WO2017070996A1 - 一种视角可调控的液晶显示面板及其视角调控方法 - Google Patents

一种视角可调控的液晶显示面板及其视角调控方法 Download PDF

Info

Publication number
WO2017070996A1
WO2017070996A1 PCT/CN2015/095398 CN2015095398W WO2017070996A1 WO 2017070996 A1 WO2017070996 A1 WO 2017070996A1 CN 2015095398 W CN2015095398 W CN 2015095398W WO 2017070996 A1 WO2017070996 A1 WO 2017070996A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate electrode
liquid crystal
sub
lower substrate
upper substrate
Prior art date
Application number
PCT/CN2015/095398
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
深圳市华星光电技术有限公司
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司, 武汉华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/907,946 priority Critical patent/US10747034B2/en
Publication of WO2017070996A1 publication Critical patent/WO2017070996A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the invention relates to a liquid crystal display technology, in particular to a liquid crystal display panel with adjustable viewing angle and a viewing angle control method thereof.
  • the range of viewing angles (referred to as the viewing angle) is an important performance indicator of the liquid crystal display panel.
  • the liquid crystal display panel needs to change the polarization state of the light by adjusting the arrangement of the liquid crystal molecules, thereby controlling the amount of light passing between the upper and lower polarizing layers.
  • the display function is realized. Therefore, due to the influence of the optical anisotropy of the liquid crystal molecules, the viewing angle of the liquid crystal display is smaller than that of the cathode ray tube display.
  • technologies such as multi-plan vertical orientation (MVA) mode, in-plane switching (IPS) mode, and fringe electric field conversion (FFS) mode have been successively proposed, and liquid crystals have been realized. The wide viewing angle of the display is displayed.
  • the liquid crystal display panel has been developed in a wide viewing angle, in some cases, the liquid crystal display panel also needs to have a function of switching between a wide viewing angle and a narrow viewing angle.
  • This demand is particularly acute for portable electronic devices such as cell phones, PDAs, and notebook computers that use liquid crystal displays.
  • portable electronic devices such as cell phones, PDAs, and notebook computers that use liquid crystal displays.
  • a user needs to share an image displayed by a portable electronic device with others, and sometimes the user does not want others to see an image displayed by the portable electronic device for reasons of personal privacy protection. Therefore, it is necessary to provide a liquid crystal display panel with a view angle controllable.
  • louver shielding film is attached to the screen of the liquid crystal display panel. This method requires the user to carry the louver shielding film with him, and And the operation is very inconvenient.
  • the dual backlight system method uses a common backlight system to achieve wide viewing angle display, and another collimated backlight system to achieve narrow viewing angle display. This method will undoubtedly increase the manufacturing cost, thickness, and energy consumption of the liquid crystal display panel.
  • FIG. 1 is a schematic view showing deflection of liquid crystal molecules of the liquid crystal display panel under an electric field.
  • the pixel unit is divided into a main pixel region 100 and a sub-pixel region 200, and a planar common electrode 110 is disposed on the lower substrate of the two pixel regions.
  • the strip-shaped pixel electrode 120, between the common electrode 110 and the pixel electrode 120 is an insulating layer 112 for blocking.
  • An electric field generated by a different voltage across the common electrode 110 and the pixel electrode 120 acts on the corresponding liquid crystal molecules.
  • the electric field generated by this method is weak, and the viewing angle control effect is poor.
  • the inventor of the present invention proposes a new viewing angle controllable liquid crystal display panel and its viewing angle control method based on the practical experience and related professional knowledge of the design and manufacture of the liquid crystal display panel to meet the portable electronic device such as a mobile phone. High requirements for circuit stability, weight and energy consumption.
  • the present invention proposes a new viewing angle controllable liquid crystal display panel and a viewing angle control method thereof.
  • the present invention provides a viewing angle controllable liquid crystal display panel comprising an upper and a lower substrate and a liquid crystal layer between the upper and lower substrates, wherein:
  • a pixel unit located in the display area includes a main pixel area and a sub-pixel area;
  • the main pixel area is horizontally aligned
  • the sub-pixel region is vertically aligned, and in the sub-pixel region, an upper substrate electrode is disposed under the upper substrate, and a lower substrate electrode is disposed on the lower substrate;
  • the upper substrate electrode and the lower substrate electrode are both two-layer electrode structures and are symmetrically disposed with each other, and a bias voltage is applied to the upper substrate electrode and the lower substrate electrode.
  • the liquid crystal molecules of the sub-pixel region can be horizontally, vertically, and obliquely arranged, thereby achieving mutual switching between the narrow viewing angle mode and the wide viewing angle mode.
  • the two-layer electrode structure of the upper substrate electrode includes a first upper substrate electrode, an insulating layer and a second upper substrate electrode which are sequentially disposed under the upper substrate;
  • the two-layer electrode structure of the lower substrate electrode includes a first lower substrate electrode, an insulating layer and a second lower substrate electrode which are sequentially disposed on the lower substrate;
  • the first upper and lower substrate electrodes are planar, and the second upper and lower substrate electrodes are strip-shaped.
  • a bias voltage applied on the upper substrate electrode and the lower substrate electrode is such that an electric field formed between the upper substrate electrode and the lower substrate electrode has a sufficiently strong horizontal component, such that The liquid crystal molecules of the sub-pixel region can be horizontally arranged under their action.
  • a first bias voltage is applied to the first upper substrate electrode and the first lower substrate electrode, and a second bias voltage is applied to the second upper substrate electrode and the second lower substrate electrode.
  • a bias voltage applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region is to be between the upper substrate electrode and the lower substrate electrode.
  • the electric field thus formed has a sufficiently strong vertical component that the liquid crystal molecules of the sub-pixel region can be vertically aligned under their action.
  • a third bias voltage is applied to the first upper substrate electrode and the second upper substrate electrode, and the first lower substrate electrode and the second lower electrode A fourth bias voltage is applied to the substrate electrode.
  • the present invention further provides a method for controlling a viewing angle of a liquid crystal display panel, wherein a pixel unit of the display area of the liquid crystal display panel includes a main pixel area and a sub-pixel area, wherein the main pixel area is a horizontal alignment, and the sub-pixel area is Vertically aligned, and in the sub-pixel region, an upper substrate electrode is disposed under the upper substrate, and a lower substrate electrode is disposed on the lower substrate; wherein, in the sub-pixel region, the upper substrate electrode and The lower substrate electrodes are all two-layer electrode structures and are symmetrically disposed with each other; the viewing angle control method includes:
  • the liquid crystal molecules of the sub-pixel region are horizontally, vertically, and obliquely arranged, thereby completing the mutual switching between the narrow viewing angle mode and the wide viewing angle mode. .
  • a bias voltage is applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region, so that an electric field formed between the upper substrate electrode and the lower substrate electrode has a sufficiently strong horizontal component Thereby, the liquid crystal molecules of the sub-pixel region are deflected to a horizontal state under their action.
  • a first bias voltage is applied to the first upper substrate electrode and the first lower substrate electrode, and the second upper substrate electrode and the second lower substrate are applied. Applying a second bias voltage to the electrode; wherein the first upper substrate electrode and the second upper substrate electrode are sequentially disposed under the upper substrate, and the first lower substrate electrode and the second lower substrate electrode are sequentially disposed on the lower substrate An insulating layer is disposed between the first upper substrate electrode and the second upper substrate electrode, and an insulating layer is disposed between the first lower substrate electrode and the second lower substrate electrode.
  • the narrow viewing angle mode when the narrow viewing angle mode is selected, if the initial state of the liquid crystal molecules of the sub-pixel region is vertically aligned, a bias voltage is not applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region;
  • the narrow viewing angle mode When the narrow viewing angle mode is selected, if the initial state of the liquid crystal molecules of the sub-pixel region is obliquely arranged, a bias voltage is applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region to cause the upper substrate electrode.
  • the electric field thus formed between the lower substrate electrode and the lower substrate electrode has a sufficiently strong vertical component such that the liquid crystal molecules of the sub-pixel region are deflected to a vertical state under their action.
  • a third bias voltage is applied to the first upper substrate electrode and the second upper substrate electrode.
  • the lower substrate electrode is sequentially disposed on the lower substrate, and an insulating layer is disposed between the first upper substrate electrode and the second upper substrate electrode, and an insulating layer is disposed between the first lower substrate electrode and the second lower substrate electrode.
  • the invention improves the upper and lower substrate electrodes of the sub-pixel region and is arranged into a two-electrode structure to facilitate forming an electric field in a horizontal or vertical direction, so that liquid crystal molecules of the sub-pixel region can be horizontally and vertically under the action of the electric field.
  • Straight and oblique arrangement thereby facilitating mutual switching between the wide viewing angle mode and the narrow viewing angle mode.
  • the technical solution provided by the invention has more outstanding effects and more stable performance.
  • FIG. 1 is a schematic view showing deflection of liquid crystal molecules of a liquid crystal display panel using a two-phase pixel design under an electric field
  • FIG. 2 is a plan view showing a pixel unit (the main pixel is in an FFS mode) of a display area of a liquid crystal display panel according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing a vertical state of liquid crystal molecules in a narrow viewing angle mode of a liquid crystal display panel according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic view showing a tilt state of liquid crystal molecules in a narrow viewing angle mode of a liquid crystal display panel according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic view showing a horizontal state of liquid crystal molecules in a wide viewing angle mode of a liquid crystal display panel according to Embodiment 2 of the present invention.
  • FIG. 6 is a top plan view of a pixel unit (the main pixel is in an IPS mode) according to another embodiment of the present invention.
  • the liquid crystal display panel provided by the present invention is based on a hybrid alignment technique to realize switching of display modes (wide viewing angle and narrow viewing angle).
  • the liquid crystal display panel of the first embodiment of the present invention includes an upper substrate and a lower substrate parallel to each other, and a liquid crystal layer between the upper substrate and the lower substrate. It should be noted that since the technical solution of the present invention is applicable to both a positive liquid crystal and a blue phase liquid crystal, the liquid crystal material of the liquid crystal layer is not limited.
  • 2 is a plan view of a pixel unit in a display area of a liquid crystal display panel according to Embodiment 1 of the present invention. As can be seen from FIG. 2, the pixel cells located in the display area are mainly divided into two regions of the main pixel region 100 and the sub-pixel region 200.
  • the main pixel region 100 is horizontally aligned and is an electrode structure based on the FFS display mode in which a plurality of strip-shaped pixel electrodes 110 are arranged on the lower substrate 20.
  • Subpixel The area 100 is a vertical alignment and is a VA-like display mode.
  • upper substrate electrodes 210 and lower substrate electrodes 220 corresponding to each other are disposed on the lower substrate 10 and the lower substrate 20, respectively.
  • the electrode direction in the main pixel region 100 is substantially perpendicular to the electrode direction in the sub-pixel region 200, and may be formed at an angle of, for example, about 83 degrees (not shown).
  • FIGS. 3 to 5 a cross-sectional view of the main pixel region 100 in the direction of the AB dotted line and a cross-sectional view of the sub-pixel region 200 in the direction of the CD dotted line are simultaneously displayed in each of the figures.
  • the left side of the broken line in FIG. 3 that is, the area shown in FIG. 3(a) is a cross-sectional view of the sub-pixel area 200 in the direction of the CD dotted line
  • FIG. 3 that is, the area shown in FIG. 3(b) is A cross-sectional view of the main pixel region 100 in the direction of the AB dotted line.
  • the sub-pixel region 200 of the region of FIG. 3(a) is not physically adjacent to the main pixel region 100 of the region of FIG. 3(b).
  • the upper substrate electrode 210 and the lower substrate electrode 220 are both double-layer electrode structures.
  • the two-layer electrode structure of the upper substrate electrode 210 is mainly arranged by sequentially arranging the first upper substrate electrode 211 and the insulating layer in the order from top to bottom (in the figure).
  • the second upper substrate electrode 212 is configured;
  • the double-layer electrode structure of the lower substrate electrode 220 is mainly arranged by sequentially arranging the first lower substrate electrode 221 and the insulating layer (not shown) in order from bottom to top.
  • the second lower substrate electrode 222 is configured.
  • the first upper substrate electrode 211 and the first lower substrate electrode 221 correspond to each other, and are in a planar structure in this embodiment; the second upper substrate electrode 212 and the second lower substrate electrode 222 correspond to each other, in this embodiment. All are strip structures. Such a symmetrical structure contributes to the formation of a symmetrically distributed electric field.
  • each of the above electrodes may be made of a transparent conductive material.
  • the transparent conductive material includes one or a combination of ITO, IZO, or IGO.
  • color filter color resistance may not be set in the sub-pixel region and the region for controlling the viewing angle.
  • liquid crystal orientations can be realized for the main pixel region and the sub-pixel region, respectively, in the following two manners.
  • the mask region may be first covered by the mask, and after the horizontal alignment is performed on the main pixel region (for example, by optical alignment technology), the mask is used to cover the main layer.
  • the pixel area completes the vertical alignment to the sub-pixel area.
  • the vertical alignment film may be formed first in the sub-pixel region without applying a rubbing process, then the horizontal alignment film is coated on the vertical alignment film, and then the rubbing is performed. Process to achieve horizontal alignment. Thereafter, the horizontal alignment film on the vertical alignment film of the sub-pixel region is selectively removed by photolithography, thereby exposing the vertical alignment film of the sub-pixel region.
  • the main pixel region 100 is in a dark state (the liquid crystal is pointed as shown). Regardless of whether the sub-pixel region 200 is controlled to have a wide viewing angle or a narrow viewing angle, the liquid crystal of the sub-pixel region 200 is rotated in the initial direction (dark state) of the liquid crystal parallel to the main pixel region 100. Such a sub-pixel region 200 does not affect the dark state of the main pixel region 100.
  • the technical solution of the present invention is to form a certain form of electric field distribution by controlling a bias voltage on each electrode based on the above-mentioned mixed-aligned pixel unit, so that liquid crystal molecules are correspondingly deflected under the influence of the electric field, thereby achieving narrow The mutual switching between the viewing angle display and the wide viewing angle display.
  • a bias voltage is applied to the pixel electrode 110 and the common electrode 120 of the horizontally aligned main pixel region 100, the liquid crystal molecules of the main pixel region 100 are rotated in a plane parallel to the upper and lower substrates.
  • the initial state of the liquid crystal molecules of the sub-pixel region of the region of FIG. 3(a) is vertically arranged.
  • the vertical arrangement here means that the liquid crystal molecules have a high pretilt angle of approximately 90 degrees. In this embodiment, the pretilt angle is about 87 degrees.
  • a corresponding voltage can be applied only to the electrodes (pixel electrodes and/or common electrodes) in the main pixel region. Since the main pixel region is horizontally aligned, the liquid crystal molecules of the main pixel region rotate in a plane parallel to the upper and lower substrates. By controlling the magnitude of the voltage, the angle of rotation of the liquid crystal molecules in a plane parallel to the upper and lower substrates can be changed. At the same time, since the bias voltage is not applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region, the liquid crystal molecules of the sub-pixel region still maintain a high pretilt angle. In this case, when the display screen is viewed at a large angle of view, lateral light leakage occurs in the sub-pixel region, and the liquid crystal display panel can thereby realize a narrow viewing angle display.
  • the bias voltage applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region is small, the degree of liquid crystal molecules is not deflected, or the liquid crystal molecules are rotated by a certain angle, but not completely flat, then Lateral light leakage also occurs in the sub-pixel area, and the liquid crystal display panel can thereby achieve a narrow viewing angle display.
  • the bias voltage applied to the first upper substrate electrode 211 and the first lower substrate electrode 221 is 0 volts
  • the bias voltage applied to the second upper substrate electrode 212 and the second lower substrate electrode 222 is 1.5.
  • the electric field formed between the upper and lower substrates of the sub-pixel region is mainly a horizontal component (weak), and the vertical components are weakened to each other because of the opposite directions.
  • this electric field although the liquid crystal molecules are inclined but not completely dumped into a flat shape, a narrow viewing angle display can also be realized, as shown in the area of Fig. 4(a).
  • the horizontal component of the electric field formed between the upper substrate electrode and the lower substrate electrode is also continuously enhanced.
  • the liquid crystal molecules of the sub-pixel region can be completely poured into a flat shape.
  • the bias voltage applied to the first upper substrate electrode 211 and the first lower substrate electrode 221 is 0 volts
  • the bias voltage applied to the second upper substrate electrode 212 and the second lower substrate electrode 222 is 6 volts.
  • the liquid crystal molecules of the sub-pixel region are completely poured and arranged horizontally as shown in the area of Fig. 5(a). In this case, the sub-pixel area does not leak light at a large viewing angle, and the liquid crystal display panel realizes a wide viewing angle display.
  • the main pixel region is a normal FFS display mode. Since it is a prior art, the liquid crystal molecular deflection of the main pixel region will not be described herein.
  • the initial state of the liquid crystal molecules of the sub-pixel region is obliquely arranged.
  • the oblique arrangement herein refers to a state in which the liquid crystal molecules have a certain high pretilt angle but are not completely tilted.
  • the principle of achieving wide-angle viewing angle switching is the same as that of the second embodiment except that the bias voltage is applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region.
  • the bias voltage applied to the upper substrate electrode and the lower substrate electrode of the sub-pixel region requires an electric field thus formed between the upper substrate electrode and the lower substrate electrode.
  • a sufficiently strong vertical component allows the liquid crystal molecules to stand up completely for a narrow viewing angle display.
  • the bias voltage applied to the first upper substrate electrode 211 and the second upper substrate electrode 212 is +3 volts
  • the bias voltage applied to the first lower substrate electrode 221 and the second lower substrate electrode 222 is - At 3 volts
  • the electric field formed between the upper and lower substrates of the sub-pixel region is mainly a vertical electric field. Under the action of this electric field, the liquid crystal molecules stand up completely and are in a vertical state. In this case, when the display screen is viewed at a large angle of view, lateral light leakage occurs in the sub-pixel region, and the liquid crystal display panel can thereby realize a narrow viewing angle display.
  • the electric field formed between the upper substrate electrode and the lower substrate electrode can have a sufficiently strong horizontal component, thereby The liquid crystal molecules of the sub-pixel region change from a tilted state to a flat state. At this time, the sub-pixel area does not leak light at a large viewing angle, and the liquid crystal display panel thus realizes a wide viewing angle display.
  • the voltages of the first and second upper substrate electrodes and the first and second lower substrate electrodes of the sub-pixel region can be directly controlled by a transistor, but can be directly obtained by a signal line electrically connected thereto.
  • the method for controlling the viewing angle of the invention to achieve narrow and wide viewing angle switching is not limited to the pixel unit in which the main pixel shown in FIG. 2 is an FFS mode electrode structure, and the main pixel shown in FIG. 6 is an IPS mode electrode.
  • the pixel unit of the structure, the present invention can also achieve the expected technical effects.
  • controlling the pixel structure that realizes a narrow, wide viewing angle is not only a scenario as shown in FIGS. 2 and 6, but also a pixel can be controlled from a single viewing angle.
  • the color filter color resist may not be disposed at the substrate position of the sub-pixel unit and the viewing angle control pixel, and may be hollowed out or set to W display.
  • the present invention provides a two-electrode structure by modifying the upper and lower substrate electrodes of the sub-pixel region to facilitate formation of an electric field in a horizontal or vertical direction, so that liquid crystal molecules of the sub-pixel region are under the action of the electric field. It can be arranged horizontally, vertically, and obliquely, thereby facilitating mutual switching between the wide viewing angle mode and the narrow viewing angle mode.
  • the technical solution provided by the invention has more outstanding effects and more stable performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

视角可调控的液晶显示面板及其视角调控方法。液晶显示面板显示区的像素单元包括主像素区(100)和次像素区(200):主像素区(100)为水平配向;次像素区(200)为垂直配向,并且在次像素区(200)内,上基板(10)和下基板(20)上分别设置相互对应的上基板电极(210)和下基板电极(220),且上基板电极(210)和下基板电极(220)均为双层电极结构。上基板电极(210)和下基板电极(220)上施加有偏置电压,在其作用下,次像素区(200)的液晶分子能够水平、竖直、倾斜排列,从而实现窄视角模式与广视角模式的相互切换。

Description

一种视角可调控的液晶显示面板及其视角调控方法
本申请要求享有2015年10月28日提交的名称为“一种视角可调控的液晶显示面板及其视角调控方法”的中国专利申请为CN201510713568.2的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示技术,尤其指一种视角可调控的液晶显示面板及其视角调控方法。
背景技术
可视角范围(简称可视角)是液晶显示面板的一个重要的性能指标。液晶显示面板需要通过调节液晶分子的排布来改变光线的偏振状态,进而控制上下偏光层之间的通光量
进而实现显示功能。故,由于液晶分子的光学各向异性的影响,液晶显示器的可视角小于阴极射线管显示器的可视角。随着技术的不断发展,为了增大液晶显示器的可视角,多筹垂直取向(MVA)模式、面内转换(IPS)模式、边缘电场转换(FFS)模式等技术被相继提出,且实现了液晶显示器的广视角显示。
虽然现在的液晶显示面板已经朝着广视角的方向发展,但是在某些情况下液晶显示面板还需要具备广视角与窄视角相互切换的功能。对于手机、掌上电脑、笔记本电脑等采用液晶显示器的便携式电子设备而言,这种需求尤其突出。例如,有时用户需要与他人分享便携式电子设备显示的图像,而有时出于保护个人隐私的原因用户不希望他人看到便携式电子设备显示的图像。因此,有必要提供一种视角可调控的液晶显示面板。
在现有技术中,为了实现广视角与窄视角相互切换,研究人员提出了以下几种解决方案。
1、利用百叶遮挡膜。当用户希望液晶显示面板窄视角显示图像时,将百叶遮挡膜附在液晶显示面板的屏幕上。这种方法需要用户随身携带百叶遮挡膜,并 且操作十分不便。
2、采用双背光系统。双背光系统法是用一个普通背光系统实现广视角显示,用另一个准直背光系统实现窄视角显示。这种方法无疑会增加液晶显示面板的制造成本、厚度以及能耗。
3、采用不对称电极。即,采用不对称的电极设计搭配相应的驱动方法。这种方法通常需要多个电极驱动,实施较复杂。
上述液晶显示面板在尺寸和能耗方面都不能满足当前便携式电子设备的要求。虽然现有技术中,也有采用两相像素技术的液晶显示面板,通过控制下基板电极的电压,让液晶分子按照一定的角度偏转,从而实现广视角和窄视角显示模式的切换。图1是该液晶显示面板的液晶分子在电场作用下发生偏转的示意图。其中,在上基板10和下基板20之间是液晶层,像素单元被分成了主像素区100和次像素区200,在这两个像素区的下基板上设置了面状的公共电极110和条状的像素电极120,公共电极110与像素电极120之间是用于阻隔的绝缘层112。通过公共电极110与像素电极120上不同的电压而产生的电场会作用在相应的液晶分子上。这种方式所产生的电场较弱,视角控制效果较差。
为此,本发明的发明人基于从事液晶显示面板设计制造的实务经验和相关的专业知识,提出一种新的视角可调控的液晶显示面板及其视角调控方法,以满足手机等便携式电子设备对电路稳定性、重量以及能耗的高要求。
发明内容
针对上述问题,本发明提出了一种新的视角可调控的液晶显示面板及其视角调控方法。
本发明提供的一种视角可调控的液晶显示面板,包括上、下基板和位于所述上、下基板之间的液晶层,其中:
位于显示区的像素单元包括主像素区和次像素区;
所述主像素区为水平配向;
所述次像素区为垂直配向,并且在所述次像素区内,所述上基板下设置有上基板电极,所述下基板上设置有下基板电极;
其中,在所述次像素区内,所述上基板电极和下基板电极均为双层电极结构且彼此对称设置,所述上基板电极和下基板电极上施加有偏置电压,在其作用下, 所述次像素区的液晶分子能够水平、竖直、倾斜排列,从而实现窄视角模式与广视角模式的相互切换。
根据本发明的实施例一,上述上基板电极的双层电极结构包括在所述上基板下依次布设的第一上基板电极、绝缘层和第二上基板电极;
所述下基板电极的双层电极结构包括在所述下基板上依次布设的第一下基板电极、绝缘层和第二下基板电极;
所述第一上、下基板电极为面状,所述第二上、下基板电极为条状。
进一步地,在广视角模式下:
在所述次像素区内,所述上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的水平分量,使得所述次像素区的液晶分子能够在其作用下水平排列。
根据本发明的实施例二和实施例三,在广视角模式下:
所述第一上基板电极与第一下基板电极上施加有第一偏置电压,所述第二上基板电极与第二下基板电极上施加有第二偏置电压。
进一步地,在窄视角模式下:
若所述次像素区的液晶分子的初始状态为竖直排列,则所述次像素区的上基板电极和下基板电极上无需施加偏置电压。
若所述次像素区的液晶分子的初始状态为倾斜排列,则所述次像素区的上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,使得所述次像素区的液晶分子能够在其作用下竖直排列。
根据本发明的实施例三,在窄视角模式下:
若所述次像素区的液晶分子的初始状态为倾斜排列,则所述第一上基板电极与第二上基板电极上施加有第三偏置电压,所述第一下基板电极与第二下基板电极上施加有第四偏置电压。
此外,本发明还提供一种液晶显示面板的视角调控方法,所述液晶显示面板显示区的像素单元包括主像素区和次像素区,所述主像素区为水平配向,所述次像素区为垂直配向,并且在所述次像素区内,所述上基板下设置有上基板电极,所述下基板上设置有下基板电极;其中,在所述次像素区内,所述上基板电极和下基板电极均为双层电极结构且彼此对称设置;所述视角调控方法包括:
通过控制所述次像素区的上基板电极和下基板电极上的偏置电压,使得所述次像素区的液晶分子水平、竖直、倾斜排列,从而完成窄视角模式与广视角模式的相互切换。
进一步地,当选择广视角模式时,对所述次像素区的上基板电极和下基板电极施加偏置电压,使所述上基板电极和下基板电极之间形成的电场具有足够强的水平分量,从而使得所述次像素区的液晶分子在其作用下偏转至水平状态。
根据本发明的实施例二和实施例三,当选择广视角模式时,对第一上基板电极与第一下基板电极上施加第一偏置电压,对第二上基板电极与第二下基板电极上施加第二偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。。
进一步地,当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为竖直排列,则不对所述次像素区的上基板电极和下基板电极上施加偏置电压;
当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对所述次像素区的上基板电极和下基板电极上施加偏置电压,使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,从而使得所述次像素区的液晶分子在其作用下偏转至竖直状态。
根据本发明的实施例三,当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对第一上基板电极与第二上基板电极施加第三偏置电压,对第一下基板电极与第二下基板电极施加第四偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:
本发明通过对次像素区的上、下基板电极进行改进,设置成双电极结构,以便利于形成水平或竖直方向的电场,使得次像素区的液晶分子在该电场的作用下能够水平、竖直、倾斜排列,从而方便地实现广视角模式和窄视角模式之间的相互切换。相较于现有技术,本发明提供的技术方案,效果更突出,性能更稳定。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书 中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是现有的采用两相像素设计的液晶显示面板的液晶分子在电场作用下发生偏转的示意图;
图2是本发明实施例一的液晶显示面板的显示区的一个像素单元(主像素为FFS模式)的俯视图;
图3是本发明实施例二的液晶显示面板在窄视角模式下的液晶分子的竖直状态的示意图;
图4是本发明实施例二的液晶显示面板在窄视角模式下的液晶分子的倾斜状态的示意图;
图5是本发明实施例二的液晶显示面板在广视角模式下的液晶分子的水平状态的示意图。
图6是本发明另一实施例的一个像素单元(主像素为IPS模式)的俯视图。
具体实施方式
本发明提供的液晶显示面板是基于混合配向技术来实现显示模式(广视角和窄视角)的切换。为使本发明的目的、技术方案和优点更加清楚,以下结合实施例和附图对本发明的技术方案作进一步地详细说明。
实施例一
与现有技术相同,本发明实施例一的液晶显示面板包括相互平行的上基板和下基板,以及位于上基板与下基板之间的液晶层。需要说明的是,由于本发明的技术方案既适用于正性液晶,也适用于蓝相液晶,因此对液晶层的液晶材料不做限定。图2是本发明实施例一的液晶显示面板的位于显示区内的一个像素单元的俯视图。从图2中可以看出,位于显示区的像素单元主要分为主像素区100和次像素区200两个区域。主像素区100为水平配向,是基于FFS显示模式的电极结构:在主像素区100内,在下基板20上排布了若干条形的像素电极110。次像素 区100为垂直配向,是类VA显示模式。为此,在次像素区200内,在上基板10下和下基板20上分别设置了相互对应的上基板电极210和下基板电极220。
在本实施例中,主像素区100中的电极方向与次像素区200中的电极方向大致垂直,可以成例如83度左右的夹角(图中未示出)。为方便说明,在图3至图5中,每个图中同时显示主像素区100沿AB虚线方向的截面图和次像素区200沿CD虚线方向的截面图。例如,在图3中虚线的左边,即图3(a)区显示的是次像素区200沿CD虚线方向的截面图,在图3中虚线的右边,即图3(b)区显示的是主像素区100沿AB虚线方向的截面图。但是在实际器件中,图3(a)区的次像素区200与图3(b)区的主像素区100在物理结构上并不相邻。
与现有技术不同,上基板电极210和下基板电极220均为双层电极结构。从图3至图5中可以看出,在次像素区100中:上基板电极210的双层电极结构主要由按照从上至下的顺序依次布设第一上基板电极211、绝缘层(图中未示出)、第二上基板电极212构成;下基板电极220的双层电极结构主要由按照从下至上的顺序依次布设第一下基板电极221、绝缘层(图中未示出)、第二下基板电极222构成。而且,第一上基板电极211与第一下基板电极221相互对应,在本实施例中均为面状结构;第二上基板电极212与第二下基板电极222相互对应,在本实施例中均为条状结构。这样的对称结构有助于形成对称分布的电场。
与现有技术类似,上述各电极均可以均采用透明的导电材料制成。所述透明导电材料包括ITO、IZO或IGO中的一种或其组合。
另外,为了达到更好的效果,在次像素区和用于控制视角的区域可以不用设置彩色滤光色阻。
此外,在本实施例中,可以通过以下两种方式对主像素区和次像素区分别实现不同的液晶取向。
1、如果使用同一种聚炳亚胺材料制作配向膜PI,则可以首先利用掩膜覆盖次像素区,在对主像素区(例如通过光配向技术)完成水平配向后,再利用掩膜覆盖主像素区对次像素区完成垂直配向。
2、如果使用不同的聚炳亚胺材料制作配向膜PI,则可以不经过摩擦制程,而是首先在次像素区形成垂直配向膜,接着在垂直配向膜上涂布水平配向膜,然后执行摩擦制程以实现水平配向。之后,通过光刻选择性地去除次像素区的垂直配向膜上的水平配向膜,从而露出次像素区的垂直配向膜。
应当说明的是,主像素区100暗态时(液晶指向如图所示)。无论次像素区200被控制为广视角还是窄视角,次像素区200的液晶都以平行于主像素区100的液晶初始方向(暗态)进行转动。这样次像素区200才不会影响主像素区100正视的的暗态。
本发明的技术方案旨在,基于上述混合配向的像素单元,通过控制各电极上的偏置电压,形成一定形式的电场分布,使得液晶分子在该电场的影响下发生相应的偏转,进而实现窄视角显示与广视角显示之间的相互切换。在实施例一中,当对水平配向的主像素区100的像素电极110和公共电极120施加偏置电压时,主像素区100的液晶分子会在平行于所述上、下基板的平面内旋转;当对垂直配向的次像素区200的第一上基板电极211和第二上基板电极212,以及第一下基板电极221和第二下基板电极222施加偏置电压时,次像素区200的液晶分子会在垂直于所述上、下基板的平面内旋转。
下面通过实施例二和实施例三进一步地说明视角调控(切换)方法的工作原理。
实施例二
如图3所示,在实施例二中,图3(a)区的次像素区的液晶分子的初始状态呈竖直排列。需要说明的是,这里的竖直排列是指液晶分子具有很高的、近似于90度的预倾角。在本实施例中,该预倾角约为87度。
在窄视角模式下,可以仅对主像素区中的电极(像素电极和/或公共电极)施加相应的电压。由于主像素区为水平配向,主像素区的液晶分子在平行于上、下基板的平面内旋转。通过控制电压的大小,可以改变液晶分子在平行于上、下基板的平面内的旋转角度。同时,由于不对次像素区的上基板电极和下基板电极施加偏置电压,因此次像素区的液晶分子仍然保持高的预倾角。在这种情况下,当大视角地观看显示屏时,次像素区会出现侧向漏光,液晶显示面板因此能够实现窄视角显示。
当然,如果对次像素区的上基板电极和下基板电极施加的偏置电压很小,还未达到使得液晶分子偏转的程度,或者使得液晶分子旋转了一定的角度,但未完全平躺,那么次像素区也会出现侧向漏光,液晶显示面板由此也能够实现窄视角显示。例如,当第一上基板电极211与第一下基板电极221上所施加的偏置电压为0伏,第二上基板电极212与第二下基板电极222上所施加的偏置电压为1.5 伏时,由于叠加作用,次像素区的上、下基板之间所形成的电场主要是水平分量(较弱),而竖直分量则因为方向相反而彼此消弱。在这种电场的作用下,液晶分子虽然倾斜但是没有完全倾倒成平躺状,因此也可以实现窄视角显示,如图4(a)区所示。
当不断提高次像素区的上基板电极和下基板电极上的偏置电压时,上基板电极和下基板电极之间所形成的电场的水平分量也在不断增强。只要上基板电极和下基板电极之间的电场水平分量足够强,就能够使得次像素区的液晶分子完全地倾倒成平躺状。例如,当第一上基板电极211与第一下基板电极221上所施加的偏置电压为0伏,第二上基板电极212与第二下基板电极222上所施加的偏置电压为6伏时,次像素区的液晶分子完全倾倒,呈水平排列,如图5(a)区所示。在此情况下,次像素区大视角不再漏光,液晶显示面板实现了广视角显示。
无论在广视角还是在窄视角模式下,主像素区都是正常的FFS显示模式,由于是现有技术,此处对主像素区的液晶分子偏转情况不做赘述。
实施例三
在实施例三中,次像素区的液晶分子的初始状态呈倾斜排列。需要说明的是,这里的倾斜排列是指液晶分子具有一定的较高的预倾角,但未完全倾倒的状态。在这种情况下,实现宽窄视角切换的原理与实施例二相同,只是对次像素区的上基板电极和下基板电极施加偏置电压的方式不同。
在这种情况下,由于液晶分子的初始状态为倾斜排列,因此对次像素区的上基板电极和下基板电极施加的偏置电压,需要上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,使得液晶分子完全站立起来,才能实现窄视角显示。例如,当第一上基板电极211与第二上基板电极212上所施加的偏置电压为+3伏,第一下基板电极221与第二下基板电极222上所施加的偏置电压为-3伏时,次像素区的上、下基板之间所形成的电场主要是竖直电场。在这种电场的作用下,液晶分子完全站立起来,呈竖直状态。在这种情况下,当大视角地观看显示屏时,次像素区会出现侧向漏光,液晶显示面板因此能够实现窄视角显示。
与实施例二的原理相同,通过控制次像素区的上基板电极和下基板电极上的偏置电压,可以使得上基板电极和下基板电极之间形成的电场具有足够强的水平分量,从而使得次像素区的液晶分子从倾斜状态变成平躺状态。此时,次像素区大视角不再漏光,液晶显示面板因此而实现广视角显示。
上述实施例中,次像素区的第一、第二上基板电极和第一、第二下基板电极的电压可以不用晶体管控制,而是通过与其电性连接的信号线直接获得。
另外应当说明的是,本发明控制实现窄、广视角切换的视角调控方法不局限于图2所示的主像素为FFS模式电极结构的像素单元,对于图6所示的主像素为IPS模式电极结构的像素单元,本发明同样也可以达到预期的技术效果。
此外,控制实现窄、宽视角的像素结构也不仅仅是图2和图6所示一种情景,也可以单独的视角控制像素。另外为了实现更有益的窄视角,可以在次像素单元和视角控制像素的基板位置不设置彩色滤光色阻,可以镂空,也可以设置为W显示。
言而总之,本发明通过对次像素区的上、下基板电极进行改进,设置成双电极结构,以便利于形成水平或竖直方向的电场,使得次像素区的液晶分子在该电场的作用下能够水平、竖直、倾斜排列,从而方便地实现广视角模式和窄视角模式之间的相互切换。相较于现有技术,本发明提供的技术方案,效果更突出,性能更稳定。
上述仅为本发明的具体实施案例,本发明的保护范围并不局限于此,任何熟悉本技术的技术人员在本发明所述的技术规范内,对本发明的修改或替换,都应在本发明的保护范围之内。

Claims (19)

  1. 一种视角可调控的液晶显示面板,包括上、下基板和位于所述上、下基板之间的液晶层,其中:
    位于显示区的像素单元包括主像素区和次像素区;
    所述主像素区为水平配向;
    所述次像素区为垂直配向,并且在所述次像素区内,所述上基板下设置有上基板电极,所述下基板上设置有下基板电极;
    其中,在所述次像素区内,所述上基板电极和下基板电极均为双层电极结构且彼此对称设置,所述上基板电极和下基板电极上施加有偏置电压,在其作用下,所述次像素区的液晶分子能够水平、竖直、倾斜排列,从而实现窄视角模式与广视角模式的相互切换。
  2. 如权利要求1所述的液晶显示面板,其中:
    所述上基板电极的双层电极结构包括在所述上基板下依次布设的第一上基板电极、绝缘层和第二上基板电极;
    所述下基板电极的双层电极结构包括在所述下基板上依次布设的第一下基板电极、绝缘层和第二下基板电极;
    所述第一上、下基板电极为面状,所述第二上、下基板电极为条状。
  3. 如权利要求2所述的液晶显示面板,其中,在广视角模式下:
    在所述次像素区内,所述上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的水平分量,使得所述次像素区的液晶分子能够在其作用下水平排列。
  4. 如权利要求3所述的液晶显示面板,其中,在广视角模式下:
    所述第一上基板电极与第一下基板电极上施加有第一偏置电压,所述第二上基板电极与第二下基板电极上施加有第二偏置电压。
  5. 如权利要求2所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为竖直排列,则所述次像素区的上基板电极和下基板电极上无需施加偏置电压。
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述次像素区的上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,使得所述次像素区的液晶分子能够在其作用下竖直排列。
  6. 如权利要求5所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述第一上基板电极与第二上基板电极上施加有第三偏置电压,所述第一下基板电极与第二下基板电极上施加有第四偏置电压。
  7. 如权利要求3所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为竖直排列,则所述次像素区的上基板电极和下基板电极上无需施加偏置电压。
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述次像素区的上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,使得所述次像素区的液晶分子能够在其作用下竖直排列。
  8. 如权利要求7所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述第一上基板电极与第二上基板电极上施加有第三偏置电压,所述第一下基板电极与第二下基板电极上施加有第四偏置电压。
  9. 如权利要求4所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为竖直排列,则所述次像素区的上基板电极和下基板电极上无需施加偏置电压。
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述次像素区的上基板电极和下基板电极上施加的偏置电压,要使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,使得所述次像素区的液晶分子能够在其作用下竖直排列。
  10. 如权利要求9所述的液晶显示面板,其中,在窄视角模式下:
    若所述次像素区的液晶分子的初始状态为倾斜排列,则所述第一上基板电极与第二上基板电极上施加有第三偏置电压,所述第一下基板电极与第二下基板电极上施加有第四偏置电压。
  11. 一种液晶显示面板的视角调控方法,所述液晶显示面板显示区的像素单元包括主像素区和次像素区,所述主像素区为水平配向,所述次像素区为垂直配向,并且在所述次像素区内,所述上基板下设置有上基板电极,所述下基板上设置有下基板电极;其中,在所述次像素区内,所述上基板电极和下基板电极均为双层电极结构且彼此对称设置;所述视角调控方法包括:
    通过控制所述次像素区的上基板电极和下基板电极上的偏置电压,使得所述次像素区的液晶分子水平、竖直、倾斜排列,从而完成窄视角模式与广视角模式的相互切换。
  12. 如权利要求11所述的液晶显示面板的视角调控方法,其中:
    当选择广视角模式时,对所述次像素区的上基板电极和下基板电极施加偏置电压,使所述上基板电极和下基板电极之间形成的电场具有足够强的水平分量,从而使得所述次像素区的液晶分子在其作用下偏转至水平状态。
  13. 如权利要求12所述的液晶显示面板的视角调控方法,其中:
    当选择广视角模式时,对第一上基板电极与第一下基板电极上施加第一偏置电压,对第二上基板电极与第二下基板电极上施加第二偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。
  14. 如权利要求11所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为竖直排列,则不对所述次像素区的上基板电极和下基板电极上施加偏置电压;
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对所述次像素区的上基板电极和下基板电极上施加偏置电压,使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,从而使得所述次像素区的液晶分子在其作用下偏转至竖直状态。
  15. 如权利要求14所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对第一上基板电极与第二上基板电极施加第三偏置电压,对第一下基板电极与第二下基板电极施加第四偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。
  16. 如权利要求12所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为竖直排列,则不对所述次像素区的上基板电极和下基板电极上施加偏置电压;
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列, 则对所述次像素区的上基板电极和下基板电极上施加偏置电压,使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,从而使得所述次像素区的液晶分子在其作用下偏转至竖直状态。
  17. 如权利要求16所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对第一上基板电极与第二上基板电极施加第三偏置电压,对第一下基板电极与第二下基板电极施加第四偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。
  18. 如权利要求13所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为竖直排列,则不对所述次像素区的上基板电极和下基板电极上施加偏置电压;
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对所述次像素区的上基板电极和下基板电极上施加偏置电压,使所述上基板电极和下基板电极之间由此形成的电场具有足够强的竖直分量,从而使得所述次像素区的液晶分子在其作用下偏转至竖直状态。
  19. 如权利要求18所述的液晶显示面板的视角调控方法,其中:
    当选择窄视角模式时,若所述次像素区的液晶分子的初始状态为倾斜排列,则对第一上基板电极与第二上基板电极施加第三偏置电压,对第一下基板电极与第二下基板电极施加第四偏置电压;其中,第一上基板电极和第二上基板电极依次布设在所述上基板下,第一下基板电极和第二下基板电极依次布设在所述下基板上,且第一上基板电极与第二上基板电极之间设置有绝缘层,第一下基板电极与第二下基板电极之间设置有绝缘层。
PCT/CN2015/095398 2015-10-28 2015-11-24 一种视角可调控的液晶显示面板及其视角调控方法 WO2017070996A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/907,946 US10747034B2 (en) 2015-10-28 2015-11-24 Liquid crystal display panel with adjustable viewing angle and method for adjusting the viewing angle thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510713568.2 2015-10-28
CN201510713568.2A CN105204245B (zh) 2015-10-28 2015-10-28 一种视角可调控的液晶显示面板及其视角调控方法

Publications (1)

Publication Number Publication Date
WO2017070996A1 true WO2017070996A1 (zh) 2017-05-04

Family

ID=54952005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095398 WO2017070996A1 (zh) 2015-10-28 2015-11-24 一种视角可调控的液晶显示面板及其视角调控方法

Country Status (3)

Country Link
US (1) US10747034B2 (zh)
CN (1) CN105204245B (zh)
WO (1) WO2017070996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991970A (zh) * 2021-02-06 2021-06-18 业成科技(成都)有限公司 发光组件及应用其的显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102577171B1 (ko) * 2016-10-31 2023-09-08 엘지디스플레이 주식회사 표시장치와 그의 구동방법
CN107238984B (zh) * 2017-08-04 2021-01-26 京东方科技集团股份有限公司 显示装置、液晶显示面板及其驱动方法
CN108490696B (zh) * 2018-05-11 2021-03-23 昆山龙腾光电股份有限公司 液晶显示装置及其视角切换方法
CN108646493B (zh) * 2018-07-03 2021-01-22 京东方科技集团股份有限公司 一种显示装置
US11500232B2 (en) * 2018-10-19 2022-11-15 Sharp Kabushiki Kaisha View angle control device
US11073736B2 (en) * 2018-10-23 2021-07-27 Sharp Kabushiki Kaisha View angle control device
CN111142300B (zh) * 2020-02-26 2022-09-27 上海天马微电子有限公司 显示装置、显示装置的制作方法以及控制方法
CN112162422B (zh) * 2020-09-29 2022-09-23 海信视像科技股份有限公司 显示面板及显示装置
CN113267924B (zh) * 2021-05-07 2023-01-10 惠州市华星光电技术有限公司 显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201145790Y (zh) * 2007-11-06 2008-11-05 上海广电光电子有限公司 视角可调的液晶显示装置
CN101526702A (zh) * 2008-03-04 2009-09-09 上海天马微电子有限公司 视角可控的液晶显示装置及其驱动方法
KR20100046826A (ko) * 2008-10-28 2010-05-07 전북대학교산학협력단 시야각 조절 액정표시장치
KR101026035B1 (ko) * 2009-07-08 2011-03-30 전북대학교산학협력단 수직 전기장과 광학적으로 등방성인 액정혼합물을 이용한 시야각 스위칭 액정 표시 소자
CN102331646A (zh) * 2011-08-30 2012-01-25 福州华映视讯有限公司 显示面板
KR101291863B1 (ko) * 2006-12-21 2013-07-31 엘지디스플레이 주식회사 액정표시장치
CN104181736A (zh) * 2014-08-01 2014-12-03 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN104460138A (zh) * 2014-12-31 2015-03-25 深圳市华星光电技术有限公司 一种可切换视角的液晶显示面板及其驱动方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291863B1 (ko) * 2006-12-21 2013-07-31 엘지디스플레이 주식회사 액정표시장치
CN201145790Y (zh) * 2007-11-06 2008-11-05 上海广电光电子有限公司 视角可调的液晶显示装置
CN101526702A (zh) * 2008-03-04 2009-09-09 上海天马微电子有限公司 视角可控的液晶显示装置及其驱动方法
KR20100046826A (ko) * 2008-10-28 2010-05-07 전북대학교산학협력단 시야각 조절 액정표시장치
KR101026035B1 (ko) * 2009-07-08 2011-03-30 전북대학교산학협력단 수직 전기장과 광학적으로 등방성인 액정혼합물을 이용한 시야각 스위칭 액정 표시 소자
CN102331646A (zh) * 2011-08-30 2012-01-25 福州华映视讯有限公司 显示面板
CN104181736A (zh) * 2014-08-01 2014-12-03 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN104460138A (zh) * 2014-12-31 2015-03-25 深圳市华星光电技术有限公司 一种可切换视角的液晶显示面板及其驱动方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991970A (zh) * 2021-02-06 2021-06-18 业成科技(成都)有限公司 发光组件及应用其的显示装置

Also Published As

Publication number Publication date
US20180067345A1 (en) 2018-03-08
CN105204245A (zh) 2015-12-30
CN105204245B (zh) 2017-12-05
US10747034B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2017070996A1 (zh) 一种视角可调控的液晶显示面板及其视角调控方法
WO2016106883A1 (zh) 一种可切换视角的液晶显示面板及其驱动方法
TWI640822B (zh) 視角可切換的液晶顯示裝置及其視角切換方法
JP4543006B2 (ja) 液晶表示素子及びその製造方法
TWI507799B (zh) Display devices and electronic machines
JP5552518B2 (ja) 液晶表示装置
US9612486B2 (en) Liquid crystal display device
TWI421576B (zh) 可調整視角之液晶顯示面板
US9019454B2 (en) Liquid crystal display
WO2018036028A1 (zh) 像素电极
US20210286206A1 (en) Viewing angle switchable liquid crystal display device and viewing angle switching method
JP2009069816A (ja) 液晶パネル及び液晶表示装置
KR20170012515A (ko) 액정 표시 장치 및 전자 기기
TW201617708A (zh) 藍相液晶顯示面板
WO2016090751A1 (zh) 液晶显示面板
CN108490696B (zh) 液晶显示装置及其视角切换方法
KR100810302B1 (ko) 프린즈필드스위칭 액정표시소자의 시야각 조절 방법
GB2409757A (en) Liquid crystal display device
WO2019015295A1 (zh) 像素结构、阵列基板及液晶显示装置
US8610653B2 (en) Liquid crystal display panel and liquid crystal display device
WO2017219403A1 (zh) 可切换视角的液晶面板及液晶显示器
JP5009145B2 (ja) 液晶表示装置
JP5334294B2 (ja) 液晶ディスプレイ装置
JP2011154101A (ja) 液晶表示パネルおよび液晶表示装置
KR101297737B1 (ko) 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907057

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14907946

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907057

Country of ref document: EP

Kind code of ref document: A1