WO2017073422A1 - 分散強化型オーステナイト系ステンレス鋼材、該ステンレス鋼材の製造方法および該ステンレス鋼材からなる製造物 - Google Patents

分散強化型オーステナイト系ステンレス鋼材、該ステンレス鋼材の製造方法および該ステンレス鋼材からなる製造物 Download PDF

Info

Publication number
WO2017073422A1
WO2017073422A1 PCT/JP2016/080918 JP2016080918W WO2017073422A1 WO 2017073422 A1 WO2017073422 A1 WO 2017073422A1 JP 2016080918 W JP2016080918 W JP 2016080918W WO 2017073422 A1 WO2017073422 A1 WO 2017073422A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
mass
steel material
austenitic stainless
dispersion strengthened
Prior art date
Application number
PCT/JP2016/080918
Other languages
English (en)
French (fr)
Inventor
貴大 石嵜
祐策 丸野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201680053515.5A priority Critical patent/CN108026620B/zh
Priority to US15/762,575 priority patent/US11053562B2/en
Priority to JP2017547748A priority patent/JP6600363B2/ja
Priority to EP16859652.6A priority patent/EP3369833B1/en
Publication of WO2017073422A1 publication Critical patent/WO2017073422A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C11/00Shielding structurally associated with the reactor
    • G21C11/08Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation
    • G21C11/083Thermal shields; Thermal linings, i.e. for dissipating heat from gamma radiation which would otherwise heat an outer biological shield ; Thermal insulation consisting of one or more metallic layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/18Manufacture of control elements covered by group G21C7/00
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • G21C5/06Means for locating or supporting fuel elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/15Millimeter size particles, i.e. above 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a technology of high strength and high corrosion resistance stainless steel material, and particularly relates to a dispersion hardening type austenitic stainless steel material, a method for producing the stainless steel material, and a product made of the stainless steel material.
  • Austenitic stainless steel has higher mechanical strength and corrosion resistance than carbon steel, and has good workability (for example, good ductility and toughness) among stainless steel. It is used as. For example, in nuclear power plants, it is used for core shrouds, recirculation piping, and the like.
  • Austenitic stainless steel shows high corrosion resistance because the Cr (chromium) component in the steel forms a passive film on the surface of the steel, but stress corrosion in certain corrosive environments (for example, in high-temperature and high-pressure water environments) It is known that cracks (SCC) are likely to occur.
  • SCC stress corrosion cracks
  • Cr component deficiency is promoted at the grain boundaries, resulting in stress corrosion cracking (irradiation-induced stress corrosion). It has been pointed out that it may induce cracking).
  • a stainless steel material excellent in radiation resistance and stress corrosion cracking resistance is required.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-337853
  • C 0.1% or less
  • Si 1% or less
  • Mn 2.0% or less
  • Ni 2.0% or less
  • Ni 9-30% and Cr: 14-20%
  • a high corrosion resistance high strength austenitic sintered steel characterized by further including at least one of Zr: 2.0% or less and Nb: 1.0% or less is disclosed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-285289 contains Fe: 69.5 to 88.5% by weight and Cr: 11 to 30%, and at least one of Cr, Ti, and Zr oxides has a particle size of 0.02.
  • a high-strength ferritic stainless steel characterized by having a structure with a crystal grain size of 1 ⁇ m or less, consisting mainly of a ferrite structure and an oxide phase, and a carbide phase formed from C which is inevitably mixed, dispersed in a state of ⁇ m or less. Steel is disclosed.
  • Patent Document 1 it is possible to provide an austenitic steel excellent in corrosion resistance, mechanical strength, and radiation-resistant irradiation damage, and a nuclear plant component using the same by making the crystal grain size uniform and ultrafine. It is said that. Moreover, since it is excellent in radiation-resistant irradiation damage resistance, it is said that the remarkable effect is acquired in the improvement of the safety
  • the technique of Patent Document 1 focuses only on the average crystal grain size, and does not consider local coarsened crystal grains due to the nonuniformity of the structure. In other words, there is a concern that if coarsened crystal grains exist even if they are localized, the coarsened crystal grains will be the starting point to cause irradiation-induced stress corrosion cracking.
  • the powder having an ultrafine grain structure obtained by mechanical alloying or mechanical milling is bulked while maintaining the structure, thereby improving toughness and workability at the same time as increasing the strength. It is said that ferritic stainless steel can be provided. Further, since strengthening is mainly performed by refining crystal grains, it is said that high strength and high functionality of the material can be realized without adding a special strengthening element.
  • Ferritic stainless steel is said to have relatively high SCC resistance compared to austenitic stainless steel, but mechanical properties (eg, ductility, toughness, workability) and weldability are relatively high. It is said to be low. Due to these weaknesses in mechanical properties and weldability, ferritic stainless steels are not expected to be used in the severe corrosive environment and stress load environment of nuclear power plants.
  • the object of the present invention is to achieve the above requirements, while maintaining mechanical properties equivalent to those of the prior art, having a radiation irradiation resistance and stress corrosion cracking resistance superior to those of the prior art, and a low-cost austenitic system
  • An object of the present invention is to provide a stainless steel material, a method for producing the stainless steel material, and a product made of the stainless steel material.
  • One aspect of the present invention is a dispersion strengthened austenitic stainless steel material
  • the chemical composition of the stainless steel material is 16 mass% to 26 mass% Cr (chromium), 8 mass% to 22 mass% Ni (nickel), and 0.005 mass% to 0.08 mass% C (carbon). ), 0.002 mass% to 0.1 mass% N (nitrogen), and 0.02 mass% to 0.4 mass% O (oxygen), It further includes at least one of Zr (zirconium) of 0.2% by mass to 2.8% by mass, Ta (tantalum) of 0.4% by mass to 5% by mass, and Ti (titanium) of 0.2% by mass to 2.6% by mass.
  • the balance consists of Fe (iron) and inevitable impurities
  • the Zr component, the Ta component, and the Ti component form inclusion particles together with the C component, the N component, and the O component
  • the stainless steel material provides a dispersion strengthened austenitic stainless steel material having an average crystal grain size of 1 ⁇ m or less and a maximum crystal grain size of 5 ⁇ m or less.
  • the crystal grain size is defined as being measured according to JIS G 0551 “Steel—Microscopic Test Method for Crystal Grain Size”.
  • the present invention can be improved or changed as follows.
  • the inclusion particles are dispersed at a number density of 1 ⁇ 10 22 m ⁇ 3 or more in the stainless steel material.
  • the inclusion particles have an average particle size of 0.05 ⁇ m or less.
  • the chemical composition further includes 0.1% by mass to 1% by mass of Mn (manganese) and / or 0.1% by mass to 1% by mass of Si (silicon).
  • Another embodiment of the present invention is a method for producing the above dispersion strengthened austenitic stainless steel material, An alloy powder synthesis step of synthesizing an alloy powder having the chemical composition by mechanical alloying or mechanical milling; A powder sizing step of preparing a sized powder by sizing the particle size of the alloy powder to 0.3 mm to 3 mm; There is provided a method for producing a dispersion-strengthened austenitic stainless steel material comprising a heat-solidification step of producing a solidified molded body by heat-solidifying the granulated powder at a temperature of 750 ° C to 1100 ° C. Is.
  • the present invention can be modified or changed as follows in the production method (II) of the dispersion strengthened austenitic stainless steel material.
  • the sized powder has an average Vickers hardness of the powder particles of 300 Hv or more.
  • It further has a processing and forming step in which the solidified molded body is machined at a temperature of room temperature to 1100 ° C. to form a desired shape.
  • the method further includes a homogenization heat treatment step in which heat treatment for homogenization is performed on the solidified molded body or the desired shape body at a temperature of 600 ° C. to 1100 ° C.
  • Still another embodiment of the present invention is a product comprising the above dispersion strengthened austenitic stainless steel material,
  • the product is a nuclear plant member used in a neutron irradiation environment, and provides a product made of a dispersion strengthened austenitic stainless steel material.
  • the present invention can be improved or changed as follows in the product (III) made of the dispersion strengthened austenitic stainless steel.
  • the nuclear plant member is a control rod in a nuclear reactor.
  • an austenitic stainless steel material having a radiation irradiation resistance and stress corrosion cracking resistance superior to those of the prior art while maintaining mechanical properties equivalent to those of the prior art, and a low-cost austenitic stainless steel material and production of the stainless steel material
  • a method and a product comprising the stainless steel material can be provided.
  • 2 is an example of an SEM observation image in the solidified molded body 1.
  • 3 is a graph showing a particle size distribution of a parent phase crystal in the solidified molded body 1.
  • the relationship between the crystal grain size and the mechanical strength in the metal material is the empirical relationship of the hall-petch relationship, and the mechanical strength (for example, tensile strength) is the crystal grain size. It is known that it becomes higher with miniaturization. For example, in an iron-based metal material, when the average crystal grain size is refined to about 5 ⁇ m, the tensile strength is improved to about 1.5 times that of an average crystal grain size of several tens of ⁇ m. In addition, since the iron-based metal material does not greatly impair the ductility even when the crystal grains are refined, it is said that the refinement of the average crystal grain size is preferable in terms of mechanical properties.
  • the crystal grain boundary of the metal material acts as an annihilation site of crystal defects. Therefore, it can be expected that an increase in crystal grain boundaries due to crystal grain refinement leads to relaxation of crystal defect concentration. For example, even if crystal defects (irradiation defects) are introduced into a metal material by neutron irradiation, it is expected that the irradiation defect concentration can be relaxed if crystal grain refinement is achieved. In other words, it is expected that the radiation resistance (resistance to irradiation-induced stress corrosion cracking) of the metal material is improved by making the crystal grains finer.
  • FIG. 1 is a graph showing a calculation result example of the relationship between the crystal grain size and the crystal defect concentration in the metal material.
  • the crystal defect concentration can be reduced by reducing the crystal grain size. Specifically, when the crystal grain size exceeds 5 ⁇ m, there is almost no variation in the crystal defect concentration, but when the crystal grain size becomes 5 ⁇ m or less, the crystal defect concentration starts to decrease clearly, and the crystal grain size is 2 ⁇ m.
  • the crystal defect concentration is reduced by half compared to the crystal grain size exceeding 5 ⁇ m, and when the crystal grain size is 1 ⁇ m or less, the crystal defect concentration is 1/6 compared to the crystal grain size exceeding 5 ⁇ m. It turned out that it falls below.
  • the present inventors considered that it is preferable to set the average crystal grain size to 1 ⁇ m or less and the maximum crystal grain size to 5 ⁇ m or less in the austenitic stainless steel material according to the present invention.
  • the maximum crystal grain size is more preferably 4.5 ⁇ m or less, and further preferably 4 ⁇ m or less. Further, in the crystal grain size distribution, it was considered that the 50% diameter (median diameter) is more preferably 1 ⁇ m or less.
  • the alloy powder in addition to preparing an alloy powder having a desired chemical composition by mechanical alloying or mechanical milling, the alloy powder is adjusted to have a particle size larger than that of the prior art. It has been found that an austenitic stainless steel material having a fine structure as described above can be produced stably by performing powder metallurgy using a sized powder having such a large particle size, which is sized to become a granular powder. It was.
  • Embodiments according to the present invention will be described along a manufacturing procedure of a dispersion strengthened austenitic stainless steel material.
  • the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the invention.
  • FIG. 2 is a process diagram showing an example of a method for producing a dispersion strengthened austenitic stainless steel material according to the present invention.
  • the production method of the present invention has at least an alloy powder synthesis step, a powder sizing step, and a heat solidification molding step, and if necessary, a processing molding step and a homogenization heat treatment step. Furthermore, you may have.
  • embodiments of the present invention will be described more specifically.
  • an alloy powder having a desired chemical composition is prepared by mechanical alloying (MA) or mechanical milling (MM).
  • MA mechanical alloying
  • MM mechanical milling
  • the dispersion strengthened austenitic stainless steel material of the present invention is an Fe—Cr—Ni alloy containing Fe, Cr, and Ni as main components, and specifically, preferably has the following chemical composition.
  • the Cr component is a component that contributes to improving the corrosion resistance of the stainless steel material and stabilizes the austenite phase.
  • the content of Cr component is preferably 16% by mass or more and 26% by mass or less, and more preferably 18% by mass or more and 20% by mass or less.
  • the Cr content is less than 16% by mass, the required corrosion resistance cannot be sufficiently satisfied.
  • the Cr content exceeds 26% by mass, brittle intermetallic compounds (for example, ⁇ phase) are likely to be generated, and the ductility and toughness of the stainless steel material are significantly reduced.
  • Ni 8-22% by mass
  • the Ni component is a component that stabilizes the austenite phase and imparts ductility and toughness to the stainless steel material.
  • the Ni component content is preferably 8% by mass or more and 22% by mass or less, and more preferably 8% by mass or more and 12% by mass or less. When the Ni content is less than 8% by mass, the effect of the Ni component cannot be sufficiently obtained. On the other hand, when the Ni content exceeds 22% by mass, a brittle intermetallic compound is easily generated, and the mechanical properties of the stainless steel material are deteriorated.
  • the C component has the effect of hardening the stainless steel material by solid solution, but combines with the constituent metal components of the stainless steel material to form carbides (for example, Cr carbide) and easily precipitates at the grain boundaries, and the corrosion resistance of the stainless steel material. It is also an impurity component that reduces toughness.
  • carbides for example, Cr carbide
  • It is also an impurity component that reduces toughness.
  • the C content is less than 0.005% by mass, the positive effect of the C component cannot be sufficiently obtained.
  • the C content is more preferably 0.02% by mass or less.
  • N 0.002 to 0.1% by mass
  • the N component has the effect of hardening the stainless steel material by solid solution, but easily forms and precipitates nitrides (for example, Cr nitride) by combining with the constituent metal components of the stainless steel material. It is also an impurity component that lowers radiation irradiability and stress corrosion cracking resistance.
  • the N content is less than 0.002% by mass, the positive effect of the N component cannot be sufficiently obtained.
  • the N content is more preferably 0.05% by mass or less.
  • the O component is an impurity component that easily forms and precipitates an oxide (for example, Fe oxide) by combining with a constituent metal component of the stainless steel material, reduces the toughness of the stainless steel material, and promotes intergranular corrosion.
  • an oxide for example, Fe oxide
  • the O component content is more preferably 0.3% by mass or less.
  • the stainless steel material of the present invention further contains at least one of Zr, Ta, and Ti as a subcomponent.
  • the Zr component, the Ta component, and the Ti component are components that play a role of decarburization, denitrification, and deoxidation in the stainless steel material, respectively. Improves negative influence on stainless steel by forming compounds with impurity components of C, N and O, and assembling and stabilizing the impurity components (for example, suppressing deterioration in corrosion resistance and toughness) be able to.
  • the content is preferably 0.2% by mass or more and 2.8% by mass or less.
  • the content is preferably 0.4% by mass or more and 5% by mass or less.
  • the content is preferably 0.2% by mass or more and 2.6% by mass or less. More preferably, the total content of the three components is controlled to be in the range of 2 to 10 times the total content of the C component, the N component, and the O component.
  • the content of the three components is below the lower limit, the effect of assembling and stabilizing the impurity components C, N, and O cannot be sufficiently obtained.
  • the content of the three components exceeds the above upper limit, the ductility and toughness of the stainless steel material are lowered.
  • the Zr, Ta, and Ti components that did not form the compound of the impurity components C, N, and O are dissolved in the matrix and have a secondary effect of improving the corrosion resistance of the stainless steel material.
  • the atomic size (for example, atomic radius) of these three subcomponents is larger than the atomic size of the three main components (Fe, Cr, Ni). This is considered to be because the lattice strain acts as a crystal defect disappearance site.
  • the stainless steel material of the present invention preferably further contains Mn and / or Si as another subcomponent.
  • Mn and / or Si as another subcomponent.
  • Mn 0.1-1% by mass
  • the Mn component plays a role of desulfurization / deoxidation in the stainless steel material and is a subcomponent contributing to improvement of mechanical strength and toughness.
  • the content of the Mn component is preferably 0.1% by mass or more and 1% by mass or less. When the Mn content is less than 0.1% by mass, the effect of the Mn component cannot be sufficiently obtained. On the other hand, when the Mn content exceeds 1% by mass, coarse particles of sulfide (for example, MnS) are formed, which causes deterioration of corrosion resistance and mechanical strength.
  • MnS coarse particles of sulfide
  • the Si component plays a role of deoxidation in the stainless steel material and is a subcomponent that contributes to improvement in heat resistance and mechanical strength.
  • the content of the Si component is preferably 0.1% by mass or more and 1% by mass or less. When the Si content is less than 0.1% by mass, the effect of the Si component cannot be sufficiently obtained. On the other hand, when the Si content exceeds 1% by mass, coarse particles of oxide (for example, SiO 2 ) are formed, which causes a decrease in toughness.
  • the austenitic stainless steel material of the present invention consists of Fe and inevitable impurities (for example, phosphorus and sulfur) in the remaining chemical composition.
  • inevitable impurities for example, phosphorus and sulfur
  • the Fe component is one of the main components of stainless steel, and is a basic component for ensuring mechanical strength.
  • the P (phosphorus) component is an inevitable impurity that easily segregates at the crystal grain boundaries of the stainless steel material and lowers the toughness of the stainless steel material and the corrosion resistance of the grain boundaries.
  • the P content is more preferably 0.006% by mass or less.
  • S more than 0% by mass and 0.01% by mass or less
  • S (sulfur) component is easy to produce a relatively low melting point sulfide (for example, Fe sulfide) by combining with the component of stainless steel material, It is an impurity component that lowers pitting corrosion resistance.
  • the S content is more preferably 0.003% by mass or less.
  • a powder sizing step is performed in which the alloy powder obtained by the above-described alloy powder synthesis step is sized so that the particle size is 0.3 mm or more and 3 mm or less to prepare a sized powder.
  • the sizing method There is no particular limitation on the sizing method, and a conventional method can be used.
  • the particle size of the sized powder When the particle size of the sized powder is less than 0.3 mm, crystal grains are likely to become coarse in the sintering process in the subsequent heat-solidification molding, making it difficult to obtain a stainless steel material having a desired microstructure. . On the other hand, when the particle size of the sized powder exceeds 3 mm, the particles are too large and voids are likely to remain in the sintering process in heat-solidification molding, making it difficult to obtain a stainless steel material having desirable mechanical strength. Become.
  • the sized powder particles preferably have an average Vickers hardness of 300 Hv or more, and more preferably 350 Hv or more.
  • the Vickers hardness of the powder particles is considered as an index indicating the degree of internal strain of the particles. In other words, it is preferable to prepare a sized powder composed of particles that store sufficient internal strain.
  • an alloy powder having a particle size of 1 ⁇ m or less (preferably a particle size of 0.1 ⁇ m or less is preferred) as a powder for heat solidification molding. It has been considered that it is better to prepare an alloy powder).
  • the present invention is greatly characterized in that a sized powder having a particle size larger by two orders of magnitude than the conventional technical idea is prepared.
  • the solidified powder is heated and solidified and molded to produce a solidified molded body (a solidified molded body is produced by a so-called powder metallurgy method).
  • a powder metallurgy method There is no particular limitation on the heat-solidifying method, and a conventional method can be used. For example, hot isostatic pressing (HIP) or hot extrusion can be suitably used.
  • HIP hot isostatic pressing
  • a temperature of 750 ° C. or higher and 1100 ° C. or lower and a pressure of 100 ⁇ M or higher are preferable.
  • the solidification molding temperature is less than 750 ° C., the temperature is too low, the deformation resistance of the granulated powder becomes excessive, and it becomes difficult to sufficiently densify the solidified molding.
  • the solidification molding temperature exceeds 1100 ° C., the temperature is too high and the crystal grains are likely to become coarse (abnormal grain growth).
  • the solidification molding pressure is less than 100 MPa, densification of the solidification molded body becomes insufficient.
  • the upper limit of the solidification molding pressure depends on the size of the solidification molded body, the output of the molding apparatus, and the allowable manufacturing cost.
  • the matrix phase of the sized powder is austenitic.
  • the above-mentioned subcomponents (Zr, Ta, Ti, Mn, Si) and impurity components (C, N, O) combine to form inclusion particles (average) on the inside and surface of each particle of the sized powder.
  • Dispersion strengthened austenitic stainless steel material with the desired microstructure average crystal grain size of the parent phase is 1 ⁇ m or less, maximum crystal grain size of the parent phase is 5 ⁇ m or less, and inclusion particles are finely dispersed) by this heat solidification molding process Is obtained.
  • each particle of the powder is considered to have a large internal strain. It is considered that each powder particle is recrystallized due to a large internal strain in each particle simultaneously with the above-described inclusion particle generation in the heat solidification molding process. At this time, since the generated inclusion particles inhibit the movement of dislocations and the movement of grain boundaries during recrystallization, the recrystallization proceeds so that each particle itself becomes a polycrystal, and at the same time, between each particle. It is considered that the sintering of this proceeds. As a result, it is considered that a solidified molded body made of crystals having a particle size smaller than the particle size of the solidified molding starting powder is obtained.
