform coordinate transformation on the information obtained by the sensing device according to the coordinate transformation information.
  • Obstacles are all in the body/unique coordinate system, which minimizes or even eliminates the influence of suspension jitter.
  • 1 is a schematic diagram of the installation positions of two sensors in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a static state in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a moving state in an embodiment of the present invention.
  • Embodiment 1 Vehicle shake compensation method
  • a vehicle shake compensation method comprising the following steps:
  • the sensing device and the second inertial sensor are installed on a rigid structure, and then fixed on the front of the vehicle as a whole;
  • Fig. 1 and Fig. 2 When the vehicle is stationary, a three-dimensional coordinate system is established with the center of the rear axle of the vehicle as the origin, and the position A1 (x 1 , y 1 , z 1 ) of the second inertial sensor at the front of the vehicle is obtained, and the position of the second inertial sensor at the front of the vehicle is obtained.
  • A1 and A2 are on the same rigid body, so it can be considered that the orientation angle of A1 is the same as that of A2. During actual installation, it should be ensured that the orientation angle of point A1 is the same as that of point A2.
  • Angle subtract the three-dimensional angle value of A1 from the three-dimensional angle value of B1 to obtain the angle value, and then convert the angle value to the rotation information of roll, yaw or pitch;
  • iv. Position vector
  • the length scalar of B2 is the origin, the three-dimensional coordinate position obtained by rotating according to the angle in iii, plus the vector
  • the data of the sensing device is converted into the coordinate system, and converted into the body/global coordinate system with B1 as the standard in the static state or in the moving state of the vehicle.
  • Embodiment 1 Vehicle shake compensation device
  • a vehicle shake compensation device includes a first inertial sensor installed on a vehicle body, a rigid body structure installed on the front of the vehicle, a sensing device and a second inertial sensor are installed on the rigid body structure, and also includes A computing module, the computing module is used for:
  • a three-dimensional coordinate system is established with the center of the rear axle of the vehicle as the origin, and the position A1 (x 1 , y 1 , z 1 ) of the second inertial sensor at the front of the vehicle is obtained, and the position of the first inertial sensor at the body B1 (x 2 , y ) 2 , z 2 ), the center position of the rigid body structure at the front A2 (x 3 , y 3 , z 3 ), the suspension center position B2 (x 4 , y 4 , z 4 );
  • Angle subtract the three-dimensional angle value of A1 from the three-dimensional angle value of B1 to obtain the angle value, and then convert the angle value to the rotation information of roll, yaw or pitch;
  • iv. Position vector
  • the length scalar of B2 is the origin, the three-dimensional coordinate position obtained by rotating according to the angle in iii, plus the vector
  • the data of the sensing device is converted into a coordinate system, and converted into a vehicle body/global coordinate system with B1 as the standard in a stationary state or in a moving state of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Vehicle Body Suspensions (AREA)
  • Navigation (AREA)

Abstract

一种车辆防抖稳定器感知方法、应用、系统及卡车,卡车安装有车辆抖动补偿装置,抖动补偿装置通过在感知设备的位置处安装一个额外的第二惯性传感器,并同时将该惯性传感器和感知设备安装在一个刚体结构,在车身安装一个第一惯性传感器,以车辆后轴中心为原点建立三维坐标系,计算第二惯性传感器到第一惯性传感器的坐标转换信息,根据坐标转换信息对感知设备获取的信息进行坐标转换,如此后续识别出来的障碍物均在车身/全局坐标系下,消除了不必要的车辆悬挂造成的噪音影响。

Description

一种车辆防抖稳定器感知方法、应用、系统 技术领域
本发明属于车辆数据信息感知技术领域,具体涉及一种车辆防抖稳定器感知方法、应用、系统。
背景技术
车辆的感知的传感器(摄像头,Lidar)因为视野要求的原因,往往需要装在车辆比较高的位置。对于卡车来说,往往需要安装在卡车的车头附近,比如挡风玻璃的上沿附近。
卡车车头往往有比较软的空气悬挂,以保证乘客和司机的体感。
因此,传感器安装在软的空气悬挂后,并且离车体刚体部分距离较远,悬挂的抖动在传感器处会被放大。对于感知结果会有非常坏的影响。因为传感器很难判断是车辆角度真实发生了变化,还是只是车辆悬挂造成的噪音,因此无法很好的补偿。
发明内容
有鉴于此,本发明的目的之一在于提供涉及一种车辆防抖稳定器感知方法、应用、系统。
为实现上述目的,本发明的技术方案为:
一种车辆抖动补偿方法,包括以下步骤:
在车身安装一个第一惯性传感器,在感知设备的位置处安装一个额外的第二惯性传感器;
将所述感知设备和所述第二惯性传感器安装在一个刚体结构上,然后整体固定在车头;
在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
静止状态下,A1到B1的转换公式为:
i.角度:0;
ii.位置:
Figure PCTCN2020116136-appb-000001
在车辆移动状态下,A1到B1的转换公式为:
iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
iv.位置:向量
Figure PCTCN2020116136-appb-000002
的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
Figure PCTCN2020116136-appb-000003
根据不同状态下计算得到的转换信息,将感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
作为优选的技术方案,所述感知设备是用于感知车辆前方障碍物的感知传感器。
作为优选的技术方案,所述第二惯性传感器位置A1和刚体结构的中心位置A2的朝向角一致。
如上所述的车辆抖动补偿方法在卡车上抖动补偿的应用。
一种车辆抖动补偿装置,包括安装在车身的第一惯性传感器、安装在车头的刚体结构,所述刚体结构上安装感知设备和第二惯性传感 器,还包括计算模块,所述计算模块用于:
在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
静止状态下,计算A1到B1的角度和位置:
i.角度:0;
ii.位置:
Figure PCTCN2020116136-appb-000004
在车辆移动状态下,计算A1到B1的角度和位置:
iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
iv.位置:向量
Figure PCTCN2020116136-appb-000005
的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
Figure PCTCN2020116136-appb-000006
根据不同状态下计算得到的角度和位置信息,将所述感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
作为优选的技术方案,所述感知设备是用于感知车辆前方障碍物的感知传感器。
作为优选的技术方案,所述第二惯性传感器位置A1和刚体结构的中心位置A2的朝向角一致。
一种卡车,所述卡车安装有如上所述的车辆抖动补偿装置。
有益效果在于:本发明提供一种车辆防抖稳定器感知方法、应用、系统及卡车,通过在感知设备的位置处安装一个额外的第二惯性传感器,并同时将该惯性传感器和感知设备安装在一个刚体结构,以车辆后轴中心为原点建立三维坐标系,计算第二惯性传感器到第一惯性传感器的坐标转换信息,根据坐标转换信息对感知设备获取的信息进行坐标转换,如此后续识别出来的障碍物均在车身/全别坐标系下,将悬挂的抖动的影响降到最低甚至消除。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍。显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例中的两个传感器安装位置示意图;
图2为本发明实施例中的静止状态示意图。
图3本发明实施例中的移动状态示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护 的范围。
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1:车辆抖动补偿方法
一种车辆抖动补偿方法,包括以下步骤:
在车身安装一个第一惯性传感器,在感知设备的位置处安装一个额外的第二惯性传感器;
将所述感知设备和所述第二惯性传感器安装在一个刚体结构上,然后整体固定在车头;
请参考图1和图2所示,在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
A1和A2在同一个刚体上,因此可以认为A1点的朝向角和A2一致。实际安装时,应当保证A1点的朝向角和A2点的一致。
静止状态下,请参考图3所示的是表示的车辆静止状态,A1到B1的转换公式为:
i.角度:0;(IMU1和IMU2默认都是水平安装的)
ii.位置:
Figure PCTCN2020116136-appb-000007
以上三个相加的向量由于静止状态下四个点位都是固定的,所以均是固定值。
在车辆移动状态下,请参考图3所示是表示的车辆移动状态, A1到B1的转换公式为:
iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
iv.位置:向量
Figure PCTCN2020116136-appb-000008
的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
Figure PCTCN2020116136-appb-000009
根据不同状态下计算得到的转换信息,将感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
实施例1:车辆抖动补偿方装置
请参考图1~图3所示,一种车辆抖动补偿装置,包括安装在车身的第一惯性传感器、安装在车头的刚体结构,所述刚体结构上安装感知设备和第二惯性传感器,还包括计算模块,所述计算模块用于:
在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
静止状态下,计算A1到B1的角度和位置:
i.角度:0;
ii.位置:
Figure PCTCN2020116136-appb-000010
在车辆移动状态下,计算A1到B1的角度和位置:
iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
iv.位置:向量
Figure PCTCN2020116136-appb-000011
的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
Figure PCTCN2020116136-appb-000012
根据不同状态下计算得到的角度和位置信息,将所述感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (8)

