WO2017073495A1 - 空気入りタイヤおよび架橋ゴム組成物 - Google Patents

空気入りタイヤおよび架橋ゴム組成物 Download PDF

Info

Publication number
WO2017073495A1
WO2017073495A1 PCT/JP2016/081366 JP2016081366W WO2017073495A1 WO 2017073495 A1 WO2017073495 A1 WO 2017073495A1 JP 2016081366 W JP2016081366 W JP 2016081366W WO 2017073495 A1 WO2017073495 A1 WO 2017073495A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber composition
crosslinked rubber
molecular weight
mass
elongation
Prior art date
Application number
PCT/JP2016/081366
Other languages
English (en)
French (fr)
Inventor
亮 間下
岸本 浩通
亮太 北郷
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to US15/767,900 priority Critical patent/US11458767B2/en
Priority to CN201680060684.1A priority patent/CN108349313B/zh
Priority to EP16859725.0A priority patent/EP3348427B1/en
Publication of WO2017073495A1 publication Critical patent/WO2017073495A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/005Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/627Specific applications or type of materials tyres

Definitions

  • the present invention relates to a pneumatic tire and a crosslinked rubber composition.
  • Patent Document 2 describes an analysis method for visually analyzing a material constituting a friction material and a low density region existing inside, but a state in which external energy such as elongation is added to a sample object. There is no mention of analyzing or analyzing the density of the sample.
  • An object of the present invention is to provide a pneumatic tire and a crosslinked rubber composition excellent in abrasion resistance.
  • the inventors of the present invention found that the low density region at the time of elongation by the applied stress of 1.5 MPa is large, the void portion at the time of elongation by the applied stress of 3.0 MPa is reduced, and the weight average molecular weight is 1,000,000.
  • the component ratio as described above it has been found that the growth of cracks occurring inside the crosslinked rubber composition can be suppressed and the wear resistance can be further improved, and the present invention has been completed.
  • a bead core provided to each of a pair of left and right bead portions, a carcass ply extended from the crown portion to both bead portions through both sidewall portions and anchored to the bead cores, and a tire diameter more than the carcass ply.
  • An inner liner disposed on the inner side, and provided on the outer side in the tire radial direction than the carcass ply, and the volume of the low density region at the time of elongation by the applied stress of 1.5 MPa is 35% or more;
  • a tread having a volume of the void portion at the time of elongation by stress of 7.5% or less and a component ratio of weight average molecular weight of 1,000,000 or more in the molecular weight distribution measured by gel permeation chromatography is 40 mass% or more.
  • the present invention relates to a pneumatic tire characterized by
  • the volume of the low density region at the time of elongation by the applied stress of 1.5 MPa is 35% or more
  • the volume of the void portion at the time of elongation by the applied stress of 3.0 MPa is 7.5% or less
  • the present invention relates to a crosslinked rubber composition having a weight-average molecular weight of 1,000,000 or more and a component ratio of 40 mass% or more in a molecular weight distribution measured by gel permeation chromatography.
  • the said rubber component is a rubber component which contains 1 or more types of rubber components containing a conjugated diene type compound.
  • the low density region is preferably a region in which the density is 0.1 to 0.8 times that of the crosslinked rubber composition before elongation.
  • the void portion is a region in which the density is 0 to 0.1 times that of the crosslinked rubber composition before elongation.
  • the volume evaluation method of the low density region and the void portion be X-ray CT imaging.
  • the decay time of the phosphor for converting X-rays into visible light is 100 ms or less.
  • the luminance of the X-ray is 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or more.
  • the pneumatic tire of the present invention provided with a tread having a high component ratio as described above, a large low density region at the time of elongation by an applied stress of 1.5 MPa, a small void portion at the time of elongation by an applied stress of 3.0 MPa
  • a crosslinked rubber composition of the present invention having a high proportion of components having a weight average molecular weight of 1,000,000 or more in the molecular weight distribution measured by chromatography (GPC)
  • GPC chromatography
  • the cross-linked rubber composition of the present invention has many low density regions at the time of elongation by the applied stress of 1.5 MPa, and has few voids at the time of elongation by the applied stress of 3.0 MPa, and was measured by gel permeation chromatography (GPC) It is a crosslinked rubber composition having a high proportion of components having a weight average molecular weight of 1,000,000 or more in molecular weight distribution.
  • the crosslinked rubber composition in the present specification is a rubber composition which has been crosslinked by a vulcanizing agent or an organic peroxide.
  • the rubber component is not particularly limited, and isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) And the like. It is possible to appropriately select and use one or two or more from rubber components conventionally used in the rubber industry such as diene rubbers and butyl rubbers. Among them, one or more rubber components containing a conjugated diene compound are preferably contained, and it is preferable to contain SBR and BR from the viewpoint of the balance of low fuel consumption, abrasion resistance, durability, and wet grip performance.
  • the SBR is not particularly limited, and examples thereof include emulsion-polymerized SBR (E-SBR), solution-polymerized SBR (S-SBR) and the like, and may or may not be oil-extended.
  • E-SBR emulsion-polymerized SBR
  • S-SBR solution-polymerized SBR
  • terminal modified S-SBR with enhanced interaction with the filler and main chain modified S-SBR can also be used.
  • One of these SBRs may be used, or two or more thereof may be used in combination.
  • the styrene content of SBR is preferably 16% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, and particularly preferably 30% by mass or more from the viewpoint of grip performance.
  • the styrene content is too high, styrene groups are adjacent to each other, the polymer becomes too hard, the cross-linking tends to be uneven, the blowability at high temperature traveling may be deteriorated, and the temperature dependency is increased, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass because performance change with temperature change tends to be large, and stable grip performance during traveling and late may not be obtained well. The following are more preferable.
  • the styrene content of SBR is calculated by 1 H-NMR measurement.
  • the vinyl content of SBR is preferably 10% or more, more preferably 15% or more, from the viewpoint of the Hs of the crosslinked rubber composition and the grip performance. Further, from the viewpoint of grip performance, EB (durability) and abrasion resistance, 90% or less is preferable, 80% or less is more preferable, 70% or less is more preferable, and 60% or less is particularly preferable.
  • the vinyl content (the amount of 1,2-linked butadiene units) of SBR can be measured by infrared absorption spectroscopy.
  • the glass transition temperature (Tg) of SBR is preferably ⁇ 45 ° C. or higher, and more preferably ⁇ 40 ° C. or higher.
  • the Tg is preferably 10 ° C. or less, and more preferably 5 ° C. or less from the viewpoint of preventing embrittlement cracks in a temperate winter.
  • the glass transition temperature of SBR is a value measured by performing differential scanning calorimetry (DSC) at a temperature rising rate of 10 ° C./minute according to JIS K 7121.
  • the weight average molecular weight (Mw) of SBR is preferably 700,000 or more, more preferably 900,000 or more, and still more preferably 1,000,000 or more from the viewpoint of grip performance and blowability. In addition, from the viewpoint of blowability, the weight average molecular weight is preferably 2,000,000 or less, and more preferably 180,000 or less.
  • the weight average molecular weight of SBR is determined by gel permeation chromatography (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column: TSKGEL SUPERMALTPORE manufactured by Tosoh Corp.) It can be determined by standard polystyrene conversion based on the measured value by HZ-M).
  • the content of the SBR in the rubber component is preferably 30% by mass or more, and more preferably 40% by mass or more because sufficient grip performance can be obtained. Further, the content of SBR is preferably 90% by mass or less, more preferably 85% by mass or less, and still more preferably 80% by mass or less from the viewpoint of wear resistance, grip performance, and fuel economy.
  • an SBR having a styrene content of 16 to 60% by mass it is preferable to contain 40% by mass or more of an SBR having a styrene content of 16 to 60% by mass, and an SBR having a styrene content of 25 to 55% by mass because higher grip performance and blowability can be exhibited. It is more preferable to contain 50 mass% or more.
  • the BR is not particularly limited, and examples thereof include BR1220 manufactured by Nippon Zeon Co., Ltd., BR130B manufactured by Ube Industries, Ltd., and BR (high cis BR) having high cis content such as BR150B etc. (High cis BR) manufactured by Nippon Zeon Co., Ltd. Modified BR such as BR1250H, BR containing syndiotactic polybutadiene crystals such as VCR412 and VCR617 manufactured by Ube Industries, Ltd., BR synthesized using a rare earth element-based catalyst such as BUNA-CB25 manufactured by LANXESS Co., Ltd. (Rare earth system BR) etc. can be used. One of these BRs may be used, or two or more thereof may be used in combination. Among them, high cis BR and rare earth BR are preferable from the viewpoint of excellent processability, wear resistance and fracture characteristics.
  • the content of BR in the rubber component is preferably 10% by mass or more, more preferably 15% by mass or more, and 20% by mass or more from the viewpoint of wear resistance, grip performance, and low fuel consumption. Is more preferred.
  • the content is preferably 70% by mass or less, and more preferably 60% by mass or less, from the viewpoints of abrasion resistance, grip performance, and fuel economy.
  • the filler can be optionally selected from those conventionally used conventionally in crosslinked rubber compositions, but carbon black and silica are mainly preferable.
  • the carbon black may, for example, be furnace black, acetylene black, thermal black, channel black or graphite. These carbon blacks may be used alone or in combination of two or more. Among these, furnace black is preferred because it can improve low temperature properties and wear performance in a well-balanced manner.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 70 m 2 / g or more, more preferably 90 m 2 / g or more, from the viewpoint of obtaining sufficient reinforcement and abrasion resistance.
  • N 2 SA of carbon black is excellent in dispersibility, from the viewpoint that it is difficult to heat generation, preferably 300 meters 2 / g or less, more preferably 250m 2 / g.
  • N 2 SA of carbon black in this specification is measured according to JIS K 6217-2 "Basic characteristics of carbon black for rubber-Part 2: Determination of specific surface area-nitrogen adsorption method-Single point method" Value.
  • 3 mass parts or more are preferable, and, as for content with respect to 100 mass parts of rubber components in the case of containing carbon black, 4 mass parts or more are more preferable. If the amount is less than 3 parts by mass, sufficient reinforcement tends not to be obtained. Moreover, 200 mass parts or less are preferable, as for content of carbon black, 150 mass parts or less are more preferable, and 60 mass parts or less are more preferable. If the amount is more than 200 parts by mass, processability tends to deteriorate, heat is apt to be generated, and abrasion resistance tends to decrease.
  • the silica is not particularly limited, and examples thereof include dry method silica (anhydrous silicic acid), wet method silica (hydrous silicic acid) and the like, but wet method silica is preferable because it has many silanol groups.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 80 m 2 / g or more, and more preferably 100 m 2 / g or more, from the viewpoint of durability and elongation at break.
  • the N 2 SA of the silica from the viewpoint of fuel economy and workability, preferably 250 meters 2 / g or less, more preferably 220 m 2 / g.
  • N 2 SA of silica is a value measured according to ASTM D3037-93.
  • the content relative to 100 parts by mass of the rubber component in the case of containing silica is preferably 5 parts by mass or more, and more preferably 10 parts by mass or more from the viewpoint of durability and elongation at break.
  • the content of the silica is 200 parts by mass from the viewpoint of improving the dispersibility during kneading, and from the viewpoint of suppressing reaggregation of the silica during the heating during rolling or storage after rolling, and the processability being lowered.
  • the following is preferable, and 150 parts by mass or less is more preferable.
  • silane coupling agent any silane coupling agent conventionally used in combination with silica can be used in the rubber industry, for example, Si75, Si266 (bis (3-triethoxysilyl) manufactured by Evonik Degussa (Propyl) disulfide), sulfide type such as Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by the company, 3-mercaptopropyltrimethoxysilane, NXT-Z100 manufactured by Momentive, NXT-Z45, NXT, etc.
  • Mercapto type silane coupling agent having a mercapto group
  • vinyl type such as vinyltriethoxysilane
  • amino type such as 3-aminopropyltriethoxysilane
  • glycidoxy type such as ⁇ -glycidoxypropyltriethoxysilane
  • 3- Nitropropyl Nitro-based such as trimethoxysilane
  • trimethoxysilane 3-chloropropyl-chloro system such as trimethoxysilane.
  • a sulfide type and a mercapto type are preferable from the viewpoint of strong bonding with silica and excellent in low heat buildup.
  • 2 mass parts or more are preferable, and, as for content with respect to 100 mass parts of silica in the case of containing a silane coupling agent, 3 mass parts or more are more preferable.
  • the content of the silane coupling agent is less than 2 parts by mass, the effect of improving the silica dispersibility tends not to be sufficiently obtained.
  • 25 mass parts or less are preferable, and, as for content of a silane coupling agent, 20 mass parts or less are more preferable.
  • the content of the silane coupling agent exceeds 25 parts by mass, an effect commensurate with the cost tends not to be obtained.
  • compounding agents generally used in the production of a crosslinked rubber composition other than the above components for example, a resin component, oil, zinc oxide, stearic acid, antioxidant, wax A sulfur donor, a vulcanizing agent, a vulcanization accelerator and the like can be appropriately blended.
  • the volume of the low density region at the time of elongation by the applied stress of 1.5 MPa is 35% or more
  • the volume of the void portion at the time of elongation by the applied stress of 3.0 MPa is 7.5%
  • the proportion of components having a weight average molecular weight of 1,000,000 or more in the molecular weight distribution measured by gel permeation chromatography is 40 mass% or more. It does not specifically limit as a measuring method of molecular weight distribution by gel permeation chromatography, The conventional measuring method can be employ
  • the crosslinked rubber composition having many low density regions disperses stress without concentrating on a specific region because the crosslinked structure of the crosslinked rubber composition is extremely uniform.
  • the crosslinked rubber composition having a small generation area of the void portion is excellent in durability against external stress such as fracture characteristics and abrasion resistance.
  • a crosslinked rubber composition having a high proportion of components having a weight average molecular weight of 1,000,000 or more free movement of rubber molecules is limited and it is difficult to be destroyed.
  • the crosslinked rubber composition of the present invention has many low density regions at the time of elongation by the applied stress of 1.5 MPa, a small number of voids at the time of elongation by the applied stress of 3.0 MPa, and a weight average molecular weight of 1,000,000 or more High abrasion resistance can be realized by the high ratio.
  • the volume of the low density region at the time of elongation by the applied stress of 1.5 MPa is preferably 40% or more.
  • the volume of the low density region at the time of elongation by an applied stress of 1.5 MPa is preferably 95% or less.
  • the volume of the void at the time of elongation by the applied stress of 3.0 MPa is preferably 7.0% or less.
  • the volume of the low density region at the time of elongation by an applied stress of 1.5 MPa is 35% or more
  • the volume of the void portion at the time of elongation by an applied stress of 3.0 MPa is 7.5% or less
  • the dispersed state of the vulcanizing agent and / or the vulcanization accelerator is made uniform by prolonging the kneading time or increasing the number of times of kneading.
  • the low density region and the air gap will be described.
  • a non-uniform density occurs in the cross-linked rubber composition, and a low density region is generated inside.
  • this low density region there are reversible portions and irreversible portions.
  • the reversible portion is a low density region generated when the applied stress is small (1.5 MPa), and disappears by releasing the stress, and the density distribution is a low density region recovering to the original uniform state.
  • the low density region generated when the applied stress is small is a region having a density of not less than 0.1 times and not more than 0.8 times the average density of the crosslinked rubber composition before elongation.
  • the rubber test piece can be evaluated with high accuracy by evaluating the distribution of the reversible portion.
  • the irreversible portion is a low density region generated when the applied stress is large (3.0 MPa), and the stress partially destroys the internal structure (linkage of molecular chains) of the crosslinked rubber composition and causes the stress to Even after release, it is a low density area that remains without recovering to its original state.
  • a region in which the internal structure is extremely destroyed, and a density of which is 0 times or more and 0.1 times or less of the average density of the crosslinked rubber composition before elongation is a void portion.
  • the rubber test piece can be evaluated with high accuracy also by evaluating the distribution of the void portion.
  • the density distribution of the crosslinked rubber composition at the time of elongation can be evaluated
  • the method is not particularly limited as long as it is a method, but an evaluation method using X-ray CT imaging is preferable.
  • FIG. 1 is a perspective view schematically showing an example of an evaluation apparatus used in the evaluation method.
  • the evaluation device 1 shown in FIG. 1 includes a stress application means 2, an imaging means 3 and an evaluation means 4.
  • the stress applying means 2 applies a stress to stretch the rubber test piece 10 to generate a low density region inside the rubber test piece 10.
  • the stress applying means 2 includes a pair of jigs 21 and 22 to which the test piece 10 is fixed, and driving means 23 for relatively moving the jig 21 and the jig 22 to apply stress to the test piece 10. It is preferable to have.
  • the driving means 23 moves the other jig 22 in the axial direction of the test piece 10 with the one jig 21 fixed. As a result, a stress is applied which causes the rubber test piece 10 to extend in the axial direction.
  • the stress applied to the test piece 10 is detected by a load cell (not shown) or the like.
  • the position and format of the load cell are arbitrary.
  • a predetermined stress is applied to the rubber test piece 10 by the stress applying means 2.
  • the driving means 23 is configured to be able to rotate the test piece 10 and the jigs 21 and 22 around the axis of the rubber test piece 10.
  • the imaging unit 3 irradiates the test piece 10 with X-rays to capture a projection image.
  • the imaging means 3 has an X-ray tube 31 for emitting X-rays, and a detector 32 for detecting the X-rays and converting them into electrical signals. While the test piece 10 and the jigs 21 and 22 are rotated around the axis of the test piece 10, the photographing means 5 takes a plurality of projection images, whereby a projection image of the test piece 10 over the entire circumference can be obtained.
  • the detector 52 has a phosphor 32 a for converting X-rays into visible light.
  • the decay time of the phosphor 32a is preferably 100 ms or less. When the decay time of the phosphor 32a exceeds 100 ms, the residual image of the projected image taken earlier is taken when photographing a plurality of projected images continuously while rotating the test piece 10 etc. about the axis of the test piece 10 It may affect the projected image to be captured later. From this point of view, the more desirable decay time of the phosphor 32a is 50 ms or less, and the still more desirable decay time is 10 ms or less.
  • the evaluation means 4 evaluates the performance of the crosslinked rubber composition based on the density distribution measured from the projection image.
  • a computer 40 is applied to the evaluation means 4.
  • the computer 40 includes a main body 41, a keyboard 42, and a display device 43.
  • the main body 41 is provided with, for example, a storage device such as an arithmetic processing unit (CPU), a ROM, a working memory, and a hard disk.
  • processing procedures (programs) for executing the simulation method of the present embodiment are stored in advance.
  • FIG. 2 is a flow chart showing the processing procedure of the evaluation method of the density distribution of the crosslinked rubber composition at the time of elongation using the evaluation apparatus 1.
  • stress is applied to the test piece 10 to generate density deviation (low density area) inside the rubber test piece 10, and the rubber test piece 10 is irradiated with X-rays.
  • photographing steps S3 and S4 for photographing the projected image, and evaluation steps S5 and S6 for evaluating the density distribution of the crosslinked rubber composition based on the density distribution measured from the projected image.
  • step S1 the rubber test piece 10 is fixed to the jigs 21 and 22.
  • the shape of the rubber test piece 10 is not particularly limited, but a cylindrical shape and a rectangular solid are preferable, and a cylindrical shape is more preferable because they have symmetry and can easily obtain highly reproducible measurement results.
  • the rubber test piece 10 preferably has a diameter 5 times or more the length in the axial direction, more preferably 10 times or more, and still more preferably 20 times or more. According to such a test piece 10, when stress is applied to the rubber test piece 10, deformation of the side surface of the rubber test piece 10 is limited. As a result, the volume of the rubber test piece 10 increases and a very large stress is applied to the inside. Therefore, a low density region is likely to be generated inside the test piece 10, and performance evaluation of the elastic material can be performed quickly and easily.
  • the rubber test piece 10 is fixed to both jigs in a state of being sandwiched by the jigs 21 and 22.
  • the upper end surface of the rubber test piece 10 is fixed to the lower end surface of the jig 21, and the lower end surface of the test piece 10 is fixed to the upper end surface of the jig 22.
  • the method of fixing can be appropriately selected according to the test environment and the like. For example, adhesion by adhesion or adhesion by vulcanization adhesion of an elastic material constituting the test piece 10 may be applied.
  • the test pieces 10 and the jigs 21 and 22 are fixed by providing corresponding engaging portions on the upper end surface, the lower end surface, the lower end surface, and the upper end surface and engaging the engaging portions. It may be
  • step S2 as shown in FIG. 1, the driving means 23 moves the jig 21 and the jig 22 in the axial direction of the rubber test piece 10, that is, the jig 22 moves away from the jig 21, The test piece 10 is stretched.
  • the stress exceeds a critical value specific to the crosslinked rubber composition, the rubber test piece 10 has a density deviation and a low density region is generated inside.
  • the stress for stretching the rubber test piece 10 in the case of measuring the distribution of the low density region generated when the applied stress is small is 1.5 MPa. Further, among the low density regions generated when the stress applied is large, the stress for stretching the rubber test piece 10 in the case of measuring the distribution of the void portion which is a region where the internal structure is extremely broken is 3.0 MPa is there.
  • step S3 the X-ray tube 31 irradiates the rubber test piece 10 with X-rays.
  • the X-rays pass through the rubber test piece 10 and are detected by the detector 32.
  • the detector 32 converts the detected X-ray into an electrical signal and outputs it to the computer 40.
  • the luminance of the X-ray irradiated from the X-ray tube 31 to the rubber test piece 10 is largely related to the S / N ratio of the X-ray scattering data.
  • the luminance of the X-ray is preferably 10 10 photons / s / mrad 2 / mm 2 /0.1% bw or more.
  • step S4 the electrical signal output from the detector 32 is processed by the computer 40 to obtain a projection image.
  • step S5 the projection image is reconstructed by the computer 40, and a three-dimensional tomographic image of the rubber test piece 10 is acquired. Then, in step S6, the density distribution of the crosslinked rubber composition at the time of elongation can be evaluated from the tomographic image, and the volumes of the reversible portion and the void portion can be determined.
  • the component ratio having a weight average molecular weight of 1,000,000 or more in the molecular weight distribution measured by gel permeation chromatography is 40 mass% or more.
  • the upper limit of the component ratio having a weight average molecular weight of 1,000,000 or more is not particularly limited, but from the viewpoint of processability, 90 mass% or less is preferable, and 80 mass% or less is more preferable.
  • the cross-linked rubber composition of the present invention can be produced by a general method as long as the cross-linked rubber composition having the component ratio of 1,000,000 or more is obtained as described above. It can be manufactured by For example, after kneading the components other than the vulcanizing agent and the vulcanization accelerator among the above-mentioned components with a known kneader used in general rubber industry such as Banbury mixer, kneader, open roll, etc. Furthermore, a vulcanizing agent and a vulcanization accelerator are added, and the mixture is further kneaded and then vulcanized.
  • the rubber component and the filler can be obtained because the crosslinked state of the crosslinked rubber composition can be made uniform, and a rubber composition having a large low density region at the time of elongation and a small volume of the void at the time of elongation can be easily obtained.
  • the manufacturing method containing is preferable.
  • the sulfur donor refers to, for example, elemental sulfur or a sulfur compound that releases active sulfur at a temperature and pressure below vulcanization conditions (eg, 150 ° C., 1.5 MPa) or lower.
  • This sulfur compound is, in other words, a compound which generally functions as a vulcanizing agent under the temperature and pressure of, for example, vulcanization conditions (for example, 150 ° C., 1.5 MPa) or lower.
  • the released active sulfur forms a part of a pendant structure to be described later.
  • the sulfur atom-containing vulcanization accelerator refers to a vulcanization accelerator containing a sulfur atom bonded to another molecule by a single bond.
  • Sulfur atom-containing vulcanization accelerators include ones that release active sulfur and ones that do not release active sulfur, but from the viewpoint of suppressing the progress of the crosslinking reaction during kneading, sulfur atom-containing vulcanization acceleration that does not release active sulfur Agents are preferred.
  • the sulfur donor and the sulfur atom-containing vulcanization accelerator are Since adsorption can be prevented, the sulfur donor and the sulfur atom-containing vulcanization accelerator in the rubber component can be efficiently dispersed.
  • a filler is added to the kneaded product obtained by kneading the rubber component, the sulfur donor and the sulfur atom-containing vulcanization accelerator, and the mixture is kneaded at a kneading temperature of 120 ° C. or more.
  • Active sulfur is released from the sulfur donor by the kneading temperature of 120 ° C. or more and the mechanical shear force during the kneading.
  • a state in which the active sulfur, the sulfur atom-containing vulcanization accelerator, and the rubber component react, and all or part of the sulfur atom-containing vulcanization accelerator (hereinafter, "vulcanization accelerator residue") is bonded to the rubber component That is, a pendant structure in which "-S- vulcanization accelerator residue" is bonded to the rubber component is formed.
  • the mechanism of this reaction is that the released active sulfur reacts with the sulfur atom of the sulfur atom-containing vulcanization accelerator to form a structure in which two or more sulfur atoms are bonded to form a double bond between the structural portion and the rubber component. It is inferred that the part is reacting.
  • the vulcanization accelerator residue moves together with the rubber component, so that the uniformity of the dispersion state of the vulcanization accelerator residue in the entire rubber composition is improved.
  • homogenization of the crosslinking density at the time of vulcanization can be achieved.
  • mixing temperature is the measurement temperature of the rubber composition in a kneading machine, and the surface temperature of a rubber composition can be measured by a non-contact-type temperature sensor etc.
  • the features of the production method are that the kneading of the rubber component, the sulfur donor and the sulfur atom-containing vulcanization accelerator is started before kneading the filler, and 120 ° C. or more after adding the filler. Kneading at a kneading temperature of Any material may be added in any process as long as the above requirements are satisfied.
  • step X For example, in the case of a two-step kneading step consisting of step X and step F, kneading of the rubber component, sulfur donor and sulfur atom containing vulcanization accelerator is started at the beginning of step X, and filling in the middle of step X
  • the agent may be added and kneaded at a kneading temperature of 120 ° C. or higher, and the subsequent step F may be performed.
  • step X when the kneading step is three steps consisting of step X, step Y and step F, kneading of the rubber component, the sulfur donor and the sulfur atom containing vulcanization accelerator is started in step X, and the subsequent steps A filler may be added with Y, and the mixture may be kneaded at a kneading temperature of 120 ° C. or higher, and the subsequent step F may be performed.
  • kneading of the rubber component, the sulfur donor and the sulfur atom-containing vulcanization accelerator is started at the beginning of step X, and a filler is added in the middle of step X 120
  • the kneading may be carried out at a kneading temperature of at least ° C., and the subsequent step Y and step F may be performed, or the kneading of the rubber component, the sulfur donor and the sulfur atom containing vulcanization accelerator is started at the beginning of the step X
  • a filler may be added in the middle of the step X, and a filler may be further added in the subsequent step Y, and the mixture may be kneaded at a kneading temperature of 120 ° C. or higher, and the subsequent step F may be performed.
  • the kneading temperature of the rubber component, the sulfur donor and the sulfur atom-containing vulcanization accelerator is not particularly limited, but the crosslinking reaction by the sulfur donor and the sulfur atom-containing vulcanization accelerator may proceed. From a viewpoint of suppressing, less than 160 ° C is preferred, and 150 ° C or less is more preferred.
  • the kneading time of the rubber component, the sulfur donor and the sulfur atom-containing vulcanization accelerator before adding the filler to the rubber component is not particularly limited, but from the viewpoint of improving the dispersibility, for example, 10 It is more than a second.
  • the kneading temperature after the addition of the filler is preferably 170 ° C. or less from the viewpoint of suppressing the progress of the crosslinking reaction.
  • the kneading time after the addition of the filler to the rubber component and the kneading temperature to reach 120 ° C. is not particularly limited, but is, for example, 2 minutes or more from the viewpoint of improving the dispersibility.
  • the kneading time referred to herein is the time from when the filler is added to the rubber component and the kneading temperature reaches 120 ° C. to the time when all the steps of the kneading process are completed.
  • the filler is added to the mixture and the kneading temperature reaches 120.degree. C., and it is the time from that point to the point when the process F ends.
  • elemental sulfur and / or a sulfur compound which releases active sulfur mentioned above can be used as said sulfur donor.
  • the elemental sulfur include powdery sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur and the like.
  • the vulcanization reaction may excessively proceed in the kneading step. Therefore, as for content with respect to 100 mass parts of rubber components in the case of using elemental sulfur as a sulfur donor, 0.1 mass part or less is preferable. Further, the content of the element sulfur is preferably 0.05 parts by mass or more from the viewpoint of the breaking strength.
  • sulfur compounds that function as sulfur donors - (- M-S- C-) n - or a polymeric polysulfide represented by a sulfur atom is single bond two or more structural -S n - ( Compounds having n22) and releasing active sulfur can be mentioned.
  • alkylphenol disulfide, morpholine disulfide, -S n - (n ⁇ 2 ) thiuram vulcanization accelerator having a (tetramethylthiuram disulfide (TMTD), tetraethyl thiuram disulfide (TETD), tetrabutyl thiuram disulfide (TBTD), dipentamethylenethiuram tetrasulfide (DPTT), etc., vulcanization accelerator 2- (4′-morpholinodithio) benzothiazole (MDB), polysulfide type silane coupling agent (eg, Si69 (Degussa) Bis (3-triethoxysilylpropyl) tetrasulfide)) and sulfide compounds represented by the following formula (1), (2) or (3) can be mentioned.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethyl thiuram disulfide
  • R 1 is the same or different and represents a monovalent hydrocarbon group of 3 to 15 carbon atoms which may have a substituent.
  • N represents an integer of 2 to 6.
  • R 1 in the formula (1) is a monovalent hydrocarbon group having 3 to 15 carbon atoms which may have a substituent, and the number of carbon atoms is preferably 5 to 12, more preferably 6 to 10 preferable.
  • the monovalent hydrocarbon group of R 1 may be linear, branched or cyclic, and any of saturated and unsaturated hydrocarbon groups (aliphatic, alicyclic, aromatic hydrocarbon groups, etc.) May be. Among them, an aromatic hydrocarbon group which may have a substituent is preferable.
  • R 1 examples include an alkyl group having 3 to 15 carbon atoms, a substituted alkyl group, a cycloalkyl group, a substituted cycloalkyl group, an aralkyl group, a substituted aralkyl group and the like, and among them, an aralkyl group and a substituted aralkyl group are particularly preferable.
  • polar groups such as a hydroxy group, a carboxyl group, a carbonyl group, an amino group, an acetyl group, an amido group and an imide group.
  • n in the formula (1) is an integer of 2 to 6, preferably 2 to 3.
  • R 2 is the same or different and represents a divalent hydrocarbon group having 3 to 15 carbon atoms which may have a substituent.
  • M represents an integer of 2 to 6)
  • R 2 in the above formula (2) is a divalent hydrocarbon group having 3 to 15 carbon atoms which may have a substituent, and the carbon number is preferably 3 to 10, and 4 to 8 is preferable. More preferable.
  • the divalent hydrocarbon group of R 2 may be linear, branched or cyclic, and any of saturated and unsaturated hydrocarbon groups (aliphatic, alicyclic, aromatic hydrocarbon groups, etc.) May be. Among them, an aliphatic hydrocarbon group which may have a substituent is preferable, and a linear aliphatic hydrocarbon group is more preferable.
  • R 2 for example, an alkylene group having 3 to 15 carbon atoms, a substituted alkylene group and the like can be mentioned.
  • examples of the alkylene group include butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group and the like, and examples of the substituent include those similar to the substituent of R 1 .
  • n in the above formula (2) is an integer of 2 to 6, preferably 2 to 3.
  • sulfide compound represented by the above formulas (1) and (2) include N, N′-di ( ⁇ -butyrolactam) disulfide and N, N′-di (5-methyl- ⁇ -butyrolactam ) Disulfide, N, N'-di (5-ethyl- ⁇ -butyrolactam) disulfide, N, N'-di (5-isopropyl- ⁇ -butyrolactam) disulfide, N, N'-di (5-methoxy- ⁇ - Butyrolactam) disulfide, N, N'-di (5-ethoxy- ⁇ -butyrolactam) disulfide, N, N'-di (5-chloro- ⁇ -butyrolactam) disulfide, N, N'-di (5-nitro- ⁇ ) -Butyrolactam) disulfide, N, N'-di (5-amino- ⁇ -butyrolactam) disulfide, N, N'-di
  • R 3 is the same or different and represents an alkyl group, a benzothiazolyl group, an amino group, a morpholino group, a dialkylthiocarbamoyl group, or a group represented by the following formula (4).
  • K is 2 to 6) Represents an integer of
  • R 4 is the same or different and represents an alkyl group, a benzothiazolyl sulfide group, a cycloalkyl group or a hydrogen atom
  • R 3 in the above formula (3) is the same or different and represents an alkyl group, a benzothiazolyl group, an amino group, a morpholino group, a dialkylthiocarbamoyl group, or a group represented by the above formula (4).
  • An alkyl group having 1 to 10 carbon atoms, a benzothiazolyl group, an amino group, a morpholino group or a dialkylthiocarbamoyl group (the alkyl group is the same or different and is an alkyl group having 1 to 10 carbon atoms) is preferable.
  • Examples of the alkyl group having 1 to 10 carbon atoms and the alkyl group having 1 to 10 carbon atoms in the dialkylthiocarbamoyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Examples thereof include iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, octyl group and nonyl group.
  • R 3 in the above formula (3) is the same or different and is a benzothiazolyl group, a morpholino group, or a dialkylthiocarbamoyl group (the alkyl group is the same or different and is an alkyl group having 1 to 5 carbon atoms). ). More preferably, they are the same or different and are a benzothiazolyl group or a dialkylthiocarbamoyl group (the alkyl group is the same or different and is an alkyl group having 1 to 5 carbon atoms).
  • K in the above formula (3) is an integer of 2 to 6, and 2 to 3 is more preferable.
  • R 4 in the formula (4) is the same or different and is an alkyl group, a benzothiazolyl sulfide group, a cycloalkyl group or a hydrogen atom.
  • the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms
  • the cycloalkyl group is preferably a cycloalkyl group having 5 to 8 carbon atoms.
  • sulfide compound represented by the above formula (3) for example, tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, 2- (morpholinodithio) benzothiazole, dibenzothiazolyl disulfide, N-cyclohexyl-2 -Benzothiazolylsulfenamide and the like, and in particular, dibenzothiazolyl disulfide can be suitably used. These may be used alone or in combination of two or more.
  • the content relative to 100 parts by mass of the rubber component in the case of using the sulfur compound functioning as a sulfur donor is preferably 0.1 parts by mass or more, and 0.2 parts by mass or more from the reason of promoting formation of a pendant structure. More preferable.
  • the content of the compound is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less from the viewpoint of gelation suppression during kneading.
  • vulcanization accelerators that function as sulfur donors vulcanization accelerators that contain a sulfur atom bonded to other molecules by a single bond are present. Therefore, a sulfur atom-containing vulcanization accelerator that functions as a sulfur donor has a function of both the sulfur donor and the sulfur atom-containing vulcanization accelerator, and a sulfur atom-containing vulcanization accelerator that functions as a sulfur donor It is possible to form a pendant type structure by mixing many agents alone or using two or more kinds in combination.
  • a sulfur donor and a sulfur atom-containing vulcanization accelerator to be kneaded before adding the filler a sulfur donor (a sulfur atom-containing vulcanization accelerator functioning as a sulfur donor and / or any other sulfur donor And sulfur-free sulfur atom-containing vulcanization accelerators.
  • the non-sulfur-releasing sulfur atom-containing vulcanization accelerator is, for example, a sulfur atom-containing vulcanization accelerator which does not release active sulfur under the temperature and pressure of vulcanization conditions (eg, 150 ° C., 1.5 MPa) or lower.
  • this non-sulfur-releasing sulfur atom-containing vulcanization accelerator functions as a vulcanizing agent, for example, under the temperature and pressure of vulcanization conditions (eg, 150 ° C., 1.5 MPa) or lower.
  • Thiazole-based vulcanization accelerators (2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole (MBT) which do not have -S n- (n 2 2) as a sulfur-free sulfur atom-containing vulcanization accelerator Salts of zinc (ZnMBT), cyclohexylamine salts of 2-mercaptobenzothiazole (CMBT), etc., and sulfenamide vulcanization accelerators (N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), N- (Tert-butyl) -2-benzothiazolesulfenamide (TBBS), N, N-dicyclohexyl-2-benzothiazolylsulfenamide, etc., vulcanization accelerator tetramethylthiuram monosulfide (TMTM), dithiocarbamine Acid salt type accelerator (piperidinium pentamethylene dithiocarbamate (PPDC)) Zinc di
  • di-2-benzothiazolyl disulfide which is a thiazole-based vulcanization accelerator, has -S n- (n 2 2) and is a vulcanization accelerator that releases sulfur. Since a general compounding amount does not exhibit a function as a vulcanizing agent to natural rubber and butadiene rubber, it can be used equivalent to a sulfur atom-free sulfur atom containing vulcanization accelerator.
  • the content of the sulfur atom-containing vulcanization accelerator relative to 100 parts by mass of the rubber component is preferably 1.0 parts by mass or more, and 1.5 parts by mass or more, because the vulcanization reaction efficiently proceeds in the vulcanization step. More preferable.
  • the content is preferably 5 parts by mass or less, and more preferably 3 parts by mass or less, from the viewpoint of scorchability and suppression of deposition on the surface.
  • the crosslinking reaction can be sufficiently advanced during vulcanization while suppressing the progress of the crosslinking reaction from excessively progressing during kneading.
  • An additional sulfur donor is added in step F after, for example, adding a filler to the rubber component and kneading at a kneading temperature of 120 ° C. or higher.
  • the additional sulfur donor may be the same as or different from those kneaded prior to adding the filler to the rubber component, such as powdered sulfur, precipitated sulfur, colloidal sulfur, etc. Elemental sulfur such as surface-treated sulfur and insoluble sulfur can be mentioned.
  • the content of the additional sulfur donor is not particularly limited, but is preferably 0.5 parts by mass or more, based on 100 parts by mass of the rubber component, because the vulcanization reaction proceeds efficiently in the vulcanization step. More preferred is part by mass or more.
  • the content of the additional sulfur donor is preferably 3.0 parts by mass or less, and more preferably 2.5 parts by mass or less, from the viewpoint of excellent wear resistance.
  • a general vulcanization accelerator When adding an additional sulfur donor in the step F, a general vulcanization accelerator may be added.
  • general vulcanization accelerators include thiuram-based disulfides and polysulfides, which are sulfur atom-containing vulcanization accelerators, and guanidines, aldehyde-amines and aldehydes, which are vulcanization accelerators that do not have a sulfur atom. And ammonia-based and imidazoline-based vulcanization accelerators.
  • the content of the vulcanization accelerator added in the step F relative to 100 parts by mass of the rubber component is preferably 0.1 parts by mass or more.
  • the mass ratio of the compounding amount of the vulcanization accelerator added in the step F to the compounding amount of the sulfur atom-containing vulcanization accelerator to be kneaded before adding the filler to the rubber component is more than 0% and 80% or less Preferably, 60% or less is more preferable.
  • the crosslinked rubber composition of the present invention can be used not only for tire members such as treads, undertreads, carcasses, sidewalls and beads of tires, but also for anti-vibration rubbers, belts, hoses and other rubber industrial products. It is preferable to set it as the tire which has a tread comprised with the crosslinked rubber composition of this invention from the thing which is excellent in abrasion resistance especially.
  • a tire using the crosslinked rubber composition of the present invention can be produced by an ordinary method using an uncrosslinked rubber composition. That is, an uncrosslinked rubber composition prepared by blending the above-mentioned compounding agent with a diene rubber component as needed is extruded according to the shape of a tread or the like, and bonded together with other tire members on a tire molding machine An unvulcanized tire is formed by molding according to a conventional method, and the unvulcanized tire is heated and pressed in a vulcanizer to produce a tire.
  • the pneumatic tire of this invention can be set as the structure of the conventional pneumatic tire. That is, the pneumatic tire of the present invention can be made by making at least one or more of the tire members constituting the pneumatic tire having the conventional structure into a member using the crosslinked rubber composition of the present invention.
  • bead cores respectively provided in a pair of left and right bead portions, a carcass ply extending from the crown portion through both side wall portions to both bead portions and anchored to the bead cores, and further inward in the tire radial direction than the carcass ply
  • the inner liner and the carcass ply are provided on the outer side in the tire radial direction, and the volume of the low density region at the time of elongation by an applied stress of 1.5 MPa is 35% or more, the elongation by an applied stress of 3.0 MPa
  • a pneumatic tire comprising a tread having a volume of a void portion at 7.5% or less and a component ratio of a weight average molecular weight of 1,000,000 or more in a molecular weight distribution measured by gel permeation chromatography being 40% by mass or more; It is preferable to do.
  • a tread here is a part which touches a road surface, and when a tread is comprised by two or more different crosslinked rubber compositions, at least one crosslinked rubber composition of them is a crosslinked rubber composition of the present invention If it is, it is a tire of the present invention.
  • SBR 1 Prepared by the method for producing modified SBR 1 described below (S-SBR, styrene content: 26% by mass, vinyl content: 59%, Tg: ⁇ 25 ° C., Mw: 4 ⁇ 10 5 )
  • SBR2 SLR6430 (S-SBR, styrene content: 40% by mass, vinyl content: less than 25%, Tg: -40 ° C, Mw: 12 ⁇ 10 5 ) manufactured by Dow BR: BR150B manufactured by Ube Industries, Ltd.
  • Silica Ultrasil VN3 manufactured by Evonik (N 2 SA: 175 m 2 / g) Silane coupling agent: Si266 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Evonik Co.
  • Carbon black Diamond black I (N 2 SA: 98 m 2 / g, DBP oil absorption: 124 ml / 100 g) manufactured by Mitsubishi Chemical Corporation
  • Zinc oxide Zinc oxide 2 types from Mitsui Mining & Smelting Co., Ltd.
  • Stearic acid Beads made from NOF Co., Ltd.
  • Cyclohexane Cyclohexane pyrrolidine manufactured by Kanto Chemical Co., Ltd .: Pyrrolidine divinylbenzene manufactured by Kanto Chemical Co., Ltd .: Divinylbenzene 1.6 M solution in n-butyllithium hexane manufactured by Sigma-Aldrich Co .: manufactured by Kanto Chemical Co., Ltd. 1.
  • Isopropanol Isopropanol styrene manufactured by Kanto Chemical Co., Ltd .: Styrene butadiene manufactured by Kanto Chemical Co., Ltd .: 1,3-butadiene tetramethylethylene diamine manufactured by Takachiho Chemical Industry Co., Ltd .: Kanto Chemical Co., Ltd.
  • N, N, N ', N'-tetramethylethylenediamine modifier 3- (N, N-dimethylaminopropyl) trimethoxysilane manufactured by Amax Co., Ltd.
  • step X the various chemicals shown in step X were kneaded for 5.0 minutes at a discharge temperature of 100 ° C. in a 1.7 L Banbury mixer (step X).
  • step Y the kneaded product of step X and the various chemicals shown in step Y were kneaded for 30 seconds at 140 ° C. or higher with a 1.7 L Banbury mixer, and further kneaded for 3 minutes at a discharge temperature of 150 ° C. (step Y) .
  • step Y the kneaded product of step Y and the various chemicals shown in step F were kneaded at about 80 ° C.
  • step F an open roll
  • the obtained unvulcanized rubber composition is extruded into a tread shape by an extruder equipped with a die having a predetermined shape, and is bonded together with other tire members to form an unvulcanized tire, and the condition of 170 ° C.
  • the test tire (tire size: 195 / 65R15) was manufactured by press curing for 12 minutes at. The following evaluation was performed about the obtained test tire. The results are shown in Tables 1 and 2.
  • Each rubber test piece obtained by cutting out a cylindrical rubber test piece with a diameter of 10 mm and a height of 1 mm from the tread portion of the test tire in the low density region is fixed to the jig shown in FIG.
  • X-ray CT imaging is performed by beam line BL20B2 of large-sized synchrotron radiation facility SPring-8, the fluorescent substance uses P43 (Gd 2 O 2 S: Tb) whose attenuation time is 1 ms, and CT reconstruction is Convention Back Projection It carried out by laminating
  • the density is 0.1 to 0.8.
  • Each rubber test piece obtained by cutting out a cylindrical rubber test piece with a diameter of 10 mm and a height of 1 mm from the tread portion of the test tire is fixed to the jig shown in FIG.
  • X-ray (brightness: 10 16 photons / s / mrad 2 / mm 2 /0.1% bw) at the time of extension by an applied stress of .0 MPa and CT imaging is performed, and a three-dimensional image created by reconstruction of the captured image From the tomographic image of the image, the volume ratio of the void portion in the rubber test piece at the time of elongation was calculated from the density distribution.
  • X-ray CT imaging is performed by beam line BL20B2 of large-sized synchrotron radiation facility SPring-8, the fluorescent substance uses P43 (Gd 2 O 2 S: Tb) whose attenuation time is 1 ms, and CT reconstruction is Convention Back Projection It carried out by laminating
  • Molecular weight The weight average molecular weight and molecular weight distribution of each rubber test piece cut out from the tread portion of the test tire are shown by gel permeation chromatograph (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column : Measured according to Tosoh Co., Ltd. TSK GEL SUPERMALTPORE HZ-M (standard polystyrene equivalent). The peak value of the highest weight average molecular weight measured and the component ratio having a weight average molecular weight of 1,000,000 or more are shown.
  • GPC gel permeation chromatograph
  • Wear resistance The same test tire manufactured as described above was mounted on four wheels of a domestic FF car, and the groove depth of the tire tread portion after traveling distance 8000 km was measured, respectively.
  • the running distance when the tire groove depth decreases by 1 mm was calculated from the arithmetic mean value, and the abrasion resistance index of Comparative Example 1 was set to 100, and the results of each composition were indicated by the following formula (abrasion resistance index).
  • the larger the wear resistance index, the better the wear resistance. Wear resistance index (traveling distance when the groove depth decreases by 1 mm) / (traveling distance when the tire groove of the comparative example 1 decreases by 1 mm) ⁇ 100
  • step X Various chemicals shown in step X were kneaded with a 1.7 L Banbury mixer according to the contents of the formulation, discharge temperature and time shown in Table 3 (step X).
  • step X the contents of the formulation, discharge temperature and time shown in Table 3
  • step Y the kneaded product of step X and the various chemicals shown in step Y were kneaded with a 1.7 L Banbury mixer according to the discharge temperature and time shown in Table 3 and further kneaded for 3 minutes at a discharge temperature of 150 ° C. Process Y).
  • the kneaded product of step Y and the various chemicals shown in step F were kneaded using an open roll according to the discharge temperature and time shown in Table 3 (step F) to obtain an unvulcanized rubber composition.
  • the obtained unvulcanized rubber composition is extruded into a tread shape by an extruder equipped with a die having a predetermined shape, and is bonded together with other tire members to form an unvulcanized tire, and the condition of 170 ° C.
  • the test tire (tire size: 195 / 65R15) was manufactured by press curing for 12 minutes at. The following evaluation was performed about the obtained test tire. The results are shown in Table 3.
  • the low density region at the time of elongation by the applied stress of 1.5 MPa is large, the void portion at the time of expansion by the applied stress of 3.0 MPa is small, and the weight average molecular weight in the molecular weight distribution measured by GPC
  • the pneumatic tire of the present invention is provided with a tread having a high component ratio of 1,000,000 or more, and there are many low density regions at the time of elongation by the applied stress of 1.5MPa, and there are few voids at the time of elongation by the applied stress of 3.0MPa
  • the crosslinked rubber composition of the present invention having a high proportion of components having a weight average molecular weight of 1,000,000 or more in the molecular weight distribution measured by GPC is found to be a pneumatic tire and a crosslinked rubber composition excellent in abrasion resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ビードコアと、カーカスプライと、前記カーカスプライよりもタイヤ径方向内側に配置されたインナーライナーと、前記カーカスプライよりもタイヤ径方向外側に設けられ、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上であるトレッドと、を備えることを特徴とする本発明の空気入りタイヤおよび、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上である本発明の架橋ゴム組成物は、耐摩耗性に優れる。

Description

空気入りタイヤおよび架橋ゴム組成物
 本発明は空気入りタイヤおよび架橋ゴム組成物に関する。
 一般的にタイヤトレッドに用いられる架橋ゴム組成物は、その平均分子量が高い程、破壊特性および耐摩耗性に優れることが知られている(例えば、特許文献1など)。これは、分子量が高い程、破壊の起点となりうるゴム分子の末端の数が減少することが1つの要因であると考えられる。
 しかしながら、必ずしも分子量が高い方が破壊特性、耐摩耗性に優れるわけではなく、例外も見られる。すなわち、架橋ゴム組成物中の分子量は高いが、この架橋ゴム組成物やゴム製品の耐摩耗性を測定すると、優れた結果が得られないという事象が確認されている。
 これまで、このような例外が生じるメカニズム解明のために様々な手法でゴムの破壊および摩擦現象が観察されてきたが、完全に解明されたわけではない。
 一方、固体試料を構成する材料やその内部に含まれる低密度領域を解析する技術として、X線CT(Computed Tomography)撮影技術が知られている。例えば、特許文献2には、摩擦材を構成する材料と内部に存在する低密度領域とを視覚的に解析する解析方法が記載されているが、試料物体に伸長などの外部エネルギーを付加した状態を解析することや、試料の密度を解析することまでは記載されていない。
特開2013-32497号公報 特開2009-85732号公報
 本発明は、耐摩耗性に優れた空気入りタイヤおよび架橋ゴム組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、1.5MPaの印加応力による伸長時の低密度領域を多く、3.0MPaの印加応力による伸長時の空隙部を少なくし、かつ重量平均分子量が100万以上の成分比率を高くすることにより、架橋ゴム組成物の内部で生じる亀裂の成長が抑制され、耐摩耗性をより向上させることができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、左右一対のビード部にそれぞれ設けられたビードコアと、クラウン部から両サイドウォール部を経て両ビード部に延び前記ビードコアに係留されたカーカスプライと、前記カーカスプライよりもタイヤ径方向内側に配置されたインナーライナーと、前記カーカスプライよりもタイヤ径方向外側に設けられ、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上であるトレッドと、を備えることを特徴とする空気入りタイヤに関する。
 また、本発明は、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上である架橋ゴム組成物に関する。
 前記ゴム成分が、共役ジエン系化合物を含むゴム成分を1種以上含むゴム成分であることが好ましい。
 前記低密度領域が、密度が伸長前の架橋ゴム組成物の0.1~0.8倍となった領域であることが好ましい。
 前記空隙部が、密度が伸長前の架橋ゴム組成物の0~0.1倍となった領域であることが好ましい。
 低密度領域および空隙部の体積評価方法が、X線CT撮影であることが好ましい。
 X線を可視光に変換するための蛍光体の減衰時間が100ms以下であることが好ましい。
 X線の輝度が1010photons/s/mrad2/mm2/0.1%bw以上であることが好ましい。
 1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、ゲル浸透クロマトグラフィ(GPC)により測定された分子量分布における重量平均分子量が100万以上の成分比率が高いトレッドを備える本発明の空気入りタイヤ、および1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、ゲル浸透クロマトグラフィ(GPC)により測定された分子量分布における重量平均分子量が100万以上の成分比率が高い本発明の架橋ゴム組成物によれば、耐摩耗性に優れた空気入りタイヤおよび架橋ゴム組成物を提供することができる。
架橋ゴム組成物の伸長時の密度分布を評価する評価装置の一例を概略的に示す斜視図である。 伸長時の架橋ゴム組成物の密度分布の評価方法の処理手順を示すフローチャートである。
 本発明の架橋ゴム組成物は、1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、ゲル浸透クロマトグラフィ(GPC)により測定された分子量分布における重量平均分子量が100万以上の成分比率が高い架橋ゴム組成物である。なお、本明細書における架橋ゴム組成物とは、加硫剤や有機過酸化物などによる架橋を行ったゴム組成物である。
ゴム成分
 前記のゴム成分としては特に限定されず、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などのジエン系ゴムやブチル系ゴムなどの従来のゴム工業で使用されているゴム成分から、単独または2種以上を適宜選択して使用することができる。なかでも、共役ジエン系化合物を含むゴム成分を1種以上含むことが好ましく、低燃費性や耐摩耗性、耐久性、ウェットグリップ性能のバランスの観点からSBRおよびBRを含有することが好ましい。
 SBRとしては、特に限定されず、乳化重合SBR(E-SBR)、溶液重合SBR(S-SBR)などが挙げられ、油展されていても、油展されていなくてもよい。また、フィラーとの相互作用力を高めた末端変性S-SBRや、主鎖変性S-SBRも使用可能である。これらSBRは、1種を用いてもよいし、2種以上を併用してもよい。
 SBRのスチレン含量は、グリップ性能の観点から、16質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上がさらに好ましく、30質量%以上が特に好ましい。また、スチレン含量が多すぎると、スチレン基が隣接し、ポリマーが硬くなりすぎ、架橋が不均一となりやすく、高温走行時のブロー性が悪化するおそれがあり、また、温度依存性が増大し、温度変化に対する性能変化が大きくなってしまい、走行中・後期の安定したグリップ性能が良好に得られない傾向があることから、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。なお、本明細書において、SBRのスチレン含量は、1H-NMR測定により算出される。
 SBRのビニル含量は、架橋ゴム組成物のHs、グリップ性能の観点から10%以上が好ましく、15%以上がより好ましい。また、グリップ性能、EB(耐久性)、耐摩耗性の観点から、90%以下が好ましく、80%以下がより好ましく、70%以下がさらに好ましく、60%以下が特に好ましい。なお、本明細書において、SBRのビニル含量(1,2-結合ブタジエン単位量)は、赤外吸収スペクトル分析法によって測定できる。
 SBRは、ガラス転移温度(Tg)が-45℃以上であることが好ましく、-40℃以上であることがより好ましい。該Tgは、10℃以下であることが好ましく、温帯冬期での脆化クラック防止の観点から5℃以下であることがより好ましい。なお、本明細書において、SBRのガラス転移温度は、JIS K 7121に従い、昇温速度10℃/分の条件で示差走査熱量測定(DSC)を行って測定される値である。
 SBRの重量平均分子量(Mw)は、グリップ性能やブロー性の観点から、70万以上が好ましく、90万以上がより好ましく、100万以上がさらに好ましい。また、ブロー性の観点から、重量平均分子量は200万以下が好ましく、180万以下がより好ましい。なお、本明細書において、SBRの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
 SBRのゴム成分中の含有量は、十分なグリップ性能が得られるという理由から、30質量%以上が好ましく、40質量%以上がより好ましい。また、SBRの含有量は、耐摩耗性、グリップ性能、低燃費性の観点から、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。
 なかでも、より高いグリップ性能、ブロー性を発揮することができるという理由から、スチレン含量が16~60質量%のSBRを40質量%以上含むことが好ましく、スチレン含量が25~55質量%のSBRを50質量%以上含むことがより好ましい。
 BRとしては、特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150B等の高シス含有量のBR(ハイシスBR)、日本ゼオン(株)製のBR1250H等の変性BR、宇部興産(株)製のVCR412、VCR617等のシンジオタクチックポリブタジエン結晶を含有するBR、ランクセス(株)製のBUNA-CB25等の希土類元素系触媒を用いて合成されるBR(希土類系BR)等を使用できる。これらBRは、1種を用いてもよいし、2種以上を併用してもよい。なかでも、加工性、耐摩耗性および破壊特性において優れるという点からハイシスBRや希土類系BRが好ましい。
 BRを含有する場合の、ゴム成分中のBRの含有量は、耐摩耗性、グリップ性能、低燃費性の観点から、10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がさらに好ましい。また該含有量は、耐摩耗性、グリップ性能、低燃費性の観点から、70質量%以下が好ましく、60質量%以下がより好ましい。
 前記フィラーとしては、従来、架橋ゴム組成物において慣用されるもののなかから任意に選択して用いることができるが、主としてカーボンブラックやシリカが好ましい。
 カーボンブラックとしては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどが挙げられ、これらのカーボンブラックは単独で用いてもよく、2種以上を組合せて用いてもよい。なかでも、低温特性と摩耗性能をバランスよく向上させることができるという理由から、ファーネスブラックが好ましい。
 カーボンブラックのチッ素吸着比表面積(N2SA)は、十分な補強性および耐摩耗性が得られる点から、70m2/g以上が好ましく、90m2/g以上がより好ましい。また、カーボンブラックのN2SAは、分散性に優れ、発熱しにくいという点から、300m2/g以下が好ましく、250m2/g以下がより好ましい。なお、本明細書におけるカーボンブラックのN2SAとは、JIS K 6217-2「ゴム用カーボンブラック基本特性-第2部:比表面積の求め方-窒素吸着法-単点法」に準じて測定された値である。
 カーボンブラックを含有する場合のゴム成分100質量部に対する含有量は、3質量部以上が好ましく、4質量部以上がより好ましい。3質量部未満の場合は、十分な補強性が得られない傾向がある。また、カーボンブラックの含有量は200質量部以下が好ましく、150質量部以下がより好ましく、60質量部以下がさらに好ましい。200質量部を超える場合は、加工性が悪化する傾向、発熱しやすくなる傾向、および耐摩耗性が低下する傾向がある。
 シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
 シリカのチッ素吸着比表面積(N2SA)は、耐久性や破断時伸びの観点から、80m2/g以上が好ましく、100m2/g以上がより好ましい。また、シリカのN2SAは、低燃費性および加工性の観点から、250m2/g以下が好ましく、220m2/g以下がより好ましい。なお、本明細書におけるシリカのN2SAとは、ASTM D3037-93に準じて測定された値である。
 シリカを含有する場合のゴム成分100質量部に対する含有量は、耐久性や破断時伸びの観点から、5質量部以上が好ましく、10質量部以上がより好ましい。また、シリカの含有量は、混練時の分散性向上の観点、圧延時の加熱や圧延後の保管中にシリカが再凝集して加工性が低下することを抑制するという観点から、200質量部以下が好ましく、150質量部以下がより好ましい。
 シリカを含有する場合はシランカップリング剤を併用することが好ましい。シランカップリング剤としては、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができ、例えば、エボニックデグッサ社製のSi75、Si266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)、同社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、Momentive社製のNXT-Z100、NXT-Z45、NXTなどのメルカプト系(メルカプト基を有するシランカップリング剤)、ビニルトリエトキシシランなどのビニル系、3-アミノプロピルトリエトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシランなどのグリシドキシ系、3-ニトロプロピルトリメトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシランなどのクロロ系などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、スルフィド系、メルカプト系がシリカとの結合力が強く、低発熱性において優れるという点から好ましい。
 シランカップリング剤を含有する場合のシリカ100質量部に対する含有量は、2質量部以上が好ましく、3質量部以上がより好ましい。シランカップリング剤の含有量が2質量部未満の場合は、シリカ分散性の改善効果が十分に得られない傾向がある。また、シランカップリング剤の含有量は、25質量部以下が好ましく、20質量部以下がより好ましい。シランカップリング剤の含有量が25質量部を超える場合は、コストに見合った効果が得られない傾向がある。
 本発明の架橋ゴム組成物には、前記成分以外にも、架橋ゴム組成物の製造に一般的に使用される配合剤、例えば、樹脂成分、オイル、酸化亜鉛、ステアリン酸、老化防止剤、ワックス、硫黄供与体、加硫剤、加硫促進剤などを適宜配合することができる。
 本発明の架橋ゴム組成物は、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上であることを特徴とする。ゲル浸透クロマトグラフィによる分子量分布の測定方法としては特に限定されず、従来の測定方法を採用することができる。
 前記低密度領域が多い架橋ゴム組成物は、架橋ゴム組成物の架橋構造が極めて均一であるために、応力が特定の領域に集中することなく分散する。前記空隙部の発生領域が少ない架橋ゴム組成物は、破壊特性および耐摩耗性などの外部からの応力に対する耐久性に優れる。また、重量平均分子量が100万以上の成分比率が高い架橋ゴム組成物はゴム分子の自由な運動が制限され破壊されにくい。本発明の架橋ゴム組成物は、1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、かつ重量平均分子量が100万以上の成分比率が高いことにより、高い耐摩耗性を実現することができる。
 1.5MPaの印加応力による伸長時の低密度領域の体積は、40%以上が好ましい。また、1.5MPaの印加応力による伸長時の低密度領域の体積は、95%以下が好ましい。
 3.0MPaの印加応力による伸長時の空隙部の体積は、7.0%以下が好ましい。
 1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であるという状態を実現するためにはゴム組成物中の架橋状態を均一化することが必要である。架橋状態の均一化の手段としては、例えば、混練時間を長くしたり、混練回数を増やしたりなどすることで、加硫剤および/または加硫促進剤の分散状態を均一化することなどが挙げられる。
 低密度領域および空隙部について説明する。まず、架橋ゴム組成物に印加する応力が架橋ゴム組成物固有の臨界値を超えると、架橋ゴム組成物に密度の偏りが生じ、内部に低密度領域が発生する。この低密度領域には、可逆部分と不可逆部分とがある。
 可逆部分とは、印加する応力が小さい場合(1.5MPa)に発生する低密度領域であり、応力の解放によって消滅し、密度分布は元の一様な状態に回復する低密度領域である。ここで、印加する応力が小さい場合に発生する低密度領域は、密度が伸長前の架橋ゴム組成物の平均密度の0.1倍以上0.8倍以下の領域である。この可逆部分の分布を評価することでゴム試験片を精度良く評価することができる。
 不可逆部分とは、印加する応力が大きい場合(3.0MPa)に発生する低密度領域であり、応力によって、架橋ゴム組成物の内部構造(分子鎖の結合)が部分的に破壊され、応力を解放した後であっても、元の状態に回復せずに残留する低密度領域である。ここで、不可逆部分の中でも、内部構造が極度に破壊された領域であり、密度が伸長前の架橋ゴム組成物の平均密度の0倍以上0.1倍以下の領域を空隙部とする。この空隙部の分布を評価することでもゴム試験片を精度良く評価することができる。
 1.5MPaの印加応力による伸長時の低密度領域の体積および3.0MPaの印加応力による伸長時の空隙部の体積の評価方法としては、伸長時の架橋ゴム組成物の密度分布が評価可能な方法であれば特に限定されないが、X線CT撮影を用いた評価方法が好ましい。
 X線CT撮影を用いた伸長時の架橋ゴム組成物の密度分布の評価方法について添付の図面を参照して説明する。図1は該評価方法に用いられる評価装置の一例を概略的に示す斜視図である。図1に示す評価装置1は、応力印加手段2、撮影手段3および評価手段4を備えている。
 応力印加手段2は、ゴム試験片10を伸長させる応力を印加して、ゴム試験片10の内部に低密度領域を発生させる。
 応力印加手段2は、試験片10が固着される一対の治具21、22と、治具21と治具22とを相対的に移動させて試験片10に応力を印加する駆動手段23とを有していることが好ましい。駆動手段23は、一方の治具21を固定した状態で、他方の治具22を試験片10の軸方向に移動させる。これにより、ゴム試験片10を、その軸方向に伸長する応力が印加される。
 試験片10に印加される応力は、ロードセル(図示せず)等により検出される。ロードセルの位置および形式は、任意である。応力印加手段2によってゴム試験片10には、予め定められた応力が印加される。駆動手段23は、試験片10および治具21、22をゴム試験片10の軸回りに回転可能に構成されている。
 撮影手段3は、試験片10にX線を照射して、投影像を撮影する。撮影手段3は、X線を照射するX線管31と、X線を検出して電気信号に変換する検出器32とを有する。試験片10および治具21、22を試験片10の軸回りに回転させながら、撮影手段5が複数の投影像を撮影することにより、全周にわたる試験片10の投影像を得ることができる。
 検出器52は、X線を可視光に変換するための蛍光体32aを有している。蛍光体32aの減衰時間は、100ms以下が好ましい。蛍光体32aの減衰時間が、100msを超える場合、試験片10等を試験片10の軸回りに回転させながら複数の投影像を連続して撮影する際に、先に撮影した投影像の残像が後から撮影する投影像に影響を及ぼすおそれがある。このような観点から、蛍光体32aのより望ましい減衰時間は50ms以下であり、より一層望ましい減衰時間は10ms以下である。
 評価手段4は、投影像から測定される密度分布に基づいて、架橋ゴム組成物の性能を評価する。評価手段4には、例えば、コンピュータ40が適用される。コンピュータ40は、本体41、キーボード42、およびディスプレイ装置43を含んでいる。この本体41には、例えば、演算処理装置(CPU)、ROM、作業用メモリおよびハードディスクなどの記憶装置が設けられる。記憶装置には、本実施形態のシミュレーション方法を実行するための処理手順(プログラム)が予め記憶されている。
 図2は評価装置1を用いた伸長時の架橋ゴム組成物の密度分布の評価方法の処理手順を示すフローチャートである。密度分布の評価方法は、試験片10に応力を印加してゴム試験片10の内部に密度の偏り(低密度領域)を発生させる工程S1、S2と、ゴム試験片10にX線を照射して、投影像を撮影する撮影工程S3、S4と、投影像から測定される密度分布に基づいて、架橋ゴム組成物の密度分布を評価する評価工程S5およびS6とを含む。
 工程S1では、ゴム試験片10が治具21、22に固定される。
 ゴム試験片10の形状は特に限定されないが、対称性を有し、容易に再現性の高い測定結果を得ることができるといる理由から、円柱状および直方体が好ましく、円柱状がより好ましい。
 ゴム試験片10は、その軸方向の長さの5倍以上の直径を有していることが好ましく、10倍以上がより好ましく、20倍以上がさらに好ましい。このような試験片10によれば、ゴム試験片10に応力が印加されたとき、ゴム試験片10の側面の変形が制限される。その結果、ゴム試験片10の体積が増加し、内部に非常に大きな応力が印加される。従って、試験片10の内部に低密度領域が発生し易くなり、弾性材料の性能評価を迅速かつ容易に行えるようになる。
 ゴム試験片10は、治具21及び22に挟み込まれた状態で、両治具に固着されている。ゴム試験片10の上端面は、治具21の下端面に固着され、試験片10の下端面は、治具22の上端面に固着されている。固着の方法は、試験環境等に応じて適宜選択されうる。例えば、接着剤による固着や、試験片10を構成する弾性材料の加硫接着による固着が適用されうる。また、上端面、下端面、及び、下端面、上端面に、それぞれ対応する係合部を設けて各係合部を係合させることにより、試験片10と治具21、22とが固着されていてもよい。
 工程S2では、図1に示されるように、駆動手段23によって、治具21と治具22とがゴム試験片10の軸方向、すなわち治具22が治具21から離れる方向に移動し、ゴム試験片10を伸長させる。応力が架橋ゴム組成物固有の臨界値を超えると、ゴム試験片10に密度の偏りが生じ、内部に低密度領域が発生する。
 本発明では、印加する応力が小さい場合に発生する低密度領域の分布を測定する場合のゴム試験片10を伸長させる応力は1.5MPaである。また、印加する応力が大きい場合に発生する低密度領域の中でも、内部構造が極度に破壊された領域である空隙部の分布を測定する場合のゴム試験片10を伸長させる応力は3.0MPaである。
 工程S3では、X線管31からゴム試験片10にX線が照射される。X線は、ゴム試験片10を透過して、検出器32によって検出される。検出器32は、検出したX線を電気信号に変換し、コンピュータ40に出力する。
 X線管31からゴム試験片10に照射されるX線の輝度は、X線散乱データのS/N比に大きく関係する。X線の輝度が小さい場合、X線の統計誤差よりもシグナル強度が弱くなる傾向にあり、計測時間を長くしても十分にS/N比の良いデータを得ることが困難となるおそれがある。このような観点から、X線の輝度は、1010photons/s/mrad2/mm2/0.1%bw以上が好ましい。
 工程S4では、検出器32から出力された電気信号は、コンピュータ40によって処理され、投影像が取得される。
 工程S5では、投影像がコンピュータ40によって再構成され、ゴム試験片10の三次元の断層画像が取得される。そして、工程S6では、断層画像から伸長時の架橋ゴム組成物の密度分布を評価し、可逆部分および空隙部の体積を求めることができる。
 前述のとおり、本発明の架橋ゴム組成物は、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上である。
 前記重量平均分子量が100万以上の成分比率は、45質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。また、重量平均分子量が100万以上の成分比率の上限は特に限定されないが、加工性の観点から、90質量%以下が好ましく、80質量%以下がより好ましい。
 本発明の架橋ゴム組成物は、前述の伸長時の低密度領域の体積、空隙部の体積および重量平均分子量が100万以上の成分比率を示す架橋ゴム組成物が得られる限り、一般的な方法で製造できる。例えば、バンバリーミキサーやニーダー、オープンロールなどの一般的なゴム工業で使用される公知の混練機で、前記各成分のうち、加硫剤および加硫促進剤以外の成分を混練りした後、これに、加硫剤および加硫促進剤を加えてさらに混練りし、その後加硫する方法などにより製造できる。
 架橋ゴム組成物の架橋状態を均一化することができ、伸長時の低密度領域が多く、伸長時の空隙部の体積が小さいゴム組成物が得られ易いという理由から、ゴム成分と充填剤とを混練する前に、ゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始し、その後、得られた混練物に充填剤を加え、120℃以上の混練温度で混練する工程を含む製造方法が好ましい。
 前記硫黄供与体とは、例えば、元素硫黄や、加硫条件(例えば150℃、1.5MPa)またはそれ以下の温度および圧力下で活性硫黄を放出する硫黄化合物を指す。この硫黄化合物は、換言すれば、例えば、加硫条件(例えば150℃、1.5MPa)またはそれ以下の温度および圧力下において、一般的に加硫剤としての機能を発揮する化合物である。なお、この放出された活性硫黄が、後述するペンダント型構造の一部を形成する。
 前記硫黄原子含有加硫促進剤とは、他の分子と単結合で結合している硫黄原子を含む加硫促進剤を指す。硫黄原子含有加硫促進剤には活性硫黄を放出するものと放出しないものとが存在するが、混練中の架橋反応の進行を抑制するという観点から、活性硫黄を放出しない硫黄原子含有加硫促進剤が好ましい。
 ゴム成分と充填剤とを混練する前に、ゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始することにより、充填剤による硫黄供与体および硫黄原子含有加硫促進剤の吸着を防止できるため、ゴム成分中における硫黄供与体および硫黄原子含有加硫促進剤を効率的に分散させることができる。そして、該製造方法では、ゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練により得られた混練物に充填剤を加え、120℃以上の混練温度で混練する。120℃以上の混練温度と混練時の機械的せん断力によって硫黄供与体から活性硫黄が放出される。この活性硫黄と硫黄原子含有加硫促進剤とゴム成分とが反応し、ゴム成分に硫黄原子含有加硫促進剤の全部または一部(以下、「加硫促進剤残基」)が結合した状態、すなわち、ゴム成分に「-S-加硫促進剤残基」が結合したペンダント型構造が形成された状態となる。この反応のメカニズムは、放出された活性硫黄が硫黄原子含有加硫促進剤の硫黄原子と反応し、硫黄原子が2個以上結合した構造が形成されて、その構造部分とゴム成分の二重結合部とが反応していると推測される。前記ペンダント型構造が形成された状態で混練を行うことにより、ゴム成分と共に加硫促進剤残基が移動するので、ゴム組成物全体における加硫促進剤残基の分散状態の均一性を高めることができる。これにより、該製造方法では、加硫時の架橋密度の均一化を図ることができる。なお、ここでいう混練温度とは、混練機中のゴム組成物の実測温度であり、非接触式の温度センサなどでゴム組成物の表面温度を測定することができる。
 該製造方法の特徴は、前述のとおり、充填剤を混練する前にゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始する点、および充填剤を加えた後に120℃以上の混練温度で混練する点である。以上の要件を満たすのであれば、いずれの工程でいずれの材料を加えても構わない。例えば、混練工程が工程Xと工程Fとからなる2工程の場合、工程Xの初期にゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始し、工程Xの途中で充填剤を加えて120℃以上の混練温度で混練し、その後の工程Fを行ってもよい。また、例えば、混練工程が工程Xと工程Yと工程Fとからなる3工程の場合、工程Xでゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始し、その後の工程Yで充填剤を加えて120℃以上の混練温度で混練し、その後の工程Fを行ってもよい。また、3工程の場合の他の例としては、工程Xの初期にゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始し、工程Xの途中で充填剤を加えて120℃以上の混練温度で混練し、その後の工程Yおよび工程Fを行っても良いし、また、工程Xの初期にゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練を開始し、工程Xの途中で充填剤を加え、その後の工程Yでさらに充填剤を加えて120℃以上の混練温度で混練し、その後の工程Fを行ってもよい。なお、各工程の間にリミルを行ってもよい。
 ゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練温度は、特に限定されるものではないが、硫黄供与体および硫黄原子含有加硫促進剤による架橋反応が進行してしまうことを抑制するという観点から160℃未満が好ましく、150℃以下がより好ましい。
 また、ゴム成分に充填剤を加える前における、ゴム成分と硫黄供与体と硫黄原子含有加硫促進剤との混練時間は、特に限定されるものではないが、分散性向上の観点から、例えば10秒以上である。
 充填剤を加えた後の混練温度は、架橋反応が進行し過ぎることを抑制するという観点から、170℃以下が好ましい。
 また、ゴム成分に充填剤を加えて混練温度が120℃に達した後の混練時間は、特に限定されるものではないが、分散性向上の観点から、例えば2分以上である。なお、ここでいう混練時間は、ゴム成分に充填剤を加えて混練温度が120℃に達した時点から、混練工程の全工程が終了する時点までの時間であり、例えば、工程Xにおいてゴム成分に充填剤を加えて混練温度が120℃に達した場合、その時点から工程Fが終了する時点までの時間である。
 前述のとおり、前記硫黄供与体としては、元素硫黄および/または前述した活性硫黄を放出する硫黄化合物を用いることができる。前記元素硫黄としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などが挙げられる。
 硫黄供与体として元素硫黄を配合し過ぎると、混練工程で加硫反応が過剰に進行する恐れがある。よって、硫黄供与体として元素硫黄を用いる場合のゴム成分100質量部に対する含有量は、0.1質量部以下が好ましい。また、該元素硫黄の含有量は、破壊強度の観点から、0.05質量部以上が好ましい。
 硫黄供与体として機能する前記硫黄化合物としては、-(-M-S-C-)n-で表される高分子多硫化物や、硫黄原子が2個以上単結合した構造-Sn-(n≧2)を有し、活性硫黄を放出する化合物が挙げられる。この化合物としては、アルキルフェノール・ジスルフィド、モルホリン・ジスルフィド、-Sn-(n≧2)を有するチウラム系加硫促進剤(テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラブチルチウラムジスルフィド(TBTD)、ジペンタメチレンチウラムテトラスルフィド(DPTT)など)、加硫促進剤2-(4′-モルホリノジチオ)ベンゾチアゾール(MDB)や、ポリスルフィド型シランカップリング剤(例えばデグサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド))、下記式(1)、(2)もしくは(3)で表されるスルフィド化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式中、R1は、同一または異なって、置換基を有してもよい炭素数3~15の1価の炭化水素基を表す。nは、2~6の整数を表す。)
 式(1)中のR1は、置換基を有してもよい炭素数3~15の1価の炭化水素基であるが、該炭素数は、5~12が好ましく、6~10がより好ましい。R1の1価の炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、また、飽和、不飽和炭化水素基(脂肪族、脂環式、芳香族炭化水素基など)のいずれでもよい。なかでも、置換基を有してもよい芳香族炭化水素基が好ましい。
 R1としては、例えば、炭素数3~15のアルキル基、置換アルキル基、シクロアルキル基、置換シクロアルキル基、アラルキル基、置換アラルキル基などが挙げられ、なかでも、アラルキル基、置換アラルキル基が好ましい。ここで、アルキル基としては、ブチル基、オクチル基;シクロアルキル基としては、シクロヘキシル基;アラルキル基としては、ベンジル基、フェネチル基;などが挙げられ、置換基としては、オキソ基(=O)、ヒドロキシ基、カルボキシル基、カルボニル基、アミノ基、アセチル基、アミド基、イミド基などの極性基などが挙げられる。
 また、式(1)中のnは、2~6の整数であり、2~3が好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、R2は、同一または異なって、置換基を有してもよい炭素数3~15の2価の炭化水素基を表す。mは、2~6の整数を表す。)
 上記式(2)中のR2は、置換基を有してもよい炭素数3~15の2価の炭化水素基であるが、該炭素数は、3~10が好ましく、4~8がより好ましい。R2の2価の炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、また、飽和、不飽和炭化水素基(脂肪族、脂環式、芳香族炭化水素基など)のいずれでもよい。なかでも、置換基を有してもよい脂肪族炭化水素基が好ましく、直鎖状脂肪族炭化水素基がより好ましい。
 R2としては、例えば、炭素数3~15のアルキレン基、置換アルキレン基などが挙げられる。ここで、アルキレン基としては、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基などが挙げられ、置換基としては、R1の置換基と同様のものなどが挙げられる。
 また、上記式(2)中のmは、2~6の整数であり、2~3が好ましい。
 上記式(1)、(2)で示される表されるスルフィド化合物の具体例としては、N,N′-ジ(γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-メチル-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-エチル-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-イソプロピル-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-メトキシ-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-エトキシ-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-クロル-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-ニトロ-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(5-アミノ-γ-ブチロラクタム)ジスルフィド、N,N′-ジ(δ-バレロラクタム)ジスルフィド、N,N′-ジ(δ-カプロラクタム)ジスルフィド、N,N′-ジ(ε-カプロラクタム)ジスルフィド、N,N′-ジ(3-メチル-δ-カプロラクタム)ジスルフィド、N,N′-ジ(3-エチル-ε-カプロラクタム)ジスルフィド、N,N′-ジ(3-イソプロピル-ε-カプロラクタム)ジスルフィド、N,N′-ジ(δ-メトキシ-ε-カプロラクタム)ジスルフィド、N,N′-ジ(3-エトキシ-ε-カプロラクタム)ジスルフィド、N,N′-ジ(3-クロル-ε-カプロラクタム)ジスルフィド、N,N′-ジ(δ-ニトロ-ε-カプロラクタム)ジスルフィド、N,N′-ジ(3-アミノ-ε-カプロラクタム)ジスルフィド、N,N′-ジ(ω-ヘプタラクタム)ジスルフィド、N,N′-ジ(ω-オクタラクタム)ジスルフィド、ジチオジカプロラクタム、モルホリン・ジスルフィド、N-benzyl-N-[(dibenzylamino)disulfanyl]phenylmethanamine(N,N′-ジチオビス(ジベンジルアミン))などが挙げられる。これらのスルフィド化合物は、単独で用いてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000003
(式中、R3は、同一または異なって、アルキル基、ベンゾチアゾリル基、アミノ基、モルホリノ基、ジアルキルチオカルバモイル基、または下記式(4)で表される基を表す。kは、2~6の整数を表す。
Figure JPOXMLDOC01-appb-C000004
(式中、R4は、同一または異なって、アルキル基、ベンゾチアゾリルスルフィド基、シクロアルキル基または水素原子を表す。)
 上記式(3)中のR3は、同一または異なって、アルキル基、ベンゾチアゾリル基、アミノ基、モルホリノ基、ジアルキルチオカルバモイル基、または上記式(4)で表される基を表すが、中でも、炭素数1~10のアルキル基、ベンゾチアゾリル基、アミノ基、モルホリノ基、またはジアルキルチオカルバモイル基(アルキル基は同一または異なって炭素数1~10のアルキル基である。)が好ましい。
 上記炭素数1~10のアルキル基、および、上記ジアルキルチオカルバモイル基における炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、オクチル基、ノニル基などが挙げられる。
 上記式(3)中のR3としてより好ましくは、同一または異なって、ベンゾチアゾリル基、モルホリノ基、または、ジアルキルチオカルバモイル基(アルキル基は同一または異なって炭素数1~5のアルキル基である。)である。さらに好ましくは、同一または異なって、ベンゾチアゾリル基、または、ジアルキルチオカルバモイル基(アルキル基は同一または異なって炭素数1~5のアルキル基である。)である。
 上記式(3)中のkは、2~6の整数であり、2~3がさらに好ましい。
 式(4)中のR4は、同一または異なって、アルキル基、ベンゾチアゾリルスルフィド基、シクロアルキル基または水素原子である。アルキル基は炭素数1~10のアルキル基が好ましく、シクロアルキル基は炭素数5~8のシクロアルキル基が好ましい。
 上記式(3)で表されるスルフィド化合物としては、例えば、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、2-(モルホリノジチオ)ベンゾチアゾール、ジベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドなどが挙げられ、特に、ジベンゾチアゾリルジスルフィドが好適に使用できる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
 硫黄供与体として機能する前記硫黄化合物を用いる場合のゴム成分100質量部に対する含有量は、ペンダント型構造の形成を促すという理由から、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、該化合物の含有量は、混練中のゲル化抑制の観点から、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下がさらに好ましい。
 硫黄供与体として機能する加硫促進剤としては、他の分子と単結合で結合している硫黄原子を含む加硫促進剤が存在する。したがって、硫黄供与体として機能する硫黄原子含有加硫促進剤は、前記硫黄供与体および前記硫黄原子含有加硫促進剤の両方の機能を有し、硫黄供与体として機能する硫黄原子含有加硫促進剤を単独で多く配合したり2種以上を併用したりすることでもペンダント型構造の形成は可能である。しかしながら、硫黄供与体として機能する硫黄原子含有加硫促進剤を多く配合すると混練中に架橋反応が過度に進行するおそれがあり、少なく配合すると架橋密度の均一化の効果が得られ難くなる恐れがあるため、充填剤を加える前に混練する硫黄供与体および硫黄原子含有加硫促進剤としては、硫黄供与体(硫黄供与体として機能する硫黄原子含有加硫促進剤および/またはそれ以外の硫黄供与体)と硫黄非放出性の硫黄原子含有加硫促進剤とであることが好ましい。
 前記硫黄非放出性の硫黄原子含有加硫促進剤とは、例えば、加硫条件(例えば150℃、1.5MPa)またはそれ以下の温度および圧力下で活性硫黄を放出しない硫黄原子含有加硫促進剤を指す。この硫黄非放出性の硫黄原子含有加硫促進剤は、換言すれば、例えば、加硫条件(例えば150℃、1.5MPa)またはそれ以下の温度および圧力下において加硫剤としての機能を発揮しない硫黄原子含有加硫促進剤である。
 硫黄非放出性の硫黄原子含有加硫促進剤としては、-Sn-(n≧2)を有さない、チアゾール系加硫促進剤(2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾチアゾールの亜鉛塩(ZnMBT)、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩(CMBT)など)や、スルフェンアミド系加硫促進剤(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-(tert-ブチル)-2-ベンゾチアゾールスルフェンアミド(TBBS)、N,N-ジシクロヘキシル-2-べンゾチアゾリルスルフェンアミドなど)、加硫促進剤テトラメチルチウラムモノスルフィド(TMTM)、ジチオカルバミン酸塩系加硫促進剤(ピペリジニウムペンタメチレンジチオカルバメート(PPDC)、ジメチルジチオカルバミン酸亜鉛(ZnMDC)、ジエチルジチオカルバミン酸亜鉛(ZnEDC)、ジブチルジチオカルバミン酸亜鉛(ZnBDC)、N-エチル-N-フェニルジチオカルバミン酸亜鉛(ZnEPDC)、N-ペンタメチレンジチオカルバミン酸亜鉛(ZnPDC)、ジブチルジチオカルバミン酸ナトリウム(NaBDC)、ジメチルジチオカルバミン酸銅(CuMDC)、ジメチルジチオカルバミン酸鉄(FeMDC)、ジエチルジチオカルバミン酸テルル(TeEDC)など)などが挙げられる。なお、チアゾール系加硫促進剤であるジ-2-ベンゾチアゾリルジスルフィド(MBTS)は、-Sn-(n≧2)を有しており、硫黄を放出する加硫促進剤であるが、一般的な配合量では天然ゴムやブタジエンゴムに対して加硫剤としての機能を発揮しないため、硫黄非放出性の硫黄原子含有加硫促進剤と同等に用いることができる。
 硫黄原子含有加硫促進剤のゴム成分100質量部に対する含有量は、加硫工程において加硫反応が効率的に進むという理由から、1.0質量部以上が好ましく、1.5質量部以上がより好ましい。また、該含有量は、スコーチ性、表面への析出抑制の観点から、5質量部以下が好ましく、3質量部以下がより好ましい。
 当該製造方法は、ゴム成分に充填剤を加えて120℃以上の混練温度で混練した後、さらに追加の硫黄供与体を混練することが好ましい。追加の硫黄供与体を加えることで混練中に架橋反応の進行が過度に進むことを抑制しつつ、加硫中に十分に架橋反応を進行させることができる。
 追加の硫黄供与体は、例えば、ゴム成分に充填剤を加えて120℃以上の混練温度で混練した後の工程Fで追加される。追加の硫黄供与体は、ゴム成分に充填剤を加える前に混練したものと同種のものであってもよいし、別種のものであってもよく、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの元素硫黄が挙げられる。
 追加の硫黄供与体の含有量は特に限定されないが、加硫工程において加硫反応が効率的に進むという理由から、ゴム成分100質量部に対して0.5質量部以上が好ましく、0.8質量部以上がより好ましい。また、追加の硫黄供与体の含有量は、耐摩耗性に優れるという理由から、3.0質量部以下が好ましく、2.5質量部以下がより好ましい。
 前記工程Fにおいて追加の硫黄供与体を加える際には、一般的な加硫促進剤を加えてもよい。一般的な加硫促進剤としては、例えば、硫黄原子含有加硫促進剤であるチウラム系ジスルフィドやポリスルフィドなどや、硫黄原子を有さない加硫促進剤であるグアニジン系、アルデヒド-アミン系、アルデヒド-アンモニア系、イミダゾリン系加硫促進剤などが挙げられる。
 前記工程Fで加える加硫促進剤のゴム成分100質量部に対する含有量は、0.1質量部以上が好ましい。また、ゴム成分に充填剤を加える前に混練する硫黄原子含有加硫促進剤の配合量に対する、前記工程Fで加える加硫促進剤の配合量の質量割合は、0%より大きく80%以下が好ましく、60%以下がさらに好ましい。80%以下とすることで、スコーチ性、破壊特性および耐摩耗性により優れた架橋ゴム組成物が得られる。
 本発明の架橋ゴム組成物は、タイヤのトレッド、アンダートレッド、カーカス、サイドウォール、ビード等のタイヤ部材を始め、防振ゴム、ベルト、ホース、その他のゴム工業製品等にも用いることができる。特に耐摩耗性に優れることから、本発明の架橋ゴム組成物で構成されるトレッドを有するタイヤとすることが好ましい。
 本発明の架橋ゴム組成物を用いたタイヤは、未架橋ゴム組成物を用いて、通常の方法により製造できる。すなわち、ジエン系ゴム成分に対して前記の配合剤を必要に応じて配合した未架橋ゴム組成物を、トレッドなどの形状にあわせて押出し加工し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成型することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを製造することができる。
 本発明の空気入りタイヤの構造としては特に限定されず、従来の空気入りタイヤの構造とすることができる。すなわち、従来の構造を有する空気入りタイヤを構成するタイヤ部材の少なくとも1つ以上を、本発明の架橋ゴム組成物を用いた部材とすることで本発明の空気入りタイヤとすることができる。なかでも、左右一対のビード部にそれぞれ設けられたビードコアと、クラウン部から両サイドウォール部を経て両ビード部に延び前記ビードコアに係留されたカーカスプライと、前記カーカスプライよりもタイヤ径方向内側に配置されたインナーライナーと、前記カーカスプライよりもタイヤ径方向外側に設けられ、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上であるトレッドとを備える空気入りタイヤとすることが好ましい。なお、ここでいうトレッドとは路面に接する部分であり、2つ以上の異なる架橋ゴム組成物でトレッドが構成されている場合、そのうちの少なくとも1つの架橋ゴム組成物が本発明の架橋ゴム組成物であれば、本発明のタイヤである。
 実施例に基づいて本発明を具体的に説明するが、本発明は、これらのみに限定して解釈されるものではない。
 以下、実施例および比較例において用いた各種薬品をまとめて示す。
SBR1:後述の変性SBR1の製造方法により調製(S-SBR、スチレン含量:26質量%、ビニル含量:59%、Tg:-25℃、Mw:4×105
SBR2:ダウ社製のSLR6430(S-SBR、スチレン含量:40質量%、ビニル含量:25%未満、Tg:-40℃、Mw:12×105
BR:宇部興産(株)製のBR150B
シリカ:エボニック社製のウルトラシルVN3(N2SA:175m2/g)
シランカップリング剤:エボニック社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
カーボンブラック:三菱化学(株)製のダイヤブラックI(N2SA:98m2/g、DBP吸油量:124ml/100g)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
ステアリン酸:日油(株)製のビーズステアリン酸「椿」
老化防止剤:精工化学(株)製のオゾノン6C(N-(1,3-ジメチルブチル)-N-フェニル-p-フェニレンジアミン、6PPD)
オイル:出光興産(株)製のダイアナプロセスAH-24
元素硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーNS(TBBS、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド)
硫黄供与体:ラインケミー社製のレノグランCLD80(カプロラクタムジスルフィド)
 以下、SBR1の製造方法において用いた各種薬品をまとめて示す。
シクロヘキサン:関東化学(株)製のシクロヘキサン
ピロリジン:関東化学(株)製のピロリジン
ジビニルベンゼン:シグマアルドリッチ社製のジビニルベンゼン
1.6Mのn-ブチルリチウムヘキサン溶液:関東化学(株)製の1.6M n-ブチルリチウムヘキサン溶液
イソプロパノール:関東化学(株)製のイソプロパノール
スチレン:関東化学(株)製のスチレン
ブタジエン:高千穂化学工業(株)製の1,3-ブタジエン
テトラメチルエチレンジアミン:関東化学(株)製のN,N,N′,N′-テトラメチルエチレンジアミン
変性剤:アヅマックス(株)製の3-(N,N-ジメチルアミノプロピル)トリメトキシシラン
SBR1の製造方法
 十分に窒素置換した100ml容器に、シクロヘキサン50ml、ピロリジン4.1ml、ジビニルベンゼン8.9mlを加え、0℃にて1.6Mのn-ブチルリチウムヘキサン溶液0.7mlを加えて攪拌した。1時間後、イソプロパノールを加えて反応を停止させ、抽出・精製を行うことでモノマーAを得た。次に、十分に窒素置換した1000ml耐圧製容器に、シクロヘキサン600ml、スチレン12.6ml、ブタジエン71.0ml、モノマーA0.06g、テトラメチルエチレンジアミン0.11mlを加え、40℃で1.6Mのn-ブチルリチウムヘキサン溶液0.2mlを加えて撹拌した。3時間後、変性剤を0.5ml加えて攪拌した。1時間後、イソプロパノール3mlを加えて重合を停止させた。反応溶液に2,6-tert-ブチル-p-クレゾール1gを添加後、メタノールで再沈殿処理を行い、加熱乾燥させてSBR1を得た。
実施例1~13および比較例1~3
 表1および2に示す配合内容に従い、工程Xに示す各種薬品を、1.7Lバンバリーミキサーにて、排出温度100℃で5.0分間混練りした(工程X)。次に、工程Xの混練物および工程Yに示す各種薬品を、1.7Lバンバリーミキサーにて、140℃以上で30秒混練りし、さらに排出温度150℃で3分間混練りした(工程Y)。そして、工程Yの混練物および工程Fに示す各種薬品を、オープンロールを用いて約80℃で3分間混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を所定の形状の口金を備えた押し出し機でトレッドの形状に押し出し成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で12分間プレス加硫することにより、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記の評価を行った。結果を表1および2に示す。
低密度領域の体積
 試験用タイヤのトレッド部から、直径10mm、高さ1mmの円柱状のゴム試験片を切り出した各ゴム試験片を、図1に示す治具に固定して伸長を開始し、1.5MPaの印加応力による伸長時にX線(輝度:1016photons/s/mrad2/mm2/0.1%bw)を照射してCT撮影を行い、撮影した画像の再構成により作成された三次元像の断層画像から、密度分布から、伸長時のゴム試験片中の低密度領域の体積比率を算出した。なお、X線CT撮影は大型放射光施設SPring-8のビームラインBL20B2で行い、蛍光体は減衰時間が1msのP43(Gd22S:Tb)を使用し、CT再構成はConvention Back Projection法により、厚み10μmの断層画像を200枚積層することで行った。また、低密度領域は、伸長前のゴム試験片の平均密度を1とした場合、密度が0.1~0.8となった領域として行った。
空隙部の体積
 試験用タイヤのトレッド部から、直径10mm、高さ1mmの円柱状のゴム試験片を切り出した各ゴム試験片を、図1に示す治具に固定して伸長を開始し、3.0MPaの印加応力による伸長時にX線(輝度:1016photons/s/mrad2/mm2/0.1%bw)を照射してCT撮影を行い、撮影した画像の再構成により作成された三次元像の断層画像から、密度分布から、伸長時のゴム試験片中の空隙部の体積比率を算出した。なお、X線CT撮影は大型放射光施設SPring-8のビームラインBL20B2で行い、蛍光体は減衰時間が1msのP43(Gd22S:Tb)を使用し、CT再構成はConvention Back Projection法により、厚み10μmの断層画像を200枚積層することで行った。また、空隙部は、伸長前のゴム試験片の平均密度を1とした場合、密度が0~0.1となった領域として行った。
分子量
 試験用タイヤのトレッド部から切り出した各ゴム試験片の重量平均分子量および分子量分布を、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M、標準ポリスチレン換算)により測定した。測定された最も高い重量平均分子量のピーク値、および重量平均分子量が100万以上の成分比率を示す。
耐摩耗性
 上記のように作製された同一の試験用タイヤを国産FF車の四輪に装着し、走行距離8000km後のタイヤトレッド部の溝深さについてそれぞれ測定し、四輪における溝深さの相加平均値から、タイヤ溝深さが1mm減るときの走行距離を算出し、比較例1の耐摩耗性指数を100とし、下記計算式により、各配合の結果を指数表示した(耐摩耗性指数)。耐摩耗性指数が大きいほど、耐摩耗性に優れることを示す。
耐摩耗性指数=(1mm溝深さが減るときの走行距離)/(比較例1のタイヤ溝が1mm減るときの走行距離)×100
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例14~16
 表3に示す配合内容、排出温度および時間に従い、工程Xに示す各種薬品を、1.7Lバンバリーミキサーにて混練りした(工程X)。次に、工程Xの混練物および工程Yに示す各種薬品を、1.7Lバンバリーミキサーにて、表3に示す排出温度および時間に従い混練りし、さらに排出温度150℃で3分間混練りした(工程Y)。そして、工程Yの混練物および工程Fに示す各種薬品を、オープンロールを用いて表3に示す排出温度および時間に従い混練りし(工程F)、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物を所定の形状の口金を備えた押し出し機でトレッドの形状に押し出し成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、170℃の条件下で12分間プレス加硫することにより、試験用タイヤ(タイヤサイズ:195/65R15)を製造した。得られた試験用タイヤについて下記の評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
 表1~3の結果より、1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、GPCにより測定された分子量分布における重量平均分子量が100万以上の成分比率が高いトレッドを備える本発明の空気入りタイヤ、および1.5MPaの印加応力による伸長時の低密度領域が多く、3.0MPaの印加応力による伸長時の空隙部が少なく、GPCにより測定された分子量分布における重量平均分子量が100万以上の成分比率が高い本発明の架橋ゴム組成物は、耐摩耗性に優れた空気入りタイヤおよび架橋ゴム組成物であることがわかる。
 1  評価装置
 2  応力印加手段
 3  撮影手段
 4  評価手段
 10 ゴム試験片

Claims (8)

  1. 左右一対のビード部にそれぞれ設けられたビードコアと、
    クラウン部から両サイドウォール部を経て両ビード部に延び前記ビードコアに係留されたカーカスプライと、
    前記カーカスプライよりもタイヤ径方向内側に配置されたインナーライナーと、
    前記カーカスプライよりもタイヤ径方向外側に設けられ、1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上であるトレッドと、を備えることを特徴とする空気入りタイヤ。
  2. 1.5MPaの印加応力による伸長時の低密度領域の体積が35%以上であり、
    3.0MPaの印加応力による伸長時の空隙部の体積が7.5%以下であり、
    ゲル浸透クロマトグラフィにより測定された分子量分布における重量平均分子量が100万以上の成分比率が40質量%以上である架橋ゴム組成物。
  3. 前記ゴム成分が、共役ジエン系化合物を含むゴム成分を1種以上含むゴム成分である請求項2記載の架橋ゴム組成物。
  4. 前記低密度領域が、密度が伸長前の架橋ゴム組成物の0.1~0.8倍となった領域である請求項2または3記載の架橋ゴム組成物。
  5. 前記空隙部が、密度が伸長前の架橋ゴム組成物の0~0.1倍となった領域である請求項2~4のいずれか1項に記載の架橋ゴム組成物。
  6. 低密度領域および空隙部の体積評価方法が、X線CT撮影である請求項2~5のいずれか1項に記載の架橋ゴム組成物。
  7. X線を可視光に変換するための蛍光体の減衰時間が100ms以下である請求項6記載の架橋ゴム組成物。
  8. X線の輝度が1010photons/s/mrad2/mm2/0.1%bw以上である請求項6または7記載の架橋ゴム組成物。
PCT/JP2016/081366 2015-10-27 2016-10-21 空気入りタイヤおよび架橋ゴム組成物 WO2017073495A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/767,900 US11458767B2 (en) 2015-10-27 2016-10-21 Pneumatic tire and crosslinked rubber composition
CN201680060684.1A CN108349313B (zh) 2015-10-27 2016-10-21 充气轮胎和交联橡胶组合物
EP16859725.0A EP3348427B1 (en) 2015-10-27 2016-10-21 Pneumatic tire and crosslinked rubber composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015211353 2015-10-27
JP2015211354 2015-10-27
JP2015-211353 2015-10-27
JP2015-211354 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073495A1 true WO2017073495A1 (ja) 2017-05-04

Family

ID=58631558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081366 WO2017073495A1 (ja) 2015-10-27 2016-10-21 空気入りタイヤおよび架橋ゴム組成物

Country Status (4)

Country Link
US (1) US11458767B2 (ja)
EP (1) EP3348427B1 (ja)
CN (1) CN108349313B (ja)
WO (1) WO2017073495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008282A (ja) * 2018-07-02 2020-01-16 住友ゴム工業株式会社 弾性材料の性能を評価するための方法
WO2021192857A1 (ja) * 2020-03-26 2021-09-30 住友理工株式会社 防振ゴム組成物および防振ゴム部材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670966B (zh) * 2021-07-09 2024-05-10 神马实业股份有限公司 一种尼龙66浸胶帘子布附胶量测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238805A (ja) * 2006-03-09 2007-09-20 Yokohama Rubber Co Ltd:The ゴム組成物
JP2010018715A (ja) * 2008-07-10 2010-01-28 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2010018716A (ja) * 2008-07-10 2010-01-28 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2013010951A (ja) * 2011-06-01 2013-01-17 Sumitomo Chemical Co Ltd ゴム組成物の製造方法
JP2013014200A (ja) * 2011-07-01 2013-01-24 Bridgestone Corp シミュレーション方法及びシミュレーション装置
JP2015096839A (ja) * 2013-11-15 2015-05-21 住友ゴム工業株式会社 弾性材料の変形の観察方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5703165A (en) * 1992-12-18 1997-12-30 Saynad Corporation Method of achieving superior dispersions of insoluble sulfur and products thereof
TW434279B (en) * 1996-05-03 2001-05-16 Cabot Corp Elastomer compositions and methods
CN1547601B (zh) * 2001-06-28 2012-09-05 米其林技术公司 采用具有低比表面积的二氧化硅增强的轮胎胎面
ATE389691T1 (de) * 2004-03-29 2008-04-15 Pirelli & C Spa Thermoplastisches elastomer enthaltend in verteilter form vulkanisierten kautschuk
JP2007099950A (ja) 2005-10-05 2007-04-19 Toyo Tire & Rubber Co Ltd 天然ゴムの製造方法及びゴム組成物
DE102008037837A1 (de) * 2007-08-27 2009-04-09 Toyo Tire & Rubber Co., Ltd., Osaka-shi Gummimischung für einen Reifen und Herstellungsverfahren dafür
JP5147346B2 (ja) 2007-09-27 2013-02-20 住友ゴム工業株式会社 ゴム組成物の製造方法および空気入りタイヤ
JP2009085732A (ja) 2007-09-28 2009-04-23 Akebono Brake Ind Co Ltd 摩擦材の解析方法
US8124206B2 (en) 2008-10-30 2012-02-28 Momentive Performance Materials, Inc. Sulfur-containing cycloaliphatic compound, filled sulfur-vulcanizable elastomer composition containing sulfur-containing cycloaliphatic compound and articles fabricated therefrom
JP4943491B2 (ja) 2009-11-12 2012-05-30 住友ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
JP4835769B2 (ja) * 2010-05-26 2011-12-14 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP4947190B2 (ja) * 2010-05-28 2012-06-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物およびそれを用いた空気入りタイヤ
JP5443542B2 (ja) 2011-07-06 2014-03-19 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
US9022087B2 (en) * 2011-08-26 2015-05-05 The Yokohama Rubber Co., Ltd. Rubber composition for tire treads
JP5644838B2 (ja) * 2012-03-08 2014-12-24 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
JP5574063B2 (ja) 2012-06-27 2014-08-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5658219B2 (ja) * 2012-11-21 2015-01-21 住友ゴム工業株式会社 高分子材料のエネルギーロス、耐チッピング性能及び耐摩耗性能を評価する方法
EP2865540A1 (de) * 2013-10-24 2015-04-29 LANXESS Deutschland GmbH Kautschukzusammensetzung
EP3062091B1 (en) 2013-11-15 2020-09-23 Sumitomo Rubber Industries, Ltd. Method for monitoring deformation of elastic material and imaging device for projection image of elastic material
JP6634777B2 (ja) 2015-10-22 2020-01-22 住友ゴム工業株式会社 性能評価方法及び性能評価装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238805A (ja) * 2006-03-09 2007-09-20 Yokohama Rubber Co Ltd:The ゴム組成物
JP2010018715A (ja) * 2008-07-10 2010-01-28 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2010018716A (ja) * 2008-07-10 2010-01-28 Toyo Tire & Rubber Co Ltd ゴム組成物の製造方法
JP2013010951A (ja) * 2011-06-01 2013-01-17 Sumitomo Chemical Co Ltd ゴム組成物の製造方法
JP2013014200A (ja) * 2011-07-01 2013-01-24 Bridgestone Corp シミュレーション方法及びシミュレーション装置
JP2015096839A (ja) * 2013-11-15 2015-05-21 住友ゴム工業株式会社 弾性材料の変形の観察方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348427A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008282A (ja) * 2018-07-02 2020-01-16 住友ゴム工業株式会社 弾性材料の性能を評価するための方法
JP7081345B2 (ja) 2018-07-02 2022-06-07 住友ゴム工業株式会社 弾性材料の性能を評価するための方法
WO2021192857A1 (ja) * 2020-03-26 2021-09-30 住友理工株式会社 防振ゴム組成物および防振ゴム部材
JP2021155526A (ja) * 2020-03-26 2021-10-07 住友理工株式会社 防振ゴム組成物および防振ゴム部材

Also Published As

Publication number Publication date
EP3348427B1 (en) 2020-07-08
US11458767B2 (en) 2022-10-04
CN108349313A (zh) 2018-07-31
US20180304682A1 (en) 2018-10-25
EP3348427A4 (en) 2019-03-27
EP3348427A1 (en) 2018-07-18
CN108349313B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2017073494A1 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6328723B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
WO2017073495A1 (ja) 空気入りタイヤおよび架橋ゴム組成物
WO2017073493A1 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6904212B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6329607B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6329608B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6329610B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
CN108136847B (zh) 充气轮胎和交联橡胶组合物
JP6329611B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6328724B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6329609B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6329612B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
JP6235096B2 (ja) 空気入りタイヤおよび架橋ゴム組成物
WO2017073491A1 (ja) 空気入りタイヤおよび架橋ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859725

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15767900

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016859725

Country of ref document: EP