  • the solidified molded body obtained in the heat solidified molding process may be subjected to machining (for example, drawing, rolling, forging) to form a desired shape.
  • This processing and forming step is preferably performed in a temperature range of room temperature to 1100 ° C.
  • homogenize (relieve processing strain, homogenize the matrix composition in each crystal grain) for the solidified molded body obtained in the heat-solidified molding process or the desired shape obtained in the process-molding process.
  • a homogenization heat treatment step for the purpose of) may be performed.
  • the homogenization heat treatment is preferably performed in a temperature range of 600 to 1100 ° C.
  • FIG. 3 is a perspective schematic view showing a control rod in a nuclear reactor, which is an example of a product made of a dispersion strengthened austenitic stainless steel material according to the present invention.
  • the control rod shown in FIG. 3 is an example using boron carbide as a neutron absorber.
  • the control rod 10 that receives a high neutron irradiation amount there is a possibility that irradiation-induced stress corrosion cracking occurs. Therefore, providing a control rod with high durability and long-term reliability by using the dispersion strengthened austenitic stainless steel material of the present invention having excellent mechanical properties, radiation resistance, and stress corrosion cracking resistance. Can do.
  • the dispersion strengthened austenitic stainless steel material of the present invention can be formed into various shapes (for example, bars, plates, tubes). Therefore, the present invention is not limited to the control rod 10 shown in FIG. 3 and can be applied to other nuclear plant members that may cause irradiation-induced stress corrosion cracking due to neutron irradiation.
  • it can be provided as a core shroud, an upper lattice plate, a core support plate, a baffle plate, a former plate, a baffle former bolt, and the like. As a result, it is possible to construct a nuclear plant that is excellent in durability and long-term reliability.
  • alloy powder 1-6 (Preparation of alloy powder 1-6) Austenitic stainless steel powder (made by Höganäs Japan KK, SUS304L powder, particle size less than 45 ⁇ m) is used as a base alloy powder, and subcomponent metals are mixed and alloyed by mechanical alloying using a planetary ball mill to produce alloy powder 1 ⁇ 5 were prepared. Moreover, the alloy powder 6 which performed the same mechanical alloying process with respect to the base alloy powder single-piece
  • metal Zr powder manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 98%, particle size less than 45 ⁇ m
  • Ta raw material metal Ta powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%, particle size less than 45 ⁇ m) was used.
  • Ti raw material metal Ti powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%, particle size less than 45 ⁇ m) was used.
  • Table 1 shows the chemical compositions of the alloy powders 1 to 6.
  • Experiment 2 (Relationship between alloy powder size, average hardness of powder particles, and average crystal size of solidified compact)
  • the alloy powder 1 prepared in Experiment 1 was classified by sieving into five groups with different particle sizes (less than 300 ⁇ m, 300 ⁇ m or more and less than 425 ⁇ m, 425 ⁇ m or more and less than 500 ⁇ m, 500 ⁇ m or more and less than 600 ⁇ m, 600 ⁇ m or more).
  • solidified compacts were produced using alloy powders of each particle size group.
  • the alloy powder of each particle size group was vacuum degassed and encapsulated in a capsule, and the capsule was subjected to HIP treatment (temperature 950 ° C., pressure 140 kg MPa). Thereafter, a homogenized heat treatment for relaxing the processing strain (water cooling after holding at 1000 ° C. for 30 minutes) was performed to produce a solidified molded body for each particle size group.
  • the average Vickers hardness of the powder particles was less than 300 ⁇ Hv
  • the average particle size of the parent phase crystals of the solidified compact was 5.8 ⁇ m.
  • the average grain size of the solidified compacts of the group was much smaller than the grain size of the alloy powder, but did not reach the required level of the present invention (average grain size of 1 ⁇ m or less).
  • the alloy powder groups having a particle size of 300 ⁇ m or more had an average Vickers hardness of 300 ⁇ Hv or more for the powder particles, and the average particle size of the parent phase crystals of the solidified compact was 1 ⁇ m or less. From Experiment 2, it was confirmed that the particle size of the sized powder used for the solidified molded body is preferably 300 ⁇ m or more.
  • Example 3 (Average crystal grain size, maximum crystal grain size, inclusion particles in solidified compact)
  • the alloy powders 1 to 6 prepared in Experiment 1 were each classified by sieving to prepare sized powders 1 to 6 having a particle size of 300 ⁇ m to 2 mm. Next, using each of the sized powders, solidified molded bodies 1 to 6 were produced in the same manner as in Experiment 2.
  • Solidified molded bodies 1 to 5 are examples of the present invention, and solidified molded bodies 6 to 7 are comparative examples.
  • the average particle diameter and number density of inclusion particles were measured using a replica sample collected by the extraction replica method.
  • a scanning transmission electron microscope (Hitachi High-Technologies Corporation, HD-2700) manufactured by Hitachi High-Technologies was used for the measurement of inclusion particles. The results are also shown in Table 3.
  • FIG. 4 is an example of an SEM observation image in the solidified molded body 1
  • FIG. 5 is a graph showing the particle size distribution of the parent phase crystals in the solidified molded body 1.
  • the solidified molded body 1 according to the present invention has a metal structure made of fine crystal grains and having no coarse crystal grains grown. Further, it can be seen from the crystal grain size distribution of FIG. 5 that the 50% diameter (median diameter) is 1 ⁇ m or less.
  • all of the solidified molded bodies 1 to 5 according to the present invention had an average particle size of the parent phase crystal of 1 ⁇ m or less and a maximum particle size of 5 ⁇ m or less. It was. In addition, it was confirmed that the inclusion particles had an average particle size of 50 nm or less and were dispersed at a number density of 1 ⁇ 10 22 m ⁇ 3 or more.
  • the average grain size of the mother phase crystals was 31 ⁇ m and the maximum grain size was 67 ⁇ m, and the crystal grains were larger and coarser than in the examples of the present invention.
  • the solidified compact 7 had a mean crystal grain size of 48 ⁇ m and a maximum grain size of 103 ⁇ m, and was further coarsened.
  • Such a difference between the example and the comparative example is considered to be caused by the presence or absence of inclusion particles due to the presence or absence of the addition of subcomponent metals (Zr, Ta, Ti).
  • the difference between the solidified molded bodies 6 and 7 is caused by the difference in the degree of accumulation of internal strain of the powder particles.
  • the solidified molded bodies 1 to 5 which are examples of the present invention have a room temperature tensile strength about 1.5 times that of the solidified molded bodies 6 to 7 of the comparative example, and 300 ° C.
  • the tensile strength was about 1.7 times. This is considered to be an effect by the refinement of crystal grains in the present invention.
  • the solidified molded body 6 had a crystal grain size smaller than that of the solidified molded body 7 (see Table 3), but the tensile strength was the same as that of the solidified molded body 7. As predicted from the Hall-Petch relationship, it was confirmed that this degree of particle size difference in the particle size range of several tens of ⁇ m had a small effect on the mechanical strength characteristics.
  • Example 5 (Effect of heating temperature in heat solidification molding process) Using the sized powder 2 prepared in Experiment 3, the influence of the heating temperature in the heat-solidification molding process was investigated. Specifically, solidified molded bodies 2a to 2d were produced in the same manner as in Experiment 2 except that the heating temperature for HIP treatment was changed in the range of 750 to 1100 ° C.
  • the heating temperature in the heat-solidification molding step is preferably 1100 ° C. or lower in order to achieve an average crystal grain size of 1 ⁇ m or less and a maximum crystal grain size of 5 ⁇ m or less.
  • the metal molded body shows a tendency opposite to room temperature tensile strength in terms of creep characteristics because the larger the crystal grain size, the harder the creep deformation. Therefore, it is desirable to select the heating temperature in the heat-solidifying process in consideration of the tensile strength and creep characteristics required for the solidified molded body.
  • Example 6 (Corrosion resistance of solidified molding) Test pieces for corrosion tests were collected from the solidified molded bodies 1 to 3, 6 and 7 prepared in Experiment 3, and subjected to a general corrosion test. The corrosion test was performed by immersing the test piece in high-temperature high-pressure water (temperature: 288 ° C, pressure: 8 MPa, dissolved oxygen concentration: 8 ppm) simulating a light water reactor environment for 2000 hours.
  • high-temperature high-pressure water temperature: 288 ° C, pressure: 8 MPa, dissolved oxygen concentration: 8 ppm
  • the oxide generated on the surface of the test piece was removed, the mass of the test piece was measured, and the mass change before and after the corrosion test (that is, the elution amount from the solidified molded body) was calculated.
  • the mass change amount in the solidified molded body 7 of the comparative example as a reference (100%)
  • the ratio of mass change amounts in other solidified molded bodies was obtained. It means that the smaller the ratio, the smaller the mass change amount (elution amount) (that is, the higher the corrosion resistance). The results are shown in Table 6.
  • the solidified molded bodies 1 to 3 as examples of the present invention had an elution amount smaller by about 10% or more than the solidified molded bodies 6 to 7 as comparative examples.
  • inclusion dispersion and precipitate dispersion are generally said to cause a decrease in corrosion resistance in a high-temperature and high-pressure water environment. Corrosion resistance was improved as compared with the comparative example without. This was considered to be a positive effect by crystal grain refinement.
  • Example 7 Stress corrosion cracking resistance of solidified compacts
  • Specimens for stress corrosion cracking test (8 pieces each) were collected from solidified compacts 1 to 3, 6 and 7 prepared in Experiment 3, and accelerated test of stress corrosion cracking (constant strain bending (CBB) test with clearance) )
  • CBB constant strain bending
  • Each test piece was processed into a shaper and subjected to sensitizing heat treatment (air cooling after holding at 620 ° C. for 24 hours).
  • this CBB test was performed by immersing the test piece in high-temperature high-pressure water (temperature: 288 ° C., pressure: 8 MPa, dissolved oxygen concentration: 8 ppm) simulating a light water reactor environment for 2000 hours.
  • the solidified molded bodies 1 to 3 as examples of the present invention had excellent maximum crack depths of half or less as compared with the solidified molded bodies 6 to 7 as comparative examples. It was confirmed to have stress corrosion cracking resistance. This was considered to be a positive effect by crystal grain refinement.
  • Example 8 (Irradiation resistance of solidified molded product) Test pieces for the ion irradiation test were collected from the solidified molded bodies 2, 3 and 6 prepared in Experiment 3, and the ion irradiation test was performed. The irradiation test conditions were as follows: test piece temperature: 300 ° C., irradiation ion: Fe 3+ ion, irradiation energy: 6.4 MeV, and irradiation damage amount: 1.0 dpa.
  • the hardness of the surface of the test piece was measured using an ultra-micro hardness meter (manufactured by Agilent Technologies, Nano Indenter G200), and the amount of change in hardness before and after the ion irradiation test was calculated. A smaller amount of change in hardness means higher irradiation resistance. The results are shown in Table 8.
  • the solidified molded bodies 2 and 3 according to the examples of the present invention have a hardness change amount of half or less as compared with the solidified molded body 6 of the comparative example, and excellent irradiation resistance. It was confirmed to have This was considered to be a positive effect by crystal grain refinement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Powder Metallurgy (AREA)

Abstract

従来と同等の機械的特性を維持しながら従来以上に優れた耐放射線照射性・耐応力腐食割れ性を有し、かつ低コストのオーステナイト系ステンレス鋼材および該ステンレス鋼材の製造方法、ならびに該ステンレス鋼材からなる製造物を提供することを目的とする。本発明に係る分散強化型オーステナイト系ステンレス鋼材は、その化学組成が、16~26質量%のCrと、8~22質量%のNiと、0.005~0.08質量%のCと、0.002~0.1質量%のNと、0.02~0.4質量%のOとを含み、0.2~2.8質量%のZr、0.4~5質量%のTa、および0.2~2.6質量%のTiのうちの少なくとも一種を更に含み、残部がFeおよび不可避不純物からなり、前記Zr成分、前記Ta成分および前記Ti成分は、前記C成分、前記N成分および前記O成分と共に介在物粒子を形成しており、前記ステンレス鋼材は、平均結晶粒径が1μm以下で、最大結晶粒径が5μm以下であることを特徴とする。

Description

分散強化型オーステナイト系ステンレス鋼材、該ステンレス鋼材の製造方法および該ステンレス鋼材からなる製造物
 本発明は、高強度・高耐食性ステンレス鋼材の技術に関し、特に、分散硬化型オーステナイト系ステンレス鋼材および該ステンレス鋼材の製造方法、ならびに該ステンレス鋼材からなる製造物に関するものである。
 オーステナイト系ステンレス鋼は、炭素鋼に比して機械的強度や耐食性が高く、かつステンレス鋼の中でも良好な加工性(例えば、良好な延性・靱性)を有することから、種々のプラント用部材の材料として利用されている。例えば、原子力プラントでは、炉心シュラウドや再循環系配管などに用いられている。
 オーステナイト系ステンレス鋼は、鋼中のCr(クロム)成分が鋼の表面に不動態皮膜を形成することにより高い耐食性を示すが、特定の腐食環境下(例えば、高温高圧水環境下)では応力腐食割れ(SCC)を発現し易いことが知られている。特に、原子力プラントで使用される場合、中性子照射に曝されてステンレス鋼結晶内に照射欠陥が導入されると結晶粒界でCr成分欠乏を助長し、それに起因する応力腐食割れ(照射誘起応力腐食割れ)を誘発する可能性があることが指摘されている。そのような照射誘起応力腐食割れの感受性を下げるため、耐放射線照射性・耐応力腐食割れ性に優れたステンレス鋼材料が必要である。
 例えば、特許文献1(特開平8-337853)には、重量で、C:0.1%以下、Si:1%以下、Mn:2.0%以下、Ni:9~30%及びCr:14~20%を含有し、平均結晶粒径が1μm以下であり、90体積%以上のオーステナイト相を有することを特徴とする高耐食性高強度オーステナイト焼結鋼、又は、これにMo:3%以下、Ti:1.0%以下、Zr:2.0%以下、Nb:1.0%以下の少なくとも1種を更に含むことを特徴とする高耐食性高強度オーステナイト焼結鋼が、開示されている。
 また、特許文献2(特開2002-285289)には、重量でFe:69.5~88.5%、Cr:11~30%を含有し、CrおよびTi,Zrの酸化物の少なくとも1種が粒径0.02μm以下の状態で分散し、主としてフェライト組織と酸化物相、不可避的に混入するCから生成される炭化物相からなり、結晶粒径1μm以下の組織を有することを特徴とする高強度フェライト系ステンレス鋼が、開示されている。
特開平8-337853号公報 特開2002-285289号公報
 特許文献1によると、結晶粒径を均一に超微細化することにより、耐食性、機械的強度、耐放射線照射損傷に優れたオーステナイト鋼、およびそれを用いた原子力プラント構成部品を提供することができるとされている。また、耐放射線照射損傷性に優れるため、原子力プラント構成部品の安全性・信頼性の向上に顕著な効果が得られるとされている。
 オーステナイト系ステンレス鋼において、結晶粒径の超微細化が、鋼材の機械的強度の向上や耐放射線照射損傷性の向上に寄与するという技術思想は正しいと考えられる。しかしながら、特許文献1の技術では、平均結晶粒径のみに着目しており、組織の不均一性による局所的な粗大化結晶粒について考慮されていない。言い換えると、局所的であっても粗大化結晶粒が存在する場合、該粗大化結晶粒が起点となって照射誘起応力腐食割れを発現してしまうことが懸念される。
 特許文献2によると、メカニカルアロイングあるいはメカニカルミリング等で得られる超微細粒組織を有する粉末を、その組織を維持しながらバルク化することによって、高強度化と同時に靭性、加工性を向上させたフェライト系ステンレス鋼を提供することができるとされている。また、結晶粒微細化による強化を主としているので、特別な強化元素の添加無しに材料の高強度化および高機能化を実現できるとされている。
 フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比して、相対的に高い耐SCC性を有するとされているが、機械的特性(例えば、延性、靭性、加工性)や溶接性が相対的に低いとされている。これら機械的特性や溶接性における弱点のため、フェライト系ステンレス鋼は、原子力プラントの厳しい腐食環境・応力負荷環境下での使用はあまり想定されていない。
 近年における原子力プラントの安全性強化の潮流から、原子力プラントには従来以上に高い耐久性・長期信頼性が強く求められている。そのため、原子力プラント用部材の材料に対しても、従来以上に優れた耐放射線照射性・耐応力腐食割れ性を有するステンレス鋼材が強く求められている。
 また、ステンレス鋼材の開発において、求められる諸特性を満たすことは必須条件であるが、そのようなステンレス鋼材を簡便に再現性よく(すなわち、低コストで)提供することも、商用化の観点から至上命題のうちの一つである。
 したがって、本発明の目的は、上記要求を満たすべく、従来と同等の機械的特性を維持しながら従来以上に優れた耐放射線照射性・耐応力腐食割れ性を有し、かつ低コストのオーステナイト系ステンレス鋼材および該ステンレス鋼材の製造方法、ならびに該ステンレス鋼材からなる製造物を提供することにある。
 (I)本発明の一つの態様は、分散強化型オーステナイト系ステンレス鋼材であって、
前記ステンレス鋼材の化学組成は、16質量%以上26質量%以下のCr(クロム)と、8質量%以上22質量%以下のNi(ニッケル)と、0.005質量%以上0.08質量%以下のC(炭素)と、0.002質量%以上0.1質量%以下のN(窒素)と、0.02質量%以上0.4質量%以下のO(酸素)とを含み、
0.2質量%以上2.8質量%以下のZr(ジルコニウム)、0.4質量%以上5質量%以下のTa(タンタル)、および0.2質量%以上2.6質量%以下のTi(チタン)のうちの少なくとも一種を更に含み、
残部がFe(鉄)および不可避不純物からなり、
前記Zr成分、前記Ta成分および前記Ti成分は、前記C成分、前記N成分および前記O成分と共に介在物粒子を形成しており、
前記ステンレス鋼材は、平均結晶粒径が1μm以下で、最大結晶粒径が5μm以下であることを特徴とする分散強化型オーステナイト系ステンレス鋼材を提供するものである。
なお、本発明において、結晶粒径はJIS G 0551「鋼-結晶粒度の顕微鏡試験方法」に準拠して測定されるものと定義する。
 本発明は、上記の分散強化型オーステナイト系ステンレス鋼材(I)において、以下のような改良や変更を加えることができる。
(i)前記介在物粒子は、前記ステンレス鋼材内に1×1022 m-3以上の数密度で分散している。
(ii)前記介在物粒子は、平均粒径が0.05μm以下である。
(iii)前記化学組成は、0.1質量%以上1質量%以下のMn(マンガン)および/または0.1質量%以上1質量%以下のSi(ケイ素)を更に含む。
 (II)本発明の他の一つの態様は、上記の分散強化型オーステナイト系ステンレス鋼材の製造方法であって、
メカニカルアロイングまたはメカニカルミリングにより前記化学組成を有する合金粉末を合成する合金粉末合成工程と、
前記合金粉末の粒径を0.3 mm以上3 mm以下に整粒して整粒粉末を用意する粉末整粒工程と、
前記整粒粉末を750℃以上1100℃以下の温度で加熱固化成形して固化成形体を製造する加熱固化成形工程とを有することを特徴とする分散強化型オーステナイト系ステンレス鋼材の製造方法を提供するものである。
 本発明は、上記の分散強化型オーステナイト系ステンレス鋼材の製造方法(II)において、以下のような改良や変更を加えることができる。
(iv)前記整粒粉末は、粉末粒子の平均ビッカース硬さが300 Hv以上である。
(v)前記固化成形体に対して室温以上1100℃以下の温度で機械加工を施して所望形状体に成形する加工成形工程を更に有する。
(vi)前記固化成形体または前記所望形状体に対して600℃以上1100℃以下の温度で均質化のための熱処理を施す均質化熱処理工程を更に有する。
 (III)本発明の更に他の一つの態様は、上記の分散強化型オーステナイト系ステンレス鋼材からなる製造物であって、
前記製造物は、中性子照射環境下で使用される原子力プラント部材であることを特徴とする分散強化型オーステナイト系ステンレス鋼材からなる製造物を提供するものである。
 本発明は、上記の分散強化型オーステナイト系ステンレス鋼材からなる製造物(III)において、以下のような改良や変更を加えることができる。
(vii)前記原子力プラント部材は、原子炉内の制御棒である。
 本発明によれば、従来と同等の機械的特性を維持しながら従来以上に優れた耐放射線照射性・耐応力腐食割れ性を有し、かつ低コストのオーステナイト系ステンレス鋼材および該ステンレス鋼材の製造方法、ならびに該ステンレス鋼材からなる製造物を提供することができる。
金属材料中の結晶粒径と結晶欠陥濃度との関係の計算結果例を示すグラフである。 本発明に係る分散強化型オーステナイト系ステンレス鋼材の製造方法の一例を示す工程図である。 本発明に係る分散強化型オーステナイト系ステンレス鋼材からなる製造物の一例であり、原子炉内の制御棒を示す斜視模式図である。 固化成形体1におけるSEM観察像の一例である。 固化成形体1における母相結晶の粒径分布を示すグラフである。
 (本発明の基本思想)
 前述したように、金属材料における結晶粒径と機械的強度との関係は、ホール・ペッチ(hall-petch)の関係が経験的に成り立ち、機械的強度(例えば、引張強さ)は、結晶粒の微細化とともに高くなることが知られている。例えば、鉄系金属材料においては、平均結晶粒径を5μm程度まで微細化すると、平均結晶粒径が数10μmのものに比して引張強さが1.5倍程度に向上する。また、鉄系金属材料は、結晶粒を微細化しても延性を大きく損なわないことから、平均結晶粒径の微細化は、機械的特性に関して好ましいと言われている。
 また、金属材料の結晶粒界は、結晶欠陥の消滅サイトとして作用することが知られている。そのため、結晶粒の微細化による結晶粒界の増加は、結晶欠陥濃度の緩和につながることが期待できる。例えば、中性子照射によって金属材料中に結晶欠陥(照射欠陥)が導入されたとしても、結晶粒の微細化が達成されていれば照射欠陥濃度を緩和できることが期待される。言い換えると、結晶粒を微細化することによって、当該金属材料の耐放射線照射性(照射誘起応力腐食割れへの耐性)が向上することが期待される。
 そこで、本発明者等は、金属材料中の結晶粒径と結晶欠陥濃度との関係について調査・検討した。図1は、金属材料中の結晶粒径と結晶欠陥濃度との関係の計算結果例を示すグラフである。図1に示したように、結晶粒径の微細化によって結晶欠陥濃度を低下させられることが確認された。具体的には、結晶粒径が5μm超の場合、結晶欠陥濃度にほとんど変動が見られないが、結晶粒径が5μm以下になると、結晶欠陥濃度が明確に低下し始め、結晶粒径が2μmになると、5μm超の結晶粒径と比較して結晶欠陥濃度が1/2に低下し、結晶粒径が1μm以下になると、5μm超の結晶粒径と比較して結晶欠陥濃度が1/6以下に低下することが判明した。
 上記のような検討結果から、本発明者等は、本発明に係るオーステナイト系ステンレス鋼材において、平均結晶粒径を1μm以下とし、最大結晶粒径を5μm以下とすることが好ましいと考えた。最大結晶粒径は4.5μm以下がより好ましく、4μm以下が更に好ましい。また、結晶粒径分布において、50%径(メディアン径)が1μm以下であることがより好ましいと考えた。
 しかしながら、上記のような微細組織を有する金属部材を低コストで製造することは容易ではない。言い換えると、従来技術の範疇でそのような微細組織を有する金属部材を製造すると、高コスト化してしまうという問題があった。そこで、本発明者等は、所望の微細組織を有するオーステナイト系ステンレス鋼材を低コストで製造する技術について、鋭意研究を行った。
 その結果、合金粉末を用いた粉末冶金法において、メカニカルアロイングまたはメカニカルミリングにより所望の化学組成を有する合金粉末を用意することに加えて、該合金粉末を従来技術よりも大きい粒径を有する整粒粉末となるように整粒し、かつ当該大きい粒径を有する整粒粉末を用いて粉末冶金を行うことにより、上記のような微細組織を有するオーステナイト系ステンレス鋼材を安定して製造できることを見出した。
 従来よりも大きい粒径を有する合金粉末を用いた粉末冶金法により、上記のような微細組織を有する金属部材を製造することは、従来の技術思想と逆方向の思想であり、驚くべき結果であった。また、粒径の大きい合金粉末は、製造性やハンドリング性の観点で微細粉末よりも容易であり、更なる低コスト化に寄与する。本発明は、これらの知見に基づいて完成されたものである。
 本発明に係る実施形態について、分散強化型オーステナイト系ステンレス鋼材の製造手順に沿って説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。
 図2は、本発明に係る分散強化型オーステナイト系ステンレス鋼材の製造方法の一例を示す工程図である。図2に示したように、本発明の製造方法は、合金粉末合成工程と粉末整粒工程と加熱固化成形工程とを少なくとも有し、必要に応じて、加工成形工程と均質化熱処理工程とを更に有していてもよい。以下、本発明の実施形態をより具体的に説明する。
 [合金粉末合成工程]
 まず、所望の化学組成を有する合金粉末を、メカニカルアロイング(MA)またはメカニカルミリング(MM)により用意する。MAやMMの方法に特段の限定はなく、従前の方法を利用できる。
 本発明の分散強化型オーステナイト系ステンレス鋼材は、Fe、CrおよびNiを主要成分とするFe-Cr-Ni系合金であり、具体的には、以下のような化学組成を有することが好ましい。
 Cr:16~26質量%
 Cr成分は、ステンレス鋼材の耐食性向上に寄与すると共に、オーステナイト相を安定化する成分である。Cr成分の含有率は、16質量%以上26質量%以下が好ましく、18質量%以上20質量%以下がより好ましい。Cr含有率が16質量%未満になると、要求される耐食性を十分に満たせない。一方、Cr含有率が26質量%超になると、脆性の金属間化合物(例えばσ相)が生成し易くなり、ステンレス鋼材の延性・靱性が著しく低下する。
 Ni:8~22質量%
 Ni成分は、オーステナイト相を安定化すると共に、ステンレス鋼材に延性と靱性を付与する成分である。Ni成分の含有率は、8質量%以上22質量%以下が好ましく、8質量%以上12質量%以下がより好ましい。Ni含有率が8質量%未満になると、Ni成分の作用効果が十分に得られない。一方、Ni含有率が22質量%超になると、脆性の金属間化合物が生成し易くなり、ステンレス鋼材の機械的特性が低下する。
 C:0.005~0.08質量%
 C成分は、固溶することによってステンレス鋼材を硬化させる作用効果がある一方、ステンレス鋼材の構成金属成分と化合して炭化物(例えば、Cr炭化物)を生成・粒界析出し易く、ステンレス鋼材の耐食性や靱性を低下させる不純物成分でもある。C含有率が0.005質量%未満になると、C成分の正の作用効果が十分に得られない。C成分の含有率を0.08質量%以下に制御することで、負の影響を抑制することができる。C含有率は、0.02質量%以下がより好ましい。
 N:0.002~0.1質量%
 N成分は、固溶することによってステンレス鋼材を硬化させる作用効果がある一方、ステンレス鋼材の構成金属成分と化合して窒化物(例えば、Cr窒化物)を生成・析出し易く、ステンレス鋼材の耐放射線照射性や耐応力腐食割れ性を低下させる不純物成分でもある。N含有率が0.002質量%未満になると、N成分の正の作用効果が十分に得られない。N成分の含有率を0.1質量%以下に制御することで、負の影響を抑制することができる。N含有率は、0.05質量%以下がより好ましい。
 O:0.02~0.4質量%
 O成分は、ステンレス鋼材の構成金属成分と化合して酸化物(例えば、Fe酸化物)を生成・析出し易く、ステンレス鋼材の靱性を低下させると共に粒界腐食を助長する不純物成分である。粉末冶金法によってステンレス鋼材を加熱固化成形する場合、O成分の含有率を0.02質量%未満に抑制することは困難である。一方、本発明のステンレス鋼材においては、O成分の含有率を0.4質量%以下に制御することで、その負の影響を抑制することができる。O含有率は、0.3質量%以下がより好ましい。
 (副成分)
 本発明のステンレス鋼材は、副成分として、Zr、TaおよびTiのうちの少なくとも一種を更に含む。Zr成分、Ta成分、およびTi成分は、それぞれ本ステンレス鋼材において脱炭・脱窒素・脱酸の役割を担う成分である。C、NおよびOの不純物成分との化合物を形成し、該不純物成分を集合化・安定化することにより、ステンレス鋼材への負の影響を改善する(例えば、耐食性低下や靱性低下を抑制する)ことができる。
 上記3成分のうちZr成分を単独で添加する場合、その含有率は0.2質量%以上2.8質量%以下が好ましい。該3成分のうちTa成分を単独で添加する場合、その含有率は0.4質量%以上5質量%以下が好ましい。該3成分のうちTi成分を単独で添加する場合、その含有率は0.2質量%以上2.6質量%以下が好ましい。また、該3成分の合計含有率は、C成分、N成分、およびO成分の合計含有率の2倍以上10倍以下の範囲となるように制御されることがより好ましい。
 該3成分の含有率がそれぞれ上記下限を下回ると、不純物成分のC、NおよびOを集合化・安定化する作用効果が十分に得られない。一方、該3成分の含有率がそれぞれ上記上限を上回ると、ステンレス鋼材の延性・靭性が低下する。
 なお、不純物成分のC、NおよびOとの化合物を生成しなかったZr、TaおよびTi成分は、母相中に固溶し、ステンレス鋼材の耐食性を向上させる副次的な作用効果がある。これは、これら3副成分の原子サイズ(例えば、原子半径)が3主要成分(Fe、Cr、Ni)の原子サイズに比して大きいことから、副成分の固溶によって結晶格子中にひずみが生じ、該格子ひずみが結晶欠陥の消滅サイトとして作用するためと考えられる。
 (他の副成分)
 本発明のステンレス鋼材は、他の副成分として、Mnおよび/またはSiを更に含むことが好ましい。以下、それら他の副成分について説明する。
 Mn:0.1~1質量%
 Mn成分は、本ステンレス鋼材において脱硫・脱酸の役割を担うと共に、機械的強度・靱性の向上に寄与する副成分である。Mn成分の含有率は、0.1質量%以上1質量%以下が好ましい。Mn含有率が0.1質量%未満になると、Mn成分による作用効果が十分に得られない。また、Mn含有率が1質量%超になると、硫化物(例えば、MnS)の粗大粒子を形成して耐食性や機械的強度の劣化要因になる。
 Si:0.1~1質量%
 Si成分は、本ステンレス鋼材において脱酸の役割を担うと共に、耐熱性・機械的強度の向上に寄与する副成分である。Si成分の含有率は、0.1質量%以上1質量%以下が好ましい。Si含有率が0.1質量%未満になると、Si成分による作用効果が十分に得られない。また、Si含有率が1質量%超になると、酸化物(例えば、SiO2)の粗大粒子を形成して靱性の低下要因になる。
 (残部成分)
 本発明のオーステナイト系ステンレス鋼材は、残部の化学組成がFeと不可避不純物(例えば、リン、硫黄)とからなる。以下、それら残部成分について説明する。
 Fe成分
 Fe成分は、ステンレス鋼材の主要成分の1つであり、機械的強度を確保するための基本成分である。
 P:0質量%超0.01質量%以下
 P(リン)成分は、ステンレス鋼材の結晶粒界に偏析し易く、ステンレス鋼材の靱性や粒界の耐食性を低下させる不可避不純物である。P成分の含有率を0.01質量%以下に制御することで、それらの負の影響を抑制することができる。P含有率は、0.006質量%以下がより好ましい。
 S:0質量%超0.01質量%以下
 S(硫黄)成分は、ステンレス鋼材の構成成分と化合して比較的低融点の硫化物(例えば、Fe硫化物)を生成し易く、ステンレス鋼材の靱性や耐孔食性を低下させる不純物成分である。S成分の含有率を0.01質量%以下に制御することで、それらの負の影響を抑制することができる。S含有率は、0.003質量%以下がより好ましい。
 [粉末整粒工程]
 前述の合金粉末合成工程によって得られた合金粉末に対し、粒径が0.3 mm以上3 mm以下となるように整粒して整粒粉末を用意する粉末整粒工程を行う。整粒方法に特段の限定はなく、従前の方法を利用できる。
 整粒粉末の粒径が0.3 mm未満になると、後工程の加熱固化成形における焼結過程おいて、結晶粒の粗大化が生じ易くなり、望ましい微細組織を有するステンレス鋼材を得ることが困難になる。一方、整粒粉末の粒径が3 mm超になると、粒子が大き過ぎて加熱固化成形における焼結過程おいて空隙が残存し易くなり、望ましい機械的強度を有するステンレス鋼材を得ることが困難になる。
 また、整粒粉末粒子は、平均ビッカース硬さが300 Hv以上であることが好ましく、350 Hv以上がより好ましい。粉末粒子のビッカース硬さは、当該粒子の内部ひずみの程度を示す指標と考えられる。言い換えると、十分な内部ひずみを蓄えた粒子からなる整粒粉末を用意することが好ましい。
 なお、従来の技術思想では、平均結晶粒径が1μm以下のステンレス鋼材を作製しようとした場合、加熱固化成形用の粉末として、少なくとも粒径1μm以下の合金粉末(望ましくは、粒径0.1μm以下の合金粉末)を用意するのがよいと考えられてきた。これに対し、本発明は、従来の技術思想よりも2桁以上大きい粒径を有する整粒粉末を用意するところに大きな特徴がある。
 [加熱固化成形工程]
 次に、上記の整粒粉末を用いて、加熱固化成形して固化成形体を製造する(いわゆる、粉末冶金法により固化成形体を製造する)加熱固化成形工程を行う。加熱固化成形方法に特段の限定はなく、従前の方法を利用できる。例えば、熱間静水圧プレス(HIP)や熱間押出を好適に利用できる。
 固化成形条件としては、750℃以上1100℃以下の温度、100 MPa以上の圧力が好ましい。固化成形温度が750℃未満であると、温度が低過ぎて整粒粉末の変形抵抗が過大になり、固化成形体の十分な緻密化が困難になる。固化成形温度が1100℃超になると、温度が高過ぎて結晶粒の粗大化(異常粒成長)が生じ易くなる。また、固化成形圧力が100 MPa未満であると、固化成形体の緻密化が不十分になる。なお、固化成形圧力の上限は、固化成形体のサイズ、成形装置の出力、許容される製造コストに依存する。
 この加熱固化成形過程において、整粒粉末の母相がオーステナイト相化する。また、整粒粉末の各粒子の内部と表面とで、前述の副成分(Zr、Ta、Ti、Mn、Si)と不純物成分(C、N、O)とが化合して介在物粒子(平均粒径0.05μm以下)が生成する。副成分および不純物成分の含有率から、生成する介在物粒子量(粒径0.05μmと仮定)を計算すると、介在物粒子の数密度は1×1022 m-3以上となる。
 本加熱固化成形工程により、所望の微細組織(母相の平均結晶粒径が1μm以下、母相の最大結晶粒径が5μm以下、介在物粒子が微細分散)を有する分散強化型オーステナイト系ステンレス鋼材が得られる。
 従来技術に比して非常に大きな粒径を有する整粒粉末を用いているのにもかかわらず、所望の微細組織が得られる詳細なメカニズムは、現段階で未解明であるが、例えば、次のようなモデルが考えられる。
 本発明で用いる整粒粉末は、メカニカルアロイングまたはメカニカルミリングによって合成されていることから、粉末の各粒子は大きな内部ひずみを有していると考えられる。粉末各粒子は、加熱固化成形過程において、上述した介在物粒子の生成と同時に、各粒子内で大きな内部ひずみに起因した再結晶が生じると考えられる。このとき、生成した介在物粒子が、再結晶の際の転位の移動や粒界の移動を阻害するため、各粒子自身が多結晶体となるように再結晶が進行し、それと同時に各粒子間の焼結が進行すると考えられる。その結果、固化成形の出発粉末の粒径よりも小さい粒径の結晶からなる固化成形体が得られるものと考えられる。
 [加工成形工程]
 加熱固化成形工程で得られた固化成形体に対し、必要に応じて、機械加工(例えば、引抜加工、圧延加工、鍛造加工)を施して所望形状体に成形する加工成形工程を行ってもよい。本加工成形工程は、室温~1100℃の温度範囲で行うことが好ましい。加工成形工程により、より均等・緻密な金属組織を得ることができ、ステンレス鋼材の機械的特性をより向上させることができる。
 [均質化熱処理工程]
 加熱固化成形工程で得られた固化成形体、または加工成形工程で得られた所望形状体に対し、必要に応じて、均質化(加工ひずみの緩和、各結晶粒内の母相組成の均質化)を目的とした均質化熱処理工程を行ってもよい。均質化熱処理は、600~1100℃の温度範囲で行うことが好ましい。
 以上の製造工程により、本発明の分散強化型オーステナイト系ステンレス鋼材からなる製造物を得ることができる。
 [本発明のステンレス鋼材からなる製造物]
 図3は、本発明に係る分散強化型オーステナイト系ステンレス鋼材からなる製造物の一例であり、原子炉内の制御棒を示す斜視模式図である。図3に示した制御棒は、中性子吸収材にボロンカーバイドを用いた例である。
 図3の制御棒10は、タイロッド11、ハンドル12、コネクタ13、シース14、中性子吸収棒15などからなり、これらはいずれもオーステナイト系ステンレス鋼材が用いられている。高い中性子照射量を受ける制御棒10では、照射誘起応力腐食割れが発生する可能性がある。そこで、優れた機械的特性・耐放射線照射性・耐応力腐食割れ性を有する本発明の分散強化型オーステナイト系ステンレス鋼材を使用することにより、耐久性・長期信頼性の高い制御棒を提供することができる。
 本発明の分散強化型オーステナイト系ステンレス鋼材は、様々な形状(例えば、棒、板、管)に成形可能である。そのため、図3に示した制御棒10に限定されることはなく、中性子照射によって照射誘起応力腐食割れを発生する恐れのある他の原子力プラント用部材に適応可能である。例えば、炉心シュラウド、上部格子板、炉心支持板、バッフル板、フォーマ板、バッフルフォーマボルトなどとして提供できる。それにより、耐久性・長期信頼性に優れる原子力プラントを構築することができる。
 以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 [実験1]
 (合金粉末1~6の用意)
 オーステナイト系ステンレス鋼粉末(ヘガネス ジャパン株式会社製、SUS304L粉末、粒度45μm未満)をベース合金粉末として用い、遊星型ボールミルを用いたメカニカルアロイング処理によって副成分金属を混合・合金化して、合金粉末1~5を用意した。また、ベース合金粉末単体に対し(副成分金属の混合なしで)、同様のメカニカルアロイング処理を行った合金粉末6を用意した。
 副成分金属のZr原料としては、金属Zr粉末(株式会社高純度化学研究所製、純度98%、粒度45μm未満)を用いた。Ta原料としては、金属Ta粉末(株式会社高純度化学研究所製、純度99.9%、粒度45μm未満)を用いた。Ti原料としては、金属Ti粉末(株式会社高純度化学研究所製、純度99.9%、粒度45μm未満)を用いた。
 合金粉末1~6の化学組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [実験2]
 (合金粉末の粒度、粉末粒子の平均硬さ、および固化成形体の平均結晶粒径の関係)
 実験1で用意した合金粉末1に対し、ふるい分けによる分級を行って異なる粒度の5グループ(300μm未満、300μm以上425μm未満、425μm以上500μm未満、500μm以上600μm未満、600μm以上)に分けた。
 各粒度グループから10粒子をランダムに抽出し、マイクロビッカース硬度計(株式会社島津製作所製、HMV-2T)を用いて各粒子のビッカース硬さをそれぞれ測定した。10粒子のビッカース硬さのうち、最大値と最小値とを除いた8粒子のビッカース硬さの平均値を、当該粒度グループの平均ビッカース硬さとした。結果を後述する表2に示す。
 次に、各粒度グループの合金粉末を用いて、固化成形体を作製した。具体的には、各粒度グループの合金粉末をカプセルに真空脱気封入し、該カプセルにHIP処理(温度950℃、圧力140 MPa)を行った。その後、加工ひずみ緩和のための均質化熱処理(1000℃で30分間保持した後に水冷)を行って、粒度グループごとの固化成形体を作製した。
 得られた各固化成形体に対して、JIS G 0571「ステンレス鋼のしゅう酸エッチング試験方法」に準拠して観察試料を準備し、JIS G 0551「鋼-結晶粒度の顕微鏡試験方法」に準拠して平均結晶粒径を測定した。当該結晶粒の測定には、走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製、S-3400N)を利用した。結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、粒度が300μm未満の合金粉末グループは、粉末粒子の平均ビッカース硬さが300 Hv未満であり、固化成形体の母相結晶の平均粒径が5.8 μmであった。当該グループの固化成形体の平均結晶粒径は、合金粉末の粒度よりもはるかに小さくなったが、本発明の要求レベル(平均結晶粒径が1μm以下)には届かなかった。
 これに対し、粒度が300μm以上の合金粉末グループは、いずれも粉末粒子の平均ビッカース硬さが300 Hv以上であり、固化成形体の母相結晶の平均粒径が1μm以下であった。本実験2から、固化成形体に用いる整粒粉末の粒度は、300μm以上が好ましいことが確認された。
 粒度300μm未満の合金粉末グループで固化成形体の平均結晶粒径が1μm超になった理由としては、粉末粒子の平均ビッカース硬さが他のグループよりも低かったことから、各粒子の内部ひずみの蓄積が不十分であったためと考えられる。粒度の小さい粒子は、メカニカルアロイング処理中に、より大きな衝撃・加工を受けたと考えられ、通常ならばより大きい内部ひずみを有すると期待されるが、実際には大きな衝撃・加工に起因する衝撃熱・加工熱によって内部ひずみの一部が緩和してしまったと考えられる。その結果、小さい粒度のグループの方が粉末粒子の平均ビッカース硬さが低い傾向にあったと考えられる。
 なお、合金粉末2~5においても、合金粉末1と同様の結果が得られることを別途確認した。
 [実験3]
 (固化成形体における平均結晶粒径、最大結晶粒径、介在物粒子の様子)
 実験1で用意した合金粉末1~6に対し、それぞれふるい分けによる分級を行って、粒度300μm~2 mmの整粒粉末1~6を用意した。次に、各整粒粉末を用いて、実験2と同様にして固化成形体1~6を作製した。
 加えて、副成分金属の混合なし、かつメカニカルアロイング処理なしのベース合金粉末単体(SUS304L粉末、粒度45μm未満)を用いて、実験2と同様にして固化成形体7を作製した。固化成形体1~5は、本発明の実施例であり、固化成形体6~7は、比較例である。
 得られた各固化成形体に対して、実験2と同様に、JIS G 0571に準拠して観察試料を準備し、JIS G 0551に準拠して平均結晶粒径、最大結晶粒径を測定した。また、走査型電子顕微鏡/後方散乱電子回折(SEM/EBSD)解析を利用して、結晶粒の粒度分布を測定した。結果を図4、図5、表3に示す。
 さらに、抽出レプリカ法により採取したレプリカサンプルを用いて、介在物粒子の平均粒径と数密度とを測定した。介在物粒子の測定には、日立ハイテクノロジーズ製の走査透過型電子顕微鏡(株式会社日立ハイテクノロジーズ製、HD-2700)を用いた。結果を表3に併記する。
Figure JPOXMLDOC01-appb-T000003
 図4は、固化成形体1におけるSEM観察像の一例であり、図5は、固化成形体1における母相結晶の粒径分布を示すグラフである。図4,5に示したように、本発明に係る固化成形体1は、微細結晶粒からなり、粗大結晶粒が成長していない金属組織を有していることが判る。また、図5の結晶粒径分布から、50%径(メディアン径)が1μm以下であることが判る。
 より具体的には、表3に示したように、本発明に係る固化成形体1~5は、いずれも母相結晶の平均粒径が1μm以下であり、かつ最大粒径が5μm以下であった。また、介在物粒子は、平均粒径が50 nm以下であり、1×1022 m-3以上の数密度で分散していることが確認された。
 一方、比較例となる固化成形体6は、母相結晶の平均粒径が31μmで最大粒径が67μmとなり、本発明の実施例に比して結晶粒が大きく粗大化していた。また、固化成形体7は、母相結晶の平均粒径が48μmで最大粒径が103μmとなり、更に大きく粗大化していた。このような実施例と比較例との差異は、副成分金属(Zr、Ta、Ti)の添加の有無による介在物粒子の有無に起因するものと考えられる。また、固化成形体6と7との差異は、粉末粒子の内部ひずみの蓄積度の差異に起因するものと考えられる。
 [実験4]
 (固化成形体の引張強さ)
 実験3で作製した固化成形体1~7から引張試験用の試験片を採取し、材料万能試験機を用いて室温引張試験と高温引張試験(300℃)とを行い、引張強さを測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、本発明の実施例である固化成形体1~5は、比較例の固化成形体6~7に比して、室温引張強さが約1.5倍であり、300℃引張強さが約1.7倍であった。これは、本発明における結晶粒微細化による作用効果と考えられる。
 なお、固化成形体6は、固化成形体7よりも結晶粒径が小さかったが(表3参照)、引張強さは固化成形体7と同等であった。ホール・ペッチの関係から予測されるように、数十μmの粒径範囲でのこの程度の粒径差は、機械的強度特性への影響が小さいことが確認された。
 [実験5]
 (加熱固化成形工程における加熱温度の影響)
 実験3で用意した整粒粉末2を用い、加熱固化成形工程における加熱温度の影響を調査した。具体的には、HIP処理の加熱温度を750~1100℃の範囲で変化させ、他の条件は実験2と同様にして、固化成形体2a~2dを作製した。
 得られた固化成形体2a~2dに対し、実験3~4と同様にして、平均結晶粒径、最大結晶粒径、室温引張強さを測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、HIP処理の加熱温度を上昇させると、平均結晶粒径と最大結晶粒径とが増大し、室温引張強さが低下する傾向が見られた。本実験5から、平均結晶粒径1μm以下と最大結晶粒径5μm以下とを達成するためには、加熱固化成形工程の加熱温度を1100℃以下とすることが好ましいことが確認された。
 なお、金属成形体は、結晶粒径が大きい方がクリープ変形しづらいことから、クリープ特性に関しては、室温引張強さと逆の傾向を示すと考えられる。したがって、加熱固化成形工程の加熱温度は、固化成形体に求められる引張強さとクリープ特性とを勘案して選定することが望ましい。
 [実験6]
 (固化成形体の耐食性)
 実験3で作製した固化成形体1~3,6および7から腐食試験用の試験片を採取し、全面腐食試験を行った。本腐食試験は、軽水炉環境を模擬した高温高圧水(温度:288℃、圧力:8 MPa、溶存酸素濃度:8 ppm)に試験片を2000時間浸漬して行った。
 高温高圧水から取り出した後、試験片表面に生成した酸化物を除去して試験片の質量を測定し、腐食試験前後の質量変化量(すなわち、固化成形体からの溶出量)を算出した。比較例の固化成形体7における質量変化量を基準(100%)として、他の固化成形体での質量変化量の比率を求めた。該比率が小さいほど質量変化量(溶出量)が小さいこと(すなわち、耐食性が高い)ことを意味する。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示したように、本発明の実施例である固化成形体1~3は、比較例の固化成形体6~7に比して、溶出量が10%程度以上小さいことが確認された。ステンレス鋼材において、一般的には、介在物分散や析出物分散は、高温高圧水環境での耐食性を低下させる要因になると言われているが、本発明の実施例は、介在物・析出物分散のない比較例よりも耐食性が向上していた。これは、結晶粒微細化による正の作用効果と考えられた。
 [実験7]
 (固化成形体の耐応力腐食割れ性)
 実験3で作製した固化成形体1~3,6および7から応力腐食割れ試験用の試験片(各8個ずつ)を採取し、応力腐食割れの加速試験(すきま付き定ひずみ曲げ(CBB)試験)を行った。各試験片には、表面をシェーパー加工し、鋭敏化熱処理(620℃で24時間保持した後に空冷)を施した。本CBB試験は、実験6と同様に、軽水炉環境を模擬した高温高圧水(温度:288℃、圧力:8 MPa、溶存酸素濃度:8 ppm)に試験片を2000時間浸漬して行った。
 高温高圧水から取り出した後、試験片表面に発生した割れの最大深さを測定した。なお、本実験では、深さ40μm以上を割れと定義した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示したように、本発明の実施例である固化成形体1~3は、比較例の固化成形体6~7に比して、割れの最大深さが半分以下であり、優れた耐応力腐食割れ性を有することが確認された。これは、結晶粒微細化による正の作用効果と考えられた。
 [実験8]
 (固化成形体の耐照射性)
 実験3で作製した固化成形体2,3および6からイオン照射試験用の試験片を採取し、イオン照射試験を行った。照射試験条件は、試験片温度:300℃、照射イオン:Fe3+イオン、照射エネルギー:6.4 MeV、照射損傷量:1.0 dpaとした。イオン照射の後、超微小硬度計(アジレント・テクノロジー株式会社製、Nano Indenter G200)を用いて試験片表面の硬さを測定し、イオン照射試験前後の硬さ変化量を算出した。該硬さ変化量が小さいほど耐照射性が高いことを意味する。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示したように、本発明の実施例である固化成形体2,3は、比較例の固化成形体6に比して、硬さ変化量が半分以下であり、優れた耐照射性を有することが確認された。これは、結晶粒微細化による正の作用効果と考えられた。
 上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。
 10…制御棒、11…タイロッド、12…ハンドル、13…コネクタ、14…シース、15…中性子吸収棒。

Claims (10)

  1.  分散強化型オーステナイト系ステンレス鋼材であって、
    前記ステンレス鋼材の化学組成は、16質量%以上26質量%以下のCrと、8質量%以上22質量%以下のNiと、0.005質量%以上0.08質量%以下のCと、0.002質量%以上0.1質量%以下のNと、0.02質量%以上0.4質量%以下のOとを含み、
    0.2質量%以上2.8質量%以下のZr、0.4質量%以上5質量%以下のTa、および0.2質量%以上2.6質量%以下のTiのうちの少なくとも一種を更に含み、
    残部がFeおよび不可避不純物からなり、
    前記Zr成分、前記Ta成分および前記Ti成分は、前記C成分、前記N成分および前記O成分と共に介在物粒子を形成しており、
    前記ステンレス鋼材は、平均結晶粒径が1μm以下で、最大結晶粒径が5μm以下であることを特徴とする分散強化型オーステナイト系ステンレス鋼材。
  2.  請求項1に記載の分散強化型オーステナイト系ステンレス鋼材において、
    前記介在物粒子は、前記ステンレス鋼材内に1×1022 m-3以上の数密度で分散していることを特徴とする分散強化型オーステナイト系ステンレス鋼材。
  3.  請求項1又は請求項2に記載の分散強化型オーステナイト系ステンレス鋼材において、
    前記介在物粒子は、平均粒径が0.05μm以下であることを特徴とする分散強化型オーステナイト系ステンレス鋼材。
  4.  請求項1乃至請求項3のいずれか一項に記載の分散強化型オーステナイト系ステンレス鋼材において、
    前記化学組成は、0.1質量%以上1質量%以下のMnおよび/または0.1質量%以上1質量%以下のSiを更に含むことを特徴とする分散強化型オーステナイト系ステンレス鋼材。
  5.  請求項1乃至請求項4のいずれか一項に記載の分散強化型オーステナイト系ステンレス鋼材の製造方法であって、
    メカニカルアロイングまたはメカニカルミリングにより前記化学組成を有する合金粉末を合成する合金粉末合成工程と、
    前記合金粉末の粒径を0.3 mm以上3 mm以下に整粒して整粒粉末を用意する粉末整粒工程と、
    前記整粒粉末を750℃以上1100℃以下の温度で固化成形して固化成形体を製造する加熱固化成形工程とを有することを特徴とする分散強化型オーステナイト系ステンレス鋼材の製造方法。
  6.  請求項5に記載の分散強化型オーステナイト系ステンレス鋼材の製造方法において、
    前記整粒粉末は、粉末粒子の平均ビッカース硬さが300 Hv以上であることを特徴とする分散強化型オーステナイト系ステンレス鋼材の製造方法。
  7.  請求項5又は請求項6に記載の分散強化型オーステナイト系ステンレス鋼材の製造方法において、
    前記固化成形体に対して室温以上1100℃以下の温度で機械加工を施して所望形状体に成形する加工成形工程を更に有することを特徴とする分散強化型オーステナイト系ステンレス鋼材の製造方法。
  8.  請求項5乃至請求項7のいずれか一項に記載の分散強化型オーステナイト系ステンレス鋼材の製造方法において、
    前記固化成形体または前記所望形状体に対して600℃以上1100℃以下の温度で均質化のための熱処理を施す均質化熱処理工程を更に有することを特徴とする分散強化型オーステナイト系ステンレス鋼材の製造方法。
  9.  請求項1乃至請求項4のいずれか一項に記載の分散強化型オーステナイト系ステンレス鋼材からなる製造物であって、
    前記製造物は、中性子照射環境下で使用される原子力プラント部材であることを特徴とする分散強化型オーステナイト系ステンレス鋼材からなる製造物。
  10.  請求項9に記載の分散強化型オーステナイト系ステンレス鋼材からなる製造物において、
    前記原子力プラント部材が、原子炉内の制御棒であることを特徴とする分散強化型オーステナイト系ステンレス鋼材からなる製造物。
PCT/JP2016/080918 2015-10-30 2016-10-19 分散強化型オーステナイト系ステンレス鋼材、該ステンレス鋼材の製造方法および該ステンレス鋼材からなる製造物 WO2017073422A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680053515.5A CN108026620B (zh) 2015-10-30 2016-10-19 弥散强化型奥氏体系不锈钢钢材、该不锈钢钢材的制造方法和由该不锈钢钢材形成的制造物
US15/762,575 US11053562B2 (en) 2015-10-30 2016-10-19 Dispersion strengthened austenitic stainless steel article, method for manufacturing same and product made of same
JP2017547748A JP6600363B2 (ja) 2015-10-30 2016-10-19 分散強化型オーステナイト系ステンレス鋼材の製造方法
EP16859652.6A EP3369833B1 (en) 2015-10-30 2016-10-19 Dispersion strengthened austenitic stainless steel, method for manufacturing stainless steel and product made from stainless steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-213972 2015-10-30
JP2015213972 2015-10-30

Publications (1)

Publication Number Publication Date
WO2017073422A1 true WO2017073422A1 (ja) 2017-05-04

Family

ID=58630183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080918 WO2017073422A1 (ja) 2015-10-30 2016-10-19 分散強化型オーステナイト系ステンレス鋼材、該ステンレス鋼材の製造方法および該ステンレス鋼材からなる製造物

Country Status (5)

Country Link
US (1) US11053562B2 (ja)
EP (1) EP3369833B1 (ja)
JP (1) JP6600363B2 (ja)
CN (1) CN108026620B (ja)
WO (1) WO2017073422A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198628A1 (ja) * 2017-04-27 2018-11-01 株式会社ダイヤメット 高温耐摩耗性、耐塩害性に優れる耐熱焼結材及びその製造方法
JP2019210523A (ja) * 2018-06-06 2019-12-12 株式会社日立製作所 オーステナイト系ステンレス鋼及び原子炉内構造物
JP2021075790A (ja) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 最適化された鋼材料の処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110699614B (zh) * 2019-11-04 2021-08-06 南华大学 B-c-n-o过饱和固溶奥氏体不锈钢粉末及制备、熔覆方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256400A (ja) * 2001-02-27 2002-09-11 Hitachi Ltd 高耐食性高強度オーステナイト系ステンレス鋼とその製法
JP2014080664A (ja) * 2012-10-18 2014-05-08 Hitachi-Ge Nuclear Energy Ltd 高耐食性オーステナイト系ステンレス鋼
WO2016006280A1 (ja) * 2014-07-07 2016-01-14 株式会社日立製作所 オーステナイト系ステンレス鋼とその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772529B2 (ja) * 1988-06-20 1995-08-02 株式会社日立製作所 水車及びその製造方法
JPH0559494A (ja) 1991-09-03 1993-03-09 Hitachi Ltd 耐照射誘起偏析に優れたオーステナイトステンレス鋼
JPH08337853A (ja) * 1995-06-09 1996-12-24 Hitachi Ltd 高耐食性高強度オーステナイト焼結鋼とその製造方法及びその用途
JP2002285289A (ja) 2001-03-26 2002-10-03 Hitachi Ltd 高強度フェライト系ステンレス鋼とその製法
AU2003266721A1 (en) * 2002-09-30 2004-04-19 Nano Technology Institute, Inc Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness , and method for production thereof
US6890393B2 (en) * 2003-02-07 2005-05-10 Advanced Steel Technology, Llc Fine-grained martensitic stainless steel and method thereof
US20090277539A1 (en) * 2005-11-21 2009-11-12 Yuuji Kimura Steel for Warm Working, Warm Working Method Using the Steel, and Steel Material and Steel Component Obtainable Therefrom
ES2817436T3 (es) * 2007-08-02 2021-04-07 Nippon Steel & Sumikin Sst Acero inoxidable ferrítico-austenítico de excelente resistencia a la corrosión y trabajabilidad

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256400A (ja) * 2001-02-27 2002-09-11 Hitachi Ltd 高耐食性高強度オーステナイト系ステンレス鋼とその製法
JP2014080664A (ja) * 2012-10-18 2014-05-08 Hitachi-Ge Nuclear Energy Ltd 高耐食性オーステナイト系ステンレス鋼
WO2016006280A1 (ja) * 2014-07-07 2016-01-14 株式会社日立製作所 オーステナイト系ステンレス鋼とその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369833A4 *
TAKAHIRO ISHIZAKI ET AL.: "Chojumyo Cho Uranium Genso o Nensho Kano na Keisuiro RBWR no Kaihatsu = [Development of light water reactors RBWR capable of burning long lifetime transuranic elements]", 2015 FALL MEETING OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 21 August 2015 (2015-08-21), pages 7, XP009510905 *
TAKAHIRO ISHIZAKI ET AL.: "Chojumyo Cho Uranium Genso o Nensho Kano na Keisuiro RBWR Ronai Kiki no Kaihatsu (4) Seigyobo-yo Koshosha Kankyoka Taishoku Zairyo no Kaihatsu", 2015 ANNUAL MEETING OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 5 March 2015 (2015-03-05), pages 486 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198628A1 (ja) * 2017-04-27 2018-11-01 株式会社ダイヤメット 高温耐摩耗性、耐塩害性に優れる耐熱焼結材及びその製造方法
JP2018184656A (ja) * 2017-04-27 2018-11-22 株式会社ダイヤメット 高温耐摩耗性、耐塩害性に優れる耐熱焼結材及びその製造方法
US11578393B2 (en) 2017-04-27 2023-02-14 Diamet Corporation Heat-resistant sintered material having excellent high-temperature wear resistance and salt damage resistance and method for producing same
JP2019210523A (ja) * 2018-06-06 2019-12-12 株式会社日立製作所 オーステナイト系ステンレス鋼及び原子炉内構造物
WO2019235014A1 (ja) * 2018-06-06 2019-12-12 株式会社日立製作所 オーステナイト系ステンレス鋼及び原子炉内構造物
JP7141251B2 (ja) 2018-06-06 2022-09-22 株式会社日立製作所 オーステナイト系ステンレス鋼及び原子炉内構造物
US11634805B2 (en) 2018-06-06 2023-04-25 Hitachi, Ltd. Austenitic stainless steel and reactor internal structure
JP2021075790A (ja) * 2019-11-07 2021-05-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 最適化された鋼材料の処理方法
JP7325394B2 (ja) 2019-11-07 2023-08-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 最適化された鋼材料の処理方法

Also Published As

Publication number Publication date
JP6600363B2 (ja) 2019-10-30
EP3369833A4 (en) 2019-05-01
CN108026620B (zh) 2021-02-26
EP3369833A1 (en) 2018-09-05
CN108026620A (zh) 2018-05-11
JPWO2017073422A1 (ja) 2018-07-26
US11053562B2 (en) 2021-07-06
EP3369833B1 (en) 2020-05-06
US20180274053A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
US12000022B2 (en) High entropy alloy article, product formed of said high entropy alloy article, and fluid machine having said product
KR101842825B1 (ko) 오스테나이트계 스테인리스 강 및 그 제조 방법
JP6600363B2 (ja) 分散強化型オーステナイト系ステンレス鋼材の製造方法
JP5217576B2 (ja) 耐熱部品用オーステナイト系ステンレス鋼及びこれを用いた耐熱部品
KR20190046768A (ko) 플라스틱 성형 공구에 적합한 강재
CN108779538B (zh) 高强度Fe-Cr-Ni-Al多相不锈钢及其制造方法
KR102061839B1 (ko) 중성자 흡수소재 및 그의 제조방법
JP6374520B2 (ja) 二相合金、該二相合金を用いた製造物、および該製造物の製造方法
JP2020050940A (ja) オーステナイト系微細粒ステンレス鋼の製造方法
WO2016006280A1 (ja) オーステナイト系ステンレス鋼とその製造方法
EP3208354B1 (en) Ni-based superalloy for hot forging
JP2010180459A (ja) 2相ステンレス鋼およびその製造方法
EP3208355B1 (en) Ni-based superalloy for hot forging
Li et al. Effect of homogenization on precipitation behavior and strengthening of 17-4PH stainless steel fabricated using laser powder bed fusion
US11634805B2 (en) Austenitic stainless steel and reactor internal structure
JP6575392B2 (ja) 高Crフェライト系耐熱鋼
WO2004015154A1 (ja) 高温強度に優れたマルテンサイト系酸化物分散強化型鋼およびその製造方法
CA2930153A1 (en) Maraging steel
JPH07823B2 (ja) 焼結分散強化型耐熱鋼成形部材
Riipinen Heat treatment of AM alloys
JP7131332B2 (ja) オーステナイト系耐熱合金及びオーステナイト系耐熱合金部品
JP2020015925A (ja) Cr基二相合金製造物およびその製造方法
US20230332278A1 (en) Alloy Material, Alloy Product Formed of Alloy Material, and Mechanical Device Including Alloy Product
JP2023120710A (ja) Fe-Ni-Cr系合金製造物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547748

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762575

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE