WO2017067116A1 - 一种隔离型同步整流控制电路及其装置与控制方法 - Google Patents

一种隔离型同步整流控制电路及其装置与控制方法 Download PDF

Info

Publication number
WO2017067116A1
WO2017067116A1 PCT/CN2016/073150 CN2016073150W WO2017067116A1 WO 2017067116 A1 WO2017067116 A1 WO 2017067116A1 CN 2016073150 W CN2016073150 W CN 2016073150W WO 2017067116 A1 WO2017067116 A1 WO 2017067116A1
Authority
WO
WIPO (PCT)
Prior art keywords
control circuit
voltage
synchronous rectifier
current
turn
Prior art date
Application number
PCT/CN2016/073150
Other languages
English (en)
French (fr)
Inventor
宗强
吴寿化
管磊
殷忠
Original Assignee
无锡市芯茂微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡市芯茂微电子有限公司 filed Critical 无锡市芯茂微电子有限公司
Priority to EP16794197.0A priority Critical patent/EP3367549A4/en
Priority to US15/304,006 priority patent/US9853563B2/en
Priority to JP2016568862A priority patent/JP6343354B2/ja
Publication of WO2017067116A1 publication Critical patent/WO2017067116A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to an isolated synchronous rectification control circuit, a device and a control method thereof, and belongs to the technical field of a synchronous rectification control circuit.
  • the purpose of isolated synchronous rectification is mainly to replace the Schottky rectifier on the secondary side in the output of low voltage and high current, thereby achieving better efficiency, smaller application volume and lower system cost.
  • the forward conduction voltage drop of the Schottky tube with low conduction voltage drop is about 0.2-0.3V, and the conduction voltage drop of the synchronous rectifier can be 0.15V or less under reasonable design, which greatly reduces the rectification.
  • the loss of the tube itself improves system efficiency.
  • the resistor 1 is a synchronous rectification control scheme currently on the market, including a transformer 101, a synchronous rectifier 102, an output capacitor 103, a VCC supply resistor 104, a VCC bypass capacitor 105, a time constant setting resistor 108, and a time constant setting.
  • the resistor 107 and the synchronous rectification control chip 106 The resistor network composed of the time constant setting resistor 108 and the time constant setting resistor 107 collectively determines the primary side turn-on determination, and the synchronous rectification control chip 106 determines the turn-on of the primary side power tube by integrating the DET and AE pin components.
  • the VCC pin is the chip supply pin.
  • the above control scheme has many components and the control scheme is complicated. Moreover, the power supply of the VCC pin comes from the output Vout. When the whole control system operates in the low output voltage mode, the VCC will cause the synchronous rectification control chip 106 to be inoperative due to insufficient power supply, and the rectification function can only be passed through the parasitic body diode of the rectifier. Maintenance, causing severe fever and loss of efficiency.
  • This control architecture completely relies on the determination voltage to control the turn-on and turn-off of the synchronous rectifier, and lacks the primary side opening recognition mechanism, which can easily cause the misoperation of the synchronous rectifier and cause the explosion phenomenon.
  • the existing synchronous rectification control circuit cannot work accurately in the face of complicated system operation, does not have a dual voltage determination mechanism, and has low work efficiency.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, and provide an isolated synchronous rectification control circuit, a device and a control method thereof, and solve the problem that the existing synchronous rectification control circuit lacks the primary side opening recognition mechanism.
  • An isolated synchronous rectification control circuit comprising:
  • a power supply module for providing a voltage
  • a reference module for generating at least first and second reference sources
  • a comparator module comprising an turn-on comparator and a first turn-off comparator, wherein the turn-on comparator is used to compare a voltage terminal voltage of the control circuit with a first reference source; the first turn-off comparator is used to control a voltage of the circuit The terminal voltage is compared with the second reference source;
  • the primary side opening determination unit is configured to obtain an integrated value of the current according to the current flowing in the time setting end of the control circuit, and compare the integrated value of the current with the set value;
  • the secondary side intermittent estimation unit is configured to predict the time required for the synchronous rectifier to be turned on according to the integrated value of the current obtained by the primary side opening determination unit, and provide the shielding time according to the predicted time required for the synchronous rectifier to conduct, And comparing the shielding time with the time required for the actual conduction of the synchronous rectifier tube;
  • a logic unit configured to generate a logic control signal for turning on the synchronous rectifier according to the comparison result of the turn-on comparator and the comparison result of the primary-side turn-off determining unit, and according to the comparison result of the first-off comparator and the vice
  • a comparison result of the intermittent prediction unit generates a logic control signal for turning off the synchronous rectifier
  • a driving unit configured to drive the synchronous rectifier according to the logic control signal generated by the logic unit.
  • the comparator module further includes a second turn-off comparator, and the second turn-off comparator is configured to control a voltage terminal voltage of the circuit and a third generated by the reference module. Baseline source comparison.
  • a clamp circuit for preventing the synchronous rectifier from being erroneously turned on is further included.
  • the primary side turn-on determining unit includes an integrating capacitor, a first current mirror composed of two NMOS tubes, a second current mirror composed of two PMOS tubes, and a comparator. a unit and a pull-down NMOS transistor; the reference unit further generates a first reference voltage; the first current mirror is configured to generate a current when the time setting end of the control circuit is high, and charge the integrating capacitor through the second current mirror.
  • the comparator unit is configured to compare the voltage of the integrating capacitor with the first reference voltage and output a potential signal according to the comparison result; the pull-down NMOS transistor is used to clear the voltage on the integrating capacitor at the end of each breaking period.
  • the secondary side intermittent estimation unit single channel includes an NPN tube, a third current mirror composed of two PMOS tubes, and a fourth current composed of two NMOS tubes.
  • a mirror a comparator unit; the reference unit further generates a second reference voltage; the NPN tube is configured to implement clamp zero; the third current mirror, For generating a current when the time setting end of the control circuit is low, and discharging the integrating capacitor by the fourth current mirror; the comparator unit is configured to compare the voltage of the integrating capacitor with the second reference voltage and output according to the comparison result Potential signal.
  • the power supply module includes a startup circuit, a modulation resistor, a high voltage PMOS transistor, two voltage dividing resistors, an operational amplifier circuit, and a high voltage NMOS transistor; a current is generated when a voltage terminal of the control circuit is at a high level; the modulation resistor is used to generate a voltage; the high voltage PMOS transistor is configured to receive a voltage and conduct; and the operational amplifier circuit is used at a voltage end of the control circuit When the starting voltage is reached, the voltages of the two voltage dividing resistors are compared with the reference level, and the output voltage signal is controlled according to the comparison result to control the high voltage NMOS transistor to be turned off.
  • the power supply module further includes an NPN tube for preventing current from flowing from the power supply end of the control circuit to the voltage end.
  • the present invention also provides a control device based on the above-described isolated synchronous rectification control circuit, comprising:
  • one end of the secondary side output winding is connected to the ground end of the synchronous rectification control circuit and the bypass capacitor, and the other end of the secondary side output winding of the transformer is grounded;
  • bypass capacitor connected to the power supply terminal of the synchronous rectification control circuit for providing a stable voltage for the synchronous rectification control circuit
  • the time constant setting resistor is connected to the time setting end of the synchronous rectification control circuit for setting the time constant of the primary side opening and the judgment of the secondary side intermittent time estimation;
  • the synchronous rectification control circuit is configured to determine whether the primary side is turned on and predict the secondary side interruption time according to the current flowing in the time setting end, and generate a logic control signal to turn on or off the synchronous rectifier tube according to the determination and the prediction result. drive;
  • the output capacitor is connected to the voltage terminal of the rectifier control circuit for the output of the capacitor.
  • the invention also provides an isolated synchronous rectification control method, comprising:
  • the time required for the synchronous rectifier to be turned on is estimated by the negative pressure difference between the time setting end of the synchronous rectification control circuit and the output ground when the secondary side is freewheeling. .
  • the invention adopts the above technical solutions, and can produce the following technical effects:
  • the isolated synchronous rectification control circuit, the device and the control method thereof provided by the invention prevent the mis-conduction of the synchronous rectifier tube by the method of opening the primary side, and simultaneously predict the flow through the secondary side To prevent the premature erroneous shutdown of the synchronous rectifier.
  • the optimized VCC power supply circuit is adopted to ensure that the power supply system operates in various modes and the power supply is sufficient.
  • the precise primary side opening determination circuit and the secondary side freewheeling time estimation circuit and the double voltage determination mechanism are adopted to ensure that the synchronous rectifier can work accurately in the face of complicated system operation.
  • FIG. 1 is a schematic structural view of a synchronous rectification control device in the prior art.
  • FIG. 2 is a schematic structural view of another synchronous rectification control device in the prior art.
  • FIG. 3 is a schematic structural view of an isolated synchronous rectification control device of the present invention.
  • FIG. 4 is a schematic structural view of an isolated synchronous rectification control circuit of the present invention.
  • Fig. 5 is a circuit diagram showing the primary side opening determination unit and the secondary side intermittent estimation unit in the present invention.
  • FIG. 6 is a schematic circuit diagram of a power supply module according to the present invention.
  • Fig. 7 is a diagram showing waveforms of respective signals of the present invention.
  • the present invention designs an isolated synchronous rectification control device, which mainly includes a synchronous rectifier control circuit 301, a transformer 302, a bypass capacitor 303, an output resistor 304, and a time constant setting resistor 305, wherein the synchronization
  • the rectification control circuit includes a GND ground terminal, a VCC power supply terminal, an AE time setting terminal, and a D voltage terminal.
  • the different-name end of the secondary side output winding of the transformer 302 is connected to the GND ground end of the synchronous rectification control circuit 301 and one end of the bypass capacitor 303, and the end of the same-side output winding of the transformer 302 is grounded; the bypass capacitor 303
  • the other end of the synchronous rectification control circuit 301 is connected to the VCC power supply terminal;
  • the AE time setting terminal of the synchronous rectification control circuit 301 is connected to the time constant setting resistor 305 and grounded, and the D voltage terminal of the synchronous rectification control circuit 301 is connected to the output capacitor 304. Ground.
  • the bypass capacitor 303 provides a stable voltage when the synchronous rectification control circuit 301 operates; the time constant setting resistor 305 can set the time constant and the secondary side interrupt time of the primary side turn-on circuit inside the synchronous rectification control circuit 301. Predict the judgment of the circuit.
  • the synchronous rectification control circuit 301 is used for its time setting end The current flowing in determines whether the primary side is turned on and predicts the secondary side intermittent time, and generates a logic control signal to turn on or off the synchronous rectifier according to the determination and the prediction result; the output capacitor 305 is connected to the rectifier control circuit The voltage terminal is used for the output of the capacitor.
  • the present invention provides a specific embodiment, but is not limited to this manner.
  • the synchronous rectification control circuit includes a power supply module 401, a reference module 405, a comparator module composed of a turn-on comparator 402 and a first off-section comparator 403, a primary side turn-on determining unit 406, and a vice
  • the intermittent estimation unit 407, the logic unit 408, and the driving unit 409 wherein one end of the power supply module 401 is connected to the drain of the synchronous rectifier 410 and the D voltage terminal of the control circuit, and the other end is connected to the VCC power supply terminal of the control circuit.
  • the reference module 405 is connected to the VCC power supply end of the control circuit for generating at least first and second reference sources; the input terminals of the comparator module are respectively connected to the drain and the reference module of the synchronous rectifier 410 405, and the output of the comparator module is connected to the input end of the logic unit 408, wherein the turn-on comparator 402 is used to control the D voltage terminal voltage of the circuit to be compared with the first reference source; the first turn-off comparator 403 is used The D voltage terminal voltage of the control circuit is compared with the second reference source; the input of the primary side turn-on determining unit 406 is connected to the AE time setting terminal of the control circuit and the input terminal is connected to the input of the logic unit 408 And used to obtain an integrated value of the current according to the current flowing in the AE time setting end of the control circuit, and compare the integrated value of the current with the set value; the input end of the secondary side intermittent estimation unit 407 is connected to the control circuit.
  • the AE time setting end and the output terminal are connected to the input end of the logic unit 408 for predicting the time required for the synchronous rectifier 410 to be turned on according to the integrated value of the current obtained by the primary side turn-on determining unit 407, and synchronizing the rectifier 410 according to the prediction.
  • the output of the logic unit 408 is connected to the input of the driving unit 409 for The comparison result is to generate a logic control signal that is turned on or off; the output end of the driving unit 409 is connected to the gate of the synchronous rectifier 410, and the gate of the synchronous rectifier 410 is connected to the GND ground of the control circuit.
  • the driving unit 409 is configured to drive the synchronous rectifier 410 according to a logic control signal that is turned on or off generated by the logic unit 408.
  • the D voltage terminal of the synchronous rectification control circuit in Figure 4 begins to have a high voltage.
  • the VCC power supply terminal establishes a stable voltage; when the primary side controller is turned on, the AE time of the circuit
  • the set end and the ground end in FIG. 3 are operated by the time constant setting resistor 305 in FIG. 3, and the current flows into the primary side turn-on determination unit 406 to obtain an integrated value of the current.
  • the logic unit 408 When the integrated value of the current exceeds the set value, this If the voltage of the D voltage terminal in the control circuit is less than the first reference source, the logic unit 408 generates a logic control signal to turn on the synchronous rectifier 410 through the driving unit 409.
  • the action of the secondary side intermittent prediction unit 407 predicts the time Tp required for the synchronous rectifier 410 to be turned on in advance according to the current integrated value, and provides shielding according to the time Tp required to predict the synchronous rectifier 410 to be turned on.
  • the logic unit 408 generates a logic control signal to turn off the synchronous rectifier through the driving unit 409. 410.
  • the comparator module further includes a second turn-off comparator 404, the reference module 405 also generates a third reference source; likewise, the input terminals of the second turn-off comparator 404 are respectively connected to the synchronous rectifier 410
  • the drain and reference module 405, and the output are connected to the input of the logic unit 408, and the second turn-off comparator 404 is used to control the D voltage terminal voltage of the circuit to be compared with the third reference source.
  • the function of the second turn-off comparator 404 is that if the voltage of the D voltage terminal of the control circuit is longer than the third reference source when the synchronous rectifier 410 is turned on, the logic unit 408 also generates a logic control signal to drive Unit 409 directly turns off synchronous rectifier 410.
  • the synchronous rectification control circuit may further include a clamping circuit 411, one end of the clamping circuit 411 is connected to the gate of the synchronous rectifier 410. The other end is connected to the ground of the synchronous rectification control circuit, thereby preventing the synchronous rectifier from being turned on by mistake.
  • the present invention also provides a specific embodiment for the primary side opening determination unit and the secondary side intermittent estimation unit in the circuit, but is not limited to this mode.
  • the primary side turn-on determining unit includes a first current mirror composed of NMOS transistors 501 and 502, a second current mirror composed of PMOS transistors 503 and 504, an integrating capacitor 505, and a pull-down NMOS transistor 506.
  • the comparator unit 507 the input end of the first current mirror is connected to the AE time setting end of the control circuit, the output end of the first current mirror is connected to the input end of the second current mirror; and the output end of the second current mirror is One end of the integrating capacitor 505 and the first input end of the comparator unit 507 are respectively connected; the other end of the integrating capacitor 505 is connected to the GND ground end of the control circuit; the pull-down NMOS transistor 506 is connected in parallel to both ends of the integrating capacitor 505;
  • the second input of the comparator unit 507 is coupled to the reference module, and the reference module generates a first reference voltage.
  • the comparator unit 507 compares the voltage of the integrating capacitor 505 with the first reference voltage Vref1 generated by the reference module. When the voltage of the integrating capacitor 505 is greater than the first reference voltage Vref1, the comparator unit 507 outputs a high potential signal PB, which belongs to the primary side switch tube guide. through.
  • the pull-down NMOS transistor 506 functions to clear the voltage across the integrating capacitor 505 at the end of each turn-on period, where each turn-on period refers to the instant at which the synchronous rectifier is turned "on”.
  • the secondary side intermittent estimation unit is as shown in FIG. 5, and mainly includes: a third current mirror composed of PMOS tubes 508 and 509, a fourth current mirror composed of NMOS tubes 510 and 511, a comparator unit 512, and an NPN tube. 513; the emitter stage of the NPN tube 513 is connected to the AE time setting end of the control circuit, and the collector of the NPN tube 513 is connected to the input end of the third current mirror; the output end of the third current mirror and the fourth current mirror Input connection; the fourth current mirror
  • the output terminal is coupled to the first input of the comparator unit 512, the integrating capacitor 505; the second input of the comparator unit 512 is coupled to the reference module, and the reference module generates a second reference voltage.
  • the synchronous rectifier When the synchronous rectifier is turned on, the AE time setting end of the control circuit is low, and the clamp zero is realized by the NPN tube 513.
  • the third current mirror composed of the PMOS transistors 508 and 509 starts to generate current, and the current passes through the NMOS.
  • the fourth current mirror composed of the tubes 510 and 511 starts to discharge the integrating capacitor 505; the comparator unit 512 compares the voltage of the integrating capacitor 505 with the second reference voltage Vref2 generated by the reference module, when the voltage of the integrating capacitor 505 is lower than the second reference voltage When Vref2, the comparator unit 512 outputs a low potential signal SB, and the circuit determines that the discontinuity time of the secondary side is close to the true discontinuity time. At this time, if the voltage of the voltage terminal of the circuit D is higher than the second reference source, the synchronization is turned off. Rectifier.
  • the present invention also provides a specific embodiment of the power supply module, but is not limited to this manner.
  • the power supply module includes a high voltage PMOS transistor 601, an NPN transistor 602, a modulation resistor 603, a startup resistor 604, an operational amplifier circuit 605, voltage dividing resistors 606 and 607, a high voltage NMOS transistor 608, NMOS transistors 609 and 610, and a pull-down.
  • the EN terminal of the startup circuit When the D voltage terminal of the control circuit is at a high level, before the circuit is powered on, the EN terminal of the startup circuit is a low level signal, and the circuit composed of the startup resistor 604 and the NMOS transistor 610 generates a current, which is pulled down through the NMOS transistor 609. A voltage is generated across the modulation resistor 603 to turn on the high voltage PMOS transistor 601.
  • the EN terminal of the startup circuit is a high level signal, the NMOS transistor 611 is turned on, and the NMOS transistor 609 does not pull down the current.
  • the power supply terminal of the control circuit VCC is compared with the reference level generated by the reference module by the voltage dividing resistor network composed of the voltage dividing resistors 606 and 607.
  • the output of the operational amplifier circuit 605 is low.
  • the voltage signal causes the high voltage NMOS transistor 608 to be turned off, the voltage on the modulation resistor 603 is not lowered, and the high voltage PMOS transistor 601 is turned off, thereby achieving a stable voltage output of the power supply terminal of the control circuit VCC.
  • the NPN tube 602 is diode-connected to prevent the control circuit VCC from supplying power to the D voltage terminal.
  • the waveform diagram shown in Fig. 7 can be obtained.
  • the pwm signal is the driving signal of the primary side power tube;
  • the gnd signal is the waveform of the output side of the secondary side to the grounding end of the synchronous rectification control circuit GND, wherein the necessary condition for opening the synchronous rectifier when the integral area of the shaded portion of the gnd signal is greater than a certain value is Preventing misjudgment during DCM interference;
  • D signal is the waveform of the synchronous rectifier drain terminal to the synchronous rectification control circuit GND ground, and the DRV signal is the drive signal of the synchronous rectifier in Figure 4.
  • the present invention also provides an isolated synchronous rectification control method, which can be used in the isolated synchronous rectification control circuit and device of the present invention, and specifically includes:
  • setting the time constant of the primary side turn-on can adjust the standard of the required primary side turn-on determination by adjusting the time setting resistance connected between the time setting end of the synchronous rectification control circuit and the output ground;
  • the time required for the synchronous rectifier to conduct is obtained by estimating the negative pressure difference between the time setting end of the synchronous rectification control circuit and the output ground when the secondary side continues to flow.
  • the present invention simultaneously adopts a precise primary side turn-on determination circuit and a secondary side freewheeling time estimation circuit, and a dual voltage determination mechanism to ensure that the synchronous rectifier tube operates accurately in the face of complicated system operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种隔离型同步整流控制电路(301)及其装置与控制方法。控制电路包括:供电模块(401)、基准模块(405)、比较器模组、原边开通判定单元(406)、副边断续预估单元(407)、逻辑单元(408)及驱动单元(409)。控制装置包括:变压器(302)、用于提供稳定电压的旁路电容(303)、用于设定原边开通的时间常数和副边续流时间预估的判断的时间常数设置电阻(305)、用于根据时间设置端流入的电流判定原边是否开通同时预估副边断续时间并根据结果生成导通或关断的逻辑控制信号以对同步整流管进行驱动的同步整流控制电路、以及连接整流控制电路的电压端并且用于输出的输出电容(304)。隔离型同步整流控制电路采用原边开通判定和副边断续时间预估电路,及双电压的判定机制,保证同步整流管在复杂的工作情况下的精准工作。

Description

一种隔离型同步整流控制电路及其装置与控制方法 技术领域
本发明涉及一种隔离型同步整流控制电路及其装置与控制方法,属于同步整流控制电路的技术领域。
背景技术
目前,隔离型同步整流的目的主要是为了在低压大电流的输出场合取代副边的肖特基整流管,从而获得更好的效率,更小的应用体积,更低的系统成本。低导通压降的肖特基管的正向导通压降在0.2-0.3V左右,而同步整流管的导通压降,在合理设计的情况下可以做到0.15V以下,从而大大降低整流管本身的损耗,提升系统效率。
图1为目前市面上的一种同步整流控制方案,其中包括变压器101、同步整流管102、输出电容103、VCC供电电阻104、VCC旁路电容105、时间常数设定电阻108、时间常数设定电阻107、同步整流控制芯片106。由时间常数设定电阻108、时间常数设定电阻107组成的电阻网络共同确定原边开通判定,所述同步整流控制芯片106通过DET和AE脚位组成积分来判定原边功率管的开通。VCC脚位是芯片供电引脚。
但是上述的控制方案,元器件较多,控制方案复杂。而且VCC引脚的供电来自于输出Vout,当整个控制系统工作在低输出电压模式时,VCC因为供电不足,会导致同步整流控制芯片106不工作,整流功能只能通过整流管寄生的体二极管来维持,造成发热严重,效率损失。
图2为目前市面上另一种存在的同步整流芯片,其中包括一个变压器201、输出电容202、VCC旁路电容203、同步整流驱动芯片204、滤波电容205。这种控制架构完全靠判定电压来控制同步整流管的开通和关断,缺少原边开通识别机制,很容易造成同步整流管的误操作,造成炸机现象。
因此,现有的同步整流控制电路无法在面临复杂的系统工作情况下精准工作,不具备双电压的判定机制,工作效率低下。
发明内容
本发明所要解决的技术问题在于克服现有技术的不足,提供一种隔离型同步整流控制电路及其装置与控制方法,解决现有的同步整流控制电路缺少原边开通识别机制,造 成同步整流管的误操作或发热严重,效率损失的问题。
本发明具体采用以下技术方案解决上述技术问题:
一种隔离型同步整流控制电路,包括:
供电模块,用于提供电压;
基准模块,用于产生至少第一和第二基准源;
比较器模组,包括开通比较器和第一关断比较器,其中所述开通比较器用于控制电路的电压端电压与第一基准源对比;所述第一关断比较器用于控制电路的电压端电压与第二基准源对比;
原边开通判定单元,用于根据控制电路的时间设置端流入的电流获得电流的积分值,并对比电流的积分值与设定值的大小;
副边断续预估单元,用于根据原边开通判定单元所获得的电流的积分值预测同步整流管导通所需时间,及根据预测的同步整流管导通所需时间来提供屏蔽时间,并对比所述屏蔽时间与同步整流管实际导通所需时间的大小;
逻辑单元,用于根据所述开通比较器的对比结果和原边开通判定单元的对比结果,生成用于导通同步整流管的逻辑控制信号,且根据第一关断比较器的对比结果和副边断续预估单元的对比结果,生成用于关断同步整流管的逻辑控制信号;
驱动单元,用于根据所述逻辑单元所生成逻辑控制信号对同步整流管进行驱动。
进一步地,作为本发明的一种优选技术方案:所述比较器模组还包括第二关断比较器,所述第二关断比较器用于控制电路的电压端电压与基准模块产生的第三基准源对比。
进一步地,作为本发明的一种优选技术方案:还包括用于防止同步整流管误开通的钳位电路。
进一步地,作为本发明的一种优选技术方案:所述原边开通判定单元包括积分电容、由两个NMOS管组成的第一电流镜、由两个PMOS管组成的第二电流镜、比较器单元及下拉NMOS管;所述基准单元还产生第一基准电压;所述第一电流镜,用于在控制电路的时间设置端为高电位时产生电流,及通过第二电流镜为积分电容充电;所述比较器单元用于将积分电容的电压与第一基准电压对比及根据对比结果输出电位信号;所述下拉NMOS管,用于每个开断周期结束时清空积分电容上的电压。
进一步地,作为本发明的一种优选技术方案:所述副边断续预估单元单路包括NPN管、由两个PMOS管组成的第三电流镜、由两个NMOS管组成的第四电流镜、比较器单元;所述基准单元还产生第二基准电压;所述NPN管,用于实现钳位零;所述第三电流镜, 用于在控制电路的时间设置端为低电位时产生电流,及通过第四电流镜对积分电容放电;所述比较器单元用于将积分电容的电压与第二基准电压对比及根据对比结果输出电位信号。
进一步地,作为本发明的一种优选技术方案:所述供电模块包括启动电路、调制电阻、高压PMOS管、两个分压电阻、运放电路及高压NMOS管;所述启动电路,用于在控制电路的电压端为高电平时产生电流;所述调制电阻,用于产生电压;所述高压PMOS管,用于接收电压及导通;所述运放电路,用于在控制电路的电压端达到启动电压时,将两个分压电阻的电压和基准电平对比,及根据对比结果输出电压信号控制高压NMOS管关断。
进一步地,作为本发明的一种优选技术方案:所述供电模块还包括用于防止电流从控制电路的供电端向电压端倒灌的NPN管。
本发明还提供一种基于上述隔离型同步整流控制电路的控制装置,包括:
变压器,其副边输出绕组的一端连接同步整流控制电路的接地端和旁路电容,变压器的副边输出绕组的另一端接地;
旁路电容,连接同步整流控制电路的供电端,用于为同步整流控制电路提供稳定电压;
时间常数设置电阻,连接同步整流控制电路的时间设置端,用于设定原边开通的时间常数和副边断续时间预估的判断;
同步整流控制电路,用于根据其时间设置端流入的电流判定原边是否开通同时预估副边断续时间,并根据判定和预估结果生成逻辑控制信号对同步整流管进行导通或关断驱动;
输出电容,连接整流控制电路的电压端,用于电容的输出。
本发明还提供一种隔离型同步整流控制方法,包括:
设定原边开通的时间常数,及根据流入控制电路的电流获得电流的积分值;并将电流的积分值与设定值对比,且根据控制电路的电压与基准源的大小,控制同步整流管的导通;
根据所述电流积分值预测同步整流管导通所需时间,及根据预测的同步整流管导通所需时间提供屏蔽时间;当同步整流管实际导通所需时间超过所述屏蔽时间,且在控制电路的电压大于基准源时,控制同步整流管的关断。
进一步地,作为本发明的一种优选技术方案:所述同步整流管导通所需时间由同步整流控制电路的时间设置端和输出地之间在副边续流时的负向压差估算获得。
本发明采用上述技术方案,能产生如下技术效果:
(1)、本发明所提供的一种隔离型同步整流控制电路及其装置与控制方法,通过原边开通判定的方式,防止同步整流管的误导通,同时通过副边续流预估的方式,防止同步整流管的提前误关断。采用了优化的VCC供电电路,保证电源系统工作在各种模式下的电源供电充足。同时采用了精准的原边开通判定电路和副边续流时间预估电路,以及双电压的判定机制,保证同步整流管在面临复杂的系统工作情况下,都可以精准工作。
附图说明
图1为现有技术中一种同步整流控制装置的结构示意图。
图2为现有技术中另一种同步整流控制装置的结构示意图。
图3为本发明的隔离型同步整流控制装置的结构示意图。
图4为本发明的隔离型同步整流控制电路的结构示意图。
图5为本发明中原边开通判定单元和副边断续预估单元的电路示意图。
图6为本发明中供电模块的电路示意图。
图7为本发明的各信号波形图。
具体实施方式
下面结合说明书附图对本发明的实施方式进行描述。
如图3所示,本发明设计了一种隔离型同步整流控制装置,该装置主要包括同步整流管控制电路301、变压器302、旁路电容303、输出电阻304、时间常数设置电阻305,其中同步整流控制电路包括GND接地端、VCC供电端、AE时间设置端及D电压端。所述变压器302的副边输出绕组的异名端连接同步整流控制电路301的GND接地端和旁路电容303的一端,变压器302的副边输出绕组的同名端端接地;所述旁路电容303的另一端连接同步整流控制电路301的VCC供电端;所述同步整流控制电路301的AE时间设置端连接时间常数设置电阻305后接地,且同步整流控制电路301的D电压端连接输出电容304后接地。所述旁路电容303在同步整流控制电路301工作时给其提供稳定电压;所述时间常数设置电阻305可以设定同步整流控制电路301内部的原边开通电路的时间常数和副边断续时间预估电路的判断。所述同步整流控制电路301,用于其时间设置端 流入的电流判定原边是否开通同时预估副边断续时间,并根据判定和预估结果生成逻辑控制信号对同步整流管进行导通或关断驱动;所述输出电容305,连接整流控制电路的电压端,用于电容的输出。
对于同步整流控制电路301,本发明给出一个具体实施例,但不限于该种方式。如图4所示的结构,该同步整流控制电路包括供电模块401、基准模块405、由开通比较器402和第一关段比较器403组成的比较器模组、原边开通判定单元406、副边断续预估单元407、逻辑单元408,驱动单元409,其中供电模块401的一端连接同步整流管410的漏极和控制电路的D电压端,及另一端连接控制电路的VCC供电端,用于提供电压;所述基准模块405连接控制电路的VCC供电端,用于产生至少第一和第二基准源;所述比较器模组的输入端分别连接同步整流管410的漏极和基准模块405,及比较器模组的输出端连接逻辑单元408的输入端,其中开通比较器402用于控制电路的D电压端电压与第一基准源对比;所述第一关断比较器403用于控制电路的D电压端电压与第二基准源对比;所述原边开通判定单元406的输入端连接控制电路的AE时间设置端和输出端接连接逻辑单元408的输入端,用于根据控制电路的AE时间设置端流入的电流获得电流的积分值,并对比电流的积分值与设定值的大小;所述副边断续预估单元407的输入端连接控制电路的AE时间设置端和输出端接连接逻辑单元408的输入端,用于根据原边开通判定单元407所获得的电流的积分值预测同步整流管410导通所需时间,及根据预测同步整流管410导通所需时间来提供屏蔽时间,并对比所述屏蔽时间与同步整流管实际导通所需时间的大小;所述逻辑单元408的输出端与驱动单元409的输入端连接,用于根据所述对比结果,生成导通或关断的逻辑控制信号;所述驱动单元409的输出端接同步整流管410的栅极,及同步整流管410的栅极与控制电路的GND接地端连接,该驱动单元409用于根据所述逻辑单元408所生成导通或关断的逻辑控制信号对同步整流管410进行驱动。
当原边控制器开始工作时,图4中同步整流控制电路的D电压端端开始出现高电压,通过供电模块401,VCC供电端建立稳定电压;当原边控制器开通时,电路的AE时间设置端和图3中的地端,通过图3中时间常数设置电阻305作用,电流流入原边开通判定单元406后获得电流的积分值,当所述电流的积分值超过设定值时,此时如果控制电路中D电压端的电压小于第一基准源,逻辑单元408生成逻辑控制信号通过驱动单元409打开同步整流管410。副边断续预估单元407的作用根据所述电流积分值,提前预测同步整流管410导通所需时间Tp,并根据预测同步整流管410导通所需时间Tp提供屏蔽 时间,当同步整流管410导通实际时间超过所提供的屏蔽时间,且如果控制电路的D电压端电压大于第二基准源,则逻辑单元408生成逻辑控制信号通过驱动单元409关断同步整流管410。
进一步地,所述比较器模组还包括第二关断比较器404,所述基准模块405还产生第三基准源;同样地,第二关断比较器404输入端分别连接同步整流管410的漏极和基准模块405,及输出端连接逻辑单元408的输入端,该第二关断比较器404用于控制电路的D电压端电压与第三基准源对比。其第二关断比较器404的作用是,如果控制电路的D电压端电压在所述同步整流管410导通所需时间Tp大于第三基准源,则逻辑单元408也生成逻辑控制信号通过驱动单元409直接关断同步整流管410。
为了防止芯片上电时,同步整流管410因为自身寄生电容造成误开通,所述同步整流控制电路还可以包括钳位电路411,所述钳位电路411的一端接同步整流管410的栅极,另一端接所述同步整流控制电路的接地端,由此防止同步整流管误开通。
对于电路中的原边开通判定单元和副边断续预估单元,本发明也给出具体实施例,但不限于该种方式。如图5所示的电路,所述原边开通判定单元包括由NMOS管501和502组成的第一电流镜、由PMOS管503和504组成的第二电流镜、积分电容505、下拉NMOS管506、比较器单元507;所述第一电流镜的输入端连接控制电路的AE时间设置端,第一电流镜的输出端连接第二电流镜的输入端;所述第二电流镜的输出端与积分电容505的一端、比较器单元507的第一输入端分别连接;所述积分电容505的另一端连接控制电路的GND接地端;所述下拉NMOS管506并联于积分电容505的两端;所述比较器单元507的第二输入端连接基准模块,且基准模块产生第一基准电压。当原边开关管导通时,控制电路的AE时间设置端为高电位,由NMOS管501和502组成的第一电流镜开始产生电流,通过第二电流镜给积分电容505充电;比较器单元507比较积分电容505的电压与基准模块产生的第一基准电压Vref1,当积分电容505的电压大于第一基准电压Vref1时,比较器单元507输出高电位信号PB,此时属于原边开关管导通。下拉NMOS管506的作用是每个开通周期结束时清空积分电容505上的电压,其中每个开通周期是指同步整流管开通的时刻。
其中副边断续预估单元如图5所示,主要包括:由PMOS管508和509组成的第三电流镜、由NMOS管510和511组成的第四电流镜、比较器单元512和NPN管513;所述NPN管513的发射级连接控制电路的AE时间设置端,且NPN管513的集电极与第三电流镜的输入端连接;所述第三电流镜的输出端与第四电流镜的输入端连接;所述第四电流镜的 输出端与比较器单元512的第一输入端、积分电容505连接;所述比较器单元512的第二输入端连接基准模块,且基准模块产生第二基准电压。当同步整流管导通时,控制电路的AE时间设置端为低电位,通过NPN管513实现钳位零,此时由PMOS管508和509组成的第三电流镜开始产生电流,电流通过由NMOS管510和511组成的第四电流镜开始给积分电容505放电;比较器单元512比较积分电容505的电压与基准模块产生的第二基准电压Vref2,当积分电容505的电压低于第二基准电压Vref2时,比较器单元512输出低电位信号SB,电路认定副边的断续时间已经接近真实的断续时间,此时如果电路D电压端的电压高于所述第二基准源,则关断同步整流管。
本发明还提供供电模块的一种具体实施例,但不限于该种方式。如图6所示,供电模块包括高压PMOS管601、NPN管602、调制电阻603、启动电阻604、运放电路605、分压电阻606和607、高压NMOS管608、NMOS管609和610、下拉管611,其中由启动电阻604、NMOS管609和610及下拉管611组成的启动电路,该启动电路中NMOS管609和610形成第五电流镜。当控制电路的D电压端为高电平时,电路未上电之前,启动电路的EN端为低电平信号,启动电阻604和NMOS管610组成的电路产生电流,通过NMOS管609下拉电路,在调制电阻603上产生电压,从而导通高压PMOS管601。当控制电路VCC供电端的电压达到启动电压时,启动电路的EN端为高电平信号,NMOS管611导通,NMOS管609不下拉电流。此时控制电路VCC供电端通过分压电阻606和607组成的分压电阻网络与基准模块产生的基准电平进行比较,当控制电路VCC供电端的电压超过设定值时,运放电路605输出低电压信号,使得高压NMOS管608关断,调制电阻603上无压降,高压PMOS管601关断,从而实现控制电路VCC供电端稳定电压输出。所述NPN管602为二极管连接,防止控制电路VCC供电端到D电压端倒灌电流。
根据本发明的隔离型同步整流控制电路和装置,可获得图7所示的波形图。其中pwm信号为原边功率管的驱动信号;gnd信号为副边的输出地对同步整流控制电路GND接地端的波形,其中gnd信号的阴影部分积分面积大于一定值时打开同步整流管的必要条件,防止DCM干扰时的误判断;D信号为同步整流管漏端对同步整流控制电路GND接地端的波形,DRV信号为图四中同步整流管的驱动信号。
本发明还提供一种隔离型同步整流控制方法,该方法可用于本发明中的隔离型同步整流控制电路和装置,具体包括:
设定原边开通的时间常数,及根据流入控制电路的电流获得电流的积分值;并将电流的积分值与设定值对比,且根据控制电路的电压与基准源的大小,控制同步整流管的导通;可进一步设定控制电路的电压小于基准源时,控制同步整流管的导通。
根据所述电流积分值预测同步整流管导通所需时间,并根据预测同步整流管导通所需时间来提供屏蔽时间,当同步整流管实际导通所需时间超过所述屏蔽时间,且在控制电路的电压大于基准源时,控制同步整流管的关断。
优选地,上述方法中,设定原边开通的时间常数可以通过调整连接在同步整流控制电路的时间设置端和输出地之间的时间设置电阻,来调整所需原边开通判定的标准;所述同步整流管导通所需时间由同步整流控制电路的时间设置端和输出地之间在副边续流时的负向压差估算获得。
综上,本发明同时采用了精准的原边开通判定电路和副边续流时间预估电路,以及双电压的判定机制,保证同步整流管在面临复杂的系统工作情况下精准工作。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (10)

  1. 一种隔离型同步整流控制电路,其特征在于,包括:
    供电模块,用于提供电压;
    基准模块,用于产生至少第一和第二基准源;
    比较器模组,包括开通比较器和第一关断比较器,其中所述开通比较器用于控制电路的电压端电压与第一基准源对比;所述第一关断比较器用于控制电路的电压端电压与第二基准源对比;
    原边开通判定单元,用于根据控制电路的时间设置端流入的电流获得电流的积分值,并对比电流的积分值与设定值的大小;
    副边断续预估单元,用于根据原边开通判定单元所获得的电流的积分值预测同步整流管导通所需时间,根据预测的同步整流管导通所需时间来提供屏蔽时间,并对比所述屏蔽时间与同步整流管实际导通所需时间的大小;
    逻辑单元,用于根据所述开通比较器的对比结果和原边开通判定单元的对比结果,生成用于导通同步整流管的逻辑控制信号,且根据第一关断比较器的对比结果和副边断续预估单元的对比结果,生成用于关断同步整流管的逻辑控制信号;
    驱动单元,用于根据所述逻辑单元所生成逻辑控制信号对同步整流管进行驱动。
  2. 根据权利要求1所述隔离型同步整流控制电路,其特征在于:所述比较器模组还包括第二关断比较器,所述第二关断比较器用于控制电路的电压端电压与基准模块产生的第三基准源对比。
  3. 根据权利要求1所述隔离型同步整流控制电路,其特征在于:还包括用于防止同步整流管误开通的钳位电路。
  4. 根据权利要求1所述隔离型同步整流控制电路,其特征在于:所述原边开通判定单元包括积分电容、由两个NMOS管组成的第一电流镜、由两个PMOS管组成的第二电流镜、比较器单元及下拉NMOS管;所述基准单元还产生第一基准电压;所述第一电流镜,用于在控制电路的时间设置端为高电位时产生电流,及通过第二电流镜为积分电容充电;所述比较器单元用于将积分电容的电压与第一基准电压对比及根据对比结果输出电位信号;所述下拉NMOS管,用于每个开通周期结束时清空积分电容上的电压。
  5. 根据权利要求1所述隔离型同步整流控制电路,其特征在于:所述副边断续预估单元单路包括NPN管、由两个PMOS管组成的第三电流镜、由两个NMOS管组成的第四电流镜、比较器单元;所述基准单元还产生第二基准电压;所述NPN管,用于实现钳位零;所 述第三电流镜,用于在控制电路的时间设置端为低电位时产生电流,及通过第四电流镜对积分电容放电;所述比较器单元用于将积分电容的电压与第二基准电压对比及根据对比结果输出电位信号。
  6. 根据权利要求1所述隔离型同步整流控制电路,其特征在于:所述供电模块包括启动电路、调制电阻、高压PMOS管、两个分压电阻、运放电路及高压NMOS管;所述启动电路,用于在控制电路的电压端为高电平时产生电流;所述调制电阻,用于产生电压;所述高压PMOS管,用于接收电压及导通;所述运放电路,用于在控制电路的电压端达到启动电压时,将两个分压电阻的电压和基准电平对比,及根据对比结果输出电压信号控制高压NMOS管关断。
  7. 根据权利要求6所述隔离型同步整流控制电路,其特征在于:所述供电模块还包括用于防止电流从控制电路的供电端向电压端倒灌的NPN管。
  8. 一种基于权利要求1至7任一项所述隔离型同步整流控制电路的控制装置,其特征在于,包括:
    变压器,其副边输出绕组的一端连接同步整流控制电路的接地端和旁路电容,变压器的副边输出绕组的另一端接地;
    旁路电容,连接同步整流控制电路的供电端,用于为同步整流控制电路提供稳定电压;
    时间常数设置电阻,连接同步整流控制电路的时间设置端,用于设定原边开通的时间常数和副边断续时间预估的判断;
    同步整流控制电路,用于根据其时间设置端流入的电流判定原边是否开通同时预估副边断续时间,并根据判定和预估结果生成逻辑控制信号对同步整流管进行导通或关断驱动;
    输出电容,连接整流控制电路的电压端,用于电容的输出。
  9. 一种隔离型同步整流控制方法,其特征在于,包括:
    设定原边开通的时间常数,及根据流入控制电路的电流获得电流的积分值;并将电流的积分值与设定值对比,且根据控制电路的电压与基准源的大小,控制同步整流管的导通;
    根据所述电流积分值预测同步整流管导通所需时间,及根据预测的同步整流管导通所需时间提供屏蔽时间;当同步整流管实际导通所需时间超过所述屏蔽时间,且在控制电路的电压大于基准源时,控制同步整流管的关断。
  10. 根据权利要求9所述隔离型同步整流控制方法,其特征在于,所述同步整流管 导通所需时间由同步整流控制电路的时间设置端和输出地之间在副边续流时的负向压差估算获得。
PCT/CN2016/073150 2015-10-21 2016-02-02 一种隔离型同步整流控制电路及其装置与控制方法 WO2017067116A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16794197.0A EP3367549A4 (en) 2015-10-21 2016-02-02 Isolated synchronous rectifier control circuit, device using same, and control method thereof
US15/304,006 US9853563B2 (en) 2015-10-21 2016-02-02 Isolated synchronous rectification control circuit, control device, and control method
JP2016568862A JP6343354B2 (ja) 2015-10-21 2016-02-02 分離型同期整流制御回路、その制御装置、及び、分離型同期整流制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510681520.8 2015-10-21
CN201510681520.8A CN105305844B (zh) 2015-10-21 2015-10-21 一种隔离型同步整流控制电路及其装置与控制方法

Publications (1)

Publication Number Publication Date
WO2017067116A1 true WO2017067116A1 (zh) 2017-04-27

Family

ID=55202719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073150 WO2017067116A1 (zh) 2015-10-21 2016-02-02 一种隔离型同步整流控制电路及其装置与控制方法

Country Status (5)

Country Link
US (1) US9853563B2 (zh)
EP (1) EP3367549A4 (zh)
JP (1) JP6343354B2 (zh)
CN (1) CN105305844B (zh)
WO (1) WO2017067116A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008947B2 (en) 2015-07-31 2018-06-26 Texas Instruments Incorporated Flyback converter with secondary side regulation
CN106787636B (zh) * 2017-01-06 2023-04-07 深圳市芯茂微电子有限公司 兼容ccm工作模式的同步整流控制电路
CN108347157B (zh) * 2017-09-29 2020-01-17 深圳市芯茂微电子有限公司 一种同步整流控制装置及其同步整流控制电路
CN108336914B (zh) * 2018-03-01 2023-09-05 茂睿芯(深圳)科技有限公司 副边控制电路、控制方法及同步整流器
CN108880266B (zh) * 2018-07-17 2024-03-12 富满微电子集团股份有限公司 同步整流电路、芯片及隔离型同步整流控制电路
CN109067206B (zh) * 2018-08-24 2020-09-29 深圳市稳先微电子有限公司 一种ac-dc电源及其同步整流管的控制电路
CN109980946B (zh) * 2019-04-18 2020-02-14 深圳南云微电子有限公司 一种同步整流控制电路及其控制方法
CN110572020B (zh) * 2019-09-19 2021-08-20 昂宝电子(上海)有限公司 控制电路和反激式开关电源系统
TWI755740B (zh) * 2020-05-26 2022-02-21 力林科技股份有限公司 電壓轉換裝置及其充電方法
CN111934525B (zh) * 2020-08-10 2023-04-28 电子科技大学 一种负电平检测电路
CN113922646B (zh) * 2021-06-28 2024-05-03 上海空间电源研究所 一种用于隔离型同步整流二次电源的防电流倒灌电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262112B2 (ja) * 1999-08-16 2002-03-04 富士ゼロックス株式会社 同期整流回路及び電源装置
JP2009284667A (ja) * 2008-05-22 2009-12-03 Kawasaki Microelectronics Inc 電源装置、および、その制御方法ならびに半導体装置
CN102195492A (zh) * 2011-05-24 2011-09-21 成都芯源系统有限公司 同步整流开关电源及其控制电路和控制方法
CN102231605A (zh) * 2011-06-30 2011-11-02 上海新进半导体制造有限公司 一种开关电源副边的同步整流控制电路及反激式开关电源
EP2493063B1 (en) * 2011-02-24 2014-07-09 DET International Holding Limited Multiple use of a current transformer
CN104009655A (zh) * 2014-06-13 2014-08-27 佛山市南海赛威科技技术有限公司 基于时域乘法器的同步整流控制系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038150A (en) * 1997-07-23 2000-03-14 Yee; Hsian-Pei Transistorized rectifier for a multiple output converter
JP3626072B2 (ja) * 2000-05-31 2005-03-02 松下電器産業株式会社 スイッチング電源装置
US6625043B2 (en) * 2001-02-21 2003-09-23 Tdk Corporation Power supply unit and driving method thereof
DE60305309T2 (de) * 2002-04-12 2007-02-22 Det International Holding Ltd., George Town Hocheffektiver sperrwandler
JP4126558B2 (ja) * 2004-07-02 2008-07-30 サンケン電気株式会社 スイッチング電源装置
CN101572485B (zh) * 2008-04-30 2012-06-06 杭州茂力半导体技术有限公司 用于副边同步整流管的智能驱动控制方法及装置
US7911813B2 (en) * 2008-07-21 2011-03-22 System General Corp. Offline synchronous rectifying circuit with sense transistor for resonant switching power converter
CN201418040Y (zh) * 2009-03-07 2010-03-03 官继红 一种同步整流管的驱动电路
US7876584B2 (en) * 2009-06-24 2011-01-25 Alpha And Omega Semiconductor Incorporated Circuit and method for controlling the secondary FET of transformer coupled synchronous rectified flyback converter
US8625313B2 (en) * 2010-08-04 2014-01-07 System General Corporation High-side synchronous rectifier circuits and control circuits for power converters
EP2887521A1 (en) * 2013-12-23 2015-06-24 Nxp B.V. Switched mode power supplies and controllers, and a method of controlling a switched mode power supply

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262112B2 (ja) * 1999-08-16 2002-03-04 富士ゼロックス株式会社 同期整流回路及び電源装置
JP2009284667A (ja) * 2008-05-22 2009-12-03 Kawasaki Microelectronics Inc 電源装置、および、その制御方法ならびに半導体装置
EP2493063B1 (en) * 2011-02-24 2014-07-09 DET International Holding Limited Multiple use of a current transformer
CN102195492A (zh) * 2011-05-24 2011-09-21 成都芯源系统有限公司 同步整流开关电源及其控制电路和控制方法
CN102231605A (zh) * 2011-06-30 2011-11-02 上海新进半导体制造有限公司 一种开关电源副边的同步整流控制电路及反激式开关电源
CN104009655A (zh) * 2014-06-13 2014-08-27 佛山市南海赛威科技技术有限公司 基于时域乘法器的同步整流控制系统及方法

Also Published As

Publication number Publication date
US9853563B2 (en) 2017-12-26
EP3367549A4 (en) 2018-10-31
US20170272001A1 (en) 2017-09-21
JP2017536065A (ja) 2017-11-30
JP6343354B2 (ja) 2018-06-13
EP3367549A1 (en) 2018-08-29
CN105305844B (zh) 2017-11-21
CN105305844A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2017067116A1 (zh) 一种隔离型同步整流控制电路及其装置与控制方法
US10505442B2 (en) Synchronous rectification control circuit, method and flyback switch circuit
US9906140B2 (en) Power supply circuit and power supply method for switching power supply
CN104883063B (zh) 开关电源装置
CN104219840B (zh) Led开关调色温控制器及led驱动电路
CN101728958A (zh) 尾电流控制隔离式转换器的方法及控制装置
TW201832455A (zh) 一種具有對於同步整流控制器的定時控制的系統和方法
US9742299B2 (en) Insulated synchronous rectification DC/DC converter
CN205249038U (zh) 驱动控制电路以及开关电源
WO2019174380A1 (zh) 一种时间宽度检测电路及其控制方法
CN105811747A (zh) 具有使能控制的高压电源系统
CN110138220B (zh) 一种电源及其开关电源电路
US9980355B2 (en) LED driver provided with time delay circuit
CN109660131A (zh) 一种开关电源供电电路、供电方法及开关电源系统
CN109478844B (zh) 一种内置供电电容的功率开关驱动电路
CN106787636B (zh) 兼容ccm工作模式的同步整流控制电路
TWI589108B (zh) A control device for a switching power supply system and a switching power supply system
US9125266B2 (en) LED driver operating in boundary condition mode
TWI497894B (zh) 可使電源供應器在電壓波谷之谷底切換之電源控制器以及相關之控制方法
CN104010420B (zh) 可调色温模块、可调色温的led驱动电路及系统
CN111865055B (zh) 一种提前下拉同步整流管栅压的同步整流驱动电路
CN108370216B (zh) 启动时具有零电流的开关功率转换器
CN111697840A (zh) 一种使用mosfet控制外部输出的控制电路及开关电源
CN108923625B (zh) 一种同步整流器控制方法及电路
CN108347157B (zh) 一种同步整流控制装置及其同步整流控制电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15304006

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016568862

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016794197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016794197

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16794197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE