WO2017069091A1 - 磁気マーカ及び磁気マーカ検出システム - Google Patents

磁気マーカ及び磁気マーカ検出システム Download PDF

Info

Publication number
WO2017069091A1
WO2017069091A1 PCT/JP2016/080728 JP2016080728W WO2017069091A1 WO 2017069091 A1 WO2017069091 A1 WO 2017069091A1 JP 2016080728 W JP2016080728 W JP 2016080728W WO 2017069091 A1 WO2017069091 A1 WO 2017069091A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
flux density
marker
magnetic marker
magnetic flux
Prior art date
Application number
PCT/JP2016/080728
Other languages
English (en)
French (fr)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Priority to EP16857406.9A priority Critical patent/EP3367360B1/en
Priority to CN201680054651.6A priority patent/CN108352111A/zh
Priority to SG11201802467WA priority patent/SG11201802467WA/en
Priority to US15/763,196 priority patent/US10961670B2/en
Publication of WO2017069091A1 publication Critical patent/WO2017069091A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F9/00Arrangement of road signs or traffic signals; Arrangements for enforcing caution
    • E01F9/30Arrangements interacting with transmitters or receivers otherwise than by visible means, e.g. using radar reflectors or radio transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/063Magneto-impedance sensors; Nanocristallin sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a magnetic marker laid on a road.
  • a vehicle magnetic marker detection system using a magnetic marker laid on a road is known (see, for example, Patent Document 1).
  • Such a magnetic marker detection system is intended to provide various driving assistance such as automatic steering control and lane departure warning using a magnetic marker laid along a lane for a vehicle equipped with a magnetic sensor. .
  • the conventional magnetic marker detection system for a vehicle has the following problems.
  • the magnetic sensor on the vehicle side needs to increase the magnetic force of the magnetic marker to some extent so that it can be detected by the magnetic sensor on the vehicle side mounted at a high position of about 100 to 250 mm from the road surface. If the force is increased, for example, a metal object that has fallen on the road surface such as a nail or a bolt may be adsorbed to cause trouble such as puncture of a vehicle tire.
  • the present invention has been made in view of the above-described conventional problems, and an object thereof is to provide a magnetic marker and a magnetic marker detection system with reduced magnetic force.
  • a magnetism for realizing driving support control on a vehicle side that is laid on a road surface so as to be detected by a magnetic sensor attached to a bottom surface side of the vehicle and supports driving of a driver.
  • a marker Using the surface of the magnetic marker as a reference height, the magnetic arrival rate Gh / Gs, which is the ratio of the magnetic flux density Gh at a height of 250 mm to the magnetic flux density Gs at a height of 0 mm, is 0.5% or more.
  • the second aspect of the present invention is a magnetic marker for realizing driving support control on the vehicle side by detecting magnetism generated by a magnetic marker laid on the road surface by a magnetic sensor attached to the bottom surface side of the vehicle.
  • a detection system The magnetic marker is in the magnetic marker detection system which is the magnetic marker of the first aspect.
  • the magnetic marker according to the present invention is a road marker having a magnetic arrival rate Gh / Gs of 0.5% or more, which is a ratio of the magnetic flux density Gh at a height of 250 mm to the magnetic flux density Gs on the surface. If the magnetic arrival rate Gh / Gs is 0.5% or more, the magnetic flux density Gs on the surface of the magnetic marker can be suppressed to 200 times or less with respect to the magnetic flux density Gh at the height of 250 mm.
  • the magnetic marker according to the present invention is an excellent road marker that can suppress the surface magnetic flux density Gs to be lower than the magnetic flux density Gh at a height of 250 mm and can reduce the surface magnetic force.
  • the magnetic marker detection system according to the present invention employs a magnetic marker that can reduce the magnetic force of the surface as described above, thereby suppressing the possibility that the magnetic marker attracts metal objects.
  • FIG. 1 is an explanatory diagram of a magnetic marker detection system in Embodiment 1.
  • FIG. 3 is a block diagram showing an electrical configuration of the magnetic sensor in the first embodiment.
  • 3 is a graph showing the magnetic field distribution in the vertical direction of the magnetic marker in the first embodiment.
  • 3 is a graph showing the magnetic field distribution in the vertical direction of the magnetic marker in the first embodiment.
  • the mounting height of the magnetic sensor for detecting the magnetic marker according to the present invention is assumed to be in the range from the road surface to 250 mm in consideration of the ground clearance of the vehicle body floor of various vehicles including buses and trucks in addition to passenger cars. There is a need to. Therefore, in the present invention, the magnetic reachability Gh / Gs, which is the ratio of the magnetic flux density Gh at a height of 250 mm to the surface magnetic flux density Gs, is defined.
  • the magnetic flux density may be a magnetic flux density in the vertical direction or may be in another direction.
  • the magnetic marker according to the present invention may be a plastic magnet or rubber magnet.
  • a plastic magnet or a rubber magnet that is less likely to crack than a magnet such as a sintered magnet is used, a magnetic marker that can withstand long-term use can be provided. If these magnets that can be molded with high accuracy at a relatively low cost are employed, a high-quality magnetic marker can be provided while suppressing production costs.
  • it is a rubber magnet etc. which have flexibility, it can respond flexibly also to the unevenness
  • the driving support control realized on the vehicle side by laying the magnetic marker according to the present invention includes various controls such as travel control, alarm control, and information notification control.
  • travel control for example, automatic steering control that causes the vehicle to travel along magnetic markers laid along the lane, merging / branching control using magnetic markers laid on the junction / branch, intersections, etc.
  • stop control for stopping the vehicle when a magnetic marker laid before the stop line is detected.
  • alarm control for example, control for alarming lane departure based on a magnetic marker laid along the lane, or control for alarming excessive speed when passing a magnetic marker laid before an intersection or the like Etc.
  • Information notifying control includes control for notifying an approach to an intersection, a branch road, or a toll gate, control for accurately notifying the position of an intersection that turns right during navigation for guiding a route, and the like. Furthermore, for example, a control for notifying information that can be acquired on the vehicle side by reading the arrangement of the N and S poles of the magnetic marker may be used.
  • the magnetic flux density Gh is 0.5 ⁇ T (microtesla) or more and 20 ⁇ T or less.
  • the magnetic arrival rate Gh / Gs is 0.5% or more, the magnetic flux density Gs on the surface can be suppressed within 4 mT (20 ⁇ T ⁇ 0.5%) if the magnetic flux density Gh is 20 ⁇ T or less.
  • an office magnet sheet to be attached to an office white board, a stationery magnet sheet to be attached to a door of a household refrigerator, and the like have a surface magnetic flux density of about 20 to 40 mT.
  • magnet sheets have a magnetic force that is weak enough to hold their own weight, and are not magnets that attract and attract magnetic objects such as nails and bolts that have fallen on the road surface. Even if a magnetic marker with a magnetic flux density Gs of the surface of only 4 mT, which is 1/5 or less that of an office magnet sheet, is laid on the road surface, it attracts and attracts metal objects such as nails and bolts that have fallen on the road surface. There is very little risk of doing so. Therefore, there is almost no possibility of causing troubles such as puncture of the vehicle tire due to the magnetic marker laid on the road surface.
  • the magnetic marker having a magnetic flux density Gh of 0.5 ⁇ T or more and 10 ⁇ T or less may be used.
  • the magnetic flux density Gs on the surface can be further reduced.
  • the magnetic arrival rate Gh / Gs is 0.5% or more, the magnetic flux density Gs on the surface can be suppressed within 2 mT (10 ⁇ T ⁇ 0.5%).
  • the magnetic arrival rate Gh / Gs is 1.0% or more.
  • the effect of the present invention that the magnetic flux density Gs on the surface can be lowered with respect to the magnetic flux density Gh necessary for detection is further enhanced.
  • a preferred embodiment of the magnetic marker according to the present invention has a diameter of 100 mm or more.
  • the diameter of the magnetic marker the higher the magnetic arrival rate Gh / Gs.
  • the degree to which the magnetic arrival rate Gh / Gs increases with respect to the diameter of the magnetic marker becomes significant.
  • the diameter of the magnetic marker is too large, it becomes difficult to distinguish from a magnetic source such as an iron lid of a manhole installed on a road, for example.
  • the size of the magnetic marker may be set in consideration of the type and size of the magnetic generation source existing on the road to be laid and the magnetic field strength.
  • a preferred embodiment of the magnetic marker according to the present invention has a surface provided with a coating or resin mold having a waterproof and wear-resistant effect. If the coating or the resin mold is applied to the surface, the durability of the magnetic marker can be improved. It is also possible to apply a coating or a resin mold to the back surface or the outer peripheral surface of the magnetic marker, which is the construction surface when laying.
  • the magnetic marker according to a preferred aspect of the present invention has a flat shape with a thickness of 5 mm or less, and can be laid on the road surface without drilling a concave accommodation hole. If it is a magnetic marker which can be laid without drilling a concave accommodation hole or the like on the road surface, it can be laid by low cost and highly efficient construction work.
  • Examples of the method for fixing to the road surface include adhesive bonding using a material having an adhesive function, a method for driving a pin or the like into the road surface, and the like.
  • a magneto-impedance sensor MI sensor
  • a fluxgate sensor a TMR sensor
  • TMR sensor a TMR sensor
  • a magneto-impedance sensor, a fluxgate sensor, and a TMR sensor are all known as magnetic sensors capable of detecting magnetism with high sensitivity.
  • a magnetic marker detection system using at least one of these magnetic sensors can detect the magnetism generated by the magnetic marker with high certainty in combination with a magnetic marker with a low magnetic flux density Gs on the surface. is there.
  • a magneto-impedance (MI) sensor is a magnetic sensor using a magneto-impedance element including a magnetosensitive material whose impedance changes according to an external magnetic field.
  • the magneto-impedance element (MI element) is caused by the skin effect in which the current density of the skin layer increases when a pulse current or high-frequency current flows through the magnetic body, and the depth (thickness) of the skin layer varies due to the external magnetic field.
  • MI effect magneto-impedance effect
  • highly sensitive magnetic measurement can be performed.
  • MI element By using the MI element, it is possible to realize a low-cost and small-sized magnetic sensor that can detect weak magnetism of, for example, about 0.5 to 10 ⁇ T.
  • a number of applications have been filed for MI sensors using MI elements. For example, WO 2005/19851 publication, WO 2009/119081 publication, and Japanese Patent No. 4655247 publication have detailed descriptions.
  • the magnetic element of the MI element is preferably a high permeability alloy magnetic body.
  • a wire made of a soft magnetic material such as a CoFeSiB alloy or a magnetic material such as a thin film is preferable, and an amorphous wire having zero magnetostriction is particularly preferable in terms of sensitivity and cost.
  • the change in impedance of the magnetosensitive body when a high-frequency current or the like flows may be detected directly from, for example, the voltage across the magnetosensitive body or via a detection coil (pickup coil) wound around the magnetosensitive body. You may detect indirectly as a change of an electromotive force.
  • An MI element including a detection coil is useful because it can detect the direction of magnetic action.
  • the fluxgate sensor is a high-sensitivity magnetic sensor that measures the magnetic intensity from the saturation timing by utilizing the fact that the saturation timing of the core magnetic flux changes according to the external magnetic field when a periodic current is passed through the soft magnetic core.
  • a number of applications have been filed for the fluxgate sensor. For example, there are detailed descriptions in WO2011 / 155527 and JP2012-154786.
  • the TMR (Tunneling Magneto Resistive) type sensor is a high-sensitivity sensor having a structure in which an insulator layer having a thickness of about 1 nm is sandwiched between ferromagnetic layers.
  • the TMR sensor uses the tunnel magnetoresistance (TMR) effect, in which when a voltage is applied perpendicular to the film surface, a current flows through the insulator layer due to the tunnel effect, and the electrical resistance at that time varies greatly according to the external magnetic field. And achieves high sensitivity.
  • TMR tunnel magnetoresistance
  • a number of applications have been filed for TMR sensors. For example, there are detailed descriptions in WO2009 / 078296, JP2013-242299A, and the like.
  • the MI sensor or the like having high magnetic detection sensitivity it is possible to detect magnetism with a magnetic flux density of less than 0.5 ⁇ T.
  • the cost and size of the magnetic sensor are increased. There is a fear.
  • the sensitivity on the magnetic sensor side can be designed with a margin, and a highly durable small magnetic sensor that can be mounted on a vehicle can be realized at a relatively low cost.
  • Example 1 This example is an example relating to a magnetic marker detection system 1S for a vehicle by a combination of a magnetic marker 1 laid on the road surface of a vehicle road and a magnetic sensor 2 attached to the bottom surface side of the vehicle. The contents will be described with reference to FIGS.
  • the magnetic marker 1 is laid on the road surface 53 along the center of the lane in which the vehicle 5 travels.
  • the magnetic sensor 2 is attached to a vehicle body floor 50 that contacts the bottom surface of the vehicle 5.
  • the mounting height of the magnetic sensor 2 varies depending on the vehicle type, but is in the range of 100 to 250 mm.
  • the output signal of the magnetic sensor 2 is input to, for example, an ECU (not shown) on the vehicle 5 side, and is used for various controls such as automatic steering control and lane departure warning for maintaining the lane.
  • the magnetic marker 1 illustrated in FIG. 2 has a flat circular shape with a diameter of 100 mm and a thickness of 1.5 mm, and is a flat marker that can be adhesively bonded to the road surface 53.
  • the magnetic marker 1 is formed by covering both surfaces of a flat magnet sheet 11 having a diameter of 100 mm and a thickness of 1 mm with a resin mold 12.
  • the thickness of the resin mold 12 on the upper surface side corresponding to the surface of the magnetic marker 1 is 0.3 mm, and the thickness on the lower surface side corresponding to the construction surface of the magnetic marker 1 is 0.2 mm.
  • the construction on the road surface 53 is performed, for example, by adhesion and fixing with an adhesive.
  • a resin mold may also be applied to the outer peripheral side surface of the magnetic marker 1.
  • the diameter of the magnetic marker 1 is about 0.5 mm larger than 100 mm.
  • the magnetic flux density Gs on the surface of the magnetic marker 1 is 1 mT.
  • a magnetic sheet used by attaching to a white board in an office or the like, a door of a refrigerator in a home, or a magnetic sheet such as a beginner mark attached to a vehicle body has a surface magnetic flux density of about 20 to 40 mT.
  • the magnetic force generated by the magnetic marker 1 of this example is a weak magnetic force that cannot function as a general magnet that attracts metal objects.
  • the vertical magnetic field distribution of the magnetic marker 1 will be described later with reference to FIG.
  • the magnetic sensor 2 is a one-chip MI sensor in which the MI element 21 and the drive circuit are integrated.
  • the MI element 21 is an element including an amorphous wire (an example of a magnetosensitive body) 211 made of a CoFeSiB alloy and having a substantially zero magnetostriction, and a pickup coil 213 wound around the amorphous wire 211.
  • the magnetic sensor 2 measures the voltage generated in the pickup coil 213 when a pulse current is supplied to the amorphous wire 211, thereby detecting magnetism acting on the amorphous wire 211 that is a magnetic sensitive body.
  • the drive circuit is an electronic circuit including a pulse circuit 23 that supplies a pulse current to the amorphous wire 211 and a signal processing circuit 25 that samples and outputs a voltage generated in the pickup coil 213 at a predetermined timing.
  • the pulse circuit 23 is a circuit including a pulse generator 231 that generates a pulse signal that is a source of a pulse current.
  • the signal processing circuit 25 is a circuit that takes out an induced voltage of the pickup coil 213 through a synchronous detection 251 that is opened and closed in conjunction with a pulse signal, and amplifies it with a predetermined amplification factor by an amplifier 253.
  • the signal amplified by the signal processing circuit 25 is output to the outside as a sensor signal.
  • This magnetic sensor 2 is a highly sensitive sensor having a magnetic flux density measurement range of ⁇ 0.6 mT and a magnetic flux resolution within the measurement range of 0.02 ⁇ T.
  • Such high sensitivity is realized by the MI element 21 utilizing the MI effect that the impedance of the amorphous wire 211 changes sensitively according to the external magnetic field.
  • the magnetic sensor 2 can perform high-speed sampling at a cycle of 3 kHz, and is compatible with high-speed driving of the vehicle. Instead of sampling at a 3 kHz cycle, magnetic measurement may be performed every time the vehicle moves a predetermined distance such as 20 mm.
  • the figure is a semilogarithmic graph showing a simulation result by an axisymmetric three-dimensional static magnetic field analysis using a finite element method.
  • the logarithmic scale of the magnetic flux density acting in the vertical direction is set on the vertical axis
  • the vertical height (height from the marker surface) with respect to the surface of the magnetic marker 1 is set on the horizontal axis. is doing.
  • the magnetic flux density when the height from the marker surface is 0 mm is “surface magnetic flux density Gs”
  • the magnetic flux density when the height from the marker surface is 250 mm is “the magnetic flux density at the position where the height is 250 mm”.
  • Gh (appropriate magnetic flux density Gh having a height of 250 mm) ”.
  • the magnetic marker 1 has a magnetic flux density Gh of 8 ⁇ T acting on a position having a height of 250 mm.
  • the magnetic flux density Gs on the surface is 1 mT (see Table 1)
  • the magnetic arrival rate Gh / Gs which is the ratio of the magnetic flux density Gh of 250 mm height to the magnetic flux density Gs on the surface is 0.00. 8%.
  • the mounting height of the magnetic sensor 2 (sensor mounting height) is assumed in a range of 100 to 250 mm. Magnetism with a magnetic flux density of 8 ⁇ T or more can be applied. If magnetism with a magnetic flux density of 8 ⁇ T acts, the magnetic marker 1 can be detected with high certainty by using the magnetic sensor 2 with a magnetic flux resolution of 0.02 ⁇ T (see Table 2).
  • the magnetic flux density Gs on the surface is set to 1 mT (10 ⁇ 10 ⁇ ) while ensuring the magnetic characteristics detectable by the magnetic sensor 2 by realizing the magnetic reachability Gh / Gs of 0.8%. 4 T).
  • the magnetic flux density of 1 mT is smaller than, for example, 1/10 of the magnetic flux density of about 20 to 40 mT on the surface of a magnet sheet attached to a white board, a refrigerator door, or the like.
  • the magnetic marker 1 has a very weak magnetic force even compared to these office or household magnet sheets. For this reason, even if the magnetic marker 1 is laid on the road surface 53, there is very little risk of attracting and attracting metal objects such as nails and bolts.
  • the magnetic marker 1 of this example is a road marker having excellent characteristics with a low magnetic force.
  • the weak magnetic force acting from the magnetic marker 1 can be detected by adopting the magnetic sensor 2 using the MI element 21.
  • the horizontal axis represents the diameter of the magnet
  • the vertical axis represents the magnetic flux density Gh having a height of 250 mm.
  • the simulation result is indicated by a ⁇ plot
  • the height (mm) of the magnet is indicated by the suffix of the ⁇ plot.
  • the simulation of FIG. 5 is a reference simulation of a neodymium magnet having a residual magnetic flux density of 1.19T. It has been confirmed by computer simulation and demonstration experiments that the qualitative tendency is the same for the isotropic rubber magnet constituting the magnetic marker 1 of this example.
  • the leftmost plot is data of a magnet having a diameter of 20 mm and a height of 50 mm as a reference.
  • the magnetic flux density Gh increases as the diameter increases in the range of 20 to 60 mm in diameter.
  • the magnetic flux density Gh is close to the maximum value in the range of 60 to 80 mm in diameter, and in the range of more than 80 mm in diameter, Gh decreases as the diameter increases.
  • the diameter is in the range of 80 to 100 mm, the variation rate of the magnetic flux density Gh with respect to the diameter is small and the decrease of the magnetic flux density Gh is slight.
  • a magnet with a diameter of 60 to 80 mm is the most cost effective material. Become good.
  • the cost efficiency of the material tends to slightly decrease.
  • the decrease in the magnetic flux density Gh is in the range of a diameter of 80 to 100 mm, there is a high possibility that the cost efficiency of the material can be maintained sufficiently high.
  • the graph of FIG. 6 is a simulation of the magnetic field distribution in the vertical direction for magnetic markers of various sizes whose surface magnetic flux density Gs is 1 mT.
  • This simulation is intended for magnetic markers with five diameters ranging from 20 to 150 mm including a diameter of 100 mm.
  • the thickness is changed so that the magnetic flux density Gs on the surface becomes 1 mT regardless of the difference in diameter.
  • the notation of ⁇ 100T1 in the legend indicates a magnetic marker having a diameter of 100 mm and a thickness of 1 mm.
  • the thickness of the resin mold is ignored, and the size of the magnetic marker is set to the size of the magnet.
  • the graph in FIG. 6 is a semilogarithmic graph with a graph axis similar to that in FIG. According to the figure, it can be seen that the larger the magnetic marker, the higher the magnetic flux density Gh with a height of 250 mm with respect to the magnetic flux density Gs on the surface, and the degree of attenuation of the magnetic flux density in the vertical direction is suppressed. .
  • Gh 2 ⁇ T for a magnet with a diameter of 50 mm and a thickness of 0.5 mm
  • Gh 8 ⁇ T for a magnet with a diameter of 100 mm and a thickness of 1 mm.
  • the magnetic flux density Gh necessary for detection by the magnetic sensor 2 is determined, the higher the magnetic arrival rate (Gh / Gs), the more the magnetic flux density Gs on the surface of the magnetic marker can be suppressed. If the magnetic flux density Gs on the surface is lowered, the selection of the magnetic material and the selection range of the diameter, thickness, shape, etc. are expanded, and the effect of improving the design freedom of the magnetic marker is produced.
  • the diameter of the magnetic marker 1 is set to 100 mm based on the following knowledge based on the simulation results of FIGS. 5 and 6.
  • the cost efficiency of the material is best in the range of 60 to 80 mm in diameter, and the cost efficiency of the material can be kept sufficiently high in the range of 80 to 100 mm in diameter.
  • the magnetic reachability (Gh / Gs) which is the ratio of the magnetic flux density Gh having a height of 250 mm to the magnetic flux density Gs on the surface, is improved as the diameter of the magnet (magnetic marker) increases.
  • the shape of the magnetic marker instead of the circular shape in this example, it may be a polygonal shape such as a triangle, a quadrangle, or a hexagon, a rectangular shape, or an intersection of two rectangular shapes. It may be a cross shape or the like.
  • the method of laying on the road surface may be a method of fixing using a fixing pin having a shape like a nail, in addition to a method of bonding and bonding using an adhesive or the like.
  • the magnetic component generated from the magnetic marker can be detected three-dimensionally.
  • an MI element that detects magnetism in the vertical direction of the road surface an MI element that detects magnetism in the traveling direction of the vehicle, and an MI element that detects magnetism in the left-right direction of the vehicle may be provided. If magnetism in the traveling direction of the vehicle is detected, the position of the magnetic marker in the traveling direction of the vehicle can be measured with high accuracy by detecting, for example, positive / negative reversal in the magnetic direction.
  • the pulse circuit and the signal processing circuit may be shared by, for example, time division without providing each MI element individually. If the circuit can be shared, the magnetic sensor can be easily reduced in size and cost.
  • a plurality of magnetic sensors may be arranged along the left-right direction of the vehicle. It is also possible to determine the relative position of the magnetic marker in the left-right direction by detecting the peak of the magnetic distribution detected by each magnetic sensor.
  • the MI sensor using the MI element is exemplified as the magnetic sensor, a fluxgate sensor or a TMR sensor can be used as the magnetic sensor instead.
  • a combination of two or more of an MI sensor, a fluxgate sensor, and a TMR sensor can be employed.
  • the magnetic material of the magnet sheet which comprises a magnetic marker, and the kind of magnet are not limited to this example. Various types and types of magnetic materials and magnets can be used. An appropriate magnetic material and type may be selectively determined according to the magnetic specifications and environmental specifications required for the magnetic marker. In this example, the specification of the magnetic marker is selectively determined using the result of computer simulation. In using computer simulation, the simulation accuracy is confirmed in advance by a demonstration experiment under some simulation conditions. Moreover, about the magnetic marker 1, it has confirmed by the verification experiment that the magnetic characteristic close
  • the horizontal axis indicates the diameter of the magnet
  • the vertical axis indicates the magnetic flux density Gs on the surface.
  • FIG. 8 is a graph showing the relationship between the diameter of the magnet and the magnetic reachability Gh / Gs.
  • the graph of FIG. 7 is a graph obtained by processing the simulation data constituting the graph of FIG. 7 and changing the display format.
  • the magnetic flux density Gs of the same surface rapidly decreases to about 2 mT or less, and when the diameter exceeds 200 mm, the degree of decrease is suppressed and gradually approaches constant.
  • the magnetic reachability Gh / Gs has a high correlation with the diameter, and the magnetic reachability Gh / Gs tends to increase as the diameter increases. Furthermore, as the diameter increases, the slope of the graph representing the rate of change of the magnetic reachability Gh / Gs with respect to the diameter increases. This rate of change varies greatly particularly in the diameter range of 100 to 200 mm.
  • FIG. 9 is a simulation result in which the degree of dependence on whether or not the magnetic reachability Gh / Gs changes depending on the magnet thickness (mm) is examined.
  • the change in the magnetic reachability Gh / Gs when the thickness is changed is examined using a flat magnet having a diameter of 100 mm and a thickness of 1 mm as a reference.
  • the horizontal axis of the figure shows the thickness of the magnet.
  • Three types of vertical axes are set on the vertical axis: magnetic flux density Gs on the surface, magnetic flux density Gh with a height of 250 mm, and magnetic reachability Gh / Gs.
  • the numerical values on each vertical axis indicate the magnetic flux density Gs on the surface with a ⁇ plot, the magnetic flux density Gh with a ⁇ plot, and the magnetic arrival rate Gh / Gs with a ⁇ plot.
  • the simulation results shown in FIGS. 7 to 9 are all related to a flat magnet having a small dimension in the height (thickness) direction with respect to the diameter. According to these simulation results, in the flat-shaped magnet, the magnetic reachability Gh / Gs does not change much even if the thickness of the magnet is changed, while the magnet diameter affects the magnetic reachability Gh / Gs. It is possible to grasp the tendency that the magnetic reachability Gh / Gs increases as the diameter increases. Therefore, in order to suppress the magnetic flux density Gs on the surface while ensuring the magnetic magnetic flux density Gh acting on the magnetic sensor, it can be understood that the diameter of the magnet is increased and the magnetic reachability Gh / Gs is increased.
  • the magnetic reach ratio Gh / Gs is 1% or more, the magnetic flux density Gs on the surface can be suppressed within 0.8 mT.
  • the magnetic flux density Gh at a height of 250 mm is preferably set to 0.5 ⁇ T or more.
  • the magnetic flux density Gh is 1 ⁇ T or more.
  • the diameter of the magnetic marker is preferably 90 mm or higher, for example. More preferably, in order to achieve a magnetic arrival rate Gh / Gs of 1% or more, the diameter of the magnetic marker may be 110 mm or more. In particular, if the diameter of the magnetic marker is 120 to 150 mm, the magnetic arrival rate Gh / Gs is further increased, and the effect of reducing the magnetic flux density Gs on the surface is enhanced.
  • the lines of magnetic force generated from the magnetic pole surface of the magnet are inclined with increasing degree of wraparound to the opposite magnetic pole surface at the outer edge of the magnetic pole surface, while the central portion of the magnetic pole surface farther from the outer edge is in the vertical direction of the magnetic pole surface.
  • the degree of heading tends to be stronger.
  • the magnet having a longer distance from the outer edge to the center of the magnetic pole surface has a stronger magnetism in the direction perpendicular to the magnetic pole surface, and the magnetic reachability Gh / Gs tends to increase.
  • a circular shape having a constant distance from the outer edge to the center is the most advantageous shape for securing the magnetic reachability Gh / Gs.
  • the shape when the shape is close to a square with little difference between the length of the long piece and the short side, the difference in distance between the center of the magnetic pole surface and each side can be suppressed. Since the minimum value becomes large, it is advantageous for securing the magnetic reachability Gh / Gs.
  • a regular triangular shape is similarly advantageous.
  • the size is limited, it is better to swell each side of the equilateral triangle in a curved convex shape like the rotor shape of a rotary engine. Since the distance between the center of the magnetic pole surface and each side can be increased, it is effective in improving the magnetic reachability Gh / Gs.
  • the large magnetic arrival rate Gh / Gs is effective not only for the illustrated MI element but also for detecting a low-sensitivity Hall element in addition to the fluxgate sensor and the TMR type sensor. This is because the magnetic flux density Gs on the surface of the magnetic marker can be suppressed with respect to the magnetic flux density Gh necessary for detection, and the magnetic force of the magnetic marker can be reduced. If the magnetic force of the magnetic marker can be reduced, the risk of attracting and attracting metal objects such as nails and bolts that have fallen on the road surface can be reduced.
  • the diameter of the magnetic marker may be increased so that the magnetic arrival rate Gh / Gs is 1% or more or 2% or more. For example, if the diameter of the magnetic marker is set to 150 to 200 mm, the magnetic arrival rate Gh / Gs can be improved up to 2.4 to 5.2%, and the effect of reducing the magnetic flux density Gs on the surface can be increased.
  • the diameter of the magnetic marker may be 80 mm or more. If the diameter is 80 mm, the magnetic flux density Gh at a height of 250 mm is 5 ⁇ T even when the surface magnetic flux density Gs is suppressed to 1 mT. A magnetic flux density of 5 ⁇ T can be sufficiently detected using the magnetic marker 1 having a magnetic flux resolution of 0.02 ⁇ T (see Table 2). Although a magnetic marker having a diameter of less than 80 mm may be used, it may be necessary to increase the sensitivity of the magnetic sensor so as to cope with a smaller magnetic flux density, which may lead to an increase in cost. On the other hand, if the diameter of the magnetic marker 1 is too large, it becomes difficult to distinguish it from a magnetic source such as an iron lid of a manhole, for example. It is preferable to selectively set the size of the magnetic marker in consideration of the type and size of the magnetic generation source existing on the road to be laid and the magnetic field strength.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Architecture (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measuring Magnetic Variables (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Traffic Control Systems (AREA)

Abstract

磁力を抑えた磁気マーカ及び磁気マーカ検出システムを提供する。 車両5の車体フロア50に取り付けた磁気センサ2により、路面53に敷設された磁気マーカ1が発生する磁気を検出する磁気マーカ検出システム1Sは、表面の磁束密度Gsに対する高さ250mmの位置の磁束密度Ghの比率である磁気到達率Gh/Gsが0.5%以上である磁気マーカ1と、外部磁界に応じてインピーダンスが変化する感磁体を含むマグネトインピーダンス素子を用いた磁気センサ2と、を組み合わせたシステムである。

Description

磁気マーカ及び磁気マーカ検出システム
 本発明は、道路に敷設される磁気マーカに関する。
 従来、道路に敷設した磁気マーカを利用する車両用の磁気マーカ検出システムが知られている(例えば、特許文献1参照。)。このような磁気マーカ検出システムは、磁気センサを装備する車両を対象として、車線に沿って敷設された磁気マーカを利用する自動操舵制御や車線逸脱警報等、各種の運転支援の提供を目的としている。
特開2005-202478号公報
 しかしながら、前記従来の車両用の磁気マーカ検出システムでは、次のような問題がある。すなわち、車両側の磁気センサは、路面から100~250mm程度の高い位置に取り付けられた車両側の磁気センサで検出できるよう、磁気マーカの磁力をある程度、強くする必要がある一方、磁気マーカの磁力を強くすると、例えば釘やボルトなど路面に落ちた金属物が吸着されて車両タイヤのパンク等のトラブルが誘発されるおそれが生じる。
 本発明は、前記従来の問題点に鑑みてなされたものであり、磁力を抑えた磁気マーカ及び磁気マーカ検出システムを提供しようとするものである。
 本発明の第1の態様は、車両の底面側に取り付けられた磁気センサで検出できるように路面に敷設され、運転者の運転を支援するための車両側の運転支援制御を実現するための磁気マーカであって、
 磁気マーカの表面を基準高さとして、高さゼロmmの位置の表面の磁束密度Gsに対する高さ250mmの位置の磁束密度Ghの比率である磁気到達率Gh/Gsが0.5%以上である磁気マーカにある。
 本発明の第2の態様は、車両の底面側に取り付けた磁気センサにより、路面に敷設された磁気マーカが発生する磁気を検出することで、車両側の運転支援制御を実現するための磁気マーカ検出システムであって、
 前記磁気マーカが、前記第1の態様の磁気マーカである磁気マーカ検出システムにある。
 本発明に係る磁気マーカは、表面の磁束密度Gsに対する高さ250mmの位置の磁束密度Ghの比率である磁気到達率Gh/Gsが0.5%以上の道路マーカである。磁気到達率Gh/Gsが0.5%以上であれば、高さ250mmの位置の磁束密度Ghに対して、磁気マーカの表面の磁束密度Gsを200倍以下に抑制できる。
 以上のように本発明に係る磁気マーカは、高さ250mmの位置の磁束密度Ghに対して表面の磁束密度Gsを低く抑制でき、表面の磁力を低くできる優れた特性の道路マーカである。本発明に係る磁気マーカ検出システムは、上記のように表面の磁力を低くできる磁気マーカを採用したことで、磁気マーカが金属物を吸着するおそれを抑えたシステムとなっている。
実施例1における、磁気マーカ検出システムの説明図。 実施例1における、磁気マーカの上面図及び側面図。 実施例1における、磁気センサの電気的構成を示すブロック図。 実施例1における、磁気マーカの鉛直方向の磁界分布を示すグラフ。 実施例1における、磁石の直径と、高さ250mm位置の磁束密度Ghと、の関係を例示するグラフ。 実施例1における、磁気マーカの鉛直方向の磁界分布を示すグラフ。 実施例2における、磁石の直径と磁束密度Gsとの関係を示すグラフ。 実施例2における、磁石の直径と磁気到達率Gh/Gsとの関係を示すグラフ。 実施例2における、磁石の厚さと磁気到達率Gh/Gsとの関係を示すグラフ。
 本発明に係る磁気マーカを検出する磁気センサの取付け高さとしては、乗用車のほかバスやトラック等を含めた各種の車両の車体フロアの地上高を考慮して、路面から250mmまでの範囲を想定する必要がある。そこで、本発明では、表面の磁束密度Gsに対する高さ250mmの位置の磁束密度Ghの比率である磁気到達率Gh/Gsを定義している。なお、磁束密度は、鉛直方向の磁気の磁束密度であっても良いし、他の方向であっても良い。
 本発明に係る磁気マーカは、プラスチックマグネットやラバーマグネットを採用したものとすると良い。例えば焼結磁石等のマグネットに比べて割れが生じにくいプラスチックマグネットやラバーマグネットを採用すれば、長期間の使用に耐える磁気マーカを提供できる。また、比較的低コストで高精度に成形可能なこれらのマグネットを採用すれば、生産コストを抑制しながら高品質の磁気マーカを提供できる。また、柔軟性を備えるラバーマグネット等であれば、施工時の路面の凹凸や、運用中の路面の凹凸変形等にも柔軟に対応できる。
 本発明に係る磁気マーカを敷設することで車両側で実現される運転支援制御としては、走行制御や、警報制御や、情報の報知制御などの様々な制御がある。走行制御としては、例えば、車線に沿って敷設された磁気マーカに沿って車両を走行させる自動操舵制御や、合流路・分岐路に敷設された磁気マーカを利用した合流・分岐制御や、交差点等の停止線の手前に敷設された磁気マーカを検出したときに車両を停止させる停止制御等がある。警報制御としては、例えば、車線に沿って敷設された磁気マーカを基準として車線逸脱を警報する制御や、交差点等の手前に敷設された磁気マーカを通過したときのスピードの出し過ぎを警報する制御等がある。情報の報知制御としては、交差点や分岐路や料金所への接近を報知する制御や、経路を誘導するナビゲーション中に右折する交差点の位置を精度高く報知する制御等がある。さらに、例えば磁気マーカのN極及びS極の配列を読み取ることで車両側で取得可能な情報を報知する制御等も良い。
 本発明における好適な一態様の磁気マーカは、前記磁束密度Ghが0.5μT(マイクロテスラ)以上20μT以下である。前記磁気到達率Gh/Gsが0.5%以上である場合、磁束密度Ghが20μT以下であれば、前記表面の磁束密度Gsを4mT(20μT÷0.5%)以内に抑制できる。例えばオフィスのホワイトボードに貼り付ける事務用のマグネットシートや、家庭の冷蔵庫の扉に張り付ける文具用のマグネットシート等は、その表面の磁束密度が20~40mT程度である。これらのマグネットシートは、その自重を保持できる程度の弱い磁力であり、路面に落ちた釘やボルト等の金属物を磁気的に引き寄せて吸着するほどの磁石ではない。前記表面の磁束密度Gsが事務用のマグネットシートの1/5以下の4mTに過ぎない磁気マーカを路面に敷設しても、路面に落ちた釘やボルト等の金属物を磁気的に引き寄せて吸着するおそれは極めて少ない。それ故、路面に敷設した前記磁気マーカに起因して、車両タイヤのパンク等のトラブルが誘発されるおそれはほとんどない。
 なお、前記磁束密度Ghが0.5μT以上10μT以下の磁気マーカとしても良い。この場合には、前記表面の磁束密度Gsを一層低減できる。前記磁気到達率Gh/Gsが0.5%以上であれば、前記表面の磁束密度Gsを2mT(10μT÷0.5%)以内に抑制できる。
 本発明における好適な一態様の磁気マーカは、前記磁気到達率Gh/Gsが1.0%以上である。前記磁気到達率Gh/Gsが1.0%以上であれば、検出に必要な前記磁束密度Ghに対して前記表面の磁束密度Gsを低くできるという本発明の作用効果が一層高くなる。
 本発明における好適な一態様の磁気マーカは、直径が100mm以上である。発明者らは、長年に渡る研究開発を通じて、前記磁気マーカが大径であるほど、前記磁気到達率Gh/Gsが高くなるという知見を得た。特に、直径100mm以上の範囲では、前記磁気マーカの直径に対して前記磁気到達率Gh/Gsが高くなる度合いが顕著になる。一方、前記磁気マーカの直径を大きくし過ぎると、例えば道路に設置されるマンホールの鉄製の蓋などの磁気源との区別が難しくなる。敷設対象の道路に存在する磁気発生源の種類や大きさや磁界強度等を考慮し、磁気マーカの大きさを設定すると良い。
 本発明における好適な一態様の磁気マーカは、防水および耐磨耗効果を有するコーティングもしくは樹脂モールドを表面に施したものである。コーティングもしくは樹脂モールドを表面に施せば、磁気マーカの耐久性を向上できる。敷設する際の施工面となる磁気マーカの裏面や外周側面にコーティングもしくは樹脂モールドを施すことも良い。
 本発明における好適な一態様の磁気マーカは、厚さ5mm以下の扁平形状をなし、凹状の収容穴を穿設することなく路面に敷設可能である。凹状の収容穴等を路面に穿設することなく敷設可能な磁気マーカであれば、低コストで高効率の施工作業による敷設が可能になる。路面に固定する方法としては、例えば、接着機能を備える材料等による接着接合や、ピン等を路面に打ち込んで固定する方法等がある。
 本発明における好適な一態様の磁気マーカ検出システムは、前記磁気センサとして、マグネトインピーダンスセンサ(MIセンサ)、フラックスゲートセンサ、TMR型センサのうちの少なくとも1種類の磁気センサを用いる。マグネトインピーダンスセンサ、フラックスゲートセンサ、TMR型センサは、いずれも高感度で磁気を検出可能な磁気センサとして知られている。これらのうちの少なくとも1種類の磁気センサを用いる磁気マーカ検出システムであれば、表面の磁束密度Gsを低く抑えた磁気マーカとの組み合わせにおいて、その磁気マーカが発生する磁気を確実性高く検出可能である。
 マグネトインピーダンス(MI:Magneto Impedance)センサは、外部磁界に応じてインピーダンスが変化する感磁体を含むマグネトインピーダンス素子を利用した磁気センサである。マグネトインピーダンス素子(MI素子)は、パルス電流あるいは高周波電流等が感磁体を流れるときに表皮層の電流密度が高くなる表皮効果に起因し、外部磁界によって表皮層の深さ(厚さ)が変動して感磁体のインピーダンスが敏感に変化するというマグネトインピーダンス効果(MI効果)を利用して磁気を検出する素子である。このMI効果を利用するMI素子によれば、高感度な磁気計測が可能となる。MI素子を利用すれば、例えば0.5~10μT程度の微弱な磁気を検出できる低コストかつ小型の磁気センサを実現できる。なお、MI素子を利用したMIセンサについては多数の出願がなされており、例えば、WO2005/19851号公報、WO2009/119081号公報、特許4655247号公報などに詳細な記載がある。
 MI素子の感磁体は、高透磁率合金磁性体が好ましい。例えばCoFeSiB系合金等の軟磁性材からなるワイヤや薄膜などの磁性体が好ましく、特に感度やコスト等の点で零磁歪のアモルファスワイヤが好ましい。
 高周波電流等が流れるときの感磁体のインピーダンス変化は、例えば、感磁体の両端電圧から直接的に検出しても良いし、感磁体の周囲に巻回された検出コイル(ピックアップコイル)を介して起電力の変化として間接的に検出しても良い。検出コイルを含むMI素子であれば、磁気の作用方向の検出が可能となって有用である。
 フラックスゲートセンサは、軟磁性コアに周期電流を流したときのコア磁束の飽和タイミングが外部磁界に応じて変化することを利用し、飽和のタイミングから磁気強度を計測する高感度な磁気センサである。なお、フラックスゲートセンサについては多数の出願がなされており、例えば、WO2011/155527号公報、特開2012-154786号公報などに詳細な記載がある。
 TMR(Tunneling Magneto Resistive)型センサは、強磁性層の間に膜厚1nm程度の絶縁体層を挟み込む構造を備える高感度センサである。TMR型センサは、膜面に対して垂直に電圧を印加するとトンネル効果によって絶縁体層に電流が流れ、その際の電気抵抗が外部磁界に応じて大きく変化するトンネル磁気抵抗(TMR)効果を利用して高感度を実現している。なお、TMR型センサについては多数の出願がなされており、例えば、WO2009/078296号公報、特開2013-242299号公報などに詳細な記載がある。
 なお、例えば、磁気の検出感度が高い前記MIセンサ等を利用すれば、磁束密度が0.5μT未満の磁気を検出することも十分可能である。しかしながら、このような微弱な磁気の検出を可能とする高感度を実現しつつ、車両に搭載するための高耐久性能を確保するためには、磁気センサのコストの上昇や大型化が招来されるおそれがある。一方、前記磁束密度Ghとして0.5μTを確保できれば、磁気センサ側の感度等を余裕をもって設計でき、車載可能な高耐久の小型の磁気センサを比較的低コストで実現できる。
(実施例1)
 本例は、車両用の道路の路面に敷設された磁気マーカ1と、車両の底面側に取り付けられた磁気センサ2と、の組み合わせによる車両用の磁気マーカ検出システム1Sに関する例である。この内容について、図1~図6を参照して説明する。
 図1に例示する車両用の磁気マーカ検出システム1Sでは、車両5が走行する車線の中央に沿うよう、路面53に磁気マーカ1が敷設される。車両5側では、車両5の底面に当たる車体フロア50に磁気センサ2が取り付けられる。磁気センサ2の取付け高さは、車種によって違いがあるが、100~250mmの範囲となっている。磁気センサ2の出力信号は、例えば車両5側の図示しないECU等に入力され、車線維持のための自動操舵制御や車線逸脱警報など各種の制御に利用される。
 図2に例示の磁気マーカ1は、直径100mm、厚さ1.5mmの扁平な円形状を呈し、路面53への接着接合が可能な扁平形状のマーカである。磁気マーカ1は、直径100mm、厚さ1mmの扁平な磁石シート11の両面を樹脂モールド12により覆って形成されている。磁石シート11は、最大エネルギー積(BHmax)=6.4kJ/mの等方性フェライトラバーマグネットをシート状に成形したものである。磁気マーカ1の表面に当たる上面側の樹脂モールド12の厚みは0.3mm、磁気マーカ1の施工面に当たる下面側の厚みは0.2mmである。路面53への施工は、例えば接着材による接着固定により実施される。なお、磁気マーカ1の外周側面にも樹脂モールドを施すと良い。この場合には、磁気マーカ1の直径が100mmよりも0.5mm程度大きくなる。
 本例の磁気マーカ1の仕様の一部を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この磁気マーカ1の表面の磁束密度Gsは1mTとなっている。例えばオフィス等のホワイトボードや家庭の冷蔵庫の扉等に貼り付けて使用されるマグネットシートや、車両ボディに貼り付ける初心者マーク等のマグネットシート等は、表面の磁束密度が20~40mT程度である。これらのマグネットシートとの対比によれば、本例の磁気マーカ1が発生する磁力について、金属物を吸着する一般的な磁石としては機能できない程の微弱な磁力であることが直感的に把握される。なお、この磁気マーカ1の鉛直方向の磁界分布については図4を参照して後で説明する。
 磁気センサ2は、図3に例示のブロック図の通り、MI素子21と駆動回路とが一体化された1チップのMIセンサである。MI素子21は、CoFeSiB系合金製のほぼ零磁歪であるアモルファスワイヤ(感磁体の一例)211と、このアモルファスワイヤ211の周囲に巻回されたピックアップコイル213と、を含む素子である。磁気センサ2は、アモルファスワイヤ211にパルス電流を供給したときにピックアップコイル213に発生する電圧を計測することで、感磁体であるアモルファスワイヤ211に作用する磁気を検出する。
 駆動回路は、アモルファスワイヤ211にパルス電流を供給するパルス回路23と、ピックアップコイル213で生じた電圧を所定タイミングでサンプリングして出力する信号処理回路25と、を含む電子回路である。パルス回路23は、パルス電流の元となるパルス信号を生成するパルス発生器231を含む回路である。信号処理回路25は、パルス信号に連動して開閉される同期検波251を介してピックアップコイル213の誘起電圧を取り出し、増幅器253により所定の増幅率で増幅する回路である。この信号処理回路25で増幅された信号がセンサ信号として外部に出力される。
 磁気センサ2の仕様の一部を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この磁気センサ2は、磁束密度の測定レンジが±0.6mTであって、測定レンジ内の磁束分解能が0.02μTという高感度のセンサである。このような高感度は、アモルファスワイヤ211のインピーダンスが外部磁界に応じて敏感に変化するというMI効果を利用するMI素子21により実現されている。さらに、この磁気センサ2は、3kHz周期での高速サンプリングが可能で、車両の高速走行にも対応している。なお、3kHz周期でのサンプリングに代えて、例えば20mm等の所定距離を車両が移動する毎に磁気計測を実行しても良い。
 次に、本例の磁気マーカ1の鉛直方向の磁界分布について図4を参照して説明する。同図は、有限要素法を用いた軸対称3次元静磁場解析によるシミュレーション結果を示す片対数グラフである。同図では、鉛直方向に作用する磁気の磁束密度の対数目盛を縦軸に設定し、磁気マーカ1の表面を基準とした鉛直方向の高さ(マーカ表面からの高さ)を横軸に設定している。同図中、マーカ表面からの高さ=0mmのときの磁束密度が「表面の磁束密度Gs」となり、マーカ表面からの高さ=250mmのときの磁束密度が「高さ250mmの位置の磁束密度Gh(適宜、高さ250mmの磁束密度Gh)」となる。
 図4のごとく、磁気マーカ1は、高さ250mmの位置に作用する磁気の磁束密度Ghが8μTとなっている。この磁気マーカ1では、表面の磁束密度Gsが1mTであることから(表1参照。)、表面の磁束密度Gsに対する250mm高さの磁束密度Ghの比率である磁気到達率Gh/Gsが0.8%となっている。
 磁気到達率Gh/Gsが0.8%であって、表面の磁束密度Gsが1mTの磁気マーカ1によれば、磁気センサ2の取付け高さ(センサ取付高)として想定する範囲100~250mmにおいて8μT以上の磁束密度の磁気を作用できる。磁束密度8μTの磁気が作用する場合であれば、磁束分解能が0.02μT(表2参照。)の磁気センサ2を用いて確実性高く磁気マーカ1を検出可能である。
 本例の磁気マーカ1では、0.8%の磁気到達率Gh/Gsを実現することで、磁気センサ2で検出可能な磁気特性を確保しながら表面の磁束密度Gsを1mT(10×10-4T)に抑えている。1mTの磁束密度は、例えばホワイトボードや冷蔵庫の扉等に貼り付けるマグネットシート表面の20~40mT程度の磁束密度の1/10よりも小さい。磁気マーカ1は、これらの事務用あるいは家庭用のマグネットシートと比べても磁力が非常に微弱である。そのため、この磁気マーカ1を路面53に敷設しても、釘やボルト等の金属物を引き寄せて吸着するおそれが極めて少ない。
 以上のように本例の磁気マーカ1は、磁力を低く抑えた優れた特性の道路マーカである。この磁気マーカ1を含む磁気マーカ検出システム1Sでは、MI素子21を利用した磁気センサ2を採用することで、磁気マーカ1から作用する微弱な磁気の検出が可能となっている。
 次に、磁気マーカ1の直径100mmの選定理由について、図5及び図6のコンピュータシミュレーション結果を参照して説明する。
 図5のグラフは、直径20mm高さ50mmの円柱磁石を基準として体積一定のまま(体積=15.7cm)、直径及び高さを変更したときの高さ250mmの磁束密度Ghの変化を示すグラフである。同図は、横軸に磁石の直径を示し、高さ250mmの磁束密度Ghを縦軸にとったグラフである。同図では、シミュレーション結果を○プロットで示すと共に、○プロットの添字で磁石の高さ(mm)を示している。なお、図5のシミュレーションは、残留磁束密度1.19Tのネオジウム磁石の参考シミュレーションである。本例の磁気マーカ1を構成する等方性ラバーマグネットについても定性的な傾向が同様である旨、コンピュータシミュレーションや実証実験等により確認している。
 図5のグラフ中、左端のプロットが基準となる直径20mm×高さ50mmの磁石のデータである。この左端のプロットを基準としたとき、直径20~60mmまでの範囲では、直径が大きくなるほど磁束密度Ghが向上していることがわかる。磁束密度Ghは、直径60~80mmの範囲で最大値に近くなり、直径80mm超の範囲では直径が大きくなるほどGhが低下している。ただし、直径80~100mmの範囲であれば、直径に対する磁束密度Ghの変動率が小さく磁束密度Ghの低下はわずかとなっている。
 高さ250mmの位置において必要となる磁束密度Ghを確保するに当たって、磁石の成形に必要な磁性材料の使用量という材料コストの観点に基づけば、直径60~80mmの磁石が材料のコスト効率が最も良好になる。一方、直径60mm未満及び80mm超の範囲では材料のコスト効率が若干、低下するという傾向がある。ただし、磁束密度Ghの低下度合いが小さい直径80~100mmの範囲であれば、材料のコスト効率を十分に高く維持できる可能性が高い。
 図6のグラフは、表面の磁束密度Gsが1mTである様々な大きさの磁気マーカについて、鉛直方向の磁界分布をシミュレーションしたものである。同図のコンピュータシミュレーションは、本例の磁気マーカ1と同様、最大エネルギー積(BHmax)=6.4kJ/mの等方性ラバーマグネットよりなる磁気マーカについてのシミュレーション結果である。
 このシミュレーションは、直径100mmを含めて20~150mmまでの5種類の直径の磁気マーカを対象としている。このシミュレーションでは、直径の違いに関わらず表面の磁束密度Gsが1mTになるように厚さを変更している。凡例中の例えばφ100T1の表記は、直径100mm厚さ1mmの磁気マーカであることを示している。なお、ここでは、樹脂モールドの厚さを無視し、磁気マーカの大きさ=磁石の大きさとしている。
 図6のグラフは、図4と同様のグラフ軸の片対数グラフである。同図によれば、大径の磁気マーカほど、表面の磁束密度Gsに対して高さ250mmの磁束密度Ghが高くなっており、鉛直方向における磁束密度の減衰度合いが抑制されていることがわかる。例えば、250mm高さの磁束密度Ghを比較すると、直径50mm厚さ0.5mmの磁石のGh=2μTに対して、直径100mm厚さ1mmの磁石ではGh=8μTとなっている。このように磁気マーカの直径が大きくなるほど、表面の磁束密度Gsに対する250mm高さの磁束密度Ghの割合である磁気到達率(Gh/Gs)が高くなる傾向がある。
 磁気センサ2による検出のために必要な磁束密度Ghが定まっている場合であれば、上記の磁気到達率(Gh/Gs)が高いほど、磁気マーカの表面の磁束密度Gsを抑制できる。表面の磁束密度Gsが低くなれば、磁性材料の選定や、直径や厚さや形状などの選択範囲が拡大し、磁気マーカの設計自由度が向上するという効果が生じる。
 そこで本例では、図5及び図6のシミュレーション結果に基づく以下の知見を主な根拠として磁気マーカ1の直径を100mmに設定している。
(1)直径60~80mmの範囲で材料のコスト効率が最も良くなると共に、直径80~100mmの範囲であれば、材料のコスト効率を十分に高く維持できること。
(2)表面の磁束密度Gsに対する250mm高さの磁束密度Ghの割合である磁気到達率(Gh/Gs)が磁石(磁気マーカ)の直径が大きくなるほど向上すること。
 磁気マーカの形状については、本例の円形状に代えて、三角形や四角形や六角形などの多角形状であっても良く、長方形状であっても良く、2つの長方形状を交差させたような十字形状等であっても良い。
 路面への敷設方法については、接着材等を利用して接着して接合する方法のほか、釘のような形状の固定ピンを用いて固定する方法であっても良い。さらに、着磁前の磁性材料を路面の表面側に積層あるいは塗布しておき、所定範囲を着磁することで本例と同等の磁気マーカを形成することも良い。例えば磁性材料を含む塗料を塗布したラインを車線の中央に沿ってプリントした後、ラインの所定位置を着磁することも良い。
 指向性の高いMI素子を利用する磁気センサを採用する際、磁気の検出方向毎に1つずつMI素子を設けると良い。鉛直方向の磁気成分のみを検出するのであればMI素子を1つ備えれば足りるが、3次元方向に対応してそれぞれMI素子を設けることも良い。3次元方向にそれぞれMI素子を設ければ磁気マーカから生じる磁気成分を3次元的に検出できる。例えば路面の鉛直方向の磁気を検出するMI素子と、車両の進行方向の磁気を検出するMI素子と、車両の左右方向の磁気を検出するMI素子と、を設けることも良い。車両の進行方向の磁気を検出すれば、例えば磁気方向の正負逆転を検知することで、車両の進行方向における磁気マーカの位置を精度高く計測できる。
 MI素子を複数設ける場合、パルス回路や信号処理回路を各MI素子毎に個別に設けずに例えば時分割で共用することも良い。回路を共用できれば、磁気センサの小型化、低コスト化を実現し易くなる。
 車両の左右方向に沿って複数の磁気センサを配設することも良い。各磁気センサが検出した磁気分布のピークを検出することで、磁気マーカの左右方向の相対位置を判断することも良い。
 磁気センサとしてMI素子を用いたMIセンサを例示したが、これに代えて、フラックスゲートセンサ、TMR型センサを磁気センサとして採用することもできる。2個以上の磁気センサを利用する場合には、MIセンサ、フラックスゲートセンサ、TMR型センサのうちの2種類以上を組み合わせて採用することもできる。
 磁気マーカを構成する磁石シートの磁性材料や磁石の種類は、本例には限定されない。磁性材料や磁石の種類としては、様々な材料や種類を採用できる。磁気マーカに要求される磁気的仕様や環境仕様等に応じて、適切な磁性材料や種類を選択的に決定するのが良い。
 なお、本例では、コンピュータシミュレーションの結果を利用して磁気マーカの仕様を選択的に決定している。コンピュータシミュレーションを利用するに当たっては、一部のシミュレーション条件下の実証実験によりシミュレーション精度を予め確認している。また、磁気マーカ1については、コンピュータシミュレーションの結果に近い磁気特性が得られることを実証実験により確認している。
(実施例2)
 本例は、実施例1を基にして、磁石の直径と磁気到達率Gh/Gsとの関係を検討した例である。この内容について、図7~図9を参照して説明する。
 図7は、高さ250mmの位置で磁束密度Gh=8μTの磁気を作用する磁石について、直径と表面の磁束密度Gsとの関係を示すシミュレーション結果である。同図の横軸は磁石の直径を示し、縦軸は表面の磁束密度Gsを示している。○プロットの添字は、磁束密度Gh=8μTを実現する磁石の厚さ(高さ、mm)を示している。
 図8は、磁石の直径と、磁気到達率Gh/Gsと、の関係を示すグラフである。同図のグラフは、図7のグラフを構成するシミュレーションデータを加工して表示形式を変更したグラフである。
 図7によれば、直径80mm以下の範囲では、高さ250mmの磁束密度Gh=8μTを実現するために必要な表面の磁束密度Gsが大きくなることがわかる。一方、直径80ミリを超えると、同様の表面の磁束密度Gsが約2mT以下に急激に小さくなり、直径200mmを超えると小さくなる度合いが抑制されて徐々に一定に近づいている。250mm高さの磁束密度Gh=8μTを実現するために必要な表面の磁束密度Gsは、直径100mmを超えると約1mT以下に抑えることができ、150mmに向けてさらに小さくなる。
 直径に対する磁気到達率Gh/Gsの変化度合いを示す図8によれば、磁気到達率Gh/Gsは直径に対する相関性が高く、直径が大きくなるほど磁気到達率Gh/Gsが大きくなる傾向がわかる。さらに、直径が大きくなるほど、直径に対する磁気到達率Gh/Gsの変化率を表すグラフの傾きが大きくなっている。この変化率は、特に、直径100~200mmの範囲で大きく変化している。このように変化率が大きく変化する直径100~200mmの範囲は、図7において、高さ250mmの磁束密度Gh=8μTを実現するために必要な表面の磁束密度Gsが急激に小さくなる範囲に対応している。
 図9は、磁石の厚さ(mm)によって磁気到達率Gh/Gsが変化するか否かの依存度合いを調べたシミュレーション結果である。このシミュレーションでは、直径100mm、厚さ1mmの扁平形状の磁石を基準として、厚さを変更したときの磁気到達率Gh/Gsの変化を調べている。同図の横軸は磁石の厚さを示している。縦軸には、表面の磁束密度Gs、高さ250mmの磁束密度Gh、及び磁気到達率Gh/Gsの3種類の縦軸を設定してある。各縦軸の数値は、表面の磁束密度Gsを○プロットで示し、磁束密度Ghを△プロットで示し、磁気到達率Gh/Gsを□プロットで示している。
 図9のグラフの通り、磁石の直径を100mm一定にした場合、その厚さに対して、表面の磁束密度Gs及び高さ250mmの磁束密度Ghの両方がほぼ線形に変化するというシミュレーション結果が得られている。そして、表面の磁束密度Gs、及び高さ250mmの磁束密度Ghがいずれも線形に変化することから、磁気到達率Gh/Gsがほぼ一定となっている。このように、磁石の厚さや磁束密度の大きさに依らず、磁気到達率Gh/Gsはほぼ一定である。このことから、図7及び図8で把握される傾向は、磁気仕様の異なる様々な扁平形状の磁気マーカについて共通する傾向であることがわかる。
 図7~図9のシミュレーション結果は、いずれも直径に対して高さ(厚さ)方向の寸法が小さい扁平形状の磁石に関する結果である。これらのシミュレーション結果によれば、扁平形状の磁石では、磁石の厚さを変更しても磁気到達率Gh/Gsがあまり変化しない一方、磁石の直径が磁気到達率Gh/Gsを左右し、磁石の直径が大きくなるほど磁気到達率Gh/Gsが大きくなるという傾向を把握できる。したがって、磁気センサに作用する磁気の磁束密度Ghを確保しながら表面の磁束密度Gsを抑えるためには、磁石の直径を大きくして磁気到達率Gh/Gsを大きくすれば良いことがわかる。
 特に、磁気到達率Gh/Gsが0.5%以上の範囲であれば、例えば、高さ250mmの磁束密度Gh=8μTに対して、表面の磁束密度Gsを1.6mT以下に抑えることができる。磁束密度Gh=8μTは、磁束分解能0.02μTのMI素子を用いて余裕をもって検出できる磁気強度である一方、表面の磁束密度Gs=1.6mTは、オフィス用や事務用のマグネットシートの磁束密度の1/10にも満たないような微弱な磁気である。さらに、磁気到達率Gh/Gsが1%以上であれば、表面の磁束密度Gsを0.8mT以内に抑制できるようになる。
 0.5μTの磁束密度を検出できるMI素子の場合、磁気到達率Gh/Gsが0.5%以上の磁気マーカであれば、その表面の磁束密度Gsをわずか0.1mT(0.5μT÷0.5%)に抑制できる。MI素子の感度を高めれば、0.5μT未満の磁束密度を検出することも可能である。しかし、感度を高めるためにコスト上昇や、磁気センサの大型化が招来されるおそれがあるので、高さ250mmの位置の磁束密度Ghを0.5μT以上とすると良い。好ましくは、磁束密度Ghが1μT以上あると良い。
 0.5%以上の磁気到達率Gh/Gsを実現するためには、磁気マーカの直径を例えば90mm以上とすると良い。さらに好ましくは1%以上の磁気到達率Gh/Gsを実現するために、磁気マーカの直径を110mm以上とすると良い。特に、磁気マーカの直径を120~150mmにすれば、磁気到達率Gh/Gsが一層大きくなり、表面の磁束密度Gsを低減する効果が高くなる。
 一般に、磁石の磁極面から生じる磁力線は、磁極面の外縁において反対側の磁極面への回り込みの度合いが強くなって傾く一方、外縁から離れた磁極面の中心部ほど、磁極面の垂直方向に向かう度合いが強くなる傾向にある。そのため、磁極面の外縁から中心部までの距離が長く確保された磁石ほど、磁極面の垂直方向に強い磁気が作用し、磁気到達率Gh/Gsが大きくなる傾向にある。面積一定であれば、外縁から中心への距離が一定となる円形状が、磁気到達率Gh/Gsを確保するために最も有利な形状となる。多角形状の場合であれば、角数が多く円形状に近くなるほど有利である。また、例えば、四角形状の磁気マーカの場合であれば、長片と短辺の長さの差が少ない正方形に近い形のとき、磁極面の中心と各辺との距離の大小差が抑えられて最小値が大きくなるため、磁気到達率Gh/Gsを確保するために有利となる。例えば、三角形状の磁気マーカの場合であれば、同様に正三角形状が有利となる。そして、正三角形状の磁気マーカの磁気到達率Gh/Gsをさらに大きくしたい場合には、三角形の大きさを大きくすると良い。大きさに制限がある場合であれば、ロータリーエンジンのロータ形状のように正三角形の各辺を湾曲凸状に外側に膨らますと良い。磁極面の中心と各辺との距離を大きくできるため、磁気到達率Gh/Gsの向上に有効である。
 磁気到達率Gh/Gsが大きいことは、例示したMI素子に限らず、フラックスゲートセンサやTMR型センサのほか、低感度なホール素子などの検出においても有効である。検出に必要な磁束密度Ghに対して磁気マーカの表面の磁束密度Gsを抑制でき、磁気マーカの磁力を低減できるからである。磁気マーカの磁力を低減できれば、例えば路面に落ちた釘やボルト等の金属物を引き寄せて吸着するおそれを軽減できる。ホール素子など感度が低い磁気センサの場合であれば、磁気到達率Gh/Gsが1%以上あるいは2%以上となるように磁気マーカの直径を大きくすると良い。例えば、磁気マーカの直径を150~200mmに設定すれば、2.4~5.2%まで磁気到達率Gh/Gsを向上でき、表面の磁束密度Gsの低減効果を高くできる。
 磁気マーカの直径を80mm以上としても良い。直径80mmであれば、表面の磁束密度Gsを1mTに抑えた場合であっても、高さ250mmの位置の磁束密度Ghが5μTとなる。5μTの磁束密度であれば、磁束分解能0.02μT(表2参照。)の磁気マーカ1を用いて十分に検出可能である。直径80mm未満の磁気マーカであっても良いが、より小さい磁束密度に対応できるように磁気センサの感度を高める必要が生じてコスト上昇が招来される可能性もある。
 一方、磁気マーカ1の直径を大きくし過ぎると、例えばマンホールの鉄製の蓋などの磁気源との区別が難しくなる。敷設する道路に存在する磁気発生源の種類や大きさや磁界強度等を考慮し、磁気マーカの大きさを選択的に設定するのが良い。
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。
 1 磁気マーカ
 1S 磁気マーカ検出システム
 11 磁石シート
 12 樹脂モールド
 2 磁気センサ
 21 MI素子
 211 アモルファスワイヤ(感磁体)
 213 ピックアップコイル
 5 車両
 50 車体フロア(底面)
 53 路面

Claims (8)

  1.  車両の底面側に取り付けられた磁気センサで検出できるように路面に敷設され、運転者の運転を支援するための車両側の運転支援制御を実現するための磁気マーカであって、
     磁気マーカの表面を基準高さとして、高さゼロmmの位置の磁束密度Gsに対する高さ250mmの位置の磁束密度Ghの比率である磁気到達率Gh/Gsが0.5%以上であることを特徴とする磁気マーカ。
  2.  請求項1において、前記磁束密度Ghが0.5μT以上20μT以下(5mG以上200mG以下)であることを特徴とする磁気マーカ。
  3.  請求項1又は2において、前記磁気到達率Gh/Gsが1.0%以上であることを特徴とする磁気マーカ。
  4.  請求項1~3のいずれか1項において、直径が100mm以上であることを特徴とする磁気マーカ。
  5.  請求項1~4のいずれか1項において、防水および耐磨耗効果を有するコーティングもしくは樹脂モールドを表面に施したことを特徴とする磁気マーカ。
  6.  請求項1~5のいずれか1項において、厚さ5mm以内であって、凹状の収容穴を穿設することなく路面に敷設可能な磁気マーカ。
  7.  車両の底面側に取り付けた磁気センサにより、路面に敷設された磁気マーカが発生する磁気を検出することで、車両側の運転支援制御を実現するための磁気マーカ検出システムであって、
     前記磁気マーカが、請求項1~6のいずれか1項に記載された磁気マーカであることを特徴とする磁気マーカ検出システム。
  8.  請求項7において、前記磁気センサとして、マグネトインピーダンスセンサ、フラックスゲートセンサ、TMR型センサのうちの少なくとも1種類の磁気センサを用いることを特徴とする磁気マーカ検出システム。
PCT/JP2016/080728 2015-10-19 2016-10-17 磁気マーカ及び磁気マーカ検出システム WO2017069091A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16857406.9A EP3367360B1 (en) 2015-10-19 2016-10-17 Magnetic marker and magnetic marker detection system
CN201680054651.6A CN108352111A (zh) 2015-10-19 2016-10-17 磁性标记以及磁性标记检测系统
SG11201802467WA SG11201802467WA (en) 2015-10-19 2016-10-17 Magnetic marker and magnetic marker detection system
US15/763,196 US10961670B2 (en) 2015-10-19 2016-10-17 Magnetic marker and magnetic marker detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015205776A JP6355607B2 (ja) 2015-10-19 2015-10-19 磁気マーカ及び磁気マーカ検出システム
JP2015-205776 2015-10-19

Publications (1)

Publication Number Publication Date
WO2017069091A1 true WO2017069091A1 (ja) 2017-04-27

Family

ID=58557018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080728 WO2017069091A1 (ja) 2015-10-19 2016-10-17 磁気マーカ及び磁気マーカ検出システム

Country Status (6)

Country Link
US (1) US10961670B2 (ja)
EP (1) EP3367360B1 (ja)
JP (1) JP6355607B2 (ja)
CN (1) CN108352111A (ja)
SG (2) SG11201802467WA (ja)
WO (1) WO2017069091A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928307B2 (ja) * 2017-03-28 2021-09-01 愛知製鋼株式会社 マーカ検出システム及びマーカ検出方法
DE102018203560A1 (de) * 2018-03-08 2019-09-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Steuereinheit zur Erkennung einer Fahrspurbegrenzung
JP6965815B2 (ja) * 2018-04-12 2021-11-10 愛知製鋼株式会社 マーカ検出システム、及びマーカ検出システムの運用方法
US11079211B2 (en) * 2018-08-07 2021-08-03 Halliburton Energy Services, Inc. Caliper tool and sensor for use in high pressure environments
JP7255127B2 (ja) * 2018-10-04 2023-04-11 愛知製鋼株式会社 磁気マーカシステム
US11604476B1 (en) * 2018-10-05 2023-03-14 Glydways Inc. Road-based vehicle guidance system
US11334089B1 (en) 2019-07-26 2022-05-17 Jeffrey W. Bryce Infrastructure markers for autonomous vehicles
JP2022158109A (ja) 2021-04-01 2022-10-17 愛知製鋼株式会社 磁気マーカシステム、及び磁気マーカシステムの設計方法
AU2021107499A4 (en) * 2021-08-25 2021-12-23 Microcom Pty Ltd Sensor arrays, methods, systems and devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280344A (ja) * 1997-04-02 1998-10-20 Aichi Steel Works Ltd 磁気マーカおよびその施工方法
WO1999017079A1 (fr) * 1997-09-29 1999-04-08 Aichi Steel Works, Ltd. Appareil magnetique pour detecter la position d'un vehicule
JP2000090387A (ja) * 1998-09-09 2000-03-31 Aichi Steel Works Ltd 磁気マーカ
JP2001125638A (ja) * 1999-10-22 2001-05-11 Toyota Motor Corp 磁性体の設置方法、磁性式標識体及び車両用情報取得装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3609678A (en) * 1969-04-28 1971-09-28 Minnesota Mining & Mfg Magnetized means for providing control information to moving vehicles
JPS5126590A (ja) 1974-08-30 1976-03-04 Toshiba Betsukuman Kk Shiryokishakusochi
EP0792399A1 (en) 1994-11-17 1997-09-03 Minnesota Mining And Manufacturing Company Conformable magnetic articles for use with traffic-bearing surfaces
US6468678B1 (en) 1994-11-17 2002-10-22 3M Innovative Properties Company Conformable magnetic articles for use with traffic bearing surfaces methods of making same systems including same and methods of use
CA2232873C (en) 1995-10-18 2004-06-15 Minnesota Mining And Manufacturing Company Conformable magnetic articles underlaid beneath traffic-bearing surfaces
JPH11110700A (ja) * 1997-09-29 1999-04-23 Toyota Motor Corp 交差点情報提供システム及びそのシステムに適用される車載情報送信装置
JP3122761B2 (ja) * 1998-07-31 2001-01-09 建設省土木研究所長 道路マーカ着磁装置
JP2002169614A (ja) 2000-11-30 2002-06-14 Aichi Steel Works Ltd 車両位置検出装置
JP2003027432A (ja) 2001-07-16 2003-01-29 Tdk Corp 磁気マーカ装置及びその製造方法
JP2005202478A (ja) 2004-01-13 2005-07-28 Denso Corp 車両用自動走行システム
JP2011025638A (ja) * 2009-07-29 2011-02-10 Mitsubishi Paper Mills Ltd インクジェット記録材料
PL2360544T3 (pl) * 2010-02-19 2018-06-29 2 Getthere B.V. Układ do określania położenia pojazdu, pojazdu z nim oraz jego sposób
KR101128393B1 (ko) * 2011-05-25 2012-03-23 (주) 이우티이씨 지하시설물 탐지기 및 지하시설물의 위치 확인 관리 방법
KR20130067452A (ko) * 2011-12-14 2013-06-24 한국전자통신연구원 자기센서를 이용한 차량 검지 장치 및 방법
CN103499351A (zh) * 2013-09-03 2014-01-08 北京工业大学 一种基于磁地标和磁传感器的车辆辅助定位方法
US9892296B2 (en) * 2014-11-12 2018-02-13 Joseph E. Kovarik Method and system for autonomous vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280344A (ja) * 1997-04-02 1998-10-20 Aichi Steel Works Ltd 磁気マーカおよびその施工方法
WO1999017079A1 (fr) * 1997-09-29 1999-04-08 Aichi Steel Works, Ltd. Appareil magnetique pour detecter la position d'un vehicule
JP2000090387A (ja) * 1998-09-09 2000-03-31 Aichi Steel Works Ltd 磁気マーカ
JP2001125638A (ja) * 1999-10-22 2001-05-11 Toyota Motor Corp 磁性体の設置方法、磁性式標識体及び車両用情報取得装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3367360A4 *

Also Published As

Publication number Publication date
US10961670B2 (en) 2021-03-30
SG11201802467WA (en) 2018-04-27
JP2017078910A (ja) 2017-04-27
JP6355607B2 (ja) 2018-07-11
EP3367360A1 (en) 2018-08-29
CN108352111A (zh) 2018-07-31
EP3367360A4 (en) 2019-07-10
SG10201913601UA (en) 2020-02-27
EP3367360B1 (en) 2023-12-13
US20180305874A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6355607B2 (ja) 磁気マーカ及び磁気マーカ検出システム
JP7140220B2 (ja) 磁気マーカ及びマーカシステム
WO2017187879A1 (ja) 磁気マーカ及び運転支援システム
WO2020071182A1 (ja) 磁気マーカシステム
WO2017187881A1 (ja) 運転支援システム
WO2017069089A1 (ja) 磁気マーカ及び磁気マーカ検出システム
JP6733289B2 (ja) 運転支援システム
JP6729534B2 (ja) 磁気マーカ及び磁気マーカ検出システム
JP2013142569A (ja) 電流センサ
JP7492179B2 (ja) マーカシステム
JP2017139402A (ja) 磁気マーカの作製方法
EP4318160A1 (en) Magnetic marker system, and design method for magnetic marker system
JP4500392B2 (ja) タイヤ式クレーンの走行誘導磁気基準点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15763196

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 11201802467W

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE