WO2017069538A1 - 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법 - Google Patents

전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법 Download PDF

Info

Publication number
WO2017069538A1
WO2017069538A1 PCT/KR2016/011839 KR2016011839W WO2017069538A1 WO 2017069538 A1 WO2017069538 A1 WO 2017069538A1 KR 2016011839 W KR2016011839 W KR 2016011839W WO 2017069538 A1 WO2017069538 A1 WO 2017069538A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
transition metal
metal compound
Prior art date
Application number
PCT/KR2016/011839
Other languages
English (en)
French (fr)
Inventor
김동은
김아림
공진삼
이충훈
정승환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US15/744,429 priority Critical patent/US10800863B2/en
Priority to EP16857796.3A priority patent/EP3366689B1/en
Priority to CN201680044411.8A priority patent/CN107849069B/zh
Publication of WO2017069538A1 publication Critical patent/WO2017069538A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/72Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44
    • C08F4/74Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals
    • C08F4/76Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from metals not provided for in group C08F4/44 selected from refractory metals selected from titanium, zirconium, hafnium, vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0264Phosphorus acid amides
    • B01J31/0265Phosphazenes, oligomers thereof or the corresponding phosphazenium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/535Organo-phosphoranes
    • C07F9/5355Phosphoranes containing the structure P=N-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers

Definitions

  • Transition metal compound comprising the same and method for producing polyolefin using same
  • the present invention relates to a transition metal compound, a catalyst composition comprising the same, and a method for preparing polyolefin using the same.
  • the compounds of Ziegler-Natta catalysts have been widely used.
  • the Ziegler-Natta catalyst has a high activity, but because it is a multi-active catalyst, the molecular weight distribution of the produced polymer is wide and the composition distribution of the comonomer is not uniform, thereby limiting the desired physical properties.
  • metallocene catalysts in which a ligand including a cyclopentadiene functional group and a transition metal such as titanium, zirconium and hafnium have been developed and widely used.
  • Metallocene catalyst has a narrow molecular weight distribution of the resulting polymer as a single active site catalyst, and has the advantage of controlling the molecular weight, stereoregularity, crystallinity, etc. according to the structure of the catalyst and ligand.
  • polyolefins polymerized with a metallocene catalyst have a low melting point and a narrow molecular weight distribution, and when the polyolefin is applied to a product, there is a problem in that the application of the polyolefin is difficult due to the reduction in productivity due to the effect of extrusion load.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-0820542 (2008. 04. 01)
  • the present invention is to provide a transition metal compound of a novel structure, which exhibits high activity and improved copolymerization activity of the polymerization reaction of the olepin monomers to enable the production of polyolefins having a high molecular weight and a low density.
  • the present invention also provides a catalyst composition for olefin polymerization containing the transition metal compound.
  • the present invention is to provide a method for producing a polyolefin using the catalyst composition.
  • R 1 to R 7 are each independently hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, or a heterohydrocarbyl group having 1 to 20 carbon atoms;
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently hydrogen, halogen, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, alkylaryl group of 7 to 20 carbon atoms, of 7 to 20 carbon atoms
  • Z is phosphorus (P), arsenic (As) or antimony (Sb);
  • X 1 to X 3 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms, or a heterohydrocarbyl group having 1 to 20 carbon atoms.
  • a catalyst composition for olefin polymerization comprising the transition metal compound and a promoter.
  • a method for producing a polyolefin comprising the step of polymerizing the olefin monomer in the presence of the catalyst composition for olefin polymerization.
  • the transition metal compound according to the embodiments of the invention, the catalyst The composition and the method for producing the polyolefin will be described in more detail.
  • R 1 to R 7 are each independently hydrogen, a hydrocarbyl group having 1 to 20 carbon atoms, or a heterohydrocarbyl group having 1 to 20 carbon atoms;
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently hydrogen, halogen, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, carbon number
  • Z is phosphorus (P), arsenic (As) or antimony (Sb);
  • X 1 to X 3 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms, or a heterohydrocarbyl group having 1 to 20 carbon atoms.
  • the transition metal compound represented by Equation 1 has a structure in which phosphinimide ligands are connected to a derivative of cyclopentadiene having a heterocycle including sulfur.
  • the transition metal compound represented by the formula (1) has a high activity and especially when used as a catalyst for copolymerization of ethylene, octene, nuxene, butene, etc., due to the influence of cyclopentadiene derivatives having heterocycles. It was found that it was possible to exhibit improved copolymerization activity, thereby obtaining a polyolefin having a high molecular weight and a low density.
  • M may be a Group 4 transition metal element on the periodic table; Preferably it may be titanium (Ti), zirconium (Zr) or hafnium (Hf).
  • Q 1 and Q 2 are each independently hydrogen, halogen, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, alkyl of 7 to 20 carbon atoms.
  • It may be an aryl group, an arylalkyl group having 7 to 20 carbon atoms, an alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or an alkylidene group having 1 to 20 carbon atoms.
  • the Q 1 and Q 2 are each independently a halogen or an alkyl group having 1 naeja 10.
  • Q 1 and Q 2 are each an alkyl group, a more improved yield of polyolefin may be expressed.
  • Z may be phosphorus (P), arsenic (As) or antimony (Sb); Preferably phosphorus (P).
  • R 1 to R 7 may be each independently hydrogen, a C 1-20 hydrocarbyl group, or a C 1-20 heterohydrocarbyl group.
  • R 1 to R 7 are each Independently hydrogen, an alkyl group of 1 to 10 carbon atoms, an alkenyl group of 2 to 10 carbon atoms, an alkynyl group of 2 to 10 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, a cycloalkyl group of 3 to 20 carbon atoms , An alkylaryl group having 7 to 20 carbon atoms, or an arylalkyl group having 7 to 20 carbon atoms.
  • X 1 to X 3 may each independently be a hydrogen, a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, or a heterohydrocarbyl group having 1 to 20 carbon atoms.
  • X 1 to X 3 are each independently hydrogen, halogen, alkyl group of 1 to 10 carbon atoms, alkenyl group of 2 to 10 carbon atoms, alkynyl group of 2 to 10 carbon atoms, alkoxy group of 1 to 20 carbon atoms, carbon number It may be an aryl group of 6 to 20, a cycloalkyl group of 3 to 20 carbon atoms, an alkylaryl group of 7 to 20 carbon atoms, or an arylalkyl group of 7 to 20 carbon atoms.
  • the alkyl group, alkenyl group, and alkynyl group may each have a structure that is linear or branched chain.
  • the aryl group is preferably an aromatic ring having 6 to 20 carbon atoms, and non-limiting examples may be phenyl, naphthyl, anthracenyl, pyridyl, dimethylanilinyl, anisolyl, and the like. '
  • the alkylaryl group refers to an aryl group in which an alkyl group having at least one C 1-20 linear or branched chain is introduced.
  • the arylalkyl group refers to an alkyl group which is a straight or branched chain into which at least one aryl group having 6 to 20 carbon atoms is introduced.
  • Halogen means fluorine (F), chlorine (CI), bromine (Br), or iodine (I).
  • R 1 to R 7 may be advantageous to "each independently hydrogen or an alkyl group of 1 to 10 carbon atoms.
  • X 1 to X 3 are each independently a halogen, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 20 carbon atoms.
  • the transition metal compound of Formula 1 may be represented by the following Formula 1-1, Formula 1-2, Formula 1-3, Formula 1-4, or Formula 1-5:
  • Each Cy is a cyclohexyl group
  • tBu is a tert-butyl group, respectively.
  • Me is each a methyl group
  • Ph is a phenyl group, respectively.
  • the transition metal compound may have various structures in the range defined in Chemical Formula 1, and these compounds may exhibit equivalent functions and effects.
  • transition metal compound may be synthesized, for example, according to Scheme 1 below.
  • R 1 to R 7 , M, Q 1 , Q 2 , Z, and X 1 to X 3 are each as defined in Chemical Formula 1;
  • Q 3 is hydrogen, a halogen, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • TMS is a tetramethylsilane group.
  • a catalyst composition ' water for olefin polymerization comprising the transition metal compound described above.
  • the transition metal compound can exhibit high activity and particularly enhanced co-polymerization activity when used as a catalyst for the polymerization of olefin monomers, thereby providing low density and high molecular weight polyolefins.
  • the catalyst composition may include a promoter.
  • the cocatalyst is any organometallic compound capable of activating the transition metal compound, and may be applied without particular limitation as long as it can be generally used when polymerizing leupine under a catalyst of the transition metal compound.
  • the promoter may be at least one compound selected from the group consisting of compounds represented by Formulas 4 to 6 below:
  • R 31 is the same as or different from each other, and each independently a halogen radical, a hydrocarbyl radical having 1 to 20 carbon atoms, or 1 to 20 carbon atoms substituted with halogen Is a hydrocarbyl radical, c is an integer of 2 or more,
  • D is aluminum or boron
  • R 51 is C1-C20 hydrocarbyl or halogen substituted by C1-C20 hydrocarbyl
  • L is a neutral Lewis base
  • [LH] + is a Bronsted acid
  • Q is boron or aluminum in a +3 type oxidation state
  • each E is independently at least one hydrogen atom is halogen, a hydrocarbyl having 1 to 20 carbon atoms, An aryl group having 6 to 20 carbon atoms or an alkyl group having 1 to 20 carbon atoms which is unsubstituted or substituted with an alkoxy functional group or a phenoxy functional group.
  • the compound represented by Formula 4 may be alkyl aluminoxane, such as methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane.
  • the alkylaluminoxane may be a modified alkylaluminoxane (MMAO) in which two or more kinds are mixed.
  • MMAO modified alkylaluminoxane
  • the compound represented by the formula (5) is trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tripropyl aluminum, tributyl aluminum, dimethyl chloro aluminum, dimethyl isobutyl aluminum, dimethyl ethyl aluminum, die Dechloroaluminum, triisopropylaluminum, triisobutylaluminum, tri-S-butylaluminum, Tricyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trinuclear aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-P- allyl aluminum, dimethyl aluminum hydroxide, dimethyl aluminum ethoxide, trimethyl Boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron and the like.
  • the compound represented by Formula 6 is triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium Tetra (P-ryll) boron, tripropylammonium tetra (P-ryll) boron, triethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) boron,
  • Trimethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) boron Trimethylammonium tetra ( ⁇ , ⁇ -dimethylphenyl) boron
  • Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) boron Trimethylammonium tetra ( ⁇ -trifluoromethylphenyl) boron
  • Trimethylammonium tetra ( ⁇ -ryll) aluminum Trimethylammonium tetra ( ⁇ -ryll) aluminum
  • Diethylammonium tetrapentafluorophenylaluminum Triphenylphosphonium tetraphenylaluminum, trimethylphosphonium tetraphenylaluminum, triphenylcarbonium tetraphenylboron, triphenylcarbonium tetraphenylaluminum, triphenylcarbonium tetra (P-trifluoromethylphenyl) boron
  • Triphenylcarbonium tetrapentafluorophenylboron and the like Triphenylcarbonium tetrapentafluorophenylboron and the like.
  • the promoter may be an organoaluminum compound, an organoboron compound, an organomagnesium compound, an organozinc compound, an organolithium compound, or a combination thereof.
  • the promoter is preferably an organoaluminum compound, more preferably trimethyl aluminum, triethyl aluminum, triisoprapyl aluminum, triisobutyl aluminum ), Ethylaluminum sesquichloride, diethylaluminum chloride, ethyl aluminum dichloride, methylaluminoxane, ', and modified methylaluminoxane. It may be one or more compounds selected from the group consisting of.
  • the content ratio of the "components constituting the catalyst composition may be determined in consideration of the catalytic activity.
  • the molar ratio of the transition metal compound: promoter in the catalyst composition is controlled to 1: 1 to 1: 10,000, or 1: 1 to 1: 5,000, or 1: 1 to 1: 3,000 to ensure the catalytic activity May be advantageous.
  • the catalyst composition may be used while supported on a carrier.
  • the carrier may be a metal, a metal salt, a metal oxide, or the like applied to a conventional supported catalyst.
  • the carrier may be silica, silica-alumina, silica-magnesia, and the like, oxides, carbonates, sulfates, vaginal oxides of metals such as Na 2 0, K 2 C0 3 , BaSO 4 , Mg (NO 3 ) 2, and the like. It may comprise a trisalt component.
  • the components constituting the catalyst composition may be added simultaneously or in any order, in the presence or absence of a suitable solvent and olefin monomer, to act as a catalyst system with an activeol.
  • a suitable solvent may be a nucleic acid, heptane, toluene, diethyl ether, tetrahydrofuran, acetonitrile, dichloromethane, chloroform, chlorobenzene, methanol, acetone and the like.
  • a method for producing a polyolefin comprising the step of subjecting the relefin monomer in the presence of the catalyst composition for olefin polymerization described above.
  • the polymerization reaction of the olefin monomer may be carried out in a possible conventional process applied to the polymerization of the lepin monomer, such as continuous solution polymerization, bulk polymerization, suspension polymerization, slurry polymerization, or emulsion polymerization.
  • ⁇ Reaction reaction of the olepin monomer may be performed under an inert solvent.
  • the inert solvent may be benzene, toluene, xylene, cumene, heptane, cyclonucleic acid, methylcyclonucleic acid, methylcyclopentane, n-nucleic acid, 1-nuxene, 1-octene and the like.
  • Ethylene, alpha-olefin, cyclic olefin, etc. may be used as the olefin monomer, and a diene olefin monomer or a triene olefin monomer having two or more double bonds may also be used.
  • the olefin monomer is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1- Dodecene, 1-tetradecene, 1-nuxadecene, 1-aitocene, norbornene, norbonadiene, ethylidenenorbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1 , 5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene and the like.
  • the olepin monomers may be used alone or in combination of two or more thereof.
  • the polyolefin is a copolymer of ethylene and other comonomers, propylene, 1-butene, 1-nuxene, 4-methyl-1-pentene, 1-octene, and the like may be used as the comonomer.
  • the reaction temperature is preferably 25 to 20 CTC, more preferably 120 to 16 CTC.
  • the pressure of the polymerization reaction is preferably 1 to 70 bar, more preferably 5 to 40 bar.
  • the polymerization reaction time is 5 minutes to 5 hours, or 5 minutes to 1 hour, or 5 minutes to 10 minutes may be preferred.
  • the transition metal compound according to the present invention exhibits high activity and improved copolymerization activity in the polymerization reaction of the olefin monomer, thereby enabling the production of polyolefins having a high molecular weight and a low density.
  • Chemical Formula 2-F Chemical Formula 3-3 Chemical Formula 1-F
  • a compound represented by Formula 2-F of Scheme 1-6 is used, and is represented by Formula 3-1.
  • a transition metal compound represented by Chemical Formula 1-F was obtained by the method of Synthesis Example 1, except that the compound represented by Chemical Formula 3-3 was added instead of the compound. .
  • Example 2 After the reaction was completed, the remaining ethylene gas was removed and the polymer solution was added to excess ethanol to induce precipitation of the polymer. The polymer obtained was washed two to three times with ethanol and acetone, and then dried in a vacuum oven at 80 ° C. for at least 12 hours.
  • Example 2
  • Example 3 A polymer was obtained in the same manner as in Example 1, except that the transition metal compound of Chemical Formula 1-2 according to Synthesis Example 2 was added instead of the transition metal compound of Synthesis Example 1.
  • Example 3 A polymer was obtained in the same manner as in Example 1, except that the transition metal compound of Chemical Formula 1-2 according to Synthesis Example 2 was added instead of the transition metal compound of Synthesis Example 1.
  • Example 4 A polymer was obtained in the same manner as in Example 1, except that the transition metal compound of Chemical Formula 1-3 according to Synthesis Example 3 was added instead of the transition metal compound of Synthesis Example 1.
  • Example 4 A polymer was obtained in the same manner as in Example 1, except that the transition metal compound of Chemical Formula 1-3 according to Synthesis Example 3 was added instead of the transition metal compound of Synthesis Example 1.
  • a polymer was obtained in the same manner as in Example 1, except that the transition metal compound of Formula 1-4 according to Synthesis Example 4 was added instead of the transition metal compound of Synthesis Example 1. Comparative Example 1
  • a polymer was obtained in the same manner as in Example 1, except that 1-F transition metal compound was added.
  • melt index (Ml) of the polymer was measured according to ASTM D-1238 (Condition E, 190 ° C., 2.16 kg load).
  • the glass transition temperature (T c ) and melting temperature (T m ) of the polymers were It was measured using a calorimeter (DSC 2920, TA instrument). Specifically, the polymer was heated to 220 ° C. and then maintained at that temperature for 5 minutes, and then again raised to 2 CTC and then increased again. At this time, the temperature rising rate and the rate of falling were respectively adjusted to 10 ° C / min.
  • the polymer according to the Examples was confirmed to be a low density polyolefin with a molecular weight equivalent to the polymer of Comparative Example 1 as prepared by applying the transition metal compound of Synthesis Examples 1 to 4.
  • Example 4 when the Q 1 and Q 2 in the general formula 1 when substituted with an alkyl group, the basic physical properties were confirmed to increase the yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

본 발명은 을레핀 단량체의 중합 반웅에서 높은 활성과 향상된 공중합 활성을 나타내어 저밀도 및 고분자량의 폴리올레핀의 제조를 가능케 하는 전이금속 화합물, 이를 포함하는 촉매 조성물 및 상가 조성물을 이용한 폴리을레핀의 제조 방법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
전이금속 화합물,. 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
【기술분야】
관련 출원과의 상호 인용
본 출원은 2015년 10월 21일자 한국 특허 출원 제 10-2015-0146840호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리을레핀의 제조 방법에 관한 것이다.
【발명의 배경이 되는 기술】
기존의 폴리올레핀의 상업적 제조 과정에는 티타늄 또는 바나듐
'화합물의 지글러 -나타 촉매가 널리 사용되었다. 그런데, 지글러 -나타 촉매는 높은 활성을 갖지만, 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓으며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있었다.
이러한 한계를 극복하기 위해, 티타늄, 지르코늄, 하프늄 등의 전이금속과 싸이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 개발되어 널리 이용되고 있다.
메탈로센 촉매는 단일 활성점 촉매로서 생성 중합체의 분자량 분포가 좁고, 촉매와 리간드의 구조에 따라 분자량, 입체 규칙도, 결정화도 등을 조절할 수 있는 장점이 있다. 하지만, 메탈로센 촉매로 중합한 폴리을레핀은 녹는점이 낮고 분자량 분포가 좁아, 이러한 폴리올레핀을 제품에 적용할 경우 압출 부하 등의 영향으로 생산성이 현저히 떨어지는 등 현장 적용이 어려운 문제가 있다.
특히, 상술한 메탈로센 촉매의 문제점을 해결하기 위하여, 헤테로 원자를 포함하는 리간드 화합물이 배위된 메탈로센 화합물들이 다수 제안되었다. 그러나, 이러한 시도들 중에서 실제로 상업적 공정에 적용되고 있는 메탈로센 촉매들은 몇몇에 불과한수준이다.
특히, 올레핀 단량체에 대한 높은 반웅성으로 고분자량의 중합체를 얻을 수 있게 하는 촉매들이 다수 제안되었으나, 상대적으로 공중합성 활성이 떨어져, 분자량이 크면서도 밀도가 낮은 폴리올레핀을 제조하는데 여전히 한계가 있다.
【선행기술문헌】
【특허문헌】'
(특허문헌 1 ) 대한민국 등록특허공보 제 10-0820542 호 (2008. 04. 01 )
【발명의 내용]
【해결하고자 하는 과제】
본 발명은, 을레핀 단량체의 중합 반웅에 대한 높은 활성과 향상된 공중합 활성을 나타내어 분자량이 크면서도 밀도가 낮은 폴리올레핀의 제조를 가능케 하는, 신규한 구조의 전이금속 화합물을 제공하기 위한 것이다.
그리고, 본 발명은 상기 전이금속 화합물을 포함하는 올레핀 중합용 촉매 조성물을 제공하기 위한 것이다.
또한, 본 발명은 상기 촉매 조성물을 이용한 폴리을레핀의 제조 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명에 따르면, 하기 화학식 1로 표시되는 전이금속 화합물 o 제공된다:
Figure imgf000004_0001
상기 화학식 1에서,
R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이고;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 또는 탄소수 1 내지 20의 알킬리덴기이고;
Z는 인 (P), 비소 (As) 또는 안티몬 (Sb)이고;
X1 내지 X3는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이다. 그리고, 본 발명에 따르면, 상기 전이금속 화합물 및 조촉매를 포함하는 올레핀 중합용 촉매 조성물이 제공된다.
또한, 본 발명에 따르면, 상기 올레핀 중합용 촉매 조성물의 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함하는 폴리올레핀의 제조 방법이 제공된다. 이하, 발명의 구현 예들에 따른 상기 전이금속 화합물, 상기 촉매 조성물 및 상기 폴리올레핀의 제조 방법에 대하여 보다 상세하게 설명하기로 한다.
그에 앞서, 본 명세서에 사용되는 전문 용어는 단지 특정 구현예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
그리고, 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
또한, 명세서에서 사용되는 '포함 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 또는 성분의 부가를 제외시키는 것은 아니다.
I. 전이금속화합물
발명의 일 구현 예에 따르면,
하기 화학식 1로 표시되는 전이금속 화합물이 제공된다:
Figure imgf000005_0001
상기 화학식 1에서,
R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이고;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 또는 탄소수 1 내지 20의 알킬리덴기이고;
Z는 인 (P), 비소 (As) 또는 안티몬 (Sb)이고;
X1 내지 X3는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이다.
상기 ^학식 1로 표시되는 전이금속 화합물은 황이 포함된 헤테로고리를 가지는 사이클로펜타디엔의 유도체에 포스핀이미드 리간드 (phosphinimide ligands.)가 연결된 구조를 갖는다.
본 발명자들의 계속적인 연구 결과, 상기 화학식 1로 표시되는 전이금속 화합물은 헤테로고리를 가지는 사이클로펜타디엔 유도체의 영향으로 인해 에틸렌과 옥텐, 핵센, 부텐 등의 공중합에 촉매로써 이용될 경우 높은 활성과 특히 향상된 공중합 활성을 나타낼 수 있어, 분자량이 크면서도 밀도가 낮은 폴리올레핀을 얻을 수 있게 함이 확인되었다.
상기 화학식 1에서, 상기 M은 주기율표 상의 4족 전이금속 원소일 수 있고; 바람직하게는 티타늄 (Ti), 지르코늄 (Zr)또는 하프늄 (Hf)일 수 있다. 그리고, 상기 화학식 1에서, 상기 Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 또는 탄소수 1 내지 20의 알킬리덴기일 수 있다. 바람직하게는, '상기 Q1 및 Q2는 각각 독립적으로 할로겐 또는 탄소수 1 내자 10의 알킬기일 수 있다. 특히, 상기 Q1 및 Q2가 각각 알킬기인 화학식 1의 화합물을 이용할 경우, 보다 향상된 폴리올레핀의 수율이 발현될 수 있다.
상기 화학식 1에서, 상기 Z는 인 (P), 비소 (As) 또는 안티몬 (Sb)일 수 있고; 바람직하게는 인 (P)일 수 있다.
상기 화학식 1에서, 상기 R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기일 수 있다. 바람직하게는, 상기 R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기일 수 있다.
상기 화학식 1에서, 상기 X1 내지 X3는 각각독립작으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기일 수 있다. 바람직하게는, 상기 X1 내지 X3는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기일 수 있다. 상기 치환기의 정의에서, 알킬기, 알케닐기, 및 알키닐기는 각각 직쇄 또는 분지쇄인 구조를 갖는 것일 수 있다.
상기 아릴기는 탄소수 6 내지 20의 방향족 고리인 것이 바람직하며, 비제한적인 예로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등일 수 있다. '
상기 알킬아릴기는 적어도 하나의 탄소수 1 내지 20의 직쇄 또는 분지쇄인 알킬기가 도입된 아릴기를 의미한다. 상기 아릴알킬기는 적어도 하나의 탄소수 6 내지 20의 아릴기가 도입된 직쇄 또는 분지쇄인 알킬기를 의미한다.
상기 할로겐은 불소 (F), 염소 (CI), 브롬 (Br), 또는 요오드 (I)를 의미한다. 발명의 일 구현 예에 따르면, 상기 전이금속 화합물의 합성의 용이성 측면에서, 상기 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기인' 것이 유리할 수 있다. 그리고, 상기 X1 내지 X3는 각각 독립적으로 할로겐, 탄소수 1 내지 10의 알킬기, 또는 탄소수 3 내지 20의 사이클로알킬기인 것이 유리할 수 있다.
한편, 비제한적인 예로, 상기 화학식 1의 전이금속 화합물은 하기 화학식 1-1 , 화학식 1-2, 화학식 1-3, 화학식 1-4, 또는 화학식 1-5로 표시될 수 있다:
[화학식 1-1]
Figure imgf000008_0001
[
[
Figure imgf000008_0002
[화학식 1-4]
Figure imgf000009_0001
N CI
//
Ph— R
/ \
Ph Ph
상기 화학식 1-1 내지 1-5에서,
Cy는 각각사이클로핵실 (cydohexyl) 그룹이고,
tBu는 각각 터트 -부틸 (tert-butyl) 그룹이고,
Me는 각각 메틸 (methyl) 그룹이고,
Ph는 각각 페닐 (phenyl) 그룹이다.
상기 대표 예들 이외에도, 상기 전이금속 화합물은 상기 화학식 1에 정의된 범위에서 다양한 구조를 가질 수 있으며, 이들 화합물은 동등한 작용과 효과를 나타낼 수 있다.
그리고, 상기 전이금속 화합물은, 예를 들어, 아래의 scheme 1에 따라 합성될 수 있다.
[Scheme 1]
Figure imgf000010_0001
Chemical Formula 2 Chemical Formula 3
Chemical Formula 1 상기 Scheme 1에서,
R1 내지 R7, M, Q1, Q2, Z, 및 X1 내지 X3는 각각 상기 화학식 1에서 정의된 바와 같고;
Q3는 수소, 할로겐, 탄소수 1 내자 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 또는 탄소수 1 내지 20의 알킬리덴기이고;
TMS는 tetramethylsilane 그룹이다.
상기 전이금속 화합물에 대한 보다 상세한 합성 방법은 합성예 부분에서 설명한다.
II.올레핀 중합용촉매 조성물
한편, 발명의 다른 구현 예에 따르면, 상술한 전이금속 화합물을 포함하는 올레핀 중합용 촉매 조성'물이 제공된다.
상술한 바와 같이, 상기 전이금속 화합물은 올레핀 단량체의 중합에 촉매로써 이용할 경우 높은 활성과 특히 향상된 공증합 활성을 나타낼 수 있어, 저밀도 및 고분자량의 폴리올레핀의 제공을 가능케 한다.
상기 촉매 조성물에는 조촉매가 포함될 수 있다. 상기 조촉매는 상기 전이금속 화합물을 활성화시킬 수 있는 임의의 유기금속 화합물로서, 일반적으로 전이금속 화합물의 촉매 하에 을레핀을 중합할 때 이용될 수 있는 것이라면 특별히 한정되지 않고 적용될 수 있다. 예를 들어, 상기 조촉매는 하기 화학식 4 내지 6으로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다:
[화학식 4]
-[AI(R41)-0]c- 상기 화학식 4에서, R31은 서로 동일하거나 상이하고, 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카빌 라디칼, 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌 라디칼이고, c는 2 이상의 정수이고,
[화학식 5]
D(R51)3
상기 화학식 5에서, D는 알루미늄 또는 보론이고, R51은 탄소수 1 내지 20의 하이드로카빌 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌이고,
[화학식 6]
[L-H]+[Q(E)4]- 상기 화학식 6에서,
L은 중성 루이스 염기이고, [L-H]+는 브론스테드 산이며, Q는 +3 형식 산화 상태의 붕소 또는 알루미늄이고, E는 각각 독립적으로 1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20의 하이드로카빌, 알콕시 작용기 또는 페녹시 작용기로 치환 또는 비치환된 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이다.
일 구현 예에 따르면, 기 화학식 4로 표시되는 화합물은 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등의 알킬알루미녹산일 수 있다. 그리고, 상기 알킬알루미녹산이 2종 이상 흔합된 개질된 알킬알루미녹산 (MMAO)일 수도 있다.
그리고, 일 구현 예에 따르면, 상기 화학식 5로 표시되는 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 디메틸이소부틸알루미늄, 디메틸에틸알루미늄, 디에탈클로로알루미늄, 트리이소프로필알루미늄, 트리아이소부틸알루미늄, 트리 -S-부틸알루미늄, 트리씨클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리핵실알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄, 디메틸알루미늄메록시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등일 수 있다.
또한, 일 구현 예에 따르면, 상기 화학식 6으로 표시되는 화합물은 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라 (P-를릴)보론, 트리프로필암모니움테트라 (P-를릴)보론, 트리에틸암모니움테트라 (Ο,ρ-디메틸페닐)보론,
트리메틸암모니움테트라 (ο,ρ-디메틸페닐)보론,
트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)보론,
트리메틸암모니움테트라 (Ρ-트리플로로메틸페닐)보론,
트리부틸암모니움테트라펜타플루오로페닐보론,
Ν,Ν-디에틸아닐리니움테트라페닐 보론, Ν,Ν-디에틸아닐리니움테트라페닐보론, Ν,Ν-디에틸아닐리니움테트라펜타플루오로페닐보론,
디에틸암모니움테트라펜타플루오로페닐보론,
트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄,
트리프로필암모니움테트라페닐알루미늄,
트리메틸암모니움테트라 (Ρ-를릴)알루미늄,
트리프로필암모니움테트라 (Ρ-를릴)알루미늄,
트리에틸암모니움테트라 (ο,ρ-디메틸페닐)알루미늄,
트리부틸암모니움테트라 (Ρ-트리플루오로메틸페닐)알루미늄,
트리메틸암모니움테트라 (Ρ-트리플루오로메틸페닐)알루미늄,트리부틸암모니움 테트라펜타플루오로페닐알루미늄, Ν,Ν-디에틸아닐리니움테트라페닐알루미늄, Ν,Ν-디에틸아닐리니움테트라페닐알루미늄,
Ν, Ν-디에틸아닐리니움테트라펜타플로로페닐알루미늄,
디에틸암모니움테트라펜타플루오로페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리페닐카보니움테트라페닐보론, 트리페닐카보니움테트라페닐알루미늄, 트리페닐카보니움테트라 (P-트리플로로메틸페닐)보론
트리페닐카보니움테트라펜타플루오로페닐보론 등 일 수 있다.
또한, 상기 조촉매는 유기알루미늄 화합물, 유기붕소 화합물, 유기마그네슴 화합물, 유기아연 .화합물, 유기리튬 화합물, 또는 이들의 흔합물일 수 있다.
일 예로, 상기 조촉매는 유기알루미늄 화합물인 것이 바람직하며 , 보다 바람직하게는 트리메틸 알루미늄 (trimethyl aluminium), 트리에틸 알루미늄 (triethyl aluminium), 트리이소프로필 알루미늄 (triisoprapyl aluminium), 트리아이소부틸 알루미늄 (triisobutyl aluminum), 에틸알루미늄 세스퀴클로라이드 (ethylaluminum sesquichloride), 디에틸알루미늄 클로라이드 (diethylaluminum chloride), 에틸 알루미늄 디클로라이드 (ethyl aluminium dichloride), 메틸알루미녹산 (methylaluminoxane), ' 및 개질된 메틸알루미녹산 (modified methylaluminoxane)으로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
한편, 상기'촉매 조성물을 구성하는 성분들의 함량비는 촉매 활성을 고려하여 결정될 수 있다. 일 예로, 상기 촉매 조성물에서 상기 전이금속 화합물: 조촉매의 몰비는 1 : 1 내지 1 : 10,000, 또는 1 : 1 내지 1 : 5,000, 또는 1 : 1 내지 1 : 3,000으로 조절되는 것이 촉매 활성의 확보에 유리할 수 있다. 그리고, 상기 촉매 조성물은 담체 상에 담지된 상태로 이용될 수 있다. 상기 담체는 통상의 담지 촉매에 적용되는 금속, 금속 염 또는 금속 산화물 등일 수 있다. 비제한적인 예로, 상기 담체는 실리카, 실리카 -알루미나, 실리카 -마그네시아 등일 수 있으며, Na20, K2C03, BaSO4, Mg(NO3)2 등과 같은 금속의 산화물, 탄산염, 황산염, 질삼염 성분을 포함할 수 있다.
상기 촉매 조성물을 구성하는 성분들은 동시에 또는 임의 순서로, 적절한 용매 및 올레핀 단량체의 존재 또는 부재 하에 첨가되어 활성올 갖는 촉매 시스템으로 작용할 수 있다. 이때, 적합한 용매로는 핵산, 헵탄, 를루엔, 디에틸에테르, 테트라히드로푸란, 아세토니트릴, 디클로로메탄, 클로로포름, 클로로벤젠, 메탄올, 아세톤 등이 사용될 수 있다. III. 폴리올레핀의 제조 방법
한편, 발명의 또 다른 구현 예에 따르면, 상술한 올레핀 중합용 촉매 조성물의 존재 하에 을레핀 단량체를 증합 반웅시키는 단계를 포함하는 폴리올레핀의 제조 방법이 제공된다.
상기 올레핀 단량체의 중합 반웅은 연속식 용액 중합, 벌크 중합, 현탁 중합, 슬러리 중합, 또는 유화 중합 등 을레핀 단량체의 중합에 적용되는 가능한 통상의 공정으로 수행될 수 있다.
상기 을레핀 단량체의 ^합 반웅은 불활성 용매 하에서 수행될 수 있다. 비제한적인 예로, 상기 불활성 용매는 벤젠, 를루엔, 크실렌, 큐멘, 헵탄, 사이클로핵산, 메틸사이클로핵산, 메틸사이클로펜탄, n-핵산, 1-핵센, 1-옥텐 등일 수 있다.
상기 올레핀 단량체로는 에틸렌, 알파-올레핀, 사이클릭 올레핀 등이 사용될 수 있으며, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀계 단량체 또는 트리엔 올레핀계 단량체도 사용될 수 있다. 구체적으로, 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1 -펜텐, 1-핵센, 1 -헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1 ,4-부타디엔, 1 ,5-펜타디엔, 1 ,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등일 수 있다. 상기 을레핀 단량체는 단독 또는 2종 이상 흔합하여 사용될 수 있다. 상기 폴리올레핀이 에틸렌과 다른 공단량체의 공중합체인 경우, 상기 공단량체로는 프로필렌, 1 -부텐, 1-핵센, 4-메틸 -1-펜텐, 및 1-옥텐 등이 사용될 수 있다.
그리고, 상기 올레핀 단량체의 중합 반웅은 25 내지 500°C의 온도 및
1 내지 100 bar의 압력 하에서 5 분 내지 24 시간 동안 수행될 수 있다. 이때, 상기 증합 반웅의 수율을 고려하여, 상기 중합.반웅의 온도는 25 내지 20CTC가 바람직하고, 120 내지 16CTC가보다 바람직할 수 있다. 또한, 상기 중합 반웅의 압력은 1 내지 70 bar가 바람직하고, 5 내지 40 bar가 보다 바람직할 수 있다. 그리고, 상기 중합 반웅 시간은 5 분 내지 5 시간, 또는 5 분 내지 1 시간, 또는 5 분 내지 10 분이 바람직할 수 있다. 【발명의 효과】
본 발명에 따른 전이금속 화합물은 올레핀 단량체의 중합 반웅에 높은 활성과 향상된 공중합 활성을 나타내어 분자량이 크면서도 밀도가 낮은 폴리올레핀의 제조를 가능케 한다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다.
Figure imgf000015_0001
[Scheme 1 -1]
Figure imgf000015_0002
Chemical Formula 1-1
(i) 1 ,2-dimethyl-1 H-benzo[b]cyclopenta[d]thiophen-3(2H)-one (15.854 g, 73.3 mm )을 THF (180 mL)에 녹인 후 0°C에서 MeMgBr (50 mL, 146.6 mmol 2 eq.)를 천천히 적가하였다. 그 후 천천히 승온시켜 상온에서 12 시간 동안 교반하였다. TLC로 출발물질이 없어지는 것을 확인한후, 증류수 (10 mL)를 천천히 적가하고 10 분 동안 교반하였다. 그 후 6N HCI (180 mL)을 첨가하고 12 시간 동안 교반하였다. TLC 확인 결과, alcohol 형태의 출발물질이 없어진 것을 확인하고, hexane (50 ml_)를 첨가한후 extraction을 -통해 물 층을 제거하고, MgS04를 통해 여분의 수분을 제거하였고, 용매를
Figure imgf000016_0001
(HI丄 y 90 Z丄| 61| sa!_zZ z-、/、§§ uz - (Η)(Η)(H)(ΐε 0CH£寸 ss 969:sSS - -- - -. -.
οε //:/ O 6ε8ποο2Μ128£S690/J0ZAV
2
Figure imgf000017_0001
l 2/ Pfjul vmoml3u-..
( 969H) () εοζΗ ρ寸Ηρ 06soᅳ yl-Nζζz\、、. · -ᅳ.ᅳ ·ᅳ -· .
(工 Ρ)(6ε2Η6 g .ᅳ -ᅳ Li
를 tla융 9U9n|oi π{ζ ο¾ 륭^
^움 Zi t 긍^ -k IT
Figure imgf000018_0001
902 '|OU J m Ίω 39" ι,) jg6|/\|9|/\| γ^긍^ [b "l山 OZ) QU9 \o\륭 (|o國 i£ z 'β θε·1·) 튿
Figure imgf000018_0002
k v
p-j vp uoj poi dif £-1 vjn oj oiwdt^j
Figure imgf000018_0003
[ -i 니 OS]
(HZ2 'P) 10 i '(H£ 's)£l Z '(Ηε 's) l£ Zl(h\£ 's) 8^3 '(Ηί ) 969 '(HI. '}) 90 Z '(Η 'Ρ) IZ'l '(HI- 'Ρ) 8Z Z:(9090 u! 'ZHIAI009) ^ΙΛΙΝ Ht
-b¾¾ 름륨 ½[o^ 극 ts 표 ^ο-εΗ t ¼-|5 k r -^-Q tot l k v 'ΐΓ¼^^ 룽^ 극 ts 표 ^-οε-ε
[όΖ- 3UJ9LPS
Figure imgf000018_0004
tr¼-t? Ui°Y
Figure imgf000018_0005
6C8ll0/9T0ZaM/X3d 8CS690/.T0Z OAV
Figure imgf000019_0001
O
Figure imgf000020_0001
Chemical Formula 2-F Chemical Formula 3-3 Chemical Formula 1-F 상기 화학식 2-1로 표시되는 화합물 대신 상기 Scheme 1-6의 화학식 2-F로 표시되는 화합물을 사용하고, 상기 화학식 3-1로 표시되는 화합물 대신 상기 화학식 3-3으로 표시되는 화합물을 첨가한 것을 제외하고, 상기 합성예 1의 방법으로 상기 화학식 1-F로 표시되는 전이금속 화합물을 얻었다. .
1H NMR (500MHz, in C6D6): 2.15 (s, 15H), 1.53 (d, 27H). 실시예 1
2 L의 오토클래이브 반응기에 1 L의 핵산과 350 ml의 1-옥텐을 가한 후, 반웅기의 온도를 150 °C로 예열하였고, 에틸렌을 35 bar로 포화시켰다. 상기 합성예 1에 따른 화학식 1-1의 전이금속 화합물 1 마이크로몰 (Ti 기준), 10 당량의 Ν,Ν-디메틸아닐리니움 테트라키스 (펜타플루오로페닐)보레이트, 그리고 scavenger로써 트라이아이소부틸 알루미늄 (TIBAL, 1.0 M solution in hexane, Aldrich)을 촉매 주입 실린더에 채운 후, 상기 반웅기 중으로 주입하였다. 반웅기 내의 압력을 35 bar로 유지하기 위해 에틸렌을 계속 주입하면서 8 분 동안 공중합 반응이 진행되었다. 반웅열은 반웅기 내부 넁각 코일을 통해 제거하여 증합 온도를 최대한 일정하게 유지하였다.
반웅 종료 후 남은 에틸렌 가스를 빼내고 중합체 용액을 과량의 에탄올에 가하여 중합체의 침전을 유도하였다. 얻어진 중합체를 에탄올 및 아세톤으로 각각 2 내지 3회 세척한 후, 80 °C의 진공 오븐에서 12 시간 이상 건조하였다. 실시예 2
상기 합성예 1의 전이금속 화합물 대신 상기 합성예 2에 따른 화학식 1-2의 전이금속 화합물을 첨가한 것을 제외하고, 실시예 1과 동일한 방법으로 중합체를 수득하였다. 실시예 3
상기 합성예 1의 전이금속 화합물 대신 상기 합성예 3에 따른 화학식 1-3의 전이금속 화합물을 첨가한 것을 제외하고, 실시예 1과 동일한 방법으로 중합체를 수득하였다. 실시예 4
상기 합성예 1의 전이금속 화합물 대신 상기 합성예 4에 따른 화학식 1-4의 전이금속 화합물을 첨가한 것을 제외하고, 실시예 1과 동일한 방법으로 중합체를 수득하였다. 비교예 1
상기 합성예 1의 전이금속 화합물 대신 합성예 6에 따른 화학식
1-F의 전이금속 화합물을 첨가한 것을 제외하고, 실시예 1과 동일한 방법으로 중합체를 수득하였다. 시험예
실시예 및 비교예에 따른 중합체에 대하여 아래와 같은 방법으로 물성을 측정하였고, 그 결과를 표 1에 나타내었다.
1 )수율은 생성된 중합체의 무게 (g)의 비로 측정하였다.
2) 중합체의 용융지수 (Ml)는 ASTM D-1238 (조건 E, 190°C , 2.16kg 하중)에 의거하여 측정하였다.
3) 중합체의 밀도 (g/cc)는 산화 방지제 (1000 ppm)로 처리된 샘플을 180°C 프레스 몰드를 이용하여 두께 3 mm 및 반지름 2cm의 시트로 제작하였고, 10°C/min으로 넁각하여 메를러 (Mettler) 저울에서 측정하였다.
4) 중합체의 유리전이온도 (Tc)와 용융온도 (Tm)는 각각 시차 주사 열량계 (DSC 2920, TA instrument)를 이용하여 측정하였다. 구체적으로, 중합체를 220°C까지 가열한 후 5 분 동안 그 온도를 유지하고, 다시 2CTC까지 넁각한 후 다시 온도를 증가시켰다. 이때 온도의 상승 속도와 하강 속도는 각각 10°C/min으로 조절하였다.
【표 1 ]
Figure imgf000022_0001
상기 표 1을 참고하면, 실시예들에 따른 중합체는 합성예 1 내지 4의 전이금속 화합물을 적용하여 제조됨에 따라 비교예 1의 중합체와 동등한 수준의 분자량을 가지면서도 저밀도의 폴리올레핀인 것으로 확인되었다.
. 그리고, 상기 실시예 4를 통해, 상기 화학식 1에서 Q1과 Q2를 알킬기로 치환하였을 때 기본 물성은 동등한 수준이지만 수율이 증가하는 것으로 확인되었다.

Claims

【청구범위】
【청구항 1 1
하기 화학식 1로 표시되는전이금속 화합물:
Figure imgf000023_0001
상기 화학식 1에서,
R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이고;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수
7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지
20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 또는 탄소수 1 내지 20의 알킬리덴기이고;
Z는 인 (P), 비소 (As) 또는 안티몬 (Sb)이고;
X1 내지 X3는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 하이드로카빌기, 또는 탄소수 1 내지 20의 헤테로 하이드로카빌기이다.
【청구항 2】
게 1 항에 있어서, 상기 M은 티타늄 (Τί), 지르코늄 (Zr) 또는 하프늄 (Hf)이고;
상기 Q1 및 Q2는 각각 독립적으로 할로겐 또는 탄소수 1 내지 10의 알킬기인, 전이금속 화합물.
【청구항 3】
제 1 항에 있어서,
상기 R1 내지 R7은 각각 독립적으로 수소, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 , 10의 알키닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기이고;
상기 X1 내지 X3는 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 10의 알킬기, 탄소수 2 내지 10의 알케닐기, 탄소수 2 내지 10의 알키닐기, 탄소수 1 내지 20의 알콕시기, 탄소수 6 내지 20의 아릴기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 7 내지 20의 알킬아릴기, 또는 탄소수 7 내지 20의 아릴알킬기인, 전이금속 화합물.
【청구항 4】
제 1 항에 있어서,
상기 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고;
상기 상기 X1 내지 X3는 각각 독립적으로 할로겐, 탄소수 1 내지 10의 알킬기, 탄소수 3내지 20의 사이클로알킬기, 또는 탄소수 6 내지 20의 아릴기인, 전이금속 화합물.
【청구항 5]
제 1 항에 있어서,
하기 화학식 1의 화합물은 하기 화학식 1 -1, 화학식 1-2, 화학식 1 -3, 화학식 1-4, 또는 화학식 1-5로 표시되는, 전이금속 화합물:
[화학식 1 -1]
Figure imgf000025_0001
[
[
Figure imgf000025_0002
[화학식 1-4]
Figure imgf000026_0001
N CI
//
Ph— R
/ \
Ph Ph
상기 화학식 1-1 내지 1-5에서,
Cy는 각각사이클로핵실 (cyclohexyl) 그룹이고
tBu는 각각 터트 -부틸 (tert-butyl) 그룹이고,
Me는 각각 메틸 (methyl) 그룹이고,
Ph는 각각 페닐 (phenyl) 그룹이다.
【청구항 6】
제 1 항의 화학식 1로 표시되는 전이금속 화합물 및 조촉매 포함하는 올레핀 중합용 촉매 조성물.
【청구항 7]
제 6 항의 올레핀 중합용 촉매 조성물의 존재 하에, 을레핀 단량체를 중합 반웅시키는 단계를 포함하는 폴리올레핀의 제조 방법.
PCT/KR2016/011839 2015-10-21 2016-10-20 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법 WO2017069538A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/744,429 US10800863B2 (en) 2015-10-21 2016-10-20 Transition metal complexes, catalyst compositions including the same, and method for preparing polyolefins therewith
EP16857796.3A EP3366689B1 (en) 2015-10-21 2016-10-20 Transition metal complexes, catalyst composition including the same and method for preparing polyolefin therewith
CN201680044411.8A CN107849069B (zh) 2015-10-21 2016-10-20 过渡金属配合物,包含其的催化剂组合物和使用其制备聚烯烃的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0146840 2015-10-21
KR1020150146840A KR101919435B1 (ko) 2015-10-21 2015-10-21 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법

