KR102147028B1 - 전력 변환 장치 - Google Patents

전력 변환 장치 Download PDF

Info

Publication number
KR102147028B1
KR102147028B1 KR1020187012198A KR20187012198A KR102147028B1 KR 102147028 B1 KR102147028 B1 KR 102147028B1 KR 1020187012198 A KR1020187012198 A KR 1020187012198A KR 20187012198 A KR20187012198 A KR 20187012198A KR 102147028 B1 KR102147028 B1 KR 102147028B1
Authority
KR
South Korea
Prior art keywords
voltage
common mode
conversion device
power conversion
power
Prior art date
Application number
KR1020187012198A
Other languages
English (en)
Other versions
KR20180059907A (ko
Inventor
사토시 오가사와라
슌스케 오하라
šœ스케 오하라
마사츠구 다케모토
유신 야마모토
Original Assignee
국립대학법인 홋가이도 다이가쿠
도시바 미쓰비시덴키 산교시스템 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립대학법인 홋가이도 다이가쿠, 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 filed Critical 국립대학법인 홋가이도 다이가쿠
Publication of KR20180059907A publication Critical patent/KR20180059907A/ko
Application granted granted Critical
Publication of KR102147028B1 publication Critical patent/KR102147028B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • H02M7/4818Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4826Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02M2001/123
    • H02M2007/4818
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

전력용 반도체 소자를 스위칭 동작시켜서 전력 변환을 행하는 전력 변환 장치이며, 전력용 반도체 소자의 스위칭 동작 시에 발생하는 커먼 모드 전압을 검출하는 전압 검출 수단과, 전압 검출 수단에 의해 검출된 커먼 모드 전압을 전력 증폭하는 회로에 의해 커먼 모드 전압과 동일한 크기로 역극성의 전압을 발생하는 전압 제어 전원과, 전압 제어 전원에 의해 발생한 전압을 전력 변환 장치의 출력에 중첩시켜서 전력용 반도체 소자를 스위칭 동작시킬 때 발생하는 스위칭 주파수 이상의 커먼 모드 전압을 상쇄하는 전압 중첩 수단을 구비한다.

Description

전력 변환 장치
본 발명은 전력 변환 장치, 예를 들어 인버터로 대표되는 전력용 반도체 소자의 스위칭 동작에 기초하여 전력 변환을 행할 때에 발생하는 커먼 모드 전압을 상쇄하는 방식에 관한 것이다.
근년, 예를 들어 모터를 부하로서 운전 제어하는 전압형 PWM 인버터 등의 전력 변환 장치에 있어서는, 적용 범위의 확대와 전력용 반도체 소자의 특성 향상에 수반하여 전압형 PWM 인버터의 캐리어 주파수의 고주파화가 진행되고 있다.
그러나, 이러한 전압형 PWM 인버터의 고주파화가 진행함에 따라서, 전압형 PWM 인버터가 발생하는 전자방해(EMI: electromagnetic interference)가 큰 문제가 되고 있다.
전압형 PWM 인버터가 발생하는 전자 방해의 원인은, 주로 접지선을 흐르는 전류에 있다.
이 점에서, 일본 특허 공개 평 10-94244호 공보에 있어서는, 능동소자를 사용하여 인버터의 출력 커먼 모드 전압을 억제하고, 누설 전류를 저감하는 방식이 제안되고 있다.
일본 특허 공개 평 10-94244호 공보
그러나, 상기 공보에 기재되는 기술은, 인버터의 출력 커먼 모드 전압을 0으로 되도록 억제하는 방식이기 때문에 매우 큰 커먼 모드 트랜스가 필요해진다. 그 때문에 회로 규모가 커져 소형화가 곤란하다는 과제가 있다.
본 발명은 상기와 같은 문제를 해소하기 위하여 이루어진 것으로, 회로 규모를 축소하여 소형화가 가능한 전력 변환 장치를 제공하는 것을 목적으로 한다.
본 발명의 한 국면에 따르는 전력용 반도체 소자를 스위칭 동작시켜서 전력 변환을 행하는 전력 변환 장치이며, 전력용 반도체 소자의 스위칭 동작 시에 발생하는 커먼 모드 전압을 검출하는 전압 검출 수단과, 전압 검출 수단에 의해 검출된 커먼 모드 전압을 전력 증폭하는 회로에 의해 커먼 모드 전압과 동일한 크기로 역극성의 전압을 발생하는 전압 제어 전원과, 전압 제어 전원에 의해 발생된 전압을 전력 변환 장치의 출력에 중첩시켜서 전력용 반도체 소자를 스위칭 동작시킬 때 발생하는 스위칭 주파수 이상의 커먼 모드 전압을 상쇄하는 전압 중첩 수단을 구비한다.
바람직하게는, 전압 중첩 수단은, 다권선을 갖는 커먼 모드 트랜스와, 콘덴서를 포함한다. 전압 중첩 수단의 커먼 모드 트랜스와 콘덴서에 기초하는 공진 주파수는, 전력용 반도체 소자의 영상 전압 주파수와 스위칭 주파수의 사이에 설정된다.
바람직하게는, 전력 변환 장치는, 전압 중첩 수단에 의해 중첩된 전력 변환 장치 및 전압 제어 전원의 커먼 모드 전압을 검출하는 잔류 전압 검출 수단을 더 구비한다. 전압 중첩 수단은, 잔류 전압 검출 수단에 의해 검출된 커먼 모드 전압을 가산하여 전력 변환 장치의 출력에 중첩한다.
바람직하게는, 잔류 전압 검출 수단에서 검출된 커먼 모드 전압과, 커먼 모드 전압의 영상 전압의 비교에 기초하여 반전 증폭하고, 가산되는 전압을 조정하는 연산 증폭기를 더 구비한다.
본 발명의 전력 변환 장치는, 회로 규모를 축소하여 소형화가 가능하다.
도 1은 실시 형태 1에 기초하는 모터 제어 시스템(1)의 구성을 설명하는 도면이다.
도 2는 실시 형태 1에 기초하는 커먼 모드 억제 회로(7)의 커먼 모드에 대한 등가 회로를 설명하는 도면이다.
도 3은 실시 형태 2에 기초하는 모터 제어 시스템(1#)의 구성을 설명하는 도면이다.
도 4는 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 전압 제어 전원(A#) 주변의 회로 구성도이다.
도 5는 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 전압 제어 전원(A#) 주변의 등가 회로를 설명하는 도면이다.
도 6은 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 커먼 모드에 대한 등가 회로를 설명하는 도면이다.
도 7은 전압 제어 전원(A#) 주변의 다른 회로 구성도이다.
도 8은 커먼 모드 전압 파형에 대하여 설명하는 도면이다.
도 9는 커먼 모드 전압의 FFT 해석 결과를 설명하는 도면이다.
도 10은 커먼 모드 전압의 감쇠량을 설명하는 도면이다.
본 실시 형태에 대해서, 도면을 참조하면서 상세하게 설명한다. 또한, 도면 중의 동일 또는 상당 부분에 대해서는, 동일 부호를 붙여서 그 설명은 반복하지 않는다.
이하, 본 발명의 실시 형태를 도면을 참조하여 설명한다.
[실시 형태 1]
도 1은, 실시 형태 1에 기초하는 모터 제어 시스템(1)의 구성을 설명하는 도면이다.
도 1을 참조하여, 모터 제어 시스템(1)은 유도 전동기(6)와, 본 발명의 전력 변환 장치(2)를 포함한다.
전력 변환 장치(2)는 전압형 PWM 인버터(4)와, 커먼 모드 전압을 억제하는 커먼 모드 억제 회로(7)를 포함한다.
전압형 PWM 인버터(4)(간단하게 인버터라고도 칭함)는 직류 전원(3)과 접속되고, 이 직류 전압을 전력용 반도체 소자(IGBT, SiC 등)의 스위칭 동작에 의해 삼상의 교류 전압으로 변환한다.
인버터(4)에 의해 변환된 교류 전압은, 삼상 케이블(5)을 통하여 유도 전동기(모터)(6)에 접속되고, 이 유도 전동기(6)의 프레임은 접지선을 거쳐서 접지 전압 GND와 접속되어 있다.
인버터(4)와 유도 전동기(모터)(6)의 사이에 커먼 모드 억제 회로(7)가 설치된다.
커먼 모드 억제 회로(7)는 인버터(4)의 삼상 교류 출력 단에 스타 결선되어서 커먼 모드 전압을 검출하는 콘덴서 군(8)과, 그 중성점에 의해 얻어지는 커먼 모드 전압을 전력 증폭하는 상보 트랜지스터를 사용한 푸시 풀형의 이미터 팔로워 회로(9)와, 이 이미터 팔로워 회로(9)의 출력을 1차측 코일로 입력하고, 그 2차측 코일을 삼상 케이블(5)에 설치한 커먼 모드 트랜스(11)와, 커먼 모드 트랜스(11)의 1차측 코일과 직렬로 접속된 콘덴서(10)를 포함한다.
커먼 모드 억제 회로(7)는 구동 전원으로서는 인버터(4)의 입력측인 직류 전원(3)과 접속된다.
이미터 팔로워 회로(9)는 직류 전원(3)과 직렬로 접속되어, 그 게이트가 각각 콘덴서 군(8)과 접속되는 바이폴라 트랜지스터(Tr1, Tr2)를 포함한다.
이미터 팔로워 회로(9)는 인버터(4)의 커먼 모드 전압을 충실하게 출력 가능한 고속 응답성과 낮은 출력 임피던스 특성을 갖는 것이 바람직하다.
또한, 이미터 팔로워 회로(9)는 검출된 커먼 모드 전압을 전력 증폭하고, 커먼 모드 전압과 동일한 크기로 역극성의 전압을 발생하는 전압 제어 전원을 실현한다.
또한, 콘덴서 군(8)의 콘덴서는, 인버터(4)의 전력용 반도체 소자의 출력 용량과 동일 정도의 콘덴서를 사용하는 것이 바람직하다.
이미터 팔로워 회로(9)는 입력 임피던스가 충분히 높기 때문에, 작은 용량의 콘덴서를 사용해도 인버터(4)의 커먼 모드 전압을 충분한 정밀도로 검출하는 것이 가능하다.
또한, 이미터 팔로워 회로(9)의 출력 임피던스는 충분히 낮기 때문에, 커먼 모드 트랜스(11)의 여자 전류 Im은 이미터 팔로워 회로(9)로부터만 공급된다.
추가로, 커먼 모드 억제 회로(7)의 구동 전원으로서 인버터(4)의 입력측보다 큰 전원 전압을 얻기 때문에, 커먼 모드 트랜스(11)의 1차측 및 2차측 권선의 권취수 비가 1:1인 것이 사용된다.
이어서, 커먼 모드 전압의 억제 방식에 대하여 설명한다.
도 2는, 실시 형태 1에 기초하는 커먼 모드 억제 회로(7)의 커먼 모드에 대한 등가 회로를 설명하는 도면이다.
도 2에 도시된 바와 같이, 용량 C는 모터의 권선과 프레임 사이의 부유 용량, 인덕턴스 L은 경로 전체의 배선의 인덕턴스, 저항 R은 경로 전체 배선의 저항 성분을 나타내고 있다. 여자 인덕턴스 Lm, 권선비 1:1의 트랜스는, 누설 인덕턴스를 무시한 커먼 모드 트랜스(11)이다. 이미터 팔로워 회로(9)는 커먼 모드 전압 Vinv를 입력하고, 그와 동일한 크기의 전압 Vc를 출력하는 전압 제어 전원 A로 나타낼 수 있다.
전압 Vinv는 인버터 출력의 커먼 모드 전압이다. 전류 Im은 커먼 모드 트랜스의 여자 전류이다. 전류 Ic는, 모터에 흐르는 커먼 모드 전류이다. 전압 Vo는, 커먼 모드 전압을 억제한 후의 커먼 모드 전압이다.
인버터(4)의 1상이 스위칭했을 경우에는, 인버터(4)가 출력하는 커먼 모드 전압 Vinv는 스텝 형상으로 변화한다.
또한, 이미터 팔로워 회로(9)의 출력 단에 접속된 커먼 모드 트랜스(11)는 누설 인덕턴스를 무시하고 여자 인덕턴스 Lm만으로 나타내고 있다. 또한, 콘덴서(10)의 용량 C4가 나타나 있다.
인버터(4)가 스위칭될 때마다, 인버터(4)의 출력 영상 전압, 즉 커먼 모드 전압이 스텝 형상으로 변화한다. 이에 의해, 커먼 모드 전류 IC는 유도 전동기(모터)(6)의 권선과 프레임 사이의 부유 용량을 통하여 접지선으로 흐른다.
커먼 모드 전압 Vinv에는, 영상 전압 성분 Vlow와 스위칭 주파수 이상의 성분의 전압 Vhi가 포함된다.
여자 인덕턴스 Lm과 용량 C4의 공진 주파수를, 영상 전압 주파수와 스위칭 주파수의 사이가 되도록 콘덴서(10)의 용량 C4의 값을 설정한다.
이 경우, 여자 인덕턴스 Lm을 따라서 커먼 모드 전압에 중첩하는 전압 Vt는, 다음 식 1로 나타낸다.
Vt=Vhi…(식 1)
또한, 콘덴서(10)에 발생하는 전압 Vcap은, 영상 전압 성분 Vlow에 기초하여 다음 식 2로 나타낸다.
Vcap=Vlow…(식 2)
또한, 인버터 출력의 커먼 모드 전압 Vinv는, 다음 식 3으로 나타낸다.
Vinv=Vc…(식 3)
또한, 전압 Vcap은, 다음 식 4의 관계를 만족시킨다.
Vcap=Vc-Vt…(식 4)
추가로, 커먼 모드 전압은, 다음 식 5의 관계를 만족시킨다.
Vo=Vinv-Vt…(식 5)
식 2, 식 4, 식 5에 기초하여 이하의 관계가 된다.
Vo=Vcap=Vlow
당해 식에 의해, 커먼 모드 전압 Vo는, 스위칭 주파수 이상의 성분이 소거되어 영상 전압 성분이 잔류한다.
따라서, 실시 형태 1을 따르는 방식에 의해, 인버터 출력의 커먼 모드 전압에는 저주파수의 영상 전압 성분이 포함된다. 저주파수의 영상 전압 성분은, 대부분 전자 방해에 영향을 주지 않는다.
종래의 방식에서는, 이러한 저주파수의 영상 전압 성분도 0으로 되도록 억제하기 위해서는 매우 큰 커먼 모드 트랜스가 필요해진다.
본 실시 형태 1에 기초하는 구성에 의하면, 커먼 모드 트랜스(11)에 스위칭 주파수 이상의 성분만을 인가하여 스위칭 주파수 이상의 커먼 모드 전압을 상쇄한다. 따라서, 고주파 대역에 있어서의 전압형 PWM 인버터가 발생하는 전자 방해를 억제할 수 있다.
그리고, 본 실시 형태 1에 기초하는 구성은, 커먼 모드 트랜스(11)에 스위칭 주파수 이상의 성분만을 인가하는 구성이기 때문에 커먼 모드 트랜스 자체를 소형화하는 것이 가능하다. 당해 구성에 의해, 회로 규모를 축소하여 전압 변환 장치의 소형화를 도모하는 것이 가능하다.
[실시 형태 2]
상기 실시 형태 1에 있어서는, 이상적인 전압 제어 전원 A에서, 커먼 모드 트랜스는 누설 인덕턴스가 없는 이상적일 경우를 예로 들어 설명하였다.
한편, 실제로는 전압 제어 전원 A는 왜곡을 발생하고, 커먼 모드 트랜스에는 누설 인덕턴스나 부유 용량이나 코어재에 기인하는 비선형성 등이 존재한다.
따라서, 스위칭 주파수 이상의 성분의 커먼 모드 전압을 완전히 억제하는 것은 어려울 경우가 있다.
본 실시 형태 2에 있어서는, 추가로 정밀도가 높은 커먼 모드 전압의 저감을 도모하는 방식에 대하여 설명한다.
구체적으로는, 스위칭 주파수 성분 이상의 잔류 커먼 모드 전압을 검출하고, 증폭하여 커먼 모드 트랜스 마이너스측에서 가산하는, 피드백 제어 방식을 채용한다. 이에 의해 커먼 모드 전압의 저감을 추가로 도모하는 것이 가능하다.
도 3은, 실시 형태 2에 기초하는 모터 제어 시스템(1#)의 구성을 설명하는 도면이다.
도 3을 참조하여, 모터 제어 시스템(1#)은, 유도 전동기(6)와, 전력 변환 장치(2#)를 포함한다.
전력 변환 장치(2#)는, 전력 변환 장치(2)와 비교하여 커먼 모드 억제 회로(7)를 커먼 모드 억제 회로(7#)로 치환한 점이 상이하다. 기타의 구성에 대해서는 마찬가지이므로 그 상세한 설명에 대해서는 반복하지 않는다.
커먼 모드 억제 회로(7#)는, 커먼 모드 억제 회로(7)와 비교하여, 커먼 모드 트랜스(11)와 유도 전동기(6)의 사이의 삼상 케이블(5)로 스타 결선되어서 잔류하는 커먼 모드 전압을 검출하는 콘덴서 군(8#)과, 연산 증폭기(OP)와, 저항(R0),(R1)과, 전력 증폭하는 상보 트랜지스터를 사용한 푸시 풀형의 이미터 팔로워 회로(9#)와, 콘덴서(10A, 10B)와, 직류 전원(3A, 3B)을 더 포함한다.
이미터 팔로워 회로(9#)는, 직류 전원(3)과 직렬로 접속되고, 그 게이트가 연산 증폭기(OP)의 출력과 접속되는 바이폴라 트랜지스터(Tr3, Tr4)를 포함한다.
바이폴라 트랜지스터(Tr1, Tr2)의 접속 노드와, 바이폴라 트랜지스터(Tr3, Tr4)의 접속 노드의 사이에 커먼 모드 트랜스(11)의 1차측 코일이 설치된다.
콘덴서(10A, 10B)는, 직류 전원(3)과 직렬로 접속되고, 그 접속 노드(NA)는, 연산 증폭기(OP)의 일방측(+측)의 입력과 접속된다. 또한, 접속 노드(NA)는, 직류 전원(3A, 3B)과의 사이의 접속 노드와도 접속된다.
연산 증폭기(OP)의 타방측(-측)의 입력은, 저항(R1)을 개재하여 콘덴서 군(8#)과 접속된다. 또한, 연산 증폭기(OP)의 타방측(-측)의 입력과, 이미터 팔로워 회로(9#)의 출력의 사이에는 저항(R0)이 설치된다.
도 4는, 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 전압 제어 전원(A#) 주변의 회로 구성도이다.
도 4를 사용하여, 전압 제어 전원(A#) 주변의 회로에 흐르는 전류에 대하여 설명한다.
저항(R0)은, 고저항이기 때문에 전류 I4는 Im보다 충분히 작다.
따라서, 커먼 모드 트랜스의 여자 전류 Im은, 이미터 팔로워 회로(9#)에 흐른다.
이미터 팔로워 회로(9#)에 흐르는 전류 I5는, 다음 식 6을 만족시킨다.
I5=Im/hfe…(식 6)
전류 I4, I2는, 전류 I5보다 충분히 작기 때문에, 키르히호프의 전류 법칙에 의해 다음 식 7이 만족된다.
I3=I5=Im/hfe…(식 7)
도 5는, 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 전압 제어 전원A# 주변의 등가 회로를 설명하는 도면이다.
도 5에는, 전압 제어 전원(A#)은, 연산 증폭기(OP)와 플로팅 전원과 이미터 팔로워 회로(9#)로 구성된다. 연산 증폭기(OP)는, 영상 전압 성분을 기준 전위로 하는 반전 증폭기로서 동작하고 있다.
도 6은, 실시 형태 2에 기초하는 커먼 모드 억제 회로(7#)의 커먼 모드에 대한 등가 회로를 설명하는 도면이다.
도 6에 도시된 바와 같이, 커먼 모드 트랜스(11)의 여자 전류가 1/hfe(전류증폭률)인 트랜지스터(Tr3, Tr4)의 베이스 전류가 콘덴서(10A, 10B)를 충방전하고, 여자 인덕턴스 Lm과, 콘덴서(10A, 10B)의 합성 용량 C4로 공진 회로가 형성된다.
도 2에서 설명한 회로는 피드 포워드 제어만으로 커먼 모드 전압을 소거하는 방식에 대하여 설명했지만, 실시 형태 2에 기초하는 방식에서는 피드 포워드 제어만으로는 완전히 소거되지 못한 잔류 커먼 모드 전압을 피드백 제어에 의해 소거하는 방식으로 한다.
또한, 도 2의 등가 회로에 대하여, 게인 G의 전압 제어 전원(A#)이 추가되어 있다.
상기 도 2에서 설명한 식 4를 변형하면 다음 식 8이 만족된다.
Vt=Vc-Vcap…(식 8)
전압 제어 전원(A#)의 출력 Vce에 따라, 등가 회로에 있어서는, 다음 식 9의 관계를 만족시킨다.
Vt=Vc+Vce-Vcap…(식 9)
전압 제어 전원(A#)의 출력 Vce가 피드 워드 제어만으로는 완전히 소거되지 못한 오차 전압을 보상하는 전압이 된다.
커먼 모드 전압의 대부분은 전압 Vc에 의해 보상되기 때문에, 전압 Vce의 진폭은 전압 Vc의 진폭에 비교하면 충분히 작다. 따라서 전압 Vce의 영향은 무시할 수 있고, 여자 전류 Im은 주로 전압 Vc에 의해 규정된다.
이 때문에 여자 인덕턴스 Lm과 용량 C4의 공진 주파수를, 영상 전압 주파수와 스위칭 주파수의 사이가 되도록 용량 C4를 설정하면, 도 2에서 설명한 것과 마찬가지로 다음 식 10이 만족된다. 또한, 용량 C4는, 콘덴서(10A, 10B)의 합성 용량으로서 표시되어 있다.
Vcap=Vlow…(식 10)
전압 제어 전원(A#)의 입력 Ve는, 다음 식 11로 표현된다.
Ve=Vo-Vcap…(식 11)
즉, 식 10에 따르면, 커먼 모드 전압 Vo로부터 영상 전압 성분을 제외한 것이 된다.
전압 제어 전원(A#)에서는, 다음 식 12로 표현된다.
Vce=GVe…(식 12)
게인 G가 충분히 큰 경우에는, 가상 단락에 의해 Ve는 0이 된다.
따라서, 다음 식 13이 만족된다.
Vo=Vcap=Vlow…(식 13)
이때 Vce는 오차 전압과 동등해진다.
커먼 모드 전압 Vo에는 영상 전압 성분만이 잔류한다.
전압 제어 전원(A#)은, 영상 전압 성분을 기준 전위로 하여 동작하고, 진폭이 작은 잔류 성분만을 입출력한다.
이 공진 회로에 의해, 전원 중점과 연산 증폭기의 증폭 기준점인 노드(NA)의 전위는, 인버터의 영상 전압과 동등해진다.
콘덴서 군(8#)(C6 내지 C8)으로 검출된 잔류하는 커먼 모드 전압은, 연산 증폭기(OP)에서 반전 증폭되고, 커먼 모드 트랜스(11)에 가산된다.
이들 동작에 의해, 인버터 부하에 인가되는 커먼 모드 전압이, 인버터의 영상 전압과 동등해지도록 피드백 제어가 행하여져, 인버터 출력의 커먼 모드 전압 중 스위칭 주파수 이상의 성분만이 캔슬된다.
또한, 피드백 제어에 사용하는 연산 증폭기의 동작 기준점(그라운드)을 인버터의 출력 커먼 모드 전압의 영상 전압으로 하는 점에서, 저내압, 고속, 저렴한 연산 증폭기를 사용할 수 있다.
도 7은, 전압 제어 전원(A#) 주변의 다른 회로 구성도이다.
도 7에 도시된 바와 같이, 이미터 팔로워 회로(9#)가 연산 증폭기(OP)와 마찬가지로, 플로팅 전원에 접속되어 있는 구성이다.
당해 구성에 있어서도, 전압 제어 전원(A#)의 입력 단자에는 전류가 흐르지 않기 때문에, 콘덴서(10A, 10B)에 대하여 커먼 모드 트랜스의 여자 전류 Im이 흐른다.
저항(R1)을 수 kΩ 이상으로 하면 전류 I2는 전류 Im보다 충분히 작기 때문에, 키르히호프의 전류 법칙에 의해 다음 식이 만족된다.
I3=Im…(식 14)
도 4의 회로 구성과 비교하면, 도 4의 회로 구성쪽이 플로팅 전원을 흐르는 전류가 작기 때문에 플로팅 전원의 용량을 작게 할 수 있다. 또한, 콘덴서(10A, 10B)를 충방전하는 전류가 작기 때문에, 용량을 작게 하는 것이 가능하다. 당해 구성에 의해 회로 규모를 더 축소하는 것이 가능하다.
[실시예]
상기 실시 형태 1 및 2의 인버터의 커먼 모드 전압의 감쇠 특성을 평가한 경우에 대하여 설명한다.
인버터의 전원 전압을 200V, 스위칭 주파수를 100kHz로 하였다. 변조율 0.6의 50Hz의 정현파를 인버터의 출력으로 하였다.
또한, 유도 전동기(모터)(6)는 접속하지 않고 무부하 상태로 하였다.
도 8은, 커먼 모드 전압 파형에 대하여 설명하는 도면이다.
도 8의 (A)는 커먼 모드 전압을 억제하지 않을 경우의 인버터 출력이다.
도 8의 (B), (C)는 실시 형태 1 및 2에 기초하는 커먼 모드 억제 회로(7, 7#)에 의해 억제한 커먼 모드 전압이다.
또한, 기준 전위는, 인버터 전원의 중성점으로 하고 있다.
당해 구성에 도시된 바와 같이, 도 8의 (A)에서 나타나는 200V의 진폭이, 도 8의 (B)에서는, 스파이크 전압을 무시하면 약 8V 정도로 저감하는 것이 가능하다. 또한, 도 8의 (C)에서는, 약 2V 정도로 저감하는 것이 가능하다.
도 9는, 커먼 모드 전압의 FFT 해석 결과를 설명하는 도면이다.
도 9의 (A)는 커먼 모드 전압을 억제하지 않는 경우의 FFT 해석 결과이다. 또한, 도 9의 (B), (C)는 실시 형태 1 및 2에 기초하는 커먼 모드 억제 회로(7, 7#)에 의해 억제한 커먼 모드 전압의 FFT 해석 결과이다.
스위칭 주파수 100kHz의 정수배 성분이 나타나 있다.
도 10은, 커먼 모드 전압의 감쇠량을 설명하는 도면이다.
도 10에 도시된 바와 같이, 실시 형태 1의 구성에서는, 100kHz에서의 감쇠량은, 30dB, 8MHz까지는 10dB로 감쇠한다.
또한, 실시 형태 2의 구성에서는, 100kHz에서의 감쇠량은, 53dB 감쇠한다. 또한, 8Mhz까지는 5dB로 감쇠한다.
따라서, 실시 형태 2의 구성쪽이 감쇠량이 큰 경우를 나타나고 있다.
당해 도면에 의해 명백해진 바와 같이 본 실시 형태 1 및 2에 기초하는 커먼 모드 억제 회로를 사용한 경우에는, 커먼 모드 전압을 억제해 커먼 모드 전류의 저감에 매우 효과적인 것을 알 수 있다.
금회 개시된 실시 형태는 모든 점에서 예시이며 제한적인 것이 아니라고 생각되어야 한다. 본 발명의 범위는, 상기한 설명이 아니라, 청구범위에 의해 나타나고, 청구범위와 균등의 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
본 발명에 의한 전압형 PWM 인버터를 포함하는 전력 변환 장치를 유도 전동기를 운전하는 모터 제어 시스템에 적용하는 경우에 대하여 설명했지만, 적용 기기로서는 전력용 반도체 소자의 스위칭시에 커먼 모드 전압을 발생하는 다른 전력 변환 장치, 예를 들어 DC-DC 컨버터에 대해서도 마찬가지로 적용하는 것이 가능하다.
1, 1#: 모터 제어 시스템
2, 2#: 전력 변환 장치
3, 3A, 3B: 직류 전원
4: 인버터
5: 삼상 케이블
6: 유도 전동기
7, 7#: 커먼 모드 억제 회로
8, 8#: 콘덴서 군
9, 9#: 이미터 팔로워 회로
10, 10A, 10B: 콘덴서
11: 커먼 모드 트랜스.

Claims (4)

  1. 전력용 반도체 소자를 스위칭 동작시켜서 전력 변환을 행하는 전력 변환 장치이며,
    상기 전력용 반도체 소자의 스위칭 동작 시에 발생하는 커먼 모드 전압을 검출하는 전압 검출 수단과,
    상기 전압 검출 수단에 의해 검출된 커먼 모드 전압을 전력 증폭하는 회로에 의해 상기 커먼 모드 전압과 동일한 크기로 역극성의 전압을 발생하는 전압 제어 전원과,
    상기 전압 제어 전원에 의해 발생된 전압을 상기 전력 변환 장치의 출력에 중첩시켜서 상기 전력용 반도체 소자를 스위칭 동작시킬 때 발생하는 스위칭 주파수 이상의 커먼 모드 전압을 상쇄하는 전압 중첩 수단과,
    상기 전압 중첩 수단에 의해 중첩된 상기 전력 변환 장치 및 상기 전압 제어 전원의 커먼 모드 전압을 검출하는 잔류 전압 검출 수단을 구비하고,
    상기 전압 중첩 수단은 커먼 모드 트랜스를 포함하고, 상기 커먼 모드 트랜스의 1차측 코일의 일단 측에 상기 전압 검출 수단의 출력이 전기적으로 접속되고, 상기 커먼 모드 트랜스의 1차측 코일의 타단 측에 상기 잔류 전압 검출 수단의 출력이 전기적으로 접속되고,
    상기 전압 중첩 수단은, 상기 잔류 전압 검출 수단에 의해 검출된 커먼 모드 전압을 가산하여 상기 전력 변환 장치의 출력에 중첩하는, 전력 변환 장치.
  2. 제1항에 있어서,
    상기 전압 중첩 수단은, 콘덴서를 더 포함하고,
    상기 전압 중첩 수단의 상기 커먼 모드 트랜스와 상기 콘덴서에 기초하는 공진 주파수는, 상기 전력용 반도체 소자의 영상 전압 주파수와 상기 스위칭 주파수의 사이에 설정되는, 전력 변환 장치.
  3. 삭제
  4. 제1항에 있어서,
    상기 잔류 전압 검출 수단에서 검출된 커먼 모드 전압과, 상기 커먼 모드 전압의 영상 전압의 비교에 기초하여 반전 증폭하고, 상기 가산되는 전압을 조정하는 연산 증폭기를 더 구비하는, 전력 변환 장치.
KR1020187012198A 2015-11-06 2016-10-27 전력 변환 장치 KR102147028B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2015-218306 2015-11-06
JP2015218306 2015-11-06
PCT/JP2016/081892 WO2017077939A1 (ja) 2015-11-06 2016-10-27 電力変換装置

Publications (2)

Publication Number Publication Date
KR20180059907A KR20180059907A (ko) 2018-06-05
KR102147028B1 true KR102147028B1 (ko) 2020-08-21

Family

ID=58662002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187012198A KR102147028B1 (ko) 2015-11-06 2016-10-27 전력 변환 장치

Country Status (7)

Country Link
US (1) US10700616B2 (ko)
EP (1) EP3373437B8 (ko)
JP (1) JP6491349B2 (ko)
KR (1) KR102147028B1 (ko)
CN (1) CN108377666B (ko)
CA (1) CA3001121C (ko)
WO (1) WO2017077939A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338574B1 (ko) * 2017-07-19 2021-12-14 현대자동차주식회사 전자 모듈 이를 포함하는 차량
JP7182268B2 (ja) * 2019-01-14 2022-12-02 日理工業株式会社 電力補正装置及び電力補正方法
CN112514241A (zh) * 2019-03-07 2021-03-16 东芝三菱电机产业系统株式会社 电力转换装置
US11329594B2 (en) * 2019-10-10 2022-05-10 Samsung Electronics Co., Ltd. Apparatus and control method for reducing leakage current and noise
JP7396043B2 (ja) * 2019-12-27 2023-12-12 オムロン株式会社 ノイズフィルタ装置及び電力システム
WO2021229632A1 (ja) * 2020-05-11 2021-11-18 三菱電機株式会社 電力変換装置
WO2021245865A1 (ja) 2020-06-04 2021-12-09 三菱電機株式会社 ノイズフィルタ
US11095202B1 (en) * 2020-06-16 2021-08-17 Ge Aviation Systems Llc Method and apparatus for common-mode voltage cancellation
EP4246793A4 (en) 2020-11-11 2023-12-13 Mitsubishi Electric Corporation NOISE FILTER
CN112564587A (zh) * 2020-11-23 2021-03-26 江苏科技大学 一种三相逆变器共模电压抑制电路
DE102022132445A1 (de) * 2022-12-07 2024-06-13 Schaeffler Technologies AG & Co. KG Wechselrichter mit aktivem EMI DM AC-Filter, Schaltung und Wechselrichtersystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201044A (ja) * 1999-01-07 2000-07-18 Mitsubishi Electric Corp コモンモ―ドノイズ抑制装置
WO2008088040A1 (ja) 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. 高周波部品
US20120068655A1 (en) * 2009-08-19 2012-03-22 Kabushiki Kaisha Yaskawa Denki Output filter and motor drive system including the same

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2108786B (en) * 1981-11-05 1985-12-11 Sanyo Electric Co Induction heating apparatus
JP3596694B2 (ja) * 1995-09-19 2004-12-02 株式会社安川電機 Pwmインバータ用フィルタ回路
JPH1042585A (ja) * 1996-05-21 1998-02-13 Toshiba Corp 冷凍サイクル装置のインバータ装置および冷凍サイクル装置
JP2863833B2 (ja) * 1996-09-18 1999-03-03 岡山大学長 アクティブコモンモードキャンセラ
MY117192A (en) * 1998-09-08 2004-05-31 Toshiba Kk Power conversion system.
US6636107B2 (en) * 2000-03-28 2003-10-21 International Rectifier Corporation Active filter for reduction of common mode current
EP1220432A3 (en) * 2000-12-19 2003-01-29 Fuji Electric Co., Ltd. Noise reduction apparatus for electric power conversion apparatus
KR100403541B1 (ko) * 2001-06-29 2003-10-30 설승기 전도성 전자파장애 제거를 위한 능동형 공통모드 이엠아이 필터
AU2002368340A1 (en) * 2002-11-11 2004-06-03 The Circle For The Promotion Of Science And Engineering Filter device
JP4238638B2 (ja) * 2003-05-30 2009-03-18 株式会社明電舎 電力変換装置のノイズ低減装置
JP4503348B2 (ja) * 2004-04-28 2010-07-14 パナソニック株式会社 高周波加熱装置
DE102008054487A1 (de) * 2008-01-09 2009-07-16 DENSO CORPORARTION, Kariya-shi Steuersystem für eine mehrphasige elektrische Drehmaschine
CA2732352C (en) * 2008-07-30 2014-03-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
JP5263663B2 (ja) * 2008-08-28 2013-08-14 富士電機株式会社 伝導性ノイズフィルタ
CN102187562B (zh) * 2008-10-16 2014-09-03 东芝三菱电机产业系统株式会社 功率转换装置
JP4725641B2 (ja) * 2008-12-17 2011-07-13 日本テキサス・インスツルメンツ株式会社 昇降圧型スイッチングレギュレータ
CN102474218B (zh) * 2009-07-01 2014-09-17 株式会社安川电机 电动机驱动装置
KR101335129B1 (ko) * 2009-09-11 2013-12-03 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전력 변환 장치
EP2375552B1 (de) * 2010-04-07 2018-08-22 SMA Solar Technology AG Verfahren zur Betriebsführung eines Wechselrichters
WO2012026186A1 (ja) * 2010-08-26 2012-03-01 三菱電機株式会社 漏れ電流低減装置
JP5714455B2 (ja) * 2011-08-31 2015-05-07 ルネサスエレクトロニクス株式会社 半導体集積回路
JPWO2013111360A1 (ja) * 2012-01-27 2015-05-11 三菱電機株式会社 高周波電流低減装置
DE112012005053B4 (de) * 2012-02-24 2019-05-16 Aisin Aw Co., Ltd. Drehmeldererregungsvorrichtung
CN103825474B (zh) * 2012-11-16 2016-08-31 台达电子工业股份有限公司 低共模噪声的电源变换装置及其应用系统
CN103036419A (zh) * 2012-11-28 2013-04-10 余姚亿威电子科技有限公司 一种共模电流抑制电路
JP5993886B2 (ja) * 2014-03-04 2016-09-14 株式会社豊田中央研究所 ノイズフィルタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201044A (ja) * 1999-01-07 2000-07-18 Mitsubishi Electric Corp コモンモ―ドノイズ抑制装置
WO2008088040A1 (ja) 2007-01-19 2008-07-24 Murata Manufacturing Co., Ltd. 高周波部品
US20120068655A1 (en) * 2009-08-19 2012-03-22 Kabushiki Kaisha Yaskawa Denki Output filter and motor drive system including the same

Also Published As

Publication number Publication date
CA3001121A1 (en) 2017-05-11
JP6491349B2 (ja) 2019-03-27
CN108377666B (zh) 2020-12-08
EP3373437A1 (en) 2018-09-12
EP3373437B8 (en) 2021-04-14
KR20180059907A (ko) 2018-06-05
EP3373437A4 (en) 2019-07-10
CN108377666A (zh) 2018-08-07
US20180278176A1 (en) 2018-09-27
CA3001121C (en) 2021-01-12
JPWO2017077939A1 (ja) 2018-08-16
EP3373437B1 (en) 2021-02-24
WO2017077939A1 (ja) 2017-05-11
US10700616B2 (en) 2020-06-30

Similar Documents

Publication Publication Date Title
KR102147028B1 (ko) 전력 변환 장치
JP2863833B2 (ja) アクティブコモンモードキャンセラ
EP2787618B1 (en) Voltage fed feed forward active EMI filter
US9136759B2 (en) DC-DC converter with circuit for reproducing a current flowing through a storage inductor
US8649193B2 (en) Leakage current reducing apparatus
US20110317455A1 (en) Leakage current reduction apparatus
JP2010057268A (ja) 伝導性ノイズフィルタ
JPWO2012026186A1 (ja) 漏れ電流低減装置
JP2002010650A (ja) コモンモード電流を低減するための能動フィルタ
Liu et al. Impacts of high frequency, high di/dt, dv/dt environment on sensing quality of GaN based converters and their mitigation
US11218069B2 (en) Power conversion device
JP2005124339A (ja) ノイズ低減装置及び電力変換装置
US9344006B2 (en) Driving circuit for a transistor
JP5810765B2 (ja) ノイズ低減装置およびこれを備えた電力変換装置
JP2003174777A (ja) ノイズ低減装置及び電力変換装置
US7916509B2 (en) Power supply with reduced switching losses by decreasing the switching frequency
WO2010082553A1 (ja) 出力フィルタを備えた電力変換装置
JP5317032B2 (ja) 電力変換装置のノイズ低減装置
JP2003250270A (ja) 増幅回路、ノイズ低減装置及び電力変換装置
JP5334014B2 (ja) 電力変換装置のノイズ低減装置
CN106787764B (zh) 一种dc/dc的装置
Mei et al. Active cancellation of common-mode voltages on drives rated 460-V and higher
JP3804825B2 (ja) 電力変換装置のノイズ低減装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right