WO2017068767A1 - 摩擦撹拌点接合装置及び摩擦撹拌点接合方法 - Google Patents

摩擦撹拌点接合装置及び摩擦撹拌点接合方法 Download PDF

Info

Publication number
WO2017068767A1
WO2017068767A1 PCT/JP2016/004589 JP2016004589W WO2017068767A1 WO 2017068767 A1 WO2017068767 A1 WO 2017068767A1 JP 2016004589 W JP2016004589 W JP 2016004589W WO 2017068767 A1 WO2017068767 A1 WO 2017068767A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
joining
breakage
friction stir
plate
Prior art date
Application number
PCT/JP2016/004589
Other languages
English (en)
French (fr)
Inventor
良司 大橋
良崇 村松
将弘 三宅
拓也 福田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020187013131A priority Critical patent/KR102031895B1/ko
Priority to JP2017546401A priority patent/JP6329707B2/ja
Priority to EP16857090.1A priority patent/EP3366410A4/en
Priority to CN201680061690.9A priority patent/CN108136537B/zh
Priority to US15/770,221 priority patent/US10974344B2/en
Publication of WO2017068767A1 publication Critical patent/WO2017068767A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/127Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding friction stir welding involving a mechanical connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/123Controlling or monitoring the welding process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/26Auxiliary equipment

Definitions

  • the present invention relates to a friction stir spot welding apparatus and a friction stir spot welding method.
  • a friction stir spot joining method (Friction Spot Joining) is known as a method for joining a pair of plate materials to each other.
  • Friction Spot Joining When joining a pair of board
  • the tool may break when the tool is pulled out after a pair of plate members are joined at the friction stir spot at one joining position. If the breakage of the tool that occurs after the friction stir spot welding of a pair of plate materials at the preceding joining position cannot be detected before the friction stir spot welding at the next joining position, the broken tool causes a joint failure of the pair of plate materials. There is a problem that can cause damage. In addition, there is a problem that the friction stir spot welding device can be damaged by tool blurring caused by breakage of the tool or a sudden increase in torque.
  • the present invention provides the following joining of the tool breakage that occurs after a pair of plate materials are friction stir spot welded at the preceding joining position when a pair of plate materials are continuously joined at a plurality of joining positions.
  • a friction stir spot welding apparatus is a friction stir point that continuously joins a plurality of first plate members and second plate members at a plurality of joint positions.
  • a joining device a tool capable of contacting or separating from a surface of the second plate member opposite to the first plate member, a drive unit for rotating the tool around its axis, the tool, and the second plate
  • a position adjusting unit that adjusts a relative position between the plate member, a control unit that controls the driving unit and the position adjusting unit, and one of the plurality of bonding positions, the tool is the second A breakage detection unit that detects breakage of the tool by controlling the control unit so as to be disposed at a position in contact with the plate member or a predetermined pushing position;
  • the breakage detection unit controls the control unit so that the breakage detection unit controls the breakage of the tool so that the tool is brought into contact with the second plate member or disposed at the predetermined push-in position at one joining position. Therefore, it is possible to detect breakage occurring in the tool before the friction stir spot welding is performed at one joining position. Therefore, in the case where the first plate member and the second plate member are continuously joined at the friction stir spot at the plurality of joining positions, the breakage generated in the tool after the friction stir spot joining at the preceding joining position is prevented at the next joining position. Detectable before friction stir spot welding.
  • the breakage detecting unit is configured to apply pressure by which the tool pressurizes the second plate member after the tip of the tool and the second plate member come into contact until the tip of the tool is disposed at the predetermined pushing position.
  • the breakage of the tool may be detected based on the amount of change in pressure.
  • the breakage detection unit detects the amount of change in the applied pressure and detects the breakage of the tool, so that the breakage of the tool can be detected well even if the pressurization value of the tool is different from the actual value. Therefore, for example, it is possible to improve the detection accuracy of the tool breakage by the breakage detection unit as compared with the case of detecting the tool breakage by capturing the fixed value of the applied pressure.
  • the load detection unit further includes a load detection unit that receives the pressure from the surface of the first plate opposite to the second plate, and the breakage detection unit outputs the load detection unit that receives and outputs the pressure. Calculating the amount of change in the applied pressure with a signal and comparing the calculated amount of change in the applied pressure with a predetermined threshold to determine whether or not a predetermined amount of change has been obtained; Thus, the breakage of the tool may be detected.
  • the breakage detection unit appropriately calculates the amount of change in the applied pressure from the output signal of the load detecting unit that is output in response to the applied pressure when the first plate member and the second plate member are pressed by the tool. Since it is possible to determine whether or not a predetermined change amount is obtained by comparing the calculated change amount of the applied pressure with a predetermined threshold value, it is possible to detect the breakage of the tool well.
  • the breakage detection unit may be configured to detect breakage of the tool based on energization at the time of contact between the tip of the tool and the second plate member.
  • the controller pushes the tool toward the second plate at the first joining position to friction stir the first plate and the second plate
  • the control unit includes the first joining position and the plurality of joining positions, You may control at least one of the said drive part and the said position adjustment part so that the friction stir spot joining using the said tool in the remaining joining position may be stopped.
  • the breakage of the tool can be detected at one joining position, when the breakage of the tool is not detected, the first plate member and the second plate member can be quickly friction stir spot joined at the one joining position. .
  • the control unit may control the driving unit such that the breakage detection unit detects the breakage of the tool in a state where the tool is rotationally driven.
  • the first plate material and the second plate material can be quickly joined by friction stir spot welding.
  • the breakage detection unit may detect breakage of the tool before friction stir spot joining at the first joining position.
  • the friction stir spot welding method is a method in which the first plate material and the second plate material that are stacked are continuously friction stir spot welded at a plurality of joining positions using a friction stir spot welding device.
  • the friction stir spot welding device includes a tool that can contact or separate from the surface of the second plate opposite to the first plate, and at one of the plurality of bonding positions, Breakage of the tool is detected in a state where the tool is in contact with the second plate member or disposed at a predetermined pushing position.
  • the breakage of the tool may be detected before the friction stir spot welding at the first joining position.
  • the tool breakage that occurs after the pair of plate materials are friction stir spot joined at the preceding joining position is as follows.
  • movement flowchart of the friction stir spot joining apparatus of FIG. (A)-(d) is sectional drawing explaining each process of the friction stir spot joining using the friction stir spot joining apparatus of FIG. It is sectional drawing of the broken tool. It is a graph which shows the change of the position of the front-end
  • FIG. 1 is a side view of a friction stir spot welding device 1 (hereinafter simply referred to as a welding device 1) according to an embodiment.
  • FIG. 2 is a side view of the tool 11.
  • FIG. 3 is a functional block diagram of the joining apparatus 1 of FIG.
  • the component W spot-joined to the joining apparatus 1 is provided with the 1st board
  • the joining device 1 continuously spot-joins the stacked plate members W1 and W2 by friction stir spot joining at a plurality of joining positions.
  • the joining device 1 includes a joining unit 2, an articulated robot 3, and a control device 4.
  • the joining unit 2 includes a frame part 5, a unit body part 6, a backing part 7, and a load detection part 8.
  • the frame portion 5 has a C-shaped or inverted C-shaped appearance in a side view, supports the unit main body portion 6 and the backing portion 7, and is supported by the articulated robot 3.
  • the external shape of the frame part 5 in side view is not limited, For example, I shape may be sufficient.
  • the unit main body 6 includes a rotary shaft 9, a friction stir spot welding tool 11 (hereinafter simply referred to as a tool 11), a tool moving (elevating / lowering) motor M1, a tool rotating motor M2, and a joining unit controller. 12 and a moving mechanism 13.
  • the rotating shaft portion 9 extends from the housing of the unit main body portion 6 toward the backing portion 7 and is provided so as to be able to approach or separate from the backing portion 7 by the moving mechanism 13.
  • a holder is provided at one axial end located distal to the moving mechanism 13 of the rotary shaft portion 9 to hold the tool 11 detachably.
  • the tool 11 is provided on the surface of the second plate W2 opposite to the first plate W1 so as to be in contact with or separated from the first plate W1.
  • the tool 11 has a tool body 11a and a protrusion 11b.
  • the protruding portion 11b is formed in a pin shape that protrudes from the tool main body portion 11a toward the backing portion 7.
  • the joining apparatus 1 includes a tool moving motor M1 as a driving unit that drives the moving mechanism 13 so that the tool 11 approaches or separates from the backing unit 7, and the tool 11 is driven to rotate about its axis.
  • a tool rotating motor M2 is provided as a driving unit.
  • the tool moving motor M1 and the tool rotating motor M2 are built in the housing of the unit main body 6 together with the moving mechanism 13.
  • the moving mechanism 13 is driven, and the rotating shaft portion 9 and the tool 11 are moved in the axial direction of the rotating shaft portion 9 so as to approach or separate from the backing portion 7.
  • the rotating motor M ⁇ b> 2 is driven, the rotating shaft portion 9 and the tool 11 are driven to rotate around the axis of the rotating shaft portion 9.
  • Each drive of the tool moving motor M1 and the tool rotating motor M2 is controlled by the control device 4.
  • the backing portion 7 is disposed so as to face the front end portion 11b1 of the tool 11 with the plate materials W1, W2 interposed therebetween, and has a cylindrical appearance extending from the frame portion 5 toward the unit main body portion 6 as an example.
  • the first plate material W1 is supported from below.
  • the tip portion 7a at one end in the axial direction of the backing portion 7 is in contact with the surface of the first plate material W1 opposite to the second plate material W2.
  • the external appearance shape of the backing part 7 is not limited, For example, a rectangular parallelepiped shape may be sufficient.
  • the load detection unit 8 is built in the backing unit 7.
  • the load detection part 8 is a load sensor as an example, and here is a load cell.
  • the load detection unit 8 detects the applied pressure of the tool 11 received through the plate materials W1 and W2.
  • the output signal of the load detection unit 8 is transmitted to the breakage detection unit 26 of the control device 4 (see FIG. 3).
  • the articulated robot 3 has a robot motor M3 and moves the joining unit 2 to a predetermined position.
  • the driving of the robot motor M3 is controlled by the control device 4.
  • the robot motor M3 may include a plurality of motors.
  • the joining apparatus 1 includes a moving mechanism 13, a tool moving motor M1, and a robot motor M3 as a position adjusting unit 20 that adjusts the relative position between the tool 11 and the second plate material W2.
  • the control device 4 is a computer including a CPU, a ROM, a RAM, and the like, and controls each operation of the joining unit 2 and the articulated robot 3.
  • the control device 4 includes a display unit 21, an input unit 22, a control unit 25, and a breakage detection unit 26.
  • the display unit 21 is a liquid crystal display as an example, and displays predetermined information to the operator.
  • the input unit 22 receives information input by the operator.
  • a predetermined control program is stored in the ROM, and the RAM is configured to be able to store setting information input via the input unit 22.
  • the setting information includes, for example, information on each plate thickness value of the plate materials W1 and W2 and information on each joining position.
  • the control unit 25 controls each of the motors M1 to M3 based on the control program.
  • the breakage detection unit 26 receives the output signal of the load detection unit 8 and controls the control unit 25 based on the control program.
  • the breakage detection unit 26 detects a breakage of the tool 11 (here, a breakage in which the protruding dimension of the protruding portion 11b is shortened).
  • the joining apparatus 1 includes the breakage detection unit 26 that detects breakage of the tool 11.
  • the breakage detection unit 26 is in a period from when the tip of the tool 11 (tip portion 11b1) comes into contact with the second plate member W2 until the tip of the tool 11 is disposed at a predetermined pushing position. Is configured to detect breakage of the tool 11 on the basis of the change amount ⁇ p of the pressurizing force that pressurizes the second plate member W2.
  • FIG. 4 is an operation flowchart of the bonding apparatus 1 of FIG.
  • a determination step S ⁇ b> 3 for determining breakage of the tool 11 is performed, and friction stirring is performed according to the determination result.
  • a point joining step (hereinafter referred to as a joining step) S4 or a notification step S7 is performed.
  • the breaking step S4 and the completion determination step S5 are sequentially performed.
  • the tool moving step S6 is performed.
  • FIG. 5 (a) to 5 (d) are cross-sectional views for explaining the respective steps of friction stir spot welding using the joining apparatus 1 of FIG.
  • FIG. 6 is a cross-sectional view of the broken tool 11.
  • FIG. 7 is a graph showing a change in the position of the tip 11b1 of the tool 11 and a change in the pressure value of the tool 11 detected by the load detection unit 8 in the joining apparatus 1 of FIG.
  • the change in the position of the tip 11b1 at the first joining position is indicated by a curve L1
  • the change in the pressurization value of the tool 11 detected by the load detection unit 8 at the first joining position is indicated by a curve L2. Yes.
  • the operation time of the tool 11 at the first joining position is an approach movement section (between time t0 and t1) in which the tool 11 is moved to the second plate W2 side in time series, Detection section for detecting breakage of the tool 11 (between times t1 and t3), joining section for joining the plate materials W1, W2 with the tool 11 by friction stir spot welding (between times t3 and t4), and friction stir spot welding It is divided into separation movement sections (between times t4 and t6) for separating the tool 11 from the plate materials W1 and W2.
  • the detection section includes a measurement section for measuring the applied pressure of the tool 11 (between time t1 and t2), and a determination section for determining whether the tool 11 is broken (between time t2 and t3). It is further divided into
  • the operator inputs the setting information to the joining apparatus 1 through the input unit 22 and holds the plate materials W1 and W2 on a predetermined jig in a state of being overlapped.
  • the breakage detection unit 26 causes the control unit 25 to control the position adjustment unit 20 so that the bonding unit 2 is moved to the first bonding position.
  • the control unit 25 includes the tool 11 on the second plate material W2 side and the backing portion 7 on the first plate material W1 side, and the first plate material W1 is supported by the tip portion 7a of the backing portion 7.
  • the position adjusting unit 20 is controlled. Thereby, the joining apparatus 1 is aligned with respect to the plate materials W1 and W2, and the alignment step S1 is performed.
  • the breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the tool 11 is rotationally driven in the proximity movement section, and the tool 11 is the second one.
  • the control unit 25 controls the position adjusting unit 20 to move the plate member W2 by the movement amount ⁇ h1.
  • the tip 11b1 is moved from the reference (zeroing) position h0 to the first position h1, and the second plate W2 is opposite to the surface opposite to the first plate W1.
  • Contact FIG. 5A).
  • the breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the tool 11 is continuously driven to rotate in the measurement section. Further, the breakage detection unit 26 causes the control unit 25 to control the position adjustment unit 20 so that the tip end portion 11b1 is moved toward the second plate material W2 by the movement amount ⁇ h2. At this time, the distal end portion 11b1 is moved from the first position h1 toward the second position h2 toward the second plate material W2 rather than the first position h1, and the protruding portion 11b is slightly pushed into the second plate material W2 (FIG. 5). (B)).
  • the breakage detection unit 26 controls the control unit 25 so that the tool 11 is in contact with the second plate material W2 or is disposed at a predetermined pushing position.
  • the value of the pushing amount of the protruding portion 11b in the thickness direction of the second plate material W2 can be set as appropriate, but as an example, a value in the range of 0.1 mm to 0.5 mm is desirable. A value in the range of 2 mm to 0.4 mm is more desirable.
  • the value of the pushing amount of the protruding portion 11b in the thickness direction of the second plate material W2 is set to 0.3 mm.
  • the protrusion 11b When the tool 11 is not broken, the protrusion 11b is pushed into the second plate material W2 when the tip portion 11b1 is moved by the movement amount ⁇ h2 toward the second plate material W2, so that the pressing force of the tool 11 is increased.
  • the load is transmitted to the load detection unit 8 via the plate materials W1 and W2, and the load detection unit 8 outputs the applied pressure of the tool 11 as an output signal in time series.
  • the breakage detection unit 26 measures the pressurization value of the tool 11 against the plate materials W1 and W2 based on the output signal of the load detection unit 8, and the leading end portion 11b1 faces the second plate material W2. Then, the change amount ⁇ p of the applied pressure before and after being moved by the movement amount ⁇ h2 is calculated. Thereby, measurement process S2 is performed.
  • the breakage detection unit 26 has the control unit 25 to control the position adjustment unit 20 so that the tool 11 moves toward the second plate at the first joining position.
  • the tool 11 is broken by determining whether or not predetermined physical information is obtained by controlling the control unit 25 so as to be arranged at the contact position with the second plate member W2 or the predetermined pushing position. It is determined whether or not an error has occurred.
  • the breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the tool 11 is continuously rotated, and the position of the tip end portion 11b1 is maintained at the second position h2.
  • the position adjustment unit 20 is controlled by the control unit 25.
  • the breakage detection unit 26 compares the change amount ⁇ p of the applied pressure with a predetermined threshold value ⁇ p0, and determines whether or not the change amount ⁇ p of the applied pressure equal to or greater than the threshold value ⁇ p0 is obtained as the physical information. By determining, it is determined whether or not the tool 11 is broken.
  • the breakage detection unit 26 determines that the tool 11 is not broken when it is determined that the change amount ⁇ p of the pressing force equal to or greater than the threshold value ⁇ p0 is obtained, and otherwise determines that the tool 11 is broken. Thereby, determination process S3 is performed.
  • the breakage detection unit 26 is configured to detect breakage of the tool 11 by obtaining the physical information.
  • the plate materials W1 and W2 are frictionally stirred at the next joining position. Before spot joining, breakage of the tool 11 is detected.
  • the time of a detection area can be set suitably, in order to shorten a series of work time concerning the friction stir spot welding in a some joining position, it is desirable that it is sufficiently short compared with the time of a joining area.
  • the time of the detection interval is preferably in the range of 0.05 seconds to 1 second, more preferably in the range of 0.1 seconds to 0.5 seconds, and 0.15 More desirably, the time is in the range of not less than seconds and not more than 0.3 seconds.
  • the detection section time is set to 0.2 seconds.
  • the breakage detection unit 26 determines that the physical information has not been obtained (the breakage of the tool 11 has occurred), the first joining position among the plurality of joining positions of the plate members W1 and W2. And the control part 25 is made to control at least one of the tool rotation motor M2 and the position adjustment part 20 so that the friction stir spot joining using the tool 11 in the remaining joining positions may be stopped.
  • the breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the rotation drive of the tool 11 is stopped, and the position of the tip 11b1 of the protrusion 11b is at least from the second position h2.
  • the control unit 25 controls the position adjustment unit 20 to return to the reference position h0.
  • the breakage detection unit 26 displays on the display unit 21 that the friction stir spot welding has been stopped, and notifies the operator. Thereby, notification process S7 is performed.
  • the breakage detection unit 26 may notify the operator that the friction stir spot welding has been stopped by issuing a warning sound without using the display unit 21.
  • the breakage detection unit 26 determines that the physical information has been obtained (no breakage of the tool 11 has occurred)
  • the breakage detection unit 26 is brought into contact with the second plate material W2 at the 1 joining position.
  • the control unit 25 controls the tool rotation motor M2 and the position adjustment unit 20 so that the tool 11 is pushed forward to the second plate member and the plate members W1 and W2 are joined to the friction stir point.
  • the breakage detection unit 26 controls the tool 11 at the first joining position with the control unit 25 controlling the tool rotation motor M2 so that the tool 11 is continuously driven to rotate.
  • the position adjustment unit 20 is controlled by the control unit 25 so that the tool 11 is pushed forward to the second plate material W2 while being in contact with the second plate material W2 (see FIG. 7). At this time, the controller 25 moves the tip 11b1 from the second position h2 to the third position h3 toward the second plate W2 from the second position h2, and the protrusion 11b is further pushed into the second plate W2.
  • the position adjustment unit 20 is controlled so as to be That is, as shown by a curve L2 in FIG. 7, the plate members W1, W2 are pressed at a pressure value larger than the maximum pressure value when the plate materials W1, W2 are pressed by the tool 11 in the measurement section. As described above, the control unit 25 controls the position adjustment unit 20.
  • the rotationally driven tool 11 is pushed forward to the second plate material W2, and the protrusion 11b is pushed into the plate materials W1 and W2, whereby the plate materials W1 and W2 are subjected to friction stir spot bonding at the joint position (FIG. 5). (D)). Thereby, joining process S4 is performed.
  • the breakage detection unit 26 controls the control unit 25 to control the tool rotation motor M2 so that the tool 11 is continuously driven in the separation movement section, and from time t4 to time t5.
  • the position of the tip portion 11b1 is returned from the third position h3 to the first position h1, the tool 11 is pulled out from the plate materials W1 and W2, and the position of the tip portion 11b1 is the first position between time t5 and t6.
  • the control unit 25 controls the position adjusting unit 20 to return from h1 to the reference position h0.
  • the rotation speed of the tool 11 in each of the steps S2 to S4 is set to the same value, but the rotation speed of the tool 11 in the measurement process S2 and the determination process S3 and the rotation speed of the tool 11 in the joining process S4. They may be different from each other. For example, you may set so that the rotation speed of the tool 11 in joining process S4 may become larger than the rotation speed of the tool 11 in measurement process S2 and determination process S3.
  • the breakage detection unit 26 performs a completion determination step S5 for determining whether or not the bonding step S4 has been completed at all bonding positions after the bonding step S4 is completed.
  • the breakage detection unit 26 is positioned in the control unit 25 so that the tool 11 is moved to the next joining position.
  • the adjustment unit 20 is controlled.
  • the breakage detection unit 26 determines that the joining step S4 of the plate materials W1 and W2 at all joining positions is completed in the completion determination step S5, the operation flow ends.
  • the joining apparatus 1 since it is determined whether or not the tool 11 is broken at one joining position, for example, the tool 11 is moved to a predetermined position, and the test piece is pressurized with the tool 11. After determining whether or not the tool 11 is broken, the tool 11 may not be moved to the joining position of the plate materials W1 and W2.
  • breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the breakage detection unit 26 detects breakage of the tool 11 in a state where the tool 11 is rotationally driven. If no breakage is detected, the plate members W1, W2 can be quickly friction stir spot joined at each joining position.
  • the breakage detection unit 26 detects breakage of the tool 11 before joining the friction stir spot at one joining position, when the breakage of the tool 11 is detected, the breakage detection unit 26 breaks at the one joining position.
  • the tool 11 can prevent the plate materials W1 and W2 from being damaged.
  • the tool when the tool breaks, the tool is relatively often broken so that the protruding portion of the tool remains inside the plate when the tool is pulled out from the plate.
  • the joining device the tool is pulled out from the plate material immediately after the friction stir spot joining at one joining position, so that the tool breakage causes the torque and tool position due to the turning axis current of the tool rotating motor to change.
  • it is difficult to detect such a change, and it may not be possible to detect breakage of the tool.
  • the joining operation is performed at the next joining position while the tool is broken, there is a risk of damaging the joining device and the plate material.
  • the method of detecting the breakage generated in the tool after the friction stir spot welding at the preceding joining position occurs before the friction stir spot joining at the next joining position occurs in the joining device or the plate material. It is very effective in preventing damage.
  • the breakage detection unit 26 performs the determination, the setting of the zero point position in the output signal of the load detection unit 8 is deviated, or the positions of the plate materials W1 and W2 with respect to the backing unit 7 are deviated. It is conceivable that the output signal of the load detector 8 is output regardless of the applied pressure. On the other hand, since the change amount ⁇ p of the pressing force is used as the physical information used for the determination of the breakage detection unit 26 in the bonding apparatus 1, for example, the measured pressurization value of the tool 11 deviates from the actual value. Even if it is, the breakage detection part 26 can detect the breakage of the tool 11 satisfactorily. Therefore, the breakage detection unit 26 can improve the breakage detection accuracy of the tool 11 as compared with the case where the breakage of the tool 11 is detected by capturing a fixed value of the applied pressure.
  • the breakage detection unit 26 stagnates the leading end portion 11b1 of the protruding portion 11b of the tool 11 at a predetermined position (second position h2), so that the protruding portion 11b is in contact with the second plate material W2. Since it is determined whether or not the tool 11 is broken by determining whether or not the change amount ⁇ p of the pressing force is obtained based on the presence or absence of contact, it is possible to prevent such erroneous determination from occurring.
  • the breakage detection portion 26 can calculate the amount of change ⁇ p in the applied pressure. Therefore, the breakage detection unit 26 can appropriately determine whether or not a breakage has occurred in the tool 11.
  • the breakage detection unit 26 calculates the change ⁇ p in the applied pressure from the output signal of the load detecting unit 8 that receives the applied pressure of the tool 11 from the surface of the first plate W1 opposite to the second plate W2. Since the calculated change amount ⁇ p of the applied pressure is compared with the threshold value ⁇ p0, it is possible to appropriately determine whether or not the change amount ⁇ p of the applied force that is equal to or greater than the threshold value ⁇ p0 is obtained. .
  • the breakage detection unit 26 rotates the tool moving motor M1 when the tip 11b1 is moved by the movement amount ⁇ h2 toward the second plate member W2 while the tool 11 is rotationally driven in the measurement step S2.
  • a current value necessary for rotating the shaft may be measured, and a change amount ⁇ T of the torque of the tool moving motor M1 may be calculated as a change amount of the pressing force of the tool 11.
  • the rotation resistance value at the second position h2 of the tool rotation motor M2 when the tool 11 is broken is equal to the rotation resistance value at the second position h2 of the tool rotation motor M2 when the tool 11 is not broken. It is considered to be smaller than the value. Therefore, the breakage detection unit 26 rotates the tool rotation motor M2 when the tip 11b1 is moved toward the second plate member W2 by the movement amount ⁇ h2 in the measurement step S2 while the tool 11 is rotationally driven.
  • the torque change amount ⁇ T is calculated by measuring a current value necessary for rotating the shaft, and in the determination step S3, the torque change amount ⁇ T is compared with a predetermined threshold value ⁇ T0, and the threshold value ⁇ T0 or more is compared. If it is determined that the torque change amount ⁇ T is obtained, it can be determined that the tool 11 is not broken, and if not, it can be determined that the tool 11 is broken.
  • the load detection unit 8 is not limited to a load sensor, and may be a strain gauge.
  • a strain gauge can be attached to the outside or the inside of the frame portion 5 so that the strain generated in the frame portion 5 is detected when the plate members W1 and W2 are pressed by the tool 11.
  • the breakage detector 26 can calculate the change ⁇ p in the applied pressure from the output signal output from the strain gauge.
  • the breakage detection unit 26 is measured by the output signal of the load detection unit 8 while the tip end part 11b1 is moved toward the second plate member W2 at least one of the movement amount ⁇ h1 and the movement amount ⁇ h2 in the measurement step S2.
  • the maximum pressurization value F max of the tool 11 may be compared with a predetermined threshold value ⁇ F0 in the determination step S3.
  • breakage detecting unit 26 determines that the broken tool 11 does not occur when it is determined that the threshold ⁇ F0 or more of the maximum pressurization value F max is obtained, otherwise It can be determined that the tool 11 is broken.
  • FIG. 8 is a partial side view of the joining apparatus 101 according to the modification.
  • FIG. 9 is a graph showing a change in the position of the tip 11b1 of the tool 11 and a change in the current value detected by the breakage detection unit 26 in the joining apparatus 101 of FIG.
  • a change in the position of the tip end portion 11b1 is indicated by a curve L3
  • a change in the current value detected by the breakage detection unit 26 is indicated by a curve L4.
  • the breakage detection unit 26 is configured to detect breakage of the tool 11 based on energization at the time of contact between the tip end (tip portion 11b1) of the tool 11 and the second plate member W2. .
  • the breakage detection unit 26 is configured to detect breakage of the tool 11 by obtaining, as the physical information, energization at the time of contact between the tip of the tool 11 and the second plate material W2.
  • the operation time of the tool 11 at the first joining position is, in time series, the approaching movement section from time t0 to t1, the detection section from time t1 to t2, and the time t2 to t3. And a separation movement section between times t3 and t5.
  • the tool 11 and the backing portion 7 are both conductive. As shown in FIG. 8, the tool 11 and the backing part 7 are both connected to a power source 30.
  • the power source 30 is an AC power source as an example, but may be a DC power source.
  • the breakage detection unit 26 monitors the energization or non-energization state between the tool 11 and the backing unit 7 via the plate materials W1 and W2.
  • the breakage detection unit 26 also functions as a current detection device that detects a current flowing between the tool 11 and the backing unit 7 via the plate materials W1 and W2.
  • the breakage detection unit 26 causes the control unit 25 to control the tool rotation motor M2 so that the tool 11 is rotationally driven in the movement section, and the tip end portion 11b1 is the second one.
  • the control unit 25 controls the position adjusting unit 20 to move the plate member W2 by the movement amount ⁇ h1.
  • the tip portion 11b1 is moved from the reference position h0 to the first position h1, and when the tool 11 is not broken, the tip portion 11b1 contacts the surface of the second plate material W2 opposite to the first plate material W1. .
  • the breakage detection unit 26 measures the value i of the current flowing between the tool 11 and the backing unit 7 via the plate materials W1 and W2. Thereby, measurement process S2 is performed. Further, in the detection section, the breakage detection unit 26 determines whether or not the tool 11 has been broken by determining whether or not the current value i measured in the measurement step S2 is a predetermined current value i0. To do. Thereby, determination process S3 is performed. The breakage detection unit 26 determines that the tool 11 is not broken when it is determined that the current value i is a predetermined current value i0, and otherwise determines that the tool 11 is broken. To do. The current value i0 can be set as appropriate.
  • the current value i0 is sufficiently larger than the current value i flowing between the tool 11 and the backing portion 7 via the plate materials W1 and W2. It is desirable that the value be small.
  • the current value i0 is set to 0 mA.
  • the joining device 101 can detect the breakage of the tool 11 simply by bringing the tool 11 into contact with the second plate material W2, so that it is possible to satisfactorily prevent the second plate material W2 from being pressed and damaged by the broken tool 11. it can.
  • the present invention is not limited to the above-described embodiments and modifications, and the configuration or method thereof can be changed, added, or deleted without departing from the spirit of the present invention.
  • the structure manufactured by friction stir spot welding may be a part or body other than the automobile door part, or a structure other than the automobile (for example, an aircraft part or body).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

摩擦撹拌点接合装置は、重ねられた第1板材(W1)と第2板材(W2)のうち、第2板材の前記第1板材とは反対側の面に接触又は離隔可能なツール(11)と、ツールをその軸周り方向に回転駆動させる駆動部と、ツールと第2板材との間の相対位置を調整する位置調整部と、駆動部及び位置調整部を制御する制御部と、1の接合位置で、ツールが第2板材との接触位置又は所定の押し込み位置に配置されるように制御部を制御することでツールの折損を検知する折損検知部とを備えている。

Description

摩擦撹拌点接合装置及び摩擦撹拌点接合方法
 本発明は、摩擦撹拌点接合装置及び摩擦撹拌点接合方法に関する。
 従来、一対の板材を互いに接合する方法として、摩擦撹拌点接合法(Friction Spot Joining)が知られている。この方法で一対の板材を接合する場合には、例えば特許文献1に開示されるように、重ね合わされた一対の板材に摩擦撹拌点接合装置のツールを回転させながら押し込み、接合完了後に引き抜く。これにより、一対の板材は、摩擦撹拌点接合される。一対の板材を複数の接合位置で連続して摩擦撹拌点接合する場合には、1の接合位置でツールを一対の板材に押し込んで一対の板材を摩擦撹拌点接合する動作と、摩擦撹拌点接合した後にツールを一対の板材から引き抜いて別の接合位置まで移動させる動作とを含むシークエンスを連続して行う。
特許第3471338号公報
 前記シークエンスを連続して行ううち、1の接合位置で一対の板材を摩擦撹拌点接合してからツールを引き抜くとき等に、ツールに折損が生じる場合がある。先行する接合位置で一対の板材を摩擦撹拌点接合した後に生じたツールの折損を、次の接合位置で摩擦撹拌点接合する前に検知できなければ、折損したツールにより、一対の板材の接合不良や損傷を生じうるという問題がある。また、ツールが折損することで生じるツールのブレや急激なトルクの増加によって摩擦撹拌点接合装置が損傷しうるという問題がある。
 そこで本発明は、複数の接合位置で一対の板材を連続して摩擦撹拌点接合する場合において、先行する接合位置で一対の板材を摩擦撹拌点接合した後に生じたツールの折損を、次の接合位置で摩擦撹拌点接合する前に検知することで、一対の板材の接合不良や損傷、及び、摩擦撹拌点接合装置の損傷を防止することを目的とする。
 上記課題を解決するために、本発明の一態様に係る摩擦撹拌点接合装置は、重ねられた第1板材と第2板材とを複数の接合位置で連続して摩擦撹拌点接合する摩擦撹拌点接合装置であって、前記第2板材の前記第1板材とは反対側の面に接触又は離隔可能なツールと、前記ツールをその軸周りに回転駆動させる駆動部と、前記ツールと前記第2板材との間の相対位置を調整する位置調整部と、前記駆動部及び前記位置調整部を制御する制御部と、前記複数の接合位置のうちの1の接合位置で、前記ツールが前記第2板材との接触位置又は所定の押し込み位置に配置されるように前記制御部を制御することで前記ツールの折損を検知する折損検知部とを備えている。
 上記構成によれば、1の接合位置で、ツールが第2板材と接触され又は所定の押し込み位置に配置されるように折損検知部が制御部を制御することにより、折損検知部がツールの折損を検知するので、1の接合位置で摩擦撹拌点接合する前に、ツールに生じた折損を検知できる。従って、複数の接合位置で第1板材と第2板材とを連続して摩擦撹拌点接合する場合において、先行する接合位置で摩擦撹拌点接合した後にツールに生じた折損を、次の接合位置で摩擦撹拌点接合する前に検知できる。
 前記折損検知部は、前記ツールの先端と前記第2板材とが接触してから前記ツールの先端が前記所定の押し込み位置に配置されるまでの間に前記ツールが前記第2板材を加圧する加圧力の変化量に基づいて前記ツールの折損の検知が行われるよう構成されていてもよい。
 このように、折損検知部が加圧力の変化量を捉えてツールの折損を検知することにより、ツールの加圧値が実際の値とずれていても、ツールの折損を良好に検知できる。従って、例えば、加圧力の固定値を捉えてツールの折損を検知する場合に比べ、折損検知部によるツールの折損の検知精度の向上を図れる。
 前記第1板材の前記第2板材とは反対側の前記面から前記加圧力を受ける荷重検出部を更に備え、前記折損検知部は、前記加圧力を受けて出力される前記荷重検出部の出力信号により前記加圧力の前記変化量を算出し、当該算出した前記加圧力の前記変化量を予め定められた閾値と比較して、予め定められた変化量が得られたか否かを判定することにより、前記ツールの折損を検知してもよい。
 これにより、折損検知部は、ツールで第1板材と第2板材とが加圧されるときの加圧力を受けて出力される荷重検出部の出力信号により加圧力の変化量を適切に算出し、当該算出した加圧力の変化量を予め定められた閾値と比較して予め定められた変化量が得られたか否かを判定できるので、ツールの折損を良好に検知できる。
 前記折損検知部は、前記ツールの先端と前記第2板材との接触時の通電に基づいて前記ツールの折損の検知が行われるよう構成されていてもよい。
 これにより、ツールを第2板材に接触させるだけでツールの折損を検知できるので、折損したツールで第2板材が加圧されて損傷するのを良好に防止できる。
 前記折損検知部により前記ツールの折損が検知されなかった場合、前記制御部は、前記1の接合位置で前記ツールを前記第2板材に押し進めて前記第1板材と前記第2板材とを摩擦撹拌点接合するように前記駆動部及び前記位置調整部を制御し、前記折損検知部により前記ツールの折損が検知された場合、前記制御部は、前記複数の接合位置のうち前記1の接合位置及び残余の接合位置における前記ツールを用いた摩擦撹拌点接合を中止するように、前記駆動部及び前記位置調整部の少なくとも一方を制御してもよい。
 これにより、ツールの折損の検知を1の接合位置で行えるので、ツールの折損が検知されなかった場合には、1の接合位置で第1板材と第2板材とを迅速に摩擦撹拌点接合できる。
 前記制御部は、前記ツールが回転駆動された状態で前記折損検知部による前記ツールの折損の検知が行われるように前記駆動部を制御してもよい。
 これにより、各接合位置において、ツールの折損が検知されなかった場合には、第1板材と第2板材とを迅速に摩擦撹拌点接合できる。
 前記折損検知部は、前記1の接合位置における摩擦撹拌点接合前に、前記ツールの折損の検知を行ってもよい。
 これにより、ツールの折損が検知された場合には、1の接合位置において、折損したツールで第1板材と第2板材とが損傷するのを防止できる。
 本発明の一態様に係る摩擦撹拌点接合方法は、重ねられた第1板材と第2板材とを、摩擦撹拌点接合装置を用いて、複数の接合位置で連続して摩擦撹拌点接合する方法であって、前記摩擦撹拌点接合装置は、前記第2板材の前記第1板材とは反対の面に接触又は離隔可能なツールを備え、前記複数の接合位置のうちの1の接合位置で、前記ツールを前記第2板材と接触させ又は所定の押し込み位置に配置した状態において、前記ツールの折損を検知する。
 この方法では、前記1の接合位置における摩擦撹拌点接合前に、前記ツールの折損を検知してもよい。
 本発明によれば、複数の接合位置で一対の板材を連続して摩擦撹拌点接合する場合において、先行する接合位置で一対の板材を摩擦撹拌点接合した後に生じたツールの折損を、次の接合位置で摩擦撹拌点接合する前に検知することで、一対の板材の接合不良や損傷、及び、摩擦撹拌点接合装置の損傷を防止できる。
実施形態に係る摩擦撹拌点接合装置の側面図である。 ツールの側面図である。 図1の摩擦撹拌点接合装置の機能ブロック図である。 図1の摩擦撹拌点接合装置の動作フローチャートである。 (a)~(d)は図1の摩擦撹拌点接合装置を用いた摩擦撹拌点接合の各工程を説明する断面図である。 折損したツールの断面図である。 図1の摩擦撹拌点接合装置におけるツールの先端部の位置の変化と、荷重検出部が検出するツールの加圧値の変化とを示すグラフである。 変形例に係る摩擦撹拌点接合装置の部分側面図である。 図8の摩擦撹拌点接合装置におけるツールの先端部の位置の変化と、折損検知部が検出する電流値の変化とを示すグラフである。
 (実施形態)
 以下、図面を参照して実施形態を説明する。
 図1は、実施形態に係る摩擦撹拌点接合装置1(以下、単に接合装置1と称する。)の側面図である。図2は、ツール11の側面図である。図3は、図1の接合装置1の機能ブロック図である。図1に示すように、接合装置1に点接合される部品Wは、第1板材W1と、第1板材W1に外側から重ねられる第2板材W2とを備えている。接合装置1は、重ねられた板材W1,W2を、複数の接合位置で摩擦撹拌点接合により連続して点接合する。接合装置1は、接合ユニット2、多関節ロボット3、及び制御装置4を備えている。
 前記接合ユニット2は、フレーム部5、ユニット本体部6、裏当部7、及び、荷重検出部8を有する。フレーム部5は、側面視においてC字状又は逆C字状の外観形状を有し、ユニット本体部6と裏当部7とを支持すると共に、多関節ロボット3に支持されている。なお、側面視におけるフレーム部5の外観形状は限定されず、例えば、I字状でもよい。
 前記ユニット本体部6は、回転軸部9、摩擦撹拌点接合用ツール11(以下、単にツール11と称する。)、ツール移動用(昇降用)モータM1、ツール回転用モータM2、接合ユニット制御部12、及び移動機構13を有する。回転軸部9は、ユニット本体部6の筐体から裏当部7に向けて延びると共に、移動機構13により裏当部7に接近又は離隔可能に設けられている。回転軸部9の移動機構13から遠位に位置する軸方向一端には、ホルダが設けられ、ツール11を着脱可能に保持している。
 図2に示すように、ツール11は、第2板材W2の第1板材W1とは反対側の面に接触又は離隔可能に設けられている。ツール11は、ツール本体部11a及び突出部11bを有する。突出部11bは、ツール本体部11aから裏当部7に向けて突出するピン状に形成されている。
 前記接合装置1は、ツール11を裏当部7に近接又は離間するように移動機構13を駆動させる駆動部として、ツール移動用モータM1を備えていると共に、ツール11をその軸周りに回転駆動させる駆動部として、ツール回転用モータM2を備えている。前記ツール移動用モータM1と前記ツール回転用モータM2とは、移動機構13と共にユニット本体部6の筐体に内蔵されている。前記ツール移動用モータM1が駆動されると移動機構13が駆動され、回転軸部9の軸方向に、回転軸部9及びツール11が、裏当部7に接近又は離隔するように移動される。また、前記ツール回転用モータM2が駆動されると、回転軸部9及びツール11が、回転軸部9の軸周りに回転駆動される。前記ツール移動用モータM1と前記ツール回転用モータM2との各駆動は、前記制御装置4に制御される。
 前記裏当部7は、板材W1,W2を挟んでツール11の先端部11b1と向き合うように配置され、一例としてフレーム部5からユニット本体部6に向かって延びる円筒状の外観形状を有し、第1板材W1を下方から支持する。裏当部7の軸方向一端の先端部7aは、第1板材W1の第2板材W2とは反対側の面に接触する。なお、裏当部7の外観形状は限定されず、例えば、直方体状でもよい。
 前記荷重検出部8は、裏当部7に内蔵されている。荷重検出部8は、一例として荷重センサであり、ここではロードセルである。荷重検出部8は、板材W1,W2を介して受けるツール11の加圧力を検出する。荷重検出部8の出力信号は、前記制御装置4の折損検知部26に送信される(図3参照)。
 前記多関節ロボット3は、ロボット用モータM3を有し、接合ユニット2を所定位置に移動させる。前記ロボット用モータM3の駆動は、制御装置4に制御される。前記ロボット用モータM3は、複数のモータを含んでいてもよい。接合装置1は、ツール11と第2板材W2との相対位置を調整する位置調整部20として、移動機構13、ツール移動用モータM1、及びロボット用モータM3を備えている。
 図1及び3に示すように、前記制御装置4は、CPU、ROM、及びRAM等を備えたコンピュータであり、接合ユニット2と多関節ロボット3との各動作を制御する。制御装置4は、表示部21、入力部22、制御部25、及び折損検知部26を有している。表示部21は、一例として液晶ディスプレイであり、オペレータに所定の情報を表示する。入力部22は、オペレータが入力する情報を受け付ける。前記ROMには、所定の制御プログラムが格納され、前記RAMは、入力部22を介して入力される設定情報を記憶可能に構成されている。前記設定情報には、例えば、板材W1,W2の各板厚値の情報と、各接合位置の情報とが含まれる。
 制御部25は、前記制御プログラムに基づいて、各モータM1~M3を制御する。折損検知部26は、前記制御プログラムに基づいて、荷重検出部8の出力信号を受信し、制御部25を制御する。折損検知部26は、ツール11の折損(ここでは、突出部11bの突出寸法が短縮されるような折損)を検知する。このように接合装置1は、ツール11の折損を検知する折損検知部26を備えている。折損検知部26は、後述するように、ツール11の先端(先端部11b1)と第2板材W2とが接触してからツール11の先端が所定の押し込み位置に配置されるまでの間にツール11が第2板材W2を加圧する加圧力の変化量Δpに基づいて、ツール11の折損の検知を行うように構成されている。
 次に、接合装置1を用いて、重ねられた板材W1,W2を、複数の接合位置で連続して摩擦撹拌点接合する方法を例示する。この方法では、1の接合位置でツール11を回転させながら板材W1,W2に押し込んで、板材W1,W2を摩擦撹拌点接合する動作と、摩擦撹拌点接合した後にツール11を板材W1,W2から引き抜いて、別の接合位置まで移動させる動作とを含むシークエンスを連続して行う。これにより、複数の接合位置で、板材W1,W2を連続して摩擦撹拌点接合する。
 図4は、図1の接合装置1の動作フローチャートである。図4に示すように、接合装置1では、位置合わせ工程S1と測定工程S2とが順に行われた後、ツール11の折損を判定する判定工程S3が行われ、その判定結果に応じて摩擦撹拌点接合工程(以下、接合工程と称する。)S4又は報知工程S7が行われる。判定工程S3でツール11の折損が検知されなかった場合には、接合工程S4と完了判定工程S5とが順に行われ、残余の接合位置がある場合には、ツールの移動工程S6が行われる。
 図5の(a)~(d)は、図1の接合装置1を用いた摩擦撹拌点接合の各工程を説明する断面図である。図6は、折損したツール11の断面図である。図7は、図1の接合装置1におけるツール11の先端部11b1の位置の変化と、荷重検出部8が検出するツール11の加圧値の変化とを示すグラフである。図7では、前記1の接合位置における先端部11b1の位置の変化を曲線L1で示し、前記1の接合位置において荷重検出部8が検出するツール11の加圧値の変化を曲線L2で示している。
 図7に示すように、前記1の接合位置におけるツール11の動作時間は、時系列的に、ツール11を第2板材W2側に移動させる接近移動区間(時刻t0からt1までの間)と、ツール11の折損を検知する検知区間(時刻t1からt3までの間)と、ツール11で板材W1,W2を摩擦撹拌点接合する接合区間(時刻t3からt4までの間)と、摩擦撹拌点接合した板材W1,W2からツール11を離隔させる離隔移動区間(時刻t4からt6までの間)とに分けられる。また検知区間は、ツール11の加圧力を測定する測定区間(時刻t1からt2までの間)と、ツール11に折損が生じたか否かを判定する判定区間(時刻t2からt3までの間)とに更に分けられる。
 最初にオペレータは、入力部22を介して、前記設定情報を接合装置1に入力し、板材W1,W2を重ねた状態で所定の治具に保持させる。折損検知部26は、接合ユニット2が前記1の接合位置まで移動されるように、制御部25に位置調整部20を制御させる。このとき制御部25は、第2板材W2側にツール11、第1板材W1側に裏当部7がそれぞれ配置されると共に、裏当部7の先端部7aで第1板材W1が支持されるように、位置調整部20を制御する。これにより、接合装置1が板材W1,W2に対して位置合わせされ、位置合わせ工程S1が行われる。
 図7の曲線L1に示すように、折損検知部26は、近接移動区間において、ツール11が回転駆動されるように、制御部25にツール回転用モータM2を制御させると共に、ツール11が第2板材W2に向けて移動量Δh1で移動されるように、制御部25に位置調整部20を制御させる。このとき、ツール11に折損が生じていない場合には、先端部11b1は、基準(ゼロイング)位置h0から第1位置h1まで移動されて、第2板材W2の第1板材W1と反対の面と接触する(図5(a))。
 図7の曲線L1に示すように、折損検知部26は、測定区間において、ツール11が引き続き回転駆動されるように、制御部25にツール回転用モータM2を制御させる。また、折損検知部26は、先端部11b1が第2板材W2に向けて移動量Δh2で移動されるように、制御部25に位置調整部20を制御させる。このとき先端部11b1は、第1位置h1から第1位置h1よりも第2板材W2に向けて第2位置h2まで移動され、突出部11bが、第2板材W2に僅かに押し込まれる(図5(b))。これにより、折損検知部26は、ツール11が第2板材W2と接触され又は所定の押し込み位置に配置されるように、制御部25を制御する。このときの第2板材W2の板厚方向における突出部11bの押し込み量の値は、適宜設定が可能であるが、一例として、0.1mm以上0.5mm以下の範囲の値が望ましく、0.2mm以上0.4mm以下の範囲の値がより望ましい。ここでは第2板材W2の板厚方向における突出部11bの押し込み量の値は、0.3mmに設定されている。
 ツール11に折損が生じていない場合、先端部11b1が第2板材W2に向けて移動量Δh2で移動される際に突出部11bが第2板材W2に押し込まれることで、ツール11の加圧力が板材W1,W2を介して荷重検出部8に伝わり、荷重検出部8がツール11の加圧力を時系列的に出力信号として出力する。図7の曲線L2に示すように、折損検知部26は、荷重検出部8の出力信号により板材W1,W2に対するツール11の加圧値を測定して、先端部11b1が第2板材W2に向けて移動量Δh2で移動される前後の加圧力の変化量Δpを算出する。これにより測定工程S2が行われる。
 ここで図5(c)及び図6に示すように、先端部11b1が第2板材W2に向けて移動量Δh2で移動される際に、突出部11bが第2板材W2と接触しない程度にツール11に折損が生じている場合には、加圧力の変化量Δpはゼロである。また、先端部11b1が第2板材W2に向けて移動量Δh2で移動される際に、突出部11bが第2板材W2と接触可能な程度にツール11に折損が生じている場合、ツール11に折損が生じていない場合に比べて、板材W1,W2に対するツール11の加圧力が減少することにより、加圧力の変化量Δpは小さくなる。
 折損検知部26は、測定工程S2で、前記1の接合位置でツール11が第2板材に向けて移動するように制御部25に位置調整部20を制御させた状態において、突出部11bが、第2板材W2との接触位置又は所定の押し込み位置に配置されるように制御部25を制御することにより、予め定められた物理情報が得られたか否かを判定することで、ツール11に折損が生じたか否かを判定する。ここでは判定区間において、折損検知部26は、ツール11が引き続き回転駆動されるように、制御部25にツール回転用モータM2を制御させると共に、先端部11b1の位置が第2位置h2に維持されるように、制御部25に位置調整部20を制御させる。この状態で、折損検知部26は、加圧力の変化量Δpと予め定められた閾値Δp0とを比較し、前記物理情報として、閾値Δp0以上の加圧力の変化量Δpが得られたか否かを判定することにより、ツール11に折損が生じたか否かを判定する。折損検知部26は、閾値Δp0以上の加圧力の変化量Δpが得られたと判定した場合にツール11の折損が生じていないと判定し、そうでない場合にツール11の折損が生じたと判定する。これにより判定工程S3が行われる。このように折損検知部26は、前記物理情報を得ることにより、ツール11の折損を検知するように構成されている。
 従って、例えば、先行する接合位置で摩擦撹拌点接合を行った後、板材W1,W2からツール11を引き抜くタイミングでツール11に折損が生じても、次の接合位置で板材W1,W2を摩擦撹拌点接合する前に、ツール11の折損が検知される。
 また、検知区間の時間は、適宜設定が可能であるが、複数の接合位置での摩擦撹拌点接合に掛かる一連の作業時間を短縮するため、接合区間の時間に比べて十分に短いことが望ましい。一例として検知区間の時間は、0.05秒以上1秒以内の範囲の時間であることが望ましく、0.1秒以上0.5秒以内の範囲の時間であることがより望ましく、0.15秒以上0.3秒以下の範囲の時間であることが一層望ましい。ここでは検知区間の時間は、0.2秒に設定されている。
 判定工程S3で、折損検知部26は、前記物理情報が得られなかった(ツール11の折損が生じた)と判定した場合、板材W1,W2の複数の接合位置のうち、前記1の接合位置及び残余の接合位置におけるツール11を用いた摩擦撹拌点接合を中止するように、制御部25にツール回転用モータM2と位置調整部20の少なくとも一方を制御させる。ここでは折損検知部26は、ツール11の回転駆動が停止されるように、制御部25にツール回転用モータM2を制御させると共に、突出部11bの先端部11b1の位置が第2位置h2から少なくとも基準位置h0まで戻されるように、制御部25に位置調整部20を制御させる。また折損検知部26は、摩擦撹拌点接合を中止したことを表示部21に表示してオペレータへの報知を行う。これにより報知工程S7が行われる。なお、折損検知部26は、表示部21を用いずに、警告音を発して摩擦撹拌点接合を中止したことをオペレータに報知してもよい。
 判定工程S3で、折損検知部26は、前記物理情報が得られた(ツール11の折損が生じていない)と判定した場合、前記1の接合位置で突出部11bを第2板材W2に接触させた状態のまま、ツール11を第2板材に押し進めて板材W1,W2を摩擦撹拌点接合するように、制御部25にツール回転用モータM2及び位置調整部20を制御させる。具体的には接合区間において、折損検知部26は、ツール11が引き続き回転駆動されるように、制御部25にツール回転用モータM2を制御させた状態で、前記第1の接合位置でツール11を第2板材W2に接触させた状態のまま、ツール11が第2板材W2に押し進められるように、制御部25に位置調整部20を制御させる(図7参照)。このとき制御部25は、先端部11b1が、第2位置h2から第2位置h2よりも第2板材W2に向けて第3位置h3に移動され、突出部11bが、第2板材W2に更に押し込まれるように、位置調整部20を制御する。即ち、図7の曲線L2に示すように、測定区間でツール11により板材W1,W2が加圧されるときの最大加圧値よりも大きい加圧値で、板材W1,W2が加圧されるように、制御部25が位置調整部20を制御する。回転駆動されたツール11が第2板材W2に押し進められ、突出部11bが板材W1,W2に押し込まれることにより、前記1の接合位置で、板材W1,W2が摩擦撹拌点接合される(図5(d))。これにより接合工程S4が行われる。
 摩擦撹拌点接合後、折損検知部26は、離隔移動区間において、ツール11が引き続き回転駆動されるように制御部25にツール回転用モータM2を制御させた状態で、時刻t4からt5までの間に、先端部11b1の位置が第3位置h3から第1位置h1まで戻されてツール11が板材W1,W2から引き抜かれ、時刻t5からt6までの間に、先端部11b1の位置が第1位置h1から基準位置h0まで戻されるように、制御部25に位置調整部20を制御させる。なお、各工程S2~S4におけるツール11の回転数は、同一値に設定されているが、測定工程S2及び判定工程S3におけるツール11の回転数と、接合工程S4におけるツール11の回転数とを互いに異ならせてもよい。例えば、接合工程S4におけるツール11の回転数を、測定工程S2及び判定工程S3におけるツール11の回転数よりも大きくなるように設定してもよい。
 折損検知部26は、接合工程S4の完了後、全ての接合位置での接合工程S4が完了したか否かを判定する完了判定工程S5を行う。折損検知部26は、全ての接合位置での板材W1,W2の接合工程S4が未だ完了していないと判定した場合、次の接合位置にツール11が移動されるように、制御部25に位置調整部20を制御させる。完了判定工程S5で、全ての接合位置での板材W1,W2の接合工程S4が完了したと折損検知部26が判定すると、動作フローが終了する。
 このように接合装置1によれば、1の接合位置でツール11に折損が生じたか否かが判定されるので、例えばツール11を所定の位置まで移動させ、ツール11でテストピースを加圧してツール11に折損が生じたか否かを判定した後、板材W1,W2の接合位置までツール11を移動させなくてもよい。
 また、折損検知部26は、ツール11が回転駆動された状態で、折損検知部26によるツール11の折損の検知が行われるように制御部25にツール回転用モータM2を制御させるので、ツール11の折損が検知されなかった場合には、各接合位置において、板材W1,W2を迅速に摩擦撹拌点接合できる。
 また、折損検知部26は、1の接合位置における摩擦撹拌点接合前に、ツール11の折損の検知を行うので、ツール11の折損が検知された場合には、1の接合位置において、折損したツール11で板材W1,W2が損傷するのを防止できる。
 ここで従来の接合装置では、ツールが折損する場合、板材からツールが引き抜かれる際にツールの突出部が板材の内部に残留するように折損することが比較的多い。接合装置では、1の接合位置における摩擦撹拌点接合が行われた直後に板材からツールが引き抜かれるため、ツールが折損したことによりツール回転用モータの旋回軸電流によるトルクやツールの位置が変化しても、このような変化を検知し難く、ツールの折損を検知できない場合がある。従来は、このような場合でもツールが折損したまま次の接合位置で接合動作が行われていたため、接合装置や板材にダメージを与えるおそれがある。
 このため本実施形態のように、先行する接合位置で摩擦撹拌点接合した後にツールに生じた折損を、次の接合位置で摩擦撹拌点接合する前に検知する方法は、接合装置や板材に生じる損傷を防止する上で非常に有効である。
 また、折損検知部26が判定を行う前に、荷重検出部8の出力信号におけるゼロ点位置の設定がずれたり、裏当部7に対する板材W1,W2の位置がずれたりすることで、ツール11の加圧力とは無関係に荷重検出部8の出力信号が出力されることが考えられる。これに対して接合装置1では、折損検知部26の判定に用いられる前記物理情報として加圧力の変化量Δpが用いられるので、例えば、測定されたツール11の加圧値が実際の値とずれていても、折損検知部26によりツール11の折損を良好に検知できる。従って、加圧力の固定値を捉えてツール11の折損を検知する場合に比べ、折損検知部26によるツール11の折損の検知精度の向上を図れる。
 ここで、荷重検出部の出力信号により、所定の加圧値が測定されたときのツールの先端の位置を予め定められたツールの先端の標準位置と比較してツールの折損を検知する方法では、複数の接合位置間で、第1板材W1又は第2板材W2の硬さが変動することにより、誤判定が生じるおそれがある。これに対して接合装置1では、折損検知部26は、予め決められた位置(第2位置h2)にツール11の突出部11bの先端部11b1を停滞させ、突出部11bの第2板材W2に対する接触の有無によって加圧力の変化量Δpが得られたかどうかを判定することで、ツール11に折損が生じたか否かを判定するので、このような誤判定が生じるのを防止できる。
 また、第1板材W1が変形して、第1板材W1が裏当部7の先端部7aと離隔している場合でも、ツール11で板材W1,W2が加圧される際に、第1板材W1が裏当部7の先端部7aと接触するので、折損検知部26は、加圧力の変化量Δpを算出できる。よって折損検知部26は、ツール11に折損が生じたか否かを適切に判定できる。
 また、折損検知部26は、第1板材W1の第2板材W2とは反対側の面からツール11の加圧力を受ける荷重検出部8の出力信号により加圧力の変化量Δpを算出することで、当該算出した加圧力の変化量Δpを閾値Δp0と比較して、閾値Δp0以上の加圧力の変化量Δpが得られたか否かを適切に判定できるので、ツール11の折損を良好に検知できる。
 なお、折損検知部26は、測定工程S2において、ツール11が回転駆動された状態で、先端部11b1が第2板材W2に向けて移動量Δh2で移動される際のツール移動用モータM1の回転軸を回転させるために必要な電流値を測定し、ツール移動用モータM1のトルクの変化量ΔTをツール11の加圧力の変化量として算出してもよい。
 また、ツール11が折損を生じたときのツール回転用モータM2の第2位置h2における回転抵抗値は、ツール11が折損を生じていないときのツール回転用モータM2の第2位置h2における回転抵抗値よりも小さいものと考えられる。従って、折損検知部26は、測定工程S2において、ツール11が回転駆動された状態で先端部11b1が第2板材W2に向けて移動量Δh2で移動される際に、ツール回転用モータM2の回転軸を回転させるために必要な電流値を測定してトルクの変化量ΔTを算出し、判定工程S3において、トルクの変化量ΔTと、予め定められた閾値ΔT0とを比較し、閾値ΔT0以上のトルクの変化量ΔTが得られたと判定した場合にツール11に折損が生じていないと判定し、そうでない場合にツール11に折損を生じていると判定することもできる。
 また、荷重検出部8は荷重センサに限定されず、歪ゲージでもよい。この場合、ツール11で板材W1,W2が加圧されるときにフレーム部5に生じる歪が検出されるように、フレーム部5の外部又は内部に歪ゲージを取り付けることができる。折損検知部26は、この歪ゲージから出力される出力信号により、加圧力の変化量Δpを算出できる。
 また、折損検知部26は、測定工程S2において、先端部11b1が第2板材W2に向けて移動量Δh1及び移動量Δh2の少なくとも一方で移動される間に荷重検出部8の出力信号により測定されたツール11の最大加圧値Fmaxと、予め定められた閾値ΔF0とを、判定工程S3において比較してもよい。この場合、判定工程S3において、折損検知部26は、例えば、閾値ΔF0以上の最大加圧値Fmaxが得られたと判定した場合にツール11に折損が生じていないと判定し、そうでない場合にツール11に折損を生じていると判定することができる。
 (変形例)
 以下、変形例について、図面を参照して、実施形態との差異を中心に説明する。
 図8は、変形例に係る接合装置101の部分側面図である。図9は、図8の接合装置101におけるツール11の先端部11b1の位置の変化と、折損検知部26が検出する電流値の変化とを示すグラフである。図9では、先端部11b1の位置の変化を曲線L3で示し、折損検知部26が検出する電流値の変化を曲線L4で示している。
 この変形例では、折損検知部26は、ツール11の先端(先端部11b1)と第2板材W2との接触時の通電に基づいて、ツール11の折損の検知が行われるように構成されている。言い換えると、折損検知部26は、ツール11の先端と第2板材W2との接触時の通電を前記物理情報として得ることにより、ツール11の折損の検知が行われるように構成されている。
 前記1の接合位置におけるツール11の動作時間は、時系列的に、時刻t0からt1までの間の接近移動区間と、時刻t1からt2までの間の検知区間と、時刻t2からt3までの間の接合区間と、時刻t3からt5までの間の離隔移動区間とに分けられる。
 ツール11と裏当部7とは、共に導電性を有している。図8に示すように、ツール11と裏当部7とは、共に電源30に接続されている。電源30は、一例として交流電源であるが、直流電源でもよい。接合装置101では、板材W1,W2を介したツール11と裏当部7との間の通電又は非通電の状態が、折損検知部26により監視されている。ここでは折損検知部26は、板材W1,W2を介して、ツール11と裏当部7との間に流れる電流を検出する電流検出装置としても機能する。
 図9の曲線L3に示すように、折損検知部26は、移動区間において、ツール11が回転駆動されるように、制御部25にツール回転用モータM2を制御させると共に、先端部11b1が第2板材W2に向けて移動量Δh1で移動されるように、制御部25に位置調整部20を制御させる。先端部11b1は、基準位置h0から第1位置h1まで移動させられ、ツール11が折損を生じていない場合には、先端部11b1が第2板材W2の第1板材W1と反対の面と接触する。
 図9の曲線L4に示すように、検知区間において、折損検知部26は、板材W1,W2を介してツール11と裏当部7との間に流れる電流の値iを測定する。これにより、測定工程S2が行われる。また検知区間において、折損検知部26は、測定工程S2で測定した電流値iが予め定められた電流値i0であるか否かを判定することにより、ツール11に折損が生じたか否かを判定する。これにより、判定工程S3が行われる。折損検知部26は、電流値iが予め定められた電流値i0であると判定した場合にツール11に折損が生じていないと判定し、そうでない場合にツール11に折損が生じていると判定する。電流値i0は適宜設定が可能であるが、一例としてツール11に折損を生じていない場合に、板材W1,W2を介してツール11と裏当部7との間に流れる電流値iよりも十分に小さい値であることが望ましい。ここでは電流値i0は、0mAに設定されている。
 このように接合装置101では、ツール11を第2板材W2に接触させるだけでツール11の折損を検知できるので、折損したツール11で第2板材W2が加圧されて損傷するのを良好に防止できる。
 本発明は、上記実施形態及び上記変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、その構成又は方法を変更、追加、又は削除できる。摩擦撹拌点接合で製作される構造物は、自動車のドア部品以外の部品やボディでもよいし、自動車以外の構造物(例えば、航空機の部品やボディ等)でもよい。
 Δp  加圧力の変化量
 Δp0、ΔT0、ΔF0  閾値
 M2  ツール回転用モータ(駆動部)
 W1  第1板材
 W2  第2板材
 1、101 接合装置
 8  荷重検出部
 11  ツール
 20  位置調整部
 25  制御部
 26  折損検知部

Claims (9)

  1.  重ねられた第1板材と第2板材とを複数の接合位置で連続して摩擦撹拌点接合する摩擦撹拌点接合装置であって、
     前記第2板材の前記第1板材とは反対側の面に接触又は離隔可能なツールと、
     前記ツールをその軸周りに回転駆動させる駆動部と、
     前記ツールと前記第2板材との間の相対位置を調整する位置調整部と、
     前記駆動部及び前記位置調整部を制御する制御部と、
     前記複数の接合位置のうちの1の接合位置で、前記ツールが前記第2板材との接触位置又は所定の押し込み位置に配置されるように前記制御部を制御することで前記ツールの折損を検知する折損検知部とを備えていることを特徴とする、摩擦撹拌点接合装置。
  2.  前記折損検知部は、前記ツールの先端と前記第2板材とが接触してから前記ツールの先端が前記所定の押し込み位置に配置されるまでの間に前記ツールが前記第2板材を加圧する加圧力の変化量に基づいて前記ツールの折損の検知が行われるよう構成されていることを特徴とする、請求項1に記載の摩擦撹拌点接合装置。
  3.  前記第1板材の前記第2板材とは反対側の面から前記加圧力を受ける荷重検出部を更に備え、
     前記折損検知部は、前記加圧力を受けて出力される前記荷重検出部の出力信号により前記加圧力の前記変化量を算出し、当該算出した前記加圧力の前記変化量を予め定められた閾値と比較して、予め定められた変化量が得られたか否かを判定することにより、前記ツールの折損を検知することを特徴とする、請求項2に記載の摩擦撹拌点接合装置。
  4.  前記折損検知部は、前記ツールの先端と前記第2板材との接触時の通電に基づいて前記ツールの折損の検知が行われるよう構成されていることを特徴とする、請求項1に記載の摩擦撹拌点接合装置。
  5.  前記折損検知部により前記ツールの折損が検知されなかった場合、前記制御部は、前記1の接合位置で前記ツールを前記第2板材に押し進めて前記第1板材と前記第2板材とを摩擦撹拌点接合するように前記駆動部及び前記位置調整部を制御し、
     前記折損検知部により前記ツールの折損が検知された場合、前記制御部は、前記複数の接合位置のうち前記1の接合位置及び残余の接合位置における前記ツールを用いた摩擦撹拌点接合を中止するように、前記駆動部及び前記位置調整部の少なくとも一方を制御することを特徴とする、請求項1~4のいずれか1項に記載の摩擦撹拌点接合装置。
  6.  前記制御部は、前記ツールが回転駆動された状態で前記折損検知部による前記ツールの折損の検知が行われるように前記駆動部を制御することを特徴とする、請求項1~5のいずれか1項に記載の摩擦撹拌点接合装置。
  7.  前記折損検知部は、前記1の接合位置における摩擦撹拌点接合前に、前記ツールの折損の検知を行うことを特徴とする、請求項1~6の何れか1項に記載の摩擦撹拌点接合装置。
  8.  重ねられた第1板材と第2板材とを、摩擦撹拌点接合装置を用いて、複数の接合位置で連続して摩擦撹拌点接合する方法であって、
     前記摩擦撹拌点接合装置は、前記第2板材の前記第1板材とは反対の面に接触又は離隔可能なツールを備え、
     前記複数の接合位置のうちの1の接合位置で、前記ツールを前記第2板材と接触させ又は所定の押し込み位置に配置した状態において前記ツールの折損を検知することを特徴とする、摩擦撹拌点接合方法。
  9.  前記1の接合位置における摩擦撹拌点接合前に、前記ツールの折損を検知する、請求項8に記載の摩擦撹拌点接合方法。
PCT/JP2016/004589 2015-10-21 2016-10-14 摩擦撹拌点接合装置及び摩擦撹拌点接合方法 WO2017068767A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187013131A KR102031895B1 (ko) 2015-10-21 2016-10-14 마찰 교반 점 접합 장치 및 마찰 교반 점 접합 방법
JP2017546401A JP6329707B2 (ja) 2015-10-21 2016-10-14 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
EP16857090.1A EP3366410A4 (en) 2015-10-21 2016-10-14 REFRACTORY POINT WELDING MACHINE AND REACTIVE POINT WELDING METHOD
CN201680061690.9A CN108136537B (zh) 2015-10-21 2016-10-14 摩擦搅拌点接合装置及摩擦搅拌点接合方法
US15/770,221 US10974344B2 (en) 2015-10-21 2016-10-14 Friction stir spot joining apparatus and friction stir spot joining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207353 2015-10-21
JP2015207353 2015-10-21

Publications (1)

Publication Number Publication Date
WO2017068767A1 true WO2017068767A1 (ja) 2017-04-27

Family

ID=58558061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004589 WO2017068767A1 (ja) 2015-10-21 2016-10-14 摩擦撹拌点接合装置及び摩擦撹拌点接合方法

Country Status (6)

Country Link
US (1) US10974344B2 (ja)
EP (1) EP3366410A4 (ja)
JP (1) JP6329707B2 (ja)
KR (1) KR102031895B1 (ja)
CN (1) CN108136537B (ja)
WO (1) WO2017068767A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554029B2 (ja) * 2015-11-24 2019-07-31 川崎重工業株式会社 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
EP3680051B1 (en) * 2017-09-04 2023-08-16 Kawasaki Jukogyo Kabushiki Kaisha Method for operating double-action friction stir welding device, and double-action friction stir welding device
JP7181113B2 (ja) * 2019-02-08 2022-11-30 トヨタ自動車株式会社 異種金属接合方法
CN115338530B (zh) * 2022-08-04 2024-04-30 北京九天行歌航天科技有限公司 一种基于力位扭矩的搅拌工具断针监测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288647A (ja) * 1987-05-21 1988-11-25 Dai Showa Seiki Kk 工具破損検出方法
JP2006212657A (ja) * 2005-02-02 2006-08-17 Kawasaki Heavy Ind Ltd 摩擦撹拌接合装置用接合ツール
JP2010188367A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 摩擦撹拌接合のツール挿入方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050475A (en) * 1998-05-29 2000-04-18 Mcdonnell Douglas Corporation Method and apparatus for controlling downforce during friction stir welding
US6421578B1 (en) * 1999-02-12 2002-07-16 Lockheed Martin Corporation Stir-friction hot working control system
JP3867475B2 (ja) * 2000-04-28 2007-01-10 マツダ株式会社 金属部材の処理方法
JP4050478B2 (ja) * 2001-03-29 2008-02-20 マツダ株式会社 摩擦撹拌を用いた加工制御方法、並びに当該方法を実行するコンピュータプログラム並びに当該コンピュータプログラムを格納した記憶媒体
JP3471338B2 (ja) * 2001-07-30 2003-12-02 川崎重工業株式会社 摩擦攪拌接合装置
US6908690B2 (en) * 2002-04-29 2005-06-21 The Boeing Company Method and apparatus for friction stir welding
JP3498086B1 (ja) * 2003-05-14 2004-02-16 川崎重工業株式会社 摩擦撹拌接合方法および摩擦撹拌接合装置
DE102005032170A1 (de) * 2005-07-09 2007-01-11 Technische Universität Ilmenau Rührreibschweißwerkzeug und Verfahren und Anordnung zur online-Kontrolle eines Rührreibschweißprozesses
EP2965858A1 (en) * 2014-07-11 2016-01-13 NELA Razvojni center d.o.o. Podruznica Vincarje Real-time tool breakage detection during the friction stir welding process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288647A (ja) * 1987-05-21 1988-11-25 Dai Showa Seiki Kk 工具破損検出方法
JP2006212657A (ja) * 2005-02-02 2006-08-17 Kawasaki Heavy Ind Ltd 摩擦撹拌接合装置用接合ツール
JP2010188367A (ja) * 2009-02-17 2010-09-02 Honda Motor Co Ltd 摩擦撹拌接合のツール挿入方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366410A4 *

Also Published As

Publication number Publication date
KR102031895B1 (ko) 2019-10-14
CN108136537A (zh) 2018-06-08
JPWO2017068767A1 (ja) 2018-03-01
EP3366410A1 (en) 2018-08-29
JP6329707B2 (ja) 2018-05-23
US10974344B2 (en) 2021-04-13
CN108136537B (zh) 2020-04-14
EP3366410A4 (en) 2019-09-04
KR20180059943A (ko) 2018-06-05
US20180297145A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6329707B2 (ja) 摩擦撹拌点接合装置及び摩擦撹拌点接合方法
CN111107957B (zh) 复动式摩擦搅拌接合装置的运行方法以及复动式摩擦搅拌接合装置
JP6223535B2 (ja) 超音波溶接品質判断装置および方法
US20100015466A1 (en) Ultrasonic welder and joined body obtained by the welder
JP2000288743A (ja) 抵抗溶接機用制御装置
WO2019159815A1 (ja) 電気抵抗溶接における散り検知方法及びその装置
JP2017113799A (ja) 超音波接合装置
JP5143873B2 (ja) 超音波接合制御装置及び超音波接合制御方法
JP4535739B2 (ja) スポット溶接装置
JP6339292B2 (ja) スポット溶接方法及びその装置
JP5038989B2 (ja) 超音波金属接合機
JP4175484B2 (ja) 摩擦攪拌接合方法とその接合装置およびその摩擦接合体
JP3810754B2 (ja) 摩擦攪拌接合方法とその接合装置およびその摩擦接合体
JP2001105159A (ja) 超音波接合装置
JP3290977B2 (ja) 摩擦撹拌接合における異常停止制御方法
JP6020820B2 (ja) ヘミング加工方法及びヘミング加工装置
JP2001096370A (ja) 抵抗溶接装置
JP2002205174A (ja) 抵抗溶接機および抵抗溶接機の加圧制御方法
JP2012055907A (ja) 超音波接合制御装置及び超音波接合制御方法
JP2010000528A (ja) スポット溶接方法
JP2008155240A (ja) 超音波接合の接合品質判別方法
JPH10216963A (ja) 摩擦圧接方法
JP6164862B2 (ja) シーム溶接方法及びシステム
JP7056451B2 (ja) 抵抗溶接装置
JP2009082951A (ja) 摩擦接合システム及び摩擦接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546401

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15770221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013131

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016857090

Country of ref document: EP