WO2017074113A1 - 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법 - Google Patents

진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법 Download PDF

Info

Publication number
WO2017074113A1
WO2017074113A1 PCT/KR2016/012279 KR2016012279W WO2017074113A1 WO 2017074113 A1 WO2017074113 A1 WO 2017074113A1 KR 2016012279 W KR2016012279 W KR 2016012279W WO 2017074113 A1 WO2017074113 A1 WO 2017074113A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
case
accommodating case
optical
vibration
Prior art date
Application number
PCT/KR2016/012279
Other languages
English (en)
French (fr)
Inventor
이경하
전인수
정영태
이인석
한승환
김재민
엄기윤
Original Assignee
주식회사 토비스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 토비스 filed Critical 주식회사 토비스
Priority to US15/770,758 priority Critical patent/US10267986B2/en
Publication of WO2017074113A1 publication Critical patent/WO2017074113A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/25Preparing the ends of light guides for coupling, e.g. cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects

Definitions

  • the present invention relates to an optical fiber plate manufacturing apparatus and an optical fiber plate manufacturing method for manufacturing an optical fiber plate for delivering an image by collecting the optical fiber.
  • optical fiber is a cable for transmitting light, and as optical technology advances, its utilization is increasing.
  • Conventional display magnification apparatus has a form of a cross-section of the light transmission medium for transmitting the light irradiated to the input terminal to the output terminal cross-section corresponding to the screen of the display device and forming a larger photo bundle than the screen, and forming the photo bundle It was produced including the step of pressing the cross-section of at least one pressing point of the longitudinal direction of the light-transmitting bundle formed in the step to a size corresponding to the screen of the display device.
  • the emission surface of the photoelectric bundle was made larger than the entrance surface, and the image was enlarged.
  • the present invention has been made to solve the problems as described above, the problem to be solved by the present invention is easy to manufacture, to minimize the distortion of the light to produce a fiber plate by vibration that can transmit light of uniform quality It is to provide a device and a method for manufacturing an optical fiber plate.
  • the apparatus for manufacturing an optical fiber plate according to an embodiment of the present invention for achieving the above object is an optical fiber supply unit for supplying an optical fiber, an optical fiber cutting unit for cutting the optical fiber supplied from the optical fiber supply to a predetermined size, the predetermined And an optical fiber accommodating case for collecting and accommodating the optical fibers cut in a predetermined direction, and an optical fiber alignment unit for arranging the optical fibers accommodated in the optical fiber accommodating case by vibration to minimize the gap therebetween.
  • the optical fiber supply unit may include a supply roll for winding and supplying the optical fiber, and a heating unit for heating the straight fiber to be straightened and supplied.
  • It may include a feed molding roller for guiding the optical fiber heated in the heating unit to the optical fiber cutting unit and at the same time to pull the optical fiber straight.
  • the optical fiber alignment unit may include a vibration mechanism for vibrating and aligning the optical fiber accommodated in the optical fiber accommodating case, or a pressing mechanism for pressing and aligning the optical fiber accommodated in the optical fiber accommodating case.
  • the optical fiber accommodating case may have a rectangular box shape, and may include a case rotating mechanism for rotating one of both sides of the lower end corresponding to the longitudinal direction of the optical fiber accommodated in the optical fiber accommodating case to be positioned at the lowest position.
  • It may include a bonding liquid supply unit for supplying a bonding liquid to the optical fiber case so that the optical fibers accommodated in the optical fiber case are bonded to each other.
  • an optical fiber plate In a method of manufacturing an optical fiber plate according to an embodiment of the present invention, cutting the optical fiber to a predetermined size, accommodating the cut optical fiber in a predetermined direction in an optical fiber accommodating case, and applying vibration to the optical fiber accommodated in the optical fiber accommodating case. And aligning the optical fiber, and supplying a bonding liquid to the aligned optical fiber and curing the optical fiber.
  • Aligning the optical fiber may be aligned by vibrating or pressing the optical fiber.
  • the aligning of the optical fiber may include the optical fiber accommodating case such that either side of the lower side corresponding to the longitudinal direction of the optical fiber accommodated in the optical fiber accommodating case is positioned at the lowest position while the optical fiber is partially filled in the optical fiber accommodating case. It may include the step of rotating.
  • step of supplying and curing the bonding liquid after the rotating of the optical fiber accommodating case, supplying the bonding liquid first so that the optical fibers filled in the optical fiber accommodating case are bonded to each other. And rotating the optical fiber accommodating case to an initial state to fill an optical fiber in the remaining part of the optical fiber accommodating case, and bonding the optical fibers filled in the other part in the state where the optical fiber is filled in the remaining part of the optical fiber accommodating case. It may include the step of supplying secondary.
  • cutting or bonding a plurality of optical fibers bonded to the optical fiber accommodating case may include forming a predetermined shape.
  • the step of supplying and curing the bonding liquid may include the step of polishing the exit surface or forming a uniform surface layer so that light is emitted from the exit surface of the optical fiber is emitted.
  • the present invention by uniformly aligning the optical fiber by the vibration to manufacture the optical fiber plate, not only can transmit light uniformly as a whole, but also can easily manufacture the optical fiber plate.
  • FIG. 1 is a schematic configuration diagram of an apparatus for manufacturing an optical fiber plate by vibration according to an embodiment of the present invention.
  • Figure 2 is a view showing a rotating state of the optical fiber receiving case constituting the optical fiber plate manufacturing apparatus by vibration according to an embodiment of the present invention.
  • FIG 3 is a view showing a state in which the optical fiber is aligned by the optical fiber alignment unit when the optical fiber accommodating case of the optical fiber plate manufacturing apparatus according to the embodiment of the present invention is configured to rotate.
  • FIG. 4 is a view illustrating a process of supplying a bonding liquid by a bonding liquid supply unit when the optical fiber accommodating case of the apparatus for manufacturing an optical fiber plate due to vibration according to an embodiment of the present invention is rotated.
  • FIG. 5 is a view showing a process of manufacturing an optical fiber plate by cutting the optical fiber bundle produced by the optical fiber plate manufacturing apparatus by vibration according to an embodiment of the present invention.
  • FIG. 6 is a view showing a state in which a uniform surface layer is formed on the optical fiber plate manufactured by the optical fiber plate manufacturing apparatus by vibration according to an embodiment of the present invention.
  • vibration plate manufacturing apparatus 110 optical fiber supply unit
  • optical fiber housing case 155 case rotation mechanism
  • optical fiber alignment unit 171 pressing mechanism
  • Vibration Mechanism 190 Bonding Liquid Supply Part
  • optical fiber plate 210 optical fiber
  • the optical fiber plate manufacturing apparatus 100 may include an optical fiber supply unit 110.
  • the optical fiber supply unit 110 may supply an optical fiber 210 for manufacturing the optical fiber plate 200.
  • the optical fiber supply unit 110 may include the optical fiber 210 supply roll 111.
  • the supply roll 111 can release and supply the optical fiber 210 in a state in which the optical fiber 210 is wound.
  • the optical fiber 210 may be a plastic optical fiber (POF) that can be flexibly bent instead of glass fiber.
  • PPF plastic optical fiber
  • the optical fiber supply unit 110 may include a heating unit 113.
  • the heating unit 113 may be heated so that the optical fiber 210 wound on the supply roll 111 is in a flow state.
  • the heating unit 113 may heat the optical fiber 210 to be straightened.
  • the heating unit 113 may be heated by an electrical method such as a heating wire, the heating unit 113 may heat the optical fiber 210 to a temperature capable of plastic deformation.
  • the optical fiber supply unit 110 may include a supply molding roller 115.
  • the supply molding roller 115 may supply the optical fiber 210 wound on the supply roll 111 to the optical fiber accommodating case 150.
  • the supply molding roller 115 is provided with a pair so as to rotate in engagement with each other, the optical fiber 210 is sandwiched between the pair of supply molding roller 115, as the supply molding roller 115 rotates
  • the optical fiber 210 bitten by the supply molding roller 115 may be forcibly released from the supply roll 111 and moved to the optical fiber accommodating case 150.
  • the supply molding roller 115 may be driven by an electric motor, and the supply molding roller 115 may be supplied to the optical fiber accommodating case 150 after the optical fiber 210 is heated by the heating unit 113.
  • the heating unit 113 may be located between the optical fiber accommodating case 150.
  • the supply molding roller 115 since the supply molding roller 115 is forcibly pulling and supplying the optical fiber 210 heated by the heating part 113, the supply molding roller 115 may be molded to straighten the optical fiber 210 which is flexible by the heat of the heating part 113. Can be.
  • the optical fiber plate manufacturing apparatus 100 by vibration may include an optical fiber cutout 130.
  • the optical fiber cutting unit 130 may cut the optical fiber 210 supplied through the optical fiber supply unit 110 by a predetermined length to supply the optical fiber accommodating case 150.
  • the optical fiber cutting unit 130 may be configured to cut the optical fiber 210 by moving up and down to interact with each other after a predetermined length between the pair of cutter blade is composed of a pair of cutter blades. .
  • the optical fiber cutout 130 is cut when the optical fiber 210 passes through the optical fiber cutout 130 by a predetermined length, and the optical fiber 210 is supplied so that the cut optical fiber 210 may be immediately accommodated in the optical fiber accommodating case 150. It may be installed in a portion of the optical fiber accommodation case 150.
  • the optical fiber plate manufacturing apparatus 100 by vibration may include an optical fiber receiving case 150.
  • the optical fiber accommodating case 150 may accommodate the optical fiber 210 cut by the optical fiber cutting unit 130.
  • the optical fiber accommodating case 150 may be formed so that the width of the optical fiber accommodating case 150 is smaller than the length of the optical fiber 210 which is cut so that the cut optical fiber 210 may be accommodated in a predetermined direction.
  • 150 may be formed in a rectangular box shape with an open top.
  • the optical fiber accommodating case 150 may include a case rotating mechanism 155.
  • the case rotating mechanism 155 may rotate the optical fiber accommodating case 150 so that the optical fiber 210 can be easily aligned.
  • the case rotating mechanism 155 rotates the optical fiber accommodating case 150 at an angle of 45 ° such that any one side of the lower sides of the optical fiber accommodating case 150 is located at the lowest position corresponding to the longitudinal direction of the optical fiber 210. It can be rotated to, it can be rotated to the initial state by rotating the rotated optical fiber receiving case 150 again.
  • the optical fibers 210 accommodated are optical fibers 210 so that the spacing is minimized.
  • the optical fiber 210 is stacked in order from the bottom, as shown in FIG. Can be arranged.
  • the optical fiber 210 when the optical fiber 210 is arranged in a lattice form, as shown in FIG. 3, for example, when the diameter of the optical fiber is formed in a size corresponding to the pixel of the display panel, pixel matching may be performed to provide a clearer image.
  • pixel matching is difficult, as shown in FIG. 2, the gaps are minimized between the optical fibers 210 so that the image displayed on the display panel may be transferred as much as possible to provide a clear image. have.
  • the case rotating mechanism 155 may be configured to directly rotate the optical fiber accommodating case 150 by an electric motor, or rotate by transmitting power of the driving motor by a power transmitting member such as a belt, a chain, or a gear, or the like. It may also be configured to rotate by a cylinder.
  • the case rotating mechanism 155 is a side wall located in the direction in which the optical fiber 210 of the optical fiber accommodating case 150 is supplied when the length of the cut optical fiber 210 is smaller than the length of the optical fiber accommodating case 150.
  • the optical fiber accommodating case 150 may be rotated forward or backward to which the optical fiber 210 is supplied so that the cut optical fiber 210 may be supported and aligned on the opposite sidewall.
  • the optical fiber accommodating case 150 is configured without the case rotating mechanism 155, the optical fiber accommodating case 150 is formed in a shape in which the lower end is sharply rotated in order to arrange the optical fiber 210 in a lattice form. You may.
  • the optical fiber plate manufacturing apparatus 100 by vibration may include an optical fiber alignment unit 170.
  • the optical fiber alignment unit 170 may align the optical fiber 210 such that the optical fiber 210 accommodated in the optical fiber accommodation case 150 is minimized and accommodated.
  • the optical fiber alignment unit 170 may include a vibration mechanism 173.
  • the vibrating mechanism 173 vibrates the optical fiber 210 accommodated in the optical fiber accommodating case 150 so that the optical fiber 210 can be aligned by its shape and its own weight.
  • the vibrating mechanism 173 is installed in the optical fiber accommodating case 150 to vibrate the optical fiber 210 accommodated in the form of vibrating the optical fiber accommodating case 150, or to vibrate the pressing mechanism 171 to be described below
  • the optical fiber 210 accommodated in the form may be vibrated.
  • the vibrating mechanism 173 may be implemented with a variety of known vibrators (vibrator).
  • optical fiber alignment unit 170 may include a pressing mechanism 171.
  • the pressing mechanism 171 prevents the optical fiber 210 from being separated from the optical fiber accommodating case 150 when the optical fiber 210 is aligned, and at the same time, the optical fiber accommodating case 150 may be easily aligned.
  • the optical fiber 210 accommodated in the can be pressed from the top.
  • the pressing mechanism 171 may be configured such that the pressing plate pressurizes the optical fiber 210 by the operating pressure of the cylinder.
  • the vibration mechanism 173 is installed on the pressing mechanism 171 to transmit the vibration to the optical fiber 210 in a state of pressing the optical fiber 210 accommodated in the optical fiber accommodating case 150 can be aligned by its own weight or shape. It may also be configured to.
  • the pressing mechanism 171 is preferably configured to pressurize only when the optical fiber 210 is aligned so as to be positioned therebetween so that the gap of the optical fiber 210 is minimized, as shown in FIG. 2.
  • the optical fiber plate manufacturing apparatus 100 by vibration may include a bonding liquid supply unit 190.
  • the bonding liquid supply unit 190 may supply the bonding liquid to the optical fiber accommodating case 150 such that the optical fibers 210 accommodated in the optical fiber accommodating case 150 are bonded to each other.
  • the bonding liquid may be an optical adhesive or a UV curing resin
  • the bonding liquid supply unit 190 may include a UV lamp for irradiating UV.
  • optical fiber plate 200 The manufacturing method of the optical fiber plate 200 according to the embodiment of the present invention will be described together while explaining the operations and effects between the respective components described above.
  • a heating part 113 is installed between the supply roll 111 and the optical fiber accommodating case 150, the heating part ( Between the 113 and the optical fiber accommodating case 150, a supply molding roller 115 for supplying the heated optical fiber 210 to the optical fiber accommodating case 150 and pulling the optical fiber 210 to straighten is formed.
  • the optical fiber accommodating case 150 is provided with an optical fiber cutting unit 130 for cutting the optical fiber 210 supplied by the supply molding roller 115 to a predetermined length
  • the optical fiber accommodating The case 150 is provided with an optical fiber alignment unit 170 for uniformly aligning the received optical fiber 210.
  • the optical fiber accommodating case 150 includes a case rotating mechanism 155
  • the side of the lower end corresponding to the longitudinal direction of the optical fiber 210 accommodated by the case rotating mechanism 155 rotates to the lowest position.
  • the optical fiber accommodating case 150 is provided with a bonding liquid supply unit 190 for supplying a bonding liquid to the aligned optical fibers 210.
  • the optical fiber 210 wound on the supply roll 111 is pulled by the supply molding roller 115 and released from the supply roll 111. 150) (see FIG. 1).
  • the optical fiber 210 released from the supply roll 111 is heated to a temperature capable of plastic deformation by the heating part 113, straightened by the supply molding roller 115, and supplied to the optical fiber accommodating case 150.
  • the optical fiber 210 supplied to the optical fiber accommodating case 150 is cut into a predetermined length by the optical fiber cutting unit 130 is accommodated in the optical fiber accommodating case 150, some optical fibers 210 in the optical fiber accommodating case 150 ) Is filled, the optical fiber alignment unit 170 is operated to uniformly align the optical fiber 210 accommodated in the optical fiber accommodating case 150 (see FIG. 2).
  • the optical fiber alignment unit 170 vibrates the optical fiber 210 accommodated in the optical fiber accommodating case 150 by the vibrating mechanism 173 to uniformly vibrate by the shape and the weight of the optical fiber 210,
  • the pressurizing mechanism 171 is pressed on the upper portion of the optical fiber 210 to minimize the gap, thereby preventing separation of the optical fiber 210 from the optical fiber accommodating case 150 and minimizing the gap between the optical fibers 210.
  • the optical fiber 210 when the optical fiber 210 is filled in a state where the bottom of the optical fiber accommodating case 150 is flat, the optical fiber 210 is aligned between the optical fibers 210 to be filled to minimize the gap between the optical fibers.
  • optical fiber alignment unit 170 may be configured such that any one of the vibrating mechanism 173 and the pressing mechanism 171 operates first, the other may be configured later to operate, both may be configured to work together,
  • the optical fiber alignment unit 170 may be configured to include only one of the vibration mechanism 173 and the pressing mechanism 171.
  • the pressing mechanism 171 is preferably configured or operated only when arranged to minimize the gap between the optical fibers 210, as shown in FIG.
  • the optical fiber receiving case 150 is configured to include a case rotating mechanism 155
  • the case rotating mechanism 155 is rotated so that any one side of both ends of the optical fiber receiving case 150 is located at the lowest position.
  • the optical fiber 210 may be cut and supplied, and the vibrating mechanism 173 may be operated to align the optical fiber 210 (see FIG. 3).
  • the optical fiber accommodating case 150 accommodates the optical fiber 210 in an inverted triangle shape, when the vibration is generated by the vibrating mechanism 173, Since the optical fibers 210 are sequentially stacked and aligned, the optical fibers 210 may be aligned in a lattice form to enable pixel matching.
  • the optical fiber accommodating case 150 When the optical fiber accommodating case 150 is configured to rotate, only the amount of the optical fiber 210 filled in the optical fiber 210 case does not exceed the sidewall of the optical fiber 210 case while the optical fiber accommodating case 150 is rotated. Some can be filled.
  • the bonding liquid supply unit 190 supplies the bonding liquid to the aligned optical fibers 210 so that the aligned optical fibers 210 may be bonded to each other.
  • the bonding liquid is rotated at an angle of 45 ° so that the lower side of the optical fiber accommodating case 150 is positioned at the lowest position.
  • Primary supply is cured, and the optical fiber 210 is filled in the remaining part while the rotated optical fiber accommodating case 150 is rotated back to the initial position, and the filled optical fiber 210 is filled by the optical fiber alignment unit 170.
  • the optical fiber 210 may be configured to be filled in the optical fiber accommodating case 150 in a form in which the bonding liquid is secondarily supplied and cured in an aligned state (see FIG. 4).
  • the bonding liquid is supplied to the optical fiber accommodating case 150 to bond the optical fiber 210 to each other, the optical fiber 210 is removed from the optical fiber accommodating case 150 and the optical fiber 210 is cut by a predetermined height or length, The bundles 210 may be attached to each other to form a predetermined shape of the optical fiber plate 200.
  • the optical fiber plate 200 may be formed as a diffusion surface having a rough surface so that light incident on the surface to be used as the emission surface 213 may be diffused and emitted, and the diffusion surface is formed by a polishing process. can do.
  • the polishing treatment may be performed by a dry method by a mechanical method or a wet method by a chemical method.
  • the uniform surface layer 230 having a smooth surface may be formed on the emission surface 213 of the optical fiber plate 200, and the uniform surface layer 230 may form the uniform surface material as the emission surface ( 213), and may be formed of a uniform surface material may be an optical adhesive or a UV curing resin.
  • the uniform surface material may be formed of a material having the same refractive index as that of the optical fiber 210 to uniformly deflect the light diffused by the rough surface to provide a clear image.
  • the exit surface 213 formed with the polished exit surface 213 and the uniform surface layer 230 may have a haze value of 0.1% to 1%, or have a transmittance of 95% to 98% as a glass value. have.
  • the optical fiber 210 generally has a viewing angle of 120 ° at the center of the exit surface 213.
  • the optical fiber 210 may secure a viewing angle of 180 ° due to light diffusion. .
  • one side of the optical fiber plate 200 becomes an entrance surface 211 in the longitudinal direction of the optical fiber 210, and the other side of the optical fiber plate 200 is an exit surface 213 through which light incident on the entrance surface 211 is emitted.
  • the surface in contact with the display panel becomes the incident surface 211, and the surface in the opposite direction becomes the exit surface 213, rather than the surface of the display panel.
  • the optical fiber plate manufacturing apparatus 100 by vibration can easily manufacture the optical fiber plate 200, and uniformly arranges the optical fiber 210 by vibration to transmit light uniformly throughout.
  • the optical fiber plate 200 can be manufactured.
  • the optical fiber plate 200 may be polished or a uniform surface layer 230 may be formed to enlarge the viewing angle of the image.
  • the present invention can be used in various industrial fields such as optical field, display device field, advertising device field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명은 광섬유를 모아 영상을 전달하는 광섬유 플레이트를 제조하기 위한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법에 관한 것이다. 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트의 제조장치는 광섬유를 공급하는 광섬유 공급부, 상기 광섬유 공급부에서 공급되는 광섬유를 미리 설정된 크기로 절단하는 광섬유 절단부, 상기 미리 설정된 크기로 절단된 광섬유를 일정한 방향으로 모아 수용하는 광섬유 수용케이스, 및 상기 광섬유 수용케이스에 수용된 광섬유를 사이 간극이 최소화되도록 진동에 의해 정렬하는 광섬유 정렬부를 포함한다. 따라서 균일한 품질의 빛을 전달할 수 있는 광섬유 플레이트를 제조할 수 있다.

Description

진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법
본 발명은 광섬유를 모아 영상을 전달하는 광섬유 플레이트를 제조하기 위한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법에 관한 것이다.
일반적으로 광섬유는 빛을 전달하는 케이블로서, 광학기술이 발전하면서, 그 활용도가 높아지고 있다.
이러한 광섬유를 활용하는 일례로는 한국공개특허 제10-2006-0109672호(2006.10.23.공개)의 "디스플레이확대장치 및 이의 제조방법"가 개시된 바가 있다.
종래의 디스플레이확대장치는 입력단에 조사된 빛을 출력단으로 전달하는 광전달매체들을 단면이 디스플레이장치의 화면에 대응되는 형상을 가지며 상기 화면보다 큰 광전달다발을 형성하는 단계와, 상기 광전다발을 형성하는 단계에서 형성된 상기 광전달다발의 길이 방향 중 적어도 한 가압지점의 단면을 상기 디스플레이장치의 화면에 대응되는 크기로 가압 성형하는 단계를 포함하여 제조되었다.
이러한 방법으로 제조된 디스플레이확대장치는 광전다발의 출사면이 입사면보다 크게 제작되어 영상을 확대하여 볼 수 있었다.
하지만, 종래의 디스플레이확대장치의 제조방법은 광다발을 모을 때, 정렬하지 않고 묶음의 형태로 모아 제조하기 때문에 광섬유가 불규칙적으로 배열되어 출사면으로 출사되는 영상이 왜곡되어 깨끗한 품질의 영상을 얻기 어려운 문제점이 있었다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명이 해결하고자 하는 과제는 제작이 용이하며, 빛의 왜곡을 최소화시켜 균일한 품질의 빛을 전달할 수 있는 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법을 제공하는 것이다.
상기한 과제를 달성하기 위한 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트의 제조장치는 광섬유를 공급하는 광섬유 공급부, 상기 광섬유 공급부에서 공급되는 광섬유를 미리 설정된 크기로 절단하는 광섬유 절단부, 상기 미리 설정된 크기로 절단된 광섬유를 일정한 방향으로 모아 수용하는 광섬유 수용케이스, 및 상기 광섬유 수용케이스에 수용된 광섬유를 사이 간극이 최소화되도록 진동에 의해 정렬하는 광섬유 정렬부를 포함한다.
상기 광섬유 공급부는 상기 광섬유를 권취하여 공급하는 공급롤, 및 상기 공급롤에 감겨져 공급되는 광섬유가 곧게 펴지도록 가열하는 가열부를 포함할 수 있다.
상기 가열부에서 가열된 광섬유를 상기 광섬유 절단부로 안내하는 동시에 상기 광섬유를 당겨 곧게 펴는 공급성형롤러를 포함할 수 있다.
상기 광섬유 정렬부는 상기 광섬유 수용케이스에 수용된 광섬유를 진동시켜 정렬하는 진동기구, 또는 상기 광섬유 수용케이스에 수용된 광섬유를 가압하여 정렬하는 가압기구를 포함할 수 있다.
상기 광섬유 수용케이스는 사각의 박스 형상이고, 상기 광섬유 수용케이스에 수용된 광섬유의 길이방향과 대응되는 하단의 양변 중 어느 한 변이 가장 낮은 위치에 위치되도록 회전시키는 케이스 회전기구를 포함할 수 있다.
상기 광섬유 케이스에 수용된 광섬유가 서로 접착되도록 상기 광섬유 케이스에 본딩액을 공급하는 본딩액 공급부를 포함할 수 있다.
본 발명의 실시예에 따른 광섬유 플레이트 제조방법은 미리 설정된 크기로 광섬유를 절단하는 단계, 상기 절단된 광섬유를 광섬유 수용케이스에 일정한 방향으로 모아 수용시키는 단계, 상기 광섬유 수용케이스에 수용된 광섬유에 진동을 가하여 광섬유를 정렬시키는 단계, 및 상기 정렬된 광섬유에 본딩액을 공급하여 경화시키는 단계를 포함할 수 있다.
상기 광섬유를 정렬시키는 단계는 상기 광섬유를 진동 또는 가압하여 정렬할 수 있다.
상기 광섬유를 정렬시키는 단계는 상기 광섬유가 상기 광섬유 수용케이스에 일부만 채워진 상태에서 상기 광섬유 수용케이스에 수용된 광섬유의 길이방향과 대응되는 하단의 양 변 중 어느 한 변이 가장 낮은 위치에 위치되도록 상기 광섬유 수용케이스를 회전시키는 단계를 포함할 수 있다.
상기 본딩액을 공급하여 경화시키는 단계는 상기 광섬유 수용케이스를 회전시키는 단계 이후, 상기 광섬유 수용케이스에 채워진 광섬유가 서로 접착되도록 본딩액을 1차로 공급하는 단계, 상기 1차로 공급된 본딩액이 경화되면, 상기 광섬유 수용케이스를 초기 상태로 회전시켜 상기 광섬유 수용케이스의 나머지 일부에 광섬유를 채우는 단계, 및 상기 광섬유 수용케이스의 나머지 일부에 상기 광섬유가 채워진 상태에서 나머지 일부에 채워진 광섬유가 서로 접착되도록 본딩액을 2차로 공급하는 단계를 포함할 수 있다.
상기 본딩액을 공급하여 경화시키는 단계 이후, 상기 광섬유 수용케이스에 본딩된 광섬유를 절단 또는 복수 개를 접합시켜 미리 설정된 형상으로 형성하는 단계를 포함할 수 있다.
상기 본딩액을 공급하여 경화시키는 단계 이후, 상기 광섬유의 출사면에서 빛이 확산되어 출사되도록 상기 출사면을 폴리싱처리하거나, 균일면층을 형성하는 단계를 포함할 수 있다.
본 발명에 따르면, 진동에 의해 광섬유를 균일하게 정렬시켜 광섬유 플레이트를 제조함으로써, 전체적으로 균일하게 빛을 전달할 수 있을 뿐만 아니라, 광섬유 플레이트를 용이하게 제작할 수 있다.
또한, 광섬유 플레이트의 출사면에 폴리싱처리하거나, 균일면층을 형성하여 출사되는 영상의 시야각을 확대시킬 수 있다.
도 1은 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치에 관한 개략적인 구성도이다.
도 2는 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치를 구성하는 광섬유 수용케이스의 회전되는 상태를 나타내는 도면이다.
도 3은 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치의 광섬유 수용케이스가 회전하도록 구성된 경우, 광섬유 정렬부에 의해 광섬유를 정렬하는 상태를 나타내는 도면이다.
도 4는 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치의 광섬유 수용케이스가 회전하도록 구성된 경우, 본딩액 공급부에 의해 본딩액을 공급하는 과정을 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치에 의해 제조된 광섬유 다발을 절단하여 광섬유 플레이트를 제조하는 과정을 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치에 의해 제조된 광섬유 플레이트에 균일면층을 형성한 상태를 나타내는 도면이다.
*부호의 설명
100: 진동에 의한 광섬유 플레이트 제조장치 110: 광섬유 공급부
111: 공급롤 113: 가열부
115: 공급성형롤러 130: 광섬유 절단부
150: 광섬유 수용케이스 155: 케이스 회전기구
170: 광섬유 정렬부 171: 가압기구
173: 진동기구 190: 본딩액 공급부
200: 광섬유 플레이트 210: 광섬유
211: 입사면 213: 출사면
230: 균일면층
이하, 첨부된 도면을 참고하여 본 발명의 실시예를 설명하도록 한다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 광섬유 플레이트 제조장치(100)는 광섬유 공급부(110)를 포함할 수 있다.
이 광섬유 공급부(110)는 광섬유 플레이트(200)를 제조하기 위한 광섬유(210)를 공급할 수 있다.
한편, 광섬유 공급부(110)는 광섬유(210) 공급롤(111)을 포함할 수 있다.
이 공급롤(111)은 광섬유(210)를 권취(捲取)한 상태에서 광섬유(210)를 풀어 공급할 수 있다.
여기서, 광섬유(210)는 유리섬유가 아니라 유연하게 휘어질 수 있는 POF(Plastic Optical Fiber)일 수 있다.
광섬유 공급부(110)는 가열부(113)를 포함할 수 있다.
이 가열부(113)는 공급롤(111)에 감긴 광섬유(210)가 유동상태가 되도록 가열할 수 있다.
여기서, 공급롤(111)에 감긴 광섬유(210)는 감겨있는 시간이 오래될수록 감긴 형상을 유지하려고 하기 때문에 공급롤(111)에서 광섬유(210)를 풀 경우, 광섬유(210)가 곧게 유지되지 않고 곡선으로 휘어진 상태이기 때문에 가열부(113)는 광섬유(210)가 곧게 펴질 수 있도록 가열할 수 있다.
한편, 가열부(113)는 열선과 같이 전기적인 방법에 의해 가열될 수 있으며, 가열부(113)는 소성변형이 가능한 온도까지 광섬유(210)를 가열할 수 있다.
광섬유 공급부(110)는 공급성형롤러(115)를 포함할 수 있다.
이 공급성형롤러(115)는 공급롤(111)에 감긴 광섬유(210)를 광섬유 수용케이스(150)로 공급할 수 있다.
이때, 공급성형롤러(115)는 서로 맞물려 회전하도록 한 쌍이 구비되고, 한 쌍의 공급성형롤러(115)의 사이에 광섬유(210)가 물리는 형태로 구성되어 공급성형롤러(115)가 회전함에 따라 공급성형롤러(115)에 물린 광섬유(210)가 강제적으로 공급롤(111)에서 풀리며 광섬유 수용케이스(150)로 이동될 수 있다.
한편, 공급성형롤러(115)는 전기모터에 의해 구동될 수 있으며, 공급성형롤러(115)는 광섬유(210)가 가열부(113)에 의해 가열된 후, 광섬유 수용케이스(150)로 공급되도록 가열부(113)와 광섬유 수용케이스(150)의 사이에 위치될 수 있다.
이때, 공급성형롤러(115)는 가열부(113)에 의해 가열된 광섬유(210)를 강제적으로 당겨 공급하는 형태이기 때문에 가열부(113)의 열에 의해 유연해진 광섬유(210)가 곧아지도록 성형할 수 있다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치(100)는 광섬유 절단부(130)를 포함할 수 있다.
이 광섬유 절단부(130)는 광섬유 공급부(110)를 통해 공급되는 광섬유(210)를 미리 설정된 길이만큼 절단하여 광섬유 수용케이스(150)로 공급할 수 있다.
한편, 광섬유 절단부(130)는 한 쌍의 커터날로 구성되어 한 쌍의 커터날의 사이로 광섬유(210)가 미리 설정된 길이만큼 지나면 상호작용하도록 상하로 이동하여 광섬유(210)를 자르도록 구성될 수 있다.
그리고, 광섬유 절단부(130)는 광섬유(210)가 미리 설정된 길이만큼 광섬유 절단부(130)를 지나면 잘리고, 잘린 광섬유(210)는 바로 광섬유 수용케이스(150)에 수용될 수 있도록 광섬유(210)가 공급되는 광섬유 수용케이스(150)의 부분에 설치될 수 있다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치(100)는 광섬유 수용케이스(150)를 포함할 수 있다.
이 광섬유 수용케이스(150)는 광섬유 절단부(130)에 의해 절단된 광섬유(210)를 수용할 수 있다.
한편, 광섬유 수용케이스(150)는 절단된 광섬유(210)가 일정한 방향으로 수용될 수 있도록 광섬유 수용케이스(150)의 폭이 잘린 광섬유(210)의 길이보다 작도록 형성될 수 있으며, 광섬유 수용케이스(150)는 상부가 개방된 사각의 박스 형상으로 형성될 수 있다.
그리고, 광섬유 수용케이스(150)는 케이스 회전기구(155)를 포함할 수 있다.
이 케이스 회전기구(155)는 광섬유(210)가 용이하게 정렬될 수 있도록 광섬유 수용케이스(150)를 회전시킬 수 있다.
한편, 케이스 회전기구(155)는 광섬유 수용케이스(150)의 하단 양측 변 중 광섬유(210)의 길이방향과 대응되는 어느 한 변이 가장 낮은 위치에 위치되도록 광섬유 수용케이스(150)를 45°의 각도로 회전시킬 수 있으며, 회전된 광섬유 수용케이스(150)를 다시 회전시켜 초기 상태로 회전시킬 수 있다.
여기서, 광섬유 수용케이스(150)가 케이스 회전기구(155)에 의해 회전하지 않고 바닥이 평편하도록 위치된 경우, 도 2에 도시된 바와 같이, 수용되는 광섬유(210)들은 간격이 최소화되도록 광섬유(210)들의 사이 사이에 배치되는 반면, 케이스 회전기구(155)에 의해 바닥이 뾰족해지도록 회전시킨 경우, 도 3에 도시된 바와 같이, 수용되는 광섬유(210)가 하부부터 차례로 적층되기 때문에 격자형태로 배열될 수 있다.
여기서, 광섬유(210)가 도 3에 도시된 바와 같이, 격자형태로 배열될 경우에는 예컨대, 광섬유의 직경을 디스플레이패널의 픽셀과 대응되는 크기로 형성하면 픽셀매칭되어 더욱 선명한 영상을 제공할 수 있으며, 픽셀매칭이 어려울 경우, 도 2에 도시된 바와 같이, 광섬유(210)의 사이 사이에 간극이 최소화되도록 배열시켜 디스플레이패널에서 표시되는 영상을 최대한 많이 전달하여 선명한 영상을 제공하도록 선택적으로 구성할 수 있다.
그리고, 케이스 회전기구(155)는 전기모터에 의해 광섬유 수용케이스(150)를 직접 회전시키거나, 예컨대, 벨트, 체인 또는 기어 등의 동력전달부재에 의해 구동모터의 동력을 전달하여 회전하도록 구성되거나, 실린더에 의해 회전하도록 구성될 수도 있다.
여기서, 케이스 회전기구(155)는 광섬유 수용케이스(150)의 길이보다 절단된 광섬유(210)의 길이가 더 작을 경우, 광섬유 수용케이스(150)의 광섬유(210)가 공급되는 방향에 위치되는 측벽 또는 그 반대방향의 측벽에 절단된 광섬유(210)가 지지되어 정렬될 수 있도록 광섬유 수용케이스(150)를 광섬유(210)가 공급되는 전방 또는 후방으로 회전시키도록 구성될 수도 있다.
한편, 케이스 회전기구(155)가 광섬유(210)의 길이방향과 대응되는 변이 낮아지도록 회전시킬 경우, 광섬유(210)가 측벽을 넘치지 않도록 광섬유 수용케이스(150)의 일부 대략 1/2가량만 채운 상태에서 회전시킬 수 있다.
아울러, 광섬유 수용케이스(150)가 케이스 회전기구(155)를 포함하지 않고 구성된 경우, 광섬유(210)를 격자형태로 배열하기 위해서 광섬유 수용케이스(150)를 하단 부분이 뾰족하게 회전된 형상으로 형성할 수도 있다.
도 1 및 도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치(100)는 광섬유 정렬부(170)를 포함할 수 있다.
이 광섬유 정렬부(170)는 광섬유 수용케이스(150)에 수용된 광섬유(210)가 빈 곳이 최소화되어 수용되도록 광섬유(210)를 정렬시킬 수 있다.
한편, 광섬유 정렬부(170)는 진동기구(173)를 포함할 수 있다.
이 진동기구(173)는 광섬유 수용케이스(150)에 수용된 광섬유(210)를 진동시켜 광섬유(210)가 형상 및 자중에 의해 정렬시킬 수 있다.
한편, 진동기구(173)는 광섬유 수용케이스(150)에 설치되어 광섬유 수용케이스(150)를 진동시키는 형태로 수용된 광섬유(210)를 진동시키거나, 하기에 설명될 가압기구(171)를 진동시키는 형태로 수용된 광섬유(210)를 진동시킬 수 있다.
이때, 진동기구(173)는 공지된 다양한 형태의 바이브레이터(vibrator)로 구현될 수 있다.
그리고, 광섬유 정렬부(170)는 가압기구(171)를 포함할 수 있다.
이 가압기구(171)는 광섬유(210)의 정렬 시 광섬유(210)가 광섬유 수용케이스(150)에서 이탈되는 것을 방지하는 동시에, 광섬유(210)가 용이하게 정렬될 수 있도록 광섬유 수용케이스(150)에 수용된 광섬유(210)를 상부에서 가압할 수 있다.
그리고, 가압기구(171)는 가압판이 실린더의 작동압력에 의해 광섬유(210)를 가압하도록 구성될 수 있다.
한편, 가압기구(171)에는 진동기구(173)가 설치되어 광섬유 수용케이스(150)에 수용된 광섬유(210)를 가압한 상태에서 광섬유(210)에 진동을 전달하여 자중 또는 형상에 의해 정렬될 수 있도록 구성될 수도 있다.
여기서, 가압기구(171)는 도 2에 도시된 바와 같이, 광섬유(210)의 간격이 최소화되도록 광섬유(210)이 사이 사이에 위치되도록 정렬할 경우에만 가압하도록 구성되는 것이 바람직하다.
도 1 및 도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치(100)는 본딩액 공급부(190)를 포함할 수 있다.
이 본딩액 공급부(190)는 광섬유 수용케이스(150)에 수용된 광섬유(210)가 서로 접착되도록 광섬유 수용케이스(150)에 본딩액을 공급할 수 있다.
한편, 본딩액은 광학성 접착제이거나 UV경화레진일 수 있으며, 본딩액이 UV경화레진일 경우, 본딩액 공급부(190)는 UV를 조사하는 UV램프를 포함할 수 있다.
이상에서 설명한 각 구성 간의 작용과 효과를 설명하면서, 본 발명의 실시예에 따른 광섬유 플레이트(200)의 제조방법을 함께 설명한다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 광섬유 플레이트 제조장치(100)는 공급롤(111)과 광섬유 수용케이스(150)의 사이에 가열부(113)가 설치되고, 가열부(113)와 광섬유 수용케이스(150)의 사이에는 가열된 광섬유(210)를 광섬유 수용케이스(150)로 공급하는 동시에 광섬유(210)가 곧게 펴지도록 당겨 성형하는 공급성형롤러(115)가 설치된다.
한편, 공급성형롤러(115)와 광섬유 수용케이스(150)의 사이에는 공급성형롤러(115)에 의해 공급되는 광섬유(210)를 미리 설정된 길이로 절단하는 광섬유 절단부(130)가 설치되며, 광섬유 수용케이스(150)에는 수용된 광섬유(210)를 균일하게 정렬하는 광섬유 정렬부(170)가 설치된다.
또한, 광섬유 수용케이스(150)는 케이스 회전기구(155)를 포함하는 경우, 케이스 회전기구(155)에 의해 수용되는 광섬유(210)의 길이방향과 대응되는 하단의 변이 가장 낮은 위치로 회전시키도록 구성될 수 있다.
그리고, 광섬유 수용케이스(150)에는 정렬된 광섬유(210)에 본딩액을 공급하는 본딩액 공급부(190)가 설치된다.
이러한 구성의 광섬유 플레이트 제조장치(100)는 먼저, 공급롤(111)에 권취된 광섬유(210)가 공급성형롤러(115)에 의해 당겨지며 공급롤(111)에서 풀어지는 형태로 광섬유 수용케이스(150)로 공급된다(도 1 참고).
공급롤(111)에서 풀어지는 광섬유(210)는 가열부(113)에 의해 소성변형이 가능한 온도까지 가열되어 공급성형롤러(115)에 의해 곧게 펴지며 광섬유 수용케이스(150)로 공급된다.
한편, 광섬유 수용케이스(150)로 공급되는 광섬유(210)는 광섬유 절단부(130)에 의해 미리 설정된 길이로 절단되어 광섬유 수용케이스(150)로 수용되며, 광섬유 수용케이스(150)에 일부 광섬유(210)가 채워지면, 광섬유 정렬부(170)가 작동하여 광섬유 수용케이스(150)에 수용된 광섬유(210)를 균일하게 정렬된다(도 2 참고).
한편, 광섬유 정렬부(170)는 진동기구(173)가 광섬유 수용케이스(150)에 수용된 광섬유(210)를 진동시켜 광섬유(210)의 형상 및 자중에 의해 균일하게 진동시키며, 광섬유(150)의 간격이 최소화되도록 광섬유(210)의 상부에서 가압기구(171)이 가압하여 광섬유 수용케이스(150)에서 광섬유(210)의 이탈을 방지함과 동시에 광섬유(210)의 사이 간격이 최소화시킬 수 있다.
이와 같이 광섬유 수용케이스(150)의 바닥이 평편한 상태에서 광섬유(210)가 채워질 경우, 채워지는 광섬유(210)들의 사이 사이에 광섬유(210)가 정렬되어 광섬유들의 사이 간격을 최소화시켜 많은 량의 빛을 전달할 수 있다.
그리고, 광섬유 정렬부(170)은 진동기구(173)와 가압기구(171) 중 어느 하나가 먼저 작동하고, 다른 하나가 나중에 작동하도록 구성될 수 있으며, 둘 모두가 함께 작동하도록 구성될 수도 있고, 광섬유 정렬부(170)는 진동기구(173)와 가압기구(171) 중 어느 하나로만 포함하도록 구성될 수도 있다.
여기서, 가압기구(171)는 도 2에 도시된 바와 같이, 광섬유(210)들의 사이 간격을 최소화시키도록 배열될 경우에만 구성되거나, 작동시키는 것이 바람직하다.
한편, 광섬유 수용케이스(150)가 케이스 회전기구(155)를 포함하여 구성된 경우, 케이스 회전기구(155)가 광섬유 수용케이스(150)의 한단 양측 변 중 어느 한 변이 가장 낮은 위치에 위치되도록 회전시킨 상태에서 광섬유(210)를 절단하여 공급하고, 진동기구(173)를 작동하여 광섬유(210)를 정렬시킬 수 있다(도 3 참고).
여기서, 케이스 회전기구(155)가 광섬유 수용케이스(150)를 회전시키면 광섬유 수용케이스(150)가 역삼각형 형태로 광섬유(210)를 수용하기 때문에 진동기구(173)에 의해 진동을 발생 시 하단부부터 차례로 광섬유(210)를 적층되어 정렬되기 때문에 픽셀매칭이 가능하도록 광섬유(210)를 격자형태로 정렬시킬 수 있다.
그리고, 광섬유 수용케이스(150)가 회전하도록 구성된 경우에는 광섬유(210) 케이스에 채워지는 광섬유(210)는 광섬유 수용케이스(150)가 회전한 상태에서 광섬유(210) 케이스의 측벽을 넘지 않는 량만큼만 일부 채워질 수 있다.
한편, 광섬유 정렬부(170)에 의해 광섬유(210)가 정렬되면, 정렬된 광섬유(210)가 서로 접착될 수 있도록 본딩액 공급부(190)가 정렬된 광섬유(210)에 본딩액을 공급한다.
여기서, 광섬유 수용케이스(150)가 케이스 회전기구(155)에 의해 회전하도록 구성된 경우에는, 광섬유 수용케이스(150)의 하단 변이 가장 낮은 위치에 위치되도록 45°의 각도로 회전한 상태에서 본딩액을 1차적으로 공급하여 경화시키고, 회전된 광섬유 수용케이스(150)를 초기 위치로 다시 회전시킨 상태에서 나머지 일부에 다시 광섬유(210)를 채우며, 채워진 광섬유(210)를 광섬유 정렬부(170)에 의해 정렬한 상태에서 본딩액을 2차적으로 공급하여 경화시키는 형태로 광섬유 수용케이스(150)에 모두 광섬유(210)가 채워질 수 있도록 구성될 수 있다(도 4 참고).
아울러, 광섬유 수용케이스(150)에 본딩액이 공급되어 광섬유(210)가 접착되면, 광섬유 수용케이스(150)에서 꺼내 미리 설정된 높이 또는 길이만큼 광섬유(210) 다발을 절단하거나, 절단된 복수 개의 광섬유(210) 다발을 서로 붙여 미리 설정된 광섬유 플레이트(200)의 형상으로 제조할 수 있다.
그리고, 광섬유 플레이트(200)는 출사면(213)으로 사용할 면에 입사된 빛이 확산되어 출사될 수 있도록 거친면을 갖는 확산면으로 형성할 수 있으며, 확산면은 폴리싱(polishing)처리에 의해 형성할 수 있다. 이때, 폴리싱처리는 기계적인 방법에 의한 건식 또는 화학적인 방법에 의한 습식에 의해 수행될 수 있다.
또한, 도 6에 도시된 바와 같이, 광섬유 플레이트(200)의 출사면(213)에는 매끈한 표면을 갖는 균일면층(230)을 형성할 수 있으며, 균일면층(230)은 균일면용재를 출사면(213)에 도포하는 형태로 형성될 수 있으며, 균일면용재는 광학성 접착제 또는 UV경화레진일 수 있다.
그리고, 균일면용재는 광섬유(210)와 동일한 굴절률을 갖는 재질로 형성하여 거친면에 의해 확산된 빛을 균일하게 굴절시켜 선명한 영상을 제공할 수 있다.
여기서, 폴리싱처리된 출사면(213)과 균일면층(230)을 형성한 출사면(213)은 0.1% 내지 1%의 헤이즈값을 가지거나, 글라스 값으로 95%~98%의 투과도를 가질 수 있다.
여기서, 광섬유(210)는 통상 출사면(213)의 중앙에서 120°의 시야각을 갖는데, 폴리싱처리 또는 균일면층(230)을 형성할 경우, 빛의 확산으로 인해 180°의 시야각을 확보할 수 있다.
이렇게 제조된 광섬유 플레이트(200)는 광섬유(210)의 길이방향으로 일측면이 입사면(211)이 되고, 타측면이 입사면(211)으로 입사된 빛이 출사되는 출사면(213)이 되어 예컨대, 광섬유 플레이트(200)를 디스플레이패널에 부착할 경우, 디스플레이패널과 접촉되는 면이 입사면(211)이 되고, 그 반대방향의 면이 출사면(213)이 되어 디스플레이패널의 면보다 광섬유 플레이트(200)의 높이만큼 더 돌출된 면에서 영상을 표시함으로써, 영상에 입체적인 효과를 부여할 수 있다.
따라서, 본 발명의 실시예에 따른 진동에 의한 광섬유 플레이트 제조장치(100)는 광섬유 플레이트(200)를 용이하게 제작할 수 있으며, 광섬유(210)를 진동에 의해 균일하게 배열시켜 전체적으로 균일하게 빛을 전달하는 광섬유 플레이트(200)를 제조할 수 있다.
또한, 광섬유 플레이트(200)에는 폴리싱처리되거나, 균일면층(230)을 형성하여 출사되는 영상의 시야각을 확대할 수 있다.
이상에서는 본 발명의 실시예를 설명하였으나, 본 발명의 권리범위는 이에 한정되지 아니하며 본 발명의 실시예로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 용이하게 변경되어 균등한 것으로 인정되는 범위의 모든 변경 및 수정을 포함한다.
본 발명은 광학분야, 디스플레이장치분야, 광고장치분야 등 다양한 산업분야에 이용될 수 있다.

Claims (12)

  1. 광섬유를 공급하는 광섬유 공급부,
    상기 광섬유 공급부에서 공급되는 광섬유를 미리 설정된 크기로 절단하는 광섬유 절단부,
    상기 미리 설정된 크기로 절단된 광섬유를 일정한 방향으로 모아 수용하는 광섬유 수용케이스, 및
    상기 광섬유 수용케이스에 수용된 광섬유를 사이 간극이 최소화되도록 진동에 의해 정렬하는 광섬유 정렬부를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  2. 제1 항에 있어서,
    상기 광섬유 공급부는
    상기 광섬유를 권취하여 공급하는 공급롤, 및
    상기 공급롤에 감겨져 공급되는 광섬유가 곧게 펴지도록 가열하는 가열부를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  3. 제2 항에 있어서,
    상기 가열부에서 가열된 광섬유를 상기 광섬유 절단부로 안내하는 동시에 상기 광섬유를 당겨 곧게 펴는 공급성형롤러를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  4. 제1 항에 있어서,
    상기 광섬유 정렬부는
    상기 광섬유 수용케이스에 수용된 광섬유를 진동시켜 정렬하는 진동기구, 또는 상기 광섬유 수용케이스에 수용된 광섬유를 가압하여 정렬하는 가압기구를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  5. 제1 항에 있어서,
    상기 광섬유 수용케이스는
    사각의 박스 형상이고, 상기 광섬유 수용케이스에 수용된 광섬유의 길이방향과 대응되는 하단의 양변 중 어느 한 변이 가장 낮은 위치에 위치되도록 회전시키는 케이스 회전기구를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  6. 제1 항에 있어서,
    상기 광섬유 케이스에 수용된 광섬유가 서로 접착되도록 상기 광섬유 케이스에 본딩액을 공급하는 본딩액 공급부를 포함하는 것을 특징으로 하는 진동에 의한 광섬유 플레이트 제조장치.
  7. 미리 설정된 크기로 광섬유를 절단하는 단계,
    상기 절단된 광섬유를 광섬유 수용케이스에 일정한 방향으로 모아 수용시키는 단계,
    상기 광섬유 수용케이스에 수용된 광섬유에 진동을 가하여 광섬유를 정렬시키는 단계, 및
    상기 정렬된 광섬유에 본딩액을 공급하여 경화시키는 단계를 포함하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
  8. 제7 항에 있어서,
    상기 광섬유를 정렬시키는 단계는
    상기 광섬유를 진동 또는 가압에 의해 정렬하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
  9. 제7 항에 있어서,
    상기 광섬유를 정렬시키는 단계는
    상기 광섬유가 상기 광섬유 수용케이스에 일부만 채워진 상태에서 상기 광섬유 수용케이스에 수용된 광섬유의 길이방향과 대응되는 하단의 양 변 중 어느 한 변이 가장 낮은 위치에 위치되도록 상기 광섬유 수용케이스를 회전시키는 단계를 포함하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
  10. 제9 항에 있어서,
    상기 본딩액을 공급하여 경화시키는 단계는
    상기 광섬유 수용케이스를 회전시키는 단계 이후, 상기 광섬유 수용케이스에 채워진 광섬유가 서로 접착되도록 본딩액을 1차로 공급하는 단계,
    상기 1차로 공급된 본딩액이 경화되면, 상기 광섬유 수용케이스를 초기 상태로 회전시켜 상기 광섬유 수용케이스의 나머지 일부에 광섬유를 채우는 단계, 및
    상기 광섬유 수용케이스의 나머지 일부에 상기 광섬유가 채워진 상태에서 나머지 일부에 채워진 광섬유가 서로 접착되도록 본딩액을 2차로 공급하는 단계를 포함하는 것을 특징으로 하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
  11. 제7 항에 있어서,
    상기 본딩액을 공급하여 경화시키는 단계 이후,
    상기 광섬유 수용케이스에 본딩된 광섬유를 절단 또는 복수 개를 접합시켜 미리 설정된 형상으로 형성하는 단계를 포함하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
  12. 제7 항에 있어서,
    상기 본딩액을 공급하여 경화시키는 단계 이후,
    상기 광섬유의 출사면에서 빛이 확산되어 출사되도록 상기 출사면을 폴리싱처리하거나, 균일면층을 형성하는 단계를 포함하는 것을 특징으로 하는 광섬유 플레이트 제조방법.
PCT/KR2016/012279 2015-10-26 2016-10-28 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법 WO2017074113A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/770,758 US10267986B2 (en) 2015-10-26 2016-10-28 Optical fiber plate manufacturing apparatus and method using vibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150148872A KR101796705B1 (ko) 2015-10-26 2015-10-26 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법
KR10-2015-0148872 2015-10-26

Publications (1)

Publication Number Publication Date
WO2017074113A1 true WO2017074113A1 (ko) 2017-05-04

Family

ID=58631772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012279 WO2017074113A1 (ko) 2015-10-26 2016-10-28 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법

Country Status (3)

Country Link
US (1) US10267986B2 (ko)
KR (1) KR101796705B1 (ko)
WO (1) WO2017074113A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541742A (zh) * 2018-12-29 2019-03-29 苏州天步光电技术有限公司 一种提高二维光纤阵列制作良率的方法及辅助夹具

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101993671B1 (ko) * 2018-03-13 2019-06-27 주식회사 이오테크닉스 광섬유 안착 장치 및 광섬유 안착 장치를 이용한 광섬유 안착 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330133A (ja) * 1997-05-29 1998-12-15 Furukawa Electric Co Ltd:The 被覆光ファイバの製造装置
JP2000159535A (ja) * 1998-09-24 2000-06-13 Sumitomo Electric Ind Ltd 光ファイバ素線の製造方法
JP3089449B2 (ja) * 1994-08-10 2000-09-18 株式会社フジクラ 単心光ファイバのテープ化方法及び装置
JP2005162518A (ja) * 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd 光ファイバの製造装置及び製造方法
US20060133751A1 (en) * 2004-12-16 2006-06-22 Xin Chen Method of imparting twist to optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2992956A (en) * 1958-02-14 1961-07-18 American Optical Corp Method for making fiber optical devices
JP2005225749A (ja) * 2004-01-14 2005-08-25 Shin Etsu Chem Co Ltd 光ファイバ母材の延伸方法及び装置
KR20060109672A (ko) 2005-04-18 2006-10-23 임주상 디스플레이확대장치 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3089449B2 (ja) * 1994-08-10 2000-09-18 株式会社フジクラ 単心光ファイバのテープ化方法及び装置
JPH10330133A (ja) * 1997-05-29 1998-12-15 Furukawa Electric Co Ltd:The 被覆光ファイバの製造装置
JP2000159535A (ja) * 1998-09-24 2000-06-13 Sumitomo Electric Ind Ltd 光ファイバ素線の製造方法
JP2005162518A (ja) * 2003-12-01 2005-06-23 Sumitomo Electric Ind Ltd 光ファイバの製造装置及び製造方法
US20060133751A1 (en) * 2004-12-16 2006-06-22 Xin Chen Method of imparting twist to optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109541742A (zh) * 2018-12-29 2019-03-29 苏州天步光电技术有限公司 一种提高二维光纤阵列制作良率的方法及辅助夹具

Also Published As

Publication number Publication date
KR20170048026A (ko) 2017-05-08
US20180321441A1 (en) 2018-11-08
KR101796705B1 (ko) 2017-12-01
US10267986B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2017074113A1 (ko) 진동에 의한 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법
WO2012108664A2 (ko) 프레넬 렌즈 구조체 및 이를 이용한 2d/3d 전환 영상표시장치
EP0275061A2 (en) Signboard for displaying optical images
DK0647866T3 (da) Fremgangsmåde til fremstilling af et modulbånd med optisk fiberkerne, der kan adskilles i en flerhed af båndmoduler
JPH11194337A (ja) 偏光フィルムを剥離するシステム及びその方法
JP2001154074A (ja) 光ファイバテープ化装置
ES2117068T3 (es) Dispositivo para colocar estuches de empalme para conductores de fibra optica dentro de un manguito para cables.
WO2017074114A1 (ko) 실타래 방식의 광섬유 플레이트 제작장치 및 광섬유 플레이트 제작방법
CN108089265B (zh) 光纤熔接机
JP2996309B2 (ja) 光ファイバーから成るファイバー バンドルおよびその製造方法
KR101241233B1 (ko) 광섬유 디스플레이 모듈의 제조방법 및 이의 제조장치
WO2012026733A2 (ko) 피복전선 연접장치 및 방법
KR101796704B1 (ko) 광섬유 플레이트 제조장치 및 광섬유 플레이트 제조방법
FI90381B (fi) Menetelmä ja sovitelma optisten kuitujen värjäämiseksi
WO2017039034A1 (ko) 디스플레이장치의 디지털 베젤
FI954877A0 (fi) Menetelmä ja laite optisen kuitukaapelin valmistamiseksi
JPH02146507A (ja) 光ファイバv溝台
WO2016190715A2 (ko) 융합형 도광판 제조방법
JP2019139028A (ja) マルチコアファイバおよびその製造装置
JP2003344731A (ja) 偏波保持光ファイバ伝送部材およびその製造方法
CN1766682A (zh) 光纤构造体及其制作方法
JP2004286953A (ja) 光ファイバリボン作製装置
JP2503622B2 (ja) 光スタ―カプラ装置
US6868211B2 (en) Process and apparatus for forming optical shuffles
JPS6411205A (en) Enlargement display device with liquid crystal screen using optical fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15770758

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860296

Country of ref document: EP

Kind code of ref document: A1