WO2017068259A1 - Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs - Google Patents

Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs Download PDF

Info

Publication number
WO2017068259A1
WO2017068259A1 PCT/FR2016/052592 FR2016052592W WO2017068259A1 WO 2017068259 A1 WO2017068259 A1 WO 2017068259A1 FR 2016052592 W FR2016052592 W FR 2016052592W WO 2017068259 A1 WO2017068259 A1 WO 2017068259A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
copolymer
block copolymer
vinylaromatic monomer
styrene
Prior art date
Application number
PCT/FR2016/052592
Other languages
English (en)
Inventor
Christophe Navarro
Celia NICOLET
Karim Aissou
Muhammad MUMTAZ
Eric Cloutet
Cyril Brochon
Guillaume FLEURY
Georges Hadziioannou
Original Assignee
Arkema France
Institut Polytechnique De Bordeaux
Centre National De La Recherche Scientifique
Universite de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France, Institut Polytechnique De Bordeaux, Centre National De La Recherche Scientifique, Universite de Bordeaux filed Critical Arkema France
Priority to CN201680062091.9A priority Critical patent/CN108473812A/zh
Priority to KR1020187013891A priority patent/KR102191958B1/ko
Priority to SG11201803090WA priority patent/SG11201803090WA/en
Priority to US15/768,976 priority patent/US20200231731A1/en
Priority to EP16793948.7A priority patent/EP3365400A1/fr
Priority to JP2018520591A priority patent/JP6777736B2/ja
Publication of WO2017068259A1 publication Critical patent/WO2017068259A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to a method for the creation of nanometric structures by the self - assembly of diblock copolymers, one of whose blocks is obtained by (co) polymerization of at least one cyclic entity corresponding to formula (I) and the other block is obtained by (co) polymerization of at least one vinylaromatic monomer.
  • T 0; S; C (R 7 , R 8 )
  • R 1, R 2 , R 3, R 4 , R 5 , R 6 / R 7, Re are chosen from hydrogen, linear, branched, cyclic alkyl groups, with or without heteroatoms, aromatic groups with or without heteroatoms.
  • the invention also relates to the use of these materials in the fields of lithography in which the block copolymer films constitute lithography masks, one or the other of the constituent domains of each block can be selectively degraded, from storage of information in which the copolymer films to blocks make it possible to locate magnetic particles in one or other of the constituent domains of each block that can be selectively degraded.
  • the method also applies to the manufacture of porous membranes or catalyst supports, one or other of the constituent domains of each block can be selectively degraded to obtain a porous structure.
  • the method advantageously applies to the field of nanolithography using block copolymer masks, one or the other of the constituent domains of each block can be selectively degraded in order to obtain positive or negative resins.
  • the invention also relates to the block copolymer masks obtained according to the process of the invention and the positive or negative resins thus obtained, the block copolymer films containing magnetic particles in one or other of the constituent domains of the invention. each block that can be selectively degraded, the porous membranes or catalyst supports of which one or other of the constituent domains of each block are selectively degraded in order to obtain a porous structure.
  • block copolymers it is possible to structure the arrangement of the constituent blocks of the copolymers, by phase segregation between the blocks thus forming nano-domains, at scales of less than 50 nm. Because of this ability to nanostructure, the use of block copolymers in the fields of electronics or optoelectronics is now well known.
  • block copolymer films in particular based on polystyrene-poly (methyl methacrylate), noted hereinafter PS-b-PMMA, appear as very promising solutions because they allow you to create patterns with high resolution.
  • a block of the copolymer In order to be able to use such a block copolymer film as an etching mask, a block of the copolymer must be selectively removed to create a porous film of the residual block, the patterns of which can be subsequently transferred by etching to an underlying layer.
  • the PMMA block Poly (methyl methacrylate)
  • PS Polystyrene
  • the nano-domains must be oriented perpendicular to the surface of the underlying layer. Such structuring of the domains requires special conditions such as the preparation of the surface of the underlying layer, but also the composition of the block copolymer.
  • the ratios between the blocks make it possible to control the shape of the nano-domains and the molecular mass of each block makes it possible to control the dimension of the blocks.
  • Another very important factor is the phase segregation factor, still referred to as the Flory-Huggins interaction parameter and noted " ⁇ ".
  • This parameter makes it possible to control the size of the nano domains. More particularly, it defines the tendency of blocks of the block copolymer to separate into nano-domains.
  • the product ⁇ of the degree of polymerization, N, and the Flory-Huggins parameter ⁇ gives an indication of the compatibility of two blocks and whether they can separate. For example, a di-block copolymer of symmetrical composition separates into micro-domains if the product ⁇ is greater than 10.5. If this product ⁇ is less than 10.5, the blocks mix and the phase separation is not observed.
  • US Patents 8304493 and US 8450418 describe a process for modifying block copolymers as well as modified block copolymers. These modified block copolymers have a value of the modified Flory-Huggins interaction parameter, such that the block copolymer has nano-domains of small sizes.
  • the application WO 2015087003 provides improvements to the PS-b-PMMA system, however the films obtained do not allow the manufacture of masks whose respective domains constituting blocks of the block copolymers can be selectively eliminated.
  • diblock copolymers one of whose blocks is derived from the polymerization of monomers comprising at least one cyclic entity corresponding to formula (I) and the other block comprising a vinylaromatic monomer, exhibit the following advantages when deposited on a surface: -A fast self-assembly kinetics (between 1 and 20 minutes) for low molecular weights leading to domain sizes well below 10 nm, and at low temperatures (between 333K and 603 K, and preferably between 373 and 603 K).
  • the orientation of the domains during the self-assembly of such block copolymers does not require any preparation of the support (no neutralization layer), the orientation of the domains being governed by the thickness of the block copolymer film deposit.
  • the invention relates to a nanostructured assembly process using a composition comprising a diblock copolymer, one block of which results from the polymerization of at least one monomer corresponding to the following formula (I):
  • the other block comprising a vinylaromatic monomer, and comprising the following steps:
  • surface is meant a surface that can be flat or non-planar.
  • annealing is meant a heating step at a certain temperature allowing evaporation of the solvent when it is present, and allowing the establishment of the desired nano-structuring in a given time (self-assembly).
  • Annealing also means the nano-structuring of the block copolymer film when said film is subjected to a controlled atmosphere of solvent vapor (s), these vapors giving the polymer chains sufficient mobility to organize themselves by themselves on the surface.
  • Annealing also means any combination of the two methods mentioned above.
  • T 0; S; C (R 7 , R 8 )
  • X Si (R 1, R 2 ) in which R 1 and R 2 are linear alkyl groups, and preferably methyl groups
  • Y C (R 5 , R 6) where R 5 and R 6 are hydrogen atoms
  • Z C (R 3 , R 4 ) wherein R 3 and R 4 are hydrogen atoms
  • T C (R 7 , R 8 ) where R 7 and R 7 are hydrogen atoms.
  • the monomeric entities used in the other block of diblock copolymers used in the process of the invention comprise a vinylaromatic monomer such as styrene or substituted styrenes including alpha-methylstyrene, silylated styrenes in mass proportions. between 50 and 100% preferably between 75 and 100% and preferably between 90 and 100% within this other block.
  • the monomeric entities used in the other block of the diblock copolymers used in the process of the invention consist of styrene.
  • the block copolymers used in the invention are prepared by sequential anionic polymerization. Such a synthesis is well known to those skilled in the art.
  • a first block is prepared according to a protocol described by Yamaoka et al., Macromolecules, 1995, 28, 7029-7031.
  • the next block is constructed in the same way by sequentially adding the monomers concerned.
  • One of the advantages of combining the sequence of the polymerization of the block comprising the monomer (I) with vinylaromatic monomers and more particularly styrene is the non-deactivation of a part of the block comprising the entity (I) during the synthesis of the second block on the one hand, the need not to add ethylene diphenyl to adjust the reactivities of the other species.
  • the small difference in PKa of the conjugate acid of the propagating anion and the PKa of the conjugate acid of the initiating species typically less than 2 also allows the incorporation of vinylaromatic monomers and more particularly styrene. (Between 0 and 75%, and preferably between 0 and 50%) within the block comprising the entity (I), allowing a fine adjustment of the Flory Huggins parameter.
  • a di-block copolymer comprising in the first block at least one monomer corresponding to formula (I) and a vinylaromatic compound, and more particularly styrene, the other block comprising a styrene compound and more particularly styrene is particularly advantageous in the context of the process of the invention and constitutes another aspect of the invention.
  • the invention therefore also relates to di-block copolymers whose first block is derived from the polymerization of at least one monomer corresponding to formula (I) and a vinylaromatic compound, and more particularly styrene; the other block is derived from the polymerization of at least one vinylaromatic compound and more particularly styrene.
  • the block copolymer is synthesized, it is dissolved in a suitable solvent and then deposited on a surface according to techniques known to those skilled in the art such as the so-called “spin coating” technique, “doctor blade”, “knife system” “Slot die System” but any other technique can be used such as a dry deposit, that is to say without going through a prior dissolution.
  • a heat treatment or solvent vapor is carried out, a combination of the two treatments, or any other treatment known to those skilled in the art, which allows the block copolymer chains to organize themselves properly by being nanostructured, and thus to establish the film having an ordered structure.
  • the films thus obtained have a thickness up to 200 nm.
  • Preferred surfaces include silicon, silicon having a native or thermal oxide layer, hydrogenated or halogenated silicon, germanium, hydrogenated or halogenated germanium, platinum and platinum oxide, tungsten and oxides, gold, titanium nitrides, graphenes.
  • the surface is mineral and more preferentially silicon. Even more preferably, the surface is silicon having a native or thermal oxide layer.
  • the surfaces can be said to be “free” (flat or non-planar surface and homogeneous from both a topographic and chemical point of view) or to have guide structures for the "pattern" block copolymer, whether this guidance is of the chemical guidance type (called “chemistry-epitaxy guidance”) or physical / topographical guidance (called “graphoepitaxial guidance”).
  • the orientation of the block copolymer is defined by the thickness of the block copolymer film deposited or induced by the use of solvent vapor annealing. It is obtained in relatively short times, between 1 and 20 minutes inclusive and preferably between 1 and 5 minutes and at temperatures between 333 and 603 K and preferably between 373K and 603 K and still more preferably between 373 and 403 K.
  • Another advantage in the choice of the monomers used in the diblock copolymers used in the process of the invention is the choice of the small difference in PKa of the conjugated acid of the anion that propagates and PKa conjugated acid initiating species.
  • This small difference in PKa (typically less than 2) allows the statistical sequence of the monomers and thus easily prepare a random copolymer allowing the neutralization of the surface, with the optional functionalization for the grafting of the random copolymer on the chosen surface.
  • the surface may be treated with a random copolymer thus synthesized prior to deposition of the di-block copolymer, said random copolymer comprising the entity (I) and an aromatic vinyl monomer, preferably styrene.
  • the process of the invention makes it possible the manufacture of positive or negative resins, which can be used in the fields of lithography, porous membranes or magnetic particle transfer media.
  • the polymerization is conducted anionically in a 50/50 (vol / vol) THF / heptane mixture at -50 ° C by sequential addition of the two monomers with the secondary butyl lithium initiator (sec-BuLi).
  • the secondary butyl lithium initiator sec-BuLi
  • a flask 250 ml dry flamed equipped with a magnetic stirrer is charged with lithium chloride (85 mg), 20 ml of THF and 20 ml of heptane.
  • the solution is cooled to -40 ° C.
  • 0.3 ml is then added to 1 mol / l of Sec BuLi (secondary butyl lithium), followed by an addition of lg of 1.1
  • reaction mixture is stirred for 1 h and then 0.45 ml of styrene is added and the reaction mixture is kept stirring for 1 h.
  • the reaction is terminated by addition of degassed methanol and then concentrated by partial evaporation of the solvent from the reaction medium, followed by precipitation with methanol.
  • the product is then recovered by filtration and dried in an oven at 50 ° C overnight.
  • the molecular weights and dispersions corresponding to the ratio between weight-average molecular weight (Mw) and number-average molecular weight (Mn), are obtained by SEC (Size exclusion Chromatography), using 2 columns in series AGILENT 3ym ResiPore, in stabilized THF medium to BHT at a flow rate of 1 mL / min at 40 ° C with concentrated samples at 1 g / L, with prior calibration with calibrated polystyrene samples using a prepared Easical PS-2 pack.
  • Example 2 The procedure is the same as for Example 1: the polymerization is carried out anionically in a 50/50 (vol / vol) THF / heptane mixture at -50 ° C. by sequential addition of the two monomers with the butyl lithium initiator secondary (sec-BuLi) .
  • the butyl lithium initiator secondary sec-BuLi
  • lithium chloride 80 mg
  • 30 ml of THF 30 ml
  • ml of heptane heptane.
  • the solution is cooled to -40 ° C. 0.18 ml to 1 mol / l Sec BuLi (secondary butyl lithium) is then introduced, followed by addition of 1.3 ml of 1,1-dimethylsilacyclobutane.
  • reaction mixture is stirred for 1 h and then 4.4 ml of styrene is added and the reaction mixture is stirred for 1 h.
  • the reaction is terminated by addition of degassed methanol and then concentrated by partial evaporation of the solvent from the reaction medium, followed by precipitation with methanol.
  • the product is then recovered by filtration and dried in an oven at 50 ° C overnight.
  • the molecular weights and dispersions corresponding to the ratio between weight-average molecular weight (Mw) and number-average molecular weight (Mn), are obtained by SEC (Size exclusion Chromatography), using 2 columns in series AGILENT 3ym ResiPore, in stabilized THF medium to BHT at a flow rate of 1 mL / min at 40 ° C with concentrated samples at 1 g / L, with prior calibration with calibrated polystyrene samples using a prepared Easical PS-2 pack.
  • Example 3 manufacture of films.
  • Example 1 The films of Example 1 were prepared on silicon substrates by spin coating from 1% strength solution. weight in THF. The promotion of self-assembly inherent to the phase segregation between the blocks of the copolymer was obtained by exposure for 3 hours of the film under a continuous stream of THF vapor produced by bubbling nitrogen in a THF solution. .
  • This device makes it possible to control the vapor pressure of the THF in the exposure chamber by diluting it with a separate flow of pure nitrogen so that the total mixture consists of 8 sccm of steam. THF for 2 sccm of pure nitrogen. Such a mixture has the effect of gorging the solvent film without causing its dewetting vis-à-vis the surface of the substrate
  • Plasma treatment (RIE plasma CF4 / 02, 40W, 17sccm CF4 and 3sccm O2 for 30 seconds) makes it possible to eliminate the PDMSB domains in order to generate a positive resin before examination by AFM microscopy.
  • a plasma treatment UV / 03 5 minutes then oxygen-rich plasma, 90 W, 10 sccm of oxygen 5 sccm of argon for 30 seconds) makes it possible to eliminate the PS domains to generate a negative resin before examination by AFM microscopy.
  • the AFM images are given in FIGS. 1 to 3 and correspond to the copolymers of Examples 1 (FIGS. 1 and 2) and 2 (FIG. 3).
  • FIG. 1 is a topographic AFM image (3 ⁇ 3 ⁇ m) showing the result of the thin-film self-assembly of the block copolymer of example 1 having cylinders oriented perpendicularly to the substrate, after elimination of the PDMSB phase (positive resin) ).
  • FIG. 2 is a topographic AFM image (3 ⁇ 3 ⁇ m) showing the result of the thin film self-assembly of the same block copolymer having cylinders oriented perpendicular to the substrate after removal of the PS (negative resin) phase.
  • Example 2 The film of Example 2 is heat-treated at 200 ° C for 20 minutes.
  • FIG. 3 (2X2 ym) shows an assembly of the copolymer of Example 2 with a thickness of 70 nm, a period of 18.5 nm after fluorinated RIE plasma treatment.

Abstract

L'invention concerne un procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères di -blocsdont un des blocs est obtenu par (co)- polymérisation d'au moins une entité cyclique répondant à la formule (I) et l'autre bloc est obtenu par (co)- polymérisation d'au moins un monomère vinylaromatique. (I)= Ou X= Si(R1,R 2 ); Ge(R1,R 2 ) Z=Si(R 3,R 4 ); Ge(R 3,R 4 ); O; S; C(R 3,R 4 ) Y= O; S; C(R5,R 6 ) T= O; S; C(R 7,R 8 ) R1,R 2,R 3,R 4,R5,R6,R 7,R 8 sont choisis parmi l'hydrogène, 2 les groupements alkyle linéaires, branchés, cycliques, avec ou sans hétéroatome, les groupements aromatiques avec ou sans hétéroatome.

Description

Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères di - blocs.
L' invention concerne un procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères di - blocs dont un des blocs est obtenu par (co) - polymérisation d'au moins une entité cyclique répondant à la formule (I) et l'autre bloc est obtenu par (co) - polymérisation d'au moins un monomère vinylaromatique .
Figure imgf000002_0001
Ou X= Si (Ri,R2) ; Ge (Ri,R2)
Z= Si (R3,R4) ; Ge (R3,R4) ; 0; S; C(R3,R4
Y= 0; S; C(R5,R6)
T= 0; S; C(R7,R8)
Ri, R2, R3, R4, R5, R6/ R7, Re sont choisis parmi l'hydrogène, les groupements alkyle linéaires, branchés, cycliques, avec ou sans hétéroatome, les groupements aromatiques avec ou sans hétéroatome.
L'invention concerne aussi l'utilisation de ces matériaux dans les domaines de la lithographie dans lesquels les films de copolymères à blocs constituent des masques de lithographie dont l'un ou l'autre des domaines constitutifs de chaque bloc peut être sélectivement dégradé, du stockage de l'information dans lesquels les films de copolymères à blocs permettent de localiser des particules magnétiques dans l'un ou l'autre des domaines constitutifs de chaque bloc pouvant être sélectivement dégradé. Le procédé s'applique également à la fabrication de membranes poreuses ou de supports de catalyseurs dont l'un ou l'autre des domaines constitutifs de chaque bloc peut être sélectivement dégradé afin d'obtenir une structure poreuse. Le procédé s'applique avantageusement au domaine de la nanolithographie utilisant des masques de copolymères à blocs dont l'un ou l'autre des domaines constitutifs de chaque bloc peut être sélectivement dégradé afin d'obtenir des résines positives ou négatives. L'invention concerne aussi les masques de copolymères à blocs obtenus selon le procédé de l'invention et les résines positives ou négatives ainsi obtenues, les films de copolymères à blocs contenant des particules magnétiques dans l'un ou l'autre des domaines constitutifs de chaque bloc pouvant être sélectivement dégradé, les membranes poreuses ou de supports de catalyseurs dont l'un ou l'autre des domaines constitutifs de chaque bloc sont sélectivement dégradé afin d'obtenir une structure poreuse.
Le développement des nanotechnologies a permis de miniaturiser constamment les produits du domaine de la microélectronique et les systèmes micro-électro mécaniques (MEMS) notamment. Aujourd'hui, les techniques de lithographie classiques ne permettent plus de répondre à ces besoins constants de miniaturisation, car elles ne permettent pas de réaliser des structures avec des dimensions inférieures à 60nm.
II a donc fallu adapter les techniques de lithographie et créer des masques de gravure qui permettent de créer des motifs de plus en plus petits avec une grande résolution. Avec les copolymères à blocs il est possible de structurer l'arrangement des blocs constitutifs des copolymères, par ségrégation de phase entre les blocs formant ainsi des nano- domaines, à des échelles inférieures à 50nm. Du fait de cette capacité à se nano-structurer, l'utilisation des copolymères à blocs dans les domaines de l'électronique ou de l'optoélectronique est maintenant bien connue.
Parmi les masques étudiés pour réaliser de la nano- lithographie, les films de copolymères à blocs, notamment à base de Polystyrène-Poly (méthacrylate de méthyle) , noté ci- après PS-b-PMMA, apparaissent comme des solutions très prometteuses car ils permettent de créer des motifs avec une forte résolution. Pour pouvoir utiliser un tel film de copolymère à blocs comme masque de gravure, un bloc du copolymère doit être sélectivement retiré pour créer un film poreux du bloc résiduel, dont les motifs peuvent être ultérieurement transférés par gravure à une couche sous- jacente. Concernant le film de PS-b-PMMA, le bloc de PMMA (Poly (méthacrylate de méthyle) ) est retiré de manière sélective pour créer un masque de PS (Polystyrène) résiduel. Pour ces masques, seuls les domaines de PMMA peuvent être dégradés sélectivement, l'inverse ne conduit pas à une sélectivité suffisante de dégradation des domaines de PS. Pour créer de tels masques, les nano-domaines doivent être orientés perpendiculairement à la surface de la couche sous- jacente. Une telle structuration des domaines nécessite des conditions particulières telles que la préparation de la surface de la couche sous-j acente, mais aussi la composition du copolymère à blocs.
Les ratios entre les blocs permettent de contrôler la forme des nano-domaines et la masse moléculaire de chaque bloc permet de contrôler la dimension des blocs. Un autre facteur très important est le facteur de ségrégation de phase, encore dénommé paramètre d' interaction de Flory-Huggins et noté « χ ». Ce paramètre permet en effet de contrôler la taille des nano-domaines . Plus particulièrement, il définit la tendance des blocs du copolymère à blocs à se séparer en nano-domaines. Ainsi, le produit χΝ du degré de polymérisation, N, et du paramètre de Flory-Huggins χ, donne une indication sur la compatibilité de deux blocs et s'ils peuvent se séparer. Par exemple, un copolymère di-bloc de composition symétrique se sépare en micro-domaines si le produit χΝ est supérieur à 10.5. Si ce produit χΝ est inférieur à 10.5, les blocs se mélangent et la séparation de phase n'est pas observée.
Du fait des besoins constants de miniaturisation, on cherche à accroître ce degré de séparation de phase, afin de réaliser des masques de nano-lithographie permettant d'obtenir de très grandes résolutions, typiquement inférieures à 20nm, et de préférence inférieures à lOnm.
Dans Macromolecules , 2008, 41, 9948, Y. Zhao et al ont estimé le paramètre de Flory-Huggins pour un copolymère à blocs de PS-b-PMMA. Le paramètre de Flory-Huggins χ obéit à la relation suivante : χ = a+b/T, où les valeurs a et b sont des valeurs spécifiques constantes dépendantes de la nature des blocs du copolymère et T est la température du traitement thermique appliqué au copolymère à blocs pour lui permettre de s'organiser, c'est-à-dire pour obtenir une séparation de phase des domaines, une orientation des domaines et une réduction du nombre de défauts. Plus particulièrement, les valeurs a et b représentent respectivement les contributions entropique et enthalpique. Ainsi, pour un copolymère à blocs de PS-b-PMMA, le facteur de ségrégation de phase obéit à la relation suivante : χ = 0,0282 + 4,46/T. Par conséquent, même si ce copolymère à blocs permet de générer des tailles de domaines légèrement inférieures à 20nm, il ne permet pas de descendre beaucoup plus bas en termes de taille de domaines, du fait de la faible valeur de son paramètre d'interaction de Flory-Huggins χ.
Cette faible valeur du paramètre d' interaction de Flory- Huggins limite donc l'intérêt des copolymères à blocs à base de PS et PMMA, pour la réalisation de structures à très grandes résolutions.
Pour contourner ce problème, M.D. Rodwogin et al., ACS Nano, 2010, 4, 725, ont démontré que l'on peut changer la nature chimique des deux blocs du copolymère à blocs afin d' accroître très fortement le paramètre de Flory-Huggins χ et d' obtenir une morphologie souhaitée avec une très haute résolution, c'est-à-dire dont la taille des nano-domaines est inférieure à 20nm. Ces résultats ont notamment été démontré pour un copolymère triblocs de PLA-b-PDMS-b-PLA (acide polylactique - polydiméthylsiloxane- acide polylactique) .
H. Takahashi et al., Macromolecules , 2012, 45, 6253, ont étudié l'influence du paramètre d'interaction de Flory- Huggins x sur les cinétiques d'assemblage du copolymère et de diminution des défauts dans le copolymère. Ils ont notamment démontré que lorsque ce paramètre χ devient trop important, on assiste généralement à un ralentissement important de la cinétique d'assemblage, de la cinétique de ségrégation de phase entraînant également un ralentissement de la cinétique de diminution des défauts au moment de l'organisation des domaines.
Un autre problème, rapporté par S. Ji & al., ACS Nano, 2012, 6, 5440, se pose également lorsque l'on considère les cinétiques d'organisation des copolymères à blocs contenant une pluralité de blocs tous chimiquement différents les uns des autres. En effet, les cinétiques de diffusion des chaînes de polymère, et par conséquent, les cinétiques d'organisation et de diminution des défauts au sein de la structure auto-assemblée, dépendent des paramètres de ségrégation χ entre chacun des différents blocs. En outre, ces cinétiques sont également ralenties à cause de l'architecture multi-bloc du copolymère, car les chaînes de polymère présentent alors des degrés de liberté moindres pour s'organiser par rapport à un copolymère à blocs comportant moins de blocs.
Les brevets US 8304493 et US 8450418 décrivent un procédé pour modifier des copolymères à blocs, ainsi que des copolymères à blocs modifiés. Ces copolymères à blocs modifiés présentent une valeur du paramètre d' interaction de Flory-Huggins χ modifiée, de manière telle que le copolymère à blocs présente des nano-domaines de petites tailles.
Du fait que les copolymères à blocs PS-b-PMMA permettent déjà d'atteindre des dimensions de l'ordre de 20nm, la demanderesse a cherché une solution pour modifier ce type de copolymère à blocs afin d'obtenir un bon compromis sur le paramètre d' interaction de Flory-Huggins χ, la vitesse et la température d'auto-assemblage.
La demande WO 2015087003 apporte des améliorations au système PS-b-PMMA, cependant les films obtenus ne permettent pas la fabrication de masques dont les domaines respectifs constitutifs des blocs des copolymères à blocs peuvent être sélectivement éliminés.
De manière surprenante, il a été découvert que des copolymères di - blocs dont un des blocs est issu de la polymérisation de monomères comprenant au moins une entité cyclique répondant à la formule (I) et l'autre bloc comprenant un monomère vinylaromatique, présente les avantages suivants lorsqu' ils sont déposés sur une surface : -Une cinétique d'auto-assemblage rapide (comprise entre 1 et 20 minutes) pour de faibles masses moléculaires conduisant à des tailles de domaines bien inférieurs à 10 nm, et ce à de basses températures (entre 333K et 603 K, et de préférence entre 373 et 603 K) .
-La présence d'entités issues de monomères de la famille des (I), précurseurs de carbures de silicium ou de germanium après traitement plasma ou par pyrolyse, qui permettent d'obtenir des masques durs lors de l'étape de gravure du masque .
-l'orientation des domaines lors de l'auto-assemblage de tels copolymères à bloc ne nécessite pas de préparation du support (pas de couche de neutralisation), l'orientation des domaines étant gouvernée par l'épaisseur du film de copolymère à blocs déposé.
-Une élimination sélective de l'un ou l'autre des domaines constitutifs de ces copolymères di-blocs qui rend possible la fabrication de résines positives ou négatives, pouvant être utilisées dans les domaines de la lithographie, des membranes poreuses ou des supports de catalyseurs ou de particules magnétiques.
Résumé de l'invention :
L' invention concerne un procédé d' assemblage nano-structuré utilisant une composition comprenant un copolymère di- blocs dont un des blocs est issu de la polymérisation d'au moins un monomère répondant à la formule suivante (I) :
Figure imgf000008_0001
Ou X= Si (Ri,R2) ; Ge (Ri,R2)
Z= Si(R3,R4); Ge(R3,R4); 0; S; C(R3,R4)
Y= 0; S; C(R5,R6)
T= 0; S; C(R7,R8) avec Ri=R2 et R3=R4 et Rs=R6 et R7=Rs sont choisis parmi l'hydrogène, les groupements alkyle linéaires, branchés, cycliques, avec ou sans hétéroatome, les groupements aromatiques avec ou sans hétéroatome,
l'autre bloc comprenant un monomère vinylaromatique, et comprenant les étapes suivantes :
-Mise en solution du copolymère à blocs dans un solvant. -Dépôt de cette solution sur une surface.
-Recuit .
Description détaillée
Par surface on entend une surface qui peut être plane ou non plane .
Par recuit, on entend une étape de chauffage à une certaine température permettant 1 ' évaporation du solvant quand il est présent, et autorisant l'établissement de la nano- structuration recherchée en un temps donné (auto-assemblage) Par recuit, on entend également l'établissement de la nano- structuration du film de copolymère à bloc lorsque ledit film est soumis à une atmosphère contrôlée de vapeurs de solvant (s), ces vapeurs donnant aux chaînes de polymère suffisamment de mobilité pour s'organiser par elles-mêmes sur la surface. Par recuit, on entend également une quelconque combinaison des deux méthodes pré-citées.
Les entités monomériques utilisées pour la polymérisation dans un des blocs des copolymères di-blocs utilisés dans le procédé de l'invention sont représentées par la formule suivante ( I ) :
X y (I) =
T z
Ou X= Si (Ri,R2) ; Ge (Ri,R2)
Z= Si (R3,R4) ; Ge (R3,R4) ; 0; S; C(R3,R4
Y= 0; S; C(R5,R6)
T= 0; S; C(R7,R8)
Ri, R2, R3, R4, R5, R6/ R7, Re sont choisis parmi l'hydrogène, les groupements alkyle linéaires, branchés, cycliques, avec ou sans hétéroatome, les groupements aromatiques avec ou sans hétéroatome et Ri=R2 et R3=R4 et Rs=R6 et R7=Rs .
De préférence X= Si(Ri,R2) où Ri et R2 sont des groupements alkyle linéaires, et de préférence des groupements méthyle, Y= C(R5,R6) où R5 et R6 sont des atomes d'hydrogène, Z= C(R3,R4) où R3 et R4 sont des atomes d'hydrogène, T= C(R7,R8) où R7 et Rs sont des atomes d'hydrogène.
Les entités monomériques utilisées dans l'autre bloc des copolymères di-blocs utilisés dans le procédé de l'invention comprennent un monomère vinylaromatiques tels que le styrène ou les styrènes substitués notamment l' alpha-méthylstyrène, les styrènes silylés dans des proportions massiques comprises entre 50 et 100% de préférence entre 75 et 100% et de façon préférée entre 90 et 100% au sein de cet autre bloc. Selon une préférence de l'invention, les entités monomériques utilisées dans l'autre bloc des copolymères di- blocs utilisés dans le procédé de l'invention sont constituées de styrène.
Les copolymères à blocs utilisés dans l'invention sont préparés par polymérisation anionique séquentielle. Une telle synthèse est bien connue de l'homme du métier. Un premier bloc est préparé selon un protocole décrit par Yamaoka et coll., Macromolecules , 1995, 28, 7029-7031.
Le bloc suivant est construit de la même manière en additionnant séquentiellement les monomères concernés. Un des avantages de combiner l'enchaînement de la polymérisation du bloc comprenant le monomère (I) avec des monomères vinylaromatiques et plus particulièrement du styrène est la non désactivation d'une partie du bloc comprenant l'entité (I) lors de la synthèse du deuxième bloc d'une part, la non nécessité de rajouter du diphenyle ethylène pour ajuster les réactivités des espèces d'autre part. Dans le cas présent la faible différence de PKa de l'acide conjugué de l'anion qui propage et du PKa de l'acide conjugué des espèces initiatrices (typiquement inférieure à 2) autorise également l'incorporation de monomères vinylaromatiques et plus particulièrement du styrène (entre 0 et 75%, et de préférence entre 0 et 50%) au sein du bloc comprenant l'entité (I), ce qui permet un ajustement fin du paramètre de Flory Huggins .
Ainsi un copolymère di-bloc comprenant dans le premier bloc au moins un monomère répondant à la formule (I) et un composé vinylaromatique, et plus particulièrement du styrène, l'autre bloc comprenant un composé styrénique et plus particulièrement du styrène est particulièrement intéressant dans le cadre du procédé de l'invention et constitue un autre aspect de l'invention.
L' invention concerne donc également les copolymères di-blocs dont le premier bloc est issu de la polymérisation d'au moins un monomère répondant à la formule (I) et un composé vinylaromatique, et plus particulièrement du styrène ; l'autre bloc est issu de la polymérisation d'au moins un composé vinylaromatique et plus particulièrement du styrène.
Une fois le copolymère à bloc synthétisé, il est dissout dans un solvant adéquat puis déposé sur une surface selon des techniques connues de l'homme de métier comme par exemple la technique dite « spin coating », « docteur Blade », « knife System », « slot die System » mais tout autre technique peut être utilisée telle qu'un dépôt à sec, c'est- à-dire sans passer par une dissolution préalable.
On effectue par la suite un traitement thermique ou par vapeur de solvant, une combinaison des deux traitements, ou tout autre traitement connu de l'homme du métier, qui permet aux chaînes de copolymère à blocs de s'organiser correctement en se nanostructurant , et ainsi d'établir le film présentant une structure ordonnée.
Les films ainsi obtenus ont une épaisseur jusqu'à 200 nm. Parmi les surfaces privilégiées, on citera le silicium, le silicium présentant une couche d'oxyde natif ou thermique, le silicium hydrogéné ou halogéné, le germanium, le germanium hydrogéné ou halogéné, le platine et oxyde de platine, le tungstène et oxydes, l'or, les nitrures de titane, les graphènes. De préférence la surface est minérale et plus préférentiellement du silicium. De manière encore plus préférentielle, la surface est du silicium présentant une couche d'oxyde natif ou thermique.
Les surfaces peuvent être dites « libres » (surface plane ou non plane et homogène tant d'un point de vue topographique que chimique) ou présenter des structures de guidage du copolymère à bloc « pattern », que ce guidage soit du type guidage chimique (appelé « guidage par chimie-épitaxie ») ou guidage physique/topographique (appelé « guidage par graphoépitaxie ») .
On notera que dans le cadre de la présente invention, même si on ne l'exclue pas, il n'est pas nécessaire d'effectuer une étape de neutralisation (comme c'est le cas généralement dans l'art antérieur) par l'utilisation de copolymère statistique convenablement choisi. Cela présente un avantage considérable car cette étape de neutralisation est pénalisante (synthèse du copolymère statistique de composition particulière, dépôt sur la surface) . L'orientation du copolymère à bloc est définie par l'épaisseur du film de copolymère à blocs déposé ou induite par l'utilisation d'un recuit par vapeurs de solvants. Elle est obtenue dans des temps relativement court, compris entre 1 et 20 minutes bornes comprises et de préférence compris entre 1 et 5 minutes et à des températures comprises entre 333 et 603 K et de préférence entre 373K et 603 K et de façon encore préférentielle entre 373 et 403 K.
Lorsqu'une étape de neutralisation s'avère nécessaire, un autre avantage dans le choix des monomères utilisés dans les copolymères di-blocs utilisés dans le procédé de l'invention est le choix de la faible différence de PKa de l'acide conjugué de l'anion qui propage et du PKa de l'acide conjugué des espèces initiatrices. Cette faible différence de PKa (typiquement inférieure à 2) permet l'enchaînement statistique des monomères et ainsi de préparer facilement un copolymère statistique permettant la neutralisation de la surface, avec le cas échéant une fonctionnalisation permettant le greffage du copolymère statistique sur la surface choisie. Ainsi, la surface peut être traitée par un copolymère statistique ainsi synthétisé préalablement au dépôt du copolymère di-bloc, le dit copolymère statistique comprenant l'entité (I) et un monomère vinyle aromatique, de préférence le styrène. L'invention concerne donc également un procédé dans lequel la surface est traitée par un copolymère statistique comprenant des entités (I) et un monomère vinyle aromatique, de préférence le styrène, préalablement au dépôt du copolymère di-blocs ainsi qu'un copolymère statistique comprenant des entités (I) et un monomère vinyle aromatique, de préférence le styrène, avec comme préférence X= Si, Y, Z , T = C, et Ri=R2=CH3, R3=R4=R5=R6=R7=R8=H .
Du fait de l'élimination sélective possible de l'un ou l'autre des domaines constitutifs de ces copolymères di-blocs utilisés dans le procédé de l'invention par un plasma adapté au domaine à éliminer, le procédé de l'invention rend possible la fabrication de résines positives ou négatives, pouvant être utilisés dans les domaines de la lithographie, des membranes poreuses ou les supports de csnalysfcu £S u de particules magnétiques .
Exemple 1 :
Synthèse de Poly ( 1 , 1-diméthyl-silacyclobutane) -bloc-PS (PDMSB-b-PS) . Le 1 , 1-diméthyl-silacyclobutane (DMSB) est un monomère de formule (I) ou X=Si(CH3)2, Y=Z=T= CH2.
La polymérisation est conduite de façon anionique dans un mélange 50/50 (vol/vol) THF/heptane à -50°C par addition séquentielle des deux monomères avec l'amorceur butyl lithium secondaire (sec- BuLi) .Typiquement, dans un ballon de 250 ml sec flammé équipé d'un agitateur magnétique, on introduit du chlorure de lithium (85mg), 20 ml de THF et 20 ml d'heptane. La solution est refroidie à -40°C. On introduit ensuite 0.3 ml à 1 mole/1 de Sec BuLi (butyl lithium secondaire), suivi d'une addition de lg de 1,1
diméthylsilacyclobutane . Le mélange réactionnel est agité 1 h puis on ajoute 0.45 ml de styrène et le mélange réactionnel est maintenu sous agitation durant lh. On termine la réaction par un ajout de méthanol dégazé, puis on concentre par évaporation partielle du solvant du milieu réactionnel, suivi d'une précipitation au méthanol. Le produit est ensuite récupéré par filtration et séché à l'étuve à 50°C durant une nuit .
Les caractéristiques macromoléculaires du copolymère à blocs synthétisé en exemple 1 sont reportées dans le tableau ci- dessous .
Figure imgf000015_0001
Les masses moléculaires et les dispersités correspondant au rapport entre masse moléculaire en poids (Mw) et masse moléculaire en nombre (Mn) , sont obtenus par SEC (Size exclusion Chromatography) , en utilisant 2 colonnes en série AGILENT 3ym ResiPore, en milieu THF stabilisé au BHT à un débit de lmL/min à 40 °C avec des échantillons concentrés à lg/L, avec un étalonnage préalable avec des échantillons calibrés de polystyrène en utilisant un pack préparé Easical PS-2.
Exemple 2 : Synthèse de Poly ( 1 , 1-diméthyl-silacyclobutane) - bloc-PS (PDMSB-b-PS) .
On procède de même façon que pour l'exemple 1 : la polymérisation est conduite de façon anionique dans un mélange 50/50 (vol/vol) THF/heptane à -50°C par addition séquentielle des deux monomères avec l'amorceur butyl lithium secondaire (sec-BuLi) .Typiquement, dans un ballon de 250 ml sec flammé équipé d'un agitateur magnétique, on introduit du chlorure de lithium (80 mg) , 30 ml de THF et 30 ml d'heptane. La solution est refroidie à -40°C. On introduit ensuite 0.18 ml à 1 mole/1 de Sec BuLi (butyl lithium secondaire), suivi d'une addition de 1.3 mL de 1,1 diméthylsilacyclobutane . Le mélange réactionnel est agité 1 h puis on ajoute 4.4 ml de styrène et le mélange réactionnel est maintenu sous agitation durant lh. On termine la réaction par un ajout de méthanol dégazé, puis on concentre par évaporation partielle du solvant du milieu réactionnel, suivi d'une précipitation au méthanol. Le produit est ensuite récupéré par filtration et séché à l'étuve à 50°C durant une nuit .
Les caractéristiques macromoléculaires du copolymère à blocs synthétisé en exemple 2 sont reportées dans le tableau ci- dessous :
Figure imgf000016_0001
Les masses moléculaires et les dispersités correspondant au rapport entre masse moléculaire en poids (Mw) et masse moléculaire en nombre (Mn) , sont obtenus par SEC (Size exclusion Chromatography) , en utilisant 2 colonnes en série AGILENT 3ym ResiPore, en milieu THF stabilisé au BHT à un débit de lmL/min à 40 °C avec des échantillons concentrés à lg/L, avec un étalonnage préalable avec des échantillons calibrés de polystyrène en utilisant un pack préparé Easical PS-2.
Exemple 3: fabrication des films.
Les films de l'exemple 1 ont été préparés sur des substrats en silicium par spin coating à partir de solution à 1% en poids dans le THF. La promotion de l'auto-assemblage inhérent à la ségrégation de phases entre les blocs du copolymère a été obtenue par exposition durant 3h du film sous un flux continu de vapeur de THF produite par bullage d'azote au sein d'une solution de THF. Ce dispositif permet de contrôler la pression de vapeur du THF dans la chambre d'exposition par dilution de cette dernière à l'aide d'un flux séparé d'azote pur de sorte à ce que le mélange total consiste en 8 sccm de vapeur de THF pour 2 sccm d'azote pur. Un tel mélange a pour effet de gorger le film de solvant sans provoquer son démouillage vis-à-vis de la surface du substrat
Les films ainsi exposés sont ensuite figés à l'air en retirant rapidement le couvercle de la chambre d'exposition. Un traitement plasma (plasma RIE CF4/02, 40W, 17sccm CF4 et 3sccm 02 durant 30 secondes) permet d'éliminer les domaines PDMSB pour générer une résine positive avant examen par microscopie AFM. De même, un traitement plasma (UV/03 5 minutes puis plasma riche en oxygène, 90 W, 10 sccm d'oxygène 5 sccm d'argon durant 30 secondes) permet d'éliminer les domaines PS pour générer une résine négative avant examen par microscopie AFM.
Les images AFM sont données dans les figures 1 à 3 et correspondent aux copolymères des exemples 1 (figure 1 et 2) et 2 (figure 3) .
La figure 1 est une image AFM topographique (3X3 ym) montrant le résultat de l'auto-assemblage en film mince du copolymère à blocs de l'exemple 1 présentant des cylindres orientés perpendiculairement au substrat, après élimination de la phase PDMSB (résine positive) . La figure 2 est une image AFM topographique (3X3 ym) montrant le résultat de l'auto-assemblage en film mince du même copolymère à blocs présentant des cylindres orientés perpendiculairement au substrat après élimination de la phase PS (résine négative) .
Exemple 4 :
Le film de l'exemple 2 est traité thermiquement à 200 °C pendant 20 min.
La figure 3 (2X2 ym) montre un assemblage du copolymère de l'exemple 2 avec une épaisseur de 70 nm, une période de 18.5 nm après traitement plasma RIE fluoré.

Claims

Revendications
1
Procédé d'assemblage nano-structuré utilisant une composition comprenant un copolymère di- blocs dont un des blocs est issu de la polymérisation d'au moins un monomère répondant à la formule suivante (I) :
Figure imgf000019_0001
Ou X= Si(Ri,R2); Ge(Ri,R2)
Z= Si(R3,R4); Ge(R3,R4); 0; S; C(R3,R4)
Y= 0; S; C(R5,R6)
T= 0; S; C(R7,R8) avec Ri=R2 et R3=R4 et Rs=R6 et R7=Rs sont choisis parmi l'hydrogène, les groupements alkyle linéaires, branchés, cycliques, avec ou sans hétéroatome, les groupements aromatiques avec ou sans hétéroatome,
l'autre bloc comprenant un monomère vinylaromatique, et comprenant les étapes suivantes :
-Mise en solution du copolymère à blocs dans un solvant. -Dépôt de cette solution sur une surface.
-Recuit .
2 Procédé selon la revendication 1 dans lequel X= Si(Ri,R2) , Z= C(R3,R4), Y= C(R5,R6), T= C(R7,R8) 3 Procédé selon la revendication 2 dans lequel ¾=]¾=(¾,
R3=R4=R5= 6= 7= 8=H.
4 Procédé selon la revendication 1 dans lequel le bloc ne comprenant pas d'entité (I) comprend un monomère vinylaromatique .
5 Procédé selon la revendication 4 dans lequel le monomère vinylaromatique est le styrène.
6 Procédé selon la revendication 1 dans lequel un monomère vinylaromatique est présent dans le bloc comprenant l'entité (I) 7 Procédé selon la revendication 1 dans lequel la surface est traitée par un copolymère statistique comprenant l'entité (I) et un monomère vinylaromatique.
8 Procédé selon la revendication 7 dans lequel le monomère vinylaromatique est le styrène.
9 Procédé selon l'une des revendications 1 à 8 dans lequel l'orientation du copolymère à bloc est définie par l'épaisseur du film de copolymère à blocs déposé ou induite par l'utilisation d'un recuit par vapeurs de solvants.
10 Procédé selon l'une des revendications 1 à 9 dans lequel la surface est libre. 11 Procédé selon l'une des revendications 1 à 9 dans lequel la surface est guidée. 12 Copolymère statistique comprenant des entités (I) et du styrène .
13 Copolymère statistique selon la revendication 12 dans laquelle X= Si, Y, Z, T = C, et Ri=R2=CH3, R3=R4=R5=R6=R7=R8=H
14 Utilisation du procédé selon une des revendications 1 à 11 dans le domaine de la lithographie, la fabrication de membranes poreuses, de supports de catalyseurs ou de supports de particules magnétiques.
15 Masque de résine positive ou négative d'un film obtenu selon le procédé d'une des revendications 1 à 11 et traité par un plasma dégradant spécifiquement les domaines spécifiques d'un des deux blocs du copolymère à blocs.
PCT/FR2016/052592 2015-10-23 2016-10-07 Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs WO2017068259A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680062091.9A CN108473812A (zh) 2015-10-23 2016-10-07 通过二嵌段共聚物的自组装形成纳米结构的方法
KR1020187013891A KR102191958B1 (ko) 2015-10-23 2016-10-07 2블록 공중합체의 자가-어셈블리에 의한 나노계측 구조의 제작 방법
SG11201803090WA SG11201803090WA (en) 2015-10-23 2016-10-07 Process for creating nanometric structures by self-assembly of diblock copolymers
US15/768,976 US20200231731A1 (en) 2015-10-23 2016-10-07 Process that enables the creation of nanometric structures by self-assembly of diblock copolymers
EP16793948.7A EP3365400A1 (fr) 2015-10-23 2016-10-07 Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs
JP2018520591A JP6777736B2 (ja) 2015-10-23 2016-10-07 ジブロックコポリマーの自己組織化によりナノメートル構造の作成を可能にする方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1560161A FR3042794B1 (fr) 2015-10-23 2015-10-23 Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs
FR1560161 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017068259A1 true WO2017068259A1 (fr) 2017-04-27

Family

ID=55646675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/052592 WO2017068259A1 (fr) 2015-10-23 2016-10-07 Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs

Country Status (9)

Country Link
US (1) US20200231731A1 (fr)
EP (1) EP3365400A1 (fr)
JP (1) JP6777736B2 (fr)
KR (1) KR102191958B1 (fr)
CN (1) CN108473812A (fr)
FR (1) FR3042794B1 (fr)
SG (1) SG11201803090WA (fr)
TW (1) TWI655229B (fr)
WO (1) WO2017068259A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054768A1 (fr) * 2017-09-13 2019-03-21 Lg Chem, Ltd. Procédé de préparation d'un substrat à motifs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
FR3010412A1 (fr) * 2013-09-09 2015-03-13 Arkema France Procede d'obtention de films epais nano-structures obtenus a partir de copolymeres a blocs
WO2015087003A1 (fr) 2013-12-13 2015-06-18 Arkema France Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs
WO2015087005A1 (fr) * 2013-12-13 2015-06-18 Arkema France Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322869A (ja) * 1998-05-19 1999-11-26 Jsr Corp ブロック共重合体の製造方法
CN100588426C (zh) * 2007-01-11 2010-02-10 中国科学院过程工程研究所 温敏性双亲嵌段共聚物/氧化铁磁性纳米载体及其制备方法和用途
WO2009085755A1 (fr) * 2007-12-27 2009-07-09 Bausch & Lomb Incorporated Solutions de revêtement comprenant des copolymères séquencés segmentés réactifs
FR3010414B1 (fr) * 2013-09-09 2015-09-25 Arkema France Procede d'obtention de films epais nano-structures obtenus a partir d'une composition de copolymeres a blocs
JP2015129261A (ja) * 2013-12-31 2015-07-16 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC ブロックコポリマーのアニール方法およびブロックコポリマーから製造する物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
US8450418B2 (en) 2010-08-20 2013-05-28 Micron Technology, Inc. Methods of forming block copolymers, and block copolymer compositions
FR3010412A1 (fr) * 2013-09-09 2015-03-13 Arkema France Procede d'obtention de films epais nano-structures obtenus a partir de copolymeres a blocs
WO2015087003A1 (fr) 2013-12-13 2015-06-18 Arkema France Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs
WO2015087005A1 (fr) * 2013-12-13 2015-06-18 Arkema France Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GARCIA MARCOS A ET AL: "LINEAR-HYPERBRANCHED BLOCK COPOLYMERS CONSISTING OF POLYSTYRENE AND DENDRITIC POLY(CARBOSILANE) BLOCK", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 39, no. 3, 7 February 2006 (2006-02-07), pages 971 - 977, XP001239610, ISSN: 0024-9297, DOI: 10.1021/MA051526C *
H. TAKAHASHI ET AL., MACROMOLECULES, vol. 45, 2012, pages 6253
KOZO MATSUMOTO ET AL: "Synthesis of Novel Silicon-Containing Amphiphilic Diblock Copolymers and Their Self-Assembly Formation in Solution and at Air/Water Interface", MACROMOLECULES, vol. 35, no. 2, 1 January 2002 (2002-01-01), pages 555 - 565, XP055138833, ISSN: 0024-9297, DOI: 10.1021/ma011254n *
M.D. RODWOGIN ET AL., ACS NANO, vol. 4, 2010, pages 725
QUOC DAT NGHIEM ET AL: "Direct Preparation of High Surface Area Mesoporous SiC-Based Ceramic by Pyrolysis of a Self-Assembled Polycarbosilane- block -Polystyrene Diblock Copolymer", CHEMISTRY OF MATERIALS, vol. 20, no. 11, 1 June 2008 (2008-06-01), pages 3735 - 3739, XP055138637, ISSN: 0897-4756, DOI: 10.1021/cm702688j *
S. JI, ACS NANO, vol. 6, 2012, pages 5440
Y. ZHAO, MACROMOLECULES, vol. 41, 2008, pages 9948
YAMAOKA, MACROMOLECULES, vol. 28, 1995, pages 7029 - 7031

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019054768A1 (fr) * 2017-09-13 2019-03-21 Lg Chem, Ltd. Procédé de préparation d'un substrat à motifs
CN111065965A (zh) * 2017-09-13 2020-04-24 株式会社Lg化学 图案化基底的制备方法
JP2020532134A (ja) * 2017-09-13 2020-11-05 エルジー・ケム・リミテッド パターン化基板の製造方法
JP7027674B2 (ja) 2017-09-13 2022-03-02 エルジー・ケム・リミテッド パターン化基板の製造方法
US11613068B2 (en) 2017-09-13 2023-03-28 Lg Chem, Ltd. Preparation method of patterned substrate
CN111065965B (zh) * 2017-09-13 2023-11-03 株式会社Lg化学 图案化基底的制备方法

Also Published As

Publication number Publication date
JP6777736B2 (ja) 2020-10-28
US20200231731A1 (en) 2020-07-23
EP3365400A1 (fr) 2018-08-29
FR3042794B1 (fr) 2020-03-27
KR102191958B1 (ko) 2020-12-16
CN108473812A (zh) 2018-08-31
KR20180072730A (ko) 2018-06-29
FR3042794A1 (fr) 2017-04-28
TW201726768A (zh) 2017-08-01
TWI655229B (zh) 2019-04-01
SG11201803090WA (en) 2018-05-30
JP2018534132A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
FR3014888A1 (fr) Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres a blocs
FR3008986A1 (fr) Procede de controle de la periode caracterisant la morphologie obtenue a partir d'un melange de copolymere a blocs et de (co) polymeres de l'un des blocs
CN105319841B (zh) 制造嵌段共聚物的方法和由其制造的物品
EP3155028A1 (fr) Procédé de contrôle de la période d'un film de copolymère a blocs nanostructuré a base de styrene, et de methacrylate de methyle, et film de copolymère a blocs nanostructure
WO2015092241A1 (fr) Procédé de nanostructuration d'un film de copolymère a blocs a partir d'un copolymère a blocs non structure a base de styrène et de methacrylate de méthyle, et film de copolymère a blocs nanostructure
CN105278240B (zh) 制造嵌段共聚物的方法和由其制造的物品
WO2015086991A1 (fr) Procédé de réalisation d'un film de copolymère a blocs sur un substrat.
WO2015004392A1 (fr) Procede d'orientation perpendiculaire de nanodomaines de copolymeres a blocs par l'utilisation de copolymeres statistiques ou a gradient dont les monomeres sont au moins en partie differents de ceux presents respectivement dans chacun des blocs du copolymere a blocs
WO2017220934A1 (fr) Film de copolymere a blocs nanostructure comprenant un bloc biodegradable de type polyester
TWI575000B (zh) 退火嵌段共聚物之方法及由其製造之物件
EP3080217B1 (fr) Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs
EP3365400A1 (fr) Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs
TWI519591B (zh) 嵌段共聚物配方及其相關方法
FR3010411A1 (fr) Procede de controle de la periode d'un assemblage nano-structure comprenant un melange de copolymeres a blocs
FR3010412A1 (fr) Procede d'obtention de films epais nano-structures obtenus a partir de copolymeres a blocs
EP3105295B1 (fr) Procede de controle de l'energie de surface d'un substrat
WO2018109388A1 (fr) Film de compolymere a blocs nanostructure comprenant un bloc amorphe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793948

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201803090W

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: 2018520591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016793948

Country of ref document: EP