WO2017077939A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017077939A1
WO2017077939A1 PCT/JP2016/081892 JP2016081892W WO2017077939A1 WO 2017077939 A1 WO2017077939 A1 WO 2017077939A1 JP 2016081892 W JP2016081892 W JP 2016081892W WO 2017077939 A1 WO2017077939 A1 WO 2017077939A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
common mode
power
conversion device
mode voltage
Prior art date
Application number
PCT/JP2016/081892
Other languages
English (en)
French (fr)
Inventor
悟司 小笠原
峻介 小原
真紹 竹本
融真 山本
Original Assignee
国立大学法人北海道大学
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 東芝三菱電機産業システム株式会社 filed Critical 国立大学法人北海道大学
Priority to US15/765,318 priority Critical patent/US10700616B2/en
Priority to CN201680064209.1A priority patent/CN108377666B/zh
Priority to CA3001121A priority patent/CA3001121C/en
Priority to EP16862000.3A priority patent/EP3373437B8/en
Priority to KR1020187012198A priority patent/KR102147028B1/ko
Priority to JP2017548732A priority patent/JP6491349B2/ja
Publication of WO2017077939A1 publication Critical patent/WO2017077939A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4826Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion apparatus, for example, a method for canceling a common mode voltage generated when power conversion is performed based on a switching operation of a power semiconductor element represented by an inverter.
  • the carrier frequency of the voltage-type PWM inverter has been increased with the expansion of the application range and the improvement of the characteristics of power semiconductor elements. ing.
  • the cause of electromagnetic interference generated by the voltage-type PWM inverter is mainly the current flowing through the ground line.
  • Japanese Patent Application Laid-Open No. 10-94244 proposes a method of reducing the leakage current by suppressing the output common mode voltage of the inverter using an active element.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a power converter that can be reduced in size by reducing the circuit scale.
  • a power conversion device that performs power conversion by switching a power semiconductor element according to an aspect of the present invention, the voltage detection means detecting a common mode voltage generated during the switching operation of the power semiconductor element, and the voltage detection means A voltage control power source that generates a reverse polarity voltage having the same magnitude as the common mode voltage by a circuit that amplifies the common mode voltage detected by the power supply, and superimposing the voltage generated from the voltage control power source on the output of the power converter Voltage superimposing means for canceling a common mode voltage equal to or higher than a switching frequency generated when the power semiconductor element is switched.
  • the voltage superimposing means includes a common mode transformer having multiple windings and a capacitor.
  • the resonance frequency based on the common mode transformer and the capacitor of the voltage superimposing means is set between the zero-phase voltage frequency and the switching frequency of the power semiconductor element.
  • the power converter further includes a power converter superimposed by the voltage superimposing means and a residual voltage detecting means for detecting a common mode voltage of the voltage controlled power source.
  • the voltage superimposing unit adds the common mode voltage detected by the residual voltage detecting unit and superimposes the common mode voltage on the output of the power converter.
  • it further includes an operational amplifier that performs inversion amplification based on a comparison between the common mode voltage detected by the residual voltage detection means and the zero-phase voltage of the common mode voltage, and adjusts the voltage to be added.
  • an operational amplifier that performs inversion amplification based on a comparison between the common mode voltage detected by the residual voltage detection means and the zero-phase voltage of the common mode voltage, and adjusts the voltage to be added.
  • the power converter of the present invention can be reduced in size by reducing the circuit scale.
  • FIG. 10 is a circuit configuration diagram around a voltage control power supply A # of a common mode suppression circuit 7 # based on the second embodiment. It is a figure explaining the equivalent circuit of voltage control power supply A # periphery of the common mode suppression circuit 7 # based on Embodiment 2. FIG. It is a figure explaining the equivalent circuit with respect to the common mode of the common mode suppression circuit 7 # based on Embodiment 2.
  • FIG. 10 is a circuit configuration diagram around a voltage control power supply A # of a common mode suppression circuit 7 # based on the second embodiment. It is a figure explaining the equivalent circuit of voltage control power supply A # periphery of the common mode suppression circuit 7 # based on Embodiment 2.
  • FIG. It is a figure explaining the equivalent circuit with respect to the common mode of the common mode suppression circuit 7 # based on Embodiment 2.
  • FIG. FIG. 10 is a circuit configuration diagram around a voltage control power supply A # of a common mode suppression circuit 7 # based on the second embodiment. It is a figure explaining
  • FIG. 10 is another circuit configuration diagram around the voltage controlled power source A #. It is a figure explaining a common mode voltage waveform. It is a figure explaining the FFT analysis result of a common mode voltage. It is a figure explaining the attenuation amount of a common mode voltage.
  • FIG. 1 is a diagram illustrating a configuration of a motor control system 1 based on the first embodiment.
  • a motor control system 1 includes an induction motor 6 and a power converter 2 of the present invention.
  • the power conversion device 2 includes a voltage-type PWM inverter 4 and a common mode suppression circuit 7 that suppresses the common mode voltage.
  • a voltage-type PWM inverter 4 (also simply referred to as an inverter) is connected to a DC power source 3 and converts this DC voltage into a three-phase AC voltage by a switching operation of a power semiconductor element (IGBT, SiC, etc.).
  • a power semiconductor element IGBT, SiC, etc.
  • the AC voltage converted by the inverter 4 is connected to an induction motor (motor) 6 via a three-phase cable 5, and the frame of the induction motor 6 is connected to the ground voltage GND via a ground wire.
  • a common mode suppression circuit 7 is provided between the inverter 4 and the induction motor (motor) 6.
  • the common mode suppression circuit 7 uses a capacitor group 8 that is star-connected to the three-phase AC output terminal of the inverter 4 and detects a common mode voltage, and a complementary transistor that amplifies the common mode voltage obtained from its neutral point.
  • Push-pull type emitter follower circuit 9 the output of the emitter follower circuit 9 is input to the primary side coil, and the secondary side coil is provided in the three-phase cable 5.
  • a capacitor 10 connected in series with the primary side coil.
  • the common mode suppression circuit 7 is connected to the DC power source 3 on the input side of the inverter 4 as a driving power source.
  • the emitter follower circuit 9 includes bipolar transistors Tr1 and Tr2 that are connected in series with the DC power source 3 and whose gates are connected to the capacitor group 8, respectively.
  • the emitter follower circuit 9 has high-speed response capable of faithfully outputting the common mode voltage of the inverter 4 and low output impedance characteristics.
  • the emitter follower circuit 9 realizes a voltage control power source that amplifies the detected common mode voltage and generates a reverse polarity voltage having the same magnitude as the common mode voltage.
  • capacitors in the capacitor group 8 are desirably capacitors having the same level as the output capacity of the power semiconductor element of the inverter 4.
  • the emitter follower circuit 9 Since the emitter follower circuit 9 has a sufficiently high input impedance, the common mode voltage of the inverter 4 can be detected with sufficient accuracy even if a capacitor having a small capacity is used.
  • the excitation current Im of the common mode transformer 11 is supplied only from the emitter follower circuit 9.
  • the winding ratio of the primary side and secondary side windings of the common mode transformer 11 is 1: 1. used.
  • FIG. 2 is a diagram illustrating an equivalent circuit for the common mode of the common mode suppression circuit 7 according to the first embodiment.
  • the capacitance C represents the stray capacitance between the motor winding and the frame
  • the inductance L represents the inductance of the wiring of the entire path
  • the resistance R represents the resistance component of the wiring of the entire path.
  • a transformer having an excitation inductance Lm and a winding ratio of 1: 1 is a common mode transformer 11 in which leakage inductance is ignored.
  • the emitter follower circuit 9 can be represented by a voltage control power supply A that receives a common mode voltage Vinv and outputs a voltage Vc having the same magnitude.
  • the voltage Vinv is the common mode voltage of the inverter output.
  • the current Im is an excitation current of the common mode transformer.
  • the current Ic is a common mode current flowing through the motor.
  • the voltage Vo is a common mode voltage after the common mode voltage is suppressed.
  • the common mode transformer 11 connected to the output terminal of the emitter follower circuit 9 is expressed only by the excitation inductance Lm ignoring the leakage inductance. Further, the capacitance C4 of the capacitor 10 is shown.
  • the common mode current IC flows to the ground line through the stray capacitance between the winding of the induction motor (motor) 6 and the frame.
  • the common mode voltage Vinv includes a zero-phase voltage component Vlow and a voltage Vhi having a component higher than the switching frequency.
  • the value of the capacitance C4 of the capacitor 10 is set so that the resonance frequency of the excitation inductance Lm and the capacitance C4 is between the zero-phase voltage frequency and the switching frequency.
  • Vt Vhi (Formula 1)
  • Vt Vhi (Formula 1)
  • Vcap Vlow (Formula 2)
  • Vinv of the inverter output is expressed by the following equation 3.
  • Vinv Vc (Formula 3)
  • Vcap satisfies the relationship of the following expression 4.
  • Vcap Vc-Vt (Formula 4) Furthermore, the common mode voltage satisfies the relationship of the following formula 5.
  • Vo Vinv-Vt (Formula 5) Based on Equation 2, Equation 4, and Equation 5, the following relationship is established.
  • the common mode voltage of the inverter output includes a low-frequency zero-phase voltage component.
  • the low-frequency zero-phase voltage component hardly affects electromagnetic interference.
  • the configuration based on the first embodiment only the component having the switching frequency or higher is applied to the common mode transformer 11 to cancel the common mode voltage having the switching frequency or higher. Therefore, electromagnetic interference generated by the voltage-type PWM inverter in the high frequency band can be suppressed.
  • the structure based on this Embodiment 1 is a structure which applies only the component more than a switching frequency to the common mode transformer 11, it is possible to reduce a common mode transformer itself. With this configuration, it is possible to reduce the circuit scale and reduce the size of the voltage converter.
  • the voltage controlled power source A actually distorts, and the common mode transformer has leakage inductance, stray capacitance, and non-linearity due to the core material.
  • a feedback control method is adopted in which a residual common mode voltage higher than the switching frequency component is detected, amplified and added on the negative side of the common mode transformer. As a result, the common mode voltage can be further reduced.
  • FIG. 3 is a diagram illustrating a configuration of a motor control system 1 # based on the second embodiment.
  • motor control system 1 # includes an induction motor 6 and a power converter 2 #.
  • Power converter 2 # differs from power converter 2 in that common mode suppression circuit 7 is replaced with common mode suppression circuit 7 #. Since other configurations are the same, detailed description thereof will not be repeated.
  • the common mode suppression circuit 7 # is a capacitor that detects the remaining common mode voltage that is star-connected to the three-phase cable 5 between the common mode transformer 11 and the induction motor 6.
  • the emitter follower circuit 9 # includes bipolar transistors Tr3 and Tr4 that are connected in series with the DC power supply 3 and whose gates are connected to the output of the operational amplifier OP.
  • a primary coil of the common mode transformer 11 is provided between a connection node of the bipolar transistors Tr1 and Tr2 and a connection node of the bipolar transistors Tr3 and Tr4.
  • connection node NA is connected to the input on one side (+ side) of the operational amplifier OP.
  • connection node NA is also connected to a connection node between the DC power supplies 3A and 3B.
  • the input on the other side ( ⁇ side) of the operational amplifier OP is connected to the capacitor group 8 # via the resistor R1.
  • a resistor R0 is provided between the input on the other side ( ⁇ side) of the operational amplifier OP and the output of the emitter follower circuit 9 #.
  • FIG. 4 is a circuit configuration diagram around the voltage control power source A # of the common mode suppression circuit 7 # according to the second embodiment.
  • the current flowing in the circuit around the voltage controlled power source A # will be described. Since the resistance R0 is a high resistance, the current I4 is sufficiently smaller than Im.
  • FIG. 5 is a diagram for explaining an equivalent circuit around the voltage controlled power source A # of the common mode suppression circuit 7 # according to the second embodiment.
  • the voltage control power source A # is composed of an operational amplifier OP, a floating power source, and an emitter follower circuit 9 #.
  • the operational amplifier OP operates as an inverting amplifier having a zero phase voltage component as a reference potential.
  • FIG. 6 is a diagram illustrating an equivalent circuit for the common mode of the common mode suppression circuit 7 # according to the second embodiment.
  • the base currents of the transistors Tr3 and Tr4 that are 1 / hfe (current amplification factor) of the excitation current of the common mode transformer 11 charge and discharge the capacitors 10A and 10B, and the excitation inductance Lm and the capacitor 10A , 10B and a composite capacitor C4 form a resonance circuit.
  • the circuit described with reference to FIG. 2 describes a method for canceling the common mode voltage only by feedforward control.
  • a method for canceling residual common mode voltage that cannot be canceled by only feedforward control by feedback control is to do.
  • Vt Vc-Vcap (Formula 8)
  • the equivalent circuit satisfies the relationship of the following expression 9.
  • Vt Vc + Vce-Vcap (Equation 9)
  • the output Vce of the voltage controlled power supply A # is a voltage that compensates for an error voltage that cannot be canceled out only by feed word control.
  • the amplitude of the voltage Vce is sufficiently smaller than the amplitude of the voltage Vc. Therefore, the influence of the voltage Vce can be ignored, and the excitation current Im is mainly defined by the voltage Vc.
  • the capacitor C4 when the capacitor C4 is set so that the resonance frequency of the exciting inductance Lm and the capacitor C4 is between the zero-phase voltage frequency and the switching frequency, the following equation 10 is satisfied as described in FIG. Note that the capacitance C4 is shown as a combined capacitance of the capacitors 10A and 10B.
  • Vcap Vlow (Equation 10)
  • Vcap Vlow (Equation 10)
  • the input Ve of the voltage controlled power source A # is expressed by the following expression 11.
  • Ve Vo-Vcap (Formula 11) That is, according to Equation 10, the zero-phase voltage component is removed from the common mode voltage Vo.
  • the voltage controlled power supply A # is expressed by the following equation 12.
  • Vce GVe (Formula 12)
  • Ve becomes 0 due to an imaginary short.
  • the voltage control power supply A # operates using the zero-phase voltage component as a reference potential, and inputs and outputs only the residual component having a small amplitude.
  • This resonance circuit makes the potential of the node NA, which is the midpoint of the power supply and the amplification reference point of the operational amplifier, equal to the zero phase voltage of the inverter.
  • the remaining common mode voltage detected by the capacitor group 8 # (C6 to C8) is inverted and amplified by the operational amplifier OP and added to the common mode transformer 11.
  • feedback control is performed so that the common mode voltage applied to the inverter load is equal to the zero-phase voltage of the inverter, and only the components of the inverter output common mode voltage that are higher than the switching frequency are canceled. .
  • FIG. 7 is another circuit configuration diagram around voltage control power supply A #. As shown in FIG. 7, the emitter follower circuit 9 # is connected to a floating power supply, like the operational amplifier OP.
  • the resistance R1 is set to several k ⁇ or more, the current I2 is sufficiently smaller than the current Im, and the following equation is satisfied from Kirchhoff's current law.
  • the circuit configuration of FIG. 4 has a smaller current flowing through the floating power source, so that the capacity of the floating power source can be reduced. Further, since the current for charging and discharging the capacitors 10A and 10B is small, the capacity can be reduced. With this configuration, the circuit scale can be further reduced.
  • the power supply voltage of the inverter was 200 V and the switching frequency was 100 kHz.
  • a 50 Hz sine wave with a modulation factor of 0.6 was used as the output of the inverter.
  • FIG. 8 is a diagram for explaining a common mode voltage waveform.
  • FIG. 8A shows an inverter output when the common mode voltage is not suppressed.
  • FIGS. 8B and 8C show common mode voltages suppressed by the common mode suppression circuits 7 and 7 # according to the first and second embodiments.
  • the reference potential is the neutral point of the inverter power supply. As shown in the configuration, the amplitude of 200 V shown in FIG. 8A can be reduced to about 8 V in FIG. 8B if the spike voltage is ignored. Further, in FIG. 8C, the voltage can be reduced to about 2V.
  • FIG. 9 is a diagram for explaining the FFT analysis result of the common mode voltage.
  • FIG. 9A shows an FFT analysis result when the common mode voltage is not suppressed.
  • 9B and 9C show the FFT analysis results of the common mode voltage suppressed by the common mode suppression circuits 7 and 7 # based on the first and second embodiments.
  • FIG. 10 is a diagram for explaining the attenuation of the common mode voltage.
  • the attenuation amount at 100 kHz is attenuated to 10 dB up to 30 dB and 8 MHz.
  • the attenuation amount at 100 kHz is attenuated by 53 dB. Moreover, it has attenuated to 5 dB up to 8 Mhz.
  • the power converter including the voltage source PWM inverter according to the present invention is applied to a motor control system for operating an induction motor
  • a converter for example, a DC-DC converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力用半導体素子をスイッチング動作させて電力変換を行う電力変換装置であって、電力用半導体素子のスイッチング動作時に発生するコモンモード電圧を検出する電圧検出手段と、電圧検出手段により検出されたコモンモード電圧を電力増幅する回路によりコモンモード電圧と同じ大きさで逆極性の電圧を発生する電圧制御電源と、電圧制御電源より発生した電圧を電力変換装置の出力に重畳させて電力用半導体素子をスイッチング動作させる際に発生するスイッチング周波数以上のコモンモード電圧を相殺する電圧重畳手段とを備える。

Description

電力変換装置
 本発明は、電力変換装置、例えばインバータに代表される電力用半導体素子のスイッチング動作に基づいて電力変換を行う際に発生するコモンモード電圧を相殺する方式に関する。
 近年、例えばモータを負荷として運転制御する電圧形PWMインバータなどの電力変換装置においては、適用範囲の拡大と電力用半導体素子の特性向上に伴って電圧形PWMインバータのキャリア周波数の高周波化が進められている。
 しかし、かかる電圧形PWMインバータの高周波化が進むにつれて、電圧形PWMインバータが発生する電磁妨害(EMI:electromagnetic interference)が大きな問題となっている。
 電圧形PWMインバータが発生する電磁妨害の原因は、主として接地線を流れる電流にある。
 この点で、特開平10-94244号公報においては、能動素子を用いてインバータの出力コモンモード電圧を抑制し、漏れ電流を低減する方式が提案されている。
特開平10-94244号公報
 しかしながら、上記公報に記載される技術は、インバータの出力コモンモード電圧を0とするように抑制する方式であるため非常に大きなコモンモードトランスが必要となる。そのため回路規模が大きくなり小型化が困難であるという課題がある。
 本発明は、上記のような問題を解消するためなされたもので、回路規模を縮小して小型化が可能な電力変換装置を提供することを目的とする。
 本発明のある局面に従う電力用半導体素子をスイッチング動作させて電力変換を行う電力変換装置であって、電力用半導体素子のスイッチング動作時に発生するコモンモード電圧を検出する電圧検出手段と、電圧検出手段により検出されたコモンモード電圧を電力増幅する回路によりコモンモード電圧と同じ大きさで逆極性の電圧を発生する電圧制御電源と、電圧制御電源より発生した電圧を電力変換装置の出力に重畳させて電力用半導体素子をスイッチング動作させる際に発生するスイッチング周波数以上のコモンモード電圧を相殺する電圧重畳手段とを備える。
 好ましくは、電圧重畳手段は、多巻線を有するコモンモードトランスと、コンデンサとを含む。電圧重畳手段のコモンモードトランスとコンデンサとに基づく共振周波数は、電力用半導体素子の零相電圧周波数とスイッチング周波数との間に設定される。
 好ましくは、電力変換装置は、電圧重畳手段により重畳された電力変換装置および電圧制御電源のコモンモード電圧を検出する残留電圧検出手段をさらに備える。電圧重畳手段は、残留電圧検出手段により検出されたコモンモード電圧を加算して電力変換装置の出力に重畳する。
 好ましくは、残留電圧検出手段で検出されたコモンモード電圧と、コモンモード電圧の零相電圧との比較に基づいて反転増幅し、加算する電圧を調整する演算増幅器をさらに備える。
 本発明の電力変換装置は、回路規模を縮小して小型化が可能である。
実施形態1に基づくモータ制御システム1の構成を説明する図である。 実施形態1に基づくコモンモード抑制回路7のコモンモードに対する等価回路を説明する図である。 実施形態2に基づくモータ制御システム1#の構成を説明する図である。 実施形態2に基づくコモンモード抑制回路7#の電圧制御電源A#周辺の回路構成図である。 実施形態2に基づくコモンモード抑制回路7#の電圧制御電源A#周辺の等価回路を説明する図である。 実施形態2に基づくコモンモード抑制回路7#のコモンモードに対する等価回路を説明する図である。 電圧制御電源A#周辺の別の回路構成図である。 コモンモード電圧波形について説明する図である。 コモンモード電圧のFFT解析結果を説明する図である。 コモンモード電圧の減衰量を説明する図である。
 本実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。
 以下、本発明の実施の形態を図面を参照して説明する。
 [実施形態1]
 図1は、実施形態1に基づくモータ制御システム1の構成を説明する図である。
 図1を参照して、モータ制御システム1は、誘導電動機6と、本発明の電力変換装置2とを含む。
 電力変換装置2は、電圧形PWMインバータ4と、コモンモード電圧を抑制するコモンモード抑制回路7とを含む。
 電圧形PWMインバータ4(単にインバータとも称する)は、直流電源3と接続され、この直流電圧を電力用半導体素子(IGBT、SiC等)のスイッチング動作により三相の交流電圧に変換する。
 インバータ4により変換された交流電圧は、三相ケーブル5を介して誘導電動機(モータ)6に接続され、この誘導電動機6のフレームは接地線を介して接地電圧GNDと接続されている。
 インバータ4と誘導電動機(モータ)6との間にコモンモード抑制回路7が設けられる。
 コモンモード抑制回路7は、インバータ4の三相交流出力端にスター結線されてコモンモード電圧を検出するコンデンサ群8と、その中性点より得られるコモンモード電圧を電力増幅するコンプリメンタリのトランジスタを用いたプッシュプル形のエミッタフォロワ回路9と、このエミッタフォロワ回路9の出力を一次側コイルに入力し、その二次側コイルを三相ケーブル5に設けたコモンモードトランス11と、コモンモードトランス11の一次側コイルと直列に接続されたコンデンサ10とを含む。
 コモンモード抑制回路7は、駆動電源としてはインバータ4の入力側である直流電源3と接続される。
 エミッタフォロワ回路9は、直流電源3と直列に接続され、そのゲートがそれぞれコンデンサ群8と接続されるバイポーラトランジスタTr1,Tr2を含む。
 エミッタフォロワ回路9は、インバータ4のコモンモード電圧を忠実に出力可能な高速応答性と低い出力インピーダンス特性を有することが望ましい。
 なお、エミッタフォロワ回路9は、検出されたコモンモード電圧を電力増幅し、コモンモード電圧と同じ大きさで逆極性の電圧を発生する電圧制御電源を実現する。
 なお、コンデンサ群8のコンデンサは、インバータ4の電力用半導体素子の出力容量と同程度のコンデンサを使用することが望ましい。
 エミッタフォロワ回路9は入力インピーダンスが十分高いため、小さな容量のコンデンサを用いてもインバータ4のコモンモード電圧を十分な精度で検出することが可能である。
 また、エミッタフォロワ回路9の出力インピーダンスは十分に低いため、コモンモードトランス11の励磁電流Imはエミッタフォロワ回路9からのみ供給される。
 さらに、コモンモード抑制回路7の駆動電源としてインバータ4の入力側より大きな電源電圧を得ているため、コモンモードトランス11の一次側及び二次側の巻線の巻数比が1:1のものが使用される。
 次に、コモンモード電圧の抑制の方式について説明する。
 図2は、実施形態1に基づくコモンモード抑制回路7のコモンモードに対する等価回路を説明する図である。
 図2に示されるように、容量Cはモータの巻線とフレーム間の浮遊容量、インダクタンスLは経路全体の配線のインダクタンス、抵抗Rは経路全体の配線の抵抗成分を表している。励磁インダクタンスLm、巻線比1:1のトランスは、漏れインダクタンスを無視したコモンモードトランス11である。エミッタフォロワ回路9は、コモンモード電圧Vinvを入力し、それと同じ大きさの電圧Vcを出力する電圧制御電源Aで表すことができる。
 電圧Vinvはインバータ出力のコモンモード電圧である。電流Imは、コモンモードトランスの励磁電流である。電流Icは、モータに流れるコモンモード電流である。電圧Voは、コモンモード電圧を抑制した後のコモンモード電圧である。
 インバータ4の一相がスイッチングした場合には、インバータ4が出力するコモンモード電圧Vinvはステップ状に変化する。
 また、エミッタフォロワ回路9の出力端に接続されたコモンモードトランス11は漏れインダクタンスを無視して励磁インダクタンスLmのみで表している。また、コンデンサ10の容量C4が示されている。
 インバータ4がスイッチングされる毎に、インバータ4の出力零相電圧、すなわちコモンモード電圧がステップ状に変化する。これにより、コモンモード電流ICは誘導電動機(モータ)6の巻線とフレーム間の浮遊容量を通して接地線に流れる。
 コモンモード電圧Vinvには、零相電圧成分Vlowとスイッチング周波数以上の成分の電圧Vhiが含まれる。
 励磁インダクタンスLmと容量C4との共振周波数を、零相電圧周波数とスイッチング周波数との間となるようにコンデンサ10の容量C4の値を設定する。
 この場合、励磁インダクタンスLmに従ってコモンモード電圧に重畳する電圧Vtは、次式1で示される。
 Vt=Vhi・・・(式1)
 また、コンデンサ10に生じる電圧Vcapは、零相電圧成分Vlowに基づいて次式2で示される。
 Vcap=Vlow・・・(式2)
 また、インバータ出力のコモンモード電圧Vinvは、次式3で示される。
 Vinv=Vc・・・(式3)
 また、電圧Vcapは、次式4の関係を満たす。
 Vcap=Vc-Vt・・・(式4)
 さらに、コモンモード電圧は、次式5の関係を満たす。
 Vo=Vinv-Vt・・・(式5)
 式2、式4、式5に基づいて以下の関係となる。
 Vo=Vcap=Vlow
 当該式により、コモンモード電圧Voは、スイッチング周波数以上の成分が打ち消され零相電圧成分が残留する。
 したがって、実施形態1に従う方式により、インバータ出力のコモンモード電圧には低周波数の零相電圧成分が含まれる。低周波数の零相電圧成分は、ほとんど電磁妨害に影響を与えない。
 従来の方式では、このような低周波数の零相電圧成分も0とするように抑制するためには非常に大きなコモンモードトランスが必要となる。
 本実施形態1に基づく構成によれば、コモンモードトランス11にスイッチング周波数以上の成分のみを印加してスイッチング周波数以上のコモンモード電圧を相殺する。したがって、高周波帯域における電圧形PWMインバータが発生する電磁妨害を抑制することができる。
 そして、本実施形態1に基づく構成は、コモンモードトランス11にスイッチング周波数以上の成分のみを印加する構成であるためコモンモードトランス自体を小型化することが可能である。当該構成により、回路規模を縮小して電圧変換装置の小型化を図ることが可能である。
 [実施形態2]
 上記の実施形態1においては、理想的な電圧制御電源Aで、コモンモードトランスは漏れインダクタンスのない理想的な場合を例として説明した。
 一方で、実際には電圧制御電源Aは歪を発生し、コモンモードトランスには漏れインダクタンスや浮遊容量やコア材に起因する非線形性などが存在する。
 したがって、スイッチング周波数以上の成分のコモンモード電圧を完全に抑制することは難しい場合がある。
 本実施形態2においては、さらに精度の高いコモンモード電圧の低減を図る方式について説明する。
 具体的には、スイッチング周波数成分以上の残留コモンモード電圧を検出し、増幅してコモンモードトランス負側で加算する、フィードバック制御方式を採用する。これによりコモンモード電圧の低減をさらに図ることが可能である。
 図3は、実施形態2に基づくモータ制御システム1#の構成を説明する図である。
 図3を参照して、モータ制御システム1#は、誘導電動機6と、電力変換装置2#とを含む。
 電力変換装置2#は、電力変換装置2と比較してコモンモード抑制回路7をコモンモード抑制回路7#に置換した点が異なる。その他の構成については同様であるのでその詳細な説明については繰り返さない。
 コモンモード抑制回路7#は、コモンモード抑制回路7と比較して、コモンモードトランス11と誘導電動機6との間の三相ケーブル5にスター結線されて残留しているコモンモード電圧を検出するコンデンサ群8#と、演算増幅器OPと、抵抗R0,R1と、電力増幅するコンプリメンタリのトランジスタを用いたプッシュプル形のエミッタフォロワ回路9#と、コンデンサ10A,10Bと、直流電源3A,3Bとをさらに含む。
 エミッタフォロワ回路9#は、直流電源3と直列に接続され、そのゲートが演算増幅器OPの出力と接続されるバイポーラトランジスタTr3,Tr4を含む。
 バイポーラトランジスタTr1,Tr2の接続ノードと、バイポーラトランジスタTr3,Tr4の接続ノードとの間にコモンモードトランス11の一次側コイルが設けられる。
 コンデンサ10A,10Bは、直流電源3と直列に接続され、その接続ノードNAは、演算増幅器OPの一方側(+側)の入力と接続される。また、接続ノードNAは、直流電源3A,3Bとの間の接続ノードとも接続される。
 演算増幅器OPの他方側(-側)の入力は、抵抗R1を介してコンデンサ群8#と接続される。また、演算増幅器OPの他方側(-側)の入力と、エミッタフォロワ回路9#の出力との間には抵抗R0が設けられる。
 図4は、実施形態2に基づくコモンモード抑制回路7#の電圧制御電源A#周辺の回路構成図である。
 図4を用いて、電圧制御電源A#周辺の回路に流れる電流について説明する。
 抵抗R0は、高抵抗であるため電流I4はImより十分に小さい。
 したがって、コモンモードトランスの励磁電流Imは、エミッタフォロワ回路9#に流れる。
 エミッタフォロワ回路9#に流れる電流I5は、次式6を満たす。
 I5=Im/hfe・・・(式6)
 電流I4,I2は、電流I5より十分に小さいため、キルヒホッフの電流則より次式7が満たされる。
 I3=I5=Im/hfe・・・(式7)
 図5は、実施形態2に基づくコモンモード抑制回路7#の電圧制御電源A#周辺の等価回路を説明する図である。
 図5には、電圧制御電源A#は、演算増幅器OPとフローティング電源とエミッタフォロワ回路9#で構成される。演算増幅器OPは、零相電圧成分を基準電位とする反転アンプとして動作している。
 図6は、実施形態2に基づくコモンモード抑制回路7#のコモンモードに対する等価回路を説明する図である。
 図6に示されるように、コモンモードトランス11の励磁電流の1/hfe(電流増幅率)であるトランジスタTr3,Tr4のベース電流がコンデンサ10A,10Bを充放電し、励磁インダクタンスLmと、コンデンサ10A,10Bの合成容量C4とで共振回路が形成される。
 図2で説明した回路はフィードフォワード制御のみでコモンモード電圧を打ち消す方式について説明したが、実施形態2に基づく方式ではフィードフォワード制御のみでは打ち消しきれなかった残留コモンモード電圧をフィードバック制御によって打ち消す方式とする。
 また、図2の等価回路に対して、ゲインGの電圧制御電源A#が追加されている。
 上記の図2で説明した式4を変形すると次式8が満たされる。
 Vt=Vc-Vcap・・・(式8)
 電圧制御電源A#の出力Vceに従って、等価回路においては、次式9の関係を満たす。
 Vt=Vc+Vce-Vcap・・・(式9)
 電圧制御電源A#の出力Vceがフィードワード制御のみでは打ち消しきれなかった誤差電圧を補償する電圧となる。
 コモンモード電圧の大半は電圧Vcによって補償されるため、電圧Vceの振幅は電圧Vcの振幅に比べると十分小さい。よって電圧Vceの影響は無視でき、励磁電流Imは主に電圧Vcによって規定される。
 このため励磁インダクタンスLmと容量C4の共振周波数を、零相電圧周波数とスイッチング周波数の間になるように容量C4を設定すると、図2で説明したのと同様に次式10が満たされる。なお、容量C4は、コンデンサ10A,10Bの合成容量として示されている。
 Vcap=Vlow・・・(式10)
 電圧制御電源A#の入力Veは、次式11で表わされる。
 Ve=Vo-Vcap・・・(式11)
 つまり、式10に従えば、コモンモード電圧Voから零相電圧成分を除いたものとなる。
 電圧制御電源A#では、次式12で表わされる。
 Vce=GVe・・・(式12)
 ゲインGが十分大きい場合には、イマジナリーショートによりVeは0となる。
 従って、次式13が満たされる。
 Vo=Vcap=Vlow・・・(式13)
 この時Vceは誤差電圧と等しくなる。
 コモンモード電圧Voには零相電圧成分のみが残留する。
 電圧制御電源A#は、零相電圧成分を基準電位として動作し、振幅の小さい残留成分のみを入出力する。
 この共振回路により、電源中点と演算増幅器の増幅基準点であるノードNAの電位は、インバータの零相電圧と等しくなる。
 コンデンサ群8#(C6~C8)で検出された残留しているコモンモード電圧は、演算増幅器OPで反転増幅され、コモンモードトランス11に加算される。
 これらの動作により、インバータ負荷に印加されるコモンモード電圧が、インバータの零相電圧と等しくなるようにフィードバック制御が行なわれ、インバータ出力のコモンモード電圧のうちスイッチング周波数以上の成分のみがキャンセルされる。
 また、フィードバック制御に使用する演算増幅器の動作基準点(グラウンド)をインバータの出力コモンモード電圧の零相電圧とすることで、低耐圧、高速、安価な演算増幅器を使用することができる。
 図7は、電圧制御電源A#周辺の別の回路構成図である。
 図7に示されるように、エミッタフォロワ回路9#が演算増幅器OPと同様に、フローティング電源に接続されている構成である。
 当該構成においても、電圧制御電源A#の入力端子には電流が流れないため、コンデンサ10A,10Bに対してコモンモードトランスの励磁電流Imが流れる。
 抵抗R1を数kΩ以上にすれば電流I2は電流Imより十分に小さいため、キルヒホッフの電流則より次式が満たされる。
 I3=Im・・・(式14)
 図4の回路構成と比較すると、図4の回路構成の方がフローティング電源を流れる電流が小さいためフローティング電源の容量を小さくすることができる。また、コンデンサ10A,10Bを充放電する電流が小さいため、容量を小さくすることが可能である。当該構成により回路規模をさらに縮小することが可能である。
 [実施例]
 上記の実施形態1および2のインバータのコモンモード電圧の減衰特性を評価した場合について説明する。
 インバータの電源電圧を200V、スイッチング周波数を100kHzとした。変調率0.6の50Hzの正弦波をインバータの出力とした。
 なお、誘導電動機(モータ)6は接続せずに無負荷状態とした。
 図8は、コモンモード電圧波形について説明する図である。
 図8(A)は、コモンモード電圧を抑制しない場合のインバータ出力である。
 図8(B),(C)は、実施形態1および2に基づくコモンモード抑制回路7,7#により抑制したコモンモード電圧である。
 なお、基準電位は、インバータ電源の中性点としている。
 当該構成に示されるように、図8(A)で示される200Vの振幅が、図8(B)では、スパイク電圧を無視すれば約8V程度に低減することが可能である。さらに、図8(C)では、約2V程度に低減することが可能である。
 図9は、コモンモード電圧のFFT解析結果を説明する図である。
 図9(A)は、コモンモード電圧を抑制しない場合のFFT解析結果である。また、図9(B),(C)は、実施形態1および2に基づくコモンモード抑制回路7,7#により抑制したコモンモード電圧のFFT解析結果である。
 スイッチング周波数100kHzの整数倍成分が表れている。
 図10は、コモンモード電圧の減衰量を説明する図である。
 図10に示されるように、実施形態1の構成では、100kHzでの減衰量は、30dB、8MHzまでは10dBに減衰している。
 また、実施形態2の構成では、100kHzでの減衰量は、53dB減衰している。また、8Mhzまでは5dBに減衰している。
 したがって、実施形態2の構成の方が減衰量が大きい場合が示されている。
 当該図より明らかなように本実施形態1および2に基づくコモンモード抑制回路を用いた場合には、コモンモード電圧を抑制しコモンモード電流の低減に非常に効果的であることが分かる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明による電圧形PWMインバータを含む電力変換装置を誘導電動機を運転するモータ制御システムに適用する場合について述べたが、適用機器としては電力用半導体素子のスイッチング時にコモンモード電圧を発生する他の電力変換装置、例えばDC-DCコンバータに対しても同様に適用することが可能である。
 1,1# モータ制御システム、2,2# 電力変換装置、3,3A,3B 直流電源、4 インバータ、5 三相ケーブル、6 誘導電動機、7,7# コモンモード抑制回路、8,8# コンデンサ群、9,9# エミッタフォロワ回路、10,10A,10B コンデンサ、11 コモンモードトランス。

Claims (4)

  1.  電力用半導体素子をスイッチング動作させて電力変換を行う電力変換装置であって、
     前記電力用半導体素子のスイッチング動作時に発生するコモンモード電圧を検出する電圧検出手段と、
     前記電圧検出手段により検出されたコモンモード電圧を電力増幅する回路により前記コモンモード電圧と同じ大きさで逆極性の電圧を発生する電圧制御電源と、
     前記電圧制御電源より発生した電圧を前記電力変換装置の出力に重畳させて前記電力用半導体素子をスイッチング動作させる際に発生するスイッチング周波数以上のコモンモード電圧を相殺する電圧重畳手段とを備える、電力変換装置。
  2.  前記電圧重畳手段は、多巻線を有するコモンモードトランスと、コンデンサとを含み、
     前記電圧重畳手段の前記コモンモードトランスと前記コンデンサとに基づく共振周波数は、前記電力用半導体素子の零相電圧周波数と前記スイッチング周波数との間に設定される、請求項1記載の電力変換装置。
  3.  前記電圧重畳手段により重畳された前記電力変換装置および前記電圧制御電源のコモンモード電圧を検出する残留電圧検出手段をさらに備え、
     前記電圧重畳手段は、前記残留電圧検出手段により検出されたコモンモード電圧を加算して前記電力変換装置の出力に重畳する、請求項1記載の電力変換装置。
  4.  前記残留電圧検出手段で検出されたコモンモード電圧と、前記コモンモード電圧の零相電圧との比較に基づいて反転増幅し、前記加算する電圧を調整する演算増幅器をさらに備える、請求項3記載の電力変換装置。
PCT/JP2016/081892 2015-11-06 2016-10-27 電力変換装置 WO2017077939A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/765,318 US10700616B2 (en) 2015-11-06 2016-10-27 Power conversion device canceling a common mode voltage
CN201680064209.1A CN108377666B (zh) 2015-11-06 2016-10-27 电力转换装置
CA3001121A CA3001121C (en) 2015-11-06 2016-10-27 Power conversion device
EP16862000.3A EP3373437B8 (en) 2015-11-06 2016-10-27 Power conversion device
KR1020187012198A KR102147028B1 (ko) 2015-11-06 2016-10-27 전력 변환 장치
JP2017548732A JP6491349B2 (ja) 2015-11-06 2016-10-27 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-218306 2015-11-06
JP2015218306 2015-11-06

Publications (1)

Publication Number Publication Date
WO2017077939A1 true WO2017077939A1 (ja) 2017-05-11

Family

ID=58662002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081892 WO2017077939A1 (ja) 2015-11-06 2016-10-27 電力変換装置

Country Status (7)

Country Link
US (1) US10700616B2 (ja)
EP (1) EP3373437B8 (ja)
JP (1) JP6491349B2 (ja)
KR (1) KR102147028B1 (ja)
CN (1) CN108377666B (ja)
CA (1) CA3001121C (ja)
WO (1) WO2017077939A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286308A (zh) * 2017-07-19 2019-01-29 现代自动车株式会社 电子模块及具有该电子模块的车辆
JP2020114118A (ja) * 2019-01-14 2020-07-27 日理工業株式会社 電力補正装置及び電力補正方法
WO2020179064A1 (ja) * 2019-03-07 2020-09-10 東芝三菱電機産業システム株式会社 電力変換装置
JP2021108514A (ja) * 2019-12-27 2021-07-29 オムロン株式会社 ノイズフィルタ装置及び電力システム
WO2021229632A1 (ja) * 2020-05-11 2021-11-18 三菱電機株式会社 電力変換装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11329594B2 (en) * 2019-10-10 2022-05-10 Samsung Electronics Co., Ltd. Apparatus and control method for reducing leakage current and noise
WO2021245865A1 (ja) 2020-06-04 2021-12-09 三菱電機株式会社 ノイズフィルタ
US11095202B1 (en) * 2020-06-16 2021-08-17 Ge Aviation Systems Llc Method and apparatus for common-mode voltage cancellation
US20230378868A1 (en) 2020-11-11 2023-11-23 Mitsubishi Electric Corporation Noise filter
CN112564587A (zh) * 2020-11-23 2021-03-26 江苏科技大学 一种三相逆变器共模电压抑制电路
DE102022132445A1 (de) * 2022-12-07 2024-06-13 Schaeffler Technologies AG & Co. KG Wechselrichter mit aktivem EMI DM AC-Filter, Schaltung und Wechselrichtersystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984357A (ja) * 1995-09-19 1997-03-28 Yaskawa Electric Corp Pwmインバータ用フィルタ回路
JPH1094244A (ja) * 1996-09-18 1998-04-10 Okayama Univ アクティブコモンモードキャンセラ
JP2010057268A (ja) * 2008-08-28 2010-03-11 Fuji Electric Systems Co Ltd 伝導性ノイズフィルタ
WO2011002015A1 (ja) * 2009-07-01 2011-01-06 株式会社安川電機 モータドライブ装置
JP2015149731A (ja) * 2011-08-31 2015-08-20 ルネサスエレクトロニクス株式会社 半導体装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108786B (en) * 1981-11-05 1985-12-11 Sanyo Electric Co Induction heating apparatus
JPH1042585A (ja) * 1996-05-21 1998-02-13 Toshiba Corp 冷凍サイクル装置のインバータ装置および冷凍サイクル装置
MY117192A (en) * 1998-09-08 2004-05-31 Toshiba Kk Power conversion system.
JP2000201044A (ja) 1999-01-07 2000-07-18 Mitsubishi Electric Corp コモンモ―ドノイズ抑制装置
US6636107B2 (en) * 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
EP1220432A3 (en) * 2000-12-19 2003-01-29 Fuji Electric Co., Ltd. Noise reduction apparatus for electric power conversion apparatus
KR100403541B1 (ko) * 2001-06-29 2003-10-30 설승기 전도성 전자파장애 제거를 위한 능동형 공통모드 이엠아이 필터
WO2004045054A1 (ja) * 2002-11-11 2004-05-27 The Circle For The Promotion Of Science And Engineering フィルタ装置
JP4238638B2 (ja) * 2003-05-30 2009-03-18 株式会社明電舎 電力変換装置のノイズ低減装置
JP4503348B2 (ja) * 2004-04-28 2010-07-14 パナソニック株式会社 高周波加熱装置
TWI442621B (zh) 2007-01-19 2014-06-21 Murata Manufacturing Co High frequency parts
DE102008054487A1 (de) * 2008-01-09 2009-07-16 DENSO CORPORARTION, Kariya-shi Steuersystem für eine mehrphasige elektrische Drehmaschine
JP5254337B2 (ja) * 2008-07-30 2013-08-07 東芝三菱電機産業システム株式会社 電力変換装置
CN102187562B (zh) * 2008-10-16 2014-09-03 东芝三菱电机产业系统株式会社 功率转换装置
JP4725641B2 (ja) * 2008-12-17 2011-07-13 日本テキサス・インスツルメンツ株式会社 昇降圧型スイッチングレギュレータ
CN102474171B (zh) * 2009-08-19 2015-08-05 株式会社安川电机 输出滤波器和具有该输出滤波器的电动机驱动系统
KR101335129B1 (ko) * 2009-09-11 2013-12-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전력 변환 장치
EP2375552B1 (de) * 2010-04-07 2018-08-22 SMA Solar Technology AG Verfahren zur Betriebsführung eines Wechselrichters
WO2012026186A1 (ja) * 2010-08-26 2012-03-01 三菱電機株式会社 漏れ電流低減装置
WO2013111360A1 (ja) * 2012-01-27 2013-08-01 三菱電機株式会社 高周波電流低減装置
WO2013125083A1 (ja) * 2012-02-24 2013-08-29 アイシン・エィ・ダブリュ株式会社 レゾルバ励磁装置
CN103825474B (zh) * 2012-11-16 2016-08-31 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用系统
CN103036419A (zh) * 2012-11-28 2013-04-10 余姚亿威电子科技有限公司 一种共模电流抑制电路
JP5993886B2 (ja) * 2014-03-04 2016-09-14 株式会社豊田中央研究所 ノイズフィルタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984357A (ja) * 1995-09-19 1997-03-28 Yaskawa Electric Corp Pwmインバータ用フィルタ回路
JPH1094244A (ja) * 1996-09-18 1998-04-10 Okayama Univ アクティブコモンモードキャンセラ
JP2010057268A (ja) * 2008-08-28 2010-03-11 Fuji Electric Systems Co Ltd 伝導性ノイズフィルタ
WO2011002015A1 (ja) * 2009-07-01 2011-01-06 株式会社安川電機 モータドライブ装置
JP2015149731A (ja) * 2011-08-31 2015-08-20 ルネサスエレクトロニクス株式会社 半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373437A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286308B (zh) * 2017-07-19 2021-07-06 现代自动车株式会社 电子模块及具有该电子模块的车辆
CN109286308A (zh) * 2017-07-19 2019-01-29 现代自动车株式会社 电子模块及具有该电子模块的车辆
JP2020114118A (ja) * 2019-01-14 2020-07-27 日理工業株式会社 電力補正装置及び電力補正方法
JP7182268B2 (ja) 2019-01-14 2022-12-02 日理工業株式会社 電力補正装置及び電力補正方法
US11218069B2 (en) 2019-03-07 2022-01-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
CN112514241A (zh) * 2019-03-07 2021-03-16 东芝三菱电机产业系统株式会社 电力转换装置
JP6803478B1 (ja) * 2019-03-07 2020-12-23 東芝三菱電機産業システム株式会社 電力変換装置
WO2020179064A1 (ja) * 2019-03-07 2020-09-10 東芝三菱電機産業システム株式会社 電力変換装置
JP2021108514A (ja) * 2019-12-27 2021-07-29 オムロン株式会社 ノイズフィルタ装置及び電力システム
JP7396043B2 (ja) 2019-12-27 2023-12-12 オムロン株式会社 ノイズフィルタ装置及び電力システム
WO2021229632A1 (ja) * 2020-05-11 2021-11-18 三菱電機株式会社 電力変換装置
JPWO2021229632A1 (ja) * 2020-05-11 2021-11-18
JP7241970B2 (ja) 2020-05-11 2023-03-17 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
US10700616B2 (en) 2020-06-30
CA3001121A1 (en) 2017-05-11
KR20180059907A (ko) 2018-06-05
EP3373437B1 (en) 2021-02-24
US20180278176A1 (en) 2018-09-27
CN108377666A (zh) 2018-08-07
EP3373437A4 (en) 2019-07-10
EP3373437B8 (en) 2021-04-14
CA3001121C (en) 2021-01-12
KR102147028B1 (ko) 2020-08-21
CN108377666B (zh) 2020-12-08
JPWO2017077939A1 (ja) 2018-08-16
JP6491349B2 (ja) 2019-03-27
EP3373437A1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
JP6491349B2 (ja) 電力変換装置
JP2863833B2 (ja) アクティブコモンモードキャンセラ
EP2787618B1 (en) Voltage fed feed forward active EMI filter
US20110317455A1 (en) Leakage current reduction apparatus
JP2004534500A (ja) 伝導性電磁機器障害除去のためのアクティブコモンモードEMIフィルタ(ActiveCommonModeEMIFilterforEliminatingConductedElectromagneticinterference)
JP2002010650A (ja) コモンモード電流を低減するための能動フィルタ
WO2011125944A1 (ja) 漏れ電流低減装置
JP2010057268A (ja) 伝導性ノイズフィルタ
JP5454001B2 (ja) 電流抑制装置
JP6803478B1 (ja) 電力変換装置
Chang et al. Research and realization of a novel active common-mode EMI filter
JP5810765B2 (ja) ノイズ低減装置およびこれを備えた電力変換装置
WO2010004971A1 (ja) モータ駆動装置
WO2010082553A1 (ja) 出力フィルタを備えた電力変換装置
Paipodamonchai A study of an active EMI filter for suppression of leakage current in motor drive systems
JP5317032B2 (ja) 電力変換装置のノイズ低減装置
JP3468262B2 (ja) 三相電圧形インバータ
Ohara et al. A Hybrid Common-Mode Voltage Canceleration Using an Passive Filter and an Active Feedback Circuit for PWM Inverters
Ohara et al. An active common‐noise canceler combined with feedback control
JP2015076979A (ja) 漏れ電流抑制回路
Mei et al. Active cancellation of common-mode voltages on drives rated 460-V and higher
Khun et al. A simplified active Input EMI filter of common-mode voltage cancellation for induction motor drive
JP2010068647A (ja) 電力変換装置のノイズ低減装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15765318

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3001121

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017548732

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187012198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE