WO2017078156A1 - キシロースからエタノールを生産する酵母 - Google Patents

キシロースからエタノールを生産する酵母 Download PDF

Info

Publication number
WO2017078156A1
WO2017078156A1 PCT/JP2016/082849 JP2016082849W WO2017078156A1 WO 2017078156 A1 WO2017078156 A1 WO 2017078156A1 JP 2016082849 W JP2016082849 W JP 2016082849W WO 2017078156 A1 WO2017078156 A1 WO 2017078156A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
xylose
gene
gene encoding
present
Prior art date
Application number
PCT/JP2016/082849
Other languages
English (en)
French (fr)
Inventor
仁 小西
福田 明
梢栄 牟田口
上村 毅
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Publication of WO2017078156A1 publication Critical patent/WO2017078156A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a yeast that produces ethanol from xylose and a method for producing ethanol using the yeast.
  • Saccharomyces cerevisiae Currently, yeasts represented by Saccharomyces cerevisiae are mainly used for brewing yeast in the production of ethanol. Saccharomyces cerevisiae has a high ability to produce ethanol from hexoses such as glucose and mannose, and has high resistance to ethanol. However, Saccharomyces cerevisia cannot use pentoses such as xylose.
  • Saccharomyces cerevisiae As a yeast having xylose utilization ability, Schiffosomyces stipitis is known. Saccharomyces cerevisiae has a gene group corresponding to the gene group for assimilating xylose possessed by Syphazomyces stipitis, but many of these genes in Saccharomyces cerevisiae are not expressed or expressed. Even if so, the amount is considered to be very small. Therefore, improvement of Saccharomyces cerevisiae by introducing a gene derived from xylose-assimilating yeast is being promoted (WO2009 / 093630 (Patent Document 3)).
  • yeast prepared by the above method falls under the category of recombinants, and there is a need for means to prevent the leakage of bacterial cells to the outside world. Since various restrictions arise, it is not preferable.
  • Ethanol productivity depends on the specific consumption rate of the substrate xylose. Increasing the xylose specific consumption rate in the ethanol production process can suppress the production of by-products such as xylitol and glycerol, leading to a reduction in cost to an acceptable level. Further, if the sugar consumption rate is improved, the capacity of the culture tank can be reduced, which is effective in reducing the ethanol production cost.
  • the present invention provides a yeast in which a xylose-assimilating gene has been introduced, a yeast having an improved xylose consumption rate and excellent production efficiency from xylose to ethanol, and a method for producing ethanol using the yeast. For the purpose.
  • a xylose-reducing enzyme further introduced into a xylose-assimilating yeast in which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase have been introduced. It has been found that a transformed yeast into which a gene coding for can be expressed has a higher xylose consumption rate when cultured in the presence of glucose and xylose than xylose-assimilating yeast.
  • a gene encoding xylose reductase is further introduced into host yeast into which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase, have been introduced.
  • a transformed yeast introduced so that it can be expressed; The transformed yeast, wherein the transformed yeast has a higher xylose consumption rate than that of the host yeast when cultured in the presence of glucose and xylose.
  • the transformed yeast according to [1] which has an ability to produce ethanol from xylose.
  • [6] The transformed yeast according to any one of [1] to [5], wherein the gene encoding xylose reductase is a gene selected from the group consisting of GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w.
  • the gene encoding xylitol dehydrogenase is a gene selected from the group consisting of SOR1, SOR2, and YLR070c.
  • the gene encoding xylose reductase, the gene encoding xylitol dehydrogenase and the gene encoding xylulose phosphorylase are GRE3, SOR1 and XKS1, respectively, in any one of [1] to [8]
  • [12] The transformed yeast according to any one of [1] to [11], wherein the host yeast is a yeast belonging to the species Saccharomyces cerevisiae.
  • [13] A method for producing ethanol, comprising culturing the transformed yeast according to any one of [12] in a medium containing glucose and xylose, and collecting ethanol from the obtained culture.
  • a gene encoding xylose reductase is further introduced into host yeast into which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase, have been introduced.
  • a transformed yeast introduced so as to allow expression.
  • a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a host yeast into which a gene encoding xylulose phosphorylase has been introduced so that it can be expressed further include a gene encoding xylose reductase.
  • a transformed yeast introduced so as to allow expression is provided.
  • the transformed yeast of the present invention exhibits a higher xylose consumption rate than the host yeast when cultured in the presence of glucose and xylose.
  • the transformed yeast of the present invention has a higher ethanol concentration than that of the host yeast when cultured in the presence of glucose and xylose.
  • a yeast having an improved xylose consumption rate and high ethanol production is provided.
  • the present invention also provides a method for producing ethanol, comprising culturing the transformed yeast of the present invention in a glucose and xylose-containing medium. Since the ethanol production method of the present invention can realize both an improved xylose consumption rate and a high ethanol production amount, it is useful for industrial production of ethanol.
  • the present invention relates to xylose in a host yeast into which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase, have been introduced so that they can be expressed. This is based on the knowledge that transformed yeast overexpressing a gene encoding a reductase has an excellent xylose consumption rate and ethanol production in culture in the presence of glucose and xylose.
  • Xylose reduction into a host yeast into which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase, have been introduced.
  • the transformed yeast of the present invention in which the gene encoding the enzyme is overexpressed is improved in the xylose consumption rate in a medium containing only xylose as a substrate, but the ethanol yield is decreased. ( Figure 1).
  • the transformed yeast of the present invention can improve the xylose consumption rate in a medium containing glucose and xylose as substrates without reducing the ethanol yield as compared with the host yeast (FIG. 2). ).
  • the transformed yeast of the present invention in which the gene encoding xylose reductase is overexpressed can have a higher xylose consumption rate than the host yeast when cultured in the presence of glucose and xylose.
  • the ethanol concentration obtained when cultured in the presence of glucose and xylose can be higher than the ethanol concentration obtained when the host yeast is cultured in the presence of glucose and xylose.
  • the transformed yeast of the present invention has the ability to produce ethanol from xylose, and can be said to be able to produce ethanol at a high xylose consumption rate and high ethanol concentration by culturing in the presence of glucose and ethanol.
  • the transformed yeast of the present invention is that it is produced using a host yeast introduced with a xylose utilization gene, preferably the yeast's own xylose utilization gene, on the chromosome.
  • the “xylose utilization gene” is a gene encoding an enzyme involved in utilization of xylose.
  • xylose utilization genes introduced into yeast are at least three genes: a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase.
  • the xylose utilization gene further introduced into the host yeast in the present invention is a gene encoding xylose reductase. Therefore, the transformed yeast of the present invention theoretically has xylose among three kinds of genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase. It can be said that the expression level of the gene encoding the reductase is most enhanced. Therefore, the present invention may also include a transformed yeast produced so that the expression level of the gene encoding xylose reductase is the highest among the above three types of xylose utilization genes.
  • a transformed yeast for example, a transformation into which three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase, have been introduced so that they can be expressed.
  • a gene in which the three genes are a gene linking a gene encoding xylose reductase and a gene encoding xylitol dehydrogenase, and a gene encoding xylose reductase and a gene encoding xylulose kinase
  • a transformed yeast introduced as a gene linked to the.
  • these genes introduced into yeast are genes derived from the yeast. That is, in another embodiment of the present invention, one of the features is to activate the expression of an enzyme gene inherent in yeast (endogenous) and enhance the activity of the enzyme possessed by the yeast itself.
  • one of the characteristics of these genes introduced into the host yeast is that they are introduced into the host yeast chromosome.
  • the transformed yeast introduced with the genes relating to the above three enzymes has an excellent ability to produce ethanol from xylose.
  • yeasts do not have pentose assimilation ability such as xylose because they are in a so-called dormant state in which the xylose assimilating enzyme group does not substantially function.
  • yeast belonging to the genus Saccharomyces cannot produce ethanol using xylose, despite having a gene group encoding a xylose-utilizing enzyme group.
  • the host yeast may be a yeast in which a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase are inserted on the chromosome.
  • a transformed yeast obtained by overexpressing a gene encoding a xylose reductase in a host yeast introduced with a xylose utilization gene derived from itself is surprisingly a medium containing glucose and xylose as compared with the host yeast. Incubate at a high ethanol production and high xylose consumption rate.
  • the present invention also provides a method for producing ethanol by culturing the transformed yeast in a medium containing glucose and xylose and collecting ethanol from the resulting culture.
  • a high xylose consumption rate is achieved, so that the tank capacity can be reduced and the production cost can be reduced.
  • the transformed yeast of the present invention is a yeast into which a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, and a gene encoding xylitol dehydrogenase have been introduced so as to be expressed.
  • the transformed yeast has been introduced so that the expression level of the gene encoding xylose reductase is most enhanced.
  • the transformed yeast of the present invention is a host yeast into which a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, and a gene encoding xylitol dehydrogenase have been introduced so as to be expressed. Furthermore, a transformed yeast into which a gene encoding xylose reductase has been introduced so as to allow expression.
  • the yeast used as the object of gene introduction or transformation is a yeast that does not have the ability to assimilate pentoses such as xylose.
  • the yeast may have any ability to assimilate pentose before gene introduction or transformation, and may have ability to assimilate hexose such as glucose.
  • “5 carbon sugar assimilation ability” refers to the ability to grow using 5 carbon sugars such as xylose as a carbon source. Since yeast having pentose assimilation ability can grow in a medium to which only pentose is added as a carbon source, the pentose utilization ability is in a medium to which only pentose is added as a carbon source. The degree of yeast growth in can be confirmed by measuring turbidity at a wavelength such as 600 nm or 660 nm.
  • the target yeast for gene transfer or transformation can also be selected for the purpose of improving the ethanol production and / or xylose consumption rate.
  • yeasts include yeasts imparted with xylose utilization ability and yeasts with activated xylose utilization ability.
  • the target yeast for gene transfer or transformation is not particularly limited, and examples thereof include yeast belonging to the genus Saccharomyces.
  • yeast belonging to the genus Saccharomyces include Saccharomyces cerevisia species such as laboratory yeast strains.
  • the yeast to be the target of gene transfer or transformation can be not only haploid but also diploid yeast.
  • the diploid yeast is excellent as a practical yeast, and examples thereof include brewing yeast such as baker's yeast, sake yeast, shochu yeast, and wine yeast.
  • the yeast to be subjected to gene transfer or transformation is preferably a brewing yeast having resistance to ethanol, and such yeast is not particularly limited, Examples include yeast belonging to the genus Saccharomyces (for example, Saccharomyces cerevisiae).
  • the yeast that is the target of gene transfer or transformation in the present invention is preferably a yeast belonging to the genus Saccharomyces, more preferably Saccharomyces cerevisiae.
  • non-recombinant yeast is preferably employed as the host yeast.
  • the xylose utilization gene introduced on the yeast chromosome is a gene derived from the same species as the yeast.
  • the yeast into which the gene is introduced needs to be the same kind of yeast as the origin of the gene.
  • the xylose utilization gene is at least three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase.
  • the xylitol dehydrogenase is preferably sorbitol dehydrogenase. More specifically, the gene encoding xylose reductase, the gene encoding xylitol dehydrogenase, and the gene encoding xylulose phosphorylase are respectively GRE3 (Aldo keto reductase gene 3) and SOR1 (sorbitol). Dehydrogenase gene 1) and XKS1 (xylulose kinase gene 1) are preferred.
  • the xylose utilization gene can be either a foreign gene or an endogenous gene, but is preferably an endogenous gene.
  • Endogenous gene means a gene of a yeast to be gene-inserted, a gene derived from a yeast to be gene-inserted, or a gene derived from a yeast of the same kind as the yeast to be gene-inserted. Therefore, yeast introduced with an endogenous gene is not a recombinant. Therefore, the transformed yeast of the present invention into which an endogenous gene has been introduced generally does not require treatments and procedures required in experiments using recombinants.
  • GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w are known as genes encoding xylose reductase in yeast. Therefore, in the present invention, GRE3, YJR096w, YPR1, GCY1, ARA1 or YDR124w can be used as a gene encoding xylose reductase.
  • GRE3 is described as an example of a gene encoding xylose reductase, but YJR096w, YPR1, GCY1, ARA1, and YDR124w apply the description in this specification regarding GRE3, and similarly in the present invention. Can be used.
  • the base sequence information of GRE3, YJR096w, YPR1, GCY1, ARA1 and YDR124w can be obtained from a known database such as Genbank by those skilled in the art.
  • Genbank The accession numbers for the sequence information of each gene in Saccharomyces cerevisia are shown below.
  • GRE3 U00059, YJR096w: Z49596, YPR1: X80642, GCY1: X13228, ARA1: M95580, YDR124w: Z48758.
  • GRE3 (Aldo keto reductase gene 3) is a gene containing a base sequence encoding aldo keto reductase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 13 derived from Saccharomyces cerevisiae, Or it is DNA which codes the protein which consists of an amino acid sequence shown by sequence number 14. It is known that the protein encoded by GRE3 also functions as a xylose reductase in yeast.
  • the GRE3 protein is a protein having amino acid sequence identity (homology) with XYL1 (xylose reductase) of Shephasomyces staphytis.
  • GRE3 can be obtained from a yeast library or a genomic library by gene amplification technology by designing a primer based on the base sequence represented by SEQ ID NO: 13, for example.
  • GRE3 used in the present invention includes a gene encoding a mutant of GRE3 protein.
  • a gene encoding a mutant of the GRE3 protein hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 13, and exhibits xylose reductase activity.
  • a DNA encoding a protein having the same; The xylose reductase activity will be described later.
  • DNA encoding a mutant of GRE3 protein is obtained by cDNA live by a known hybridization method such as colony hybridization, plaque hybridization, Southern blotting, etc., using the DNA consisting of the base sequence shown in SEQ ID NO: 13 or a fragment thereof as a probe.
  • Libraries and genomic libraries Regarding the method for preparing the library, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Spring Press (2012)) and the like can be referred to. Commercially available cDNA libraries and genomic libraries may also be used.
  • the stringent conditions are, for example, “2 ⁇ SSC, 0.1% SDS, 42 ° C.”, “1 ⁇ SSC, 0.1% SDS, 37 ° C.”, and more stringent conditions.
  • Examples of the conditions include “1 ⁇ SSC, 0.1% SDS, 65 ° C.”, “0.5 ⁇ SSC, 0.1% SDS, 50 ° C.”, and the like.
  • Hybridization can be performed by a known method. Hybridization methods include, for example, “Molecular Cloning, A Laboratory Manual 4th ed.” (Cold Spring Harbor Laboratory Press (2012)), “Current Protocols in Molecular Biology” (John Wiley & Sons (1987-1997)), etc. You can refer to it.
  • the DNA that hybridizes under stringent conditions includes, for example, at least 50% or more, preferably 70% or more, 80% or more, or 85% or more with the base sequence represented by SEQ ID NO: 13, More preferably 90% or more, 95% or more, 96% or more, 97% or more or 98% or more, more preferably 99% or more, still more preferably 99.7% or more, particularly preferably 99.9% identity (homology)
  • DNA containing a base sequence having A value indicating identity can be calculated by using a known program such as BLAST.
  • the DNA that hybridizes under stringent conditions with the DNA consisting of a base sequence complementary to the base sequence represented by SEQ ID NO: 13 is, for example, one or several nucleic acids in the base sequence represented by SEQ ID NO: 13.
  • the nucleotide sequence can be confirmed by sequencing by a conventional method.
  • the dideoxynucleotide chain termination method (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) can be used. It is also possible to analyze the sequence using an appropriate DNA sequencer.
  • GRE3 Aldo keto reductase gene 3
  • Saccharomyces cerevisia includes a protein encoding a protein having the amino acid sequence represented by SEQ ID NO: 14.
  • a gene encoding a GRE3 protein derived from Saccharomyces cerevisiae or a mutant thereof is also included in GRE3 (Aldo keto reductase gene 3).
  • Variants of GRE3 protein are (i) 1 to several (for example, 1 to 30, 1 to 20, 1 to 10, preferably 1 to 5, more preferably in the amino acid sequence represented by SEQ ID NO: 14) Is a protein from which 1 to 3, more preferably 1 to 2 amino acids have been deleted, (ii) 1 to several (for example, 1 to 30, 1 to 20) in the amino acid sequence represented by SEQ ID NO: 14 A protein in which 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2 amino acids are substituted with other amino acids, (iii) an amino acid represented by SEQ ID NO: 14 1 to several amino acids (for example, 1 to 30, 1 to 20, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids in the sequence Added protein and (iv) their mutations combined A protein, and the like proteins having xylose reductase activity.
  • xylose reductase activity means the activity of converting xylose to xylitol in the presence of NAD + (or NADP +).
  • a mutant of GRE3 protein is not particularly limited in its activity as long as it has xylose reductase activity. If you do.
  • the xylose reductase activity of the protein can be measured by a known method.
  • SOR1, SOR2, and YLR070c are known as genes encoding xylitol dehydrogenase of yeast. Therefore, in the present invention, SOR1, SOR2, or YLR070c can be used as a gene encoding xylitol dehydrogenase, and SOR1 is preferred.
  • SOR1 is described as an example of a gene encoding xylitol dehydrogenase, but SOR2 and YLR070c can apply the description in this specification regarding SOR1.
  • SOR1 and SOR2 have 99.9% identity in gene sequence.
  • SOR1 L11039
  • SOR2 Z74294
  • YLR070c Z73242.
  • SOR1 sorbitol dehydrogenase gene 1
  • SOR1 is a gene containing a base sequence encoding sorbitol dehydrogenase, for example, a DNA comprising the base sequence represented by SEQ ID NO: 15 derived from Saccharomyces cerevisiae, or a sequence DNA encoding a protein consisting of the amino acid sequence shown by No. 16. It is known that the protein encoded by SOR1 also functions as xylitol dehydrogenase in yeast.
  • the SOR1 protein is a protein having amino acid sequence identity (homology) (53%) with XYL2 (xylitol dehydrogenase) of Shephasomyces stippitis.
  • SOR1 used in the present invention includes a gene encoding a mutant of SOR1 protein.
  • a gene encoding a mutant of the SOR1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 15 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylitol dehydrogenase activity is included.
  • the SOR1 used in the present invention may be a gene encoding a mutant of the following SOR1 protein: (i) 1 to several (for example, 1 to 30) in the amino acid sequence represented by SEQ ID NO: 16 1-20, 1-10, preferably 1-5, more preferably 1-3, and even more preferably 1-2 proteins), (ii) SEQ ID NO: 16 1 to several (for example, 1 to 30, 1 to 20, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) in the amino acid sequence shown (Iii) 1 to several (for example, 1 to 30, 1 to 20, 1 to 10, preferably 1 to 5) in the amino acid sequence represented by SEQ ID NO: 16. More preferably 1 to 3, more preferably 1 Proteins and amino acids are added; 2) (iv) a those mutations were combined protein, and a protein having xylitol dehydrogenase activity.
  • xylitol dehydrogenase activity means the activity of dehydrogenating xylitol to xylulose.
  • the mutant of SOR1 protein is not particularly limited in its activity as long as it has xylitol dehydrogenase activity.
  • the mutant of SOR1 protein has an activity of about 10% or more of the protein consisting of the amino acid sequence represented by SEQ ID NO: 16. It only has to have.
  • the xylitol dehydrogenase activity of the protein can be measured by a known method.
  • SOR1 can be obtained or manufactured by the same method as described for GRE3.
  • XKS1 xylulose kinase gene 1
  • Genbank accession number of XKS1 of Saccharomyces cerevisia is Z72979.
  • XKS1 xylulose phosphorylase gene 1
  • XKS1 xylulose phosphorylase gene 1
  • SEQ ID NO: 17 a DNA comprising the base sequence represented by Saccharomyces cerevisiae, Or it is DNA which codes the protein which consists of an amino acid sequence shown by sequence number 18.
  • XKS1 used in the present invention includes a gene encoding a mutant of XKS1 protein.
  • a gene encoding a mutant of the XKS1 protein hybridizes under stringent conditions with, for example, a DNA comprising a base sequence complementary to the DNA comprising the base sequence represented by SEQ ID NO: 17 derived from Saccharomyces cerevisiae, and DNA encoding a protein having xylulose kinase activity is included.
  • XKS1 used in the present invention may be a gene encoding a variant of the following XKS1 protein: (i) 1 to several (for example, 1 to 60) in the amino acid sequence represented by SEQ ID NO: 18 1-50, 1-40, 1-30, 1-20, 1-10, preferably 1-5, more preferably 1-3, and even more preferably 1-2) (Ii) 1 to several (for example, 1 to 60, 1 to 50, 1 to 40, 1 to 30, 1 to 20) in the amino acid sequence represented by SEQ ID NO: 18 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acids substituted with other amino acids, (iii) shown in SEQ ID NO: 18 1 to several in the amino acid sequence (for example, 1 to 60, 1 to 50, 1 40, 1 to 30, 1 to 20, 1 to 10, preferably 1 to 5, more preferably 1 to 3, more preferably 1 to 2) amino acid-added proteins and (iv ) ⁇ ⁇ ⁇ ⁇ ⁇ A protein in which these mutations are
  • xylulose kinase activity means an activity of phosphorylating xylulose.
  • the mutant of the XKS1 protein is not particularly limited as long as it has xylulose phosphatase activity. As long as it has.
  • the xylulose kinase activity of the protein can be measured by a known method.
  • XKS1 can also be obtained or produced by a method similar to that described for GRE3.
  • the yeast's own activities of xylose reductase, xylitol dehydrogenase and xylulose phosphorylase are higher than before the gene introduction.
  • the xylose utilization ability is imparted to the yeast.
  • it is necessary that the three types of genes introduced into the yeast are endogenous genes.
  • the host yeast of the present invention is preferably a yeast into which GRE3, SOR1, and XKS1 have been introduced so that they can be expressed.
  • “expressible (introduction or insertion)” means that the introduced or inserted gene is introduced or inserted in such a manner that it can be expressed in yeast under a predetermined condition.
  • a gene encoding xylose reductase, a gene encoding xylulose phosphorylase and a gene encoding xylitol dehydrogenase are preferably inserted so that they can be expressed on the yeast chromosome. Is done.
  • genes may be individually inserted on the chromosome, or may be inserted on the chromosome by preparing an expression cassette linked in tandem under the control of the promoter.
  • the order of arrangement of the three genes is not particularly limited, and any conceivable combination may be used.
  • a gene may be introduced onto the yeast chromosome using a plasmid containing three genes, GRE3, SOR1, and XKS1.
  • the above three genes may be contained in one plasmid or in different plasmids.
  • the number of each gene inserted is not limited, and is one or more.
  • the order of gene introduction into the chromosome is not particularly limited.
  • a plasmid containing a fusion gene of a gene encoding xylose reductase-a gene encoding xylulose phosphorylase and a gene containing a fusion gene of a gene encoding xylose reductase-a gene encoding xylitol dehydrogenase Can be used to introduce a xylose utilization gene onto yeast stains.
  • the order of gene arrangement within the fusion gene is not particularly limited. When the linked gene cassette is used, the expression level of the gene encoding xylose reductase is particularly increased.
  • the position of the chromosome into which the gene is inserted is not particularly limited, but a site that does not function in yeast is preferable, and examples include XYL2 site (Genbank accession number Z73242), HXT13 site, HXT17 site, AUR1 site, etc. It is done. It is also possible to insert at a site on a chromosome that does not encode a gene.
  • An example of a site on a chromosome that does not encode a gene is a ⁇ sequence that is one of Ty factors. It is known that a plurality of (approximately 100 copies) ⁇ sequences are present on the yeast chromosome.
  • the position and sequence information of the ⁇ sequence in the yeast chromosome are known (for example, Science 265, 2077 (1994)). For example, by introducing a plasmid having a xylose-assimilating gene inserted in the middle of the ⁇ sequence into yeast, one or more copies of the gene can be inserted at a desired position on the chromosome. In addition to the ⁇ sequence, it can also be inserted into the ⁇ and ⁇ sequences, which are also Ty factors. It can also be inserted into a ribosomal gene site such as NTS2.
  • a person skilled in the art can appropriately prepare a cassette or a plasmid for inserting a gene on a chromosome, select an insertion position on a chromosome, or insert into a chromosome (for example, lithium acetate method) based on a known method.
  • the present invention includes an expression cassette or plasmid in which three genes, GRE3, SOR1 and XKS1, are linked in tandem under the control of a promoter.
  • plasmids examples include a plasmid in which GRE3 and SOR1 are linked under the control of a promoter (eg, PGK promoter), a plasmid in which SOR1 and XKS1 are linked under the control of a promoter, or GRE3 and SOR1 under the control of a promoter. And a plasmid in which XKS1 is linked.
  • a promoter eg, PGK promoter
  • SOR1 and XKS1 are linked under the control of a promoter
  • GRE3 and SOR1 under the control of a promoter
  • XKS1 is linked.
  • the plasmid used in the present invention can be prepared by inserting the above gene into a yeast expression vector so that the gene can be expressed.
  • the gene can be inserted into the vector using a ligase reaction, a topoisomerase reaction, or the like.
  • the plasmid used in the present invention is not particularly limited to the origin of the basic vector, and for example, a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • a plasmid derived from Escherichia coli a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • commercially available vectors such as pGADT7 and pAUR135 can also be used.
  • the plasmid used in the present invention is not particularly limited as long as it can introduce a gene into the yeast chromosome.
  • a commercially available vector such as pUC18 or pAUR135 can be used.
  • the plasmid of the present invention may contain a multicloning site, a promoter, an enhancer, a terminator, a selection marker cassette and the like as long as the target gene can be expressed. If necessary when inserting DNA, a linker or a restriction enzyme site may be added as appropriate. These manipulations can be performed using conventional genetic manipulation techniques well known in the art.
  • Promoter can be incorporated upstream of target gene.
  • the promoter is not particularly limited as long as it can appropriately express the target protein in the transformed yeast, but PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter Etc. can be used.
  • the terminator can be incorporated downstream of the target gene.
  • a PGK terminator a CIT terminator, a TEF terminator, a CDC terminator, a GPM terminator, or a PDC terminator can be used.
  • PGK promoter and / or PGK terminator in order to efficiently express a target gene in yeast.
  • yeast that does not have pentose utilization ability does not express all three genes, a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose kinase, Xylose availability is not provided. Therefore, a transformed yeast can be selected by culturing the yeast introduced with the gene as described above in a xylose-containing (ethanol-free) medium.
  • a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a gene encoding xylulose phosphorylase so that they can be expressed in yeast, it is preferable to place the above gene on the yeast chromosome. Introducing into the host yeast of the present invention can be produced.
  • the host yeast of the present invention preferably contains endogenous xylose utilization genes, that is, endogenous GRE3, SOR1 and XKS1 genes on the chromosome, the expression of GRE3, SOR1 and XKS1 can be activated.
  • expression of a xylose-utilizing gene is activated means that the gene present in the host yeast is activated in an expressible form and can appropriately express the target protein. Means that.
  • the host yeast of the present invention can be a yeast imparted with xylose utilization capability, preferably a brewery yeast imparted with xylose utilization capability.
  • the transformed yeast of the present invention can be prepared by introducing a gene encoding xylose reductase into the above-described host yeast so that the gene can be expressed.
  • the transformed yeast of the present invention can also be produced by replacing the promoter of the gene encoding xylose reductase with a promoter that increases the expression level of the gene.
  • a gene encoding xylose reductase, a gene encoding xylulose phosphorylase, a gene encoding xylitol dehydrogenase, and a gene encoding xylitol dehydrogenase can be obtained by introducing a gene linked to a gene encoding xylitol dehydrogenase, and a gene linked to a gene encoding xylose reductase and a gene encoding xylulose kinase. It can also be produced.
  • a gene encoding xylose reductase is introduced into a host yeast so that it can be expressed.
  • the gene transfer can be performed using a plasmid containing the gene of interest in a form that can be expressed.
  • the present invention includes a plasmid containing the gene.
  • the plasmid used in the present invention can be prepared by inserting the above gene into a yeast expression vector so that the gene can be expressed.
  • the insertion of the gene into the vector is not limited, but ligase reaction, topoisomerase reaction, etc. can be used.
  • the plasmid used in the present invention is not particularly limited to the origin of the basic vector, and for example, a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • a plasmid derived from Escherichia coli a plasmid derived from Bacillus subtilis, a plasmid derived from yeast, and the like can be used.
  • commercially available vectors such as pGADT7 and pAUR135 can also be used.
  • the plasmid used in the present invention is not particularly limited as long as it can introduce a gene into the yeast chromosome.
  • a commercially available vector such as pUC18 or pAUR135 can be used.
  • the plasmid of the present invention may contain a multicloning site, a promoter, an enhancer, a terminator, a selection marker cassette and the like as long as the target gene can be expressed. If necessary when inserting DNA, a linker or a restriction enzyme site may be added as appropriate. These manipulations can be performed using conventional genetic manipulation techniques well known in the art.
  • Promoter can be incorporated upstream of target gene.
  • the promoter is not particularly limited as long as it can appropriately express the target protein in transformed yeast, and PGK promoter, ADH promoter, TDH promoter, ENO promoter, and the like can be used.
  • the terminator can be incorporated downstream of the target gene.
  • a PGK terminator a CIT terminator, a TEF terminator, a CDC terminator, a GPM terminator, or a PDC terminator can be used.
  • PGK promoter and / or PGK terminator in order to efficiently express a target gene in yeast.
  • selection markers include drug resistance genes such as ampicillin resistance gene, kanamycin resistance gene, neomycin resistance gene, hygromycin resistance gene, dihydrofolate reductase gene, leucine synthase gene, uracil synthase gene, and the like.
  • the vector contains an amino acid synthesis gene cassette such as leucine, histidine, tryptophan or a uracil synthesis gene cassette
  • the transformed yeast of the present invention is selected by culturing the yeast in a medium not containing the amino acid or uracil. Can do.
  • the transformed yeast of the present invention is produced by inserting a gene encoding xylose reductase, preferably in a host yeast chromosome so that it can be expressed. That is, in the present invention, introduction of a gene into yeast includes insertion of the gene onto the yeast chromosome. Therefore, the transformed yeast of the present invention is preferably a yeast in which a gene encoding a xylose reductase is further inserted into the host yeast chromosome so that it can be expressed. More preferably, the transformed yeast of the present invention is a yeast in which GRE3 is further inserted into a host yeast chromosome into which GRE3, SOR1, and XKS1 are inserted so as to allow expression.
  • the position of the chromosome into which the gene encoding xylose reductase is inserted is not particularly limited, but as in the case of producing a host yeast, a site that does not function in yeast is preferable.
  • a site that does not function in yeast is preferable.
  • an XYL2 site (Genbank accession number Z73242), HXT13 site, HXT17 site, AUR1 site and the like.
  • a site on a chromosome that does not encode a gene is also preferred.
  • the transformed yeast of the present invention is one in which the expression of the gene encoding xylose reductase, the gene encoding xylulose phosphorylase, and the gene encoding xylitol dehydrogenase possessed by the host yeast is activated.
  • the present invention also includes yeast in which the expression level of the gene originally present on the host yeast chromosome is increased. By introducing a promoter from the outside or replacing the promoter of the gene itself with a stronger promoter, the gene originally possessed by yeast can be activated in a form that can be expressed, and the target protein can be expressed appropriately. .
  • the expression of the gene encoding xylose reductase may be activated so that the expression level of the gene encoding xylose reductase is maximized.
  • a method for activating the expression of a specific gene is not limited, and examples include a method of incorporating a promoter capable of appropriately expressing a target protein into a chromosome by gene replacement using a known gene recombination technique. .
  • the method of Akada et al. Yeast 23: 399-405 (2006) (non-patent document) can be used.
  • a known promoter such as PGK promoter, ADH promoter, TDH promoter, ENO promoter, CIT promoter, TEF promoter, CDC promoter, GPM promoter or PDC promoter can be used.
  • a transformed yeast can be produced by introducing the plasmid of the present invention into the host yeast of the present invention to be introduced.
  • the method for introducing the plasmid of the present invention into the host yeast is not particularly limited, and examples thereof include known methods such as lithium acetate method, electroporation method, calcium phosphate method, lipofection method, DEAE dextran method and the like. . By these methods, the transformed yeast of the present invention is provided.
  • the transformed yeast of the present invention can also be produced by integrating the target gene into the host yeast chromosome by homologous recombination.
  • a person skilled in the art can produce the transformed yeast of the present invention by homologous recombination by a known method.
  • the transformed yeast of the present invention is obtained by further introducing a gene encoding xylose reductase into a host yeast imparted with xylose-assimilating ability, the transformed yeast of the present invention is an assimilation of xylose. Have the ability. In addition, the transformed yeast of the present invention can produce ethanol from xylose.
  • the transformed yeast of the present invention can be cultured according to a usual method used for yeast culture.
  • a person skilled in the art can select an appropriate medium from known mediums such as SD medium, SCX medium, YPD medium, YPX medium, and cultivate yeast under preferable culture conditions.
  • shaking culture is preferred.
  • Ethanol can be produced by culturing the transformed yeast of the present invention and collecting ethanol from the resulting culture.
  • the xylose consumption rate of the transformed yeast of the present invention is higher than the xylose consumption rate of the host yeast.
  • the ethanol concentration obtained when the transformed yeast of the present invention is cultured in the presence of glucose and xylose is equal to or higher than the ethanol concentration obtained when the host yeast is cultured in the presence of glucose and xylose.
  • the xylose consumption rate of the transformed yeast of the present invention is higher than the xylose consumption rate of the host yeast
  • the transformed yeast of the present invention is glucose and xylose.
  • the consumption rate of xylose when cultivated in a medium containing sucrose was compared with the consumption rate of xylose when the host yeast of the present invention was cultured in a medium containing glucose and xylose
  • the transformed yeast of the present invention It means that xylose consumption is faster than xylose consumption of the host yeast of the present invention.
  • the degree of speed is not particularly limited, but may be more than 1 time.
  • the ethanol concentration obtained when the transformed yeast of the present invention is cultured in the presence of glucose and xylose is equal to or higher than the ethanol concentration obtained when the host yeast is cultured in the presence of glucose and xylose.
  • the concentrations when the concentrations are compared, it means that the amount of ethanol produced by the transformed yeast of the present invention is equal to or greater than the amount of ethanol produced by the host yeast of the present invention, preferably more than the amount of ethanol produced by the host yeast. To do. It is equal to or more than 1 time, preferably more than 1 time. The upper limit is not particularly limited. When comparing the ethanol concentrations, it is preferable to use the same culture conditions such as the initial concentrations of glucose and xylose and the amount of the culture solution.
  • the transformed yeast of the present invention is cultured in the presence of xylose at 10 to 70 g / L, preferably 20 to 60 g / L, more preferably 40 g / L.
  • glucose When glucose is present during culture, it is present in the presence of 10 to 150 ⁇ g / L, preferably 40 to 120 g / L, more preferably 60 to 100 g / L, and even more preferably 80 g / L. Then, the transformed yeast of the present invention is cultured.
  • the transformed yeast Prior to the main culture, the transformed yeast may be precultured.
  • the transformed yeast of the present invention may be inoculated into a small amount of medium and cultured for 12 to 24 hours.
  • the main culture is started by adding 0.1 to 10%, preferably 1%, of the preculture solution to the culture medium of the main culture.
  • the main culture is carried out in a xylose-containing medium for 0.5 to 200 hours, preferably 10 to 150 hours, more preferably 24 to 137 hours, and shaking culture at 20 to 40 ° C., preferably 30 ° C.
  • the produced ethanol can be collected from the culture obtained by culturing the yeast of the present invention as described above.
  • the culture means a culture solution (culture supernatant), cultured yeast, a disrupted culture yeast, or the like.
  • Ethanol can be purified and collected from the culture by a known purification method.
  • ethanol since ethanol is mainly secreted from the transformed yeast into the culture supernatant, it is preferably collected from the culture supernatant.
  • the ethanol production efficiency of the transformed yeast of the present invention can be confirmed.
  • the amount of ethanol produced can be measured by analyzing the collected ethanol or ethanol contained in the medium with liquid chromatography, gas chromatography, or a commercially available ethanol measurement kit.
  • the consumption rate of xylose can be measured by analyzing the amount of xylose contained in the medium using liquid chromatography, a commercially available measurement kit, or the like.
  • the consumption rate of xylose can be measured by the method used in the examples.
  • the consumption rate of xylose can be compared by the amount or concentration of xylose contained in the medium thus measured.
  • SEQ ID NO: 13 This shows the base sequence of Saccharomyces cerevisiae GRE3.
  • SEQ ID NO: 14 This shows the amino acid sequence of Saccharomyces cerevisiae GRE3 protein.
  • SEQ ID NO: 15 This shows the base sequence of Saccharomyces cerevisiae SOR1.
  • SEQ ID NO: 16 This shows the amino acid sequence of Saccharomyces cerevisiae SOR1 protein.
  • SEQ ID NO: 17 This shows the base sequence of Saccharomyces cerevisiae XKS1.
  • SEQ ID NO: 18 This shows the amino acid sequence of Saccharomyces cerevisiae XKS1 protein.
  • GRE3, SOR1, XKS1, PGK1 promoter and PGK1 terminator are derived from Saccharomyces cerevisiae.
  • the GRE3 protein has amino acid sequence identity (homology) with XYL1 (xylose reductase (XR)) from Shephasomyces stipitsis, and SOR1 protein is XYL2 (xylitol dehydrogenation) from schephamyces stipitsis Enzyme (XDH)) is a protein having amino acid sequence identity (homology).
  • XKS1 protein is a xylulose kinase.
  • the PGK1 promoter and PGK1 terminator are known to function in Saccharomyces cerevisiae.
  • the above gene was introduced into the XYL2 site on the chromosome by the lithium acetate method to obtain xylose-assimilating yeast.
  • Sake yeast was used as a host for imparting xylose utilization ability.
  • GRE3 overexpression strain A gene fragment of GRE3 placed under the control of the PGK1 promoter and PGK1 terminator was introduced into the SmaI site of a commercially available expression vector pAUR135 (Takara Bio Inc.). The gene fragment obtained by cleaving the obtained GRE3 expression vector with StuI was introduced into the AUR1 site on the chromosome of the xylose-assimilating yeast prepared in Example 2 by the lithium acetate method. The obtained strain was designated as a GRE3-overexpressing strain.
  • the sampled culture solution was centrifuged to remove the cells, and the supernatant was filtered through a 0.2 ⁇ m polypropylene filter to obtain a measurement sample.
  • FIG. 1 shows the result of a medium containing only xylose as a substrate
  • FIG. 2 shows the result of a medium containing glucose and xylose as substrates. Fermentation performance is evaluated as ethanol yield (%), and the amount of ethanol produced corresponds to the amount of ethanol calculated by multiplying the administered basic mass by the theoretical yield (0.51 for both glucose and xylose). 100%.
  • the present invention can be applied not only to culture at a laboratory level using a flask but also to culture at an industrial level using a culture tank or culture conditions close to the industrial level.
  • a gene encoding xylose reductase, a gene encoding xylitol dehydrogenase, and a host yeast into which a gene encoding xylulose phosphorylase has been introduced so that it can be expressed further include a gene encoding xylose reductase.
  • a transformed yeast introduced so as to allow expression is provided.
  • the transformed yeast of the present invention exhibits a higher xylose consumption rate than the host yeast when cultured in the presence of glucose and xylose.
  • the transformed yeast of the present invention has a higher ethanol concentration than that of the host yeast when cultured in the presence of glucose and xylose.
  • a yeast having an improved xylose consumption rate and high ethanol production is provided.
  • the present invention also provides a method for producing ethanol, comprising culturing the transformed yeast of the present invention in a glucose and xylose-containing medium. Since the ethanol production method of the present invention can realize both an improved xylose consumption rate and a high ethanol production amount, it is useful for industrial production of ethanol.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明は、キシロースからエタノールを生産する酵母および当該酵母を用いるキシロースからエタノールの生産方法の提供を目的とする。キシロース還元酵素遺伝子、キシリトール脱水素酵素遺伝子およびキシルロースリン酸化酵素遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素遺伝子がさらに発現可能に導入された形質転換酵母、および当該酵母を用いたキシロースからエタノールを生産する方法に関する。

Description

キシロースからエタノールを生産する酵母
 本発明は、キシロースからエタノールを生産する酵母および当該酵母を用いるエタノールの生産方法に関する。
 近年、CO2排出削減の観点から、輸送用燃料へのバイオエタノールの利用が注目されている。中でも、バイオエタノール生産方法として、セルロース系バイオマスからの生産が検討されている。セルロース系バイオマスから得られる糖の約三分の一はキシロースが占めることから、バイオマス資源の有効利用のためには、キシロースからエタノールを効率よく生産する微生物の開発が必要である。
 現在、エタノールの生産には、サッカロマイセス・セレビシア(Saccharomyces cerevisiae)に代表される酵母が醸造用酵母として主に使用されている。サッカロマイセス・セレビシアはグルコースやマンノースなどの六炭糖からのエタノール生産能が高く、エタノールに対する高い耐性を有している。しかしながら、サッカロマイセス・セレビシアは、キシロースなどの五炭糖を利用することができない。
 キシロース資化能を有する酵母としてシファゾマイセス・スティピティス(Scheffersomyces stipitis)が知られている。サッカロマイセス・セレビシアは、シファゾマイセス・スティピティスの有するキシロースを資化するための遺伝子群に対応する遺伝子群を内在するが、サッカロマイセス・セレビシアにおけるこれらの遺伝子の多くは発現していないか、あるいは、発現していたとしてもその量は極めて少ないと考えられている。そのため、キシロース資化性酵母由来の遺伝子導入によるサッカロマイセス・セレビシアの改良が進められている(WO2009/093630(特許文献3))。
 しかし、これらの遺伝子はサッカロマイセス・セレビシアにとって外来遺伝子であるので、上記の方法で作製した酵母は組換え体に該当し、外界への菌体の漏出を防ぐ手段が必要になるなど、その利用に様々な制約が生じるため好ましいものではない。
 一方、サッカロマイセス・セレビシアに内在するキシロース資化遺伝子を活性化することにより、キシロース資化能を付与した酵母の作製が検討されている(WO2010/001906号(特許文献1)、WO2014/058034号(特許文献2))。この手法を用いて得られた酵母は、酵母自身に由来するキシロース資化遺伝子を利用していることから、遺伝子組換え体ではないという長所を有する。
 キシロースからエタノールを工業的に高効率生産させる上で重要なファクターには、エタノール収率の向上とエタノール生産性の向上がある。この二つのファクターは、大容量かつ低コストの工業操作において非常に重要である。エタノール収率の向上は原料コストに影響を与える。一方、エタノール生産性の向上は、バイオプロセス設備の主要なコストの決定的な要素となる。収率と生産性はときには分けて考えることができるが、プロセス全体の最適化では、収率と生産性の両方を加味して行わなければならない。
 エタノール生産性は基質であるキシロースの比消費速度に依存している。エタノール生産プロセスにおいてキシロース比消費速度を向上させると、キシリトール、グリセロール等の副生産物の生産を抑えられるため、コストを容認できるレベルまで低減することにつながる。また、糖消費速度を向上させると、培養タンクの容量を小さくすることが可能で有り、エタノール生産コストの低減に有効である。
 キシロースからエタノールを工業的に高効率生産させるためには、エタノール収率とエタノール生産性の両方を最適化することが望まれる。すなわち、エタノールを高い収率で生産し、かつキシロースからのエタノール発酵速度が速い酵母株が、最も実用化・工業化するのに適している。
 しかしながら、キシロース消費速度を向上させるとエタノール生産量は低くなることが多いことから、依然として、エタノールの収率の向上とエタノールの生産性向上を両立させる酵母の開発が望まれている。
WO2010/001906号 WO2014/058034号 WO2009/093630号
 本発明は、キシロース資化遺伝子を導入した酵母を改良し、キシロースの消費速度が向上し、かつ、キシロースからエタノールへの生産効率に優れた酵母、および当該酵母を用いるエタノールの生産方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するために鋭意研究を重ねた結果、本発明を完成した。すなわち、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子を発現可能に導入したキシロース資化性酵母に、さらに、キシロース還元酵素をコードする遺伝子を発現可能に導入した形質転換酵母は、グルコースおよびキシロースの存在下で培養すると、キシロース資化性酵母に比べてキシロース消費速度が高いことを見出した。また当該形質転換酵母は、グルコースおよびキシロースの存在下で培養すると、キシロース資化性酵母に比べて得られるエタノール濃度が同等以上であることを見出した。そして、このような形質転換酵母をグルコースおよびキシロース含有培地で培養すると、高い収率および生産性でエタノールを生産できることを見出し、本発明を完成した。
 すなわち、本発明は以下に関する。
[1]
 キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素をコードする遺伝子がさらに発現可能に導入された形質転換酵母であり、
 グルコースおよびキシロース存在下で培養した場合、形質転換酵母のキシロース消費速度が宿主酵母のキシロース消費速度に比べて高い、前記形質転換酵母。
[2]
 キシロースからエタノールを生産する能力を有するものである、[1]に記載の形質転換酵母。
[3]
 グルコースおよびキシロース存在下で形質転換酵母を培養したときに得られるエタノール濃度が、グルコースおよびキシロース存在下で宿主酵母を培養したときに得られるエタノール濃度以上である、[1]または[2]に記載の形質転換酵母。
[4]
 前記遺伝子が、当該酵母の内在性遺伝子である、[1]~[3]のいずれか1項に記載の形質転換酵母。
[5]
 前記遺伝子が宿主酵母の染色体上に発現可能に挿入されたものである、[1]~[4]のいずれか1項に記載の形質転換酵母。
[6]
 キシロース還元酵素をコードする遺伝子が、GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wからなる群から選択される遺伝子である、[1]~[5]のいずれか1項に記載の形質転換酵母。
[7]
 キシリトール脱水素酵素をコードする遺伝子が、SOR1、SOR2およびYLR070cからなる群からなる群から選択される遺伝子である、[1]~[6]のいずれか1項に記載の形質転換酵母。
[8]
 キシルロースリン酸化酵素をコードする遺伝子がXKS1である、[1]~[7]のいずれか1項に記載の形質転換酵母。
[9]
 キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子が、それぞれGRE3、SOR1およびXKS1である、[1]~[8]のいずれか1項に記載の形質転換酵母。
[10]
 宿主酵母が、六炭糖資化能を有するが五炭糖資化能を有しないものである、[1]~[9]のいずれか1項に記載の形質転換酵母。
[11]
 宿主酵母が、サッカロマイセス属に属する酵母である、[1]~[10]のいずれか1項に記載の形質転換酵母。
[12]
 宿主酵母が、サッカロマイセス・セレビシア種に属する酵母である、[1]~[11]のいずれか1項に記載の形質転換酵母。
[13]
 [1]~[12]のいずれか1項に記載の形質転換酵母をグルコースおよびキシロース含有培地で培養し、得られる培養物からエタノールを採取することを含む、エタノールの生産方法。
[14]
 キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素をコードする遺伝子がさらに発現可能に導入された形質転換酵母。
[15]
 キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された酵母であり、キシロース還元酵素をコードする遺伝子が3つの遺伝子の中で最も発現増強するように導入された形質転換酵母。
 本発明により、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子が発現可能に導入された宿主酵母に、さらにキシロース還元酵素をコードする遺伝子が発現可能に導入された形質転換酵母が提供される。
 本発明の一態様において、本発明の形質転換酵母はグルコースおよびキシロース存在下で培養した場合に、宿主酵母に比べて高いキシロース消費速度を示す。
 また、本発明の別の態様において、本発明の形質転換酵母はグルコースおよびキシロース存在下で培養した場合に、宿主酵母と比べて得られるエタノール濃度が高い。
 このため、本発明の別の態様において、キシロース消費速度が向上し、エタノール生産量も高い酵母が提供される。
 また、本発明により、本発明の形質転換酵母をグルコースおよびキシロース含有培地で培養することを含む、エタノールを生産する方法が提供される。本発明のエタノール生産方法は、向上されたキシロース消費速度および高いエタノール生産量の両者を実現可能であるため、エタノールの工業的生産に有用である。
基質としてキシロースのみを含む培地における、形質転換酵母の発酵性能評価結果を示す図である。「元株」は実施例2で得られたキシロース資化能付与酵母を表し、「GRE3過剰発現株」は実施例3で得られたGRE3過剰発現株を意味する。「XYL」はキシロース濃度を表し、「EtOH」はエタノール濃度を表す。 基質としてキシロースおよびグルコースを含む培地における、形質転換酵母の発酵性能評価結果を示す図である。「元株」は実施例2で得られたキシロース資化能付与酵母を表し、「GRE3過剰発現株」は実施例3で得られたGRE3過剰発現株を意味する。「XYL」はキシロース濃度を表し、「GLC」はグルコース濃度を表し、「EtOH」はエタノール濃度を表す。
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に限定されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で当業者であれば適宜変更し実施することができる。
 また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
1.本発明の概要
 本発明は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素をコードする遺伝子を過剰発現させた形質転換酵母が、グルコースおよびキシロース存在下での培養において、優れたキシロース消費速度およびエタノール生産量を有するとの知見に基づくものである。
 キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母(キシロース資化能付与酵母)にキシロース還元酵素をコードする遺伝子を過剰発現させた本発明の形質転換酵母は、基質としてキシロースのみを含む培地においては、宿主酵母と比較してキシロース消費速度は向上するものの、エタノールの収率は低下してしまう(図1)。一方、本発明の形質転換酵母は、基質としてグルコースおよびキシロースを含む培地においては、宿主酵母と比較してエタノール収率を低下させることなく、キシロース消費速度を向上させることが可能である(図2)。
 したがって、キシロース還元酵素をコードする遺伝子を過剰発現させた本発明の形質転換酵母は、グルコースおよびキシロース存在下で培養した場合に、宿主酵母に比べて高いキシロース消費速度を有し得る。また、本発明の形質転換酵母は、グルコースおよびキシロース存在下で培養したときに得られるエタノール濃度が、グルコースおよびキシロース存在下で宿主酵母を培養したときに得られるエタノール濃度以上であり得る。
 本発明の形質転換酵母は、キシロースからエタノールを生産する能力を有するものであり、グルコースおよびエタノール存在下で培養することにより、高いキシロース消費速度および高いエタノール濃度でエタノールを生産可能といえる。
 本発明の形質転換酵母は、キシロース資化遺伝子、好ましくは酵母自身のキシロース資化遺伝子を染色体上に導入された宿主酵母を用いて作製することを特徴の一つとするものである。本発明において、「キシロース資化遺伝子」とは、キシロースの資化に関与する酵素をコードする遺伝子である。本発明において酵母に導入されるキシロース資化遺伝子は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の少なくとも3つの遺伝子である。
 また、本発明において宿主酵母にさらに導入されるキシロース資化遺伝子は、キシロース還元酵素をコードする遺伝子である。したがって、本発明の形質転換酵母は、理論的には、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3種の遺伝子の中、キシロース還元酵素をコードする遺伝子の発現量が最も増強されているといえる。よって、本発明は、上記3種のキシロース資化遺伝子の中、キシロース還元酵素をコードする遺伝子の発現量が最も高くなるように製造された形質転換酵母をも含み得る。そのような形質転換酵母としては、例えば、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された形質転換酵母であり、前記3つの遺伝子が、キシロース還元酵素をコードする遺伝子とキシリトール脱水素酵素をコードする遺伝子とを連結した遺伝子、およびキシロース還元酵素をコードする遺伝子とキシルロースリン酸化酵素をコードする遺伝子とを連結した遺伝子として導入された形質転換酵母などが挙げられる。
 本発明の別の態様において、酵母に導入されるこれら遺伝子は、当該酵母に由来する遺伝子である。すなわち、本発明の別の態様において、酵母が本来有する(内在性の)酵素遺伝子の発現を活性化し、酵母自身の有する酵素の活性を高めることを特徴の一つとされる。
 本発明の別の態様において、宿主酵母に導入されるこれら遺伝子は、宿主酵母の染色体上に導入されることを特徴の一つとするものである。
 また、本発明の別の態様において、上記3種の酵素に関する遺伝子を導入した形質転換酵母は、キシロースからのエタノールへの優れた生産能を有する。
 酵母の中には、キシロース資化酵素群が実質的に機能していない、いわゆる休眠状態にあるために、キシロースなどの五炭糖資化能を有さない酵母が存在する。例えば、サッカロマイセス属に属する酵母は、キシロース資化酵素群をコードする遺伝子群を有しているにもかかわらず、キシロースを利用してエタノールを生産することができない。
 このようなエタノール生産能を有さないとされる酵母に、自身由来のキシロース資化遺伝子を導入することで、キシロース資化内在性遺伝子の活性を高め、キシロース資化能を付与することができる。したがって、本発明において、宿主酵母は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子が染色体上に挿入された酵母であってもよい。そして、自身由来のキシロース資化遺伝子を導入した宿主酵母に、さらにキシロース還元酵素をコードする遺伝子を過剰発現させた形質転換酵母は、驚くべきことに宿主酵母と比較して、グルコースおよびキシロース含有培地で培養すると高いエタノール生産量および高いキシロース消費速度を示す。
 また、本発明は、上記形質転換酵母をグルコースおよびキシロース含有培地で培養し、得られる培養物からエタノールを採取することによるエタノールの生産方法も提供する。培養時にグルコースを存在させると、高いキシロース消費速度が達成されるため、タンク容量を小さくすることができ、生産コストを低減することが可能である。
2.本発明の形質転換酵母
 本発明の形質転換酵母は、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子を発現可能に導入された酵母であり、かつ、上記3種のキシロース資化遺伝子の中、キシロース還元酵素をコードする遺伝子の発現量が最も増強するように遺伝子導入された形質転換酵母である。
 本発明の一態様において、本発明の形質転換酵母は、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子を発現可能に導入された宿主酵母に、さらにキシロース還元酵素をコードする遺伝子を発現可能に導入された形質転換酵母である。
(1)酵母
 本発明において、遺伝子導入または形質転換の対象となる酵母は、キシロースなどの五炭糖の資化能を有していない酵母であることが好ましい。前記酵母は遺伝子導入または形質転換の前に五炭糖資化能を有していないものであればよく、グルコースなどの六炭糖の資化能を有していてもよい。「五炭糖資化能」は、キシロースなどの五炭糖を炭素源として生育する能力をいう。五炭糖資化能を有する酵母は、炭素源として五炭糖のみを添加した培地中で生育可能であるため、五炭糖資化能は、炭素源として五炭糖のみを添加した培地中における酵母の生育程度を600 nmまたは660 nmなどの波長での濁度を測定することで確認することができる。
 あるいは、本発明において、遺伝子導入または形質転換の対象となる酵母は、エタノールの生産量および/またはキシロース消費速度を向上する目的で選択することもできる。このような酵母としては、例えば、キシロース資化能を付与された酵母やキシロース資化能を賦活化された酵母を挙げることができる。
 本発明において、遺伝子導入または形質転換の対象となる酵母は、特に限定されるわけではないが、例えば、サッカロマイセス属に属する酵母などを挙げることができる。サッカロマイセス属に属する酵母としては、研究室酵母株などのサッカロマイセス・セレビシア種を挙げることができる。また、本発明において、遺伝子導入または形質転換の対象となる酵母は1倍体だけでなく2倍体の酵母を使用することができる。2倍体の酵母は実用酵母として優れており、例えば、パン酵母や日本酒酵母、焼酎酵母、ワイン酵母などの醸造酵母などを挙げることができる。
 また、本発明において、遺伝子導入または形質転換の対象となる酵母は、エタノールへの耐性を備えた醸造用酵母であることが好ましく、そのような酵母としては、特に限定されるわけではないが、サッカロマイセス属に属する酵母(例えば、サッカロマイセス・セレビシア)などを挙げることができる。
 したがって、本発明において遺伝子導入または形質転換の対象となる酵母は、好ましくはサッカロマイセス属に属する酵母、より好ましくはサッカロマイセス・セレビシアである。
 本発明では、非組換え酵母が宿主酵母として好ましく採用される。非組換え酵母を作製するにあたり、酵母染色体上に導入されるキシロース資化遺伝子は、当該酵母と同種由来の遺伝子であることが必要である。また、遺伝子を導入される酵母は、当該遺伝子の由来と同種の酵母であることが必要である。
(2)導入遺伝子
 本発明において、キシロース資化遺伝子は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の少なくとも3つの遺伝子であり、中でもキシリトール脱水素酵素は好ましくはソルビトール脱水素酵素である。より具体的には、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子は、それぞれ、GRE3(アルド・ケト還元酵素遺伝子3)、SOR1(ソルビトール脱水素酵素遺伝子1)およびXKS1(キシルロースリン酸化酵素遺伝子1)が好ましい。
 本発明において当該キシロース資化遺伝子は、外来の遺伝子または内在性の遺伝子のいずれも使用できるが、内在性の遺伝子であることが好ましい。「内在性遺伝子」とは、遺伝子挿入対象の酵母の有する遺伝子、遺伝子挿入対象の酵母由来の遺伝子、遺伝子挿入対象の酵母と同種の酵母由来の遺伝子を意味する。したがって、内在性遺伝子を導入された酵母は組換え体に該当しない。よって、内在性遺伝子を導入された本発明の形質転換酵母は、一般に組換え体を用いる実験で要求される処置や手順を必要としない。
(キシロース還元酵素をコードする遺伝子)
 酵母の有するキシロース還元酵素をコードする遺伝子として、GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wが知られている。したがって、本発明において、キシロース還元酵素をコードする遺伝子として、GRE3、YJR096w、YPR1、GCY1、ARA1またはYDR124wを使用することができる。本明細書ではGRE3をキシロース還元酵素をコードする遺伝子の例に挙げて説明するが、YJR096w、YPR1、GCY1、ARA1およびYDR124wは、GRE3に関する本明細書での記載を適用し、本発明において同様に使用することができる。
 GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wの塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。以下にサッカロマイセス・セレビシアにおける各遺伝子の配列情報についてのアクセッション番号を示す。GRE3:U00059、YJR096w:Z49596、YPR1:X80642、GCY1:X13228、ARA1:M95580、YDR124w:Z48758。
 本発明において、GRE3(アルド・ケト還元酵素遺伝子3)は、アルド・ケト還元酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号13で示される塩基配列からなるDNA、または配列番号14で示されるアミノ酸配列からなるタンパク質をコードするDNAである。GRE3がコードするタンパク質は、酵母においてキシロース還元酵素としても機能することが知られている。また、GRE3タンパク質は、シェファソマイセス・スティピティスのXYL1(キシロース還元酵素)とアミノ酸配列の同一性(相同性)を有するタンパク質である。
 本発明において、GRE3は、例えば、配列番号13で示される塩基配列を基にプライマーを設計し、酵母ライブラリー又はゲノムライブラリーから遺伝子増幅技術により得ることができる。
 本発明で使用されるGRE3は、GRE3タンパク質の変異体をコードする遺伝子を含む。GRE3タンパク質の変異体をコードする遺伝子は、例えば、配列番号13で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシロース還元酵素活性を有するタンパク質をコードするDNAを含む。キシロース還元酵素活性については後述する。
 GRE3タンパク質の変異体をコードするDNAは、配列番号13で示される塩基配列からなるDNA又はその断片をプローブとして、コロニーハイブリダイゼーション、プラークハイブリダイゼーション、サザンブロット等の公知のハイブリダイゼーション法により、cDNAライブラリー及びゲノムライブラリーから得ることができる。ライブラリーの作製方法については、「Molecular Cloning, A Laboratory Manual 4th ed.」(Cold Spring Harbor Press(2012))等を参照することができる。また、市販のcDNAライブラリー及びゲノムライブラリーを用いてもよい。
 ここで、ストリンジェントな条件は、ハイブリダイゼーション後の洗浄条件として、例えば、「2×SSC、0.1%SDS、42℃」、「1×SSC、0.1%SDS、37℃」、よりストリンジェントな条件としては、例えば、「1×SSC、0.1%SDS、65℃」、「0.5×SSC、0.1%SDS、50℃」等の条件を挙げることができる。
 ハイブリダイゼーションは、公知の方法によって行うことができる。ハイブリダイゼーションの方法は、例えば、「Molecular Cloning, A Laboratory Manual 4th ed.」(Cold Spring Harbor Laboratory Press(2012))、「Current Protocols in Molecular Biology」(John Wiley & Sons(1987-1997))等を参照することができる。
 また、本明細書において、ストリンジェントな条件下でハイブリダイズするDNAには、例えば、配列番号13で示される塩基配列と少なくとも50%以上、好ましくは70%以上、80%以上または85%以上、より好ましくは90%以上、95%以上、96%以上、97%以上または98%以上、さらに好ましくは99%以上、さらに一層好ましくは99.7%以上、特に好ましくは99.9%の同一性(相同性)を有する塩基配列を含むDNAが含まれる。同一性を示す値は、BLASTなどの公知のプログラムを利用することにより算出することができる。
 また、配列番号13で示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズするDNAは、例えば、配列番号13で示される塩基配列において1個又は数個の核酸に欠失、置換又は付加などの変異の生じた塩基配列を含むDNAが挙げられる。このようなDNAとしては、例えば、(i) 配列番号13で示される塩基配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が欠失したDNA、(ii) 配列番号13で示される塩基配列中の1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が他の塩基に置換したDNA、(iii) 配列番号13で示される塩基配列中に1~数個(例えば1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)の塩基が付加したDNAおよび(iv) それらの変異が組み合わされたDNAであって、かつキシロース還元酵素活性を有するタンパク質をコードするDNAなどが挙げられる。
 本発明において、塩基配列の確認は、慣用の方法により配列決定することにより行うことができる。例えば、ジデオキシヌクレオチドチェーンターミネーション法(Sanger et al.(1977)Proc. Natl. Acad. Sci. USA 74: 5463)等により行うことができる。また、適当なDNAシークエンサーを利用して配列を解析することも可能である。
 本発明において、例えばサッカロマイセス・セレビシア由来のGRE3(アルド・ケト還元酵素遺伝子3)は、配列番号14で示されるアミノ酸配列からなるタンパク質をコードするものも含まれる。本発明では、サッカロマイセス・セレビシア由来のGRE3タンパク質又はそれらの変異体をコードする遺伝子も、GRE3(アルド・ケト還元酵素遺伝子3)に含まれる。
 GRE3タンパク質の変異体は、(i) 配列番号14で示されるアミノ酸配列中の1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号14で示されるアミノ酸配列中の1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号14で示されるアミノ酸配列中に1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシロース還元酵素活性を有するタンパク質などが挙げられる。
 ここで、「キシロース還元酵素活性」とは、NAD+(またはNADP+)の存在下でキシロースをキシリトールに変換する活性を意味する。本発明において、GRE3タンパク質の変異体は、キシロース還元酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号14で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシロース還元酵素活性は、公知の方法で測定することができる。
(キシリトール脱水素酵素をコードする遺伝子)
 酵母の有するキシリトール脱水素酵素をコードする遺伝子として、SOR1、SOR2およびYLR070cが知られている。したがって、本発明において、キシリトール脱水素酵素をコードする遺伝子として、SOR1、SOR2またはYLR070cを使用することができるが、好ましくはSOR1である。本明細書ではSOR1をキシリトール脱水素酵素をコードする遺伝子の例に挙げて説明するが、SOR2およびYLR070cはSOR1に関する本明細書での記載を適用することができる。なお、SOR1およびSOR2は互いに99.9%の遺伝子配列における同一性を有する。
 SOR1、SOR2およびYLR070cの塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。以下にサッカロマイセス・セレビシアにおける各遺伝子の配列情報についてのアクセッション番号を示す。
SOR1:L11039、SOR2:Z74294、YLR070c:Z73242。
 本発明において、SOR1(ソルビトール脱水素酵素遺伝子1)は、ソルビトール脱水素酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号15で示される塩基配列からなるDNA、または配列番号16で示されるアミノ酸配列からなるタンパク質をコードするDNAである。SOR1がコードするタンパク質は、酵母においてキシリトール脱水素酵素としても機能することが知られている。また、SOR1タンパク質は、シェファソマイセス・スティピティスのXYL2(キシリトール脱水素酵素)とアミノ酸配列の同一性(相同性)(53%)を有するタンパク質である。
 本発明で使用されるSOR1は、SOR1タンパク質の変異体をコードする遺伝子を含む。SOR1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号15で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシリトール脱水素酵素活性を有するタンパク質をコードするDNAを含む。
 また、本発明で使用されるSOR1は、以下のSOR1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号16で示されるアミノ酸配列中の1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号16で示されるアミノ酸配列中の1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号16で示されるアミノ酸配列中に1~数個(例えば1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシリトール脱水素酵素活性を有するタンパク質。
 ここで「キシリトール脱水素酵素活性」は、キシリトールをキシルロースに脱水素化する活性を意味する。本発明において、SOR1タンパク質の変異体は、キシリトール脱水素酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号16で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシリトール脱水素酵素活性は、公知の方法で測定することができる。
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、SOR1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。
(キシルロースリン酸化酵素をコードする遺伝子)
 本発明において、キシルロースリン酸化酵素をコードする遺伝子として、XKS1(キシルロースリン酸化酵素遺伝子1)を使用することができる。XKS1の塩基配列情報は、当業者であれば、Genbankなどの公知のデータベースから入手することができる。例えば、サッカロマイセス・セレビシアのXKS1のアクセッション番号は、Z72979である。
 本発明において、XKS1(キシルロースリン酸化酵素遺伝子1)は、キシルロースリン酸化酵素をコードする塩基配列を含む遺伝子であり、例えばサッカロマイセス・セレビシア由来の配列番号17で示される塩基配列からなるDNA、または配列番号18で示されるアミノ酸配列からなるタンパク質をコードするDNAである。
 本発明で使用されるXKS1は、XKS1タンパク質の変異体をコードする遺伝子を含む。XKS1タンパク質の変異体をコードする遺伝子は、例えば、サッカロマイセス・セレビシア由来の配列番号17で示される塩基配列からなるDNAに相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつキシルロースリン酸化酵素活性を有するタンパク質をコードするDNAを含む。
 また、本発明で使用されるXKS1は、以下のXKS1タンパク質の変異体をコードする遺伝子であってもよい:(i) 配列番号18で示されるアミノ酸配列中の1~数個(例えば1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が欠失したタンパク質、(ii) 配列番号18で示されるアミノ酸配列中の1~数個(例えば1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が他のアミノ酸に置換したタンパク質、(iii) 配列番号18で示されるアミノ酸配列中に1~数個(例えば1~60個、1~50個、1~40個、1~30個、1~20個、1~10個、好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個)のアミノ酸が付加したタンパク質および(iv) それらの変異が組み合わされたタンパク質であって、かつキシルロースリン酸化酵素活性を有するタンパク質。
 ここで「キシルロースリン酸化酵素活性」は、キシルロースをリン酸化する活性を意味
する。本発明において、XKS1タンパク質の変異体は、キシルロースリン酸化酵素活性を有する限り、その活性の程度に特に限定されないが、例えば配列番号18で示されるアミノ酸配列からなるタンパク質の約10%以上の活性を有していればよい。タンパク質の有するキシルロースリン酸化酵素活性は、公知の方法で測定することができる。
 上記ハイブリダイズするDNAに含まれるDNA、およびハイブリダイズの条件等は、前述の説明が同様に適用できる。また、本発明において、XKS1は、GRE3に対して記載された方法と同様の方法により取得または製造することができる。
 本発明において、上記3種の遺伝子を当該遺伝子の由来と同種の宿主酵母に導入することにより、酵母自身のキシロース還元酵素、キシリトール脱水素酵素およびキシルロースリン酸化酵素の活性が遺伝子導入前よりも向上し、当該酵母にキシロース資化能が付与される。また、非組換え酵母を作製する場合は、酵母に導入される上記3種の遺伝子は、内在性の遺伝子であることが必要である。
(3)宿主酵母の作製
 本発明において、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子の3つの遺伝子を発現可能に導入することにより、本発明の宿主酵母を作製することができる。
 本発明の宿主酵母は、好ましくは、GRE3、SOR1、XKS1が発現可能に導入された酵母である。本明細書において、「発現可能に(導入または挿入)」とは、導入または挿入された遺伝子が酵母において所定の条件で発現できるような形で導入または挿入されることを意味する。
 本発明において、宿主酵母を作製するにあたり、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子は、好ましくは酵母の染色体上に発現可能に挿入される。
 これらの遺伝子は、それぞれの遺伝子を個別に染色体上に挿入してもよいし、またはプロモーターの支配下にタンデムに連結した発現カセットを作製して染色体上に挿入してもよい。タンデムに連結する場合、3つの遺伝子の配置の順番は特に限定されず、考えられる組合せのいずれでも良い。また、GRE3、SOR1およびXKS1の3つの遺伝子を含むプラスミドを用いて酵母の染色体上に遺伝子を導入しても良い。上記3つの遺伝子は、一つのプラスミドに含まれてもよいし、それぞれ別のプラスミドに含まれてもよい。また、挿入されるそれぞれの遺伝子の個数は限定されず、1個または複数である。染色体への遺伝子の導入の順は特に限定されない。
 例えば、キシロース還元酵素をコードする遺伝子-キシルロースリン酸化酵素をコードする遺伝子の融合遺伝子を含むプラスミド、およびキシロース還元酵素をコードする遺伝子-キシリトール脱水素酵素をコードする遺伝子の融合遺伝子を含むプラスミドを用いて、酵母の染色上にキシロース資化遺伝子を導入することができる。融合遺伝子内の遺伝子の配置の順は特に限定されない。上記連結させた遺伝子カセットを用いると、キシロース還元酵素をコードする遺伝子の発現量が特に増加する。
 また、遺伝子を挿入する染色体の位置は、特に限定されないが、酵母内で機能していない部位が好ましく、例えば、XYL2部位(Genbankアクセッション番号Z73242)、HXT13部位、HXT17部位、AUR1部位などが挙げられる。遺伝子をコードしていない染色体上の部位に挿入することも可能である。遺伝子をコードしていない染色体上の部位としてTy因子の1つであるδ配列が挙げられる。δ配列は、酵母の染色体上に複数(約100コピー)存在することが知られている。酵母染色体におけるδ配列の位置および配列情報は、公知である(例えば、Science 265, 2077 (1994))。例えばδ配列の途中にキシロース資化性遺伝子を挿入したプラスミドを酵母に導入することで、染色体上の目的の位置に1または複数コピーの当該遺伝子を挿入することができる。またδ配列のほかに同じくTy因子であるσ配列、τ配列に挿入することもできる。またNTS2などのリボソーム遺伝子部位に挿入することもできる。
 遺伝子を染色体上に挿入するためのカセットまたはプラスミドの作製、染色体上での挿入位置の選択、あるいは染色体への挿入(例えば、酢酸リチウム法)は、当業者であれば、公知の方法に基づき適宜実施することができる。本発明は、GRE3、SOR1およびXKS1の3つの遺伝子をプロモーターの支配下にタンデムに連結した発現カセットまたはプラスミドを含む。このようなプラスミドの例として、プロモーター(例えばPGKプロモーター)の支配下にGRE3とSOR1とを連結したプラスミド、プロモーターの支配下にSOR1とXKS1とを連結したプラスミド、またはプロモーターの支配下にGRE3とSOR1とXKS1とを連結したプラスミドなどが挙げられる。プラスミドまたは発現カセットに複数の遺伝子が含まれる場合、当該複数の遺伝子は、酵母に導入された際に、特に、染色体に挿入された際にそれぞれの遺伝子が発現可能となるように連結される。2つの遺伝子を連結し、融合遺伝子を作製する際に必要であれば、リンカー配列や制限酵素部位等を適宜付加してもよい。これらの操作は、当分野でよく知られている慣用の遺伝子操作技術を用いて行うことができる。これらのプラスミドまたは発現カセットを用いることによって、3種のキシロース資化遺伝子を酵母の染色体上に導入してもよい。
 本発明で使用されるプラスミドは、酵母発現用のベクターに上記遺伝子を発現可能に挿入することで作製することができる。ベクターへの遺伝子の挿入は、リガーゼ反応、トポイソメラーゼ反応などを利用することができる。例えば、精製したDNAを適当な制限酵素で切断し、得られたDNA断片を、ベクター中の適当な制限酵素部位またはマルチクローニングサイトなどに挿入することでベクターに連結する方法などを採用することができる。
 また、本発明で使用されるプラスミドは、その基本となるベクターの由来には特に限定されず、例えば、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミドなどを使用することができる。例えば、pGADT7、pAUR135などの市販のベクターを使用することもできる。好ましくは、本発明で使用されるプラスミドは、酵母の染色体に遺伝子を導入可能なものであれば、特に限定されず、例えばpUC18、pAUR135などの市販のベクターを使用することができる。
 本発明のプラスミドは、目的遺伝子を発現させ得る限り、マルチクローニングサイト、プロモーター、エンハンサー、ターミネーター、選択マーカーカセットなどを含んでもよい。また、DNAを挿入する際に必要であれば、適宜リンカーや制限酵素部位を付加してもよい。これらの操作は、当分野でよく知られている慣用の遺伝子操作技術を用いて行うことができる。
 プロモーターは、目的遺伝子の上流に組み込むことができる。プロモーターは、形質転換酵母において目的タンパク質を適切に発現できるものであれば、特に限定されないが、PGKプロモーター、ADHプロモーター、TDHプロモーター、ENOプロモーター、CITプロモーター、TEFプロモーター、CDCプロモーター、GPMプロモーターまたはPDCプロモーターなどを使用することができる。
 ターミネーターは、目的遺伝子の下流に組み込むことができ、例えばPGKターミネーター、CITターミネーター、TEFターミネーター、CDCターミネーター、GPMターミネーターまたはPDCターミネーターなどを使用することができる。
 本発明において、酵母で目的遺伝子を効率よく発現させるために、PGKプロモーター及び/又はPGKターミネーターを用いることが好ましい。
 五炭糖資化能を有していない酵母は、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子を全て発現しないと、キシロース利用能が付与されない。したがって、上記のように遺伝子導入した酵母をキシロース含有(エタノール不含)培地で培養することにより、形質転換酵母を選択することができる。
 このように、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子を酵母に発現可能に導入することで、好ましくは上記遺伝子を酵母の染色体上に導入することで、本発明の宿主酵母を作製することができる。
 本発明の宿主酵母は、好ましくは内在性のキシロース資化遺伝子、すなわち、内在性のGRE3、SOR1およびXKS1の3つの遺伝子を染色体上に含むため、GRE3、SOR1およびXKS1の発現が活性化され得る。ここで、「キシロース資化遺伝子の発現が活性化される」とは、宿主酵母内に存在する当該遺伝子が、発現可能な形で活性化され、目的タンパク質を適切に発現できる状態となっていることを意味する。また、本発明の宿主酵母では、キシロース資化遺伝子の発現が活性化され得るため、キシロース資化能を獲得し得る。したがって、本発明の宿主酵母は、キシロース資化能が付与された酵母、好ましくはキシロース資化能が付与された醸造用酵母であり得る。
(4)本発明の形質転換酵母
 本発明の形質転換酵母は、前述の宿主酵母に、キシロース還元酵素をコードする遺伝子を発現可能に導入することによって作製することができる。あるいは、宿主酵母を作製する際に、キシロース還元酵素をコードする遺伝子のプロモーターを遺伝子の発現量を増大させるプロモーターに置換することにより、本発明の形質転換酵母を作製することもできる。あるいは、宿主酵母を作製する際に、キシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子およびキシリトール脱水素酵素をコードする遺伝子の3つの遺伝子が、キシロース還元酵素をコードする遺伝子とキシリトール脱水素酵素をコードする遺伝子とを連結した遺伝子、およびキシロース還元酵素をコードする遺伝子とキシルロースリン酸化酵素をコードする遺伝子とを連結した遺伝子として導入することにより、本発明の形質転換酵母を作製することもできる。
 本発明の一態様において、宿主酵母にキシロース還元酵素をコードする遺伝子が発現可能に導入される。遺伝子導入は、対象遺伝子を発現可能な形で含有するプラスミドを用いて行うことができる。本発明は当該遺伝子を含有するプラスミドを含む。
 本発明で使用されるプラスミドは、酵母発現用のベクターに上記遺伝子を発現可能に挿入することで作製することができる。ベクターへの遺伝子の挿入は、限定されるわけではないが、リガーゼ反応、トポイソメラーゼ反応などを利用することができる。例えば、精製したDNAを適当な制限酵素で切断し、得られたDNA断片を、ベクター中の適当な制限酵素部位またはマルチクローニングサイトなどに挿入することでベクターに連結する方法などを採用することができる。
 また、本発明で使用されるプラスミドは、その基本となるベクターの由来には特に限定されず、例えば、大腸菌由来のプラスミド、枯草菌由来のプラスミド、酵母由来のプラスミドなどを使用することができる。例えば、pGADT7、pAUR135などの市販のベクターを使用することもできる。好ましくは、本発明で使用されるプラスミドは、酵母の染色体に遺伝子を導入可能なものであれば、特に限定されず、例えばpUC18、pAUR135などの市販のベクターを使用することができる。
 本発明のプラスミドは、目的遺伝子を発現させ得る限り、マルチクローニングサイト、プロモーター、エンハンサー、ターミネーター、選択マーカーカセットなどを含んでもよい。また、DNAを挿入する際に必要であれば、適宜リンカーや制限酵素部位を付加してもよい。これらの操作は、当分野でよく知られている慣用の遺伝子操作技術を用いて行うことができる。
 プロモーターは、目的遺伝子の上流に組み込むことができる。プロモーターは、形質転換酵母において目的タンパク質を適切に発現できるものであれば、特に限定されないが、PGKプロモーター、ADHプロモーター、TDHプロモーター、ENOプロモーターなどを使用することができる。
 ターミネーターは、目的遺伝子の下流に組み込むことができ、例えばPGKターミネーター、CITターミネーター、TEFターミネーター、CDCターミネーター、GPMターミネーターまたはPDCターミネーターなどを使用することができる。
 本発明において、酵母で目的遺伝子を効率よく発現させるために、PGKプロモーター及び/又はPGKターミネーターを用いることが好ましい。
 選択マーカーとしては、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子などの薬剤耐性遺伝子、ジヒドロ葉酸還元酵素遺伝子、ロイシン合成酵素遺伝子、ウラシル合成酵素遺伝子などを挙げることができる。ベクターにロイシン、ヒスチジン、トリプトファンなどのアミノ酸合成遺伝子カセット又はウラシル合成遺伝子カセットが含まれる場合は、当該アミノ酸又はウラシルを含まない培地で酵母を培養することにより、本発明の形質転換酵母を選択することができる。
 また、本発明の形質転換酵母は、キシロース還元酵素をコードする遺伝子を、好ましくは宿主酵母の染色体上に発現可能に挿入することで作製される。すなわち、本発明において、酵母への遺伝子の導入は、酵母の染色体上への遺伝子の挿入を含む。よって、本発明の形質転換酵母は、好ましくは、さらにキシロース還元酵素をコードする遺伝子が宿主酵母の染色体上に発現可能に挿入された酵母である。さらに好ましくは、本発明の形質転換酵母は、GRE3、SOR1、XKS1が染色体上に発現可能に挿入された宿主酵母の染色体上に、さらにGRE3が発現可能に挿入された酵母である。
 本発明において、キシロース還元酵素をコードする遺伝子が挿入される染色体の位置は、特に限定されないが、宿主酵母を作製する場合と同様に、酵母内で機能していない部位が好ましく、例えば、XYL2部位(Genbankアクセッション番号Z73242)、HXT13部位、HXT17部位、AUR1部位などが挙げられる。また、遺伝子をコードしていない染色体上の部位も好ましい。
 さらに、本発明の形質転換酵母としては、宿主酵母の有するキシロース還元酵素をコードする遺伝子、キシルロースリン酸化酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子の発現が活性化されたものであってもよい。すなわち、本発明は、宿主酵母の染色体上にもともと存在する上記遺伝子の発現量が増大した酵母も含まれる。外部からプロモーターを導入すること、又は当該遺伝子自身の持つプロモーターをより強力なプロモーターに置換すること等によって、酵母がもともと有する遺伝子が発現可能な形で活性化され、目的タンパク質を適切に発現し得る。
 また、3つのキシロース資化遺伝子の中、キシロース還元酵素をコードする遺伝子の発現量が最も増大するように、キシロース還元酵素をコードする遺伝子の発現を活性化させてもよい。特定の遺伝子の発現を活性化させる方法としては、限定はされないが、目的タンパク質を適切に発現できるプロモーターを、公知の遺伝子組換え技術を用いて、染色体上に遺伝子置換により組み込む方法等が挙げられる。遺伝子置換の方法としては、Akada et al. Yeast 23: 399-405 (2006)(非特許文献)の方法を用いることができる。置換するプロモーターとしては、PGKプロモーター、ADHプロモーター、TDHプロモーター、ENOプロモーター、CITプロモーター、TEFプロモーター、CDCプロモーター、GPMプロモーターまたはPDCプロモーター等の公知のプロモーターを使用することができる。
 本発明のプラスミドを遺伝子導入対象の本発明の宿主酵母に導入することで、形質転換酵母を作製することができる。
 宿主酵母に本発明のプラスミドを導入する方法は、特に限定されるものではないが、例えば、酢酸リチウム法、エレクトロポレーション法、リン酸カルシウム法、リポフェクション法、DEAEデキストラン法などの公知の方法が挙げられる。これらの方法により、本発明の形質転換酵母が提供される。
 また、本発明の形質転換酵母は、相同組換えにより目的遺伝子を宿主酵母の染色体上に組み込むことにより作製することもできる。当業者であれば、公知の方法により相同組換えにより本発明の形質転換酵母を作製することができる。
3.エタノールの生産方法
 本発明の形質転換酵母は、キシロース資化能を付与された宿主酵母にキシロース還元酵素をコードする遺伝子をさらに導入したものであるため、本発明の形質転換酵母はキシロースの資化能を有する。また、本発明の形質転換酵母は、キシロースからエタノールを生産することが可能である。
 本発明の形質転換酵母は、酵母の培養に用いられる通常の方法に従って培養することができる。当業者であれば、SD培地、SCX培地、YPD培地、YPX培地などの公知の培地から適切な培地を選択し、好ましい培養条件の下で酵母を培養することができる。液体培地で酵母を培養する場合は、振盪培養が好ましい。
 本発明の形質転換酵母を培養し、得られる培養物からエタノールを採取することにより、エタノールを生産させることができる。
 本発明において、基質としてグルコースおよびキシロース存在下で培養した場合、本発明の形質転換酵母のキシロース消費速度が宿主酵母のキシロース消費速度に比べて高い。また、本発明において、グルコースおよびキシロース存在下で本発明の形質転換酵母を培養したときに得られるエタノール濃度が、グルコースおよびキシロース存在下で宿主酵母を培養したときに得られるエタノール濃度以上である。
 本発明において、「グルコースおよびキシロース存在下で培養した場合、本発明の形質転換酵母のキシロース消費速度が宿主酵母のキシロース消費速度に比べて高い」とは、本発明の形質転換酵母をグルコースおよびキシロースを含有する培地で培養した際のキシロースの消費速度と、本発明の宿主酵母をグルコースおよびキシロースを含有する培地で培養した際のキシロースの消費速度を比較したときに、本発明の形質転換酵母のキシロース消費が本発明の宿主酵母のキシロース消費よりも速いことを意味する。速さの程度は、特に限定されるわけではないが、1倍超であればよい。キシロースの消費速度を比較する際は、グルコースおよびキシロースの初期濃度等の培養条件を同じくすることが好ましい。
 また、本発明において、「グルコースおよびキシロース存在下で本発明の形質転換酵母を培養したときに得られるエタノール濃度が、グルコースおよびキシロース存在下で宿主酵母を培養したときに得られるエタノール濃度以上である」とは、本発明の形質転換酵母をグルコースおよびキシロースを含有する培地で所定時間培養した際のエタノール濃度と、本発明の宿主酵母をグルコースおよびキシロースを含有する培地で所定時間培養した際のエタノール濃度を比較したときに、本発明の形質転換酵母が生産するエタノールの量が本発明の宿主酵母の生産するエタノールの量と同等以上、好ましくは宿主酵母の生産するエタノールの量より多いことを意味する。同等以上であるとは、1倍以上であり、好ましくは1倍超である。上限については特に限定されない。エタノール濃度を比較する際は、グルコースおよびキシロースの初期濃度、培養液量等の培養条件を同じくすることが好ましい。
 エタノールを生産させる場合、キシロースの10~70 g/L、好ましくは20~60 g/L、より好ましくは40 g/Lの存在下に本発明の形質転換酵母を培養する。また、培養時にグルコースを存在させる場合は、グルコースの10~150 g/L、好ましくは40~120 g/L、より好ましくは60~100 g/L、さらにより好ましくは80 g/Lの存在下に本発明の形質転換酵母を培養する。
 本培養の前に、形質転換酵母を前培養しても良い。前培養は、例えば、本発明の形質転換酵母を少量の培地に接種し、12~24時間培養すればよい。本培養の培養量の0.1~10%、好ましくは1%の前培養液を本培養の培地に加え、本培養を開始する。本培養は、キシロース含有培地で、0.5~200時間、好ましくは10~150時間、より好ましくは24~137時間、20~40℃、好ましくは30℃で振盪培養する。
 生産されたエタノールは、上記のように本発明の酵母を培養して得られる培養物から採取することができる。培養物とは、培養液(培養上清)、培養酵母または培養酵母の破砕物等を意味する。エタノールは公知の精製方法により培養物から精製し、採取することができる。本発明において、エタノールは形質転換酵母から主に培養上清中に分泌されるため、培養上清から採取することが好ましい。
 エタノールの生産量を測定することにより、本発明の形質転換酵母のエタノール生産効率を確認することができる。エタノールの生産量は、上記採取されたエタノールまたは培地に含まれるエタノールを、液体クロマトグラフィー、ガスクロマトグラフィー、市販のエタノール測定キットで分析することで測定できる。
 キシロースの消費速度は、培地に含まれるキシロースの量を、液体クロマトグラフィー、市販の測定キットなどで分析することで測定することができる。例えば、実施例で用いた方法によりキシロースの消費速度を測定することができる。キシロースの消費速度は、このように測定された培地に含まれるキシロースの量または濃度によって比較することができる。
 配列番号13:サッカロマイセス・セレビシアGRE3の塩基配列を示す。
 配列番号14:サッカロマイセス・セレビシアGRE3タンパク質のアミノ酸配列を示す。
 配列番号15:サッカロマイセス・セレビシアSOR1の塩基配列を示す。
 配列番号16:サッカロマイセス・セレビシアSOR1タンパク質のアミノ酸配列を示す。
 配列番号17:サッカロマイセス・セレビシアXKS1の塩基配列を示す。
 配列番号18:サッカロマイセス・セレビシアXKS1タンパク質のアミノ酸配列を示す。
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
GRE3, SOR1, XKS1, PGK1プロモーターおよびPGK1ターミネーターのPCRによる合成
 表1に示すオリゴヌクレオチド1~10を合成し、PCR反応のためのプライマーとして使用し、GRE3, SOR1, XKS1, PGK1プロモーターおよびPGK1ターミネーターの各DNA断片を得た。また、表1に示すオリゴヌクレオチド11および12を合成し、XYL2のDNA断片を得た。PCR反応のテンプレートとしてサッカロマイセス・セレビシアCEN.PK2-1C株から抽出された染色体DNAを使用した。PCR反応は、PrimeSTAR HS DNA polymerase(タカラバイオ社)を用いて、TaKaRa PCR Thermal Cycler Dice Gradient TP600(タカラバイオ社)で行った。PCRにおける増幅条件を表2に示す。
 GRE3, SOR1, XKS1, PGK1プロモーターおよびPGK1ターミネーターは、サッカロマイセス・セレビシア由来である。GRE3タンパク質は、シェファソマイセス・スティピティスのXYL1(キシロース還元酵素(XR))とアミノ酸配列の同一性(相同性)を有し、SOR1タンパク質は、シェファソマイセス・スティピティスのXYL2(キシリトール脱水素酵素(XDH))とアミノ酸配列の同一性(相同性)を有するタンパク質である。XKS1タンパク質はキシルロースリン酸化酵素である。PGK1プロモーターおよびPGK1ターミネーターは、サッカロマイセス・セレビシアにおいて機能することが知られている。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
キシロース資化能付与酵母の作製
 実施例1で増幅されたGRE3, SOR1, XKS1の各遺伝子断片を、PGK1プロモーターおよびPGK1ターミネーターの支配下にGRE3, SOR1, XKS1の順に連結し、発現カセットIを作製した。
 また、得られた発現カセットIをEcoRI、SphIで切断した後に両端を平滑化し、発現カセットIIを作製した。
 また、市販のベクターpUC18のSmaI切断部位に、実施例1で増幅したXYL2の遺伝子断片を挿入した。得られたpUC18をApaIで切断し、両端を平滑化した後に、発現カセットIIを挿入し、発現カセットIIIを作製した。
 作製した発現カセットIIIを用いて上記遺伝子を酢酸リチウム法により染色体上XYL2部位に導入し、キシロース資化能付与酵母を得た。キシロース資化能付与の宿主としては、日本酒酵母を用いた。
GRE3過剰発現株の作製
 市販の発現ベクターpAUR135(タカラバイオ株式会社)のSmaI部位に、PGK1プロモーターおよびPGK1ターミネーター支配下に置いたGRE3の遺伝子断片を導入した。得られたGRE3発現ベクターをStuIで切断して得られた遺伝子断片を、酢酸リチウム法により実施例2で作製したキシロース資化能付与酵母の染色体上AUR1部位に導入した。得られた株をGRE3過剰発現株とした。
発酵性能評価
 実施例2および3で得られた株を、YPD(グルコース20 g/L)培地で前培養した後、キシロースのみを基質として含む培地と、グルコースおよびキシロースを基質として含む改変CBS培地((H. B. Klinke et al., Biotechnol. Bioeng., 2003年, Vol. 81, pp. 738-747:pH 5.0)、表3)15 mLを入れた50 mLフラスコに、初期植菌量2×108個/mL、140 rpm、30℃で振とう培養し、経時的にサンプリングを行い発酵性能を評価した。また、導入遺伝子を含まないベクターのみを組み込んだ株を同様に作製し、以下の実験で対照株として用いた。
Figure JPOXMLDOC01-appb-T000003
 
 サンプリングした培養液を遠心分離して菌体を除き、上清を0.2μmポリプロピレン製フィルターでろ過し、測定サンプルとした。測定サンプル中のグルコース、キシロース、およびエタノール量をHPLC(λ=600nm)により定量した。HPLCでの分析条件を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 発酵性能評価結果を図1および図2に示す。図1はキシロースのみを基質として含む培地、図2はグルコースおよびキシロースを基質として含む培地の結果を示す。発酵性能は、エタノール収率(%)として評価し、生成するエタノール量が投与した基質量に理論収率(グルコース、キシロース共に0.51)を乗して算出されるエタノール量と一致する場合を100%とした。
 GRE3、SOR1およびXKS1が染色体上に導入されたキシロース資化能付与酵母にGRE3を染色体上にさらにもう1つ導入すると(●、GRE3過剰発現株_XYL)、もとのキシロース資化能付与酵母(■、元株_XYL)に比べて、キシロースのみを基質として含む培地(図1)、グルコースおよびキシロースを基質として含む培地(図2)のいずれもキシロース消費速度は向上する。この時、GRE3過剰発現株のエタノール濃度は、キシロース資化能付与酵母のエタノール濃度に比べてキシロースのみを基質として含む培地(図1)では低下するのに対し、グルコースとキシロースを基質として含む培地(図2)では増加した。
これらの結果から、キシロース資化能付与酵母をグルコースおよびキシロースを基質に含む培地で培養すると、キシロース消費速度が向上し、エタノール生産量が増大することが示された。
 また、フラスコによる実験室レベルでの培養だけでなく、培養槽を用いる工業レベルまたは工業レベルに近い培養条件での培養においても、本発明を適用できることが示された。
 本発明により、キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子が発現可能に導入された宿主酵母に、さらにキシロース還元酵素をコードする遺伝子が発現可能に導入された形質転換酵母が提供される。
 本発明の一態様において、本発明の形質転換酵母はグルコースおよびキシロース存在下で培養した場合に、宿主酵母に比べて高いキシロース消費速度を示す。
 また、本発明の別の態様において、本発明の形質転換酵母はグルコースおよびキシロース存在下で培養した場合に、宿主酵母と比べて得られるエタノール濃度が高い。
 このため、本発明の別の態様において、キシロース消費速度が向上し、エタノール生産量も高い酵母が提供される。
 また、本発明により、本発明の形質転換酵母をグルコースおよびキシロース含有培地で培養することを含む、エタノールを生産する方法が提供される。本発明のエタノール生産方法は、向上されたキシロース消費速度および高いエタノール生産量の両者を実現可能であるため、エタノールの工業的生産に有用である。
 配列番号1~12:プライマー

Claims (15)

  1.  キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素をコードする遺伝子がさらに発現可能に導入された形質転換酵母であり、
     グルコースおよびキシロース存在下で培養した場合、形質転換酵母のキシロース消費速度が宿主酵母のキシロース消費速度に比べて高い、前記形質転換酵母。
  2.  キシロースからエタノールを生産する能力を有するものである、請求項1に記載の形質転換酵母。
  3.  グルコースおよびキシロース存在下で形質転換酵母を培養したときに得られるエタノール濃度が、グルコースおよびキシロース存在下で宿主酵母を培養したときに得られるエタノール濃度以上である、請求項1または2に記載の形質転換酵母。
  4.  前記遺伝子が、当該酵母の内在性遺伝子である、請求項1~3のいずれか1項に記載の形質転換酵母。
  5.  前記遺伝子が宿主酵母の染色体上に発現可能に挿入されたものである、請求項1~4のいずれか1項に記載の形質転換酵母。
  6.  キシロース還元酵素をコードする遺伝子が、GRE3、YJR096w、YPR1、GCY1、ARA1およびYDR124wからなる群から選択される遺伝子である、請求項1~5のいずれか1項に記載の形質転換酵母。
  7.  キシリトール脱水素酵素をコードする遺伝子が、SOR1、SOR2およびYLR070cからなる群からなる群から選択される遺伝子である、請求項1~6のいずれか1項に記載の形質転換酵母。
  8.  キシルロースリン酸化酵素をコードする遺伝子がXKS1である、請求項1~7のいずれか1項に記載の形質転換酵母。
  9.  キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子が、それぞれGRE3、SOR1およびXKS1である、請求項1~8のいずれか1項に記載の形質転換酵母。
  10.  宿主酵母が、六炭糖資化能を有するが五炭糖資化能を有しないものである、請求項1~9のいずれか1項に記載の形質転換酵母。
  11.  宿主酵母が、サッカロマイセス属に属する酵母である、請求項1~10のいずれか1項に記載の形質転換酵母。
  12.  宿主酵母が、サッカロマイセス・セレビシア種に属する酵母である、請求項1~11のいずれか1項に記載の形質転換酵母。
  13.  請求項1~12のいずれか1項に記載の形質転換酵母をグルコースおよびキシロース含有培地で培養し、得られる培養物からエタノールを採取することを含む、エタノールの生産方法。
  14.  キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された宿主酵母に、キシロース還元酵素をコードする遺伝子がさらに発現可能に導入された形質転換酵母。
  15.  キシロース還元酵素をコードする遺伝子、キシリトール脱水素酵素をコードする遺伝子およびキシルロースリン酸化酵素をコードする遺伝子の3つの遺伝子が発現可能に導入された酵母であり、キシロース還元酵素をコードする遺伝子が3つの遺伝子の中で最も発現増強するように導入された形質転換酵母。  
PCT/JP2016/082849 2015-11-04 2016-11-04 キシロースからエタノールを生産する酵母 WO2017078156A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015217054A JP6812097B2 (ja) 2015-11-04 2015-11-04 キシロースからエタノールを生産する酵母
JP2015-217054 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017078156A1 true WO2017078156A1 (ja) 2017-05-11

Family

ID=58661994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082849 WO2017078156A1 (ja) 2015-11-04 2016-11-04 キシロースからエタノールを生産する酵母

Country Status (2)

Country Link
JP (1) JP6812097B2 (ja)
WO (1) WO2017078156A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102306725B1 (ko) * 2020-07-03 2021-09-30 서울대학교산학협력단 아세토인 생산능을 갖는 유전적으로 조작된 효모 및 이를 이용한 아세토인 생산방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001906A1 (ja) * 2008-07-01 2010-01-07 新日本石油株式会社 キシロースからエタノールを生産する酵母
US20130102046A1 (en) * 2011-10-21 2013-04-25 The Board Of Trustees Of The University Of Illinois Xylose-fermenting microorganism
WO2014058034A1 (ja) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 キシロースからエタノールを生産する酵母

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001906A1 (ja) * 2008-07-01 2010-01-07 新日本石油株式会社 キシロースからエタノールを生産する酵母
US20130102046A1 (en) * 2011-10-21 2013-04-25 The Board Of Trustees Of The University Of Illinois Xylose-fermenting microorganism
WO2014058034A1 (ja) * 2012-10-10 2014-04-17 Jx日鉱日石エネルギー株式会社 キシロースからエタノールを生産する酵母

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KHATTAB, SADAT MOHAMMAD REZQ ET AL.: "Efficient bioethanol production by overexpression of endogenous Saccharomyces cerevisiae xylulokinase and NADPH-dependent aldose reductase with mutated strictly NADP+- dependent Pichia stipitis xylitol dehydrogenase", PROCESS BIOCHEMISTRY, vol. 49, 2014, pages 1838 - 1842, XP029088332, ISSN: 1359-5113 *
KIM, SOO RIN ET AL.: "Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis", FEMS YEAST RES., vol. 13, 2013, pages 312 - 321, XP055066027, ISSN: 1567-1364 *
KONISHI, JIN ET AL.: "Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes", BIOTECHNOL. LETT., vol. 37, 21 May 2015 (2015-05-21), pages 1623 - 1630, XP055379341, ISSN: 1573-6776 *
TAKESHI UEMURA ET AL.: "Aldose Kangen Koso Idenshi Kajo Hatsugen no Jozo Kobo no Ethanol Seisan ni Ataeru Eikyo", THE 45TH PETROLEUM- PETROCHEMICAL SYMPOSIUM OF JPI KOEN YOSHISHU, 5 November 2015 (2015-11-05), pages 107 *
TOIVARI, MERVI H. ET AL.: "Endogenous Xylose Pathway in Saccharomyces cerevisiae", APPL. ENVIRON. MICROBIOL., vol. 70, no. 6, 2004, pages 3681 - 3686, XP002991613, ISSN: 1098-5336 *
TRAFF-BJERRE, K. L. ET AL.: "Endogenous NADPH- dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae", YEAST, vol. 21, 2004, pages 141 - 150, XP002991613, ISSN: 1097-0061 *

Also Published As

Publication number Publication date
JP2017085918A (ja) 2017-05-25
JP6812097B2 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
JP5321320B2 (ja) 発酵能力が向上された酵母及びその利用
US8445243B2 (en) Hexose-pentose cofermenting yeast having excellent xylose fermentability and method for highly efficiently producing ethanol using the same
CN114774477B (zh) 使用了重组酵母的乙醇的制造方法
US7833764B2 (en) DNA encoding xylitol dehydrogenase
JPH09505469A (ja) グルコースおよびキシロースの効果的発酵用の組み換え酵母
JP5796138B2 (ja) キシロースからエタノールを生産する酵母
WO2024140379A1 (zh) 酶、生产红景天苷的菌株及生产方法
JP5813977B2 (ja) Kluyveromyces属の変異体酵母及びこれを用いたエタノールの製造方法
JP6616311B2 (ja) キシロースからエタノールを生産する酵母
WO2017078156A1 (ja) キシロースからエタノールを生産する酵母
JP5671339B2 (ja) キシロースからエタノールを生産する酵母
JP5845210B2 (ja) 組換え酵母、及びそれを用いたエタノールの製造方法
JP7365770B2 (ja) キシリトールの蓄積を抑制した酵母
WO2020032233A1 (ja) 組換え酵母、及びそれを用いたエタノールの製造方法
WO2020023890A1 (en) Increased alcohol production from yeast producing an increased amount of active crz1 protein
CN105802990B (zh) 重组型酵母菌细胞及其制备方法与用途
JP5850418B2 (ja) キシロース代謝改変による効果的なエタノール生産法
JP2015062357A (ja) 酵母
US9540663B2 (en) Xylose-fermenting microorganism
TWI526536B (zh) 重組型酵母菌細胞及其製備方法與用途
JP2014195442A (ja) 酵母
Kokaew et al. Cloning and nucleotide sequence analysis of xylose reductase (XR) gene from thermotolerant methylotrophic yeast Ogataea siamensis N22
JP2014060978A (ja) エタノール生成酵母およびそれを用いたエタノールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862215

Country of ref document: EP

Kind code of ref document: A1