WO2017073196A1 - 光測定装置 - Google Patents

光測定装置 Download PDF

Info

Publication number
WO2017073196A1
WO2017073196A1 PCT/JP2016/077226 JP2016077226W WO2017073196A1 WO 2017073196 A1 WO2017073196 A1 WO 2017073196A1 JP 2016077226 W JP2016077226 W JP 2016077226W WO 2017073196 A1 WO2017073196 A1 WO 2017073196A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample tube
measurement
light
tube
specimen
Prior art date
Application number
PCT/JP2016/077226
Other languages
English (en)
French (fr)
Inventor
亨介 山根
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2017073196A1 publication Critical patent/WO2017073196A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Definitions

  • the present invention relates to a light measuring device such as an absorbance measuring device or a fluorescence measuring device.
  • Patent Document 1 discloses a solid-state light source that irradiates a measurement sample in a sample case with excitation light, a fluorescence measurement device that detects fluorescence, and a fluorescence collection optics that guides fluorescence emitted from the measurement sample to the fluorescence measurement device.
  • a fluorescence measuring device is described in which the system is embedded in a resin transparent to excitation light and light containing fluorescence.
  • a PCR tube having a tapered tip is used as a sample case, and the PCR tube is set by being inserted into a sample case insertion portion in a housing made of the resin.
  • Sample tubes with various sizes and shapes are known for storing liquid measurement samples.
  • the target sample injection amount is, for example, 0.2 ml (for PCR), 1.5 ml, 2.0 ml, or the like.
  • the installation state of the sample tube with respect to the measuring device main body is different for each sample tube used.
  • the sample tubes have tolerances that inevitably occur in manufacturing, even when the same type of sample tubes are used, the installation state with respect to the measuring instrument main body can be different.
  • the measurement optical path length which is the distance that the light from the light source passes through the measurement sample, will change, even if the same optical measurement device is used for the analysis sample of the same concentration, There may be a difference in measurement results.
  • the present invention has been made based on the above circumstances, and the measurement optical path length can be made substantially constant regardless of the shape and size of the sample tube used.
  • An object of the present invention is to provide an optical measurement device capable of obtaining measurement accuracy.
  • the optical measuring device of the present invention is a sample tube receiving hole for receiving a sample tube having a tapered portion whose outer diameter is gradually reduced toward the bottom, and a measurement for the sample tube disposed in the sample tube receiving hole. And a light guide path space in which an opening for incident light for light and an opening for emitting light for detection from the sample tube open at positions facing each other on the inner peripheral surface of the sample tube receiving hole. And The insertion position of the sample tube is positioned with respect to the structure by contacting the outer peripheral surface of the tapered portion of the sample tube at the level where the entrance opening is formed on the inner peripheral surface of the sample tube receiving hole. It has the projection part which carries out.
  • the protrusion is positioned at a level position of the optical axis of the measurement light passing through the light guide space.
  • the optical measurement device of the present invention since the insertion position of the sample tube with respect to the sample tube receiving hole is positioned with respect to the structure by the projection, measurement is performed regardless of the shape and size of the sample tube used
  • the optical path length can be made substantially constant, and a highly accurate measurement result can be obtained.
  • FIG. 4 is a sectional view taken along line AA in FIG. 3.
  • the light measurement device of the present invention is configured as a small portable device that is easy to carry, and is used, for example, to measure the concentration of a measurement target substance in a liquid measurement sample accommodated in a sample tube. Is.
  • the light measurement device of the present invention will be described by taking as an example an apparatus configured as an absorbance measuring device.
  • the substance to be measured include Escherichia coli, protein, DNA obtained by amplification by polymerase chain reaction (PCR), dye, and the like.
  • the light measurement device of the present invention includes a sample tube receiving hole for receiving a sample tube, an opening for measurement light incident on the sample tube disposed in the sample tube receiving hole, and a detection light from the sample tube. And a light guide path space that opens to positions facing each other on the inner peripheral surface of the sample tube receiving hole.
  • the sample tube 45 is, for example, a microtube or the like, and has a tapered portion 46 whose outer diameter decreases toward the bottom (see FIG. 1).
  • FIG. 1 is a cross-sectional view showing an outline of the configuration of an example of a structure according to the light measurement apparatus of the present invention.
  • FIG. 2 is an enlarged view showing a PQRS surrounding portion in FIG.
  • the structural body 10 is configured such that the light source unit 20 and the light receiving unit 25 are held by the light guide path forming member 11 and the sample bracket 30 is provided on the light guide path forming member 11.
  • the light guide path forming member 11 has, for example, a block shape, a through hole 13 extending horizontally with respect to the bottom surface forming the columnar light guide path space 12, and a truncated cone shape having a small diameter toward the bottom opening on the top surface. And a central through-hole 16 that forms a space portion.
  • the central axis of the central through hole 16 is orthogonal to the central axis of the through hole 13.
  • the light guide path forming member 11 is preferably made of, for example, a light-absorbing material, and in particular, made of an elastic material having an absorptivity for light other than detection light emitted from the sample tube. Preferably it is. Thereby, reflection and scattering of light other than the detection light can be suppressed on the wall surface of the light guide path space 12, and only the detection light can be incident on the light receiving unit 25.
  • a silicone resin such as black polydimethylsiloxane (PDMS) in which carbon black, carbon nanotubes, and the like are dispersed can be preferably used as the elastic material having light absorption.
  • the light source unit 20 is disposed at one end of the through hole 13 in the light guide path forming member 11, and the light receiving unit 25 is disposed at the other end of the through hole 13.
  • the light source unit 20 includes a substrate 21 and a light source 22 provided on the substrate 21.
  • the light source 22 is provided in the light guide path space 12 of the light guide path forming member 11 with its optical axis positioned coaxially with the central axis of the light guide path space 12.
  • a white LED that emits white light can be used.
  • the light receiving unit 25 includes a sensor substrate 26 and a light receiving sensor 27 provided on the sensor substrate 26.
  • the light receiving sensor 27 is provided in a state where the light receiving surface faces the light source 22 in the light guide path space 12 of the light guide path forming member 11.
  • a photodiode such as an RGB color sensor can be used.
  • the sample bracket 30 includes a horizontally extending plate-like portion 31 and a truncated cone-like cylindrical portion 32 extending perpendicularly to the plate-like portion 31 on the bottom surface side of the plate-like portion 31.
  • the sample bracket 30 is provided with a cylindrical portion 32 fitted into the central through-hole 16 of the light guide path forming member 11, whereby the sample tube receiving hole 18 is formed by the internal space of the cylindrical portion 32. Is formed.
  • the cylindrical portion 32 of the sample bracket 30 is formed with communication holes 38 a and 38 b that allow the internal space of the cylindrical portion 32 and the light guide path space 12 of the light guide path forming member 11 to communicate with each other.
  • the communication holes 38a and 38b are positioned coaxially with the central axis of the light guide path space 12 of the light guide path forming member 11, and the measurement light entrance opening 14a and the detection light exit opening 14b are provided in the sample tube. Openings are formed at positions facing each other on the inner peripheral surface of the receiving hole 18. Thereby, an optical path of measurement light and detection light from the light source 22 to the light receiving sensor 27 through the sample tube receiving hole 18 is formed with the optical axis O as the central axis of the light guide path space 12.
  • a cylindrical support portion 34 is formed on the upper surface of the sample bracket 30 so as to surround the periphery of the sample tube insertion opening of the cylindrical portion 32 so as to extend in the vertical direction.
  • An elastic body 40 such as a sponge is provided on the inner peripheral surface of the support portion 34.
  • the support portion 34 functions as a position restricting member in the radial direction of the sample tube 45 disposed in the sample tube receiving hole portion 18. Therefore, the sample tube 45 has a posture in which the central axis extends in the vertical direction, It is arranged in the tube receiving hole 18. Since the elastic body 40 is provided on the inner peripheral surface of the support portion 34, the elastic body 40 is elastically deformed according to the outer diameter of the sample tube 45, so that the dimensional difference of the used sample tube 45 is reduced. Can be absorbed.
  • the level of the incident opening 14a refers to a level within the range of the upper edge level position L H and the lower edge level position L L of the incident opening 14a.
  • the protrusion 35 may be positioned at a level within the range, but is positioned at the level of the central axis of the light guide path space 12, that is, the optical axis O of the measurement light passing through the light guide path space 12. It is preferable.
  • the measurement optical path length L O is a distance through which the measurement light passes through the measurement sample in the sample tube 45, and in this example, is indicated by the size of the inner diameter of the sample tube 45 on the optical axis O of the measurement light. .
  • the protrusion 35 is an outer peripheral edge of the cylindrical portion 32 that passes through the opening edge position of the sample tube receiving hole 18 in a cross section including the central axis C of the sample tube receiving hole 18 and the central axis of the light guide path space 12 As long as the shape protrudes in the direction of the central axis of the sample tube receiving hole 18 with respect to an imaginary straight line N parallel thereto.
  • the protrusion 35 in this example is formed by an annular protrusion extending over the entire circumference in the circumferential direction of the sample tube receiving hole 18, and the top is located at the level position of the optical axis O of the measurement light.
  • the annular protrusion is a first inclined surface constituting the inner peripheral surface of the sample tube receiving hole 18 in a cross section including the central axis C of the sample tube receiving hole 18 and the optical axis of the light guide. 33a and a second inclined surface 33b.
  • the first inclined surface 33 a and the second inclined surface 33 b are different in inclination angle with respect to the central axis of the sample tube receiving hole 18, and the ridge line portion by the inclined surfaces 33 a and 33 b is a tapered portion of the sample tube 45. 46 abuts the outer peripheral surface of 46.
  • the protrusion 35 may have a shape having a convex curved surface.
  • the inner diameter of the through hole 13 (light guide path space 12) in the light guide path forming member 11 is ⁇ 3.0 mm.
  • the inner diameters of the communication holes 38a and 38b in the sample bracket 30 are ⁇ 1.7 mm.
  • the diameter of the sample tube insertion opening of the sample tube receiving hole 18 is ⁇ 7 mm, and the inner diameter at the level of the incident opening 14a is ⁇ 3 to ⁇ 4 mm.
  • the distance between the light source 22 and the light receiving sensor 27 is 35 mm, and the measurement optical path length L O is 2.5 to 4.0 mm.
  • the optical measurement in the light measuring device (absorbance measuring device) provided with the structure 10 will be described.
  • the measurement light emitted from the light source 22 is applied to the liquid measurement sample in the sample tube 45 received in the sample tube receiving hole 18, and the measurement sample in the sample tube 45 is irradiated with the measurement light.
  • the light for detection emitted through and transmitted is detected by the light receiving sensor 27.
  • the measurement light is absorbed according to the concentration of the measurement target substance contained in the measurement sample, and the light amount is reduced.
  • the transmittance attenuates exponentially with respect to the measurement optical path length in accordance with the concentration of the measurement target substance.
  • the concentration of the measurement target substance is determined by, for example, preparing a calibration curve in advance using a standard solution of the measurement target substance having a known concentration as a reference sample, and calculating the amount of detection light detected by the light receiving sensor 27. It can be obtained by comparing with the calibration curve.
  • the protrusion 35 formed on the inner peripheral surface of the sample tube receiving hole 18 in the structure 10 is used to the sample tube receiving hole 18.
  • the maximum outer diameter of the sample tube 45 that is allowed to be inserted is regulated. That is, the projection 35 is brought into contact with a position having a constant outer diameter dimension in the tapered portion 46 of the sample tube 45. Thereby, the insertion position of the sample tube 45 is positioned with respect to the structure 10.
  • the measurement optical path length L O is set to a substantially constant size regardless of the shape and size of the sample tube 45 used. be able to. Therefore, according to the above-described optical measurement device, there is almost no measurement error due to the fluctuation of the optical path length L O for each sample tube 45, and a highly accurate measurement result can be obtained.
  • the optical measuring device of the present invention is configured as a small portable device that is easy to carry, and can obtain highly accurate measurement results, and does not require optical adjustment or the like. Therefore, for example, it is suitable for a point-of-care inspection.
  • the protrusion does not need to be an annular protrusion formed so as to extend over the entire circumference in the circumferential direction on the inner peripheral surface of the sample tube receiving hole, and may be constituted by a columnar protrusion, for example.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of a main part in another example of a structure according to the light measurement apparatus of the present invention.
  • 4 is a cross-sectional view taken along line AA in FIG.
  • a plurality of columnar protrusions 36 abut on the outer peripheral surface of the tapered portion 46 of the sample tube 45 at the upper edge level position (the position of the AA line) of the entrance opening 14a, thereby forming the protrusion 35.
  • the number and position of the columnar protrusions 36 are not particularly limited as long as the sample tube 45 can be supported in an appropriate posture. 3 and 4 are drawn with emphasis on the columnar projections 36 for easy understanding, but in actuality, the hole for receiving the sample tube on the optical axis O of the measuring light is shown.
  • the distance between the inner peripheral surface of the portion 18 and the outer peripheral surface of the tapered portion 46 of the sample tube 45 is, for example, about 0.3 to 0.5 mm. Even if the structure having such a structure is provided, the same effect as that of the optical measurement device including the structure according to the above-described embodiment can be obtained.
  • the sample bracket is not essential, and the test tube may be directly inserted into and removed from the light guide path forming member. In this case, what is necessary is just to form a projection part in the predetermined position in the internal peripheral surface of the center through-hole in a light guide path formation member.
  • the structure is preferably configured to include a sample bracket.
  • the measurement sample in the sample tube is heated chemically or physically, or the measurement sample in the sample tube is heated for optical measurement under a certain temperature condition.
  • a heating mechanism may be provided.
  • a cooling fan or a Peltier element for rapidly cooling the heated sample tube with the circulating cooling air is provided.
  • the light measurement device of the present invention is configured as an absorbance measurement device.
  • the light measurement device may be configured as a fluorescence measurement device that detects fluorescence emitted from a measurement sample as detection light.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、使用される試料チューブの形状やサイズに拘わらず、測定光路長が実質的に一定の大きさとされ、高い測定精度が得られる光測定装置を提供することを目的とする。 本発明の光測定装置は、底部に向かうに従って外径が次第に小さくなるテーパー部を有する試料チューブを受容する試料チューブ受容用穴部と、試料チューブ受容用穴部に配置された試料チューブに対する測定用光の入射用開口および当該試料チューブからの検出用光の出射用開口が試料チューブ受容用穴部の内周面における互いに対向する位置に開口する導光路空間とを有する構造体を備えており、試料チューブ受容用穴部の内周面に、入射用開口が形成されたレベルにおいて試料チューブのテーパー部の外周面に当接して試料チューブの挿入位置を構造体に対して位置決めする突起部を有する構成とされている。

Description

光測定装置
 本発明は、例えば吸光度測定器や蛍光測定器などの光測定装置に関する。
 近年、ライフサイエンス分野では、吸光度測定器や蛍光測定器などの光測定装置に対する要請として、ポイントオブケア検査に用いることなどを目的に、小型で持ち運びが容易であることが求められている。
 例えば特許文献1には、励起光を試料ケース内の測定試料に照射する固体光源と、蛍光を検出する蛍光測定器と、測定試料から放出される蛍光を蛍光測定器に導光する蛍光収集光学系とが、励起光および蛍光を含む光に対して透明な樹脂内に埋設された構造を有する蛍光測定器が記載されている。この蛍光測定器においては、試料ケースとして先端がテーパー状とされたPCRチューブが用いられ、PCRチューブは、前記樹脂によって構成された筐体における試料ケース挿入部に挿入されてセッティングされる。
特開2014-032064号公報
 液体状の測定試料が入れられる試料チューブは、様々なサイズや形状のものが知られている。例えば目標試料注入量が例えば0.2ml(PCR用)、1.5ml、2.0mlなどのものがある。このため、特許文献1に記載の蛍光測定器においては、試料チューブの測定器本体に対する設置状態は、使用される試料チューブ毎に異なったものとなる。また、試料チューブには、製造上不可避的に発生する公差があるため、同型式の試料チューブを使用した場合であっても、測定器本体に対する設置状態は異なったものとなりえる。
 試料チューブの設置状態が変わると、光源からの光が測定試料を透過する距離である測定光路長が変わることとなり、同一濃度の分析試料について同一の光測定器を使用した場合であっても、測定結果に差が生じるおそれがある。
 本発明は、以上のような事情に基づいてなされたものであって、使用される試料チューブの形状やサイズに拘わらず、測定光路長を実質的に一定の大きさとすることができて、高い測定精度を得ることのできる光測定装置を提供することを目的とする。
 本発明の光測定装置は、底部に向かうに従って外径が次第に小さくなるテーパー部を有する試料チューブを受容する試料チューブ受容用穴部と、当該試料チューブ受容用穴部に配置された試料チューブに対する測定用光の入射用開口および当該試料チューブからの検出用光の出射用開口が当該試料チューブ受容用穴部の内周面における互いに対向する位置に開口する導光路空間とを有する構造体を備えており、
 前記試料チューブ受容用穴部の内周面に、前記入射用開口が形成されたレベルにおいて前記試料チューブのテーパー部の外周面に当接して当該試料チューブの挿入位置を前記構造体に対して位置決めする突起部を有することを特徴とする。
 本発明の光測定装置においては、前記突起部が、前記導光路空間内を通過する測定用光の光軸のレベル位置に位置されていることが好ましい。
 本発明の光測定装置によれば、試料チューブの試料チューブ受容用穴部に対する挿入位置が突起部によって構造体に対して位置決めされるので、使用される試料チューブの形状やサイズに拘わらず、測定光路長を実質的に一定の大きさとすることができ、高い精度の測定結果を得ることができる。
本発明の光測定装置に係る構造体の一例における構成の概略を示す断面図である。 図1におけるPQRS包囲部分を示す拡大図である。 本発明の光測定装置に係る構造体の他の例における要部の構成を概略的に示す断面図である。 図3におけるA-A線断面図である。
 本発明の光測定装置は、持ち運びが容易な小型なものとして構成されており、例えば、試料チューブ内に収容された液体状の測定試料における測定対象物質の濃度などを測定するためなどに用いられるものである。以下においては、本発明の光測定装置について、吸光度測定器として構成されたものを例に挙げて説明する。測定対象物質としては、例えば大腸菌、タンパク質、ポリメラーゼ連鎖反応(PCR)によって増幅されて得られたDNA、色素などを例示することができる。
 本発明の光測定装置は、試料チューブを受容する試料チューブ受容用穴部と、試料チューブ受容用穴部に配置された試料チューブに対する測定用光の入射用開口および当該試料チューブからの検出用光の出射用開口が試料チューブ受容用穴部の内周面における互いに対向する位置に開口する導光路空間とを有する構造体を備えている。
 試料チューブ45は、例えばマイクロチューブなどであって、底部に向かうに従って外径が小さくなるテーパー部46を有するものである(図1参照。)。
 図1は、本発明の光測定装置に係る構造体の一例における構成の概略を示す断面図である。図2は、図1におけるPQRS包囲部分を示す拡大図である。
 この構造体10は、光源部20および受光部25が導光路形成部材11によって保持されると共に試料ブラケット30が導光路形成部材11に設けられて構成されている。
 導光路形成部材11は、例えばブロック状であって、円柱状の導光路空間12を形成する底面に対して水平に延びる貫通孔13と、上面に開口する底部に向かって小径となる円錐台状の空間部を形成する中央貫通孔16とを有する。中央貫通孔16の中心軸は、貫通孔13の中心軸と直交している。
 導光路形成部材11は、例えば光吸収性を有する材料により構成されていることが好ましく、特に、試料チューブから出射される検出用光以外の光に対して吸収性を有する弾性材料により構成されていることが好ましい。これにより、導光路空間12の壁面において検出用光以外の光の反射、散乱を抑制することができて、受光部25に対して検出用光のみを入射させることができる。
 光吸収性を有する弾性材料としては、具体的には、カーボンブラックやカーボンナノチューブなどが分散された、黒色のポリジメチルシロキサン(PDMS)などのシリコーン樹脂を好ましく用いることができる。
 導光路形成部材11における貫通孔13の一端には、光源部20が配置されており、貫通孔13の他端には、受光部25が配置されている。
 光源部20は、基板21と、基板21に設けられた光源22とにより構成されている。光源22は、導光路形成部材11における導光路空間12内において、その光軸が導光路空間12の中心軸と同軸上に位置された状態で、設けられている。光源22としては、例えば白色光を放射する白色LEDなどを用いることができる。
 受光部25は、センサ基板26と、センサ基板26に設けられた受光センサ27とにより構成されている。受光センサ27は、導光路形成部材11における導光路空間12内において受光面が光源22と対向する状態で設けられている。受光センサ27としては、例えばRGBカラーセンサなどのフォトダイオードを用いることができる。
 試料ブラケット30は、水平に延びる板状部31と、この板状部31の底面側において板状部31に対して垂直に延びる円錐台状の筒状部32とを有する。この試料ブラケット30は、筒状部32が導光路形成部材11の中央貫通孔16に嵌合されて設けられており、これにより、筒状部32の内部空間によって、試料チューブ受容用穴部18が形成されている。
 試料ブラケット30の筒状部32には、筒状部32の内部空間と導光路形成部材11の導光路空間12を連通させる連通孔38a,38bが形成されている。連通孔38a,38bは、導光路形成部材11の導光路空間12の中心軸と同軸上に位置されており、測定用光の入射用開口14aおよび検出用光の出射用開口14bが、試料チューブ受容用穴部18の内周面における互いに対向する位置に開口している。これにより、導光路空間12の中心軸を光軸Oとする、光源22から試料チューブ受容用穴部18を介して受光センサ27に至る測定用光および検出用光の光路が形成されている。
 試料ブラケット30の上面には、筒状部32の試料チューブ挿入用開口の周囲を囲むよう円筒状の支持部34が上下方向に延びるよう形成されている。支持部34の内周面には、例えばスポンジなどの弾性体40が設けられている。この支持部34は、試料チューブ受容用穴部18に配置された試料チューブ45の径方向の位置規制部材として機能し、従って、試料チューブ45は、その中心軸が上下方向に延びる姿勢で、試料チューブ受容用穴部18に配置される。支持部34の内周面に弾性体40が設けられていることにより、弾性体40が試料チューブ45の外径寸法に応じて弾性的に変形することによって、用いられる試料チューブ45の寸法差を吸収することができる。
 而して、本発明に係る構造体においては、試料チューブ受容用穴部18の内周面に、測定用光の入射用開口14aが形成されたレベルにおいて試料チューブ45のテーパー部46の外周面に当接して試料チューブ45の挿入位置を構造体10に対して位置決めする突起部35を有する。入射用開口14aのレベルとは、入射用開口14aの上縁レベル位置Lと下縁レベル位置Lの範囲内のレベルをいう。突起部35は、当該範囲内のレベルに位置されていればよいが、導光路空間12の中心軸すなわち導光路空間12内を通過する測定用光の光軸Oのレベル位置に位置されていることが好ましい。これにより、使用される試料チューブ45の形状およびサイズの差による測定光路長Lの差を可及的に小さくすることができ、高い精度で測定を行うことができる。測定光路長Lは、測定用光が試料チューブ45内の測定試料を透過する距離であって、この例では、測定用光の光軸O上における試料チューブ45の内径の大きさで示される。
 突起部35は、試料チューブ受容用穴部18の中心軸Cおよび導光路空間12の中心軸を含む断面において、試料チューブ受容用穴部18の開口縁位置を通る、筒状部32の外周縁に平行な仮想直線Nに対して、試料チューブ受容用穴部18の中心軸方向に突出する形状とされていればよい。
 この例における突起部35は、試料チューブ受容用穴部18の周方向の全周にわたって延びる環状突起により構成されており、頂部が測定用光の光軸Oのレベル位置に位置されている。具体的には、環状突起は、試料チューブ受容用穴部18の中心軸Cおよび導光路の光軸を含む断面において、試料チューブ受容用穴部18の内周面を構成する第一の傾斜面33aおよび第二の傾斜面33bによって形成されている。第一の傾斜面33aおよび第二の傾斜面33bは、試料チューブ受容用穴部18の中心軸に対する傾斜角度が互いに異なっており、当該傾斜面33a,33bによる稜線部分が試料チューブ45のテーパー部46の外周面に当接する。突起部35は凸曲面を有する形状とされていてもよい。
 構造体10の一構成例を示すと、導光路形成部材11における貫通孔13(導光路空間12)の内径がφ3.0mmである。試料ブラケット30における連通孔38a,38bの内径はφ1.7mmである。試料チューブ受容用穴部18の試料チューブ挿入用開口の開口径がφ7mm、入射用開口14aのレベルにおける内径がφ3~φ4mmである。光源22と受光センサ27との距離は35mm、測定光路長Lは2.5~4.0mmである。
 以下、上記の構造体10を備えた光測定装置(吸光度測定器)における光学測定について説明する。
 構造体10においては、光源22から出射された測定用光が、試料チューブ受容用穴部18に受容された試料チューブ45内の液体状の測定試料に照射され、試料チューブ45内の測定試料を透過して出射された検出用光が受光センサ27によって検出される。このとき、測定用光は、測定試料に含まれる測定対象物質の濃度に応じて吸収されて光量が低下することとなる。具体的には、測定用光が測定試料を透過する際、その透過率が測定対象物質の濃度に応じて測定光路長に対して指数関数的に減衰する。従って、試料チューブ45内の測定試料を透過して出射される検出用光の光量を検出することにより、測定用光の光量の低下の程度すなわち吸光度に応じた測定対象物質の濃度を測定することができる。測定対象物質の濃度は、例えば、予め既知の濃度の測定対象物質の標準溶液を基準試料として測定を行うことにより検量線を作成しておき、受光センサ27によって検出された検出用光の光量を当該検量線に対照することにより得ることができる。
 而して、上記の構造体10を備えた光測定装置においては、構造体10における試料チューブ受容用穴部18の内周面に形成された突起部35によって、試料チューブ受容用穴部18に対する挿入が許容される試料チューブ45の最大外径の大きさが規制される。すなわち、突起部35は、試料チューブ45のテーパー部46における一定の外径寸法を有する位置に当接されることとなる。これにより、試料チューブ45の挿入位置が構造体10に対して位置決めされる。その結果、突起部35は、入射用開口14aのレベルに位置されていることから、使用される試料チューブ45の形状やサイズに拘わらず、測定光路長Lを実質的に一定の大きさとすることができる。従って、上記の光測定装置によれば、試料チューブ45毎に光路長Lが変動することによる測定誤差が生ずることが殆どなく、高い精度の測定結果を得ることができる。
 このように、本発明の光測定装置は、持ち運びが容易な小型のものとして構成されたものでありながら、高い精度の測定結果を得ることができ、また、光学調整等も行う必要がないものであるため、例えばポイントオブケア検査に好適なものとなる。
 以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
 例えば、突起部は、試料チューブ受容用穴部の内周面における周方向の全周にわたって延びるよう形成された環状突起である必要はなく、例えば柱状突起により構成されていてもよい。
 図3は、本発明の光測定装置に係る構造体の他の例における要部の構成を概略的に示す断面図である。図4は、図3におけるA-A線断面図である。この構造体においては、各々入射用開口14aの上縁レベル位置(A-A線の位置)において試料チューブ45のテーパー部46の外周面に当接する複数の柱状突起36により突起部35が構成されている。柱状突起36の数および位置は、特に限定されず、試料チューブ45を適正な姿勢で支持することができればよい。なお、図3および図4は、理解を容易にするために、柱状突起36を強調して描かれているが、実際には、測定用光の光軸O上での、試料チューブ受容用穴部18の内周面と試料チューブ45のテーパー部46の外周面との間の距離は、例えば0.3~0.5mm程度である。
 このような構成の構造体を備えたものであっても、上記実施例に係る構造体を備えた光測定装置と同様の効果を得ることができる。
 また、構造体において、試料ブラケットは必須のものではなく、導光路形成部材に対して、試科チューブが直接挿抜される構成とされていてもよい。この場合には、導光路形成部材における中央貫通孔の内周面における所定の位置に突起部を形成すればよい。しかしながら、導光路形成部材が弾性材料によって形成されている場合は、例えばポリプロピレン製の試料チューブとの間の摩擦が大きくなるために挿抜しにくいことがある。従って、本発明の光測定装置においては、構造体は試料ブラケットを備えた構成とされることが好ましい。
 さらにまた、本発明の光測定装置においては、試料チューブ内の測定試料を化学的または物理的に加熱処理する、あるいは、試料チューブ内の測定試料を一定の温度条件で光学測定するために加熱する加熱機構が設けられていてもよい。このような構成のものにおいては、さらに、加熱された試料チューブを循環冷却風によって急速に冷却する冷却用ファンやペルチェ素子が設けられていることが好ましい。
 以上においては、本発明の光測定装置が吸光度測定器として構成された実施例について説明したが、測定試料から発せられる蛍光を検出用光として検出する蛍光測定器として構成されていてもよい。
 10  構造体
 11  導光路形成部材
 12  導光路空間
 13  貫通孔
 14a 入射用開口
 14b 出射用開口
 16  中央貫通孔
 18  試料チューブ受容用穴部
 20  光源部
 21  基板
 22  光源
 25  受光部
 26  センサ基板
 27  受光センサ
 30  試料ブラケット
 31  板状部
 32  筒状部
 33a 第一の傾斜面
 33b 第二の傾斜面
 34  支持部
 35  突起部
 36  柱状突起
 38a 連通孔
 38b 連通孔
 40  弾性体
 45  試料チューブ
 46  テーパー部

 C   試料チューブ受容用穴部の中心軸
 LH    入射用開口の上縁レベル位置
 LL    入射用開口の下縁レベル位置
 LO    測定光路長
 N   仮想直線
 O   測定用光の光軸
                                                                                

Claims (2)

  1.  底部に向かうに従って外径が次第に小さくなるテーパー部を有する試料チューブを受容する試料チューブ受容用穴部と、当該試料チューブ受容用穴部に配置された試料チューブに対する測定用光の入射用開口および当該試料チューブからの検出用光の出射用開口が当該試料チューブ受容用穴部の内周面における互いに対向する位置に開口する導光路空間とを有する構造体を備えており、
     前記試料チューブ受容用穴部の内周面には、前記入射用開口が形成されたレベルにおいて前記試料チューブのテーパー部の外周面に当接して当該試料チューブの挿入位置を前記構造体に対して位置決めする突起部を有することを特徴とする光測定装置。
  2.  前記突起部が、前記導光路空間内を通過する測定用光の光軸のレベル位置に位置されていることを特徴とする請求項1に記載の光測定装置。
                                                                                    
PCT/JP2016/077226 2015-10-27 2016-09-15 光測定装置 WO2017073196A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210387A JP6137270B2 (ja) 2015-10-27 2015-10-27 光測定装置
JP2015-210387 2015-10-27

Publications (1)

Publication Number Publication Date
WO2017073196A1 true WO2017073196A1 (ja) 2017-05-04

Family

ID=58631523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077226 WO2017073196A1 (ja) 2015-10-27 2016-09-15 光測定装置

Country Status (3)

Country Link
JP (1) JP6137270B2 (ja)
TW (1) TWI671518B (ja)
WO (1) WO2017073196A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051915A (ja) * 2018-09-27 2020-04-02 ウシオ電機株式会社 光学測定装置および光学測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037810A1 (ja) * 2007-09-18 2009-03-26 Panasonic Corporation 測定デバイス、測定装置及び測定方法、並びにサンプリング方法
JP2009080014A (ja) * 2007-09-26 2009-04-16 Olympus Corp 検体ラック、検体ラック用アダプタ、試料分注システム
JP2014032064A (ja) * 2012-08-02 2014-02-20 Kyushu Univ 光誘起蛍光測定器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037810A1 (ja) * 2007-09-18 2009-03-26 Panasonic Corporation 測定デバイス、測定装置及び測定方法、並びにサンプリング方法
JP2009080014A (ja) * 2007-09-26 2009-04-16 Olympus Corp 検体ラック、検体ラック用アダプタ、試料分注システム
JP2014032064A (ja) * 2012-08-02 2014-02-20 Kyushu Univ 光誘起蛍光測定器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051915A (ja) * 2018-09-27 2020-04-02 ウシオ電機株式会社 光学測定装置および光学測定方法

Also Published As

Publication number Publication date
TW201715220A (zh) 2017-05-01
TWI671518B (zh) 2019-09-11
JP2017083244A (ja) 2017-05-18
JP6137270B2 (ja) 2017-05-31

Similar Documents

Publication Publication Date Title
US10450603B2 (en) Fluorescence detection device
US10809185B2 (en) Optical measuring device
TWI656335B (zh) Temperature control module and light measuring device
US20110149286A1 (en) Liquid core waveguide assembly and detecting system including the same
US10856391B2 (en) Method to correct signal light intensities measured by a detector of a detection unit in a laboratory instrument
CA3099111C (en) Illumination unit with multiple light sources for generating a uniform illumination spot
JP6137270B2 (ja) 光測定装置
EP3137861B1 (en) A disposable measurement tip and method for use thereof
US11119043B2 (en) Analyzer
WO2019009209A1 (ja) 光測定装置、導光部材及び光測定方法
US10775307B2 (en) Optical fiber fluorescence detection device
JP5524698B2 (ja) 自動分析装置
JP5805259B2 (ja) 自動分析装置
JP6891391B2 (ja) 光学測定器
WO2021229874A1 (ja) 自動分析装置および反応容器の挿入方法
KR102009370B1 (ko) 스펙클 검사 장치 및 스펙클 증폭 장치
WO2021229915A1 (ja) 検査装置
JP2010008351A (ja) 散乱光測定方法およびそれに用いる散乱光測定装置
JP6662010B2 (ja) 光測定装置
JP6578188B2 (ja) 光学測定器
WO2013064366A1 (en) Vessel with optimized measurement window for optical measurements
JP2013185963A (ja) 蛍光検出装置および生体化学分析装置
NZ744129B2 (en) A microfluidic assay system, a microfluidic cartridge and a method of performing an assay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859433

Country of ref document: EP

Kind code of ref document: A1