Publications (1)

Publication Number Publication Date
WO2017069538A1 true WO2017069538A1 (ko) 2017-04-27

Family

ID=58557336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011839 WO2017069538A1 (ko) 2015-10-21 2016-10-20 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법

Country Status (5)

Country Link
US (1) US10800863B2 (ko)
EP (1) EP3366689B1 (ko)
KR (1) KR101919435B1 (ko)
CN (1) CN107849069B (ko)
WO (1) WO2017069538A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372813B (zh) * 2019-08-19 2022-06-28 迈瑞尔实验设备(上海)有限公司 一种用于催化乙烯聚合制备聚乙烯蜡的催化剂组合物及其应用
KR102071594B1 (ko) * 2019-08-28 2020-02-03 주식회사 엘지화학 올레핀계 공중합체 및 이의 제조방법
MX2022012777A (es) * 2020-04-21 2022-11-08 Nova Chem Int Sa Complejos de ciclopentadienilo/adamantilfosfinimina zirconio y hafnio.
WO2023189947A1 (ja) * 2022-03-31 2023-10-05 ポリプラスチックス株式会社 触媒組成物の調製方法及び触媒組成物の保管方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019512A1 (en) * 1999-09-10 2001-03-22 Nova Chemicals (International) S.A. Hydrocarbyl phosphinimine/cyclopentadienyl complexes of group 4 and their use in olefin polymerization
KR20150065687A (ko) * 2012-09-28 2015-06-15 에스씨지 케미컬스 컴퍼니, 리미티드. 촉매 시스템
KR20160115704A (ko) * 2015-03-26 2016-10-06 주식회사 엘지화학 올레핀계 중합체

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420864A (en) 1966-04-18 1969-01-07 Monsanto Co Phosphorus and arsenic tri-imide metal compounds
US7365137B2 (en) 2001-07-17 2008-04-29 Basell Polyolefine Gmbh Multistep process for the (co) polymerization of olefins
EP1506974A1 (en) 2003-08-04 2005-02-16 DSM IP Assets B.V. Process for the preparation of a metalloorganic compound comprising at least one imine ligand
DE10352139A1 (de) 2003-11-04 2005-06-09 Basell Polyolefine Gmbh Organoübergangsmetallverbindung, Biscyclopentadienylligandsystem und Verfahren zur Herstellung von Polyolefinen
KR20070018930A (ko) 2004-05-04 2007-02-14 바젤 폴리올레핀 게엠베하 혼성배열 1-부텐 중합체의 제조 방법
DE102004027332A1 (de) 2004-06-04 2005-12-22 Basell Polyolefine Gmbh Übergangsmetallverbindung, Ligandsystem, Katalysatorsystem und Verfahren zur Herstellung von Polyolefinen
KR100820542B1 (ko) 2006-03-24 2008-04-08 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를이용한 올레핀 중합
CA2605077C (en) 2007-10-01 2014-07-08 Nova Chemicals Corporation A co-supported catalyst system
CA2749835C (en) 2011-08-23 2018-08-21 Nova Chemicals Corporation Feeding highly active phosphinimine catalysts to a gas phase reactor
CA2783494C (en) 2012-07-23 2019-07-30 Nova Chemicals Corporation Adjusting polymer composition
US9683061B2 (en) 2013-09-26 2017-06-20 Lg Chem, Ltd. Catalyst composition and method of preparing polymer including the same
WO2015046705A1 (ko) * 2013-09-26 2015-04-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
US9422380B2 (en) 2014-04-03 2016-08-23 Basell Polyolefine Wesseling Non-bridged metallocene complexes for the polymerization of olefins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019512A1 (en) * 1999-09-10 2001-03-22 Nova Chemicals (International) S.A. Hydrocarbyl phosphinimine/cyclopentadienyl complexes of group 4 and their use in olefin polymerization
KR20150065687A (ko) * 2012-09-28 2015-06-15 에스씨지 케미컬스 컴퍼니, 리미티드. 촉매 시스템
KR20160115704A (ko) * 2015-03-26 2016-10-06 주식회사 엘지화학 올레핀계 중합체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BUFFET, J. -C. ET AL.: "Ethylene Polymerisation Using Solid Catalysts Based on Layered Double Hydroxides", POLYMER CHEMISTRY, vol. 6, no. 13, 12 February 2015 (2015-02-12), pages 2493 - 2503, XP055325336 *
PARK, E. S. ET AL.: "Preparation of Half-titanocenes of Thiophene-fused Trimetbylcyclopentadienyl Ligands and Their Ethylene Copolymenzation Reactivity", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 696, no. 11, 2011, pages 2451 - 2456, XP028201051 *

Also Published As

Publication number Publication date
KR20170046460A (ko) 2017-05-02
US10800863B2 (en) 2020-10-13
CN107849069A (zh) 2018-03-27
CN107849069B (zh) 2020-10-20
US20180194874A1 (en) 2018-07-12
EP3366689B1 (en) 2019-09-04
KR101919435B1 (ko) 2018-11-16
EP3366689A4 (en) 2018-10-03
EP3366689A1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
KR102204960B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR102260362B1 (ko) 올레핀 공중합체
KR102140690B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
WO2017069538A1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
KR20170004398A (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102190243B1 (ko) 올레핀 중합용 촉매 조성물, 올레핀계 중합체의 제조방법, 및 이를 이용하여 제조된 올레핀계 중합체
CN111511783B (zh) 具有优异加工性的乙烯/1-丁烯共聚物
KR101213733B1 (ko) 신규한 촉매조성물 및 이를 이용한 올레핀 중합체의 제조방법
KR20180040998A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102301666B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법, 상기 제조 방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조 방법
KR20210038235A (ko) 올레핀계 중합체
KR102236921B1 (ko) 전이금속 화합물 및 알킬알루미녹산을 포함하는 촉매 조성물, 이를 이용한 중합체의 제조방법, 및 이를 이용하여 제조된 중합체
KR102050573B1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
KR102065163B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
CN113039190A (zh) 过渡金属化合物和包含其的催化剂组合物
KR102071588B1 (ko) 올레핀계 중합체
KR20210037465A (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102217767B1 (ko) 리간드 화합물, 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102656243B1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
KR102423660B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102077756B1 (ko) 신규한 전이금속 화합물의 제조방법
KR102034807B1 (ko) 신규한 전이금속 화합물
KR102092271B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR102128569B1 (ko) 신규한 전이금속 화합물
KR20180040999A (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE