WO2017072870A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2017072870A1
WO2017072870A1 PCT/JP2015/080322 JP2015080322W WO2017072870A1 WO 2017072870 A1 WO2017072870 A1 WO 2017072870A1 JP 2015080322 W JP2015080322 W JP 2015080322W WO 2017072870 A1 WO2017072870 A1 WO 2017072870A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
plate
capacitor element
lead plate
conversion device
Prior art date
Application number
PCT/JP2015/080322
Other languages
English (en)
French (fr)
Inventor
昌和 谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017547244A priority Critical patent/JP6422592B2/ja
Priority to EP15907234.7A priority patent/EP3370255A4/en
Priority to CN201580083917.5A priority patent/CN108235785B/zh
Priority to US15/737,962 priority patent/US10490469B2/en
Priority to PCT/JP2015/080322 priority patent/WO2017072870A1/ja
Publication of WO2017072870A1 publication Critical patent/WO2017072870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • the present invention relates to a power conversion device, and more particularly to a power conversion device used for an inverter device mounted in a plug-in hybrid vehicle, an electric vehicle, or the like.
  • the power conversion device used for the inverter device includes a power semiconductor element as a switching element, a capacitor, a reactor, a resistor, and the like.
  • a capacitor element is housed in a case together with an electrode plate and filled with resin.
  • the capacitor element is accommodated in a case having an upper surface opened, and the main body of the anode plate and the cathode plate connected to the capacitor element are overlapped via an insulator. And between the bottom surface of the case and the capacitor element. Further, the external connection terminals of the anode plate and the cathode plate extend in a substantially L shape from the end of the main body and are drawn out from the opening of the case.
  • a power semiconductor module on which a power semiconductor element such as a SiC-MOSFET (Metal-oxide-semiconductor field-effect transistor) is mounted is usually smaller in height than a capacitor module. For this reason, when wiring the power semiconductor module to the capacitor element disclosed in Patent Document 1, the anode plate and the cathode plate connected to the capacitor element are wired upward from the bottom surface of the case and pulled out from the upper surface opening. Furthermore, it is wired downward along the side wall surface of the case and connected to the power semiconductor module. Accordingly, the wiring distance is increased and the inductance is increased.
  • SiC-MOSFET Metal-oxide-semiconductor field-effect transistor
  • the present invention provides a power converter that can reduce inductance in wiring between a capacitor element and another electronic component and can efficiently cool down heat generated by the operation of the electronic component.
  • the purpose is to obtain.
  • the power conversion device includes an open top case having four side wall surfaces and a bottom surface, an insulating plate that abuts against the bottom surface and the two side wall surfaces of the case and bisects the inside of the case, and one space of the case.
  • a capacitor element that is a first electronic component housed, a first sealing resin that seals one space in which the capacitor element is housed, and a pair of electrode plates connected to a pair of terminals of the capacitor element;
  • the external connection terminals which are arranged in the space and are the ends of the wiring board, are arranged in parallel with the bottom surface of the case in the other space.
  • the wiring board connected to the capacitor element is disposed in the other space of the case through the insulating plate, and the external connection terminal that is the end of the wiring board is the other space.
  • the wiring distance between the capacitor element and other electronic components can be shortened, and the inductance in the wiring can be reduced.
  • the external connection terminals close to and parallel to the bottom surface of the case, it is possible to efficiently cool the heat generated by the operation of the electronic component.
  • FIG. 1 It is sectional drawing which shows the power converter device which concerns on Embodiment 1 of this invention. It is a perspective view which shows the power converter device which concerns on Embodiment 1 of this invention. It is a disassembled perspective view which shows the capacitor
  • FIG. 1 and 2 are a cross-sectional view and a perspective view showing the power conversion device according to the first embodiment
  • FIG. 3 is an exploded perspective view showing a capacitor of the power conversion device according to the first embodiment.
  • the same reference numerals are given to the same and corresponding parts in the drawings.
  • the power conversion device 1 includes an insulating plate 3, a capacitor element 4 as a first electronic component, an anode plate 6, a cathode plate 7, and a power as a second electronic component inside a box-shaped case 2 with an open top.
  • the semiconductor module 16 and the like are accommodated and sealed with the first sealing resin 15 and the second sealing resin 18.
  • the power semiconductor module 16 includes power semiconductor elements such as a MOS-FET, an IGBT (Insulated gate bipolar transistor), and a diode.
  • the case 2 includes a bottom surface 21 and four side wall surfaces including a first side wall surface 22, a second side wall surface 23, and a side wall surface 24.
  • the case 2 has a heat dissipation function, and includes a cooling water pipe 26 as a water-cooled cooler below the bottom surface 21 thereof.
  • a cooling water pipe 26 as a water-cooled cooler below the bottom surface 21 thereof.
  • the kind of cooler is not limited to this, An air-cooling type, a heat pipe, a Peltier device, etc. may be sufficient.
  • the case 2 and the cooler may be separate parts or may be integrally formed.
  • the insulating plate 3 is in contact with the bottom surface 21 and the two side wall surfaces 24 of the case 2. As shown in FIG. 3, the insulating plate 3 has a convex portion 31 on the contact surface with the case 2, and is fixed to the case 2 with the groove portion 25 provided in the case 2 and the convex portion 31 engaged. Is done.
  • a groove portion may be provided on the contact surface of the insulating plate 3 with the case 2 so as to engage with a convex portion provided on the case 2.
  • an adhesive, an O-ring, a liquid packing, or the like may be used as another means for ensuring sealing performance.
  • the capacitor element 4 is accommodated in one space of the case 2 partitioned by the insulating plate 3 and sealed with the first sealing resin 15.
  • the power semiconductor module 16 is accommodated and sealed with the second sealing resin 18.
  • the component housed in the other space is not limited to the power semiconductor module 16 and may be another electronic component.
  • first sealing resin 15 and the second sealing resin resins that can be cured at once in a curing furnace are selected.
  • a sealing material having a low hygroscopic property such as an epoxy resin, a urethane resin, or silicone
  • the second sealing resin 18 for example, a silicone gel is used.
  • the height dimension of the power semiconductor module 16 is smaller than the height dimension of the capacitor element 4
  • the height dimension of the second side wall surface 23 forming the space in which the power semiconductor module 16 is accommodated is determined by the capacitor element. 4 is formed smaller than the height dimension of the first side wall surface 22 forming the space in which the space 4 is accommodated.
  • the height dimension of the second sealing resin 18 is smaller than the height dimension of the first sealing resin 15.
  • the wiring board in common with the first to fourth embodiments, at least a part of the wiring board is disposed inside the insulating plate 3 and penetrates the insulating plate 3. It is characterized by being arranged in the other space of the case 2.
  • the wiring board includes a pair of electrode plates connected to a pair of terminals of the capacitor element 4, a pair of electrode lead plates, and an external connection terminal 13 for connecting the capacitor element 4 to other electronic components. Contains.
  • the capacitor element 4 is a laminated or wound type film capacitor configured by laminating or winding films.
  • the type of the capacitor element 4 is not limited, and a ceramic capacitor, an aluminum electrolytic capacitor, or the like can be used.
  • a capacitor terminal 5 which is a pair of terminals is provided on a side surface along the thickness direction of the capacitor element 4.
  • the capacitor terminal 5 is formed, for example, as a metallicon electrode, and is connected to the anode plate 6 and the cathode plate 7 which are a pair of electrode plates.
  • the five capacitor elements 4 are arranged so that the capacitor terminals 5 face each other.
  • One terminal of the capacitor terminal 5 is connected to the anode plate 6, and the other terminal is connected to the cathode plate 7.
  • Solder is used to join the capacitor terminal 5 to the anode plate 6 or the cathode plate 7. Note that the number of capacitor elements 4 is not limited to five, and the method for joining terminals is not limited to solder joining.
  • the ends of the anode plate 6 and the cathode plate 7 are bent in an L shape along the side surface orthogonal to the capacitor terminal 5 to form a first terminal 11.
  • the first terminal 11 is joined to the second terminal 12 formed at one end of the anode lead plate 8 and the cathode lead plate 9 using solder.
  • FIG. 4 and 5 show the anode lead plate 8 and the cathode lead plate 9 before being integrally formed with the insulating plate 3.
  • FIG. 5 is a view of the anode lead plate 8 and the cathode lead plate 9 shown in FIG. 4 as viewed from the back side.
  • the anode lead plate 8 and the cathode lead plate 9 are disposed to face each other with an interval of about 2 mm inside the insulating plate 3.
  • the insulating plate 3 which is a resin molded product can be manufactured by insert molding. That is, it is formed by mounting the anode lead plate 8 and the cathode lead plate 9 on a molding die, and injecting molten resin around them to solidify. Further, in the first embodiment, the insulating plate 3 is integrally formed with the terminal support portion 14 that supports the external connection terminal 13. Thereby, the number of parts can be reduced, and assembly becomes easy.
  • One end of the anode lead plate 8 forms a second terminal 12 and is joined to the first terminal 11 which is the end of the anode plate 6.
  • one end of the cathode lead plate 9 forms a second terminal 12 and is joined to the first terminal 11 which is the end of the cathode plate 7.
  • the other end of the anode lead plate 8 and the other end of the cathode lead plate 9 form an external connection terminal 13 on the anode side and the cathode side, respectively.
  • FIG. 6 shows the inside of the power conversion device 1 before resin sealing.
  • An external connection terminal 13 for connecting the capacitor element 4 to the power semiconductor module 16 passes through the inside of the insulating plate 3 and is drawn from the lower portion of the insulating plate 3 to the other space of the case 2, and substantially the same as the bottom surface 21 of the case 2. Arranged in parallel. And it is joined with the terminal 17 of the power semiconductor module 16 similarly arrange
  • the anode plate 6 and the cathode plate 7 may be configured to have a pair of terminal portions protruding from the upper surface opening of the case 2.
  • the end portions of the anode lead plate 8 and the cathode lead plate 9 protrude from the upper surface opening of the case 2 and can be connected to a third electronic device such as a reactor.
  • the anode lead plate 8 and the cathode lead plate 9 are used for wiring. However, by integrating these with the anode plate 6 or the cathode plate 7, the number of parts can be reduced. However, by using the anode lead plate 8 and the cathode lead plate 9 as separate components, the dimensional tolerance between the capacitor element 4, the anode plate 6 and the cathode plate 7 can be absorbed, and the residual stress at the solder joint can be eliminated.
  • the power converter 1 in order to suppress the generation of noise and reduce the surge voltage generated when switching the power semiconductor element, it is necessary to reduce the inductance in the wiring between the capacitor element 4 and the power semiconductor module 16. In order to reduce inductance, it is effective to face the anode plate 6 (or the anode lead plate 8) and the cathode plate 7 (or the cathode lead plate 9) in parallel with each other and shorten the wiring distance.
  • the anode lead plate 8 and the cathode lead plate 9 are arranged opposite to each other inside the insulating plate 3 so that the respective current directions are opposed to cancel the magnetic field, thereby reducing the inductance in the wiring. Can do. Further, since the external connection terminals 13 that are the end portions of the anode lead plate 8 and the cathode lead plate 9 are disposed in the other space of the case 2 through the inside of the insulating plate 3, the capacitor element 4 and the power semiconductor module 16. The wiring distance is short and low inductance can be realized.
  • the power conversion device 1 can reduce noise, prevent malfunction of electronic equipment due to noise, destruction of the power semiconductor module 16, and the like, and is equipped with a SiC-MOSFET. Fast switching of the power semiconductor module 16 is possible.
  • the external connection terminals 13 are arranged in parallel and close to the bottom surface 21 of the case 2 having a heat dissipation function, a sufficient heat dissipation effect is obtained, and a large current is applied to the anode lead plate 8 and the cathode lead plate 9. Heat generated by flowing can be efficiently cooled. Further, thermal interference to the capacitor element 4 due to heat generated by the power semiconductor module 16 can be suppressed. In particular, it is possible to prevent the heat of the SiC-MOSFET operating at a high temperature from being conducted to the capacitor element 4 and the capacitor element 4 from being thermally destroyed.
  • the inside of the case 2 is partitioned by the insulating plate 3, the capacitor element 4 is stored in one space, and the power semiconductor module 16 is stored in the other space, whereby the height dimension of the second sealing resin 18 is set to the first dimension. Since it is smaller than the height dimension of the sealing resin 15, the power conversion device 1 can be reduced in size and weight, the material cost can be reduced by reducing the sealing resin, and the heat dissipation can be improved.
  • FIG. FIG. 7 is a cross-sectional view showing a power converter according to Embodiment 2 of the present invention.
  • the power converter device 1A which concerns on this Embodiment 2 uses a printed circuit board as the insulating board 3A.
  • the terminal support portion 14A that supports the external connection terminal 13 is configured as a separate component from the insulating plate 3A. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the second embodiment by using a printed circuit board as the insulating plate 3A, in addition to the capacitor element 4, small components necessary for configuring a circuit such as a discharge resistor, a snubber circuit, and a filter circuit can be mounted. . Furthermore, efficient cooling is possible by sealing them with the first sealing resin 15.
  • the power conversion device 1A can be reduced in size because it is not necessary to provide a separate printed circuit board on which small components are mounted.
  • a snubber circuit that needs to be placed close to the power semiconductor element can be mounted on the insulating plate 3A, which is effective in reducing the surge voltage during operation of the power semiconductor module 16.
  • a power conversion device 1A capable of further efficient cooling and downsizing can be obtained.
  • FIG. FIG. 8 is a cross-sectional view showing a power conversion apparatus according to Embodiment 3 of the present invention.
  • the anode lead plate 8 and the cathode lead plate 9 are disposed opposite to each other inside the insulating plate 3, but in the present embodiment 3, the anode lead plate 8 and the cathode lead plate 9 of the power conversion device 1B are The capacitor element 4 and the bottom surface 21 of the case 2 are opposed to each other with an insulator interposed therebetween.
  • the insulator is the first sealing resin 15, but there is also a method of sandwiching insulating paper.
  • An external connection terminal 13 for connecting the capacitor element 4 to the power semiconductor module 16 passes through the insulating plate 3 and is drawn from the lower part of the insulating plate 3 to the other space of the case 2 and is substantially parallel to the bottom surface 21 of the case 2. Is arranged. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the arrangement direction of the capacitor elements 4 in the power conversion device 1B is the same as that in the first embodiment, and the capacitor terminals 5 are arranged so as to face each other (see FIG. 3).
  • One terminal of the capacitor terminal 5 is connected to the anode plate 6, and the other terminal is connected to the cathode plate 7.
  • Solder is used to join the capacitor terminal 5 to the anode plate 6 or the cathode plate 7.
  • the end portions of the anode plate 6 and the cathode plate 7 are bent in an L shape along the lower surface of the capacitor element 4 orthogonal to the capacitor terminal 5 to form the first terminal 11. Yes.
  • the first terminal 11 is joined to the second terminal 12 which is one end of the anode lead plate 8 and the cathode lead plate 9 using solder.
  • the anode lead plate 8 and the cathode lead plate 9 are disposed opposite to each other on the lower surface of the capacitor element 4 with an interval of about 2 mm, and further penetrate the insulating plate 3 and are linearly wired to the power semiconductor module 16. Thus, since most of the anode lead plate 8 and the cathode lead plate 9 are wired along the bottom surface 21 of the case 2, efficient cooling is possible. According to the third embodiment, in addition to the same effects as those of the first embodiment, a power conversion device 1B capable of further efficient cooling is obtained.
  • FIG. 9 is a cross-sectional view showing a power conversion device according to Embodiment 4 of the present invention.
  • the anode lead plate 8 is disposed on the lower surface of the capacitor element 4 and the cathode lead plate 9 is disposed on the upper surface of the capacitor element.
  • the cathode lead plate 9 may be disposed on the lower surface of the capacitor element 4 and the anode lead plate 8 may be disposed on the upper surface of the capacitor element 4.
  • the arrangement direction of the capacitor elements 4 in the power conversion device 1C is different from that of the first embodiment, in which the capacitor elements 4 shown in FIG. 3 are rotated 90 degrees and the capacitor terminals 5 are arranged vertically. For this reason, one capacitor terminal 5 faces the bottom surface 21 of the case 2.
  • One terminal of the capacitor terminal 5 is connected to the anode plate 6, and the other terminal is connected to the cathode plate 7.
  • the anode lead plate 8 disposed on the lower surface of the capacitor element 4 passes through the insulating plate 3 as it is, and is linearly wired to the power semiconductor module 16. Further, the cathode lead plate 9 disposed on the upper surface of the capacitor element 4 reaches the lower portion of the insulating plate 3 through the inside of the insulating plate 3, bends 90 degrees, and is wired in parallel with the anode lead plate 8. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the external connection terminal 13 for connecting the capacitor element 4 to the power semiconductor module 16 passes through the insulating plate 3 and is drawn from the lower portion of the insulating plate 3 to the other space of the case 2.
  • the case 2 is disposed substantially parallel to the bottom surface 21.
  • the capacitor terminals 5 are arranged in the same plane, it is easy to connect a plurality of capacitor elements 4 and a simple structure. 1C of power converter device is obtained. It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

 電力変換装置(1)において、陽極リード板(8)と陰極リード板(9)を絶縁板(3)の内部で対向配置することにより、各々の電流方向が対向し磁界を打ち消すため、インダクタンスが低減される。また、陽極リード板(8)と陰極リード板(9)の端部である外部接続端子(13)は、絶縁板(3)の内部を通って絶縁板(3)の下部からケース(2)の他方の空間に配置されているので、コンデンサ素子(4)とパワー半導体モジュール(16)の配線距離を短くすることができ、インダクタンスを低減することができる。

Description

電力変換装置
 本発明は、電力変換装置に関し、特に、プラグインハイブリッド車、電気自動車等に搭載されるインバータ装置に用いられる電力変換装置に関する。
 インバータ装置に用いられる電力変換装置は、スイッチング素子としてのパワー半導体素子、コンデンサ、リアクトル及び抵抗等で構成される。従来のコンデンサとして、コンデンサ素子を電極板と共にケース内に収納し、樹脂を充填したものがある。
 例えば特許文献1に開示されたコンデンサは、上面が開口されたケースにコンデンサ素子が収納され、コンデンサ素子に接続された陽極板と陰極板の本体部は、絶縁体を介して重ね合わされた状態で、ケースの底面部とコンデンサ素子との間に配置されている。また、陽極板と陰極板の外部接続端子は、本体部の端部から略L字状に延びてケースの開口部から外へ引き出されている。
特許第5190638号公報
 SiC-MOSFET(Metal-oxide-semiconductor field-effet transistor)等のパワー半導体素子が搭載されたパワー半導体モジュールは、通常、コンデンサモジュールに比べて高さ寸法が小さい。このため、特許文献1に開示されたコンデンサ素子にパワー半導体モジュールを配線する場合、コンデンサ素子に接続された陽極板と陰極板は、ケース底面から上方向へ配線されて上面開口部から引き出され、さらにケース側壁面に沿って下方向に配線されてパワー半導体モジュールと接続される。従って、配線距離が長くなり、インダクタンスが大きくなる。
 SiC-MOSFETを用いてインバータを高速スイッチングさせた場合、インダクタンスが大きいと、ノイズによって電子機器の誤動作が発生したり、サージ電圧が絶縁耐圧を超えてパワー半導体モジュールが破壊したりする問題がある。また、コンデンサ素子の外部接続端子はケース上面側から引き出されており、放熱部までの距離が長いため、配線の発熱を効率的に冷却することができない。このため、高温動作しているパワー半導体モジュールの熱的な影響によって、コンデンサモジュールが破壊するという問題がある。
 本発明は、上記問題点に鑑み、コンデンサ素子と他の電子部品との配線におけるインダクタンスを低減することができ、且つ電子部品の動作による発熱を効率的に冷却することが可能な電力変換装置を得ることを目的とする。
 本発明に係る電力変換装置は、4つの側壁面及び底面を有する上面開放のケースと、ケースの底面と2つの側壁面に当接しケースの内部を二分する絶縁板と、ケースの一方の空間に収納された第1の電子部品であるコンデンサ素子と、コンデンサ素子が収納された一方の空間を封止する第1の封止樹脂と、コンデンサ素子の一対の端子に接続された一対の電極板とコンデンサ素子を他の電子部品と接続するための外部接続端子とを含む配線板を備え、配線板は、その一部が絶縁板の内部に配置され、且つ絶縁板を貫通してケースの他方の空間に配置されており、配線板の端部である外部接続端子は、他方の空間においてケースの底面と平行に配置されたものである。
 本発明に係る電力変換装置によれば、コンデンサ素子に接続された配線板が絶縁板を貫通してケースの他方の空間に配置され、この配線板の端部である外部接続端子が他方の空間においてケースの底面と平行に配置されているので、コンデンサ素子と他の電子部品との配線距離を短くすることが可能となり、配線におけるインダクタンスを低減することができる。また、外部接続端子をケースの底面に近接して平行に配置することにより、電子部品の動作による発熱を効率的に冷却することが可能である。
 この発明の上記以外の目的、特徴、観点及び効果は、図面を参照する以下のこの発明の詳細な説明から、さらに明らかになるであろう。
本発明の実施の形態1に係る電力変換装置を示す断面図である。 本発明の実施の形態1に係る電力変換装置を示す斜視図である。 本発明の実施の形態1に係る電力変換装置のコンデンサを示す分解斜視図である。 本発明の実施の形態1に係る電力変換装置の陽極リード板と陰極リード板を示す斜視図である。 本発明の実施の形態1に係る電力変換装置の陽極リード板と陰極リード板を示す斜視図である。 本発明の実施の形態1に係る電力変換装置の内部を示す斜視図である。 本発明の実施の形態2に係る電力変換装置を示す断面図である。 本発明の実施の形態3に係る電力変換装置を示す断面図である。 本発明の実施の形態4に係る電力変換装置を示す断面図である。
実施の形態1.
 以下に、本発明の実施の形態1に係る電力変換装置について、図面に基づいて説明する。図1及び図2は、本実施の形態1に係る電力変換装置を示す断面図及び斜視図、図3は、本実施の形態1に係る電力変換装置のコンデンサを示す分解斜視図である。なお、各図において、図中、同一、相当部分には同一符号を付している。
 電力変換装置1は、上面開放の箱型のケース2の内部に、絶縁板3、第1の電子部品であるコンデンサ素子4、陽極板6、陰極板7、及び第2の電子部品であるパワー半導体モジュール16等が収納され、第1の封止樹脂15及び第2の封止樹脂18により封止されたものである。パワー半導体モジュール16は、例えば、MOS-FET、IGBT(Insulated gate bipolar transistor)、ダイオード等のパワー半導体素子を搭載している。
 ケース2は、図3に示すように、底面21と、第1の側壁面22、第2の側壁面23、及び側壁面24を含む4つの側壁面を含んで構成される。ケース2は、放熱機能を有するものであり、その底面21の下方に、水冷式の冷却器として冷却水パイプ26を備えている。なお、冷却器の種類はこれに限定するものではなく、空冷式、ヒートパイプ、ペルチェ素子等であっても良い。また、ケース2と冷却器は別部品であっても良いし、一体成形されていても良い。
 絶縁板3は、ケース2の底面21と2つの側壁面24に当接している。絶縁板3は、図3に示すように、ケース2との当接面に凸部31を有し、ケース2に設けられた溝部25と凸部31とが係合した状態でケース2に固定される。
 なお、凸部31と溝部25は、逆に設けても良い。すなわち、絶縁板3のケース2との当接面に溝部を設け、ケース2に設けられた凸部と係合するようにしても良い。このような構成とすることで、ケース2と絶縁板3との間のシール性が確保される。なお、シール性を確保する他の手段として、接着剤、Oリング、液体パッキング等を用いても良い。
 絶縁板3により仕切られたケース2の一方の空間には、コンデンサ素子4が収納され、第1の封止樹脂15により封止される。また、他方の空間には、パワー半導体モジュール16が収納され、第2の封止樹脂18により封止される。ただし、他方の空間に収納される部品は、パワー半導体モジュール16に限定されるものではなく、他の電子部品であっても良い。
 第1の封止樹脂15と第2の封止樹脂18には、硬化炉において一括で硬化させることができる樹脂が選択される。第1の封止樹脂15としては、吸湿性が低い封止材、例えばエポキシ樹脂、ウレタン樹脂、シリコーン等が用いられる。また、第2の封止樹脂18としては、例えばシリコーン系ゲルが用いられる。
 パワー半導体モジュール16の高さ寸法は、コンデンサ素子4の高さ寸法よりも小さいため、パワー半導体モジュール16が収納された空間を形成している第2の側壁面23の高さ寸法は、コンデンサ素子4が収納された空間を形成している第1の側壁面22の高さ寸法より小さく形成される。同様に、第2の封止樹脂18の高さ寸法は、第1の封止樹脂15の高さ寸法より小さく形成される。
 本発明に係る電力変換装置においては、本実施の形態1から実施の形態4に共通して、配線板の少なくとも一部が絶縁板3の内部に配置され、且つ、絶縁板3を貫通してケース2の他方の空間に配置されることを特徴としている。なお、配線板とは、コンデンサ素子4の一対の端子に接続された一対の電極板と、一対の電極リード板と、コンデンサ素子4を他の電子部品と接続するための外部接続端子13とを含んでいる。
 コンデンサ素子4は、フィルムを積層または巻回して構成された積層型または巻回型のフィルムコンデンサである。ただし、コンデンサ素子4の種類は限定されるものではなく、セラミックコンデンサ、アルミ電解コンデンサ等を用いることもできる。コンデンサ素子4の厚み方向に沿った側面には、一対の端子であるコンデンサ端子5が設けられる。コンデンサ端子5は、例えばメタリコン電極として形成され、一対の電極板である陽極板6及び陰極板7と接続される。
 図3に示すように、5個のコンデンサ素子4は、各々のコンデンサ端子5が対向するように配列される。コンデンサ端子5の一方の端子は陽極板6に接続され、他方の端子は陰極板7に接続される。コンデンサ端子5と陽極板6または陰極板7との接合には、はんだが用いられる。なお、コンデンサ素子4の数は5個に限定されるものではなく、端子の接合方法ははんだ接合に限定されるものではない。
 陽極板6と陰極板7の端部は、コンデンサ端子5と直交する側面に沿ってL字状に折れ曲がり、第1の端子11を形成している。第1の端子11は、陽極リード板8と陰極リード板9の一方の端部に形成された第2の端子12とはんだを用いて接合される。
 図4及び図5は、絶縁板3と一体成形される前の陽極リード板8と陰極リード板9を示している。図5は、図4に示す陽極リード板8と陰極リード板9を裏側から見た図である。陽極リード板8と陰極リード板9は、絶縁板3の内部において、約2mmの間隔をあけて対向配置されている。
 樹脂成型品である絶縁板3は、インサート成形により製造することができる。すなわち、成形金型に陽極リード板8と陰極リード板9を装着し、その周りに溶融樹脂を注入して固化することにより形成される。さらに、本実施の形態1では、絶縁板3は、外部接続端子13を支持する端子支持部14と一体成形されている。これにより、部品点数を削減することができ、組立てが容易になる。
 陽極リード板8の一方の端部は、第2の端子12を形成し、陽極板6の端部である第1の端子11と接合される。同様に、陰極リード板9の一方の端部は、第2の端子12を形成し、陰極板7の端部である第1の端子11と接合される。また、陽極リード板8の他方の端部と陰極リード板9の他方の端部は、それぞれ陽極側と陰極側の外部接続端子13を形成する。
 図6は、樹脂封止する前の電力変換装置1の内部を示している。コンデンサ素子4をパワー半導体モジュール16と接続するための外部接続端子13は、絶縁板3の内部を通って絶縁板3の下部からケース2の他方の空間に引き出され、ケース2の底面21と略平行に配置される。そして、同じくケース2の底面21に対して略平行に配置されたパワー半導体モジュール16の端子17と接合される。
 なお、図示していないが、陽極板6と陰極板7は、ケース2の上面開口部から突出した一対の端子部を有するように構成しても良い。具体的には、陽極リード板8と陰極リード板9の端部をケース2の上面開口部から突出させ、第3の電子機器、例えばリアクトルと接続することができる。このような構成とすることにより、複数の電子機器との配線が可能であり、配線自由度が向上する。
 また、本実施の形態1では、陽極リード板8と陰極リード板9を用いて配線したが、これらを陽極板6または陰極板7と一体化することにより、部品点数を削減することができる。ただし、陽極リード板8と陰極リード板9を別部品とすることにより、コンデンサ素子4と陽極板6及び陰極板7との寸法公差を吸収し、はんだ接合部の残留応力を無くすことができる。
 電力変換装置1において、ノイズの発生を抑制し、パワー半導体素子のスイッチング時に生じるサージ電圧を下げるためには、コンデンサ素子4とパワー半導体モジュール16の配線におけるインダクタンスを低減する必要がある。インダクタンスを低減するためには、陽極板6(または陽極リード板8)と陰極板7(または陰極リード板9)を互いに平行に対面させ、且つ配線距離を短くすることが有効である。
 本実施の形態1によれば、陽極リード板8と陰極リード板9を絶縁板3の内部で対向配置することにより、各々の電流方向が対向し磁界を打ち消すため、配線におけるインダクタンスを低減することができる。また、陽極リード板8と陰極リード板9の端部である外部接続端子13が絶縁板3の内部を通ってケース2の他方の空間に配置されているので、コンデンサ素子4とパワー半導体モジュール16の配線距離が短く、低インダクタンスを実現することができる。
 よって、本実施の形態1に係る電力変換装置1は、ノイズの低減が図られ、ノイズに起因する電子機器の誤動作やパワー半導体モジュール16の破壊等を防止することができ、SiC-MOSFETを搭載したパワー半導体モジュール16の高速スイッチングが可能である。
 また、外部接続端子13を、放熱機能を有するケース2の底面21と平行に近接して配置しているので、十分な放熱効果が得られ、陽極リード板8と陰極リード板9に大電流が流れることによる発熱を効率良く冷却することができる。また、パワー半導体モジュール16の発熱によるコンデンサ素子4への熱干渉を抑制することができる。特に、高温動作するSiC-MOSFETの熱がコンデンサ素子4に伝導し、コンデンサ素子4が熱破壊することを防止することができる。
 さらに、絶縁板3でケース2の内部を仕切り、一方の空間にコンデンサ素子4、他方の空間にパワー半導体モジュール16を収納することにより、第2の封止樹脂18の高さ寸法を第1の封止樹脂15の高さ寸法よりも小さくしているので、電力変換装置1の小型化及び軽量化、封止樹脂の削減による材料費の低減、放熱性の向上等の効果を奏する。
実施の形態2.
 図7は、本発明の実施の形態2に係る電力変換装置を示す断面図である。上記実施の形態1では、絶縁板3として樹脂成型品を用いたが、本実施の形態2に係る電力変換装置1Aは、絶縁板3Aとしてプリント基板を用いたものである。また、外部接続端子13を支持する端子支持部14Aは、絶縁板3Aとは別部品で構成している。それ以外の構成については、上記実施の形態1と同様であるので説明を省略する。
 本実施の形態2では、絶縁板3Aとしてプリント基板を用いることにより、コンデンサ素子4の他、放電抵抗、スナバ回路、フィルター回路等の回路を構成するために必要な小部品を実装することができる。さらに、それらを第1の封止樹脂15で封止することにより、効率的な冷却が可能である。
 電力変換装置1Aは、小部品を実装するプリント基板を別に設ける必要がないため、小型化が図られる。また、パワー半導体素子との近接配置が必要なスナバ回路を絶縁板3Aに実装することができるため、パワー半導体モジュール16の動作中のサージ電圧の低減に有効である。本実施の形態2によれば、上記実施の形態1と同様の効果に加え、さらに効率的な冷却と小型化が可能な電力変換装置1Aが得られる。
実施の形態3.
 図8は、本発明の実施の形態3に係る電力変換装置を示す断面図である。上記実施の形態1では、陽極リード板8と陰極リード板9を絶縁板3の内部で対向配置したが、本実施の形態3では、電力変換装置1Bの陽極リード板8と陰極リード板9は、コンデンサ素子4の下面とケース2の底面21との間に絶縁体を介して対向配置されている。なお、図8に示す例では、絶縁体は第1の封止樹脂15であるが、絶縁紙を挟む方法もある。
 コンデンサ素子4をパワー半導体モジュール16と接続するための外部接続端子13は、絶縁板3を貫通して絶縁板3の下部からケース2の他方の空間に引き出され、ケース2の底面21と略平行に配置されている。それ以外の構成については、上記実施の形態1と同様であるので説明を省略する。
 電力変換装置1Bにおけるコンデンサ素子4の配列方向は、上記実施の形態1と同様であり、各々のコンデンサ端子5が対向するように配列される(図3参照)。コンデンサ端子5の一方の端子は陽極板6に接続され、他方の端子は陰極板7に接続される。コンデンサ端子5と陽極板6または陰極板7との接合には、はんだが用いられる。
 ただし、本実施の形態3では、陽極板6と陰極板7の端部は、コンデンサ端子5と直交するコンデンサ素子4の下面に沿ってL字状に折れ曲がり、第1の端子11を形成している。第1の端子11は、陽極リード板8と陰極リード板9の一方の端部である第2の端子12に対し、はんだを用いて接合される。
 陽極リード板8と陰極リード板9は、コンデンサ素子4の下面において約2mmの間隔をあけて対向配置され、さらに、絶縁板3を貫通し、パワー半導体モジュール16へ直線的に配線されている。このように、陽極リード板8と陰極リード板9の大部分がケース2の底面21に沿って配線されているため、効率的な冷却が可能である。本実施の形態3によれば、上記実施の形態1と同様の効果に加え、さらに効率的な冷却が可能な電力変換装置1Bが得られる。
実施の形態4.
 図9は、本発明の実施の形態4に係る電力変換装置を示す断面図である。本実施の形態4に係る電力変換装置1Cは、陽極リード板8がコンデンサ素子4の下面に、陰極リード板9がコンデンサ素子の上面に配置されている。ただし、その逆も可能であり、陰極リード板9がコンデンサ素子4の下面に、陽極リード板8がコンデンサ素子4の上面に配置されていれも良い。
 電力変換装置1Cにおけるコンデンサ素子4の配列方向は、上記実施の形態1とは異なり、図3に示すコンデンサ素子4を90度回転させ、コンデンサ端子5が上下にくるように配列している。このため、一方のコンデンサ端子5は、ケース2の底面21と対面している。コンデンサ端子5の一方の端子は陽極板6に接続され、他方の端子は陰極板7に接続される。
 コンデンサ素子4の下面に配置された陽極リード板8は、そのまま絶縁板3を貫通し、パワー半導体モジュール16へ直線的に配線されている。また、コンデンサ素子4の上面に配置された陰極リード板9は、絶縁板3の内部を通って絶縁板3の下部まで到達し、90度折れ曲がって陽極リード板8と平行に配線されている。それ以外の構成については、上記実施の形態1と同様であるので説明を省略する。
 本実施の形態4においても、コンデンサ素子4をパワー半導体モジュール16と接続するための外部接続端子13は、絶縁板3を貫通して絶縁板3の下部からケース2の他方の空間に引き出され、ケース2の底面21と略平行に配置されている。
 本実施の形態4によれば、上記実施の形態1と同様の効果に加え、コンデンサ端子5が同一面内に配置されているので、複数のコンデンサ素子4の結線が容易であり、簡易な構造の電力変換装置1Cが得られる。なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (16)

  1.  4つの側壁面及び底面を有する上面開放のケース、
    前記ケースの前記底面と2つの前記側壁面に当接し前記ケースの内部を二分する絶縁板、
    前記ケースの一方の空間に収納された第1の電子部品であるコンデンサ素子、
    前記コンデンサ素子が収納された前記一方の空間を封止する第1の封止樹脂、
    前記コンデンサ素子の一対の端子に接続された一対の電極板と前記コンデンサ素子を他の電子部品と接続するための外部接続端子とを含む配線板を備え、
    前記配線板は、その一部が前記絶縁板の内部に配置され、且つ前記絶縁板を貫通して前記ケースの他方の空間に配置されており、前記配線板の端部である前記外部接続端子は、前記他方の空間において前記ケースの前記底面と平行に配置されたことを特徴とする電力変換装置。
  2.  前記配線板は、前記一対の電極板である陽極板及び陰極板と、一方の端部が前記陽極板に接続され他方の端部が前記外部接続端子である陽極リード板と、一方の端部が前記陰極板に接続され他方の端部が前記外部接続端子である陰極リード板とを含むことを特徴とする請求項1記載の電力変換装置。
  3.  前記陽極リード板と前記陰極リード板は、前記絶縁板の内部で対向配置されていることを特徴とする請求項2記載の電力変換装置。
  4.  前記陽極リード板と前記陰極リード板は、前記コンデンサ素子の下面と前記ケースの前記底面との間に絶縁体を介して対向配置されていることを特徴とする請求項2記載の電力変換装置。
  5.  前記陽極リード板と前記陰極リード板は、いずれか一方が前記コンデンサ素子の下面に、他方は前記コンデンサ素子の上面に配置されていることを特徴とする請求項2記載の電力変換装置。
  6.  前記絶縁板は、樹脂成型品であることを特徴とする請求項1から請求項5のいずれか一項に記載の電力変換装置。
  7.  前記絶縁板は、プリント基板であることを特徴とする請求項1から請求項5のいずれか一項に記載の電力変換装置。
  8.  前記絶縁板は、前記ケースとの当接面に凸部を有し、前記ケースに設けられた溝部と前記凸部とが係合した状態で前記ケースに固定されていることを特徴とする請求項1から請求項7のいずれか一項に記載の電力変換装置。
  9.  前記絶縁板は、前記ケースとの当接面に溝部を有し、前記ケースに設けられた凸部と前記溝部とが係合した状態で前記ケースに固定されていることを特徴とする請求項1から請求項7のいずれか一項に記載の電力変換装置。
  10.  前記ケースの前記他方の空間に収納された第2の電子部品と、前記第2の電子部品が収納された前記他方の空間を封止する第2の封止樹脂とを備え、前記第2の電子部品の端子は、前記ケースの前記底面と平行に配置され、前記コンデンサ素子の前記外部接続端子と接続されていることを特徴とする請求項1から請求項9のいずれか一項に記載の電力変換装置。
  11.  前記第2の電子部品が収納された前記他方の空間を形成している前記側壁面の高さ寸法は、前記コンデンサ素子が収納された前記一方の空間を形成している前記側壁面の高さ寸法より小さいことを特徴とする請求項10記載の電力変換装置。
  12.  前記第2の封止樹脂の高さ寸法は、前記第1の封止樹脂の高さ寸法より小さいことを特徴とする請求項10または請求項11記載の電力変換装置。
  13.  前記第2の電子部品は、SiC-MOSFETを搭載したパワー半導体モジュールであることを特徴とする請求項10から請求項12のいずれか一項に記載の電力変換装置。
  14.  前記一対の電極板は、前記ケースの上面開口部から突出した一対の端子部を有し、前記端子部は、第3の電子部品と接続されることを特徴とする請求項1から請求項13のいずれか一項に記載の電力変換装置。
  15.  前記第3の電子部品は、リアクトルであることを特徴とする請求項14記載の電力変換装置。
  16.  前記ケースは、冷却器を備えていることを特徴とする請求項1から請求項15のいずれか一項に記載の電力変換装置。
PCT/JP2015/080322 2015-10-28 2015-10-28 電力変換装置 WO2017072870A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017547244A JP6422592B2 (ja) 2015-10-28 2015-10-28 電力変換装置
EP15907234.7A EP3370255A4 (en) 2015-10-28 2015-10-28 POWER CONVERSION DEVICE
CN201580083917.5A CN108235785B (zh) 2015-10-28 2015-10-28 电力转换装置
US15/737,962 US10490469B2 (en) 2015-10-28 2015-10-28 Power converting device
PCT/JP2015/080322 WO2017072870A1 (ja) 2015-10-28 2015-10-28 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080322 WO2017072870A1 (ja) 2015-10-28 2015-10-28 電力変換装置

Publications (1)

Publication Number Publication Date
WO2017072870A1 true WO2017072870A1 (ja) 2017-05-04

Family

ID=58629947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080322 WO2017072870A1 (ja) 2015-10-28 2015-10-28 電力変換装置

Country Status (5)

Country Link
US (1) US10490469B2 (ja)
EP (1) EP3370255A4 (ja)
JP (1) JP6422592B2 (ja)
CN (1) CN108235785B (ja)
WO (1) WO2017072870A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11410922B2 (en) 2019-12-27 2022-08-09 Fuji Electric Co., Ltd. Semiconductor device comprising a capacitor
US11622478B2 (en) * 2019-05-09 2023-04-04 Mitsubishi Electric Corporation Power converter having improved cooling
DE102023136759A1 (de) 2023-02-27 2024-08-29 Mitsubishi Electric Corporation Halbleitervorrichtung und Leistungsumwandlungseinrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204623B2 (ja) * 2019-09-20 2023-01-16 日立Astemo株式会社 機電一体型電力変換装置および電気自動車用駆動装置
FR3104890B1 (fr) * 2019-12-12 2022-06-24 Valeo Siemens Eautomotive France Sas Module d’isolation électrique pour équipement électrique haute tension
JP6921282B1 (ja) * 2020-07-17 2021-08-18 三菱電機株式会社 電力変換装置
JP7552165B2 (ja) 2020-09-07 2024-09-18 スズキ株式会社 スクリーンの固定構造

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017400A1 (fr) * 2000-08-18 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Module d'alimentation
JP5190638B2 (ja) * 2005-11-14 2013-04-24 株式会社指月電機製作所 コンデンサ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159545A (en) * 1991-09-09 1992-10-27 Anthony Lee Universal adapter
JP3383588B2 (ja) * 1998-08-04 2003-03-04 株式会社東芝 電力変換装置
JP4538359B2 (ja) * 2005-03-31 2010-09-08 株式会社日立産機システム 電気回路モジュール
JP4683003B2 (ja) * 2007-03-30 2011-05-11 株式会社デンソー パワーモジュール及びこれを用いた電力変換装置
JP5292823B2 (ja) * 2008-01-22 2013-09-18 日産自動車株式会社 電力変換装置
JP5279569B2 (ja) * 2009-03-24 2013-09-04 三洋電機株式会社 固体電解コンデンサ及びその製造方法
JP4775475B2 (ja) * 2009-04-14 2011-09-21 株式会社デンソー 電力変換装置
JP5740986B2 (ja) * 2010-03-17 2015-07-01 株式会社安川電機 電力変換装置
DE102010043445B3 (de) * 2010-11-05 2012-04-19 Semikron Elektronik Gmbh & Co. Kg Kondensatoranordnung, leistungselektronisches Gerät damit undVerfahren zur Herstellung der Kondensatoranordnung
JP5417314B2 (ja) * 2010-12-27 2014-02-12 日立オートモティブシステムズ株式会社 電力変換装置
JP5506741B2 (ja) * 2011-06-02 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
CN104603977B (zh) * 2012-09-14 2018-07-20 日产自动车株式会社 车载用电池组的压力释放构造
JP5957396B2 (ja) * 2013-03-05 2016-07-27 日立オートモティブシステムズ株式会社 両面冷却型電力変換装置
JP2015082951A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 電力変換装置
EP3185292B1 (en) * 2014-08-22 2021-04-21 Mitsubishi Electric Corporation Power conversion device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017400A1 (fr) * 2000-08-18 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Module d'alimentation
JP5190638B2 (ja) * 2005-11-14 2013-04-24 株式会社指月電機製作所 コンデンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370255A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11622478B2 (en) * 2019-05-09 2023-04-04 Mitsubishi Electric Corporation Power converter having improved cooling
US11410922B2 (en) 2019-12-27 2022-08-09 Fuji Electric Co., Ltd. Semiconductor device comprising a capacitor
US11887925B2 (en) 2019-12-27 2024-01-30 Fuji Electric Co., Ltd. Semiconductor device comprising a capacitor
DE102023136759A1 (de) 2023-02-27 2024-08-29 Mitsubishi Electric Corporation Halbleitervorrichtung und Leistungsumwandlungseinrichtung

Also Published As

Publication number Publication date
JP6422592B2 (ja) 2018-11-14
EP3370255A1 (en) 2018-09-05
US20180174934A1 (en) 2018-06-21
CN108235785A (zh) 2018-06-29
JPWO2017072870A1 (ja) 2018-04-05
EP3370255A4 (en) 2019-06-26
CN108235785B (zh) 2021-01-29
US10490469B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
JP6422592B2 (ja) 電力変換装置
JP5699995B2 (ja) 電力変換装置
JP6075227B2 (ja) 電力変換装置
JP2011160519A (ja) 電力変換装置
JP2014187827A (ja) 電力変換装置
JP5664472B2 (ja) 電力変換装置
JP6421055B2 (ja) 電力変換装置
JP6576360B2 (ja) 電力変換装置
WO2013111234A1 (ja) 電力変換装置
WO2013145508A1 (ja) 電力変換装置
JP2015099846A (ja) 半導体装置および半導体装置の製造方法
JP6945671B2 (ja) 電力変換装置
WO2013105166A1 (ja) 電力変換装置
WO2013084416A1 (ja) 電力変換装置
WO2014024361A1 (ja) 冷却構造体及び電力変換装置
WO2013084417A1 (ja) 電力変換装置
JP2016149836A (ja) 電力変換装置
WO2013080441A1 (ja) 電力変換装置
JP2013059155A (ja) 電力変換装置
JP6439523B2 (ja) 電力変換装置
JP2015220920A (ja) 電動車両用の電力変換器
JP6680393B2 (ja) 電力変換装置
JP5949286B2 (ja) 電力変換装置
WO2024154478A1 (ja) 電力変換装置
WO2023093562A1 (zh) 功率模块和电器设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547244

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15737962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE