WO2017078016A1 - 羽ばたき装置 - Google Patents

羽ばたき装置 Download PDF

Info

Publication number
WO2017078016A1
WO2017078016A1 PCT/JP2016/082448 JP2016082448W WO2017078016A1 WO 2017078016 A1 WO2017078016 A1 WO 2017078016A1 JP 2016082448 W JP2016082448 W JP 2016082448W WO 2017078016 A1 WO2017078016 A1 WO 2017078016A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
slider
rotating body
power
transmission mechanism
Prior art date
Application number
PCT/JP2016/082448
Other languages
English (en)
French (fr)
Inventor
中村 和敬
加藤 正紀
濱本 将樹
三宅 知之
Original Assignee
株式会社村田製作所
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所, シャープ株式会社 filed Critical 株式会社村田製作所
Priority to JP2017548773A priority Critical patent/JP6458162B2/ja
Publication of WO2017078016A1 publication Critical patent/WO2017078016A1/ja
Priority to US15/964,752 priority patent/US11136117B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/26Transmitting means without power amplification or where power amplification is irrelevant
    • B64C13/28Transmitting means without power amplification or where power amplification is irrelevant mechanical
    • B64C13/34Transmitting means without power amplification or where power amplification is irrelevant mechanical using toothed gearing

Definitions

  • the present invention relates to a flapping apparatus that obtains levitation force by driving and swinging a wing body by a power source assembled to the housing.
  • a wing is provided on each of the port side and the starboard side of the skeleton, and the wing is driven by a power source assembled to the skeleton. At this time, the wing swings so that the distal end located on the side opposite to the proximal end moves in the front-rear direction with the proximal end located on the housing side as the rotation center.
  • a rocker arm is assembled at the base end of a mast to which a wing is attached, and a rotary motion output from a rotary motor as a drive source.
  • the rocker arm is periodically pushed and pulled by being converted into a reciprocating linear motion by the crank, and the flutter is configured to swing in the front-rear direction when the mast is driven by the rocker arm.
  • an inertial force is generated as the wing swings, and periodic vibrations are generated in the casing.
  • the generated vibration not only causes the flight posture of the flapping apparatus to become unstable, but also causes the fluctuation of the load applied to the power source to increase because the smooth swinging of the wings is hindered. . Therefore, if no countermeasure is taken for this point, the movement efficiency of the flapping device will be significantly reduced.
  • the wing body receives air resistance when the wing swings.
  • the magnitude of this air resistance is proportional to the product of the drag coefficient determined by the angle of attack and the square of the wing speed. Therefore, the variation in air resistance is transmitted to the drive source as a variation in load via a power transmission mechanism that connects the wing body and the power source. Therefore, if no countermeasure is taken for this point, a large load fluctuation is applied to the drive source, and the motion efficiency of the flapping apparatus is significantly reduced.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a flapping apparatus in which exercise efficiency is improved.
  • a flapping apparatus includes a casing, a power source assembled to the casing, a wing, and a power transmission mechanism that transmits power generated by the power source to the wing. It is equipped with.
  • the wing is driven by the power transmission mechanism.
  • the power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power from the power source, and is rotatably supported by the housing, And a rotating body that reciprocates in the rotation direction around a rotation axis that extends in a second direction orthogonal to the first direction upon receiving power transmission.
  • the tip of the rotating body reciprocates in the rotational direction so that the tip of the wing body swings substantially along the first direction.
  • the reciprocating linear motion of the slider and the swinging of the wing along the first direction are opposite to each other.
  • the power transmission mechanism may further include an elastic belt partially fixed to the slider.
  • the non-fixed portion of the elastic belt with respect to the slider is wound around the rotary body, the rotary body reciprocates in the rotational direction as the slider reciprocates linearly.
  • the rotating body is made of a gear and the elastic belt is made of a toothed belt that meshes with the gear.
  • the slider and the rotating body may be in contact, and in that case, the slider reciprocates linearly.
  • the rotating body reciprocates in the rotational direction.
  • the rotating body is made of a gear and the slider is made of a toothed slider meshing with the gear.
  • a flapping apparatus includes a housing, a power source assembled to the housing, a first body and a second body, and power generated by the power source. And a power transmission mechanism for transmitting to the wing and the second wing. The first wing and the second wing are driven by the power transmission mechanism.
  • the power transmission mechanism is movably supported by the housing, and is reciprocally linearly moved in a first direction by receiving power transmitted from the power source, and is rotatably supported by the housing, A first rotating body and a second rotating body that reciprocate in the rotation direction around a rotation axis extending in a second direction orthogonal to the first direction upon receiving power transmission are included.
  • the first rotating body and the second rotating body are arranged side by side along a third direction orthogonal to both the first direction and the second direction.
  • the base end of the first wing body is fixed to the first rotating body so that the tip of the first wing body is located on the side opposite to the side on which the second rotating body is positioned when viewed from the first rotating body.
  • the base end of the second wing body is fixed to the second rotating body so that the tip of the second wing body is located on the side opposite to the side on which the first rotating body is positioned when viewed from the second rotating body.
  • the first wing and the second wing are reciprocated in the rotation direction of the first rotator and the second rotator, so that the tips of the first wing and the second wing are moved substantially along the first direction.
  • the slider moves along the first direction, and the first and second wings swing along the first direction. Movement is the opposite direction.
  • FIG. 1 is a schematic perspective view of a main part of the flapping apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic perspective view of the main part in which a housing is not shown.
  • 3 is a schematic front view for explaining the configuration and operation of the rotational motion transmitting unit shown in FIG. 2
  • FIG. 4 is a schematic diagram for explaining the configuration and operation of the motion converting unit shown in FIG. It is a top view.
  • a flapping apparatus 1 ⁇ / b> A includes a casing 100, a rotary motor 2 as a power source assembled to the casing 100, a power transmission mechanism 3 that transmits power generated by the rotary motor 2, It mainly includes a first wing body 4A and a second wing body 4B as a pair of wings driven by the transmission mechanism 3, and a battery (not shown) for supplying electric power to the rotary electric motor 2 described above.
  • the power transmission mechanism 3 includes a rotary motion transmission unit 3A and a motion conversion unit 3B.
  • the X-axis, Y-axis, and Z-axis are respectively taken on the front, rear, left, and right of the flapping device 1A, and the directions toward the front side and the rear side of the flapping device 1A are set.
  • the X1 direction and the X2 direction are defined respectively, the directions toward the right side and the left side of the flapping device 1A are defined as the Y1 direction and the Y2 direction, respectively, and the flapping device 1A is directed toward the upper side and the lower side.
  • the directions are defined as the Z1 direction and the Z2 direction, respectively, and the following description will be made using these directions.
  • the casing 100 is a member constituting the main body of the flapping apparatus 1A, and is formed by assembling the rotary motor 2, the power transmission mechanism 3, and the battery described above.
  • the casing 100 is configured by, for example, a frame-shaped framework, and may be provided with a cover that covers the framework in addition to this.
  • the rotary electric motor 2 is disposed at the lower part of the flapping apparatus 1A and is assembled to the housing 100 as described above.
  • the rotary electric motor 2 includes an output shaft 2a that outputs a rotational motion, and the output shaft 2a is configured by a metal shaft.
  • the output shaft 2a extends along the Z-axis direction, and a gear 2b is fixed to the tip of the output shaft 2a.
  • the gear 2b rotates together with the output shaft 2a as the output shaft 2a rotates around the axis.
  • the rotary motor 2 is controlled by a user or a control device to which a control instruction is given by an automated algorithm, but the details of the control are not directly related to the contents of the present invention, so the description is simplified. Therefore, the details are omitted here, and in the present embodiment, the description will be given on the assumption that the rotary motor 2 is directly driven by receiving the electric power from the battery (not shown). Further, the presence / absence of the control device and the specific control method in the case where the control device is provided do not have any influence when the present invention is applied.
  • Rotational motion transmission unit 3A includes a first transmission member 31 and a second transmission member 32. Both the first transmission member 31 and the second transmission member 32 are rotatably supported by the housing 100.
  • the first transmission member 31 is fixed to the first connection rod 31a extending along the Z-axis direction, the gear 31b fixed to one end of the first connection rod 31a, and the other end of the first connection rod 31a. And a gear 31c. Both the gear 31b and the gear 31c rotate around the axis of the first connecting rod 31a together with the first connecting rod 31a.
  • the second transmission member 32 is fixed to the second connection rod 32a extending along the Z-axis direction, the gear 32b fixed to one end of the second connection rod 32a, and the other end of the second connection rod 32a.
  • a disk 32c Both the gear 32b and the disk 32c rotate around the axis of the second connection rod 32a together with the second connection rod 32a.
  • the gear 31b fixed to one end of the first connecting rod 31a meshes with the gear 2b fixed to the tip of the output shaft 2a. Further, the gear 32b fixed to one end of the second connection rod 32a meshes with the gear 31c fixed to the other end of the first connection rod 31a.
  • the rotational motion generated in the output shaft 2a of the rotary electric motor 2 is transmitted to the first transmission member 31 and the second transmission member 32 as the rotational motion, and as a result, the output of the rotational motion transmission unit 3A.
  • the disk 32c as a part rotates around the axis of the second connecting rod 32a.
  • the first transmission member 31 and the second transmission member 32 function as a speed reducer by adjusting the number of teeth of the gears 31b, 31c, and 32b.
  • first connection rod 31a of the first transmission member 31 and the second connection rod 32a of the second transmission member 32 are both constituted by carbon fiber rods.
  • load fluctuation suppression portions A1 and A2 are configured by each of the first connecting rod 31a and the second connecting rod 32a, and details thereof will be described later. .
  • the meshing portion of the gear 2b of the rotary motor 2 and the gear 31b of the first transmission member 31 and the meshing portion of the gear 31c of the first transmission member 31 and the gear 32b of the second transmission member 32 are respectively predetermined. Has a large backlash. Thereby, load fluctuation suppression units B1 and B2 (see FIG. 3), which will be described later, are configured by each of these meshing portions, and details thereof will be described later.
  • the motion conversion unit 3 ⁇ / b> B is disposed above the rotary motor 2 and the rotary motion transmission unit 3 ⁇ / b> A, and includes a crank including a crank arm 33 and crank pins 34 a and 34 b.
  • the slider 35, the elastic belt 36, the first rotating body 37, and the second rotating body 38 are mainly provided.
  • the slider 35 is configured by a rectangular frame-shaped member, and is located above the second transmission member 32 of the rotational motion transmission unit 3A.
  • the slider 35 is movably supported by a pair of slide guides 5 a and 5 b provided on the housing 100. More specifically, the pair of slide guides 5a and 5b are arranged side by side in the Y-axis direction so as to extend along the X-axis direction, and the slide guide 5a, A plurality of through holes through which 5b is inserted are provided. As a result, the slide guides 5a and 5b are inserted through the plurality of through holes, so that the slider 35 is configured to be movable along the X-axis direction that is the first direction.
  • a crank arm 33 is disposed below the slider 35 and above the second transmission member 32.
  • the crank arm 33 is disposed so that its extending direction is parallel to the XY plane, and one end of the crank arm 33 is rotatably assembled to the eccentric position of the disk 32c of the second transmission member 32 by the crank pin 34a.
  • the other end is rotatably assembled to a predetermined position of the slider 35 by a crank pin 34b.
  • the disk 32c as the output section of the rotational movement transmitting section 3A rotates about the rotation shaft 200, whereby the one end of the crank arm 33 assembled to the disk 32c ( That is, the end portion on the side where the crank pin 34a is located also rotates about the rotation shaft 200 as a rotation center. Accordingly, the slider 35 is periodically pushed and pulled by the crank arm 33, and reciprocates linearly along the X-axis direction that is the extending direction of the slide guides 5a and 5b.
  • the movement range of the gravity center position of the slider 35 during the reciprocating linear movement of the slider 35 is indicated by an arrow AR1.
  • a first rotating body 37 and a second rotating body 38 are disposed on the right and left sides of the slider 35, respectively. More specifically, the first rotating body 37 and the second rotating body 38 are arranged side by side in the Y-axis direction that is the third direction so as to sandwich the slider 35.
  • the first rotator 37 and the second rotator 38 are each formed of a substantially cylindrical member, and are arranged so that the peripheral surfaces thereof face the slider 35.
  • the first rotating body 37 is fixed to a guide shaft 6a provided in the housing 100 and extending in the Z-axis direction.
  • the guide shaft 6a is rotatably supported by the housing 100. Yes.
  • the first rotating body 37 is positioned so as to be rotatable about the rotating shaft 201 extending in the Z-axis direction that is the second direction. It will be.
  • the second rotating body 38 is fixed to a guide shaft 6b provided in the housing 100 and extending in the Z-axis direction, and the guide shaft 6b is rotatably supported by the housing 100.
  • the second rotating body 38 is positioned so as to be rotatable about the rotating shaft 202 extending in the Z-axis direction that is the second direction. It will be.
  • gear grooves are provided on the peripheral surfaces of the portions of the first rotating body 37 and the second rotating body 38 facing the slider 35 so as to circulate on the peripheral surfaces.
  • the gear grooves are provided with teeth 37a and 38a, respectively, whereby the first rotating body 37 and the second rotating body 38 also function as gears.
  • An elastic belt 36 is wound around the outer circumferential surface of the slider 35, the circumferential surface of the first rotating body 37, and the circumferential surface of the second rotating body 38.
  • the elastic belt 36 includes a toothed belt provided with teeth 36a at a predetermined position on one main surface thereof.
  • the elastic belt 36 may be made of any material as long as it exhibits elasticity, but is preferably made of resin or rubber.
  • the elastic belt 36 needs to be designed based on the viewpoint of suppressing the fluctuation of the load described later.
  • a portion of the elastic belt 36 wound around the outer circumferential surface of the slider 35 is fixed to the slider 35 in a portion of the outer circumferential surface of the slider 35 except for the right side surface 35a and the left side surface 35b described above. Further, in the portion of the elastic belt 36 that is wound around the outer peripheral surface of the slider 35, the above-described teeth 36a face outward.
  • the portion wound around the outer peripheral surface of the slider 35 and the portion wound around the outer peripheral surface of the first rotating body 37 form the slider 35 and the first rotation so as to draw a figure eight. It is wound around the body 37.
  • the above-described teeth 36 a face inward, and the gear provided on the circumferential surface of the first rotating body 37. It meshes with the teeth 37a of the groove.
  • the portion wound around the outer peripheral surface of the slider 35 and the portion wound around the outer peripheral surface of the second rotating body 38 form the slider 35 and the second rotation so as to draw a figure eight. It is wound around the body 38.
  • the above-described teeth 36 a face inward, and the gear provided on the circumferential surface of the second rotating body 38. It meshes with the tooth 38a of the groove.
  • the non-fixed portion of the elastic belt 36 is wound around the first rotating body 37 on the right side surface 35a side of the slider 35, and the non-fixed portion of the elastic belt 36 is wound on the left side surface 35b side of the slider 35.
  • the fixed portion is wound around the second rotating body 38.
  • the elastic belt 36 of the portion wound around the first rotating body 37 and the second rotating body 38 with the reciprocating linear motion along the X-axis direction of the slider 35 described above causes the first rotating body 37 and the second rotating body 38 to be respectively. Accordingly, the first rotating body 37 and the second rotating body 38 reciprocate in the rotating direction around the rotating shafts 201 and 202 described above, respectively. It will be.
  • the rotating direction of the first rotating body 37 and the rotating direction of the second rotating body 38 are always opposite to each other.
  • the rotary motion transmitted through the rotary motion transmission unit 3A is converted into a reciprocating motion, and the first rotary body 37 and the second rotary body 38 as output units of the motion conversion unit 3B.
  • they will reciprocate synchronously in the direction of rotation.
  • the first wing body 4A and the second wing body 4B are assembled to the first rotator 37 and the second rotator 38, respectively. More specifically, a base end that is one end of the mast 4a of the first wing body 4A is fixed to a predetermined position on the circumferential surface opposite to the side on which the slider 35 of the first rotating body 37 is located, A base end, which is one end of the mast 4b of the second wing body 4B, is fixed at a predetermined position on the peripheral surface opposite to the side where the slider 35 of the second rotating body 38 is located.
  • the first wing 4A is positioned in the Y1 direction so that the tip of the first wing body 4A is located on the starboard side of the flapping device 1A, and the tip of the first wing body 4A is opposite to the side where the second rotator 38 is located.
  • the second wing body 4B is located on the port side of the flapping device 1A on the side opposite to the side where the first rotator 37 is located when viewed from the second rotator 38. Thus, it extends toward the Y2 direction.
  • the first rotating body 37 and the second rotating body 38 as the output section of the motion converting section 3 ⁇ / b> B reciprocate synchronously in the rotation direction around the rotation shafts 201 and 202.
  • the first wing body 4A and the second wing body 4B are driven by the first rotator 37 and the second rotator 38, respectively, and swing synchronously.
  • the first wing 4A and the second wing 4B also reciprocate synchronously in the rotation direction around the rotation shafts 201 and 202 described above, respectively.
  • the wings 4B swing synchronously so that their tips move approximately along the X-axis direction, which is the first direction.
  • the swing range of the first wing 4A and the second wing 4B is indicated by an arrow AR2.
  • the rotary motion generated in the rotary motor 2 as the drive source is converted into the reciprocating motion when transmitted by the power transmission mechanism 3,
  • the first wing 4A and the second wing 4B are configured to swing upon receiving the reciprocating motion.
  • the first wing body 4A and the second wing body 4B are swung synchronously, so that the flapping device 1A flutters continuously, and a levitation force is obtained accordingly.
  • the first wing body 4A and the first wing body 4A and the first wing body 4A and the second wing body 38 are reciprocated in the rotation direction during operation. Not only does the two wings 4B swing, but the slider 35 also performs a reciprocating linear motion. At that time, the reciprocating linear motion of the slider 35 and the swing of the first wing body 4A and the second wing body 4B are always in opposite directions.
  • this point will be described in detail.
  • FIGS. 5 to 8 are schematic top views for explaining the details of the operation of the motion conversion unit of the flapping apparatus in the present embodiment described above.
  • FIGS. 5 to 8 show that the slider 35, the first body 4A and the second body 4B are synchronized with the first body 4A and the second body 4B from the state where the flapping apparatus 1A is shown in FIG. It is the figure which showed how it moved during one period of typical flapping operation
  • the slider 35 is at a substantially central position within the movable range of the reciprocating linear motion of the slider 35.
  • the first wing 4A and the second wing 4B are at the 3 o'clock position and the 9 o'clock position, respectively, and when viewed from above in the Z2 direction, the first wing body 4A and the second wing body 4B The wings 4B are located on the same straight line.
  • the one end of the crank arm 33 that is, the end portion on the side where the pin 34a is located
  • the disk 32c which is a connecting portion between the rotational motion transmitting portion 3A and the motion converting portion 3B
  • the disk 32c is rotated 90 ° counterclockwise from the state shown in FIG. 4 in response to the transmission of power from the rotary motor 2, so that the connecting portion is moved from the 9 o'clock position to 6 o'clock.
  • the slider 35 moves in the DR11 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X2 direction.
  • first wing body 4A and the second wing body 4B are directed toward the DR21 direction shown in the drawing by the first rotator 37 and the second rotator 38 rotating counterclockwise and clockwise, respectively. (That is, each toward the 12 o'clock position), this movement is generally in the X1 direction.
  • the moving direction of the slider 35 and the moving directions of the first wing 4A and the second wing 4B are approximately opposite to each other along the X-axis direction. Therefore, when the gravity center position of the slider 35 moves backward in the X2 direction, the slider 35 acts as a counterweight, and the movement of the first wing 4A and the second wing 4B in the X1 direction is accompanied. The acceleration generated by the movement of the slider 35 and the acceleration generated by the movement of the slider 35 in the X2 direction are opposite to each other. As a result, the inertial force is canceled.
  • first wing body 4A and the second wing body 4B are directed in the direction of DR22 shown in the figure by the clockwise rotation and counterclockwise rotation of the first rotating body 37 and the second rotating body 38, respectively. (That is, toward the 3 o'clock position and 9 o'clock position, respectively), this movement is generally in the X2 direction.
  • the moving direction of the slider 35 and the moving directions of the first wing 4A and the second wing 4B are approximately opposite to each other along the X-axis direction. Therefore, the slider 35 acts as a counterweight when the position of the center of gravity of the slider 35 moves forward in the X1 direction, and as the first wing 4A and the second wing 4B move in the X2 direction. Thus, the acceleration caused by the movement of the slider 35 in the X1 direction is reversed, and as a result, the inertial force is canceled.
  • the disk 32c is further rotated 90 ° counterclockwise from the state shown in FIG.
  • the slider 35 moves in the DR13 direction shown in the figure, and accordingly, the position of the center of gravity of the slider 35 also moves in the X1 direction.
  • first wing body 4A and the second wing body 4B are directed toward the DR23 direction shown in the drawing by the first rotator 37 and the second rotator 38 rotating clockwise and counterclockwise, respectively. (That is, toward the 6 o'clock position), this movement is generally in the X2 direction.
  • the moving direction of the slider 35 and the moving directions of the first wing 4A and the second wing 4B are approximately opposite to each other along the X-axis direction. Therefore, the slider 35 acts as a counterweight when the position of the center of gravity of the slider 35 moves forward in the X1 direction, and as the first wing 4A and the second wing 4B move in the X2 direction. Thus, the acceleration caused by the movement of the slider 35 in the X1 direction is reversed, and as a result, the inertial force is canceled.
  • the disc 32c is further rotated 90 ° counterclockwise from the state shown in FIG.
  • the slider 35 moves in the DR14 direction shown in the figure, and accordingly, the center of gravity of the slider 35 also moves in the X2 direction.
  • first wing body 4A and the second wing body 4B are directed toward the DR24 direction shown in the drawing by the first rotator 37 and the second rotator 38 rotating counterclockwise and clockwise, respectively. (I.e., toward the 3 o'clock position and 9 o'clock position, respectively), this movement is generally toward the X1 direction.
  • the moving direction of the slider 35 and the moving directions of the first wing 4A and the second wing 4B are approximately opposite to each other along the X-axis direction. Therefore, when the gravity center position of the slider 35 moves backward in the X2 direction, the slider 35 acts as a counterweight, and the movement of the first wing 4A and the second wing 4B in the X1 direction is accompanied. The acceleration generated by the movement of the slider 35 and the acceleration generated by the movement of the slider 35 in the X2 direction are opposite to each other. As a result, the inertial force is canceled.
  • the reciprocating linear motion of the slider 35 and the swing of the first wing body 4A and the second wing body 4B are always in opposite directions. Become.
  • the slider 35 acts as a counterweight, the inertial force generated by the swinging of the first wing body 4A and the second wing body 4B is always canceled, and periodic vibration is generated in the casing 100. This is suppressed, and the posture of the flapping apparatus 1A is stabilized.
  • the first body 4A and the second body 4B are smoothly swung, so that fluctuations in the load applied to the output shaft 2a of the rotary motor 2 as a power source are greatly suppressed. It will be possible.
  • one end of the crank arm 33 connected to the disk 32c (that is, the first wing 4A and the second wing 4B are arranged at the 3 o'clock and 9 o'clock positions, respectively)
  • An example is shown in which the end on the side where the crank pin 34a is located) is arranged at the 3 o'clock or 9 o'clock position with respect to the rotary shaft 200 of the disk 32c.
  • the one end of the crank arm 33 is in front of the rotating shaft 200 of the disk 32c (that is, 2 as viewed from the 3 o'clock position).
  • the length of the crank arm 33 may be appropriately adjusted so that the crank arm 33 is disposed on the hour side and the 10 o'clock side when viewed from the 9 o'clock position.
  • the power transmission mechanism 3 is provided with a plurality of load fluctuation suppression units A1, A2, B1, B2, C1, and C2.
  • the load fluctuation suppression units A1, A2, B1, B2, C1, and C2 are all configured such that when the first body 4A and the second body 4B swing, the first body 4A and the second body 4B The fluctuation of the load that is generated by receiving the air resistance and is transmitted to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 is suppressed.
  • details of the load fluctuation suppression units A1, A2, B1, B2, C1, and C2 will be described.
  • the load fluctuation suppressing portions A ⁇ b> 1 and A ⁇ b> 2 are configured by a first connection rod 31 a of the first transmission member 31 and a second connection rod 32 a of the second transmission member 32, respectively.
  • the first connection rod 31 a and the second connection rod 32 a are both made of carbon fiber and are more easily twisted than the metal output shaft 2 a of the rotary electric motor 2.
  • the first connecting rod 31a and the second connecting rod 32a are made of, for example, carbon fiber reinforced plastic (CFRP) having a fiber orientation in the axial direction of the rod, so that an appropriate elasticity against twisting is achieved. And a member having moderate rigidity against bending. Therefore, the first connecting rod 31a and the second connecting rod 32a can absorb the fluctuation of the load to a considerable extent by being twisted during the transmission of the load described above.
  • CFRP carbon fiber reinforced plastic
  • the first connecting rod 31a and the second connecting rod 32a are easily twisted, the first connecting rod 31a and the second connecting rod 32a are subjected to load fluctuations, so that a slight phase shift occurs in the transmission of the rotational motion. Will be generated. However, if this phase shift is sufficiently small, this does not give a large loss to the movement transmission, and conversely, the effect of absorbing the load fluctuation described above can be obtained remarkably.
  • the first wing body 4A and the second wing body 4B are transmitted from the first wing body 4A and the second wing body 4B to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 as the first wing body 4A and the second wing body 4B swing.
  • Load fluctuations are leveled by being absorbed by the load fluctuation suppression units A1 and A2. Therefore, the fluctuation of the load applied to the output shaft 2a of the rotary electric motor 2 can be greatly suppressed.
  • the load fluctuation suppressing portions B1 and B2 are respectively in meshing portions between the gear 2b of the rotary motor 2 and the gear 31b of the first transmission member 31 and the gear 31c of the first transmission member 31 and the first gear 31c. 2 It is comprised by the meshing part with the gear 32b of the transmission member 32.
  • each of the meshing portions has a gap of a predetermined size, so-called backlash. That is, when these meshing portions have sufficient backlash, the load fluctuation can be absorbed to a considerable extent due to the presence of the backlash when the load is transmitted.
  • the first wing body 4A and the second wing body 4B are transmitted from the first wing body 4A and the second wing body 4B to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 as the first wing body 4A and the second wing body 4B swing.
  • Load fluctuations are leveled by being absorbed by the load fluctuation suppression units B1 and B2. Therefore, the fluctuation of the load applied to the output shaft 2a of the rotary electric motor 2 can be greatly suppressed.
  • the amount of backlash described above is preferably set as large as possible within a range in which the transmission of the rotational motion between the gears is not hindered.
  • the load fluctuation suppressing portions C ⁇ b> 1 and C ⁇ b> 2 are each constituted by an elastic belt 36.
  • the elastic belt 36 exhibits good elasticity. Therefore, when the load described above is transmitted from the first rotating body 37 and the second rotating body 38 to the slider 35, the elastic belt 36.
  • this load fluctuation can be absorbed to a considerable extent.
  • the first wing body 4A and the second wing body 4B are transmitted from the first wing body 4A and the second wing body 4B to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 as the first wing body 4A and the second wing body 4B swing.
  • Load fluctuations are leveled by being absorbed by the load fluctuation suppression units C1 and C2. Therefore, the fluctuation of the load applied to the output shaft 2a of the rotary electric motor 2 can be greatly suppressed.
  • the first wing body 4A and the first wing body 4A and the first wing body 4A are separated by the load fluctuation suppression units A1, A2, B1, B2, C1, C2 provided in the power transmission mechanism 3. Since the fluctuation of the load that is transmitted from the two wings 4B to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 can be greatly suppressed, the exercise efficiency is greatly improved as compared with the conventional case. Therefore, it is possible to provide a flapping apparatus having excellent flight capability.
  • the first connection rod 31a and the second connection rod 32a made of a member that is more easily twisted than the metal output shaft 2a of the rotary electric motor 2 are used as the load fluctuation suppression portions A1 and A2.
  • the first connection rod 31a and the second connection made of a member that is more flexible than the metal output shaft 2a of the rotary electric motor 2 are used as the load fluctuation suppression portions A1 and A2 instead. It is also possible to use the rod 32a.
  • the first connecting rod 31a and the second connecting rod 32a are subjected to, for example, shape processing (for example, shape processing for making a cut on the surface of the metal rod) on a metal member that is difficult to deform. Therefore, the member can be made to have a moderate elasticity with respect to bending and a moderate rigidity with respect to torsion. For this reason, when the first connecting rod 31a and the second connecting rod 32a are formed of such members, the bending of the load when transmitting the load described above absorbs the load fluctuation to a considerable extent. can do.
  • shape processing for example, shape processing for making a cut on the surface of the metal rod
  • the first connecting rod 31a and the second connecting rod 32a when the first connecting rod 31a and the second connecting rod 32a are easily bent, the first connecting rod 31a and the second connecting rod 32a receive a change in load and cause a slight axial deviation. . However, if this axial deviation is sufficiently small, this does not give a large loss to the motion transmission, and conversely, the effect of absorbing the load fluctuation described above can be obtained remarkably.
  • the first wing body 4A and the second wing body 4B are transmitted from the first wing body 4A and the second wing body 4B to the output shaft 2a of the rotary electric motor 2 through the power transmission mechanism 3 as the first wing body 4A and the second wing body 4B swing.
  • Load fluctuations are leveled by being absorbed by the load fluctuation suppression units A1 and A2. Therefore, the fluctuation of the load applied to the output shaft 2a of the rotary electric motor 2 can be greatly suppressed.
  • first connecting rod 31a and the second connecting rod 32a can be made of a member that is more easily twisted and bent than the metal output shaft 2a of the rotary electric motor 2.
  • first connecting rod 31a and the second connecting rod 32a are made of resin, rubber, metal that is relatively easily deformed, or metal that is not easily deformed, or the like. What is necessary is just to comprise by what made this relatively easy to deform
  • a plurality of load fluctuation suppression units A1, A2, B1, B2, C1, and C2 are provided, but at least one of them is provided in the power transmission mechanism 3. If so, the exercise efficiency can be improved considerably.
  • only one of the first connecting rod 31a and the second connecting rod 32a may be made of carbon fiber reinforced plastic.
  • FIG. 9 is a schematic top view for explaining the configuration and operation of the motion conversion unit of the flapping apparatus according to the modification based on the above-described embodiment of the present invention. Since the operation of the flapping apparatus according to this modification is the same as that of the above-described embodiment, the description thereof will not be repeated here.
  • the elastic belt 36 When configured in this manner, the elastic belt 36 is easily deformed by expansion and contraction as much as the gap G exists, and the deformation such as expansion and contraction is caused by the slider 35, the first rotating body 37, and the second rotating body 38. Therefore, the load fluctuation described above can be absorbed more remarkably. Therefore, the exercise efficiency is further greatly improved, and a flapping apparatus having particularly excellent flight performance can be obtained.
  • the gap G has a size between the slider 35 and the portion of the elastic belt 36 that meshes with the first rotating body 37 and the portion of the elastic belt 36 that meshes with the second rotating body 38 based on the thickness of the elastic belt 36. It is preferable to be configured to be larger.
  • FIG. 10 is a schematic perspective view of a main part of the flapping apparatus according to Embodiment 2 of the present invention.
  • the flapping apparatus 1B according to the present embodiment will be described with reference to FIG.
  • flapping apparatus 1 ⁇ / b> B has a layout of rotary electric motor 2 as a drive source and rotation of power transmission mechanism 3 when compared with flapping apparatus 1 ⁇ / b> A according to the first embodiment described above. Only the configuration of the motion transmitting unit 3A is different.
  • the rotary electric motor 2 is disposed in the lower part of the flapping apparatus 1A so that the output shaft 2a extends along the X-axis direction.
  • the first transmission member 31 is disposed such that the first connecting rod 31a extends along the X-axis direction.
  • the gear 32b fixed to one end of the second connecting rod 32a is constituted by a bevel gear, whereby the rotational movement around the X axis of the first transmission member 31 is caused by the Z of the second transmission member 32. It is converted into a rotational motion around the axis and transmitted.
  • the configuration of the rotational motion transmitting unit 3A is not limited to the configuration as in the first embodiment and the configuration as in the present embodiment, and various modifications can be made.
  • FIG. 11 is a schematic perspective view of the principal part of the flapping apparatus in Embodiment 3 of this invention.
  • FIG. 12 is a schematic top view for explaining the configuration and operation of the motion converter shown in FIG.
  • the flapping apparatus 1C in the present embodiment will be described with reference to FIG. 11 and FIG.
  • flapping apparatus 1 ⁇ / b> C has a configuration of motion conversion unit 3 ⁇ / b> B in power transmission mechanism 3 when compared with flapping apparatus 1 ⁇ / b> A according to the above-described first embodiment. Only the difference.
  • the motion conversion unit 3B mainly includes a crank including a crank arm 33 and crank pins 34a and 34b, a slider 35, a first rotating body 37, and a second rotating body 38, and is described above.
  • the elastic belt 36 as shown in the first embodiment is not provided.
  • the slider 35 is constituted by a toothed slider, and more specifically, teeth 35c are provided on the right side surface 35a and the left side surface 35b of the slider 35, respectively.
  • the first rotator 37 and the second rotator 38 are arranged so that their circumferential surfaces are in contact with the right side surface 35a and the left side surface 35b of the slider 35, respectively, whereby the right side surface 35a and the left side surface 35b of the slider 35 are arranged.
  • the teeth 35c provided in the gears respectively mesh with the gear groove teeth 37a provided on the circumferential surface of the first rotating body 37 and the gear groove teeth 38a provided on the circumferential surface of the second rotating body 38, respectively. Yes.
  • the flapping apparatus 1C is configured such that the motion transmission between the slider 35 and the first rotating body 37 and the second rotating body 38 is configured by a so-called rack and pinion.
  • the first and second rotating bodies 37 and 38 made of gears mesh with each other to realize motion transmission between them.
  • the first rotating body 37 and the second rotating body 38 rotate about the rotating shafts 201 and 202, respectively. Will reciprocate in the rotational direction. Note that the rotation direction of the first rotating body 37 and the rotating direction of the second rotating body 38 are always opposite to each other.
  • first rotating body 37 and the second rotating body 38 as the output unit of the motion converting unit 3B reciprocate synchronously in the rotation direction with the rotation shafts 201 and 202 as the rotation centers, respectively.
  • 4A and the second wing body 4B are driven by the first rotating body 37 and the second rotating body 38, respectively, and swing in a synchronous manner.
  • the reciprocating linear motion of the slider 35 and the swing of the first wing body 4A and the second wing body 4B are as follows. Since the direction is always reversed, the slider 35 acts as a counterweight, so that the inertia force generated by the swing of the first wing 4A and the second wing 4B is always canceled.
  • the power generated by a single power source is distributed by the power transmission mechanism, so that the wings and the chassis provided on the starboard of the chassis
  • the wings provided on the port side of the case are configured to be driven at the same time
  • the wings provided on the starboard side of the case and the wings provided on the port side of the case are Alternatively, each may be configured to be driven by a drive source provided independently.
  • annular (that is, endless) elastic belt made of a single member is wound around the slider, the first rotating body, and the second rotating body.
  • the case of being rotated has been described as an example. However, this may be replaced by a non-circular elastic belt having an end, or an elastic belt wound only on the slider and the first rotating body. Alternatively, this may be replaced by an elastic belt wound only on the slider and the second rotating body.
  • the first rotating body and the second rotating body are configured by gears, and the elastic belt is configured by a toothed belt.
  • the first rotating body and the second rotating body are constituted by friction rollers having no teeth, and the elastic belt is constituted by a friction belt having no teeth. Good.
  • the first rotating body and the second rotating body are configured with gears
  • the slider is configured with a toothed slider.
  • the first rotating body and the second rotating body may be configured by a friction roller having no teeth
  • the slider may be configured by a friction slider having no teeth.
  • 1A, 1A1, 1B, 1C Flapping device 2 Rotating motor, 2a Output shaft, 2b Gear, 3 Power transmission mechanism, 3A Rotational motion transmission unit, 3B Motion conversion unit, 31 1st transmission member, 31a 1st connecting rod, 31b , 31c gear, 32 second transmission member, 32a second connecting rod, 32b gear, 32c disk, 33 crank arm, 34a, 34b crank pin, 35 slider, 35a right side, 35b left side, 35c teeth, 36 elastic belt, 36a tooth, 37 first rotating body, 37a tooth, 38 second rotating body, 38a tooth, 4A first blade, 4B second blade, 4a, 4b mast, 5a, 5b slide guide, 6a, 6b guide shaft, 100 enclosure, 200-202 rotation axis, A1, A2, B1, B2, C1 C2 load variation suppressing section, G gap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Toys (AREA)
  • Transmission Devices (AREA)

Abstract

羽ばたき装置(1A)は、躯体と、動力源と、動力源にて発生した動力を伝達する動力伝達機構と、動力伝達機構によって駆動される羽体(4A,4B)とを備える。動力伝達機構は、動力源からの動力の伝達を受けてX軸方向に往復直線運動するスライダ(35)と、スライダ(35)からの動力の伝達を受けて回転方向に往復運動する回転体(37,38)とを含む。羽体(4A,4B)は、回転体(37,38)が回転方向に往復運動することでその先端が概ねX軸方向に沿って移動するように揺動する。スライダ(35)の往復直線運動と、羽体(37,38)のX軸方向に沿った揺動とは、逆向きである。

Description

羽ばたき装置
 本発明は、躯体に組付けられた動力源によって羽体が駆動されて揺動することで浮上力を得る羽ばたき装置に関する。
 通常、羽ばたき装置においては、躯体の左舷および右舷のそれぞれに羽体が設けられており、躯体に組付けられた動力源によって当該羽体が駆動される。その際、羽体は、躯体側に位置する基端を回転中心として当該基端とは反対側に位置する先端が概ね前後方向に向けて移動するように揺動する。
 たとえば、特表2012-529398号公報(特許文献1)の図9には、羽体が取付けられたマストの基端にロッカーアームが組付けられ、駆動源としての回転電動機から出力される回転運動がクランクによって往復直線運動に変換されることでロッカーアームが周期的に押し引きされ、これによりロッカーアームによってマストが駆動されることで羽体が前後方向に揺動するように構成された羽ばたき装置が開示されている。
特表2012-529398号公報
 ここで、羽ばたき装置においては、羽体の揺動に伴って慣性力が発生し、躯体に周期的な振動が発生してしまう。発生した振動は、羽ばたき装置の飛行姿勢が不安定になってしまう原因となるばかりでなく、羽体のスムーズな揺動が阻害されて動力源へ加わる負荷の変動を増大させてしまう原因ともなる。したがって、この点について何ら対策を施していない場合には、羽ばたき装置の運動効率が大幅に低下してしまうことになる。
 また、羽ばたき装置においては、羽体の揺動に際して羽体が空気抵抗を受けることになる。この空気抵抗の大きさは、迎え角によって決まる抗力係数と羽の速度の自乗との積に比例する。そのため、空気抵抗の変動は、羽体と動力源とを結ぶ動力伝達機構を介して駆動源に負荷の変動として伝わる。したがって、この点についても何ら対策を施していない場合には、駆動源に大きな負荷の変動が加わることとなってしまい、羽ばたき装置の運動効率がやはり大幅に低下してしまう。
 したがって、本発明は、上記の問題に鑑みてなされたものであり、運動効率の向上が図られた羽ばたき装置を提供することを目的とする。
 本発明の第1の局面に基づく羽ばたき装置は、躯体と、上記躯体に組付けられた動力源と、羽体と、上記動力源にて発生した動力を上記羽体に伝達する動力伝達機構と、を備えている。上記羽体は、上記動力伝達機構によって駆動される。上記動力伝達機構は、上記躯体によって移動可能に支持され、上記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、上記躯体によって回転可能に支持され、上記スライダからの動力の伝達を受けて上記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する回転体と、を含んでいる。上記羽体は、その基端が上記回転体に固定されることにより、上記回転体が上記回転方向に往復運動することでその先端が概ね上記第1方向に沿って移動するように揺動する。上記本発明の第1の局面に基づく羽ばたき装置にあっては、上記スライダの往復直線運動と、上記羽体の上記第1方向に沿った揺動とが、逆向きである。
 上記本発明の第1の局面に基づく羽ばたき装置の第1の態様にあっては、上記動力伝達機構が、上記スライダに一部が固定された弾性ベルトをさらに含んでいてもよく、その場合には、上記スライダに対する上記弾性ベルトの非固定部分が上記回転体に巻回されることにより、上記スライダが往復直線運動することで上記回転体が上記回転方向に往復運動することになる。
 上記第1の態様にあっては、上記回転体が、ギヤからなるとともに、上記弾性ベルトが、上記ギヤに歯合する歯付きベルトからなることが好ましい。
 上記本発明の第1の局面に基づく羽ばたき装置の第2の態様にあっては、上記スライダと上記回転体とが接触していてもよく、その場合には、上記スライダが往復直線運動することで上記回転体が上記回転方向に往復運動することになる。
 上記第2の態様にあっては、上記回転体が、ギヤからなるとともに、上記スライダが、上記ギヤに歯合する歯付きスライダからなることが好ましい。
 本発明の第2の局面に基づく羽ばたき装置は、躯体と、上記躯体に組付けられた動力源と、第1羽体および第2羽体と、上記動力源にて発生した動力を上記第1羽体および上記第2羽体に伝達する動力伝達機構と、を備えている。上記第1羽体および上記第2羽体は、上記動力伝達機構によって駆動される。上記動力伝達機構は、上記躯体に移動可能に支持され、上記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、上記躯体に回転可能に支持され、上記スライダからの動力の伝達を受けて上記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する第1回転体および第2回転体と、を含んでいる。上記第1回転体および上記第2回転体は、上記第1方向および上記第2方向の双方に直交する第3方向に沿って並んで配置されている。上記第1羽体は、その先端が上記第1回転体から見て上記第2回転体が位置する側とは反対側に位置するようにその基端が上記第1回転体に固定されており、上記第2羽体は、その先端が上記第2回転体から見て上記第1回転体が位置する側とは反対側に位置するようにその基端が上記第2回転体に固定されている。上記第1羽体および上記第2羽体は、上記第1回転体および上記第2回転体がそれぞれ回転方向に往復運動することで各々の先端が同期的に概ね上記第1方向に沿って移動するように揺動する。上記本発明の第2の局面に基づく羽ばたき装置にあっては、上記スライダの上記第1方向に沿った移動と、上記第1羽体および上記第2羽体の上記第1方向に沿った揺動とが、逆向きである。
 本発明によれば、運動効率の向上が図られた羽ばたき装置を提供することが可能になる。
本発明の実施の形態1における羽ばたき装置の要部の概略斜視図である。 本発明の実施の形態1における羽ばたき装置の躯体の図示を省略した要部の概略斜視図である。 本発明の実施の形態1における羽ばたき装置の回転運動伝達部の構成および動作を説明するための概略正面図である。 本発明の実施の形態1における羽ばたき装置の運動変換部の構成および動作を説明するための概略上面図である。 本発明の実施の形態1における羽ばたき装置の運動変換部の動作の詳細を説明するための概略上面図である。 本発明の実施の形態1における羽ばたき装置の運動変換部の動作の詳細を説明するための概略上面図である。 本発明の実施の形態1における羽ばたき装置の運動変換部の動作の詳細を説明するための概略上面図である。 本発明の実施の形態1における羽ばたき装置の運動変換部の動作の詳細を説明するための概略上面図である。 本発明の実施の形態1に基づいた変形例に係る羽ばたき装置の運動変換部の構成および動作を説明するための概略上面図である。 本発明の実施の形態2における羽ばたき装置の要部の概略斜視図である。 本発明の実施の形態3における羽ばたき装置の要部の概略斜視図である。 本発明の実施の形態3における羽ばたき装置の運動変換部の構成および動作を説明するための概略上面図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態1)
 図1は、本発明の実施の形態1における羽ばたき装置の要部の概略斜視図であり、図2は、躯体の図示を省略した当該要部の概略斜視図である。また、図3は、図2に示す回転運動伝達部の構成および動作を説明するための概略正面図であり、図4は、図2に示す運動変換部の構成および動作を説明するための概略上面図である。まず、これら図1ないし図4を参照して、本実施の形態における羽ばたき装置1Aの構成および概略的な動作について説明する。
 図1に示すように、羽ばたき装置1Aは、躯体100と、躯体100に組付けられた動力源としての回転電動機2と、回転電動機2にて発生した動力を伝達する動力伝達機構3と、動力伝達機構3によって駆動される一対の羽体としての第1羽体4Aおよび第2羽体4Bと、上述した回転電動機2に電力を供給する図示しないバッテリとを主として備えている。図2に示すように、動力伝達機構3は、回転運動伝達部3Aと運動変換部3Bとを含んでいる。
 ここで、図1および図2に示すように、羽ばたき装置1Aの前後、左右および上下にそれぞれX軸、Y軸およびZ軸をとり、羽ばたき装置1Aの前方側および後方側に向けての方向をそれぞれX1方向およびX2方向と定義し、羽ばたき装置1Aの右方側および左方側に向けての方向をそれぞれY1方向およびY2方向と定義し、羽ばたき装置1Aの上方側および下方側に向けての方向をそれぞれZ1方向およびZ2方向と定義し、以下においては、これら方向を用いて説明を行なう。
 図1に示すように、躯体100は、羽ばたき装置1Aの本体部を構成する部材であり、上述した回転電動機2、動力伝達機構3およびバッテリが組付けられてなるものである。躯体100は、たとえばフレーム状の骨組みにて構成されており、これに加えて当該骨組みを覆うカバーを備えていてもよい。
 図1ないし図3に示すように、回転電動機2は、羽ばたき装置1Aの下部に配置されており、上述したように躯体100に組付けられている。回転電動機2は、回転運動を出力する出力シャフト2aを含んでおり、出力シャフト2aは、金属製のシャフトにて構成されている。出力シャフト2aは、Z軸方向に沿って延在して配置されており、その先端にギヤ2bが固定されている。ギヤ2bは、出力シャフト2aの軸線周りの回転に伴って出力シャフト2aと共に回転する。
 なお、通常、回転電動機2は、使用者もしくは自動化されたアルゴリズムにより制御指示が与えられる制御装置によって制御されるが、当該制御の詳細は、本発明の内容に直接関係しないため、説明の簡略化のためにここではその詳細を省略し、本実施の形態においては、上述した図示しないバッテリからの電力を受けて回転電動機2が直接的に駆動されるものとして、その説明を行なう。また、上述した制御装置の有無や制御装置を備える場合における具体的な制御方法は、本発明を適用する際に何ら影響を及ぼすものではない。
 回転運動伝達部3Aは、第1伝達部材31と第2伝達部材32とを含んでいる。第1伝達部材31および第2伝達部材32は、いずれも躯体100によって回転可能に支持されている。
 第1伝達部材31は、Z軸方向に沿って延在する第1接続ロッド31aと、第1接続ロッド31aの一端に固定されたギヤ31bと、第1接続ロッド31aの他端に固定されたギヤ31cとを有している。ギヤ31bおよびギヤ31cは、いずれも第1接続ロッド31aと共に第1接続ロッド31aの軸線周りに回転する。
 第2伝達部材32は、Z軸方向に沿って延在する第2接続ロッド32aと、第2接続ロッド32aの一端に固定されたギヤ32bと、第2接続ロッド32aの他端に固定されたディスク32cとを有している。ギヤ32bおよびディスク32cは、いずれも第2接続ロッド32aと共に第2接続ロッド32aの軸線周りに回転する。
 第1接続ロッド31aの一端に固定されたギヤ31bは、出力シャフト2aの先端に固定されたギヤ2bと歯合している。また、第2接続ロッド32aの一端に固定されたギヤ32bは、第1接続ロッド31aの他端に固定されたギヤ31cと歯合している。
 以上により、回転電動機2の出力シャフト2aに生じた回転運動が、第1伝達部材31および第2伝達部材32へ回転運動のまま伝達されることになり、その結果、回転運動伝達部3Aの出力部としてのディスク32cが第2接続ロッド32aの軸線周りに回転運動することになる。なお、第1伝達部材31および第2伝達部材32は、ギヤ31b,31c,32bの歯数が調節されることにより、減速機として機能する。
 ここで、第1伝達部材31の第1接続ロッド31aおよび第2伝達部材32の第2接続ロッド32aは、いずれも炭素繊維製のロッドにて構成されている。これにより、これら第1接続ロッド31aおよび第2接続ロッド32aの各々によって後述する負荷変動抑制部A1,A2(図3参照)が構成されることになるが、その詳細については後述することとする。
 また、回転電動機2のギヤ2bと第1伝達部材31のギヤ31bとの歯合部および第1伝達部材31のギヤ31cと第2伝達部材32のギヤ32bとの歯合部は、それぞれ所定の大きさのバックラッシュを有している。これにより、これら歯合部の各々によって後述する負荷変動抑制部B1,B2(図3参照)が構成されることになるが、その詳細については後述することとする。
 図1、図2および図4に示すように、運動変換部3Bは、回転電動機2および回転運動伝達部3Aの上方に配置されており、クランクアーム33およびクランクピン34a,34bからなるクランクと、スライダ35と、弾性ベルト36と、第1回転体37と、第2回転体38とを主として備えている。
 スライダ35は、矩形枠状の部材にて構成されており、回転運動伝達部3Aの第2伝達部材32の上方に位置している。スライダ35は、躯体100に設けられた一対のスライドガイド5a,5bによって移動可能に支持されている。より詳細には、一対のスライドガイド5a,5bは、X軸方向に沿って延在するようにY軸方向に並んで配設されており、スライダ35の所定位置には、当該スライドガイド5a,5bが挿通される複数の貫通孔が設けられている。これにより、当該複数の貫通孔にスライドガイド5a,5bが挿通されることにより、スライダ35は、第1方向であるX軸方向に沿って移動可能に構成されている。
 スライダ35の下方であって第2伝達部材32の上方には、クランクアーム33が配置されている。クランクアーム33は、その延在方向がXY平面と平行となるように配置されており、その一端がクランクピン34aによって第2伝達部材32のディスク32cの偏心位置に回転可能に組付けられており、その他端がクランクピン34bによってスライダ35の所定位置に回転可能に組付けられている。
 これにより、図4に示すように、回転運動伝達部3Aの出力部としてのディスク32cが回転軸200を回転中心として回転運動することにより、ディスク32cに組付けられたクランクアーム33の上記一端(すなわち、クランクピン34aが位置する側の端部)も回転軸200を回転中心として回転することになる。これに伴い、スライダ35は、クランクアーム33によって周期的に押し引きされることになり、スライドガイド5a,5bの延在方向であるX軸方向に沿って往復直線運動することになる。なお、図4においては、当該スライダ35の往復直線運動の際のスライダ35の重心位置の移動範囲を矢印AR1にて表わしている。
 図1および図4に示すように、スライダ35の右方および左方には、それぞれ第1回転体37および第2回転体38が配置されている。より詳細には、第1回転体37および第2回転体38は、スライダ35を挟むように第3方向であるY軸方向において並んで配置されている。第1回転体37および第2回転体38は、それぞれ略円柱状の部材にて構成されており、その周面がスライダ35に対向するように配置されている。
 より具体的には、第1回転体37は、躯体100に設けられたZ軸方向に延在するガイドシャフト6aに固定されており、当該ガイドシャフト6aは、躯体100によって回転可能に支持されている。これにより、図4に示すように、スライダ35の右側面35a側において、第1回転体37が、第2方向であるZ軸方向に延在する回転軸201を回転中心として回転可能に位置することになる。
 また、第2回転体38は、躯体100に設けられたZ軸方向に延在するガイドシャフト6bに固定されており、当該ガイドシャフト6bは、躯体100によって回転可能に支持されている。これにより、図4に示すように、スライダ35の左側面35b側において、第2回転体38が、第2方向であるZ軸方向に延在する回転軸202を回転中心として回転可能に位置することになる。
 なお、第1回転体37および第2回転体38のスライダ35と対面する部分の周面には、それぞれ当該周面上を周回するようにギヤ溝が設けられている。当該ギヤ溝には、それぞれ歯37a,38aが設けられており、これにより第1回転体37および第2回転体38が、ギヤとしても機能することになる。
 スライダ35の外周面と、第1回転体37の周面および第2回転体38の周面には、弾性ベルト36が巻回されている。当該弾性ベルト36は、その一方の主面の所定位置に歯36aが設けられた歯付きベルトからなる。弾性ベルト36は、弾性を呈する限りにおいてはどのような材質のものであっても構わないが、樹脂製またはゴム製であることが好ましい。なお、弾性ベルト36は、後述する負荷の変動を抑制する観点に基づいてその設計を行なうことが必要である。
 弾性ベルト36のうち、スライダ35の外周面に巻回された部分は、スライダ35の外周面のうちの上述した右側面35aおよび左側面35bを除く部分においてスライダ35に固定されている。また、弾性ベルト36のうち、スライダ35の外周面に巻回された部分においては、上述した歯36aが外側を向いている。
 また、弾性ベルト36のうち、スライダ35の外周面に巻回された部分と第1回転体37の周面に巻回された部分とは、8の字を描くようにスライダ35および第1回転体37に巻き付けられている。ここで、弾性ベルト36のうち、第1回転体37の周面に巻回された部分においては、上述した歯36aが内側を向いており、第1回転体37の周面に設けられたギヤ溝の歯37aに歯合している。
 さらに、弾性ベルト36のうち、スライダ35の外周面に巻回された部分と第2回転体38の周面に巻回された部分とは、8の字を描くようにスライダ35および第2回転体38に巻き付けられている。ここで、弾性ベルト36のうち、第2回転体38の周面に巻回された部分においては、上述した歯36aが内側を向いており、第2回転体38の周面に設けられたギヤ溝の歯38aに歯合している。
 これにより、スライダ35の右側面35a側においては、弾性ベルト36の非固定部分が第1回転体37に巻回されることになり、スライダ35の左側面35b側においては、弾性ベルト36の非固定部分が第2回転体38に巻回されることになる。
 そのため、上述したスライダ35のX軸方向に沿った往復直線運動に伴い、第1回転体37および第2回転体38に巻回された部分の弾性ベルト36がそれぞれ第1回転体37および第2回転体38の回転方向に沿って送られることになり、これに伴って第1回転体37および第2回転体38が、それぞれ上述した回転軸201,202を回転中心として回転方向に往復運動することになる。ここで、第1回転体37の回転方向と第2回転体38の回転方向とは、常時逆向きとなる。
 以上により、運動変換部3Bにおいては、回転運動伝達部3Aを介して伝達された回転運動が往復運動に変換され、運動変換部3Bの出力部としての第1回転体37および第2回転体38が、それぞれ回転方向に同期的に往復運動することになる。
 ここで、上述したように、スライダ35と第1回転体37および第2回転体38との間の運動伝達は、弾性ベルト36によって実現されている。これにより、この弾性ベルト36によって後述する負荷変動抑制部C1,C2(図4参照)が構成されることになるが、その詳細については後述することとする。
 図1および図4に示すように、第1羽体4Aおよび第2羽体4Bは、それぞれ第1回転体37および第2回転体38に組付けられている。より詳細には、第1回転体37のスライダ35が位置する側とは反対側の周面の所定位置には、第1羽体4Aのマスト4aの一端である基端が固定されており、第2回転体38のスライダ35が位置する側とは反対側の周面の所定位置には、第2羽体4Bのマスト4bの一端である基端が固定されている。
 これにより、第1羽体4Aは、羽ばたき装置1Aの右舷側において、その先端が第1回転体37から見て第2回転体38が位置する側とは反対側に位置するようにY1方向に向けて延在することになり、第2羽体4Bは、羽ばたき装置1Aの左舷側において、その先端が第2回転体38から見て第1回転体37が位置する側とは反対側に位置するようにY2方向に向けて延在することになる。
 以上により、図4に示すように、運動変換部3Bの出力部としての第1回転体37および第2回転体38がそれぞれ回転軸201,202を回転中心として回転方向に同期的に往復運動することにより、第1羽体4Aおよび第2羽体4Bは、それぞれ第1回転体37および第2回転体38に駆動されて同期的に揺動することになる。
 その際、第1羽体4Aおよび第2羽体4Bも、それぞれ上述した回転軸201,202を回転中心として回転方向に同期的に往復運動することになるため、第1羽体4Aおよび第2羽体4Bは、その先端がそれぞれ第1方向であるX軸方向に概ね沿って移動するように同期的に揺動する。なお、図4においては、当該第1羽体4Aおよび第2羽体4Bの揺動範囲を矢印AR2にて表わしている。
 以上において説明したように、本実施の形態における羽ばたき装置1Aにおいては、駆動源としての回転電動機2にて発生した回転運動が、動力伝達機構3によって伝達される際に往復運動に変換され、第1羽体4Aおよび第2羽体4Bが当該往復運動の伝達を受けて揺動するように構成されている。これにより、第1羽体4Aおよび第2羽体4Bが同期的に揺動することで羽ばたき装置1Aが連続的に羽ばたくことになり、これに伴って浮上力が得られることになる。
 ここで、上述したように、本実施の形態における羽ばたき装置1Aにおいては、動作時において、第1回転体37および第2回転体38が回転方向に往復運動することで第1羽体4Aおよび第2羽体4Bが揺動するばかりでなく、スライダ35についてもこれが往復直線運動を行なう。その際、スライダ35の往復直線運動と第1羽体4Aおよび第2羽体4Bの揺動とは、常時逆向きになる。以下、この点について詳細に説明する。
 図5ないし図8は、上述した本実施の形態における羽ばたき装置の運動変換部の動作の詳細を説明するための概略上面図である。ここで、図5ないし図8は、羽ばたき装置1Aが図4に示す状態から、スライダ35ならびに第1羽体4Aおよび第2羽体4Bが、第1羽体4Aおよび第2羽体4Bの同期的な羽ばたき動作の1周期の間にどのように移動するかを時系列で示した図である。
 図4に示す状態においては、スライダ35が、スライダ35の往復直線運動の可動範囲内のほぼ中央位置にある。この場合、第1羽体4Aおよび第2羽体4Bは、それぞれ3時の位置および9時の位置にあり、上方からZ2方向に向けて見下ろした場合に、これら第1羽体4Aおよび第2羽体4Bが同一直線上に位置している。なお、その際、回転運動伝達部3Aと運動変換部3Bとの接続部であるディスク32cに組付けられたクランクアーム33の上記一端(すなわち、ピン34aが位置する側の端部)は、9時の位置にある。
 まず、図5に示すように、回転電動機2の動力の伝達を受けてディスク32cが図4に示す状態から反時計回りに90°回転することにより、上記接続部が9時の位置から6時の位置にまで達するに際しては、スライダ35が図中に示すDR11方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX2方向に向けて移動する。
 また、その際、第1羽体4Aおよび第2羽体4Bは、第1回転体37および第2回転体38がそれぞれ反時計回りおよび時計回りに回転することによって図中に示すDR21方向に向けて(すなわち、それぞれ12時の位置側に向けて)移動することになるが、この移動は概ねX1方向に向けての移動となる。
 そのため、この間においては、スライダ35の移動方向と第1羽体4Aおよび第2羽体4Bの移動方向とが、概ねX軸方向に沿って逆向きとなる。したがって、スライダ35の重心位置がX2方向に向けて後退することによってスライダ35がカウンターウェイトとして作用することになり、第1羽体4Aおよび第2羽体4BのX1方向に向けての移動に伴って生じる加速度と、当該スライダ35のX2方向に向けての移動に伴って生じる加速度とが逆向きとなり、結果として慣性力が打ち消されることになる。
 次に、図6に示すように、回転電動機2の動力の伝達を受けてディスク32cが図5に示す状態からさらに反時計回りに90°回転することにより、上記接続部が6時の位置から3時の位置にまで達するに際しては、スライダ35が図中に示すDR12方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX1方向に向けて移動する。
 また、その際、第1羽体4Aおよび第2羽体4Bは、第1回転体37および第2回転体38がそれぞれ時計回りおよび反時計回りに回転することによって図中に示すDR22方向に向けて(すなわち、それぞれ3時の位置側および9時の位置側に向けて)移動することになるが、この移動は概ねX2方向に向けての移動となる。
 そのため、この間においても、スライダ35の移動方向と第1羽体4Aおよび第2羽体4Bの移動方向とが、概ねX軸方向に沿って逆向きとなる。したがって、スライダ35の重心位置がX1方向に向けて前進することによってスライダ35がカウンターウェイトとして作用することになり、第1羽体4Aおよび第2羽体4BのX2方向に向けての移動に伴って生じる加速度と、当該スライダ35のX1方向に向けての移動に伴って生じる加速度とが逆向きとなり、結果として慣性力が打ち消されることになる。
 次に、図7に示すように、回転電動機2の動力の伝達を受けてディスク32cが図6に示す状態からさらに反時計回りに90°回転することにより、上記接続部が3時の位置から12時の位置にまで達するに際しては、スライダ35が図中に示すDR13方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX1方向に向けて移動する。
 また、その際、第1羽体4Aおよび第2羽体4Bは、第1回転体37および第2回転体38がそれぞれ時計回りおよび反時計回りに回転することによって図中に示すDR23方向に向けて(すなわち、それぞれ6時の位置側に向けて)移動することになるが、この移動は概ねX2方向に向けての移動となる。
 そのため、この間においても、スライダ35の移動方向と第1羽体4Aおよび第2羽体4Bの移動方向とが、概ねX軸方向に沿って逆向きとなる。したがって、スライダ35の重心位置がX1方向に向けて前進することによってスライダ35がカウンターウェイトとして作用することになり、第1羽体4Aおよび第2羽体4BのX2方向に向けての移動に伴って生じる加速度と、当該スライダ35のX1方向に向けての移動に伴って生じる加速度とが逆向きとなり、結果として慣性力が打ち消されることになる。
 次に、図8に示すように、回転電動機2の動力の伝達を受けてディスク32cが図7に示す状態からさらに反時計回りに90°回転することにより、上記接続部が12時の位置から3時の位置にまで達するに際しては、スライダ35が図中に示すDR14方向に向けて移動することになり、これに伴ってスライダ35の重心位置もX2方向に向けて移動する。
 また、その際、第1羽体4Aおよび第2羽体4Bは、第1回転体37および第2回転体38がそれぞれ反時計回りおよび時計回りに回転することによって図中に示すDR24方向に向けて(すなわち、それぞれ3時の位置側および9時の位置側に向けて)移動することになるが、この移動は概ねX1方向に向けての移動となる。
 そのため、この間においても、スライダ35の移動方向と第1羽体4Aおよび第2羽体4Bの移動方向とが、概ねX軸方向に沿って逆向きとなる。したがって、スライダ35の重心位置がX2方向に向けて後退することによってスライダ35がカウンターウェイトとして作用することになり、第1羽体4Aおよび第2羽体4BのX1方向に向けての移動に伴って生じる加速度と、当該スライダ35のX2方向に向けての移動に伴って生じる加速度とが逆向きとなり、結果として慣性力が打ち消されることになる。
 以上において説明したように、本実施の形態における羽ばたき装置1Aにおいては、動作時において、スライダ35の往復直線運動と第1羽体4Aおよび第2羽体4Bの揺動とが、常時逆向きとなる。
 そのため、スライダ35がカウンターウェイトとして作用することにより、第1羽体4Aおよび第2羽体4Bが揺動することによって生じる慣性力が常時打ち消されることになり、躯体100に周期的な振動が発生することが抑制されて羽ばたき装置1Aの姿勢が安定することになる。
 また、これと同時に、第1羽体4Aおよび第2羽体4Bの揺動がスムーズに行われることになるため、動力源としての回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。
 したがって、上記構成を採用することにより、従来に比して運動効率が大幅に向上することになり、飛行能力に優れた羽ばたき装置とすることができる。
 なお、本実施の形態においては、第1羽体4Aおよび第2羽体4Bがそれぞれ3時および9時の位置に配置された状態において、クランクアーム33のディスク32cに接続された一端(すなわち、クランクピン34aが位置する側の端部)が、ディスク32cの回転軸200に対して3時または9時の位置に配置されるように構成した場合を例示したが、この場合には、第1羽体4Aおよび第2羽体4Bの前方側に向けての揺動範囲と後方側に向けての揺動範囲とに差が生じることになる。そのため、第1羽体4Aおよび第2羽体4Bの前方側に向けての揺動範囲と後方側に向けての揺動範囲とを同じ大きさにするためには、第1羽体4Aおよび第2羽体4Bがそれぞれ3時および9時の位置に配置された状態においてクランクアーム33の上記一端が、ディスク32cの回転軸200に対して前方側(すなわち、3時の位置から見て2時側および9時の位置から見て10時側に)に配置されることとなるように、クランクアーム33の長さを適切に調節すればよい。
 また、上述したように、本実施の形態における羽ばたき装置1Aにおいては、動力伝達機構3に複数の負荷変動抑制部A1,A2,B1,B2,C1,C2が設けられている。この負荷変動抑制部A1,A2,B1,B2,C1,C2は、いずれも、第1羽体4Aおよび第2羽体4Bの揺動に際して、これら第1羽体4Aおよび第2羽体4Bが空気抵抗を受けることによって発生し、動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達されることとなる負荷の変動を抑制するものである。以下、この負荷変動抑制部A1,A2,B1,B2,C1,C2の詳細について説明する。
 図3に示すように、負荷変動抑制部A1,A2は、それぞれ第1伝達部材31の第1接続ロッド31aおよび第2伝達部材32の第2接続ロッド32aによって構成されている。ここで、上述したように、第1接続ロッド31aおよび第2接続ロッド32aは、いずれも炭素繊維製であり、回転電動機2の金属製の出力シャフト2aよりも捩れ易い。より詳細には、第1接続ロッド31aおよび第2接続ロッド32aを、たとえばロッドの軸方向に繊維配向を有する炭素繊維強化プラスチック(CFRP)にて構成することにより、捩れに対しては適度な弾性を有するとともに撓みに対しては適度な剛性を有する部材とすることができる。そのため、第1接続ロッド31aおよび第2接続ロッド32aは、上述した負荷の伝達の際に捻じれることによって、相当程度にこの負荷の変動を吸収することができる。
 ここで、第1接続ロッド31aおよび第2接続ロッド32aが捩れ易い場合には、これら第1接続ロッド31aおよび第2接続ロッド32aが負荷の変動を受けて回転運動の伝達に僅かな位相のずれを生じさせることになる。しかしながら、この位相のずれが十分に小さければ、これが運動伝達に大きなロスを与えることはなく、逆に上述した負荷の変動の吸収の効果が顕著に得られることになる。
 そのため、第1羽体4Aおよび第2羽体4Bの揺動に伴って当該第1羽体4Aおよび第2羽体4Bから動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達される負荷の変動が、当該負荷変動抑制部A1,A2によって吸収されることで平準化される。したがって、回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。
 また、図3に示すように、負荷変動抑制部B1,B2は、それぞれ回転電動機2のギヤ2bと第1伝達部材31のギヤ31bとの歯合部および第1伝達部材31のギヤ31cと第2伝達部材32のギヤ32bとの歯合部によって構成されている。ここで、上述したように、これら歯合部は、いずれも所定の大きさの隙間、いわゆるバックラッシュを有している。すなわち、これら歯合部が十分なバックラッシュを有していることにより、上述した負荷の伝達の際に当該バックラッシュの存在によって相当程度にこの負荷の変動が吸収できることになる。
 ここで、これら歯合部が必要以上に大きなバックラッシュを有している場合には、運動伝達にロスが生じたり、ギヤの寿命が短くなってしまったりするおそれがある。しかしながら、当該バックラッシュの大きさを最適化すれば、これが運動伝達やギヤの寿命に大きな影響を及ぼすことはなく、逆に上述した負荷の変動の吸収の効果が顕著に得られることになる。
 そのため、第1羽体4Aおよび第2羽体4Bの揺動に伴って当該第1羽体4Aおよび第2羽体4Bから動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達される負荷の変動が、当該負荷変動抑制部B1,B2によって吸収されることで平準化される。したがって、回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。なお、上述したバックラッシュの量は、ギヤ間の回転運動の伝達が妨げられない範囲で可能な限り大きく設定されることが好ましい。
 さらに、図4に示すように、負荷変動抑制部C1,C2は、それぞれ弾性ベルト36によって構成されている。ここで、上述したように、弾性ベルト36は、良好な弾性を呈するものであるため、第1回転体37および第2回転体38からスライダ35に上述した負荷が伝達されるに際して、当該弾性ベルト36が弾性変形(もっぱら伸長)することにより、相当程度にこの負荷の変動が吸収できることになる。
 ここで、当該弾性ベルト36を用いることにより、運動伝達の際に僅かに伝達の遅れが発生することになる。しかしながら、当該伝達の遅れが十分に小さければ、これが運動伝達に大きなロスを与えることはなく、逆に上述した負荷の変動の吸収の効果が顕著に得られることになる。
 そのため、第1羽体4Aおよび第2羽体4Bの揺動に伴って当該第1羽体4Aおよび第2羽体4Bから動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達される負荷の変動が、当該負荷変動抑制部C1,C2によって吸収されることで平準化される。したがって、回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。
 以上において説明したように、本実施の形態における羽ばたき装置1Aにおいては、動力伝達機構3に設けられた負荷変動抑制部A1,A2,B1,B2,C1,C2によって、第1羽体4Aおよび第2羽体4Bから動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達されることとなる負荷の変動が大幅に抑制できるため、従来に比して運動効率が大幅に向上することになり、飛行能力に優れた羽ばたき装置とすることができる。
 なお、本実施の形態においては、負荷変動抑制部A1,A2として、回転電動機2の金属製の出力シャフト2aよりも捩れ易い部材からなる第1接続ロッド31aおよび第2接続ロッド32aを用いた場合を例示して説明を行なったが、これに代えて、負荷変動抑制部A1,A2として、回転電動機2の金属製の出力シャフト2aよりも撓み易い部材からなる第1接続ロッド31aおよび第2接続ロッド32aを用いることも可能である。
 より詳細には、第1接続ロッド31aおよび第2接続ロッド32aを、たとえば変形し難い金属製の部材に形状加工(一例として、金属製のロッドの表面に切れ目を入れる形状加工)等を施すことによってこれを比較的撓み変形し易くしたものにて構成することにより、撓みに対しては適度な弾性を有するとともに捩れに対しては適度な剛性を有する部材とすることができる。そのため、第1接続ロッド31aおよび第2接続ロッド32aをこのような部材にて構成した場合には、上述した負荷の伝達の際にこれらが撓むことによって、相当程度にこの負荷の変動を吸収することができる。
 ここで、第1接続ロッド31aおよび第2接続ロッド32aが撓み易い場合には、これら第1接続ロッド31aおよび第2接続ロッド32aが負荷の変動を受けて僅かに軸ずれを生じさせることになる。しかしながら、この軸ずれが十分に小さければ、これが運動伝達に大きなロスを与えることはなく、逆に上述した負荷の変動の吸収の効果が顕著に得られることになる。
 そのため、第1羽体4Aおよび第2羽体4Bの揺動に伴って当該第1羽体4Aおよび第2羽体4Bから動力伝達機構3を介して回転電動機2の出力シャフト2aに伝達される負荷の変動が、当該負荷変動抑制部A1,A2によって吸収されることで平準化される。したがって、回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。
 また、第1接続ロッド31aおよび第2接続ロッド32aを回転電動機2の金属製の出力シャフト2aよりも捩れ易くかつ撓み易い部材にて構成することも可能である。その場合には、第1接続ロッド31aおよび第2接続ロッド32aを樹脂製のものやゴム製のもの、比較的変形し易い金属製のもの、あるいは変形し難い金属製の部材に形状加工等を施すことによってこれを比較的変形し易くしたもの(たとえばスプリング状のもの)等にて構成すればよい。このように構成した場合にも、回転電動機2の出力シャフト2aに加わる負荷の変動が大幅に抑制できることになる。
 なお、本実施の形態における羽ばたき装置1Aにおいては、複数の負荷変動抑制部A1,A2,B1,B2,C1,C2が設けられていたが、少なくともこのうちの1つが動力伝達機構3に設けられていれば、運動効率の向上が相当程度に図られることになる。たとえば、上述した本実施の形態において、第1接続ロッド31aおよび第2接続ロッド32aのいずれか一方のみを炭素繊維強化プラスチックにて構成してもよい。
 図9は、上述した本発明の実施の形態に基づいた変形例に係る羽ばたき装置の運動変換部の構成および動作を説明するための概略上面図である。なお、本変形例に係る羽ばたき装置の動作については、上述した実施の形態と同様であるため、ここではその説明を繰り返さない。
 図9に示すように、本変形例に係る羽ばたき装置1A1においては、スライダ35と第1回転体37および第2回転体38との間の距離が調節されることにより、スライダ35に巻回された部分の弾性ベルト36と、スライダ35の右側面35aおよび左側面35bとの間に、隙間Gが形成されている。
 このように構成した場合には、隙間Gが存在する分だけ弾性ベルト36に伸縮等の変形が生じ易くなるとともに、その伸縮等の変形がスライダ35や第1回転体37および第2回転体38によって阻害されることがなくなるため、上述した負荷の変動がより顕著に吸収できることになる。したがって、運動効率がさらに大幅に向上することになり、飛行能力に特に優れた羽ばたき装置とすることができる。
 なお、当該隙間Gは、スライダ35と弾性ベルト36の第1回転体37に歯合する部分および第2回転体38に歯合する部分との間の大きさが、それぞれ弾性ベルト36の厚みよりも大きくなるように構成されていることが好ましい。
 (実施の形態2)
 図10は、本発明の実施の形態2における羽ばたき装置の要部の概略斜視図である。以下、この図10を参照して、本実施の形態における羽ばたき装置1Bについて説明する。
 図10に示すように、本実施の形態における羽ばたき装置1Bは、上述した実施の形態1における羽ばたき装置1Aと比較した場合に、駆動源として回転電動機2のレイアウトおよび動力伝達機構3のうちの回転運動伝達部3Aの構成においてのみ相違している。
 具体的には、回転電動機2は、羽ばたき装置1Aの下部においてその出力シャフト2aがX軸方向に沿って延在するように配置されている。これに伴い、第1伝達部材31は、その第1接続ロッド31aがX軸方向に沿って延在するように配置されている。また、第2接続ロッド32aの一端に固定されたギヤ32bは、傘歯車にて構成されており、これにより、第1伝達部材31のX軸周りの回転運動が、第2伝達部材32のZ軸周りの回転運動に変換されて伝達されることになる。
 このように構成した場合にも、上述した実施の形態1において説明した効果と同様の効果が得られることになり、運動効率の向上が図られた飛行能力に優れた羽ばたき装置とすることができる。
 なお、回転運動伝達部3Aの構成は、上述した実施の形態1の如くの構成や本実施の形態の如くの構成に限定されるものではなく、種々その変更が可能である。
 (実施の形態3)
 図11は、本発明の実施の形態3における羽ばたき装置の要部の概略斜視図である。また、図12は、図11に示す運動変換部の構成および動作を説明するための概略上面図である。以下、これら図11および図12を参照して、本実施の形態における羽ばたき装置1Cについて説明する。
 図11および図12に示すように、本実施の形態における羽ばたき装置1Cは、上述した実施の形態1における羽ばたき装置1Aと比較した場合に、動力伝達機構3のうちの運動変換部3Bの構成においてのみ相違している。
 具体的には、運動変換部3Bは、クランクアーム33およびクランクピン34a,34bからなるクランクと、スライダ35と、第1回転体37と、第2回転体38とを主として備えており、上述した実施の形態1において示した如くの弾性ベルト36は備えていない。ここで、スライダ35は、歯付きスライダにて構成されており、より詳細には、スライダ35の右側面35aおよび左側面35bにそれぞれ歯35cが設けられている。
 第1回転体37および第2回転体38は、その周面がそれぞれスライダ35の右側面35aおよび左側面35bに接触するように配置されており、これによりスライダ35の右側面35aおよび左側面35bに設けられた歯35cは、それぞれ第1回転体37の周面に設けられたギヤ溝の歯37aおよび第2回転体38の周面に設けられたギヤ溝の歯38aにそれぞれ歯合している。
 すなわち、本実施の形態における羽ばたき装置1Cは、スライダ35と第1回転体37および第2回転体38との間の運動伝達が、いわゆるラックアンドピニオンにて構成されたものであり、歯付きスライダからなるスライダ35と、ギヤからなる第1回転体37および第2回転体38とが歯合することにより、これらの間の運動伝達が実現されている。
 この場合には、図12に示すように、スライダ35のX軸方向に沿った往復直線運動に伴って、第1回転体37および第2回転体38が、それぞれ回転軸201,202を回転中心として回転方向に往復運動することになる。なお、第1回転体37の回転方向と第2回転体38の回転方向とは、常時逆向きとなる。
 これにより、運動変換部3Bの出力部としての第1回転体37および第2回転体38がそれぞれ回転軸201,202を回転中心として回転方向に同期的に往復運動することにより、第1羽体4Aおよび第2羽体4Bは、それぞれ第1回転体37および第2回転体38に駆動されて同期的に揺動することになる。
 その際、ここではその詳細な説明は省略するが、上述した実施の形態1の場合と同様に、スライダ35の往復直線運動と第1羽体4Aおよび第2羽体4Bの揺動とが、常時逆向きになるため、スライダ35がカウンターウェイトとして作用することにより、第1羽体4Aおよび第2羽体4Bが揺動することによって生じる慣性力が常時打ち消されることになる。
 したがって、このように構成した場合にも、上述した実施の形態1において説明した効果と同様の効果が得られることになり、運動効率の向上が図られた飛行能力に優れた羽ばたき装置とすることができる。
 上述した本発明の実施の形態1ないし3およびその変形例においては、単一の動力源にて発生した動力が動力伝達機構によって分配されることにより、躯体の右舷に設けられた羽体と躯体の左舷に設けられた羽体とが同時に駆動されるように構成した場合を例示して説明を行なったが、躯体の右舷に設けられた羽体と躯体の左舷に設けられた羽体とが、それぞれ別途独立して設けられた駆動源によって駆動されるように構成してもよい。
 また、上述した本発明の実施の形態1ないし3およびその変形例においては、躯体の右舷と躯体の左舷とにそれぞれ1つずつ羽体を設けてなる場合を例示して説明を行なったが、躯体の右舷と躯体の左舷とにそれぞれ複数の羽体が設けられるように構成してもよい。
 また、上述した本発明の実施の形態1および2ならびにその変形例においては、単一の部材からなる環状の(すなわち、無端の)弾性ベルトがスライダ、第1回転体および第2回転体に巻回されてなる場合を例示して説明を行なったが、端部を有する非環状の弾性ベルトにてこれを代替することとしてもよいし、スライダおよび第1回転体のみに巻き付けられた弾性ベルトと、スライダおよび第2回転体のみに巻き付けられた弾性ベルトとによって、これを代替することとしてもよい。
 また、上述した本発明の実施の形態1および2ならびにその変形例においては、第1回転体および第2回転体をギヤにて構成するとともに、弾性ベルトを歯付きベルトにて構成した場合を例示して説明を行なったが、第1回転体および第2回転体を、歯を有さない摩擦ローラにて構成するとともに、弾性ベルトを、歯を有さない摩擦ベルトにて構成することとしてもよい。
 また、上述した本発明の実施の形態3においては、第1回転体および第2回転体をギヤにて構成するとともに、スライダを歯付きスライダにて構成した場合を例示して説明を行なったが、第1回転体および第2回転体を、歯を有さない摩擦ローラにて構成するとともに、スライダを、歯を有さない摩擦スライダにて構成することとしてもよい。
 さらには、動力源の具体的な構成や動力伝達機構の具体的な構成は、本発明の趣旨を逸脱しない範囲において、適宜その変更が可能であり、また、上述した実施の形態において開示した特徴的な構成は、本発明の趣旨を逸脱しない範囲において、相互にその組み合わせが可能である。
 このように、今回開示した上記実施の形態およびその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 本出願は、2015年11月4日に出願された日本特許出願である特願2015-216603号に基づく優先権の利益を主張するものであり、当該日本特許出願を参照することにより、これに記載されたすべての内容を援用するものである。
 1A,1A1,1B,1C 羽ばたき装置、2 回転電動機、2a 出力シャフト、2b ギヤ、3 動力伝達機構、3A 回転運動伝達部、3B 運動変換部、31 第1伝達部材、31a 第1接続ロッド、31b,31c ギヤ、32 第2伝達部材、32a 第2接続ロッド、32b ギヤ、32c ディスク、33 クランクアーム、34a,34b クランクピン、35 スライダ、35a 右側面、35b 左側面、35c 歯、36 弾性ベルト、36a 歯、37 第1回転体、37a 歯、38 第2回転体、38a 歯、4A 第1羽体、4B 第2羽体、4a,4b マスト、5a,5b スライドガイド、6a,6b ガイドシャフト、100 躯体、200~202 回転軸、A1,A2,B1,B2,C1,C2 負荷変動抑制部、G 隙間。

Claims (6)

  1.  躯体と、
     前記躯体に組付けられた動力源と、
     羽体と、
     前記動力源にて発生した動力を前記羽体に伝達する動力伝達機構と、を備え、
     前記羽体は、前記動力伝達機構によって駆動され、
     前記動力伝達機構は、
     前記躯体によって移動可能に支持され、前記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、
     前記躯体によって回転可能に支持され、前記スライダからの動力の伝達を受けて前記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する回転体と、を含み、
     前記羽体は、その基端が前記回転体に固定されることにより、前記回転体が前記回転方向に往復運動することでその先端が概ね前記第1方向に沿って移動するように揺動し、
     前記スライダの往復直線運動と、前記羽体の前記第1方向に沿った揺動とが、逆向きである、羽ばたき装置。
  2.  前記動力伝達機構が、前記スライダに一部が固定された弾性ベルトをさらに含み、
     前記スライダに対する前記弾性ベルトの非固定部分が前記回転体に巻回されることにより、前記スライダが往復直線運動することで前記回転体が前記回転方向に往復運動する、請求項1に記載の羽ばたき装置。
  3.  前記回転体が、ギヤからなり、
     前記弾性ベルトが、前記ギヤに歯合する歯付きベルトからなる、請求項2に記載の羽ばたき装置。
  4.  前記スライダと前記回転体とが接触することにより、前記スライダが往復直線運動することで前記回転体が前記回転方向に往復運動する、請求項1に記載の羽ばたき装置。
  5.  前記回転体が、ギヤからなり、
     前記スライダが、前記ギヤに歯合する歯付きスライダからなる、請求項4に記載の羽ばたき装置。
  6.  躯体と、
     前記躯体に組付けられた動力源と、
     第1羽体および第2羽体と、
     前記動力源にて発生した動力を前記第1羽体および前記第2羽体に伝達する動力伝達機構と、を備え、
     前記第1羽体および前記第2羽体は、前記動力伝達機構によって駆動され、
     前記動力伝達機構は、
     前記躯体に移動可能に支持され、前記動力源からの動力の伝達を受けて第1方向に往復直線運動するスライダと、
     前記躯体に回転可能に支持され、前記スライダからの動力の伝達を受けて前記第1方向と直交する第2方向に延在する回転軸を回転中心として回転方向に往復運動する第1回転体および第2回転体と、を含み、
     前記第1回転体および前記第2回転体は、前記第1方向および前記第2方向の双方に直交する第3方向に沿って並んで配置され、
     前記第1羽体は、その先端が前記第1回転体から見て前記第2回転体が位置する側とは反対側に位置するようにその基端が前記第1回転体に固定され、
     前記第2羽体は、その先端が前記第2回転体から見て前記第1回転体が位置する側とは反対側に位置するようにその基端が前記第2回転体に固定され、
     前記第1羽体および前記第2羽体は、前記第1回転体および前記第2回転体がそれぞれ回転方向に往復運動することで各々の先端が同期的に概ね前記第1方向に沿って移動するように揺動し、
     前記スライダの前記第1方向に沿った移動と、前記第1羽体および前記第2羽体の前記第1方向に沿った揺動とが、逆向きである、羽ばたき装置。
PCT/JP2016/082448 2015-11-04 2016-11-01 羽ばたき装置 WO2017078016A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017548773A JP6458162B2 (ja) 2015-11-04 2016-11-01 羽ばたき装置
US15/964,752 US11136117B2 (en) 2015-11-04 2018-04-27 Wing flapping apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015216603 2015-11-04
JP2015-216603 2015-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/964,752 Continuation US11136117B2 (en) 2015-11-04 2018-04-27 Wing flapping apparatus

Publications (1)

Publication Number Publication Date
WO2017078016A1 true WO2017078016A1 (ja) 2017-05-11

Family

ID=58661962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082448 WO2017078016A1 (ja) 2015-11-04 2016-11-01 羽ばたき装置

Country Status (3)

Country Link
US (1) US11136117B2 (ja)
JP (1) JP6458162B2 (ja)
WO (1) WO2017078016A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190731A3 (en) * 2018-03-12 2019-12-12 Yiding Cao Reciprocating lift and thrust systems
CN112937853A (zh) * 2021-03-10 2021-06-11 常州龙源智能机器人科技有限公司 基于线驱动的扑翼机构
CN116477082A (zh) * 2023-03-17 2023-07-25 中南大学 基于转向传动协调控制机构的仿生蜂鸟飞行器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149987A1 (ja) * 2016-02-29 2017-09-08 株式会社村田製作所 羽ばたき装置
CN112046742A (zh) * 2020-09-13 2020-12-08 西北工业大学 一种具备展翅能力的扑翼机构
CN112874781B (zh) * 2021-02-08 2022-09-20 哈尔滨工业大学 一种仿蝙蝠扑翼飞行器的翅膀拍动机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178592A (ja) * 2004-03-08 2009-08-13 Mitsubishi Electric Corp 浮遊体
JP2011195050A (ja) * 2010-03-19 2011-10-06 Uha Mikakuto Co Ltd 小型飛翔装置
US20130320133A1 (en) * 2011-02-17 2013-12-05 Georgia Tech Research Corporation Hovering and gliding multi-wing flapping micro aerial vehicle
CN205574276U (zh) * 2016-04-26 2016-09-14 巢湖学院 一种凸轮式扑翼飞行器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR376962A (fr) * 1907-03-16 1907-08-26 Xavier Wehrle Ornithoplane mécanique
US3539063A (en) * 1968-07-03 1970-11-10 Emil S Masura Toy simulating a boom carrying machine
JP2008001269A (ja) * 2006-06-23 2008-01-10 Ihi Corp 羽ばたき翼の駆動機構の制御方法及び装置
JP5207463B2 (ja) * 2008-10-28 2013-06-12 学校法人千葉工業大学 往復揺動機構およびこれを用いた羽ばたき飛行機
AU2010256424A1 (en) 2009-06-05 2012-02-09 Aerovironment Air vehicle flight mechanism and control method
JP2013038116A (ja) 2011-08-04 2013-02-21 Sumitomo Electric Ind Ltd Iii族窒化物結晶基板の製造方法
FR3036378B1 (fr) * 2015-05-19 2017-06-02 Office Nat D'etudes Et De Rech Aerospatiales (Onera) Dispositif motorise avec mouvement alternatif d'organe de locomotion et procede de pilotage associe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178592A (ja) * 2004-03-08 2009-08-13 Mitsubishi Electric Corp 浮遊体
JP2011195050A (ja) * 2010-03-19 2011-10-06 Uha Mikakuto Co Ltd 小型飛翔装置
US20130320133A1 (en) * 2011-02-17 2013-12-05 Georgia Tech Research Corporation Hovering and gliding multi-wing flapping micro aerial vehicle
CN205574276U (zh) * 2016-04-26 2016-09-14 巢湖学院 一种凸轮式扑翼飞行器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190731A3 (en) * 2018-03-12 2019-12-12 Yiding Cao Reciprocating lift and thrust systems
CN112937853A (zh) * 2021-03-10 2021-06-11 常州龙源智能机器人科技有限公司 基于线驱动的扑翼机构
CN112937853B (zh) * 2021-03-10 2024-01-23 常州龙源智能机器人科技有限公司 基于线驱动的扑翼机构
CN116477082A (zh) * 2023-03-17 2023-07-25 中南大学 基于转向传动协调控制机构的仿生蜂鸟飞行器
CN116477082B (zh) * 2023-03-17 2024-02-13 中南大学 基于转向传动协调控制机构的仿生蜂鸟飞行器

Also Published As

Publication number Publication date
JP6458162B2 (ja) 2019-01-23
US20180244382A1 (en) 2018-08-30
US11136117B2 (en) 2021-10-05
JPWO2017078016A1 (ja) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6458162B2 (ja) 羽ばたき装置
JP6545894B2 (ja) 羽ばたき装置
US20120067150A1 (en) Robotic arm assembly
US20150040712A1 (en) Gravity compensation mechanism and robot
JP2014151413A (ja) 関節機構およびロボット
WO2013018229A1 (ja) 複合駆動装置及びロボット
CN108463651B (zh) 连杆促动装置
JP6438193B2 (ja) 多関節ロボットの手首構造
JP6061022B2 (ja) 複合駆動装置およびロボット
WO2017078018A1 (ja) 羽ばたき装置
KR101569064B1 (ko) 복수의 2단 평기어를 이용한 감속기 구조체 및 그를 포함하는 액츄에이터 모듈
JPWO2011049013A1 (ja) 非平行軸伝動機構及びロボット
TWI474907B (zh) 機器人臂部件及其使用之齒輪間隙調整機構
WO2017012558A1 (en) Zero backlash right angle transmission system and method
TW201321148A (zh) 機器人臂部件
JP2014054720A (ja) 人間型電動ハンド
JP5954706B2 (ja) 関節装置及びリンク機構
JP2020026804A5 (ja)
JP2019182281A (ja) 羽体およびそれを用いた羽ばたき装置
JP5440279B2 (ja) ロボットの制振装置
JP2015174538A (ja) 運動変換機構及びこれを用いた羽ばたき機構
JP6492525B2 (ja) ロボット
KR101954216B1 (ko) 카운터 웨이트의 진동 저감 기능을 가지는 전동 톱용 카운터 밸런스 장치
CN209793782U (zh) 一种便于控制的仿人手腕部结构
JP2010214527A (ja) 産業用ロボットのアーム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16862076

Country of ref document: EP

Kind code of ref document: A1