WO2019015295A1 - 像素结构、阵列基板及液晶显示装置 - Google Patents

像素结构、阵列基板及液晶显示装置 Download PDF

Info

Publication number
WO2019015295A1
WO2019015295A1 PCT/CN2018/074677 CN2018074677W WO2019015295A1 WO 2019015295 A1 WO2019015295 A1 WO 2019015295A1 CN 2018074677 W CN2018074677 W CN 2018074677W WO 2019015295 A1 WO2019015295 A1 WO 2019015295A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
electrodes
electrode
pixel structure
equal
Prior art date
Application number
PCT/CN2018/074677
Other languages
English (en)
French (fr)
Inventor
曲莹莹
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/301,270 priority Critical patent/US20190353966A1/en
Priority to EP18796816.9A priority patent/EP3657239A4/en
Publication of WO2019015295A1 publication Critical patent/WO2019015295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel structure, an array substrate, and a liquid crystal display device.
  • liquid crystal display LCD
  • LCD liquid crystal display
  • IPS In-Plane Switching
  • ADS Advanced Super Dimension Switch
  • the pixel electrode and the common electrode are alternately arranged in the same layer.
  • the pixel electrode and the common electrode are arranged in an upper layer. Both the IPS mode liquid crystal display panel and the ADS mode liquid crystal display panel drive the liquid crystal molecules to rotate through a transverse electric field generated between the pixel electrode and the common electrode.
  • both the IPS mode and the ADS mode liquid crystal display panel are prone to color shift. Especially in oblique viewing angles, the color shift phenomenon is more serious. This is because, on the one hand, in the case of an oblique viewing angle, the non-orthogonality between the upper and lower polarizers causes light leakage, and on the other hand, the rod-like structure of the liquid crystal molecules also causes a color shift problem.
  • Embodiments of the present disclosure provide a pixel structure, an array substrate, and a liquid crystal display device.
  • a pixel structure including: a first electrode and a second electrode for driving rotation of liquid crystal molecules; wherein the first electrode includes a plurality of strip-shaped first sub-electrodes; n is a display area, n is a positive integer greater than or equal to 2; a plurality of first sub-electrodes are arranged in each display area; and wherein a spacing between each directly adjacent first sub-electrodes, each first At least one of a width of the sub-electrode and an inclination angle of each of the first sub-electrodes is unequal, and the inclination angle is an angle between an extending direction of the first sub-electrode and a reference direction.
  • the distance between the directly adjacent first sub-electrodes is equal, and the widths of the plurality of first sub-electrodes are equal; for the m display areas, the direct adjacent positions in different display areas At least one of a pitch between the first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal; wherein 2 ⁇ m ⁇ n, and m is a positive integer.
  • At least one of a distance between the directly adjacent first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal.
  • the inclination angles of the first sub-electrodes are equal, and the two sides of each of the first sub-electrodes are parallel along the extending direction thereof, and the spacing between the directly adjacent first sub-electrodes is not Equal, and/or the width of each of the first sub-electrodes is not equal.
  • the inclination angles of the first sub-electrodes located in different display areas are different; wherein 2 ⁇ t ⁇ n, and t is a positive integer.
  • the second electrode includes a plurality of strip-shaped second sub-electrodes; the first sub-electrode and the second sub-electrode are alternately disposed in the same layer.
  • the first electrode and the second electrode are disposed in different layers; the second electrode is a planar electrode; or the second electrode includes a plurality of strip-shaped second sub-electrodes, The two sub-electrodes are disposed at least at a gap position between the first sub-electrodes.
  • each of the first sub-electrodes is electrically connected by an auxiliary electrode; the auxiliary electrode is of the same material as the first electrode.
  • the material of the first electrode or the second electrode is at least one of ITO or IZO.
  • angles of the plurality of first sub-electrodes rotating clockwise to the reference direction are both obtuse angles or all acute angles, and the reference direction is a direction in which the gate lines connected to the pixel structure extend.
  • an array substrate including the pixel structure described in the above embodiments.
  • liquid crystal display device comprising the array substrate described in the above embodiments is provided.
  • Embodiments of the present disclosure provide a pixel structure, an array substrate, and a liquid crystal display device.
  • the pixel structure includes a first electrode and a second electrode, and the first electrode includes a plurality of strip-shaped first sub-electrodes.
  • at least one of a pitch between each of the directly adjacent first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal.
  • any of the above parameters may affect the rotation state of the liquid crystal molecules, the pitch between the first adjacent sub-electrodes, the width of each of the first sub-electrodes, and the tilt angle of each of the first sub-electrodes may be adjusted. At least one of the two independently controls the electric field direction or the electric field intensity of the individual regions, so that the rotation state of the liquid crystal molecules can be changed to compensate for the difference in phase difference of the liquid crystal molecules, thereby improving the color shift phenomenon.
  • FIG. 1 is a schematic cross-sectional view showing an IPS mode pixel structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing an ADS mode pixel structure according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a pixel structure according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 5( a ) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 5(b) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 6(a) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 6(b) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 7(a) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 7(b) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 7(c) is a schematic structural diagram of a pixel structure according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a pixel structure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an array substrate according to an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a pixel structure.
  • the pixel structure may be especially used for an IPS mode liquid crystal display panel or an ADS mode liquid crystal display panel.
  • the pixel structure may be an IPS mode pixel structure as shown in FIG. 1 or an ADS mode pixel structure as shown in FIG. 2.
  • the pixel structure includes: a first electrode 10 and a second electrode 20 for driving rotation of liquid crystal molecules, wherein the first electrode 10 includes a plurality of strip-shaped first sub-electrodes 101; the pixel structure is divided into n display areas 01, n is a positive integer greater than or equal to 2; a plurality of first sub-electrodes 101 are arranged in each display area 01; and wherein each directly adjacent first At least one of the pitch between the sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 is unequal, and the inclination angle ⁇ is the extending direction of the first sub-electrode 101.
  • the pixel structure shown in FIG. 3 is divided into two display areas 01, and the angles of the plurality of first sub-electrodes 101 located in the display area 01 of the upper half of the pixel structure in the clockwise direction to the reference direction R are acute angles.
  • the angle at which the plurality of first sub-electrodes 101 located in the display area 01 of the lower half of the pixel structure are rotated clockwise to the reference direction R is an obtuse angle.
  • the spacing b between the directly adjacent first sub-electrodes 101 that is, the width of the slit (Slit), the width a of each of the first sub-electrodes 101, and the inclination angle of each of the first sub-electrodes 101 At least one of ⁇ (ie, Slit angles of the slits) is not equal.
  • the angles of the plurality of first sub-electrodes 101 rotating clockwise to the reference direction are both obtuse angles or all acute angles, and the reference direction is a grid connected to the pixel structure.
  • the principle of improving the color shift in the embodiment of the present disclosure mainly lies in that the spacing b between the directly adjacent first sub-electrodes 101 and the width a of each of the first sub-electrodes 101 affect the electric field strength, and the inclination angle of each of the first sub-electrodes 101 ⁇ affects the direction of the electric field, and the electric field strength and the direction of the electric field affect the rotation state of the liquid crystal molecules; therefore, the spacing b between the immediately adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and each The tilt angle ⁇ of one sub-electrode 101 can adjust the rotation state of the liquid crystal molecules.
  • the pitch b between the immediately adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the tilt angle ⁇ of each of the first sub-electrodes 101 can be correspondingly designed according to the difference in phase difference of the liquid crystal molecules, thereby
  • the electric field control of the individual regions is realized, thereby controlling the rotation state of the liquid crystal molecules in the individual regions, thereby compensating for the difference in phase difference of the liquid crystal molecules and improving the color shift phenomenon.
  • the pixel structure may be divided into two display areas 01, or may be divided into three or more display areas 01, which should be reasonably divided according to the size of the pixel structure (pixel).
  • the pixel structure is divided into two display areas 01 as an example for illustration.
  • the first electrode 10 may be a common electrode, and the second electrode may be a pixel electrode; or the first electrode 10 may be a pixel electrode, and the second electrode may be a common electrode.
  • the shape of the second electrode is not limited, and the second electrode may be a planar electrode, or the second electrode may include a plurality of strip-shaped sub-electrodes.
  • the spacing b between the directly adjacent first sub-electrodes 101 and the width a of the first sub-electrode 101 are all calculated according to the reference direction.
  • the spacing b between the directly adjacent first sub-electrodes 101 is considered to be unequal;
  • the widths of any one of the plurality of first sub-electrodes 101 are not equal everywhere (ie, the two sides of the first sub-electrode 101 along the extending direction thereof are not parallel), the first sub-portions are considered The widths of the electrodes 101 are not equal.
  • the inclination angle ⁇ of the first sub-electrode 101 is an angle between the extending direction of the first sub-electrode 101 and the reference direction, where the included angle refers to the smallest angle formed by the intersection of the two straight lines. Based on this, the inclination angle ⁇ of each of the first sub-electrodes 101 should be an angle between the same side of each of the first sub-electrodes 101 along the extending direction thereof and the reference direction. In FIG. 5(b), the angle between the right side of the first sub-electrode 101 and the reference direction is illustrated as an example.
  • the angle between the two sides of each of the first sub-electrodes 101 in the extending direction and the reference direction are equal, and the inclination angles ⁇ of the respective first sub-electrodes 101 are considered to be equal.
  • the angle between the two sides of each of the first sub-electrodes 101 in the extending direction thereof and the reference direction may be the same (ie, the two sides of the first sub-electrode 101 are parallel to each other in the extending direction thereof), or may be different (ie, The two side electrodes 101 are not parallel to each other along their extending directions. For example, referring to FIG.
  • the angle between either side of the first sub-electrode 101 in the extending direction and the reference direction is not equal, it is considered that the inclination angles ⁇ of the respective first sub-electrodes 101 are not equal.
  • the angle of the first sub-electrode 101 along the left side of the extending direction thereof (the side indicated by the arrow C in FIG. 5(b)) and the reference direction are not equal, and / Or the angle between the first sub-electrode 101 along the right side of the extending direction thereof (the side indicated by the arrow D in FIG. 5(b)) and the reference direction is not equal, and the inclination angle ⁇ of the first sub-electrode 101 is not equal. .
  • the pitch b between the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes, and the inclination angle ⁇ of each of the first sub-electrodes 101 are equal, but are located.
  • At least one of the spacing b between the directly adjacent first sub-electrodes 101 in the different display areas 01, the width a of each of the first sub-electrodes, and the inclination angle ⁇ of each of the first sub-electrodes 101 are not equal; In the same display area 01, one of the pitch b between the immediately adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes is not equal.
  • the materials of the first electrode 10 and the second electrode are not limited as long as they are transparent materials.
  • the material of the first electrode 10 or the second electrode may be at least one of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • Embodiments of the present disclosure provide a pixel structure.
  • the pixel structure includes a first electrode and a second electrode, and the first electrode includes a plurality of strip-shaped first sub-electrodes.
  • at least one of a pitch between each of the directly adjacent first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal. Since any of the above parameters may affect the rotation state of the liquid crystal molecules, the pitch between the first adjacent sub-electrodes, the width of each of the first sub-electrodes, and the tilt angle of each of the first sub-electrodes may be adjusted. At least one of the two independently controls the electric field direction or the electric field intensity of the individual regions, so that the rotation state of the liquid crystal molecules can be changed to compensate for the difference in phase difference of the liquid crystal molecules, thereby improving the color shift phenomenon.
  • the spacing b between the directly adjacent first sub-electrodes 101 is equal and more The widths a of the first sub-electrodes 101 are equal; at this time, in the same display region 01, the inclination angles ⁇ of the respective first sub-electrodes 101 are the same.
  • the spacing b between the immediately adjacent first sub-electrodes 101 in the different display areas 01, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 At least one of the unequalities; wherein 2 ⁇ m ⁇ n, m is a positive integer.
  • one of the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and one of the inclination angles ⁇ of the first sub-electrodes 101 may be equal.
  • the distances b between the directly adjacent first sub-electrodes 101 are equal, and the widths a of the first sub-electrodes 101 are equal.
  • the distance b between the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 may be used.
  • the two are not equal or unequal (not illustrated in the drawings of the present disclosure).
  • the pitch b between the directly adjacent first sub-electrodes 101 is equal, and the width a of each of the first sub-electrodes 101 is equal, the rotation state of the liquid crystal molecules in the same display area 01 is the same .
  • the spacing b between the first sub-electrodes 101 directly adjacent in the different display areas 01, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 At least one of the unequalities can adjust the rotation state of the liquid crystal molecules in different display areas 01 to compensate for the difference in phase difference of the liquid crystal molecules.
  • the spacing b between the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and each At least one of the inclination angles ⁇ of one of the sub-electrodes 101 is not equal.
  • one of the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 may be one. equal.
  • the spacing b between the directly adjacent first sub-electrodes 101 is equal, the inclination angles ⁇ of the first sub-electrodes 101 are equal, and the width a of each of the first sub-electrodes 101 is not equal; As shown in FIG.
  • the inclination angles ⁇ of the respective first sub-electrodes 101 are equal, the width a of each of the first sub-electrodes 101 is equal, and the pitch b between the directly adjacent first sub-electrodes 101 is not equal.
  • the distance b between the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 may be used.
  • the two are not equal.
  • the inclination angles ⁇ of the respective first sub-electrodes 101 are not equal ( ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3), and the width a of each of the first sub-electrodes 101 is equal, and the first sub-directly adjacent
  • the pitch b between the electrodes 101 is not equal; or, as shown in FIG.
  • the inclination angles ⁇ of the respective first sub-electrodes 101 are not equal ( ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3), and the width a of each of the first sub-electrodes 101 is a.
  • the spacing b between the directly adjacent first sub-electrodes 101 is equal; or, as shown in FIGS. 6(a) and 6(b), the width a of each of the first sub-electrodes 101 is not equal, and the direct phase
  • the pitches b between the adjacent first sub-electrodes 101 are not equal, and the inclination angles ⁇ of the first sub-electrodes 101 are equal.
  • the included angles may be equal as shown in Fig. 6(a) or may be unequal as shown in Fig. 6(b).
  • the inclination angle ⁇ of each of the first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the pitch b between the immediately adjacent first sub-electrodes 101 are not equal (this disclosure The examples are not shown in the drawings).
  • the pitch b between the directly adjacent first sub-electrodes 101, the width a of each of the first sub-electrodes 101, and the inclination angle ⁇ of each of the first sub-electrodes 101 At least one of them is not equal, so in the same display area 01, the liquid crystal molecules have different rotation states.
  • At least one type can adjust the rotation state of the liquid crystal molecules in the same display area 01, so that the individual control of the liquid crystal molecules in the smaller area can be realized, and the phase difference difference of the liquid crystal molecules can be more accurately compensated to improve the color. Partial phenomenon.
  • the inclination angles ⁇ of the first sub-electrodes 101 are equal, and the first sub-electrodes 101 extend along the direction thereof.
  • the two sides are parallel, the spacing b between the directly adjacent first sub-electrodes 101 is not equal, and/or the width a of each of the first sub-electrodes 101 is not equal.
  • the spacing b between the directly adjacent first sub-electrodes 101 is not equal, and the width a of each of the first sub-electrodes 101 is a. Equivalent; as shown in FIG. 3, the width a of each of the first sub-electrodes 101 is not equal, and the spacing b between the directly adjacent first sub-electrodes 101 is equal; of course, as shown in FIG. 6(a) It is shown that the pitch b between the directly adjacent first sub-electrodes 101 is not equal, and the width a of each of the first sub-electrodes 101 is not equal.
  • each of the first sub-electrode 101 and the second electrode drives the liquid crystal molecules to rotate in the same direction.
  • the embodiment of the present disclosure in the same display area 01, by adjusting the spacing b between the directly adjacent first sub-electrodes 101, and/or the width a of each of the first sub-electrodes 101, the first The electric field intensity of the electric field generated by the electrode 10 and the second electrode is adjusted, so that the rotation angle of the liquid crystal molecules can be adjusted, thereby compensating for the difference in phase difference of the liquid crystal molecules to improve the color shift phenomenon.
  • the embodiments of the present disclosure may select directly adjacent ones.
  • the pitch b between one of the sub-electrodes 101, and/or the width a of each of the first sub-electrodes 101 are not equal.
  • the inclination angles ⁇ of the first sub-electrodes 101 located in different display areas 01 are different; wherein 2 ⁇ t ⁇ n, t is a positive integer.
  • the rotation direction of the liquid crystal molecules is the same in the same display area 01; the inclination angle ⁇ of the first sub-electrodes 101 located in the different display areas 01 is not Similarly, the liquid crystal molecules located in different display areas 01 have different rotation directions.
  • the pitch b between the first sub-electrodes 101 in different display areas 01 may be equal or not equal;
  • width a of each of the first sub-electrodes 101 is equal in the same display area 01, the widths a of the first sub-electrodes 101 located in different display areas 01 may be equal or unequal.
  • the first sub-electrodes 101 and the second electrodes may form horizontal electric fields in different directions in different display areas 01. Based on this, by adjusting the tilt angle ⁇ of the first sub-electrode 101 of the different display areas 01, the rotation directions of the liquid crystal molecules of the different display areas 01 can be adjusted to compensate for the difference in phase difference of the liquid crystal molecules.
  • the second electrode 20 includes a plurality of strip-shaped second sub-electrodes 201; the first sub-electrode 101 and the second sub-electrode 201 are alternately disposed in the same layer.
  • the design of the electrode structure of the second sub-electrode 201 in the second electrode 20 is not limited, and may be the same as the prior art, or may be correspondingly designed with reference to the first electrode 10.
  • the first sub-electrode 101 and the second sub-electrode 201 are alternately disposed in the same layer to form an electrode structure of the IPS mode. Since the first sub-electrode 101 and the second sub-electrode 201 are alternately disposed in the same layer, when the materials of the first sub-electrode 101 and the second sub-electrode 201 are the same, the first sub-electrode 101 and the second sub-electrode 201 may be simultaneously formed.
  • the first sub-electrode 101 and the second sub-electrode 201 are alternately disposed in the same layer, and the first sub-electrode 101 and the second sub-electrode 201 may form a transverse electric field to drive the liquid crystal molecules to rotate.
  • the first electrode 10 and the second electrode 20 are disposed in different layers; the second electrode 20 is a planar electrode; or the second electrode 20 includes a plurality of strip-shaped second sub-electrodes 201, The second sub-electrode 201 is disposed at least at a gap position between the first sub-electrodes 101.
  • the design of the electrode structure of the second sub-electrode 201 in the second electrode 20 is not limited, and may be the same as the prior art. The corresponding design is performed with reference to the first electrode 10.
  • first electrode 10 and the second electrode 20 are disposed in different layers to form an electrode structure of the ADS mode.
  • the liquid crystal molecules are driven to rotate by an electric field generated between the first sub-electrodes 101 in the same plane and an electric field generated by the first electrodes 10 and the second electrodes 20.
  • each of the first sub-electrodes 101 needs to be electrically connected to the common electrode line (the first electrode 10 is a common electrode) or to the drain (the first electrode 10 is a pixel electrode), in order to facilitate the respective first sub-electrode 101 and the common electrode
  • the line or the drain is electrically connected, and thus the embodiment of the present disclosure is optional.
  • each of the first sub-electrodes 101 passes between the auxiliary electrodes 30 (as shown by the dashed box in FIG. 8, FIG. 1 - FIG.
  • auxiliary electrode 30, but not shown is electrically connected, such that the common electrode line or the drain is connected to any of the first sub-electrode 101 or the auxiliary electrode 30, so that each of the first sub-electrodes 101 and the common electrode line can be made.
  • the drain is electrically connected, and it is not necessary to electrically connect each of the first sub-electrodes 101 to the common electrode line or the drain, which simplifies the fabrication process of the pixel structure.
  • each of the first sub-electrodes 101 is electrically connected by the auxiliary electrode 30, and includes the same display area 01.
  • Each of the first sub-electrodes 101 is electrically connected by the auxiliary electrode 30, and further includes different display areas 01, each of which is first.
  • the sub-electrodes 101 are electrically connected by the auxiliary electrode 30.
  • the first ends of the plurality of first sub-electrodes 101 may be electrically connected through the auxiliary electrode 30, and the second ends of the plurality of second sub-electrodes 201 may pass through.
  • the auxiliary electrode 30 is electrically connected, and the first end is opposite to the second end.
  • the auxiliary electrode 30 and the first electrode 10 are made of the same material in the same layer, so that the auxiliary electrode 30 and the first electrode 10 can be simultaneously fabricated to simplify the fabrication process of the pixel structure.
  • FIG. 9 is a schematic diagram of a pixel structure and the first electrode 10 is a pixel electrode, but is not limited to the pixel structure.
  • the array substrate includes a thin film transistor 40, a data line 50, a gate line 60, a common electrode line 70, and the like in addition to the pixel structure.
  • the thin film transistor 40 includes a source, a drain, an active layer, a gate, a gate insulating layer, and the like, and the drain is electrically connected to the pixel electrode.
  • Embodiments of the present disclosure provide an array substrate.
  • the pixel structure of the array substrate includes a first electrode and a second electrode, and the first electrode includes a plurality of strip-shaped first sub-electrodes.
  • at least one of a pitch between each of the directly adjacent first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal. Since any of the above parameters may affect the rotation state of the liquid crystal molecules, the pitch between the first adjacent sub-electrodes, the width of each of the first sub-electrodes, and the tilt angle of each of the first sub-electrodes may be adjusted. At least one of the two independently controls the electric field direction or the electric field intensity of the individual regions, so that the rotation state of the liquid crystal molecules can be changed to compensate for the difference in phase difference of the liquid crystal molecules, thereby improving the color shift phenomenon.
  • Embodiments of the present disclosure also provide a liquid crystal display device including the above array substrate.
  • the liquid crystal display device may be any device that displays whether it is motion (e.g., video) or fixed (e.g., still image) and whether text or image. More specifically, it is contemplated that the described embodiments can be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs).
  • PDAs personal data assistants
  • the liquid crystal display device may also be a liquid crystal display panel.
  • the liquid crystal display panel includes, in addition to the array substrate, a pair of cassette substrates facing the array substrate and a liquid crystal layer disposed between the array substrate and the counter substrate.
  • Embodiments of the present disclosure provide a liquid crystal display device including an array substrate.
  • the pixel structure of the array substrate includes a first electrode and a second electrode, and the first electrode includes a plurality of strip-shaped first sub-electrodes.
  • at least one of a pitch between each of the directly adjacent first sub-electrodes, a width of each of the first sub-electrodes, and an inclination angle of each of the first sub-electrodes is unequal.
  • any of the above parameters may affect the rotation state of the liquid crystal molecules, the pitch between the first adjacent sub-electrodes, the width of each of the first sub-electrodes, and the tilt angle of each of the first sub-electrodes may be adjusted. At least one of the two independently controls the electric field direction or the electric field intensity of the individual regions, so that the rotation state of the liquid crystal molecules can be changed to compensate for the difference in phase difference of the liquid crystal molecules, thereby improving the color shift phenomenon.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种像素结构、阵列基板及液晶显示装置,涉及显示技术领域,为改善液晶显示装置的色偏现象提供一种电极结构设计方案。像素结构包括:用于驱动液晶分子旋转的第一电极(10)和第二电极(20);其中,第一电极(10)包括多个条状的第一子电极(101);像素结构划分为n个显示区(01),n为大于或等于2的正整数;每个显示区(01)中布置有多个第一子电极(101);并且其中,各直接相邻的第一子电极(101)之间的间距(b)、各第一子电极(101)的宽度(a)以及各第一子电极(101)的倾斜角度(θ)中的至少一种不完全相等,倾斜角度(θ)为第一子电极(101)的延伸方向与参考方向之间的夹角。

Description

像素结构、阵列基板及液晶显示装置
相关申请
本申请要求保护在2017年7月21日提交的申请号为201710602719.6的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素结构、阵列基板及液晶显示装置。
背景技术
随着显示技术的快速发展,液晶显示装置(Liquid Crystal Display,简称LCD)由于具有低功耗、轻薄、显示质量高等优点而得到越来越广泛的应用。目前,常见的广视角液晶显示面板包括平面转换(In-Plane Switching,简称IPS)模式液晶显示面板和高级超维场转换(Advanced Super Dimension Switch,简称ADS)模式液晶显示面板。
在IPS模式液晶显示面板中,像素电极和公共电极同层交替排列。在ADS模式液晶显示面板中,像素电极和公共电极采用上下层设置方式。IPS模式液晶显示面板和ADS模式液晶显示面板都是通过像素电极和公共电极之间产生的横向电场驱动液晶分子旋转。
然而,无论是IPS模式还是ADS模式液晶显示面板都很容易出现色偏现象。尤其在斜视角下,色偏现象更为严重。这是因为一方面在斜视角情况下,上下偏光片之间非正交导致漏光,另一方面液晶分子的棒状结构也会导致色偏问题。
公开内容
本公开的实施例提供一种像素结构、阵列基板及液晶显示装置。
第一方面,提供一种像素结构,包括:用于驱动液晶分子旋转的第一电极和第二电极;其中,所述第一电极包括多个条状的第一子电极;所述像素结构划分为n个显示区,n为大于或等于2的正整数;每个显示区中布置有多个第一子电极;并且其中,各直接相邻的第一子 电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等,所述倾斜角度为第一子电极的延伸方向与参考方向之间的夹角。
可选的,在同一显示区中,直接相邻的第一子电极之间的间距相等、且多个第一子电极的宽度相等;针对m个显示区,位于不同显示区中的直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等;其中,2≤m≤n,m为正整数。
可选的,在同一显示区中,直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。
进一步可选的,在同一显示区中,各第一子电极的倾斜角度相等,且各第一子电极沿其延伸方向的两条边平行,直接相邻的第一子电极之间的间距不相等,和/或各第一子电极的宽度不相等。
进一步可选的,针对t个显示区,位于不同显示区的第一子电极的倾斜角度不相同;其中,2≤t≤n,t为正整数。
可选的,所述第二电极包括多个条状的第二子电极;所述第一子电极和所述第二子电极同层交替设置。
可选的,所述第一电极和所述第二电极不同层设置;所述第二电极为面状电极;或者,所述第二电极包括多个条状的第二子电极,所述第二子电极至少设置在所述第一子电极之间的间隙位置处。
可选的,各第一子电极之间通过辅助电极电连接;所述辅助电极与所述第一电极同层同材料。
可选的,所述第一电极或所述第二电极的材料为ITO或IZO中的至少一种。
可选的,在同一显示区内,多个第一子电极沿顺时针旋转至参考方向的角度均为钝角或均为锐角,所述参考方向为与所述像素结构连接的栅线延伸的方向。
第二方面,提供一种阵列基板,包括以上实施例所述的像素结构。
第三方面,提供一种液晶显示装置,包括以上实施例所述的阵列基板。
本公开实施例提供一种像素结构、阵列基板及液晶显示装置。像 素结构包括第一电极和第二电极,第一电极包括多个条状的第一子电极。在本公开的实施例中,各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。由于以上参数之任一项会影响液晶分子的旋转状态,因而可以通过调整各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种来独立控制单独区域的电场方向或电场强度,从而可以改变液晶分子旋转状态,以补偿液晶分子的相位差差异,进而改善色偏现象。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的IPS模式像素结构的截面示意图;
图2为本公开实施例提供的ADS模式像素结构的截面示意图;
图3为本公开实施例提供的一种像素结构的结构示意图;
图4为本公开另一实施例提供的一种像素结构的结构示意图;
图5(a)为本公开又一实施例提供的一种像素结构的结构示意图;
图5(b)为本公开另一实施例提供的一种像素结构的结构示意图;
图6(a)为本公开另一实施例提供的一种像素结构的结构示意图;
图6(b)为本公开另一实施例提供的一种像素结构的结构示意图;
图7(a)为本公开另一实施例提供的一种像素结构的结构示意图;
图7(b)为本公开另一实施例提供的一种像素结构的结构示意图;
图7(c)为本公开另一实施例提供的一种像素结构的结构示意图;
图8为本公开实施例提供的一种像素结构的结构示意图;以及
图9为本公开实施例提供的一种阵列基板的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部 分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供一种像素结构。所述像素结构可以尤其用于IPS模式液晶显示面板或ADS模式液晶显示面板。例如,所述像素结构可以是如图1所示的IPS模式像素结构,也可以是如图2所示的ADS模式像素结构。
如图1-图8所示,所述像素结构包括:用于驱动液晶分子旋转的第一电极10和第二电极20,其中,所述第一电极10包括多个条状的第一子电极101;所述像素结构划分为n个显示区01,n为大于或等于2的正整数;每个显示区01中布置有多个第一子电极101;并且其中,各直接相邻的第一子电极101之间的间距、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等,所述倾斜角度θ为第一子电极101的延伸方向与参考方向R之间的夹角。参考图3,图3所示的像素结构划分为两个显示区01,位于像素结构上半部分的显示区01内的多个第一子电极101沿顺时针旋转至参考方向R的角度为锐角,位于像素结构下半部分的显示区01内的多个第一子电极101沿顺时针旋转至参考方向R的角度为钝角。
在本公开实施例中,直接相邻的第一子电极101之间的间距b,即狭缝(Slit)的宽度、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ(即狭缝的倾斜角度,Slit angle)中的至少一种不相等。
可选地,如图9所示,在同一显示区01内,多个第一子电极101沿顺时针旋转至参考方向的角度均为钝角或均为锐角,参考方向为与像素结构连接的栅线60延伸的方向。
本公开实施例改善色偏的原理主要在于:直接相邻的第一子电极101之间的间距b和各第一子电极101的宽度a会影响电场强度,各第一子电极101的倾斜角度θ会影响电场方向,并且电场强度和电场方向会影响液晶分子的旋转状态;因此,调节直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ便可以对液晶分子的旋转状态进行调整。基于此,在像素结构的实际设计过程中,直接相邻的第一子电极101之间的间距b越小,液晶分子的相位差越小;各第一子电极101的宽度a越小,液晶分子 的相位差越小;各第一子电极101的倾斜角度θ越大,液晶分子的相位差越小。因此,可以根据液晶分子的相位差差异来相应设计直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ,从而实现单独区域的电场控制,进而实现单独区域液晶分子旋转状态的控制,以补偿液晶分子的相位差差异,改善色偏现象。
需要说明的是,第一,像素结构可以划分为2个显示区01,也可以划分为3个或3个以上显示区01,对此应根据像素结构(pixel)的尺寸进行合理划分。本公开说明书附图中以像素结构划分为2个显示区01为例进行示意。
第二,对于第一电极10和第二电极,可以是第一电极10为公共电极,第二电极为像素电极;也可以是第一电极10为像素电极,第二电极为公共电极。此外,对于第二电极的形状不进行限定,可以是第二电极为面状电极,也可以是第二电极包括多个条状子电极。
第三,本公开实施例中,直接相邻的第一子电极101之间的间距b以及第一子电极101的宽度a均按照参考方向计算。
第四,当多个第一子电极101中,直接相邻的第一子电极101之间的间距不是处处相等时,则认为直接相邻的第一子电极101之间的间距b不相等;同理,当多个第一子电极101中任意一个第一子电极101的宽度不是处处相等(即第一子电极101沿其延伸方向的两条边不平行)时,则认为各第一子电极101的宽度不相等。
第一子电极101的倾斜角度θ为第一子电极101的延伸方向与参考方向之间的夹角,此处夹角指的是两条直线相交形成的最小的角。基于此,各第一子电极101的倾斜角度θ应为各第一子电极101沿其延伸方向的同一边与参考方向之间的夹角。图5(b)中以第一子电极101的右边与参考方向之间的夹角为例进行示意。
各第一子电极101沿其延伸方向的两边与参考方向之间的夹角均相等,则认为各第一子电极101的倾斜角度θ相等。此处,每个第一子电极101沿其延伸方向的两边分别与参考方向之间的夹角可以相同(即第一子电极101沿其延伸方向的两边相互平行),也可以不相同(即第一子电极101沿其延伸方向的两边相互不平行)。示例的,参考图3,各第一子电极101沿其延伸方向的左边(附图3中箭头A所 指的边)与参考方向之间的夹角相等,且各第一子电极101沿其延伸方向的右边(附图3中箭头B所指的边)与参考方向之间的夹角相等,则各第一子电极101的倾斜角度θ相等。
若第一子电极101沿其延伸方向的任一边与参考方向之间的夹角不相等,则认为各第一子电极101的倾斜角度θ不相等。示例的,参考图5(b),若第一子电极101沿其延伸方向的左边(附图5(b)中箭头C所指的边)与参考方向之间的夹角不相等,和/或第一子电极101沿其延伸方向的右边(附图5(b)中箭头D所指的边)与参考方向之间的夹角不相等,则第一子电极101的倾斜角度θ不相等。