  1. 一种车辆抖动补偿方法,其特征在于,包括以下步骤:
    在车身安装一个第一惯性传感器,在感知设备的位置处安装一个额外的第二惯性传感器;
    将所述感知设备和所述第二惯性传感器安装在一个刚体结构上,然后整体固定在车头;
    在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
    静止状态下,A1到B1的转换公式为:
    i.角度:0;
    ii.位置:
    Figure PCTCN2020116136-appb-100001
    在车辆移动状态下,A1到B1的转换公式为:
    iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
    iv.位置:向量
    Figure PCTCN2020116136-appb-100002
    的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
    Figure PCTCN2020116136-appb-100003
    根据不同状态下计算得到的转换信息,将感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
  2. 根据权利要求1所述的车辆抖动补偿方法,其特征在于,所述感知设备是用于感知车辆前方障碍物的感知传感器。
  3. 根据权利要求1所述的车辆抖动补偿方法,其特征在于,所述第二惯性传感器位置A1和刚体结构的中心位置A2的朝向角一致。
  4. 如权利要求1~3任一项所述的车辆抖动补偿方法在卡车上抖动补偿的应用。
  5. 一种车辆抖动补偿装置,其特征在于,包括安装在车身的第一惯性传感器、安装在车头的刚体结构,所述刚体结构上安装感知设备和第二惯性传感器,还包括计算模块,所述计算模块用于:
    在车辆静止状态,以车辆后轴中心为原点建立三维坐标系,获取车头处第二惯性传感器位置A1(x 1,y 1,z 1),车身处第一惯性传感器位置B1(x 2,y 2,z 2),车头处刚体结构的中心位置A2(x 3,y 3,z 3),悬挂中心位置B2(x 4,y 4,z 4);
    静止状态下,计算A1到B1的角度和位置:
    i.角度:0
    ii.位置:
    Figure PCTCN2020116136-appb-100004
    在车辆移动状态下,计算A1到B1的角度和位置:
    iii.角度:将A1的三维角度值减去B1的三维角度值获得角度值,再将角度值转换为roll或yaw或pitch的旋转信息;
    iv.位置:向量
    Figure PCTCN2020116136-appb-100005
    的长度标量以B2为原点,根据iii中的角度进行旋转得到的三维坐标位置,再加上向量
    Figure PCTCN2020116136-appb-100006
    根据不同状态下计算得到的角度和位置信息,将所述感知设备的数据,进行坐标系转换,转换成静止状态下或者车辆移动状态下以B1为标准的车身/全局坐标系。
  6. 根据权利要求5所述的车辆抖动补偿装置,其特征在于,所述感知设备是用于感知车辆前方障碍物的感知传感器。
  7. 根据权利要求5所述的车辆抖动补偿装置,其特征在于,所述第二惯性传感器位置A1和刚体结构的中心位置A2的朝向角一致。
  8. 一种卡车,其特征在于,所述卡车安装有如权利要求5~7任一项所述的车辆抖动补偿装置。
PCT/CN2020/116136 2020-09-18 2020-09-18 一种车辆防抖稳定器感知方法、应用、系统 WO2022056816A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080068853.2A CN114521239A (zh) 2020-09-18 2020-09-18 一种车辆防抖稳定器感知方法、应用、系统
PCT/CN2020/116136 WO2022056816A1 (zh) 2020-09-18 2020-09-18 一种车辆防抖稳定器感知方法、应用、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116136 WO2022056816A1 (zh) 2020-09-18 2020-09-18 一种车辆防抖稳定器感知方法、应用、系统

Publications (1)

Publication Number Publication Date
WO2022056816A1 true WO2022056816A1 (zh) 2022-03-24

Family

ID=80777567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116136 WO2022056816A1 (zh) 2020-09-18 2020-09-18 一种车辆防抖稳定器感知方法、应用、系统

Country Status (2)

Country Link
CN (1) CN114521239A (zh)
WO (1) WO2022056816A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217111A (zh) * 2012-11-28 2013-07-24 西南交通大学 一种非接触式接触线几何参数检测方法
CN106922195A (zh) * 2014-08-05 2017-07-04 法雷奥开关和传感器有限责任公司 用于生成机动车辆的周围环境区域的周围环境地图的方法、驾驶员辅助系统和机动车辆
CN108137091A (zh) * 2015-11-11 2018-06-08 日立建机株式会社 车轮的偏滑角推定装置及其方法
US20180284243A1 (en) * 2017-03-31 2018-10-04 Uber Technologies, Inc. Autonomous Vehicle Sensor Calibration System
CN109883444A (zh) * 2019-02-25 2019-06-14 航天科工防御技术研究试验中心 一种姿态角耦合误差补偿方法、装置及电子设备
CN110049229A (zh) * 2018-01-17 2019-07-23 南京火眼猴信息科技有限公司 一种用于隧道图像采集的相机抖动补偿装置及方法
CN110781827A (zh) * 2019-10-25 2020-02-11 中山大学 一种基于激光雷达与扇状空间分割的路沿检测系统及其方法
CN111373333A (zh) * 2017-06-27 2020-07-03 Uatc有限责任公司 用于自主半卡车的传感器配置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388967B (zh) * 2017-08-14 2019-11-12 上海汽车集团股份有限公司 一种车载三维激光传感器的外参数补偿方法及装置
CN111614895B (zh) * 2020-04-30 2021-10-29 惠州华阳通用电子有限公司 一种图像成像抖动补偿方法、系统及设备
CN111623776B (zh) * 2020-06-08 2022-12-02 昆山星际舟智能科技有限公司 使用近红外视觉传感器和陀螺仪进行目标测距的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217111A (zh) * 2012-11-28 2013-07-24 西南交通大学 一种非接触式接触线几何参数检测方法
CN106922195A (zh) * 2014-08-05 2017-07-04 法雷奥开关和传感器有限责任公司 用于生成机动车辆的周围环境区域的周围环境地图的方法、驾驶员辅助系统和机动车辆
CN108137091A (zh) * 2015-11-11 2018-06-08 日立建机株式会社 车轮的偏滑角推定装置及其方法
US20180284243A1 (en) * 2017-03-31 2018-10-04 Uber Technologies, Inc. Autonomous Vehicle Sensor Calibration System
CN111373333A (zh) * 2017-06-27 2020-07-03 Uatc有限责任公司 用于自主半卡车的传感器配置
CN110049229A (zh) * 2018-01-17 2019-07-23 南京火眼猴信息科技有限公司 一种用于隧道图像采集的相机抖动补偿装置及方法
CN109883444A (zh) * 2019-02-25 2019-06-14 航天科工防御技术研究试验中心 一种姿态角耦合误差补偿方法、装置及电子设备
CN110781827A (zh) * 2019-10-25 2020-02-11 中山大学 一种基于激光雷达与扇状空间分割的路沿检测系统及其方法

Also Published As

Publication number Publication date
CN114521239A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
US9630672B2 (en) Roll angle estimation device and transport equipment
US20100198448A1 (en) Vehicle body speed estimating device
US20160037032A1 (en) Method for detecting mounting posture of in-vehicle camera and apparatus therefor
WO2020107931A1 (zh) 位姿信息确定方法和装置、视觉点云构建方法和装置
JP5133783B2 (ja) 車載装置
JP2005209019A (ja) 障害物検出装置、方法及びプログラム
CN102862531A (zh) 一种轨迹连续变化的可视泊车辅助系统及其控制方法
US20240083356A1 (en) Auto panning camera mirror system including image based trailer angle detection
CN112529966A (zh) 一种车载环视系统的在线标定方法及其车载环视系统
JPH11326361A (ja) 車体のヨーレート、ロールレート、横加速度検出装置
CN114237298B (zh) 一种无人机编队飞行中僚机跟随长机的控制方法及系统
CN112348741A (zh) 全景图像拼接方法、设备及存储介质和显示方法及系统
WO2022056816A1 (zh) 一种车辆防抖稳定器感知方法、应用、系统
CN113160336A (zh) 一种简易标定环境下的车载环视相机标定方法
JP5137792B2 (ja) 車両横力外乱推定装置
US20220050190A1 (en) System and Method for Compensating a Motion of a Vehicle Component
JP2878498B2 (ja) 角加速度検出装置
US7020971B1 (en) Compass orientation compensation
CN115131757A (zh) 车道线的确定方法、装置、电子设备和存储介质
CN112184822B (zh) 相机俯仰角的调整方法和装置、存储介质、电子设备
WO2022056820A1 (zh) 一种车辆防抖稳定器感知方法及其系统
WO2021073827A1 (en) Method and device for providing a visualization of a vehicle, and vehicle
JP5047912B2 (ja) 車載用画像処理装置及びその画像処理方法
CN115113400B (zh) 基于车辆俯仰角调整ar-hud显示的控制方法,系统和汽车
WO2023002802A1 (ja) 加速度検出装置および取付角検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953674

Country of ref document: EP

Kind code of ref document: A1