WO2017078052A1 - Feuille de formation de premier film de protection - Google Patents

Feuille de formation de premier film de protection Download PDF

Info

Publication number
WO2017078052A1
WO2017078052A1 PCT/JP2016/082543 JP2016082543W WO2017078052A1 WO 2017078052 A1 WO2017078052 A1 WO 2017078052A1 JP 2016082543 W JP2016082543 W JP 2016082543W WO 2017078052 A1 WO2017078052 A1 WO 2017078052A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
resin layer
acrylate
group
sensitive adhesive
Prior art date
Application number
PCT/JP2016/082543
Other languages
English (en)
Japanese (ja)
Inventor
正憲 山岸
明徳 佐藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020187013196A priority Critical patent/KR102545393B1/ko
Priority to CN201680061240.XA priority patent/CN108140585B/zh
Priority to SG11201803250TA priority patent/SG11201803250TA/en
Priority to JP2017536057A priority patent/JP6230761B2/ja
Publication of WO2017078052A1 publication Critical patent/WO2017078052A1/fr
Priority to PH12018500851A priority patent/PH12018500851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Definitions

  • the present invention relates to a first protective film forming sheet.
  • This application claims priority on November 4, 2015 based on Japanese Patent Application No. 2015-217110 for which it applied to Japan, and uses the content for it here.
  • a projecting electrode made of eutectic solder, high-temperature solder, gold or the like is formed as a semiconductor chip on its connection pad portion.
  • the flip chip mounting method has been employed in which the bumps are brought into contact with the corresponding terminal portions on the chip mounting substrate in a so-called face-down manner, and are melted / diffusion bonded. .
  • the semiconductor chip used in this mounting method can be obtained, for example, by grinding or dicing the surface opposite to the circuit surface of a semiconductor wafer having bumps formed on the circuit surface.
  • a curable resin film is applied to the bump forming surface, and this film is cured to form a first on the bump forming surface.
  • a protective film is formed.
  • thermosetting resin film those containing a thermosetting component that is cured by heating are widely used, and as a first protective film forming sheet equipped with such a thermosetting resin film, A thermoplastic resin layer having a specific thermoelastic modulus is laminated on the film, and a non-plastic thermoplastic resin layer at 25 ° C. is laminated on the uppermost layer of the thermoplastic resin layer.
  • this 1st protective film formation sheet is excellent in the bump filling property of a 1st protective film, wafer processability, the electrical connection reliability after resin sealing, etc.
  • the conventional sheet for forming a first protective film provided with a curable resin film is intended to protect the circuit surface on which the bump is formed, the adhesion to the circuit surface is higher than the bump itself. ing. For this reason, it is impossible to prevent cracks in the vicinity of the circuit surface of the bump, that is, the base of the bump in the reflow process or the like. Furthermore, when the first protective film forming sheet provided with the conventional curable resin film is used to try to form the first protective film on the bump forming surface, a lot of poor exposure of the bump tops may be observed. is there.
  • the present invention has been made in view of the above circumstances, and when the circuit surface of a semiconductor wafer is protected, formation of a first protective film having excellent bump top exposure characteristics while suppressing cracks generated at the base of the bump.
  • the purpose is to provide a sheet for use.
  • the present invention is a first protective film forming sheet in which a first pressure-sensitive adhesive layer is laminated on a first substrate, and a curable resin layer is laminated on the first pressure-sensitive adhesive layer,
  • the curable resin layer is a layer for forming a first protective film on the surface by sticking to the surface of the semiconductor wafer having bumps and curing.
  • the curable resin layer is laminated on the first pressure-sensitive adhesive layer, and the delamination force (1) between the first pressure-sensitive adhesive layer and the curable resin layer after the curing treatment is a mirror surface of the lead-free solder SAC305.
  • the delamination force is greater than the delamination force (2) between the mirror-polished surface of the lead-free solder SAC305 and the curable resin layer after laminating the curable resin layer on the polished surface and the curing treatment.
  • (1) is a sheet for forming a first protective film, wherein 2.0 to 100 N / 25 mm.
  • the first protective film-forming sheet of the present invention is excellent in the exposure characteristics of the bump top while suppressing the cracks generated at the base of the bump when protecting the circuit surface of the semiconductor wafer.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of the first protective film-forming sheet of the present invention.
  • the first protective film-forming sheet of the present invention has a first pressure-sensitive adhesive layer 13 laminated on a first base material 11, and a curable resin layer on the first pressure-sensitive adhesive layer 13.
  • 1 is a sheet for forming a first protective film, in which a curable resin layer 12 is affixed to a surface of a semiconductor wafer having bumps, and is cured to provide a first protection on the surface and the base of the bumps. It is a layer for forming a film.
  • the semiconductor wafer is referred to as a first protective film, a first protective film-forming sheet, or the like because it is intended to protect the surface on the side having bumps and the base of the bumps.
  • the sheet up to the point where the first pressure-sensitive adhesive layer 13 is laminated on the first base material 11 is referred to as a first support sheet 101 or the like.
  • the first substrate may be composed of one layer (single layer) or may be composed of two or more layers.
  • the constituent materials and thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is particularly limited as long as the effects of the present invention are not impaired.
  • a plurality of layers may be the same or different from each other” means “all layers may be the same or all layers. May be different, and only some of the layers may be the same ”, and“ a plurality of layers are different from each other ”means that“ at least one of the constituent material and thickness of each layer is different from each other ” "Means.
  • FIG. 2 is a cross-sectional view schematically showing another embodiment of the first protective film-forming sheet of the present invention.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and detailed description thereof is omitted.
  • As a preferable first base material and first pressure-sensitive adhesive layer for example, as shown in FIG. 1, a structure in which a first pressure-sensitive adhesive layer 13 is laminated on a first base material 11, as shown in FIG.
  • the first intermediate layer 14 is laminated on the first base material 11, and the first adhesive layer 13 is laminated on the first intermediate layer 14.
  • FIG. 3 is a cross-sectional view schematically showing an example of the semiconductor wafer 90 having the bumps 91.
  • a plurality of bumps 91 are provided on the circuit surface 90 a of the semiconductor wafer 90 shown here.
  • the bump 91 has, for example, a shape in which a part of a sphere is cut out by a flat surface, and a flat surface corresponding to the cut and exposed portion is in contact with the circuit surface 90 a of the semiconductor wafer 90.
  • the shape of the bump is not limited to the shape shown in the figure, but the effect of the present invention (exposure characteristics of the bump top) is particularly effective in a spherical bump whose projection surface includes an ellipse.
  • FIG. 4 is a cross-sectional view schematically showing a state in which the first protective film forming sheet 1 of the present invention is attached to the surface of the semiconductor wafer 90 having the bumps 91.
  • the curable resin layer 12 is cured by UV irradiation to form the first protective film 12 ′.
  • the first pressure-sensitive adhesive layer 13 may also be cured to become the first pressure-sensitive adhesive layer 13 ′.
  • a sheet up to the point where the first pressure-sensitive adhesive layer 13 is laminated on the first base material 11 is referred to as a first support sheet 101.
  • the sheet up to the point where the first protective film 12 ′ is laminated on the first base material 11 after the UV curing is referred to as a first support sheet 102.
  • the thickness of the curable resin layer 12 is set to be thinner than the height of the bump 91 and setting the total thickness of the curable resin layer 12 and the first pressure-sensitive adhesive layer 13 to be thicker than the height of the bump 91,
  • the entire bump 91 is covered with the curable resin layer 12 and the first pressure-sensitive adhesive layer 13, but the curable resin layer 12 is left crushed together with the first pressure-sensitive adhesive layer 13 at the top 911 of the bump 91.
  • FIG. 5 is a cross-sectional view schematically showing an example in which the first support sheet 102 is peeled from the first protective film 12 ′.
  • FIG. 6 is a cross-sectional view schematically showing an example of a semiconductor wafer 90 provided with a first protective film 12 ′ formed using the first protective film forming sheet 1 of the present invention.
  • the delamination force (1) between the first pressure-sensitive adhesive layer 13 and the first protective film 12 ′ is smaller than the delamination force (2) between the bump surface and the first protective film 12 ′, the top of the bump The first protective film 12 ′ remains, resulting in poor exposure of the bump tops. Moreover, even if the delamination force (1) is greater than the delamination force (2), or if the delamination force (1) is too small, it leads to poor exposure of the bump tops, and the first support sheet 101 is improved. In order to make it peel, the said delamination force (1) needs to be a moderate magnitude
  • the delamination force (3) between the circuit surface and the first protective film 12 ' is sufficiently larger than the delamination force (1) and the delamination force (2).
  • the curable resin layer 12 is laminated on the first pressure-sensitive adhesive layer 13, and the interlayer between the first pressure-sensitive adhesive layer 13 and the first protective film 12 ′ after the curing treatment.
  • Peeling force (1) is such that the curable resin layer 12 is laminated on the mirror-polished surface of the lead-free solder SAC 305, and the delamination between the mirror-polished surface of the lead-free solder SAC 305 and the first protective film 12 ′ is performed after the curing process.
  • the delamination force (1) is larger than the force (2) and the delamination force (1) is 2.0 to 100 N / 25 mm, the first support sheet 101 can be favorably peeled off, Thus, the top portion 911 of the bump 91 can be satisfactorily exposed without leaving the first protective film 12 ′.
  • the laminating conditions for evaluating the delamination forces (1) and (2) need only be sufficient to affix each, and the first protective film forming sheet is affixed to the surface of the semiconductor wafer having bumps and cured.
  • the conditions for the curing treatment in evaluating the delamination forces (1) and (2) may be any conditions as long as the curable resin layer is sufficiently cured, and the first protective film forming sheet has bumps of the semiconductor wafer. By sticking on the surface and curing, the conditions for forming the first protective film on the surface can be referred to.
  • thermosetting resin layer for example, after heating for 2 hours at a set temperature of 130 ° C. while applying a pressure of 0.5 MPa, the thermosetting resin layer (thermosetting resin film) is softened
  • the first protective film can be formed by curing.
  • the first protective film can be formed by curing by UV irradiation at an illuminance of 230 mW / cm 2 and a light amount of 760 mJ / cm 2 .
  • the difference in the peeling force is preferably 0.1 to 100 N / 25 mm. 0.5 to 50 N / 25 mm is more preferable, 1.0 to 20 N / 25 mm is further preferable, and 2.0 to 10 N / 25 mm is particularly preferable.
  • the curable resin layer has an illuminance of 230 mW / cm 2 and an amount of light of 380 mJ / cm 2 (that is, the total amount of light from both sides is 760 mJ / cm 2 ).
  • the tensile strength after irradiation is preferably 0.0001 to 50 MPa, more preferably 0.001 to 10 MPa, further preferably 0.01 to 5 MPa, and further preferably 0.1 to 1 MPa. Is particularly preferred.
  • the curable resin layer has an illuminance of 230 mW / cm 2 and an amount of light of 380 mJ / cm 2 (that is, the total amount of light from both sides is 760 mJ / cm 2 ).
  • the tensile elongation after irradiation is preferably from 0.01 to 800%, more preferably from 0.05 to 100%, and particularly preferably from 0.1 to 10%.
  • the heat-curing of the first protective film-forming sheet provided with the conventional thermosetting resin film usually requires a long time (for example, 160 ° C., 1 h to 130 ° C., 2 h), it is desired to shorten the curing time. ing. If the first protective film-forming sheet provided with the conventional thermosetting resin film can be used instead of the first protective film-forming sheet provided with the UV-curable resin film, the heating time can be shortened. .
  • the said 1st base material is a sheet form or a film form
  • various resin is mentioned, for example.
  • the resin include polyethylenes such as low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and high density polyethylene (HDPE); other than polyethylene such as polypropylene, polybutene, polybutadiene, polymethylpentene, and norbornene resin.
  • Polyolefins such as ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-norbornene copolymer (ethylene as a monomer)
  • a copolymer obtained by using a vinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer (a resin obtained by using vinyl chloride as a monomer); polystyrene; polycycloolefin; polyethylene terephthalate, polyethylene Naphtha Polyesters such as polyesters, polybutylene terephthalates, polyethylene isophthalates, polyethylene-2,6-naphthalene dicarboxylates, wholly aromatic polyesters in which all the structural units have an aromatic cyclic group; Poly (meth) acrylic acid ester; Polyurethane; Polyurethane acrylate; Polyimide; Polyamide; Polycarbonate; Fluororesin
  • the polymer alloy of the polyester and the other resin is preferably one in which the amount of the resin other than the polyester is relatively small.
  • the resin include a crosslinked resin in which one or more of the resins exemplified so far are crosslinked; modification of an ionomer or the like using one or more of the resins exemplified so far. Resins can also be mentioned.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept including both “acrylate” and “methacrylate”
  • (meth) acryloyl group Is a concept including both an “acryloyl group” and a “methacryloyl group”.
  • the resin constituting the first base material may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the first substrate may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers Is not particularly limited.
  • the thickness of the first base material is preferably 5 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m, further preferably 15 to 300 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the “thickness of the first base material” means the thickness of the entire first base material.
  • the thickness of the first base material composed of a plurality of layers means all of the first base material. Means the total thickness of the layers.
  • the first substrate is preferably one having high thickness accuracy, that is, one in which variation in thickness is suppressed regardless of the part.
  • materials that can be used to construct the first base material having such a high thickness precision include, for example, polyethylene, polyolefins other than polyethylene, polyethylene terephthalate, and ethylene-vinyl acetate copolymer. Examples include coalescence.
  • the first base material contains various known additives such as a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst, and a softener (plasticizer) in addition to the main constituent materials such as the resin. You may do it.
  • the first substrate may be transparent or opaque, may be colored according to the purpose, or other layers may be deposited.
  • the 1st adhesive layer or curable resin layer mentioned later has energy-beam sclerosis
  • the first substrate can be manufactured by a known method.
  • the 1st base material containing resin can be manufactured by shape
  • the said 1st adhesive layer is a sheet form or a film form, and contains an adhesive.
  • the pressure-sensitive adhesive include an acrylic resin (a pressure-sensitive adhesive made of a resin having a (meth) acryloyl group), a urethane resin (a pressure-sensitive adhesive made of a resin having a urethane bond), and a rubber resin (a resin having a rubber structure). ), Silicone resins (adhesives composed of resins having a siloxane bond), epoxy resins (adhesives composed of resins having an epoxy group), polyvinyl ether, polycarbonate, and other adhesive resins. Based resins are preferred.
  • the “adhesive resin” is a concept including both an adhesive resin and an adhesive resin.
  • the resin itself has an adhesive property
  • resins that exhibit tackiness when used in combination with other components such as additives, and resins that exhibit adhesiveness due to the presence of a trigger such as heat or water.
  • the first pressure-sensitive adhesive layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, the plurality of layers may be the same or different from each other. The combination is not particularly limited.
  • the thickness of the first pressure-sensitive adhesive layer is preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the “thickness of the first pressure-sensitive adhesive layer” means the thickness of the entire first pressure-sensitive adhesive layer.
  • the thickness of the first pressure-sensitive adhesive layer composed of a plurality of layers means the first pressure-sensitive adhesive layer. Means the total thickness of all the layers that make up.
  • the first pressure-sensitive adhesive layer may be formed using an energy ray-curable pressure-sensitive adhesive, or may be formed using a non-energy ray-curable pressure-sensitive adhesive.
  • the first pressure-sensitive adhesive layer formed using the energy ray-curable pressure-sensitive adhesive can easily adjust the physical properties before and after curing.
  • “energy beam” means an electromagnetic wave or charged particle beam having energy quanta, and examples thereof include ultraviolet rays and electron beams. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion H lamp, or a xenon lamp as an ultraviolet ray source.
  • the electron beam can be emitted by an electron beam accelerator or the like.
  • energy ray curable means the property of being cured by irradiation with energy rays
  • non-energy ray curable means the property of not being cured even when irradiated with energy rays.
  • a 1st adhesive layer can be formed using the 1st adhesive composition containing an adhesive.
  • a 1st adhesive layer can be formed in the target site
  • a more specific method for forming the first pressure-sensitive adhesive layer will be described later in detail, along with methods for forming other layers.
  • the content ratio of components that do not vaporize at room temperature is usually the same as the content ratio of the components of the first pressure-sensitive adhesive layer.
  • “normal temperature” means a temperature that is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the first pressure-sensitive adhesive composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife coater, Examples include a method using various coaters such as a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the first pressure-sensitive adhesive composition are not particularly limited, but when the first pressure-sensitive adhesive composition contains a solvent described later, it is preferably heat-dried. In this case, for example, 70 to 130 ° C. It is preferable to dry under conditions of 10 seconds to 5 minutes.
  • the first pressure-sensitive adhesive composition containing the energy ray-curable pressure-sensitive adhesive is, for example, non-energy First pressure-sensitive adhesive composition containing a linear curable adhesive resin (I-1a) (hereinafter sometimes abbreviated as “adhesive resin (I-1a)”) and an energy ray-curable compound (I-1): energy ray curable adhesive resin (I-2a) in which an unsaturated group is introduced into the side chain of the non-energy ray curable adhesive resin (I-1a) (hereinafter referred to as “adhesiveness”)
  • a first pressure-sensitive adhesive composition (I-2) which may be abbreviated as “resin (I-2a)”; the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low molecular weight compound; Examples thereof include the first pressure-sensitive adhesive composition (I-3).
  • the first pressure-sensitive adhesive composition (I-1) contains a non-energy ray-curable pressure-sensitive adhesive resin (I-1a) and an energy ray-curable compound.
  • the adhesive resin (I-1a) is preferably an acrylic resin.
  • the acrylic resin the acrylic polymer which has a structural unit derived from the (meth) acrylic-acid alkylester at least is mentioned, for example.
  • the acrylic resin may have only one type of structural unit, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the (meth) acrylic acid alkyl ester include those in which the alkyl group constituting the alkyl ester has 1 to 20 carbon atoms, and the alkyl group is linear or branched. Is preferred. More specifically, as (meth) acrylic acid alkyl ester, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth) acrylic acid n-butyl, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, (Meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid isooctyl, (meth) acrylic acid n-
  • the acrylic polymer preferably has a structural unit derived from a (meth) acrylic acid alkyl ester in which the alkyl group has 4 or more carbon atoms.
  • the alkyl group preferably has 4 to 12 carbon atoms, and more preferably 4 to 8 carbon atoms.
  • the (meth) acrylic acid alkyl ester having 4 or more carbon atoms in the alkyl group is preferably an acrylic acid alkyl ester.
  • the acrylic polymer preferably has a structural unit derived from a functional group-containing monomer in addition to the structural unit derived from an alkyl (meth) acrylate.
  • the functional group-containing monomer for example, the functional group reacts with a crosslinking agent to be described later to become a starting point of crosslinking, or the functional group reacts with an unsaturated group in the unsaturated group-containing compound, The thing which enables introduction
  • Examples of the functional group in the functional group-containing monomer include a hydroxyl group, a carboxy group, an amino group, and an epoxy group. That is, examples of the functional group-containing monomer include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the functional group-containing monomer is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the functional group-containing monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the structural unit derived from the functional group-containing monomer is preferably 1 to 35% by mass, and more preferably 3 to 32% by mass with respect to the total amount of the structural unit. It is particularly preferably 5 to 30% by mass.
  • the acrylic polymer may further have a structural unit derived from another monomer.
  • the other monomer is not particularly limited as long as it is copolymerizable with (meth) acrylic acid alkyl ester or the like.
  • Examples of the other monomer include styrene, ⁇ -methylstyrene, vinyl toluene, vinyl formate, vinyl acetate, acrylonitrile, acrylamide and the like.
  • the other monomer constituting the acrylic polymer may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the acrylic polymer can be used as the above-mentioned non-energy ray curable adhesive resin (I-1a).
  • the functional group in the acrylic polymer is reacted with an unsaturated group-containing compound having an energy ray-polymerizable unsaturated group (energy ray-polymerizable group). It can be used as the resin (I-2a).
  • energy beam polymerizability means a property of polymerizing by irradiation with energy rays.
  • the pressure-sensitive adhesive resin (I-1a) contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the pressure-sensitive adhesive resin (I-1a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). It is preferably 10 to 95% by mass, more preferably 15 to 90% by mass.
  • Examples of the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) include monomers or oligomers having an energy ray-polymerizable unsaturated group and curable by irradiation with energy rays.
  • examples of the monomer include trimethylolpropane tri (meth) acrylate, pentaerythritol (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 1,4.
  • Polybutyl (meth) acrylates such as butylene glycol di (meth) acrylate and 1,6-hexanediol (meth) acrylate; urethane (meth) acrylate; polyester (meth) acrylate; polyether (meth) acrylate; epoxy ( And (meth) acrylate.
  • examples of the oligomer include an oligomer formed by polymerizing the monomers exemplified above.
  • the energy ray-curable compound is preferably a urethane (meth) acrylate or a urethane (meth) acrylate oligomer in that the molecular weight is relatively large and the storage elastic modulus of the first pressure-sensitive adhesive layer is difficult to be lowered.
  • the energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the energy ray-curable compound is 1 to 95% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
  • the first pressure-sensitive adhesive composition preferably further contains a crosslinking agent.
  • the cross-linking agent reacts with the functional group to cross-link the adhesive resins (I-1a).
  • a crosslinking agent for example, tolylene diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, isocyanate-based cross-linking agents such as adducts of these diisocyanates (cross-linking agents having an isocyanate group); epoxy-based cross-linking agents such as ethylene glycol glycidyl ether ( Cross-linking agent having a glycidyl group); Aziridine-based cross-linking agent (cross-linking agent having an aziridinyl group) such as hexa [1- (2-methyl) -aziridinyl] triphosphatriazine; Metal chelate-based cross-linking agent such as aluminum chelate (metal) Cross-linking agent having a chelate structure); isocyanurate-based cross-linking agent (cross-linking agent (
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is 0.01 to 50 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-1a).
  • the amount is preferably 0.1 to 20 parts by weight, more preferably 1 to 9 parts by weight.
  • the first pressure-sensitive adhesive composition (I-1) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-1) containing a photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, and benzoin dimethyl ketal; acetophenone, 2-hydroxy Acetophenone compounds such as -2-methyl-1-phenyl-propan-1-one and 2,2-dimethoxy-1,2-diphenylethane-1-one; bis (2,4,6-trimethylbenzoyl) phenylphosphine Acylphosphine oxide compounds such as oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; Sulfidation of benzylphenyl sulfide, tetramethylthiuram monosulfide, etc.
  • benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethy
  • ⁇ -ketol compounds such as 1-hydroxycyclohexyl phenyl ketone; azo compounds such as azobisisobutyronitrile; titanocene compounds such as titanocene; thioxanthone compounds such as thioxanthone; peroxide compounds; diketone compounds such as diacetyl; , Dibenzyl, benzophenone, 2,4-diethylthioxanthone, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone, 2-chloroanthraquinone and the like.
  • a quinone compound such as 1-chloroanthraquinone
  • a photosensitizer such as amine
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the energy ray curable compound.
  • the amount is more preferably 0.03 to 10 parts by weight, and particularly preferably 0.05 to 5 parts by weight.
  • the first pressure-sensitive adhesive composition (I-1) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • the other additives include antistatic agents, antioxidants, softeners (plasticizers), fillers (fillers), rust inhibitors, colorants (pigments, dyes), sensitizers, and tackifiers.
  • known additives such as reaction retarders and crosslinking accelerators (catalysts).
  • the reaction retarding agent means, for example, the purpose of the first pressure-sensitive adhesive composition (I-1) during storage due to the action of the catalyst mixed in the first pressure-sensitive adhesive composition (I-1).
  • reaction retarder examples include those that form a chelate complex by chelation against a catalyst, and more specifically, those having two or more carbonyl groups (—C ( ⁇ O) —) in one molecule. Can be mentioned.
  • the other additive contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first pressure-sensitive adhesive composition (I-1) may contain a solvent. Since the first pressure-sensitive adhesive composition (I-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the solvent is preferably an organic solvent.
  • organic solvent include ketones such as methyl ethyl ketone and acetone; esters such as ethyl acetate (carboxylic acid esters); ethers such as tetrahydrofuran and dioxane; cyclohexane and n-hexane and the like.
  • ketones such as methyl ethyl ketone and
  • the solvent for example, the one used in the production of the adhesive resin (I-1a) is used as it is in the first adhesive composition (I-1) without being removed from the adhesive resin (I-1a).
  • the same or different type of solvent used in the production of the adhesive resin (I-1a) may be added separately during the production of the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-1) may be only one type, or two or more types, and in the case of two or more types, their combination and ratio can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the first pressure-sensitive adhesive composition (I-2) is an energy ray-curable pressure-sensitive adhesive in which an unsaturated group is introduced into the side chain of the non-energy ray-curable pressure-sensitive adhesive resin (I-1a). Containing a functional resin (I-2a).
  • the adhesive resin (I-2a) can be obtained, for example, by reacting a functional group in the adhesive resin (I-1a) with an unsaturated group-containing compound having an energy ray polymerizable unsaturated group.
  • the unsaturated group-containing compound is a group capable of binding to the adhesive resin (I-1a) by reacting with a functional group in the adhesive resin (I-1a) in addition to the energy ray polymerizable unsaturated group. It is a compound which has this.
  • the energy ray-polymerizable unsaturated group include (meth) acryloyl group, vinyl group (ethenyl group), allyl group (2-propenyl group) and the like, and (meth) acryloyl group is preferable.
  • Examples of the group capable of binding to the functional group in the adhesive resin (I-1a) include, for example, an isocyanate group and a glycidyl group that can be bonded to a hydroxyl group or an amino group, and a hydroxyl group and an amino group that can be bonded to a carboxy group or an epoxy group. Etc.
  • Examples of the unsaturated group-containing compound include (meth) acryloyloxyethyl isocyanate, (meth) acryloyl isocyanate, glycidyl (meth) acrylate, and the like.
  • the pressure-sensitive adhesive resin (I-2a) contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the pressure-sensitive adhesive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-2). It is preferably 10 to 95% by mass, more preferably 10 to 90% by mass.
  • the first adhesive composition may further contain a crosslinking agent.
  • Examples of the crosslinking agent in the first pressure-sensitive adhesive composition (I-2) include the same cross-linking agents as those in the first pressure-sensitive adhesive composition (I-1).
  • the cross-linking agent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the crosslinking agent is 0.01 to 50 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-2a).
  • the amount is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass.
  • the first pressure-sensitive adhesive composition (I-2) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-2) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-2) include the same photopolymerization initiator as in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is 0.01 to 20 parts by mass with respect to 100 parts by mass of the pressure-sensitive adhesive resin (I-2a). Is preferable, 0.03 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is particularly preferable.
  • the first pressure-sensitive adhesive composition (I-2) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • Examples of the other additive in the first pressure-sensitive adhesive composition (I-2) include the same additives as those in the first pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected according to the type.
  • the first pressure-sensitive adhesive composition (I-2) may contain a solvent for the same purpose as that of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-2) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1).
  • the solvent contained in the first pressure-sensitive adhesive composition (I-2) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the content of the solvent is not particularly limited, and may be adjusted as appropriate.
  • the first pressure-sensitive adhesive composition (I-3) contains the pressure-sensitive adhesive resin (I-2a) and an energy ray-curable low molecular weight compound.
  • the content of the pressure-sensitive adhesive resin (I-2a) is 5 to 99% by mass with respect to the total mass of the first pressure-sensitive adhesive composition (I-3). It is preferably 10 to 95% by mass, more preferably 15 to 90% by mass.
  • Examples of the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) include monomers and oligomers that have an energy ray-polymerizable unsaturated group and can be cured by irradiation with energy rays. And the same energy ray-curable compound contained in the first pressure-sensitive adhesive composition (I-1).
  • the energy ray-curable low molecular weight compound contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and when two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the energy ray-curable low molecular weight compound is 0.01 to 300 with respect to 100 parts by weight of the pressure-sensitive adhesive resin (I-2a).
  • the amount is preferably part by mass, more preferably 0.03 to 200 parts by mass, and particularly preferably 0.05 to 100 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may further contain a photopolymerization initiator.
  • the first pressure-sensitive adhesive composition (I-3) containing a photopolymerization initiator sufficiently proceeds with the curing reaction even when irradiated with a relatively low energy beam such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first pressure-sensitive adhesive composition (I-3) include the same photopolymerization initiators as those in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of the photopolymerization initiator is based on 100 parts by mass of the total content of the pressure-sensitive adhesive resin (I-2a) and the energy ray-curable low molecular weight compound.
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first pressure-sensitive adhesive composition (I-3) may contain other additives that do not fall under any of the above-mentioned components within a range that does not impair the effects of the present invention.
  • the other additives include the same additives as the other additives in the first pressure-sensitive adhesive composition (I-1).
  • the other additive contained in the first pressure-sensitive adhesive composition (I-3) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected. .
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first pressure-sensitive adhesive composition (I-3) may contain a solvent for the same purpose as that of the first pressure-sensitive adhesive composition (I-1).
  • Examples of the solvent in the first pressure-sensitive adhesive composition (I-3) include the same solvents as those in the first pressure-sensitive adhesive composition (I-1). Only 1 type may be sufficient as the solvent which 1st adhesive composition (I-3) contains, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the content of the solvent is not particularly limited and may be appropriately adjusted.
  • first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) has been mainly described.
  • first pressure-sensitive adhesive compositions (I-1) to (I-) It is also possible to use the same in the first pressure-sensitive adhesive composition other than 3).
  • Examples of the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) include non-energy ray-curable pressure-sensitive adhesive compositions other than energy-ray-curable pressure-sensitive adhesive compositions. Also mentioned.
  • Non-energy ray curable adhesive compositions include, for example, acrylic resins (resins having (meth) acryloyl groups), urethane resins (resins having urethane bonds), rubber resins (resins having a rubber structure).
  • Silicone resins (resins having a siloxane bond), epoxy resins (resins having an epoxy group), polyvinyl ethers, or resins containing an adhesive resin such as polycarbonate, and those containing acrylic resins are preferred. .
  • the first pressure-sensitive adhesive composition other than the first pressure-sensitive adhesive compositions (I-1) to (I-3) preferably contains one or more crosslinking agents, and the content thereof is as described above. This can be the same as in the case of the first pressure-sensitive adhesive composition (I-1) and the like.
  • the first pressure-sensitive adhesive composition such as the first pressure-sensitive adhesive compositions (I-1) to (I-3) includes the first pressure-sensitive adhesive, such as the pressure-sensitive adhesive and components other than the pressure-sensitive adhesive as necessary. It is obtained by blending each component for constituting the composition. The order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously. When a solvent is used, it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • middle layer is a sheet form or a film form
  • the constituent material should just be suitably selected according to the objective, and is not specifically limited.
  • the first protective film covering the semiconductor surface reflects the shape of the bumps existing on the semiconductor surface and is intended to prevent the first protective film from being deformed
  • the first intermediate layer examples include urethane (meth) acrylate and the like from the viewpoint that the adhesiveness of the first intermediate layer is further improved.
  • the first intermediate layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other, and a combination of these layers. Is not particularly limited.
  • the thickness of the first intermediate layer can be adjusted as appropriate according to the height of the bump on the surface of the semiconductor to be protected.
  • the thickness of the first intermediate layer is 50 to 600 ⁇ m because the influence of the relatively high bump can be easily absorbed. It is preferably 70 to 500 ⁇ m, more preferably 80 to 400 ⁇ m.
  • the “thickness of the first intermediate layer” means the thickness of the entire first intermediate layer.
  • the thickness of the first intermediate layer composed of a plurality of layers means all of the first intermediate layer. Means the total thickness of the layers.
  • middle layer can be formed using the composition for 1st intermediate
  • the first intermediate layer-forming composition is applied to the surface of the first intermediate layer and dried as necessary, or cured by irradiation with energy rays, so that the first intermediate layer is formed on the target site. Layers can be formed. A more specific method for forming the first intermediate layer will be described in detail later along with methods for forming other layers.
  • the ratio of the content of components that do not vaporize at room temperature in the first intermediate layer forming composition is usually the same as the content ratio of the components of the first intermediate layer.
  • “normal temperature” is as described above.
  • the first intermediate layer forming composition may be applied by a known method, for example, air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife.
  • a method using various coaters such as a coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions for the first intermediate layer forming composition are not particularly limited, but when the first intermediate layer forming composition contains a solvent to be described later, it is preferably heat-dried. Drying is preferably performed at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the composition for forming the first intermediate layer has energy ray curability, it is preferably cured by irradiation with energy rays after drying.
  • Examples of the first intermediate layer forming composition include a first intermediate layer forming composition (II-1) containing urethane (meth) acrylate.
  • the first intermediate layer forming composition (II-1) contains urethane (meth) acrylate.
  • Urethane (meth) acrylate is a compound having at least a (meth) acryloyl group and a urethane bond in one molecule, and has energy ray polymerizability.
  • the urethane (meth) acrylate may be monofunctional (having only one (meth) acryloyl group in one molecule) or bifunctional or more ((meth) acryloyl group in one molecule). Having two or more), that is, polyfunctional, it is preferable to use at least monofunctional.
  • Examples of the urethane (meth) acrylate contained in the first intermediate layer forming composition include, for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyvalent isocyanate compound, a hydroxyl group and What was obtained by making the (meth) acrylic-type compound which has a (meth) acryloyl group react is mentioned.
  • the “terminal isocyanate urethane prepolymer” means a prepolymer having a urethane bond and an isocyanate group at the end of the molecule.
  • the urethane (meth) acrylate contained in the first intermediate layer forming composition (II-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the polyol compound is not particularly limited as long as it is a compound having two or more hydroxyl groups in one molecule.
  • the said polyol compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • polyol compound examples include alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol.
  • the polyol compound may be any of a bifunctional diol, a trifunctional triol, a tetrafunctional or higher polyol, etc., but a diol is preferable in terms of easy availability and excellent versatility and reactivity. .
  • the polyether type polyol is not particularly limited, but is preferably a polyether type diol, and examples of the polyether type diol include compounds represented by the following general formula (1). It is done.
  • n is an integer of 2 or more; R is a divalent hydrocarbon group, and a plurality of R may be the same or different from each other.
  • n represents the number of repeating units of the group represented by the general formula “—RO—”, and is not particularly limited as long as it is an integer of 2 or more. Among these, n is preferably 10 to 250, more preferably 25 to 205, and particularly preferably 40 to 185.
  • R is not particularly limited as long as it is a divalent hydrocarbon group, but is preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms, an ethylene group, a propylene group, or a tetra group.
  • a methylene group is more preferable, and a propylene group or a tetramethylene group is particularly preferable.
  • the compound represented by the formula (1) is preferably polyethylene glycol, polypropylene glycol or polytetramethylene glycol, and more preferably polypropylene glycol or polytetramethylene glycol.
  • the terminal isocyanate urethane prepolymer having an ether bond represented by the following general formula (1a) is obtained.
  • the urethane (meth) acrylate has the ether bond part, that is, the structural unit derived from the polyether type diol. .
  • polyester type polyol is not specifically limited, For example, what was obtained by performing esterification reaction using a polybasic acid or its derivative (s), etc. are mentioned.
  • derivative means a compound in which one or more groups of the original compound are substituted with other groups (substituents) unless otherwise specified.
  • group includes not only an atomic group formed by bonding a plurality of atoms but also one atom.
  • polybasic acid and its derivative As said polybasic acid and its derivative (s), the polybasic acid normally used as a manufacturing raw material of polyester and its derivative (s) are mentioned.
  • the polybasic acid include saturated aliphatic polybasic acids, unsaturated aliphatic polybasic acids, aromatic polybasic acids, and the like, and dimer acids corresponding to any of these may be used.
  • saturated aliphatic polybasic acid examples include saturated aliphatic dibasic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.
  • unsaturated aliphatic polybasic acid examples include unsaturated aliphatic dibasic acids such as maleic acid and fumaric acid.
  • aromatic polybasic acid examples include aromatic dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, and 2,6-naphthalenedicarboxylic acid; aromatic tribasic acids such as trimellitic acid; pyromellitic acid and the like And aromatic tetrabasic acids.
  • Examples of the derivative of the polybasic acid include the above-mentioned saturated aliphatic polybasic acid, unsaturated aliphatic polybasic acid and acid anhydride of aromatic polybasic acid, and hydrogenated dimer acid.
  • any of the polybasic acids or derivatives thereof may be used alone or in combination of two or more. When two or more are used in combination, the combination and ratio thereof can be arbitrarily selected. .
  • the polybasic acid is preferably an aromatic polybasic acid in that it is suitable for forming a coating film having an appropriate hardness.
  • a known catalyst may be used as necessary.
  • the catalyst include tin compounds such as dibutyltin oxide and stannous octylate; alkoxy titanium such as tetrabutyl titanate and tetrapropyl titanate.
  • the polycarbonate type polyol is not particularly limited, and examples thereof include those obtained by reacting the same glycol as the compound represented by the formula (1) with an alkylene carbonate.
  • each of glycol and alkylene carbonate may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected. .
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1000 to 10,000, more preferably 2000 to 9000, and particularly preferably 3000 to 7000.
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from the following formula.
  • the polyol compound is preferably a polyether type polyol, and more preferably a polyether type diol.
  • the polyvalent isocyanate compound to be reacted with the polyol compound is not particularly limited as long as it has two or more isocyanate groups.
  • a polyvalent isocyanate compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • polyvalent isocyanate compound examples include chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2.
  • chain aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and trimethylhexamethylene diisocyanate
  • isophorone diisocyanate norbornane diisocyanate
  • dicyclohexylmethane-4,4′-diisocyanate dicyclohexylmethane-2.
  • Cycloaliphatic diisocyanates such as 4,4′-diisocyanate, ⁇ , ⁇ ′-diisocyanate dimethylcyclohexane, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1, And aromatic diisocyanates such as 5-diisocyanate.
  • the polyvalent isocyanate compound is preferably isophorone diisocyanate, hexamethylene diisocyanate or xylylene diisocyanate from the viewpoint of handleability.
  • the (meth) acrylic compound to be reacted with the terminal isocyanate urethane prepolymer is not particularly limited as long as it is a compound having at least a hydroxyl group and a (meth) acryloyl group in one molecule.
  • the said (meth) acrylic-type compound may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • Examples of the (meth) acrylic compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy (meth) acrylate. Butyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 4-hydroxycyclohexyl (meth) acrylate, 5-hydroxycyclooctyl (meth) acrylate, 2- (meth) acrylic acid 2- Hydroxyl-3-phenyloxypropyl, hydroxyl group-containing (meth) acrylate such as pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate; N-methylol (meth) acrylamid Hydroxyl group-containing (meth) acrylamide and the like; vinyl alcohol, vinyl phenol or bisphenol A diglycidyl ether (
  • the (meth) acrylic compound is preferably a hydroxyl group-containing (meth) acrylic ester, more preferably a hydroxyl group-containing (meth) acrylic acid alkyl ester, and (meth) acrylic acid 2- Particularly preferred is hydroxyethyl.
  • the reaction between the terminal isocyanate urethane prepolymer and the (meth) acrylic compound may be performed using a solvent, a catalyst, or the like, if necessary.
  • Conditions for reacting the terminal isocyanate urethane prepolymer with the (meth) acrylic compound may be appropriately adjusted.
  • the reaction temperature is preferably 60 to 100 ° C.
  • the reaction time is 1 to It is preferably 4 hours.
  • the urethane (meth) acrylate may be an oligomer, a polymer, or a mixture of an oligomer and a polymer, but is preferably an oligomer.
  • the urethane (meth) acrylate has a weight average molecular weight of preferably from 1,000 to 100,000, more preferably from 3000 to 80,000, and particularly preferably from 5,000 to 65,000. Due to the intermolecular force between the structures derived from urethane (meth) acrylate in the polymer of urethane (meth) acrylate and a polymerizable monomer described later, the weight average molecular weight is 1000 or more. Optimization of layer hardness is facilitated.
  • the weight average molecular weight is a polystyrene conversion value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the first intermediate layer forming composition (II-1) may contain a polymerizable monomer in addition to the urethane (meth) acrylate, from the viewpoint of further improving the film forming property.
  • the polymerizable monomer is a compound having energy ray polymerizability and excluding oligomers and polymers having a weight average molecular weight of 1000 or more and having at least one (meth) acryloyl group in one molecule. It is preferable.
  • Examples of the polymerizable monomer include (meth) acrylic acid alkyl esters in which the alkyl group constituting the alkyl ester is a chain having 1 to 30 carbon atoms; a hydroxyl group, an amide group, an amino group, an epoxy group, or the like (Meth) acrylic compound having a functional group of (meth) acrylic ester having an aliphatic cyclic group; (meth) acrylic ester having an aromatic hydrocarbon group; having a heterocyclic group ( (Meth) acrylic acid ester; compound having vinyl group; compound having allyl group.
  • Examples of the (meth) acrylic acid alkyl ester having a chain alkyl group having 1 to 30 carbon atoms include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, ( Isopropyl methacrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, (meth) Hexyl acrylate, heptyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, (meth) acrylic acid Isononyl, decy
  • Examples of the functional group-containing (meth) acrylic acid derivative include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and (meth) acrylic acid.
  • Hydroxyl group-containing (meth) acrylic acid esters such as 2-hydroxybutyl, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (Meth) acrylamides such as N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and the like
  • a derivative having an amino group ( A) Acrylic acid ester hereinafter sometimes referred to as “amino group-containing (meth) acrylic acid
  • amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with an amino group (—NH 2 ).
  • monosubstituted amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with a monosubstituted amino group
  • disubstituted amino group-containing (meth) acrylic acid ester means a compound in which one or two or more hydrogen atoms of (meth) acrylic acid ester are substituted with a disubstituted amino group.
  • the group other than the hydrogen atom in which the hydrogen atom is substituted in the “monosubstituted amino group” and the “disubstituted amino group” include an alkyl group.
  • Examples of the (meth) acrylic acid ester having an aliphatic cyclic group include, for example, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, and (meth) acrylic acid. Examples include dicyclopentenyloxyethyl, cyclohexyl (meth) acrylate, adamantyl (meth) acrylate, and the like.
  • Examples of the (meth) acrylic acid ester having an aromatic hydrocarbon group include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like. Can be mentioned.
  • the heterocyclic group in the (meth) acrylic acid ester having a heterocyclic group may be either an aromatic heterocyclic group or an aliphatic heterocyclic group.
  • Examples of the (meth) acrylic acid ester having a heterocyclic group include tetrahydrofurfuryl (meth) acrylate and (meth) acryloylmorpholine.
  • Examples of the compound having a vinyl group include styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinyl pyrrolidone, N-vinyl caprolactam and the like.
  • Examples of the compound having an allyl group include allyl glycidyl ether.
  • the polymerizable monomer preferably has a relatively bulky group from the viewpoint of good compatibility with the urethane (meth) acrylate, and such a monomer has an aliphatic cyclic group (meta ) Acrylic acid ester, (meth) acrylic acid ester having an aromatic hydrocarbon group, (meth) acrylic acid ester having a heterocyclic group, and (meth) acrylic acid ester having an aliphatic cyclic group are more preferable. preferable.
  • the polymerizable monomer contained in the first intermediate layer forming composition (II-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrarily selected. it can.
  • the content of the polymerizable monomer is 10 to 99% by mass with respect to the total mass of the first intermediate layer forming composition (II-1). It is preferably 15 to 95% by mass, more preferably 20 to 90% by mass, and particularly preferably 25 to 80% by mass.
  • the first intermediate layer forming composition (II-1) may contain a photopolymerization initiator in addition to the urethane (meth) acrylate and the polymerizable monomer.
  • the first intermediate layer-forming composition (II-1) containing a photopolymerization initiator sufficiently undergoes a curing reaction even when irradiated with energy rays of relatively low energy such as ultraviolet rays.
  • Examples of the photopolymerization initiator in the first intermediate layer forming composition (II-1) include the same photopolymerization initiator as in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator contained in the first intermediate layer forming composition (II-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the photopolymerization initiator is 0.01 to 20 with respect to 100 parts by mass of the total content of the urethane (meth) acrylate and the polymerizable monomer.
  • the amount is preferably part by mass, more preferably 0.03 to 10 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the first intermediate layer forming composition (II-1) may contain a resin component other than the urethane (meth) acrylate as long as the effects of the present invention are not impaired.
  • the kind of the resin component and the content in the first intermediate layer forming composition (II-1) may be appropriately selected according to the purpose, and are not particularly limited.
  • the first intermediate layer forming composition (II-1) may contain other additives that do not fall under any of the above-mentioned components within a range not impairing the effects of the present invention.
  • the other additives include known crosslinking agents, antistatic agents, antioxidants, chain transfer agents, softeners (plasticizers), fillers, rust inhibitors, colorants (pigments, dyes), and the like.
  • An additive is mentioned.
  • the chain transfer agent includes a thiol compound having at least one thiol group (mercapto group) in one molecule.
  • thiol compound examples include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2,3-propanetrithiol, Tetraethylene glycol-bis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakisthioglucorate, dipentaerythritol hexa Kiss (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] -isocyanurate, 1,4-bis (3-mercaptobutyryloxy) butane, pen Erythritol tetrakis (3-mercapt
  • the other additive contained in the first intermediate layer forming composition (II-1) may be only one kind, two or more kinds, and in the case of two or more kinds, the combination and ratio thereof are arbitrary. You can choose.
  • the content of other additives is not particularly limited, and may be appropriately selected depending on the type.
  • the first intermediate layer forming composition (II-1) may contain a solvent. Since the first intermediate layer forming composition (II-1) contains a solvent, the suitability for coating on the surface to be coated is improved.
  • the first intermediate layer forming composition such as the first intermediate layer forming composition (II-1) can be obtained by blending the components for constituting the first intermediate layer forming composition.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the curable resin layer is a sheet-like or film-like layer for protecting bumps on the semiconductor surface, and may be either an energy ray-curable resin layer or a thermosetting resin layer.
  • the curable resin layer forms a first protective film by curing.
  • the energy beam curable resin layer contains an energy beam curable component (a).
  • the energy ray curable component (a) is preferably uncured, preferably tacky, and more preferably uncured and tacky.
  • “energy beam” and “energy beam curability” are as described above.
  • As a preferable thermosetting resin layer what contains a polymer component (A) and a thermosetting component (B) is mentioned, for example.
  • the polymer component (A) is a component that can be regarded as formed by polymerization reaction of the polymerizable compound.
  • the thermosetting component (B) is a component that can undergo a curing (polymerization) reaction using heat as a reaction trigger.
  • the polymerization reaction includes a polycondensation reaction.
  • the curable resin layer may be only one layer (single layer), or may be two or more layers. In the case of a plurality of layers, these layers may be the same or different from each other. The combination is not particularly limited.
  • the thickness of the curable resin layer is preferably 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the thickness of the curable resin layer is equal to or more than the lower limit value, it is possible to form a first protective film with higher protective ability. Moreover, the effect which suppresses bubble inclusion of a 1st protective film becomes higher because the thickness of a curable resin layer is below the said upper limit.
  • the “thickness of the curable resin layer” means the thickness of the entire curable resin layer.
  • the thickness of the curable resin layer composed of a plurality of layers means all of the curable resin layers. Means the total thickness of the layers.
  • the curable resin layer can be formed using the curable resin layer forming composition contained in the constituent material.
  • the energy ray curable resin layer is formed on the target site by applying the energy ray curable resin layer forming composition to the surface on which the energy ray curable resin layer is to be formed and drying it as necessary. it can.
  • the ratio of the content of components that do not vaporize at room temperature is usually the same as the ratio of the content of the components of the energy beam curable resin layer.
  • “normal temperature” is as described above.
  • the curable resin layer forming composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, knife.
  • a method using various coaters such as a coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • the drying conditions of the resin layer forming composition are not particularly limited, but the energy ray curable resin layer forming composition is preferably heat-dried when it contains a solvent to be described later. Drying is preferably performed at 70 to 130 ° C. for 10 seconds to 5 minutes.
  • the energy ray curable resin layer forming composition examples include, for example, the energy ray curable resin layer forming composition (IV-1) containing the energy ray curable component (a) (in this specification, And the like (may be abbreviated as “resin layer forming composition (IV-1)”).
  • the energy ray-curable component (a) is a component that is cured by irradiation with energy rays, and is also a component for imparting film forming property, flexibility, and the like to the energy ray-curable resin layer.
  • Examples of the energy ray-curable component (a) include a polymer (a1) having an energy ray-curable group and a weight average molecular weight of 80000 to 2000000, and an energy ray-curable group and a molecular weight of 100 to 80000.
  • a compound (a2) is mentioned.
  • the polymer (a1) may be crosslinked at least partly with a crosslinking agent or may not be crosslinked.
  • Polymer (a1) having an energy ray curable group and having a weight average molecular weight of 80,000 to 2,000,000 examples include an acrylic polymer (a11) having a functional group capable of reacting with a group of another compound, An acrylic resin (a1-1) formed by reacting a functional group reactive group and an energy ray curable compound (a12) having an energy ray curable group such as an energy ray curable double bond. .
  • Examples of the functional group capable of reacting with a group possessed by another compound include a hydroxyl group, a carboxy group, an amino group, and a substituted amino group (one or two hydrogen atoms of the amino group are substituted with a group other than a hydrogen atom). Group), an epoxy group, and the like.
  • the functional group is preferably a group other than a carboxy group from the viewpoint of preventing corrosion of a circuit such as a semiconductor wafer or a semiconductor chip.
  • the functional group is preferably a hydroxyl group.
  • the acrylic polymer (a11) having the functional group examples include those obtained by copolymerizing an acrylic monomer having the functional group and an acrylic monomer having no functional group. In addition to monomers, monomers other than acrylic monomers (non-acrylic monomers) may be copolymerized.
  • the acrylic polymer (a11) may be a random copolymer or a block copolymer.
  • acrylic monomer having a functional group examples include a hydroxyl group-containing monomer, a carboxy group-containing monomer, an amino group-containing monomer, a substituted amino group-containing monomer, and an epoxy group-containing monomer.
  • hydroxyl group-containing monomer examples include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, (meth) Hydroxyalkyl (meth) acrylates such as 2-hydroxybutyl acrylate, 3-hydroxybutyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate; non- (meth) acrylic non-methacrylates such as vinyl alcohol and allyl alcohol Saturated alcohol (unsaturated alcohol which does not have a (meth) acryloyl skeleton) etc. are mentioned.
  • Examples of the carboxy group-containing monomer include ethylenically unsaturated monocarboxylic acids (monocarboxylic acids having an ethylenically unsaturated bond) such as (meth) acrylic acid and crotonic acid; fumaric acid, itaconic acid, maleic acid, citracone Ethylenically unsaturated dicarboxylic acids such as acids (dicarboxylic acids having an ethylenically unsaturated bond); anhydrides of the ethylenically unsaturated dicarboxylic acids; carboxyalkyl esters of (meth) acrylic acid such as 2-carboxyethyl methacrylate, etc. It is done.
  • monocarboxylic acids having an ethylenically unsaturated bond such as (meth) acrylic acid and crotonic acid
  • fumaric acid, itaconic acid maleic acid, citracone
  • Ethylenically unsaturated dicarboxylic acids such as acids (dica
  • the acrylic monomer having a functional group is preferably a hydroxyl group-containing monomer or a carboxy group-containing monomer, more preferably a hydroxyl group-containing monomer.
  • the acrylic monomer having the functional group that constitutes the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • acrylic monomer having no functional group examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and (meth) acrylate n.
  • acrylic monomer having no functional group examples include alkoxy such as methoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxymethyl (meth) acrylate, and ethoxyethyl (meth) acrylate.
  • the acrylic monomer which does not have the functional group constituting the acrylic polymer (a11) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • non-acrylic monomer examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • the said non-acrylic monomer which comprises the said acrylic polymer (a11) may be only 1 type, may be 2 or more types, and when it is 2 or more types, those combinations and ratios can be selected arbitrarily.
  • the ratio (content) of the amount of the structural unit derived from the acrylic monomer having the functional group to the total amount of the structural unit constituting the polymer is 0.1 to 50 mass. %, More preferably 1 to 40% by mass, and particularly preferably 3 to 30% by mass.
  • the ratio is within such a range.
  • the content of the curable group can easily adjust the degree of curing of the first protective film within a preferable range.
  • the acrylic polymer (a11) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. You can choose.
  • the content of the acrylic resin (a1-1) is 5 to 60% by mass with respect to the total mass of the resin layer forming composition (IV-1). Preferably, it is 10 to 40% by mass, more preferably 15 to 20% by mass.
  • the energy ray curable compound (a12) is one or two selected from the group consisting of an isocyanate group, an epoxy group and a carboxy group as a group capable of reacting with the functional group of the acrylic polymer (a11). Those having the above are preferred, and those having an isocyanate group as the group are more preferred. For example, when the energy beam curable compound (a12) has an isocyanate group as the group, the isocyanate group easily reacts with the hydroxyl group of the acrylic polymer (a11) having a hydroxyl group as the functional group.
  • the energy beam curable compound (a12) preferably has 1 to 5 energy beam curable groups in one molecule, and more preferably has 1 to 2 energy beam curable groups.
  • Examples of the energy ray-curable compound (a12) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1- (bisacryloyloxymethyl).
  • Ethyl isocyanate An acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth) acrylate; Examples thereof include an acryloyl monoisocyanate compound obtained by a reaction of a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) acrylate.
  • the energy beam curable compound (a12) is preferably 2-methacryloyloxyethyl isocyanate.
  • the energy ray-curable compound (a12) constituting the acrylic resin (a1-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the energy beam curable group derived from the energy beam curable compound (a12) with respect to the content of the functional group derived from the acrylic polymer (a11). is preferably 20 to 120 mol%, more preferably 35 to 100 mol%, and particularly preferably 50 to 100 mol%.
  • the ratio of the content is within such a range, the adhesive force of the cured first protective film to the bumps and the circuit surface of the semiconductor wafer is further increased.
  • the upper limit of the content ratio is 100 mol%
  • the energy ray curable compound (a12) is a polyfunctional compound (having two or more of the groups in one molecule)
  • the upper limit of the content ratio may exceed 100 mol%.
  • the polymer (a1) has a weight average molecular weight (Mw) of preferably 100,000 to 2,000,000, and more preferably 300,000 to 1500,000.
  • Mw weight average molecular weight
  • the “weight average molecular weight” is as described above.
  • the polymer (a1) is at least partially crosslinked by a crosslinking agent
  • the polymer (a1) has been described as constituting the acrylic polymer (a11).
  • a monomer that does not correspond to any of the monomers and has a group that reacts with the crosslinking agent is polymerized to be crosslinked at the group that reacts with the crosslinking agent, or the energy ray-curable compound ( In the group which reacts with the functional group derived from a12), it may be crosslinked.
  • the polymer (a1) contained in the resin layer forming composition (IV-1) and the energy ray curable resin layer may be only one kind, two kinds or more, and when there are two kinds or more, These combinations and ratios can be arbitrarily selected.
  • Compound (a2) having an energy ray curable group and a molecular weight of 100 to 80,000 examples include a group containing an energy ray curable double bond. Preferred examples include (meth) An acryloyl group, a vinyl group, etc. are mentioned.
  • the compound (a2) is not particularly limited as long as it satisfies the above conditions, but has a low molecular weight compound having an energy ray curable group, an epoxy resin having an energy ray curable group, and an energy ray curable group.
  • a phenol resin etc. are mentioned.
  • examples of the low molecular weight compound having an energy ray curable group include polyfunctional monomers or oligomers, and an acrylate compound having a (meth) acryloyl group is preferable.
  • examples of the acrylate compound include 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, polyethylene glycol di (meth) acrylate, propoxylated ethoxylated bisphenol A di (meth) acrylate, and 2,2-bis [4 -((Meth) acryloxypolyethoxy) phenyl] propane, ethoxylated bisphenol A di (meth) acrylate, 2,2-bis [4-((meth) acryloxydiethoxy) phenyl] propane, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluorene, 2,2-bis [4-((meth) acryloxypolypropoxy) phenyl] propane,
  • the epoxy resin having an energy ray curable group and the phenol resin having an energy ray curable group are described in, for example, paragraph 0043 of “JP 2013-194102 A”. Things can be used.
  • Such a resin corresponds to a resin constituting a curable component described later, but is treated as the compound (a2) in the present invention.
  • the compound (a2) preferably has a weight average molecular weight of 100 to 30,000, more preferably 300 to 10,000.
  • the compound (a2) contained in the resin layer forming composition (IV-1) and the energy ray curable resin layer may be only one kind, two kinds or more, and when there are two or more kinds, Combinations and ratios can be arbitrarily selected.
  • the resin layer-forming composition (IV-1) and the energy beam curable resin layer contain the compound (a2) as the energy beam curable component (a), the resin layer-forming composition (IV-1) and the energy beam curable resin layer further have no energy beam curable group. It is preferable to also contain a coalescence (b).
  • the polymer (b) may be crosslinked at least partially by a crosslinking agent, or may not be crosslinked.
  • polymer (b) having no energy ray curable group examples include acrylic polymers, phenoxy resins, urethane resins, polyesters, rubber resins, and acrylic urethane resins.
  • the polymer (b) is preferably an acrylic polymer (hereinafter sometimes abbreviated as “acrylic polymer (b-1)”).
  • the acrylic polymer (b-1) may be a known one, for example, a homopolymer of one acrylic monomer or a copolymer of two or more acrylic monomers. Alternatively, it may be a copolymer of one or two or more acrylic monomers and a monomer (non-acrylic monomer) other than one or two or more acrylic monomers.
  • the acrylic monomer constituting the acrylic polymer (b-1) include polymers of monomers mentioned as acrylic monomers having no functional group constituting the acrylic polymer (a11). It is done.
  • Examples of the (meth) acrylic acid ester having a cyclic skeleton include (meth) acrylic acid cycloalkyl esters such as isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate; (Meth) acrylic acid aralkyl esters such as (meth) acrylic acid benzyl; (Meth) acrylic acid cycloalkenyl esters such as (meth) acrylic acid dicyclopentenyl ester; Examples include (meth) acrylic acid cycloalkenyloxyalkyl esters such as (meth) acrylic acid dicyclopentenyloxyethyl ester.
  • Examples of the glycidyl group-containing (meth) acrylic ester include glycidyl (meth) acrylate.
  • Examples of the hydroxyl group-containing (meth) acrylic acid ester include hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 3-hydroxy (meth) acrylate. Examples include propyl, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and the like.
  • Examples of the substituted amino group-containing (meth) acrylic acid ester include N-methylaminoethyl (meth) acrylate.
  • non-acrylic monomer constituting the acrylic polymer (b-1) examples include olefins such as ethylene and norbornene; vinyl acetate; styrene.
  • Examples of the polymer (b) that is at least partially crosslinked by a crosslinking agent and does not have an energy ray-curable group include those in which a reactive functional group in the polymer (b) has reacted with a crosslinking agent. Can be mentioned.
  • the reactive functional group may be appropriately selected according to the type of the crosslinking agent and the like, and is not particularly limited.
  • examples of the reactive functional group include a hydroxyl group, a carboxy group, and an amino group. Among these, a hydroxyl group having high reactivity with an isocyanate group is preferable.
  • the crosslinking agent is an epoxy compound
  • examples of the reactive functional group include a carboxy group, an amino group, an amide group, and the like. Among these, a carboxy group having high reactivity with an epoxy group is preferable.
  • the reactive functional group is preferably a group other than a carboxy group in terms of preventing corrosion of a circuit of a semiconductor wafer or a semiconductor chip.
  • Examples of the polymer (b) having the reactive functional group and not having the energy ray-curable group include those obtained by polymerizing at least the monomer having the reactive functional group.
  • examples of the polymer (b) having a hydroxyl group as a reactive functional group include those obtained by polymerizing a hydroxyl group-containing (meth) acrylic acid ester.
  • Examples of the acrylic monomer or non-acrylic monomer include those obtained by polymerizing a monomer in which one or two or more hydrogen atoms are substituted with the reactive functional group.
  • the ratio (content) of the amount of the structural unit derived from the monomer having the reactive functional group to the total amount of the structural unit constituting the polymer (b) is 1-20.
  • the mass is preferably 2% by mass, and more preferably 2 to 10% by mass. When the ratio is within such a range, the degree of cross-linking becomes a more preferable range in the polymer (b).
  • the weight average molecular weight (Mw) of the polymer (b) having no energy ray curable group is 10,000 to 2,000,000 from the viewpoint that the film-forming property of the resin layer forming composition (IV-1) becomes better. It is preferably 100000 to 1500,000.
  • the “weight average molecular weight” is as described above.
  • the resin layer-forming composition (IV-1) and the energy ray-curable resin layer contain the polymer (b) having no energy ray-curable group, may be only one type or two or more types, In the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • Examples of the resin layer forming composition (IV-1) include those containing one or both of the polymer (a1) and the compound (a2).
  • the resin layer forming composition (IV-1) preferably further contains a polymer (b) or a polymer (a1) when it contains the compound (a2). Further, the resin layer forming composition (IV-1) does not contain the compound (a2) and contains both the polymer (a1) and the polymer (b) having no energy ray-curable group. It may be.
  • the total content of the energy ray-curable component (a) and the polymer (b) having no energy ray-curable group with respect to the total content of components other than the solvent Of the energy ray curable resin layer is 5 to 90% by mass. It is preferably 10 to 80% by mass, more preferably 20 to 70% by mass.
  • the ratio of the content of the energy ray curable component is within such a range, the energy ray curable property of the energy ray curable resin layer becomes better.
  • Resin layer forming composition (IV-1) includes, in addition to the energy ray curable component, a thermosetting component, a photopolymerization initiator, a filler, a coupling agent, a crosslinking agent, and a general-purpose additive depending on the purpose. You may contain 1 type, or 2 or more types selected from the group which consists of. For example, by using the resin layer forming composition (IV-1) containing the energy ray curable component and the thermosetting component, the formed energy ray curable resin layer is bonded to an adherend by heating. The force is improved, and the strength of the first protective film formed from the energy ray curable resin layer is also improved.
  • the resin layer forming composition (IV-1) and the curable resin layer may contain a thermosetting component (B).
  • the thermosetting component (B) cures the curable resin layer by heating to form a hard first protective film.
  • Description of the resin layer forming composition (IV-1) and the thermosetting component (B) contained in the curable resin layer is as follows. ).
  • the resin layer forming composition (IV-1) may contain a photopolymerization initiator (H).
  • Examples of the photopolymerization initiator (H) in the resin layer forming composition (IV-1) include the same photopolymerization initiator as in the first pressure-sensitive adhesive composition (I-1).
  • the photopolymerization initiator (H) contained in the resin layer forming composition (IV-1) may be only one type, or two or more types, and when there are two or more types, the combination and ratio thereof are arbitrary. Can be selected.
  • the content of the photopolymerization initiator (H) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the energy beam curable component (a). It is preferably 1 to 10 parts by mass, more preferably 2 to 5 parts by mass.
  • the resin layer forming composition (IV-1) and the curable resin layer may contain a filler (D).
  • the first protective film obtained by curing the curable resin layer can easily adjust the thermal expansion coefficient.
  • the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the moisture absorption rate of a 1st protective film can be reduced or heat dissipation can be improved because a curable resin layer contains a filler (D).
  • the filler (D) may be either an organic filler or an inorganic filler, but is preferably an inorganic filler.
  • Preferred inorganic fillers include, for example, powders of silica, alumina, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, and the like; beads formed by spheroidizing these inorganic fillers; surface modification of these inorganic fillers Products; single crystal fibers of these inorganic fillers; glass fibers and the like.
  • the inorganic filler is preferably silica or alumina.
  • the resin layer forming composition (IV-1) and the filler (D) contained in the curable resin layer may be only one type, two or more types, and when two or more types are combined, The ratio can be arbitrarily selected.
  • the ratio of the content of the filler (D) to the total content of all components other than the solvent (that is, the curable resin layer) is preferably 5 to 80% by mass, more preferably 7 to 70% by mass. Adjustment of said thermal expansion coefficient becomes easier because content of a filler (D) is such a range.
  • the resin layer forming composition (IV-1) and the curable resin layer may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesion and adhesion of the curable resin layer to the adherend can be improved. Moreover, water resistance improves the 1st protective film obtained by hardening
  • the coupling agent (E) is preferably a compound having a functional group capable of reacting with the functional group of the energy beam curable component (a) and the like, and more preferably a silane coupling agent.
  • Preferred examples of the silane coupling agent include 3-glycidyloxypropyltrimethoxysilane, 3-glycidyloxypropylmethyldiethoxysilane, 3-glycidyloxypropyltriethoxysilane, 3-glycidyloxymethyldiethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3- (2-aminoethylamino) propyltrimethoxysilane, 3- (2-amino Ethylamino) propylmethyldiethoxysilane, 3- (phenylamino) propy
  • the resin layer forming composition (IV-1) and the coupling agent (E) contained in the curable resin layer may be only one type, two or more types, or a combination thereof when two or more types are used.
  • the ratio can be arbitrarily selected.
  • the content of the coupling agent (E) in the resin layer forming composition (IV-1) and the curable resin layer is such that the energy ray curable component (a), the polymer It is preferably 0.03 to 20 parts by mass, more preferably 0.05 to 10 parts by mass, with respect to 100 parts by mass of the total content of the component (A) and the thermosetting component (B).
  • the amount is particularly preferably 0.1 to 5 parts by mass.
  • Crosslinking agent (F) As energy ray-curable component (a), it has a functional group such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group, etc. that can be combined with other compounds such as the above-mentioned acrylic resin.
  • the resin layer forming composition (IV-1) and the curable resin layer may contain a crosslinking agent (F) for bonding the functional group with another compound to crosslink. .
  • the initial adhesive force and cohesive force of the curable resin layer can be adjusted.
  • crosslinking agent (F) examples include organic polyvalent isocyanate compounds, organic polyvalent imine compounds, metal chelate crosslinking agents (crosslinking agents having a metal chelate structure), aziridine crosslinking agents (crosslinking agents having an aziridinyl group), and the like. Is mentioned.
  • organic polyvalent isocyanate compound examples include an aromatic polyvalent isocyanate compound, an aliphatic polyvalent isocyanate compound, and an alicyclic polyvalent isocyanate compound (hereinafter, these compounds are collectively referred to as “aromatic polyvalent isocyanate compound and the like”).
  • a trimer such as the aromatic polyisocyanate compound, isocyanurate and adduct; a terminal isocyanate urethane prepolymer obtained by reacting the aromatic polyvalent isocyanate compound and the polyol compound. Etc.
  • the “adduct body” includes the aromatic polyvalent isocyanate compound, the aliphatic polyvalent isocyanate compound, or the alicyclic polyvalent isocyanate compound, and a low amount of ethylene glycol, propylene glycol, neopentyl glycol, trimethylolpropane, castor oil, or the like. It means a reaction product with a molecularly active hydrogen-containing compound, and examples thereof include an xylylene diisocyanate adduct of trimethylolpropane as described later.
  • the “terminal isocyanate urethane prepolymer” is as described above.
  • organic polyvalent isocyanate compound for example, 2,4-tolylene diisocyanate; 2,6-tolylene diisocyanate; 1,3-xylylene diisocyanate; 1,4-xylene diisocyanate; diphenylmethane-4 Dimethylmethane-2,4'-diisocyanate; 3-methyldiphenylmethane diisocyanate; hexamethylene diisocyanate; isophorone diisocyanate; dicyclohexylmethane-4,4'-diisocyanate; dicyclohexylmethane-2,4'-diisocyanate; trimethylol Any one of tolylene diisocyanate, hexamethylene diisocyanate and xylylene diisocyanate is added to all or some hydroxyl groups of a polyol such as propane. Or two or more compounds are added; lysine diisocyanate.
  • a polyol such as propane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, and tetramethylolmethane.
  • -Tri- ⁇ -aziridinylpropionate, N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine and the like.
  • the crosslinking agent (F) When an organic polyvalent isocyanate compound is used as the crosslinking agent (F), it is preferable to use a hydroxyl group-containing polymer as the polymer component (A).
  • the crosslinker (F) has an isocyanate group and the polymer component (A) has a hydroxyl group, the crosslinker (F) and the polymer component (A) react with each other to simplify the crosslink structure in the curable resin layer. Can be introduced.
  • the resin layer forming composition (IV-1) and the crosslinking agent (F) contained in the curable resin layer may be only one kind, two kinds or more, and in the case of two kinds or more, combinations thereof and The ratio can be arbitrarily selected.
  • the content of the crosslinking agent (F) in the resin layer forming composition (IV-1) is 100 parts by mass of the energy ray-curable component (a).
  • the amount is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the effect by using a crosslinking agent (F) is acquired more notably because the said content of a crosslinking agent (F) is more than the said lower limit.
  • the excessive use of a crosslinking agent (F) is suppressed because the said content of a crosslinking agent (F) is below the said upper limit.
  • the resin layer forming composition (IV-1) and the curable resin layer may contain a general-purpose additive (I) within a range not impairing the effects of the present invention.
  • the general-purpose additive (I) may be a known one, and can be arbitrarily selected according to the purpose.
  • the general-purpose additive (I) is not particularly limited, but preferred examples thereof include a plasticizer, an antistatic agent, an antioxidant, and a colorant (dye Pigments), gettering agents and the like.
  • the resin layer forming composition (IV-1) and the general-purpose additive (I) contained in the curable resin layer may be only one type, two or more types, and combinations of two or more types. The ratio can be arbitrarily selected.
  • the contents of the resin layer forming composition (IV-1) and the general-purpose additive (I) in the curable resin layer are not particularly limited, and may be appropriately selected depending on the purpose.
  • the resin layer forming composition (IV-1) preferably further contains a solvent.
  • the resin layer forming composition (IV-1) containing a solvent has good handleability.
  • the solvent is not particularly limited. Preferred examples include hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol), and 1-butanol. Esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides (compounds having an amide bond) such as dimethylformamide and N-methylpyrrolidone.
  • the solvent contained in the resin layer forming composition (IV-1) may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the resin layer forming composition (IV-1) is preferably methyl ethyl ketone or the like from the viewpoint that the components in the resin layer forming composition (IV-1) can be more uniformly mixed.
  • each of the thermosetting component, photopolymerization initiator, filler, coupling agent, crosslinking agent and general-purpose additive may be used alone. And when 2 or more types may be used together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the contents of the thermosetting component, photopolymerization initiator, filler, coupling agent, crosslinking agent and general-purpose additive in the resin layer forming composition (IV-1) may be appropriately adjusted according to the purpose. There is no particular limitation.
  • thermosetting resin layer can be formed using the composition for thermosetting resin layer formation containing the constituent material.
  • a thermosetting resin layer can be formed at a target site by applying a thermosetting resin layer forming composition to the surface on which the thermosetting resin layer is to be formed and drying it as necessary.
  • the ratio of the contents of components that do not vaporize at room temperature is usually the same as the ratio of the contents of the components of the thermosetting resin layer.
  • “normal temperature” is as described above.
  • thermosetting resin layer forming composition may be applied by a known method, for example, an air knife coater, blade coater, bar coater, gravure coater, roll coater, roll knife coater, curtain coater, die coater, Examples include a method using various coaters such as a knife coater, a screen coater, a Meyer bar coater, and a kiss coater.
  • thermosetting resin layer forming composition is preferably heat-dried. In this case, for example, at 70 to 130 ° C. for 1 to 5 minutes. It is preferable to dry under the conditions.
  • thermosetting resin layer forming composition (III-1) examples include a thermosetting resin layer forming composition (III-1) containing a polymer component (A) and a thermosetting component (B) (in the present specification, May be simply abbreviated as “resin layer forming composition (III-1)”).
  • the polymer component (A) is a polymer compound for imparting film-forming properties, flexibility and the like to the thermosetting resin layer.
  • the polymer component (A) contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Examples of the polymer component (A) include an acrylic resin (a resin having a (meth) acryloyl group), a polyester, a urethane resin (a resin having a urethane bond), an acrylic urethane resin, and a silicone resin (having a siloxane bond). Resin), rubber resin (resin having a rubber structure), phenoxy resin, thermosetting polyimide and the like, and acrylic resin is preferable.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 10,000 to 2,000,000, and more preferably 100,000 to 1500,000.
  • Mw weight average molecular weight
  • the shape stability of the thermosetting resin layer time stability during storage
  • the thermosetting resin layer easily follows the uneven surface of the adherend, and between the adherend and the thermosetting resin layer. Generation of voids and the like is further suppressed.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 60 to 70 ° C., and more preferably ⁇ 30 to 50 ° C.
  • Tg of the acrylic resin is equal to or greater than the lower limit, the adhesive force between the first protective film and the first support sheet (first pressure-sensitive adhesive layer) is suppressed, and the first support sheet (first pressure-sensitive adhesive layer) ) Is improved.
  • adhesive force with the to-be-adhered body of a thermosetting resin layer and a 1st protective film improves because Tg of acrylic resin is below the said upper limit.
  • the acrylic resin is selected from, for example, a polymer of one or more (meth) acrylic acid esters; (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide, and the like. Examples include copolymers of two or more monomers.
  • Examples of the (meth) acrylic acid ester constituting the acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, (meth ) N-butyl acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic Heptyl acid, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate , Undecyl (me
  • the acrylic resin is, for example, one or more monomers selected from (meth) acrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, N-methylolacrylamide and the like in addition to the (meth) acrylic ester. May be obtained by copolymerization.
  • Only one type of monomer constituting the acrylic resin may be used, or two or more types may be used, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the acrylic resin may have a functional group that can be bonded to other compounds such as a vinyl group, a (meth) acryloyl group, an amino group, a hydroxyl group, a carboxy group, and an isocyanate group.
  • the functional group of the acrylic resin may be bonded to another compound via a cross-linking agent (F) described later, or may be directly bonded to another compound not via the cross-linking agent (F). .
  • F cross-linking agent
  • thermoplastic resin other than an acrylic resin
  • thermoplastic resin is used alone without using an acrylic resin.
  • it may be used in combination with an acrylic resin.
  • thermoplastic resin the peelability of the first protective film from the first support sheet (first pressure-sensitive adhesive layer) is improved, and the thermosetting resin layer easily follows the uneven surface of the adherend. Therefore, the generation of voids or the like may be further suppressed between the adherend and the heatable resin layer.
  • the weight average molecular weight of the thermoplastic resin is preferably 1000 to 100,000, more preferably 3000 to 80,000.
  • the glass transition temperature (Tg) of the thermoplastic resin is preferably ⁇ 30 to 150 ° C., and more preferably ⁇ 20 to 120 ° C.
  • thermoplastic resin examples include polyester, polyurethane, phenoxy resin, polybutene, polybutadiene, and polystyrene.
  • thermoplastic resin contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one kind, two kinds or more, and when two or more kinds are combined, The ratio can be arbitrarily selected.
  • the ratio of the content of the polymer component (A) to the total content of all components other than the solvent (that is, the polymer component (A) of the thermosetting resin layer) Is preferably 5 to 85% by mass, more preferably 5 to 80% by mass, regardless of the type of the polymer component (A).
  • the polymer component (A) may also correspond to the thermosetting component (B).
  • the resin layer forming composition (III-1) contains components corresponding to both the polymer component (A) and the thermosetting component (B)
  • the resin layer forming composition (III-1) is considered to contain a polymer component (A) and a thermosetting component (B).
  • thermosetting component (B) The resin layer forming composition (III-1) and the thermosetting resin layer contain a thermosetting component (B). When the thermosetting resin layer contains the thermosetting component (B), the thermosetting component (B) cures the thermosetting resin layer by heating to form a hard first protective film.
  • the thermosetting component (B) contained in the resin layer forming composition (IV-1) and the thermosetting resin layer may be only one type, two or more types, or two or more types. These combinations and ratios can be arbitrarily selected.
  • thermosetting component (B) examples include epoxy thermosetting resins, thermosetting polyimides, polyurethanes, unsaturated polyesters, and silicone resins, and epoxy thermosetting resins are preferable.
  • the epoxy thermosetting resin includes an epoxy resin (B1) and a thermosetting agent (B2).
  • the epoxy-type thermosetting resin contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, or two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • Epoxy resin (B1) examples include known ones such as polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, Biphenyl type epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, phenylene skeleton type epoxy resins, and the like, and bifunctional or higher functional epoxy compounds are listed.
  • an epoxy resin having an unsaturated hydrocarbon group may be used as the epoxy resin (B1).
  • An epoxy resin having an unsaturated hydrocarbon group is more compatible with an acrylic resin than an epoxy resin having no unsaturated hydrocarbon group. Therefore, the reliability of the package obtained using the 1st sheet
  • Examples of the epoxy resin having an unsaturated hydrocarbon group include compounds obtained by converting a part of the epoxy group of a polyfunctional epoxy resin into a group having an unsaturated hydrocarbon group. Such a compound can be obtained, for example, by addition reaction of (meth) acrylic acid or a derivative thereof to an epoxy group. Moreover, as an epoxy resin which has an unsaturated hydrocarbon group, the compound etc. which the group which has an unsaturated hydrocarbon group directly couple
  • the unsaturated hydrocarbon group is a polymerizable unsaturated group, and specific examples thereof include ethenyl group (vinyl group), 2-propenyl group (allyl group), (meth) acryloyl group, (meth) An acrylamide group etc. are mentioned, An acryloyl group is preferable.
  • the number average molecular weight of the epoxy resin (B1) is not particularly limited, but is preferably 300 to 30000 in view of curability of the thermosetting resin layer and strength and heat resistance of the first protective film after curing. 400 to 10,000 is more preferable, and 500 to 3000 is particularly preferable.
  • the “number average molecular weight” means a number average molecular weight represented by a standard polystyrene equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • the epoxy equivalent of the epoxy resin (B1) is preferably 100 to 1000 g / eq, and more preferably 300 to 800 g / eq.
  • the “epoxy equivalent” means the number of grams (g / eq) of an epoxy compound containing 1 gram equivalent of an epoxy group, and can be measured according to the method of JIS K 7236: 2001.
  • the epoxy resin (B1) may be used alone or in combination of two or more, and when two or more are used in combination, their combination and ratio can be arbitrarily selected.
  • thermosetting agent (B2) functions as a curing agent for the epoxy resin (B1).
  • a thermosetting agent (B2) the compound which has 2 or more of functional groups which can react with an epoxy group in 1 molecule is mentioned, for example.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxy group, a group in which an acid group has been anhydrideized, and the like, and a phenolic hydroxyl group, an amino group, or an acid group has been anhydrideized. It is preferably a group, more preferably a phenolic hydroxyl group or an amino group.
  • thermosetting agents (B2) examples of the phenolic curing agent having a phenolic hydroxyl group include polyfunctional phenolic resins, biphenols, novolac-type phenolic resins, dicyclopentadiene-based phenolic resins, and aralkylphenolic resins.
  • examples of the amine-based curing agent having an amino group include dicyandiamide (hereinafter sometimes abbreviated as “DICY”).
  • the thermosetting agent (B2) may have an unsaturated hydrocarbon group.
  • examples of the thermosetting agent (B2) having an unsaturated hydrocarbon group include compounds in which a part of the hydroxyl group of the phenol resin is substituted with a group having an unsaturated hydrocarbon group, and the aromatic ring of the phenol resin. Examples thereof include compounds in which a group having a saturated hydrocarbon group is directly bonded.
  • the unsaturated hydrocarbon group in the thermosetting agent (B2) is the same as the unsaturated hydrocarbon group in the epoxy resin having the unsaturated hydrocarbon group described above.
  • thermosetting agent (B2) In the case where a phenolic curing agent is used as the thermosetting agent (B2), the thermosetting agent (B2) has a softening point or a glass transition temperature because the peelability of the first protective film from the first pressure-sensitive adhesive layer is improved. High is preferred.
  • thermosetting agent (B2) for example, the number average molecular weight of the resin component such as polyfunctional phenolic resin, novolac-type phenolic resin, dicyclopentadiene-based phenolic resin, aralkylphenolic resin is preferably 300 to 30000, It is more preferably 400 to 10,000, and particularly preferably 500 to 3000.
  • the molecular weight of non-resin components such as biphenol and dicyandiamide is not particularly limited, but is preferably 60 to 500, for example.
  • thermosetting agent (B2) may be used individually by 1 type, may use 2 or more types together, and when using 2 or more types together, those combinations and ratios can be selected arbitrarily.
  • the content of the thermosetting agent (B2) is 0.1 to 500 with respect to 100 parts by mass of the epoxy resin (B1).
  • the amount is preferably part by mass, and more preferably 1 to 200 parts by mass.
  • the content of the thermosetting agent (B2) is equal to or more than the lower limit, curing of the thermosetting resin layer is more likely to proceed.
  • the moisture absorption rate of a thermosetting resin layer is reduced because the said content of a thermosetting agent (B2) is below the said upper limit, The package obtained using the sheet
  • the content of the thermothermosetting component (B) (for example, the total content of the epoxy resin (B1) and the thermosetting agent (B2)) Is preferably 50 to 1000 parts by weight, more preferably 100 to 900 parts by weight, and more preferably 150 to 800 parts by weight with respect to 100 parts by weight of the polymer component (A). Particularly preferred.
  • the content of the thermosetting component (B) is within such a range, the adhesive force between the first protective film and the first pressure-sensitive adhesive layer is suppressed, and the peelability of the first pressure-sensitive adhesive layer is improved. To do.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a curing accelerator (C).
  • the curing accelerator (C) is a component for adjusting the curing rate of the resin layer forming composition (III-1).
  • Preferred curing accelerators (C) include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole Imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole (one or more hydrogen atoms are other than hydrogen atoms)
  • the curing accelerator (C) contained in the resin layer forming composition (III-1) and the thermosetting resin layer may be only one type, two or more types, and when there are two or more types, Combinations and ratios can be arbitrarily selected.
  • the content of the curing accelerator (C) is the content of the thermosetting component (B).
  • the amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • the effect by using a hardening accelerator (C) is acquired more notably because the said content of a hardening accelerator (C) is more than the said lower limit.
  • the highly polar curing accelerator (C) is deposited in the thermosetting resin layer under high temperature and high humidity conditions. The effect of suppressing segregation by moving toward the adhesion interface with the body is enhanced, and the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a filler (D).
  • the thermosetting resin layer contains the filler (D)
  • the first protective film obtained by curing the thermosetting resin layer can easily adjust the thermal expansion coefficient.
  • the reliability of the package obtained using the first protective film forming sheet is further improved.
  • the moisture absorption rate of a 1st protective film can also be reduced because a thermosetting resin layer contains a filler (D).
  • the description of the filler (D) contained in the resin layer forming composition (IV-1) is the explanation of the filler (D) contained in the resin layer forming composition (III-1) and the thermosetting resin layer. It is the same.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a coupling agent (E).
  • a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound By using a coupling agent (E) having a functional group capable of reacting with an inorganic compound or an organic compound, the adhesion and adhesion of the thermosetting resin layer to the adherend can be improved. Further, by using the coupling agent (E), the first protective film obtained by curing the thermosetting resin layer has improved water resistance without impairing heat resistance.
  • Description of the resin layer forming composition (III-1) and the coupling agent (E) contained in the thermosetting resin layer are as follows: Coupling agent (E) contained in the resin layer forming composition (IV-1) It is the same as that of description.
  • Crosslinking agent (F) As the polymer component (A), those having functional groups such as vinyl group, (meth) acryloyl group, amino group, hydroxyl group, carboxy group, isocyanate group and the like that can be bonded to other compounds such as the above-mentioned acrylic resin.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a crosslinking agent (F) for bonding the functional group with another compound to crosslink.
  • the initial adhesive force and cohesive force of the thermosetting resin layer can be adjusted.
  • the description of the crosslinking agent (F) contained in the resin layer forming composition (IV-1) is the explanation of the crosslinking agent (F) contained in the resin layer forming composition (III-1) and the thermosetting resin layer. It is the same.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain an energy ray curable resin (G).
  • the thermosetting resin layer is a component for forming the first protective film by containing the energy ray curable resin (G) and curing the thermosetting resin layer by irradiation with energy rays. is there.
  • the energy beam curable resin (G) is obtained by polymerizing (curing) an energy beam curable compound.
  • the energy ray curable compound include compounds having at least one polymerizable double bond in the molecule, and acrylate compounds having a (meth) acryloyl group are preferable.
  • the acrylate compound examples include trimethylolpropane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol monohydroxypenta ( Chain aliphatic skeleton-containing (meth) acrylates such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate; polyethylene Polyalkylene glycol (meth) acrylate such as glycol di (meth) acrylate; oligoester (meth) acrylate; urethane (meth) acrylate oligomer; Modified (meth) acrylate; the polyalky
  • the weight average molecular weight of the energy ray curable compound is preferably 100 to 30000, and more preferably 300 to 10000.
  • the energy ray-curable compound used for the polymerization may be only one type, or two or more types, and in the case of two or more types, the combination and ratio thereof can be arbitrarily selected.
  • the energy ray curable resin (G) contained in the resin layer forming composition (III-1) may be only one type, two or more types, and in the case of two or more types, the combination and ratio thereof are as follows: Can be arbitrarily selected.
  • the content of the energy ray curable resin (G) is 1 to 95% by mass with respect to the total mass of the resin layer forming composition (III-1). It is preferably 5 to 90% by mass, more preferably 10 to 85% by mass.
  • Photopolymerization initiator (H) When the resin layer forming composition (III-1) and the thermosetting resin layer contain the energy beam curable resin (G), in order to efficiently advance the polymerization reaction of the energy beam curable resin (G), A photopolymerization initiator (H) may be contained.
  • the photopolymerization initiator (H) in the resin layer forming composition (III-1) and the thermosetting resin layer include the same photopolymerization initiator as in the first pressure-sensitive adhesive composition (I-1). It is done.
  • the resin layer forming composition (III-1) and the thermosetting resin layer may contain a general-purpose additive (I) as long as the effects of the present invention are not impaired.
  • Description of resin layer forming composition (III-1) and general-purpose additive (I) contained in thermosetting resin layer is as follows.
  • General-purpose additive (I) contained in resin layer-forming composition (IV-1) It is the same as that of description.
  • the resin layer forming composition (III-1) preferably further contains a solvent.
  • the resin layer forming composition (III-1) containing a solvent has good handleability.
  • the explanation of the solvent contained in the resin layer forming composition (III-1) is the same as the explanation of the solvent contained in the resin layer forming composition (IV-1).
  • the curable resin layer-forming composition such as the thermosetting resin layer-forming composition (III-1) and the energy ray-curable resin layer-forming composition (IV-1) has the components It is obtained by blending.
  • the order of addition at the time of blending each component is not particularly limited, and two or more components may be added simultaneously.
  • a solvent it may be used by mixing the solvent with any compounding component other than the solvent and diluting the compounding component in advance, or by diluting any compounding component other than the solvent in advance. You may use it by mixing a solvent with these compounding ingredients, without leaving.
  • the method of mixing each component at the time of compounding is not particularly limited, from a known method such as a method of mixing by rotating a stirrer or a stirring blade; a method of mixing using a mixer; a method of mixing by applying ultrasonic waves What is necessary is just to select suitably.
  • the temperature and time during the addition and mixing of each component are not particularly limited as long as each compounding component does not deteriorate, and may be adjusted as appropriate, but the temperature is preferably 15 to 30 ° C.
  • the first protective film forming sheet can be produced by sequentially laminating the above-described layers so as to have a corresponding positional relationship.
  • the method for forming each layer is as described above.
  • the first protective film forming sheet when the first protective film forming sheet is produced, when the first pressure-sensitive adhesive layer or the first intermediate layer is laminated on the first base material, the first pressure-sensitive adhesive described above is formed on the first base material.
  • middle layer can be laminated
  • the composition for forming the curable resin layer is formed on the first pressure-sensitive adhesive layer. It is possible to directly form the curable resin layer by coating.
  • the first pressure-sensitive adhesive composition is applied on the first intermediate layer.
  • the first pressure-sensitive adhesive layer can be directly formed. As described above, when a continuous two-layer laminated structure is formed using any of the compositions, the composition is further applied onto the layer formed from the composition to newly form a layer. Can be formed.
  • the layer laminated after these two layers is formed in advance using the composition on another release film, and the side of the formed layer that is in contact with the release film is It is preferable to form a continuous two-layer laminated structure by bonding the opposite exposed surface to the exposed surfaces of the remaining layers already formed.
  • the composition is preferably applied to the release-treated surface of the release film.
  • the release film may be removed as necessary after forming the laminated structure.
  • a first protective film-forming sheet (a first base material and a first pressure-sensitive adhesive layer) formed by laminating a first pressure-sensitive adhesive layer on a first base material and laminating a curable resin layer on the first pressure-sensitive adhesive layer.
  • the first pressure-sensitive adhesive composition is applied on the first base material, and dried as necessary, so that the first The first pressure-sensitive adhesive layer is laminated on the base material, and the curable resin layer-forming composition is separately coated on the release film and dried as necessary, whereby the curable resin is applied on the release film.
  • a layer is formed, and the exposed surface of the curable resin layer is bonded to the exposed surface of the first pressure-sensitive adhesive layer laminated on the first base material so that the curable resin layer is placed on the first pressure-sensitive adhesive layer.
  • a first protective film forming sheet is obtained.
  • the first substrate The first intermediate layer-forming composition is applied on the top and dried as necessary, or by irradiating energy rays, so that the first intermediate layer is laminated on the first base material
  • a first pressure-sensitive adhesive layer is formed on the release film, and the exposed surface of the first pressure-sensitive adhesive layer is A first support sheet is obtained by laminating the first pressure-sensitive adhesive layer on the first intermediate layer by laminating the exposed surface of the first intermediate layer already laminated on the first base material.
  • a curable resin layer forming composition is further formed on the release film by separately applying a curable resin layer-forming composition on the release film and drying as necessary.
  • the first protective layer is formed by laminating the exposed surface of the curable resin layer with the exposed surface of the first adhesive layer laminated on the first intermediate layer and laminating the curable resin layer on the first adhesive layer. A film forming sheet is obtained.
  • the first pressure-sensitive adhesive composition or the first intermediate layer-forming composition is applied on the release film, and is dried or irradiated with energy rays as necessary.
  • the first pressure-sensitive adhesive layer or the first intermediate layer is formed on the release film, and the exposed surface of these layers is bonded to one surface of the first base material, whereby the first pressure-sensitive adhesive layer or the first intermediate layer is bonded.
  • An intermediate layer may be laminated on the first substrate.
  • the release film may be removed at an arbitrary timing after the target laminated structure is formed.
  • seat for 1st protective film formation is normally stored in the state by which the peeling film was bonded together on the surface of the outermost layer (for example, curable resin layer) on the opposite side to the 1st base material. Therefore, a composition for forming a layer constituting the outermost layer, such as a composition for forming a curable resin layer, is applied on the release film (preferably the release-treated surface), and dried as necessary. By forming the layer constituting the outermost layer on the release film, each of the remaining layers is placed on the exposed surface of the layer opposite to the side in contact with the release film.
  • the first protective film-forming sheet can also be obtained by laminating and keeping the bonded state without removing the release film.
  • Polymer component (A) -1 butyl acrylate (hereinafter abbreviated as “BA”) (10 parts by mass), methyl acrylate (hereinafter abbreviated as “MA”) (70 parts by mass)
  • Glycidyl methacrylate (hereinafter abbreviated as “GMA”) (5 parts by mass)
  • 2-hydroxyethyl acrylate 15 parts by mass
  • An acrylic resin having a molecular weight of 400,000 and a glass transition temperature of -1 ° C.
  • Polymer component (A) -2 80 parts by mass of 2-ethylhexyl acrylate (hereinafter sometimes abbreviated as “2EHA”) and 2-hydroxylethyl acrylate (hereinafter abbreviated as “HEA”) 2methacryloyloxyethyl isocyanate (2-isocyanatoethyl methacrylate, hereinafter sometimes abbreviated as “MOI”) 21.4 is further added to the pre-copolymer obtained by copolymerizing 20 parts by mass.
  • 2EHA 2-ethylhexyl acrylate
  • HOA 2-hydroxylethyl acrylate
  • MOI 2-isocyanatoethyl methacrylate
  • a mass part (a quantity in which the total number of moles of isocyanate groups in 2-methacryloyloxyethyl isocyanate is 0.8 times the total number of moles of hydroxyl groups in HEA) is reacted to give a weight average molecular weight of 1,000,000
  • Polymer component (A) -3 A pre-copolymer obtained by copolymerizing 80 parts by mass of butyl acrylate (BA) and 20 parts by mass of 2-hydroxylethyl acrylate (HEA) was further added to 2- Methacryloyloxyethyl isocyanate (MOI) is reacted so that the total number of isocyanate groups in MOI is 0.8 times the total number of hydroxyl groups in HEA, and the weight average molecular weight is 800,000, glass An ultraviolet curable acrylic copolymer having a transition temperature of ⁇ 48 ° C. was obtained.
  • BA butyl acrylate
  • HEA 2-hydroxylethyl acrylate
  • MOI 2- Methacryloyloxyethyl isocyanate
  • G Spherical silica modified with an epoxy group (500 nm) (“Advertex Corporation SC2050-MA”) Energy ray curable compound
  • Energy ray curable compound (I) -1 Tricyclodecane dimethylol diacrylate (“KAYARAD R-684”, bifunctional ultraviolet curable compound, molecular weight 304, manufactured by Nippon Kayaku Co., Ltd.)
  • Energy ray curable compound (I) -2 ⁇ -caprolactone modified tris- (2-acryloxyethyl) isocyanurate (A-9300CI-1 manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • Photopolymerization initiator (J) -1 1-hydroxycyclohexyl phenyl ketone (“IRGACURE 184” manufactured by BASF)
  • Example 1 ⁇ Manufacture of sheet for forming first protective film> (Manufacture of composition for forming energy ray curable resin layer)
  • Polymer component (A) -1 (100 parts by mass), filler (G) -1 (290 parts by mass), energy beam curable compound (I) -1 (53 parts by mass), energy beam curable compound (I ) -2 (53 parts by mass) and a photopolymerization initiator (J) -1 (3 parts by mass) are dissolved in methyl ethyl ketone and stirred at 23 ° C. to obtain a composition for forming a UV curable resin layer.
  • a resin layer forming composition (IV-1) (methyl ethyl ketone solution) having a solid content concentration of 50% by mass was obtained.
  • Trimethylolpropane tolylene diisocyanate trimer adduct (hereinafter abbreviated as “TDI-TMP”) with respect to the polymer component (A) -2 “2EHA (MOI)” (100 parts by mass) obtained above.
  • “Coronate L” (manufactured by Tosoh Corporation) (0.5 parts by mass) is added, and the solid content concentration is adjusted to 30% with ethyl acetate as a solvent, and the first adhesive is obtained by stirring at 23 ° C.
  • Agent composition (I-1) was obtained.
  • the first pressure-sensitive adhesive composition obtained above is applied to the release-treated surface of a release film (“SP-PET 381031” manufactured by Lintec Co., Ltd., thickness 38 ⁇ m) obtained by releasing one side of a polyethylene terephthalate film by silicone treatment.
  • the first pressure-sensitive adhesive layer having a thickness of 30 ⁇ m was formed by heating and drying at 110 ° C. for 1 minute. Two such pressure-sensitive adhesive sheets in which a first pressure-sensitive adhesive layer having a thickness of 30 ⁇ m was laminated on a release film were prepared.
  • a polyolefin film (thickness 25 ⁇ m), an adhesive layer (thickness 2.5 ⁇ m), a polyethylene terephthalate film (thickness) 50 ⁇ m), an adhesive layer (thickness 2.5 ⁇ m), and a polyolefin film (thickness 25 ⁇ m) are laminated in this order.
  • a laminate in which the layers and the laminated film were laminated in this order was obtained.
  • the release film is removed from the laminate, and the first pressure-sensitive adhesive layer of the other pressure-sensitive adhesive sheet obtained above is bonded to the exposed first pressure-sensitive adhesive layer, whereby the first adhesive having a thickness of 105 ⁇ m.
  • the release film is removed from the first pressure-sensitive adhesive layer of the first support sheet obtained above, and the exposed surface of the one energy ray-curable resin film obtained above is exposed on the exposed surface of the first pressure-sensitive adhesive layer.
  • the first substrate is obtained by removing the release film from the laminated film and bonding the other energy ray-curable resin film obtained above to the exposed energy ray-curable resin layer.
  • the first pressure-sensitive adhesive layer thickness 60 ⁇ m
  • the energy ray curable resin film that is, the energy ray curable resin layer, thickness 80 ⁇ m
  • the release film are laminated in this order in the thickness direction.
  • a protective film-forming sheet was obtained.
  • Stage temperature 70 ° C
  • Stage height -250 ⁇ m Roller temperature ⁇ ⁇ ⁇ Normal temperature Roller pressure ⁇ ⁇ ⁇ 0.5MPa Roller speed: 2mm / sec
  • UV irradiation is performed at RAD-2000 m / 8 under an illuminance of 230 mW / cm 2 and a light quantity of 760 mJ / cm 2. did.
  • the first support sheet was peeled off from the bump chip.
  • the bump chip with the first protective film was set on the sample stage for the SEM measurement sample so that the first protective film application surface was facing upward.
  • the energy ray curable resin layer side was fixed to the SUS304 support plate with double-sided tape (TL-701 Lintec Co., Ltd.)
  • the pressure-sensitive adhesive layer side was sandwiched between chucks of a measuring apparatus and the delamination force (1) was measured under the following conditions, it was 5.4 N / 25 mm.
  • a PET first base adhesive tape (PL thin (50 ⁇ m thick)) is used. Lintec Co., Ltd.)) was applied to the entire surface from the back of the first substrate of the support sheet.
  • UV irradiation device RAD-2000m / 8 manufactured by Lintec Sample size: 250mm x 25mm Equipment: Universal tensile testing machine (Autograph AG-IS, manufactured by Shimadzu Corporation) Measurement method: JIS Z 0237; conforming to 2009 Peel speed: 300 mm / min, peeling angle: 180 °
  • the delamination force (3) between the circuit surface represented by the PI film and the curable resin layer is so large that it cannot be measured. Accordingly, the delamination force (3) between the circuit surface and the curable resin layer is generally the delamination force (1) between the curable resin layer and the first pressure-sensitive adhesive layer, or the bump and the hardening made of lead-free solder. It can be understood that it is larger than the delamination force (2) with the conductive resin layer.
  • UV curable resin layer forming composition a sample of an energy ray curable resin film having a grip length of 30 mm, a width of 15 mm, and a thickness of 0.2 mm was prepared, and the illuminance was 230 mW / cm 2 and the light amount was 380 mJ / cm. 2 was cured by UV irradiation from both sides (that is, the total light from both sides was 760 mJ / cm 2 ).
  • Example 2 ⁇ Manufacture of sheet for forming first protective film> (Production of first pressure-sensitive adhesive composition) TDI-TMP (manufactured by Tosoh Corporation) (0.5 parts by mass) is added to the polymer component (A) -3 (100 parts by mass) obtained above, and the solid content concentration is increased with ethyl acetate as a solvent.
  • the first pressure-sensitive adhesive composition (I-1) was obtained by adjusting to 30% and stirring at 23 ° C.
  • Example 2 Manufacture of sheet for forming first protective film
  • the protective film of Example 2 was the same as Example 1 except that the first pressure-sensitive adhesive composition used in Example 1 was changed to the first pressure-sensitive adhesive composition (I-1) of Example 2 above. A forming sheet was obtained.
  • Example 3 ⁇ Manufacture of sheet for forming first protective film> (Production of first pressure-sensitive adhesive composition) TDI-TMP (5 parts by mass) is added to the polymer component (A) -2 (100 parts by mass) obtained above, and the solid content concentration is adjusted to 30% with ethyl acetate as a solvent. The mixture was stirred at 23 ° C. to obtain the first pressure-sensitive adhesive composition (I-1).
  • Example 3 Manufacture of sheet for forming first protective film
  • the protective film of Example 3 was the same as Example 1 except that the first pressure-sensitive adhesive composition used in Example 1 was changed to the first pressure-sensitive adhesive composition (I-1) of Example 3 above. A forming sheet was obtained.
  • Example 4 ⁇ Manufacture of sheet for forming first protective film> (Production of first pressure-sensitive adhesive composition) TDI-TMP (4 parts by mass) is added to the polymer component (A) -2 (100 parts by mass) obtained above, and the solid content concentration is adjusted to 30% with ethyl acetate as a solvent. The mixture was stirred at 23 ° C. to obtain the first pressure-sensitive adhesive composition (I-1).
  • Example 4 Manufacture of sheet for forming first protective film
  • the protective film of Example 4 was the same as Example 1 except that the first pressure-sensitive adhesive composition used in Example 1 was changed to the first pressure-sensitive adhesive composition (I-1) of Example 4 above. A forming sheet was obtained.
  • TDI-TMP (10 parts by mass) is added to the polymer component (A) -2 (100 parts by mass) obtained above, and the solid content concentration is adjusted to 30% with ethyl acetate as a solvent. The mixture was stirred at 23 ° C. to obtain the first pressure-sensitive adhesive composition (I-1).
  • Example 4 Manufacture of sheet for forming first protective film
  • the protective film of Example 4 was the same as Example 1 except that the first pressure-sensitive adhesive composition used in Example 1 was changed to the first pressure-sensitive adhesive composition (I-1) of Example 4 above. A forming sheet was obtained.
  • Example 1 ⁇ Evaluation of bump top exposure characteristics> As in Example 1, when the exposure characteristics of the bump tops were evaluated, the first protective film remained on the circuit surface and the first protective film remained on the bump tops of the solder balls. ⁇ Evaluation of delamination force> -Delamination force between curable resin layer and first adhesive layer (1) When the delamination force (1) was measured in the same manner as in Example 1, it was 1.5 N / 25 mm.
  • TDI-TMP (20 parts by mass) is added to the polymer component (A) -2 (100 parts by mass) obtained above, and the solid content concentration is adjusted to 30% with ethyl acetate as a solvent. The mixture was stirred at 23 ° C. to obtain the first pressure-sensitive adhesive composition (I-1).
  • Example 4 Manufacture of sheet for forming first protective film
  • the protective film of Example 4 was the same as Example 1 except that the first pressure-sensitive adhesive composition used in Example 1 was changed to the first pressure-sensitive adhesive composition (I-1) of Example 4 above. A forming sheet was obtained.
  • Example 1 ⁇ Evaluation of bump top exposure characteristics> As in Example 1, when the exposure characteristics of the bump tops were evaluated, the first protective film remained on the circuit surface and the first protective film remained on the bump tops of the solder balls. ⁇ Evaluation of delamination force> -Delamination force between curable resin layer and first adhesive layer (1) When the delamination force (1) was measured in the same manner as in Example 1, it was 1.0 N / 25 mm.

Abstract

L'invention concerne une feuille de formation de premier film de protection, obtenue en appliquant une première couche adhésive sur un premier substrat et en appliquant une couche de résine durcissable sur la première couche adhésive. La couche de résine durcissable sert à former un premier film de protection sur la surface équipée de bosses d'une tranche de semi-conducteur en adhérant à ladite surface et en étant durcie. La force (1) de décollement inter-couches entre la première couche adhésive et la couche de résine durcissable, après que la couche de résine durcissable a été stratifiée sur la première couche adhésive et durcie, est supérieure à la force (2) de décollement inter-couches entre la couche de résine durcissable et une surface de soudure sans plomb SAC305 polie au fini miroir après que la couche de résine durcissable a été stratifiée sur la surface de soudure sans plomb SAC305 polie au fini miroir et durcie. La force (1) de décollement inter-couches est de 2,0 à 100N/25mm.
PCT/JP2016/082543 2015-11-04 2016-11-02 Feuille de formation de premier film de protection WO2017078052A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187013196A KR102545393B1 (ko) 2015-11-04 2016-11-02 제1 보호막 형성용 시트
CN201680061240.XA CN108140585B (zh) 2015-11-04 2016-11-02 第1保护膜形成用片
SG11201803250TA SG11201803250TA (en) 2015-11-04 2016-11-02 First protective film forming sheet
JP2017536057A JP6230761B2 (ja) 2015-11-04 2016-11-02 第1保護膜形成用シート
PH12018500851A PH12018500851A1 (en) 2015-11-04 2018-04-20 First protective film forming sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-217110 2015-11-04
JP2015217110 2015-11-04

Publications (1)

Publication Number Publication Date
WO2017078052A1 true WO2017078052A1 (fr) 2017-05-11

Family

ID=58661960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082543 WO2017078052A1 (fr) 2015-11-04 2016-11-02 Feuille de formation de premier film de protection

Country Status (7)

Country Link
JP (1) JP6230761B2 (fr)
KR (1) KR102545393B1 (fr)
CN (1) CN108140585B (fr)
PH (1) PH12018500851A1 (fr)
SG (1) SG11201803250TA (fr)
TW (1) TWI704996B (fr)
WO (1) WO2017078052A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057251B1 (ko) * 2017-07-13 2019-12-18 두성산업 주식회사 반도체 고정용 자성 테이프
CN111344850A (zh) * 2017-11-17 2020-06-26 琳得科株式会社 带第一保护膜的半导体芯片及其制造方法、及半导体芯片-第一保护膜层叠体的评价方法
JPWO2019082969A1 (ja) * 2017-10-27 2020-11-19 リンテック株式会社 保護膜形成用複合シート、及び半導体チップの製造方法
CN112789334A (zh) * 2018-10-02 2021-05-11 琳得科株式会社 层叠体及固化密封体的制造方法
WO2023136053A1 (fr) * 2022-01-12 2023-07-20 リンテック株式会社 Feuille pour former une première membrane de protection, procédé de fabrication de dispositif à semi-conducteur et utilisation de feuille

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7266953B2 (ja) * 2019-08-07 2023-05-01 株式会社ディスコ 保護部材形成方法及び保護部材形成装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169482A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 保護層形成用フィルム
JP2012169484A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170839B2 (ja) 2003-07-11 2008-10-22 日東電工株式会社 積層シート
JP4443962B2 (ja) * 2004-03-17 2010-03-31 日東電工株式会社 ダイシング・ダイボンドフィルム
JP4776188B2 (ja) * 2004-08-03 2011-09-21 古河電気工業株式会社 半導体装置製造方法およびウエハ加工用テープ
JP2012074623A (ja) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd 半導体加工用接着フィルム及び半導体チップ実装体の製造方法
WO2013099869A1 (fr) * 2011-12-26 2013-07-04 リンテック株式会社 Feuille de découpage en dés avec couche de formation de film protecteur et procédé de production d'une pastille
JP5242830B1 (ja) * 2012-07-06 2013-07-24 古河電気工業株式会社 半導体ウェハ表面保護用粘着テープおよび半導体ウェハの製造方法
CN104837942B (zh) * 2012-12-14 2017-04-26 琳得科株式会社 保护膜形成用膜
EP2980835B1 (fr) * 2013-03-27 2020-12-02 LINTEC Corporation Feuille composite pour former un film de protection
JP5779260B2 (ja) * 2014-01-29 2015-09-16 リンテック株式会社 チップ用保護膜形成用シートおよび保護膜付半導体チップの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169482A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 保護層形成用フィルム
JP2012169484A (ja) * 2011-02-15 2012-09-06 Nitto Denko Corp 半導体装置の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057251B1 (ko) * 2017-07-13 2019-12-18 두성산업 주식회사 반도체 고정용 자성 테이프
JPWO2019082969A1 (ja) * 2017-10-27 2020-11-19 リンテック株式会社 保護膜形成用複合シート、及び半導体チップの製造方法
JP7159186B2 (ja) 2017-10-27 2022-10-24 リンテック株式会社 保護膜形成用複合シート、及び半導体チップの製造方法
CN111344850A (zh) * 2017-11-17 2020-06-26 琳得科株式会社 带第一保护膜的半导体芯片及其制造方法、及半导体芯片-第一保护膜层叠体的评价方法
CN112789334A (zh) * 2018-10-02 2021-05-11 琳得科株式会社 层叠体及固化密封体的制造方法
CN112789334B (zh) * 2018-10-02 2023-04-07 琳得科株式会社 层叠体及固化密封体的制造方法
WO2023136053A1 (fr) * 2022-01-12 2023-07-20 リンテック株式会社 Feuille pour former une première membrane de protection, procédé de fabrication de dispositif à semi-conducteur et utilisation de feuille
JP7323734B1 (ja) 2022-01-12 2023-08-08 リンテック株式会社 第1保護膜形成用シート、半導体装置の製造方法、及びシートの使用

Also Published As

Publication number Publication date
KR20180079340A (ko) 2018-07-10
JPWO2017078052A1 (ja) 2017-12-07
PH12018500851B1 (en) 2018-11-05
TW201738089A (zh) 2017-11-01
PH12018500851A1 (en) 2018-11-05
TWI704996B (zh) 2020-09-21
CN108140585B (zh) 2021-06-08
CN108140585A (zh) 2018-06-08
JP6230761B2 (ja) 2017-11-15
SG11201803250TA (en) 2018-05-30
KR102545393B1 (ko) 2023-06-19

Similar Documents

Publication Publication Date Title
JP6230761B2 (ja) 第1保護膜形成用シート
JP6225389B2 (ja) 第1保護膜形成用シート、第1保護膜形成方法及び半導体チップの製造方法
JP6213757B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP2017092122A (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6209803B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6273542B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6304852B2 (ja) 熱硬化性樹脂フィルムと第2保護膜形成フィルムのキット、熱硬化性樹脂フィルム、第1保護膜形成用シート及び半導体ウエハ用第1保護膜の形成方法
JP6381828B2 (ja) 熱硬化性樹脂フィルム、第1保護膜形成用シート及び第1保護膜の形成方法
JP6229222B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート
JP6821580B2 (ja) 熱硬化性樹脂フィルム及び第1保護膜形成用シート
CN108352365B (zh) 保护膜形成用片
JP6206828B1 (ja) 硬化性樹脂フィルム、第1保護膜形成用シート及びバンプ形成面保護方法
JP6907122B2 (ja) 硬化性樹脂フィルム及び第1保護膜形成用シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536057

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201803250T

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 12018500851

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013196

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16862112

Country of ref document: EP

Kind code of ref document: A1