基于上述,可以是同一显示区01中,直接相邻的第一子电极101之间的间距b、各第一子电极的宽度a以及各第一子电极101的倾斜角度θ均相等,但位于不同显示区01中的直接相邻的第一子电极101之间的间距b、各第一子电极的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等;也可以是在同一显示区01中,直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极的倾斜角度中θ中的一个不相等。
第五,对于第一电极10和第二电极的材料不进行限定,只要是透明材料即可。可选的,第一电极10或第二电极的材料可以为ITO(Indium Tin Oxide,氧化铟锡)或IZO(Indium Zinc Oxide,氧化铟锌)中的至少一种。
本公开实施例提供一种像素结构。像素结构包括第一电极和第二电极,第一电极包括多个条状的第一子电极。在本公开的实施例中,各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。由于以上参数之任一项会影响液晶分子的旋转状态,因而可以通过调整各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种来独立控制单独区域的电场方向或电场强度,从而可以改变液晶分子旋转状态,以补偿液晶分子的相位差差异,进而改善色偏现象。
可选的,如图7(a)、图7(b)和图7(c)所示,在同一显示区01中,直接相邻的第一子电极101之间的间距b相等、且多个第一子电极101的宽度a相等;此时,同一显示区01中,各第一子电极101 的倾斜角度θ相同。
针对m个显示区01,位于不同显示区01中的直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等;其中,2≤m≤n,m为正整数。
其中,对于不同的显示区01,可以是直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的一个不相等。具体地,可以是如图7(a)所示,针对m个不同的显示区01,直接相邻的第一子电极101之间的间距b相等,各第一子电极101的宽度a相等,各第一子电极101的倾斜角度θ不相等,例如θ1=20°,θ2=40°,θ1≠θ2;也可以是如图7(b)所示,针对m个不同的显示区01,各第一子电极101的倾斜角度θ相等,各第一子电极101的宽度a相等,直接相邻的第一子电极101之间的间距b不相等,例如b1=6.5um,b2=5.6μm,b1≠b2;当然还可以是如图7(c)所示,针对m个不同的显示区01,各第一子电极101的倾斜角度θ相等,直接相邻的第一子电极101之间的间距b相等,各第一子电极101的宽度a不相等。
在此基础上,对于不同的显示区01,还可以是直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中两个不相等或均不相等(本公开实施例附图中未示意出)。
此处,同一显示区01中,直接相邻的第一子电极101之间的间距b相等、且每个第一子电极101的宽度a相等,则同一显示区01中液晶分子的旋转状态相同。
本公开实施例中,通过调整不同显示区01中直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等,从而可以对不同显示区01液晶分子的旋转状态进行调整,以补偿液晶分子的相位差差异。
可选的,如图3-图6(b)所示,在同一显示区01中,直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等。
其中,在同一显示区01中,可以是直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜 角度θ中的一个不相等。具体的,如图3所示,直接相邻的第一子电极101之间的间距b相等,各第一子电极101的倾斜角度θ相等,各第一子电极101的宽度a不相等;或者,如图4所示,各第一子电极101的倾斜角度θ相等,各第一子电极101的宽度a相等,直接相邻的第一子电极101之间的间距b不相等。
在此基础上,在同一显示区01中,也可以是直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的两个不相等。具体的,如图5(a)所示,各第一子电极101的倾斜角度θ不相等(θ1≠θ2≠θ3),各第一子电极101的宽度a相等,直接相邻的第一子电极101之间的间距b不相等;或者,如图5(b)所示,各第一子电极101的倾斜角度θ不相等(θ1≠θ2≠θ3),各第一子电极101的宽度a不相等,直接相邻的第一子电极101之间的间距b相等;或者,如图6(a)和图6(b)所示,各第一子电极101的宽度a不相等,直接相邻的第一子电极101之间的间距b不相等,各第一子电极101的倾斜角度θ相等,此时,每个第一子电极101沿其延伸方向的两边分别与参考方向之间的夹角可以如图6(a)所示是相等的,也可以如图6(b)所示是不相等的。
此外,在同一显示区01中,各第一子电极101的倾斜角度θ、各第一子电极101的宽度a以及直接相邻的第一子电极101之间的间距b均不相等(本公开实施例附图中未示意出)。
需要说明的是,由于在同一显示区01中,直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种不相等,因此在同一显示区01中,液晶分子具有不同的旋转状态。
本公开实施例中,通过调整同一显示区01中直接相邻的第一子电极101之间的间距b、各第一子电极101的宽度a以及各第一子电极101的倾斜角度θ中的至少一种,从而可以对同一显示区01中液晶分子的旋转状态进行调整,这样可以实现更小区域液晶分子的单独控制,进而对液晶分子的相位差差异可以进行更精确地补偿,以改善色偏现象。
进一步可选的,如图3、图4以及图6(a)所示,在同一显示区01中,各第一子电极101的倾斜角度θ相等,且各第一子电极101沿 其延伸方向的两条边平行,直接相邻的第一子电极101之间的间距b不相等,和/或各第一子电极101的宽度a不相等。
此处,当各第一子电极101沿其延伸方向的两条边平行时,则每个第一子电极101沿第一子电极101的延伸方向的宽度处处相等。
其中,当各第一子电极101的倾斜角度θ相等时,可以是如图4所示,直接相邻的第一子电极101之间的间距b不相等,各第一子电极101的宽度a相等;也可以是如图3所示,各第一子电极101的宽度a不相等,直接相邻的第一子电极101之间的间距b相等;当然还可以是如图6(a)所示,直接相邻的第一子电极101之间的间距b不相等,且各第一子电极101的宽度a不相等。
需要说明的是,在同一显示区01中,由于各第一子电极101的倾斜角度θ相等,则各第一子电极101和第二电极之间产生电场的电场方向相同,因此在同一显示区01中,各第一子电极101和第二电极驱动液晶分子旋转的方向相同。
基于上述,本公开实施例中,在同一显示区01中,通过调节直接相邻的第一子电极101之间的间距b,和/或各第一子电极101的宽度a便可以对第一电极10和第二电极产生电场的电场强度进行调节,从而可以调节液晶分子的旋转角度,进而可以补偿液晶分子的相位差差异,以改善色偏现象。在此基础上,由于直接相邻的第一子电极101之间的间距b以及各第一子电极101的宽度a在实际制作过程中便于调整,因而本公开实施例可选直接相邻的第一子电极101之间的间距b,和/或各第一子电极101的宽度a不相等。
基于上述可选的,如图8所示,针对t个显示区01,位于不同显示区01的第一子电极101的倾斜角度θ不相同;其中,2≤t≤n,t为正整数。
其中,同一显示区01中,各第一子电极101的倾斜角度θ相同,则同一显示区01中,液晶分子的旋转方向相同;位于不同显示区01的第一子电极101的倾斜角度θ不相同,则位于不同显示区01的液晶分子的旋转方向不同。
此处,当同一显示区01,直接相邻的第一子电极101之间的间距b相等时,位于不同显示区01的第一子电极101之间的间距b可以相等,也可以不相等;当同一显示区01,各第一子电极101的宽度a相 等时,位于不同显示区01的第一子电极101的宽度a可以相等,也可以不相等。
本公开实施例中,由于位于不同显示区01的第一子电极101的倾斜角度θ不相同,因此在不同的显示区01,第一子电极101和第二电极可以形成不同方向的水平电场。基于此,通过调节不同显示区01第一子电极101的倾斜角度θ,便可以对不同显示区01液晶分子的旋转方向进行调整,以补偿液晶分子的相位差差异。
可选的,如图1所示,第二电极20包括多个条状的第二子电极201;第一子电极101和第二子电极201同层交替设置。
其中,对于第二电极20中第二子电极201的电极结构的设计方案不进行限定,可以与现有技术相同,也可以参考第一电极10进行相应设计。
此处,第一子电极101和第二子电极201同层交替设置,形成IPS模式的电极结构。由于第一子电极101和第二子电极201同层交替设置,当第一子电极101和第二子电极201的材料相同时,第一子电极101和第二子电极201可以同时形成。
本公开实施例中,第一子电极101和第二子电极201同层交替设置,第一子电极101和第二子电极201可以形成横向电场,从而驱动液晶分子旋转。
可选的,如图2所示,第一电极10和第二电极20不同层设置;第二电极20为面状电极;或者,第二电极20包括多个条状的第二子电极201,第二子电极201至少设置在第一子电极101之间的间隙位置处。
其中,当第二电极20包括多个条状的第二子电极201时,对于第二电极20中第二子电极201的电极结构的设计方案不进行限定,可以与现有技术相同,也可以参考第一电极10进行相应设计。
此处,第一电极10和第二电极20不同层设置,形成ADS模式的电极结构。
本公开实施例中,通过同一平面内第一子电极101之间所产生的电场以及第一电极10和第二电极20产生的电场,驱动液晶分子旋转。
由于各第一子电极101需要与公共电极线(第一电极10为公共电极)电连接或者与漏极(第一电极10为像素电极)电连接,为了便于 各第一子电极101与公共电极线或漏极电连接,因而本公开实施例可选,参考图8,各第一子电极101之间通过辅助电极30(如图8中虚线框所示,附图1-图7(c)也示意出了辅助电极30,但没有标示)电连接,这样公共电极线或漏极与任意第一子电极101或辅助电极30相连接,就可以使各第一子电极101均与公共电极线或漏极电连接,无需使各第一子电极101分别与公共电极线或漏极电连接,简化了像素结构的制作工艺。
此处,各第一子电极101之间通过辅助电极30电连接,包括同一显示区01中,各第一子电极101之间通过辅助电极30电连接,还包括不同显示区01,各第一子电极101之间通过辅助电极30电连接。当第一子电极101和第二子电极201同层交替设置时,可以是多个第一子电极101的第一端通过辅助电极30电连接,多个第二子电极201的第二端通过辅助电极30电连接,所述第一端和所述第二端相对。
在此基础上,辅助电极30与第一电极10同层同材料,这样便可以同时制作辅助电极30和第一电极10,以简化像素结构的制作工艺。
本公开实施例提供一种阵列基板,如图9所示,包括上述的像素结构。附图9中以一种像素结构、且第一电极10为像素电极为例进行示意,但并不限于该像素结构。
其中,阵列基板除包括像素结构外,还包括薄膜晶体管40、数据线50、栅线60以及公共电极线70等。薄膜晶体管40包括源极、漏极、有源层、栅极以及栅绝缘层等,漏极与像素电极电连接。
本公开实施例提供一种阵列基板。所述阵列基板的像素结构包括第一电极和第二电极,第一电极包括多个条状的第一子电极。在本公开的实施例中,各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。由于以上参数之任一项会影响液晶分子的旋转状态,因而可以通过调整各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种来独立控制单独区域的电场方向或电场强度,从而可以改变液晶分子旋转状态,以补偿液晶分子的相位差差异,进而改善色偏现象。
本公开实施例还提供一种液晶显示装置,包括上述的阵列基板。
其中,液晶显示装置可以是显示不论运动(例如,视频)还是固定(例 如,静止图像)的且不论文字还是图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等,此外,液晶显示装置还可以是液晶显示面板。当液晶显示装置为液晶显示面板时,液晶显示面板除包括阵列基板外,还包括与阵列基板对盒的对盒基板以及设置在阵列基板和对盒基板之间的液晶层。
本公开实施例提供一种液晶显示装置,液晶显示装置包括阵列基板,阵列基板的像素结构包括第一电极和第二电极,第一电极包括多个条状的第一子电极。在本公开的实施例中,各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。由于以上参数之任一项会影响液晶分子的旋转状态,因而可以通过调整各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种来独立控制单独区域的电场方向或电场强度,从而可以改变液晶分子旋转状态,以补偿液晶分子的相位差差异,进而改善色偏现象。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种像素结构,包括:用于驱动液晶分子旋转的第一电极和第二电极;
    其中,所述第一电极包括多个条状的第一子电极;所述像素结构划分为n个显示区,n为大于或等于2的正整数;每个显示区中布置有多个第一子电极;
    并且其中,各直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等,所述倾斜角度为第一子电极的延伸方向与参考方向之间的夹角。
  2. 根据权利要求1所述的像素结构,其中,在同一显示区中,直接相邻的第一子电极之间的间距相等、且多个第一子电极的宽度相等;
    针对m个显示区,位于不同显示区中的直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等;其中,2≤m≤n,m为正整数。
  3. 根据权利要求1所述的像素结构,其中,在同一显示区中,直接相邻的第一子电极之间的间距、各第一子电极的宽度以及各第一子电极的倾斜角度中的至少一种不相等。
  4. 根据权利要求3所述像素结构,其中,在同一显示区中,各第一子电极的倾斜角度相等,且各第一子电极沿其延伸方向的两条边平行,直接相邻的第一子电极之间的间距不相等。
  5. 根据权利要求4所述的像素结构,其中,针对t个显示区,位于不同显示区的第一子电极的倾斜角度不相同;其中,2≤t≤n,t为正整数。
  6. 根据权利要求3所述像素结构,其中,在同一显示区中,各第一子电极的倾斜角度相等,且各第一子电极沿其延伸方向的两条边平行,各第一子电极的宽度不相等。
  7. 根据权利要求6所述的像素结构,其中,针对t个显示区,位于不同显示区的第一子电极的倾斜角度不相同;其中,2≤t≤n,t为正整数。
  8. 根据权利要求1所述的像素结构,其中,所述第二电极包括多个条状的第二子电极;所述第一子电极和所述第二子电极同层交替设 置。
  9. 根据权利要求1所述的像素结构,其中,所述第一电极和所述第二电极不同层设置;所述第二电极为面状电极。
  10. 根据权利要求1所述的像素结构,其中,所述第一电极和所述第二电极不同层设置;所述第二电极包括多个条状的第二子电极,所述第二子电极至少设置在所述第一子电极之间的间隙位置处。
  11. 根据权利要求1所述的像素结构,其中,各第一子电极之间通过辅助电极电连接;所述辅助电极与所述第一电极同层同材料。
  12. 根据权利要求1-11任一项所述的像素结构,其中,所述第一电极或所述第二电极的材料为ITO或IZO中的至少一种。
  13. 根据权利要求1-11任一项所述的像素结构,其中,在同一显示区内,多个第一子电极沿顺时针旋转至参考方向的角度均为钝角或均为锐角,所述参考方向为与所述像素结构连接的栅线延伸的方向。
  14. 一种阵列基板,包括权利要求1-13任一项所述的像素结构。
  15. 一种液晶显示装置,包括权利要求14所述的阵列基板。
PCT/CN2018/074677 2017-07-21 2018-01-31 像素结构、阵列基板及液晶显示装置 WO2019015295A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/301,270 US20190353966A1 (en) 2017-07-21 2018-01-31 Pixel structure, array substrate and liquid crystal display device
EP18796816.9A EP3657239A4 (en) 2017-07-21 2018-01-31 PIXEL STRUCTURE, MATRIX SUBSTRATE, AND LIQUID CRYSTAL DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710602719.6 2017-07-21
CN201710602719.6A CN109283754A (zh) 2017-07-21 2017-07-21 一种像素结构、阵列基板及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2019015295A1 true WO2019015295A1 (zh) 2019-01-24

Family

ID=65015005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074677 WO2019015295A1 (zh) 2017-07-21 2018-01-31 像素结构、阵列基板及液晶显示装置

Country Status (4)

Country Link
US (1) US20190353966A1 (zh)
EP (1) EP3657239A4 (zh)
CN (1) CN109283754A (zh)
WO (1) WO2019015295A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618564B (zh) * 2019-10-30 2022-06-24 京东方科技集团股份有限公司 电极结构、阵列基板及显示装置
CN112068362A (zh) * 2020-09-03 2020-12-11 深圳市华星光电半导体显示技术有限公司 像素结构及显示面板
CN113325643B (zh) * 2021-05-28 2023-02-03 京东方科技集团股份有限公司 阵列基板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135824A (zh) * 2007-10-12 2008-03-05 友达光电股份有限公司 液晶显示面板
CN101515100A (zh) * 2009-04-10 2009-08-26 友达光电股份有限公司 有源阵列基板、液晶显示面板及其驱动方法
CN101685226A (zh) * 2008-09-26 2010-03-31 胜华科技股份有限公司 可改善色偏的液晶显示面板与应用其的液晶显示装置
CN202948232U (zh) * 2012-12-14 2013-05-22 京东方科技集团股份有限公司 像素电极结构、阵列基板及液晶显示面板
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置
US20160161803A1 (en) * 2014-12-08 2016-06-09 Samsung Display Co., Ltd. Liquid crystal display device having branch electrodes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040106506A (ko) * 2002-05-10 2004-12-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 액정 디스플레이 장치
JP3971778B2 (ja) * 2003-07-14 2007-09-05 株式会社 日立ディスプレイズ 表示装置
US20090201449A1 (en) * 2006-06-26 2009-08-13 Kenji Nishida Display device
KR101308163B1 (ko) * 2006-06-30 2013-09-12 엘지디스플레이 주식회사 표시장치의 화소 전극 구조
CN101477988B (zh) * 2008-01-04 2012-08-29 奇美电子股份有限公司 像素阵列基板以及液晶显示装置
JP5138481B2 (ja) * 2008-06-30 2013-02-06 三菱電機株式会社 液晶表示装置
US8865274B2 (en) * 2010-04-02 2014-10-21 Samsung Display Co., Ltd. Liquid crystal display device, alignment film, and methods for manufacturing the same
TWI485495B (zh) * 2011-01-26 2015-05-21 Innolux Corp 液晶顯示裝置
JP5736895B2 (ja) * 2011-03-28 2015-06-17 三菱電機株式会社 横電界方式の液晶表示装置
JP5654677B2 (ja) * 2011-06-27 2015-01-14 シャープ株式会社 液晶表示パネル及び液晶表示装置
US9052555B2 (en) * 2011-12-28 2015-06-09 Japan Display Inc. Liquid crystal display device
TWI471657B (zh) * 2012-03-28 2015-02-01 Innocom Tech Shenzhen Co Ltd 液晶顯示裝置
JP6100153B2 (ja) * 2013-12-11 2017-03-22 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器
CN103969897A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 一种狭缝电极、阵列基板及显示装置
JP2016048276A (ja) * 2014-08-27 2016-04-07 株式会社ジャパンディスプレイ 表示装置
CN104216129B (zh) * 2014-09-12 2017-08-11 上海天马微电子有限公司 一种显示面板和显示装置
KR102473098B1 (ko) * 2016-04-08 2022-12-01 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 액정 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101135824A (zh) * 2007-10-12 2008-03-05 友达光电股份有限公司 液晶显示面板
CN101685226A (zh) * 2008-09-26 2010-03-31 胜华科技股份有限公司 可改善色偏的液晶显示面板与应用其的液晶显示装置
CN101515100A (zh) * 2009-04-10 2009-08-26 友达光电股份有限公司 有源阵列基板、液晶显示面板及其驱动方法
CN202948232U (zh) * 2012-12-14 2013-05-22 京东方科技集团股份有限公司 像素电极结构、阵列基板及液晶显示面板
CN203178637U (zh) * 2013-04-28 2013-09-04 京东方科技集团股份有限公司 一种液晶面板及显示装置
US20160161803A1 (en) * 2014-12-08 2016-06-09 Samsung Display Co., Ltd. Liquid crystal display device having branch electrodes

Also Published As

Publication number Publication date
US20190353966A1 (en) 2019-11-21
EP3657239A4 (en) 2021-03-17
EP3657239A1 (en) 2020-05-27
CN109283754A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
TWI507799B (zh) Display devices and electronic machines
JP4543006B2 (ja) 液晶表示素子及びその製造方法
US9430979B2 (en) Liquid crystal display panel, method for driving the same and display device
US8836900B2 (en) Array substrate and liquid crystal display device
US9897872B2 (en) Liquid crystal display panel with switchable viewing angle and driving method thereof
WO2015062310A1 (zh) 一种液晶显示面板、显示装置及其驱动方法
JP2005346064A (ja) 横電界液晶表示装置及びその駆動方法
WO2017070996A1 (zh) 一种视角可调控的液晶显示面板及其视角调控方法
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
US8743332B2 (en) Liquid crystal display device
JP2009150925A (ja) 液晶表示装置
WO2014101331A1 (zh) 一种广视角液晶显示器及显示方法
US20150261053A1 (en) Liquid crystal panel and display device
WO2015010422A1 (zh) 液晶显示面板和显示装置
EP3680711B1 (en) Array substrate, liquid crystal display panel and display device
WO2019015295A1 (zh) 像素结构、阵列基板及液晶显示装置
US9134577B2 (en) Liquid crystal display device
US8610856B2 (en) Liquid crystal display device
US10101615B2 (en) Array substrate and manufacturing method thereof, liquid crystal panel and display device
WO2013097515A1 (zh) 阵列基板、液晶显示装置及取向摩擦方法
US8179512B2 (en) Liquid crystal display device having particular pixel structure to decrease parasitic capacitance
CN109416490B (zh) 液晶显示面板、液晶显示装置及操作液晶显示面板的方法
US20040212768A1 (en) In-plane switching mode liquid crystal display
WO2019062395A1 (zh) 显示面板、显示装置及其驱动方法
KR20080006034A (ko) 프린즈필드스위칭 액정표시소자의 시야각 조절 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18796816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018796816

Country of ref document: EP

Effective date: 20200221