WO2017067071A1 - 一种背光源用黄色硅酸盐荧光粉及其制造方法 - Google Patents

一种背光源用黄色硅酸盐荧光粉及其制造方法 Download PDF

Info

Publication number
WO2017067071A1
WO2017067071A1 PCT/CN2015/099498 CN2015099498W WO2017067071A1 WO 2017067071 A1 WO2017067071 A1 WO 2017067071A1 CN 2015099498 W CN2015099498 W CN 2015099498W WO 2017067071 A1 WO2017067071 A1 WO 2017067071A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
yellow
silicate phosphor
producing
raw materials
Prior art date
Application number
PCT/CN2015/099498
Other languages
English (en)
French (fr)
Inventor
王晶
尹向南
胡程
徐达
Original Assignee
东台市天源荧光材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东台市天源荧光材料有限公司 filed Critical 东台市天源荧光材料有限公司
Publication of WO2017067071A1 publication Critical patent/WO2017067071A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon

Definitions

  • the invention relates to a luminescent material and a synthesis method thereof, in particular to a silicate phosphor for backlight and a method for manufacturing the same.
  • the invention overcomes the above-mentioned deficiencies, and provides a yellow light source with high material strength, good stability, not easy to be damp in the air, small light attenuation drift after use, and large application range, and long life of the illumination display device.
  • Silicon salt phosphor Silicon salt phosphor.
  • Another object of the present invention is to provide a method of synthesizing a yellow silicon salt phosphor for the backlight.
  • the backlight material synthesized by the method has high strength, good stability and good particle dispersion, and is particularly suitable for use in backlight devices, information display, and illumination sources.
  • a silicate phosphor for backlight the main raw material of the silicate phosphor is: (Sr 1-xy Ba x ) 2n Si z O 2+2z :Eu y , wherein: 0.01 ⁇ x ⁇ 1; 0.01 ⁇ y ⁇ 0.2; 0.5 ⁇ z ⁇ 1.5; 1 ⁇ n ⁇ 2.
  • the above method for manufacturing a yellow silicate phosphor for a backlight includes the following steps:
  • step (3) The powder of step (2) is placed in a reducing atmosphere to obtain a yellow bulk powder material, which is sieved to finally obtain a yellow powder;
  • the yellow powder is coated by chemical vapor deposition, which is the product obtained by the present invention.
  • the fluxing additive in the step (2) is one or more of H 3 BO 3 , BaF 2 , LiCl, LiF, NH 4 Cl, BaCl 2 , SrF 2 , and the weight of the fluxing additive is the weight of the raw material. 0.05% to 5%.
  • the uniform mixing time of the fluxing additive and the raw material is 30 to 50 hours.
  • the reduction time in the step (3) is 2 to 6 hours, and the ignition temperature is controlled at 1400 ° C to 1500 ° C; the reducing atmosphere is one or more of nitrogen, methane, propane, hydrogen, and ammonia.
  • the yellow bulk powder material in the step (3) is sieved to a 300 mesh nylon mesh, and the central particle diameter is controlled to be 5 ⁇ m to 15 ⁇ m.
  • the solution used for the cleaning in the step (4) is one or more of methanol, ethanol, and propanol.
  • the concentration of the solution used for cleaning is controlled to be 50% to 100%.
  • the temperature of the dried powder in the step (4) is controlled at 60 ° C to 105 ° C.
  • the chemical vapor deposition method refers to a chemical vapor deposition technique in which a protective coating is applied to a powder when the surface saturated powder is suspended and fluidized in a fluidized bed.
  • the chemical vapor deposition coating method described in the step (5) means that the yellow powder obtained in the step (4) is fluidized in the reactor to form a fluidized powder, and the material coated at 20 ° C to 60 ° C forms a vapor.
  • the fluidized powder is exposed to the material of the evaporation coating, and is fully saturated with the nitrogen gas as a carrier, heated to 500 ° C - 600 ° C, and oxygen is introduced, and the reaction is carried out for 6-8 hours, after the coating material reacts. Wrapped in powder, it is the coating material we need.
  • the ratio of the amount of the coated material to the fluidized powder is 5-10%, and the specific flow rate of the oxygen used is 0.01-1.0 m 3 .
  • the material to be coated is one or more of methane-based organic metals, preferably one or more of trimethyl aluminum, trimethyl gallium, aluminum alkyl, and triethyl aluminum.
  • the invention selects the raw material with the purity of up to 99.99%, and the silicon adopts the nanometer grade, so that the particles of the product are finer, the particles are dispersed well, and the coating is more uniform.
  • the invention has the beneficial effects that the product of the invention has a specific selection from the material purity and the particles, and at the same time increases the special coating process, so that the product performance (light decay, life) is greatly improved.
  • the yellow silicon salt phosphor material for backlight of the invention has high strength, good stability, good particle dispersion, is not easy to be damp in the air, has small light decay after use, and has a wide application range, and has long life of the illumination display device. It is especially suitable for backlight devices, information displays, and illumination sources.
  • step (3) The powder of step (2) is placed in a bath of 75% hydrogen and 25% nitrogen at 1450 degrees, and kept for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a special reactor to form a fluidized bed.
  • trimethylaluminum forms steam, which is fully saturated with nitrogen as a carrier, and is simultaneously saturated at 500 degrees. Introducing a certain amount of oxygen and reacting for 6 hours is the coating material we need.
  • step (3) The powder of step (2) is placed in a bath of 75% hydrogen and 25% nitrogen at 1450 degrees, and kept for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a special reactor to form a fluidized bed.
  • trimethylaluminum forms steam, which is fully saturated with nitrogen as a carrier, and is simultaneously saturated at 500 degrees. Introducing a certain amount of oxygen and reacting for 6 hours is the coating material we need.
  • step (3) The powder of step (2) is placed in a bath of 75% hydrogen and 25% nitrogen at 1450 degrees, and kept for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a special reactor to form a fluidized bed.
  • trimethylaluminum forms steam, which is fully saturated with nitrogen as a carrier, and is simultaneously saturated at 500 degrees. Introducing a certain amount of oxygen and reacting for 6 hours is the coating material we need.
  • step (3) The powder of step (2) is placed in a bath of 75% hydrogen and 25% nitrogen at 1450 degrees, and kept for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a special reactor to form a fluidized bed.
  • trimethylaluminum forms steam, which is fully saturated with nitrogen as a carrier, and is simultaneously saturated at 500 degrees. Introducing a certain amount of oxygen and reacting for 6 hours is the coating material we need.
  • step (3) The powder of step (2) is placed in a methane atmosphere at 1500 ° C for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum forms steam, which is fully saturated with nitrogen as a carrier, and is at 600 ° C.
  • the oxygen is introduced at a flow rate of 0.3 m 3 and the reaction is carried out for 8 hours, which is the coating material we need.
  • step (3) The powder of step (2) is placed in a methane atmosphere at 1500 ° C for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum forms steam, which is fully saturated with nitrogen as a carrier, and is at 600 ° C.
  • the oxygen is introduced at a flow rate of 0.3 m 3 and the reaction is carried out for 8 hours, which is the coating material we need.
  • step (3) The powder of step (2) is placed in a methane atmosphere at 1500 ° C for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum forms steam, which is fully saturated with nitrogen as a carrier, and is at 600 ° C.
  • the oxygen is introduced at a flow rate of 0.3 m 3 and the reaction is carried out for 8 hours, which is the coating material we need.
  • step (3) The powder of step (2) is placed in a methane atmosphere at 1500 ° C for 2 hours to obtain a yellow powder;
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum forms steam, which is fully saturated with nitrogen as a carrier, and is at 600 ° C.
  • the oxygen is introduced at a flow rate of 0.3 m 3 and the reaction is carried out for 8 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.4 m 3 and the reaction is carried out for 7 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.4 m 3 and the reaction is carried out for 7 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.4 m 3 and the reaction is carried out for 7 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.4 m 3 and the reaction is carried out for 7 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.5 m 3 and the reaction is carried out for 6 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.5 m 3 and the reaction is carried out for 6 hours, which is the coating material we need.
  • the brightness of the powder is detected by the brightness meter to reach 126%; the spectrometer detects the color coordinate x
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.5 m 3 and the reaction is carried out for 6 hours, which is the coating material we need.
  • the yellow powder is fluidized in a 1.5 m 3 reactor to form a fluidized bed.
  • trimethyl aluminum is formed into a vapor, and the carrier is fully saturated with nitrogen through a carrier, at 500 ° C.
  • the oxygen is introduced at a flow rate of 0.5 m 3 and the reaction is carried out for 6 hours, which is the coating material we need.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种背光源用黄色硅酸盐荧光粉及其镀膜制造方法,包括以下步骤:(1)根据化学组分式(Sr1-x-yBax)2nSizO2+2z:Euy计算工艺原料配比,其中:0.01<x<1;0.01≤y≤0.2;0.5≤z≤1.5;1≤n≤2;(2)按步骤(1)的配比称取原料,加助熔添加剂与原料均匀混合,将粉体置于还原气氛中灼烧,最后得到黄色粉体,将粉体清洗,烘干,过筛,最后采用镀膜技术,即为所得产品。本方法合成的背光源材料强度高、稳定性好,颗粒分散好,应用于背光器件、信息显示、照明光源。

Description

一种背光源用黄色硅酸盐荧光粉及其制造方法 技术领域
本发明涉及一种发光材料及其合成方法,特别是一种背光源用硅酸盐荧光粉及其镀膜制造方法。
背景技术
现有硅酸盐荧光粉产品一般采用分析纯原料,颗粒大小只能达到微米级,产品颗粒大小很难控制,相对强度也低。而且,制备工艺也仅仅是通过混料、还原灼烧、过筛等步骤,主要工艺简单,合成方法极易,所以所得的材料强度低,稳定性差,在空气中极易受潮,使用后光衰漂移大,且应用范围狭小,制成照明显示器件寿命短。
发明内容
本发明克服了上述不足之处,提供一种材料强度高,稳定性好,在空气中不易受潮,使用后光衰漂移小,且应用范围大,制成照明显示器件寿命长的背光源用黄色硅盐荧光粉。
本发明的另一目的是提供该背光源用黄色硅盐荧光粉的合成方法。该方法合成的背光源材料强度高、稳定性好,颗粒分散好,特别适合应用于背光器件、信息显示、照明光源。
本发明的目的是通过以下方式实现的:
一种背光源用硅酸盐荧光粉,该硅酸盐荧光粉的主要原料为:(Sr1-x-y Bax)2nSizO2+2z:Euy,其中:0.01<x<1;0.01≤y≤0.2;0.5≤z≤1.5;1≤n ≤2。
上述背光源用黄色硅酸盐荧光粉的制造方法包括以下步骤:
(1)根据化学组分式(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中:0.01<x<1;0.01≤y≤0.2;0.5≤z≤1.5;1≤n≤2;
(2)按步骤(1)的配比称取原料,加助熔添加剂与原料均匀混合得到粉体;
(3)将步骤(2)粉体置于还原气氛中灼烧,得到黄色块状粉体物质,过筛,最后得到黄色粉体;
(4)将得到的黄色粉体清洗,烘干,将该黄色粉体过筛。
(5)黄色粉体采用化学气相沉积法包膜,即为本发明所得产品。
所述步骤(2)中助熔添加剂为H3BO3、BaF2、LiCl、LiF、NH4Cl、BaCl2、SrF2中的一种或几种,所述助熔添加剂重量为原料重量的0.05%~5%。助熔添加剂与原料的均匀混合时间为30~50小时。
所述步骤(3)中还原时间为2~6小时,灼烧温度控制在1400℃~1500℃;所述还原气氛为氮气、甲烷、丙烷、氢气、氨气中的一种或几种。
所述步骤(3)中黄色块状粉体物质过筛为过300目尼龙筛网,中心粒径控制在5μm~15μm。
所述步骤(4)中清洗所用的溶液为甲醇、乙醇、丙醇中的一种或几种。清洗所用的溶液浓度控制在50%~100%。
所述步骤(4)中烘干粉体的温度控制在60℃~105℃。
化学气相沉积法镀膜法是指表面饱和粉体在流化床内悬浮流化时,对粉体所实施保护涂层的化学气相沉积技术。步骤(5)中所述的化学气相沉积法包膜是指将步骤(4)得到的黄色粉体在反应器中流化形成流化粉体,在20℃-60℃条件下镀膜的物质形成蒸汽,使得流化粉体暴露于蒸发镀膜的物质下,以氮气为载体通入反应器中充分饱和,升温至500℃-600℃, 导入氧气,进行反应6-8小时,镀膜的物质发生反应后包于粉体,即为我们所需要的镀膜材料。其中,镀膜的物质与流化粉体之间用量比为5-10%,所采用的氧气具体的流量范围是0.01-1.0m3
镀膜的物质为甲烷类有机金属的一种或多种,优选为三甲基铝、三甲基镓、烷基铝、三乙基铝中的一种或多种。
本发明选用的是纯度高达99.99%的原料,硅采用纳米级,使得本产品颗粒更加细小,颗粒分散好,涂层更加均匀。
与现有技术比较本发明的有益效果:本发明产品从材料纯度、颗粒上都进行了特定的选择,同时增加特殊的镀膜工艺,使得产品性能(光衰、寿命)达到大幅度的提升。本发明背光源用黄色硅盐荧光粉材料强度高,稳定性好,颗粒分散好,在空气中不易受潮,使用后光衰漂移小,且应用范围大,制成照明显示器件寿命长。特别适合应用于背光器件、信息显示、照明光源。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中x=0.14;y=0.03;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加H3BO3和NH4Cl助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量0.3%.
(3)将步骤(2)粉体置于75%氢气和25%氮气气氛中1450度灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的乙醇清洗,90℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在专用反应器中流化,形成流化床,在20度条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500度条件下,同时导入一定流量的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到120%;光谱仪检测色坐标x=0.5724,y=0.4273;粒度仪检测颗粒5.5um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例2
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中x=0.14;y=0.04;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加H3BO3和NH4Cl助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量0.3%.
(3)将步骤(2)粉体置于75%氢气和25%氮气气氛中1450度灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的乙醇清洗,90℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在专用反应器中流化,形成流化床,在20度条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500度条件下,同时导入一定流量的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到122%;光谱仪检测色坐标x=0.5730,y=0.4250;粒度仪检测颗粒5.6um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例3
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中x=0.14;y=0.05;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加H3BO3和NH4Cl助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量0.3%.
(3)将步骤(2)粉体置于75%氢气和25%氮气气氛中1450度灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的乙醇清洗,90℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在专用反应器中流化,形成流化床,在20度条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500度条件下,同时导入一定流量的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到125%;光谱仪检测色坐标x=0.5738,y=0.4243;粒度仪检测颗粒5.9um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例4
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中x=0.14;y=0.06;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加H3BO3和NH4Cl助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量0.3%.
(3)将步骤(2)粉体置于75%氢气和25%氮气气氛中1450度灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的乙醇清洗,90℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在专用反应器中流化,形成流化床,在20度条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500度条件下,同时导入一定流量的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到128%;光谱仪检测色坐标x=0.5761,y=0.4234;粒度仪检测颗粒5.8um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例5
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.03;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加BaF2助熔添与原料均匀混合50小时;助熔添加剂重量为原料重量的0.5%。
(3)将步骤(2)粉体置于甲烷气氛中1500℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,80℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在60℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在600℃条件下,同时导入流量为0.3m3的氧气,进行反应8小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到125%;光谱仪检测色坐标x=0.5725,y=0.4272;粒度仪检测颗粒6.2um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例6
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.04;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加BaF2助熔添与原料均匀混合50小时;助熔添加剂重量为原料重量的0.5%。
(3)将步骤(2)粉体置于甲烷气氛中1500℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,80℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在60℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在600℃条件下,同时导入流量为0.3m3的氧气,进行反应8小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到128%;光谱仪检测色坐标x=0.5732,y=0.4250;粒度仪检测颗粒6.3um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例7
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.05;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加BaF2助熔添与原料均匀混合50小时;助熔添加剂重量为原料重量的0.5%。
(3)将步骤(2)粉体置于甲烷气氛中1500℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,80℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在60℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在600℃条件下,同时导入流量为0.3m3的氧气,进行反应8小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到130%;光谱仪检测色坐标x =0.5745,y=0.4240;粒度仪检测颗粒6.4um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例8
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.06;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加BaF2助熔添与原料均匀混合50小时;助熔添加剂重量为原料重量的0.5%。
(3)将步骤(2)粉体置于甲烷气氛中1500℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,80℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在60℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在600℃条件下,同时导入流量为0.3m3的氧气,进行反应8小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到131%;光谱仪检测色坐标x=0.5750,y=0.4240;粒度仪检测颗粒6.5um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例9
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.03;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加LiCl助熔添与原料均匀混合40小时;助熔添加剂重量为原料重量的4%。
(3)将步骤(2)粉体置于丙烷气氛中1400℃灼烧,保温3小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该 黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在40℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.4m3的氧气,进行反应7小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到123%;光谱仪检测色坐标x=0.5722,y=0.4270;粒度仪检测颗粒6.5um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例10
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.04;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加LiCl助熔添与原料均匀混合40小时;助熔添加剂重量为原料重量的4%。
(3)将步骤(2)粉体置于丙烷气氛中1400℃灼烧,保温3小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在40℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.4m3的氧气,进行反应7小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到125%;光谱仪检测色坐标x=0.5732,y=0.4261;粒度仪检测颗粒6.6um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例11
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.05;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加LiCl助熔添与原料均匀混合40小时;助熔添加剂重量为原料重量的4%。
(3)将步骤(2)粉体置于丙烷气氛中1400℃灼烧,保温3小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在40℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.4m3的氧气,进行反应7小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到126%;光谱仪检测色坐标x=0.5742,y=0.4255;粒度仪检测颗粒6.7um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例11
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.06;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加LiCl助熔添与原料均匀混合40小时;助熔添加剂重量为原料重量的4%。
(3)将步骤(2)粉体置于丙烷气氛中1400℃灼烧,保温3小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在40℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃ 条件下,同时导入流量为0.4m3的氧气,进行反应7小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到130%;光谱仪检测色坐标x=0.5764,y=0.4245;粒度仪检测颗粒6.6um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例13
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.03;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加SrF2助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量的45%。
(3)将步骤(2)粉体置于氢气气氛中1400℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在30℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.5m3的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到124%;光谱仪检测色坐标x=0.5730,y=0.4275;粒度仪检测颗粒6.6um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例14
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.04;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加SrF2助熔添与原料均匀混合30 小时;助熔添加剂重量为原料重量的45%。
(3)将步骤(2)粉体置于氢气气氛中1400℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在30℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.5m3的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到126%;光谱仪检测色坐标x
=0.5740,y=0.4265;粒度仪检测颗粒6.7um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例15
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.05;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加SrF2助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量的45%。
(3)将步骤(2)粉体置于氢气气氛中1400℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在30℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.5m3的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到128%;光谱仪检测色坐标x=0.5750,y=0.4253;粒度仪检测颗粒6.8um;通过用硝酸银检测,稳定性达到99.5%以上。
实施例16
步骤(1):组分按(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中,x=0.14;y=0.06;z=1;n=1.395。
(2)按步骤(1)的配比称取原料,加SrF2助熔添与原料均匀混合30小时;助熔添加剂重量为原料重量的45%。
(3)将步骤(2)粉体置于氢气气氛中1400℃灼烧,保温2小时,得到黄色粉体;
(4)将得到的黄色粉体破碎,用100%的甲醇清洗,60℃烘干,将该黄色粉体过300目尼龙网。
(5)将黄色粉体在1.5m3反应器中流化,形成流化床,在30℃条件下三甲基铝形成蒸汽,通过氮气为载体通入反应器中充分饱和,在500℃条件下,同时导入流量为0.5m3的氧气,进行反应6小时,即为我们所需要的镀膜材料。
(6)粉体通过亮度仪检测亮度达到130%;光谱仪检测色坐标x=0.5758,y=0.4232;粒度仪检测颗粒6.8um;通过用硝酸银检测,稳定性达到99.5%以上。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (13)

  1. 一种背光源用硅酸盐荧光粉,其特征在于该硅酸盐荧光粉的主要原料为:(Sr1-x-y Bax)2nSizO2+2z:Euy,其中:0.01<x<1;0.01≤y≤0.2;0.5≤z≤1.5;1≤n≤2。
  2. 一种权利要求1所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,该方法包括以下步骤:
    (1)根据化学组分式(Sr1-x-y Bax)2nSizO2+2z:Euy计算工艺原料配比,其中:0.01<x<1;0.01≤y≤0.2;0.5≤z≤1.5;1≤n≤2;
    (2)按步骤(1)的配比称取原料,加助熔添加剂与原料均匀混合得到粉体;
    (3)将步骤(2)粉体置于还原气氛中灼烧,得到黄色块状粉体物质,过筛,最后得到黄色粉体;
    (4)将得到的黄色粉体清洗,烘干,将该黄色粉体过筛;
    (5)黄色粉体采用化学气相沉积法包膜,即为本发明所得产品。
  3. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(2)中助熔添加剂为H3BO3、BaF2、LiCl、LiF、NH4Cl、BaCl2、SrF2中的一种或几种,所述助熔添加剂重量为原料重量的0.05%~5%。
  4. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(2)中助熔添加剂与原料的均匀混合时间为30~50小时。
  5. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(3)中还原时间为2~6小时,灼烧温度控制在1400℃~1500℃;所述还原气氛为氮气、甲烷、丙烷、氢气、氨气中的一种或几 种。
  6. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(3)中黄色块状粉体物质过筛为过300目尼龙筛网。
  7. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(4)中清洗所用的溶液为甲醇、乙醇、丙醇中的一种或几种。
  8. 根据权利要求7所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(4)中清洗所用的溶液浓度控制在50%~100%。
  9. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述步骤(4)中烘干粉体的温度控制在60℃-105℃。
  10. 根据权利要求2所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,步骤(5)中所述化学气相沉积法包膜是指将步骤(4)得到的黄色粉体在反应器中流化形成流化粉体,在20℃-60℃条件下镀膜的物质形成蒸汽,使得流化粉体暴露于蒸发镀膜的物质下,以氮气为载体通入反应器中充分饱和,升温至500℃-600℃,导入氧气,进行反应6-8小时,镀膜的物质发生反应后包于粉体;其中,镀膜的物质与流化粉体的用量比为5-10%。
  11. 根据权利要求10所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,镀膜的物质为甲烷类有机金属的一种或多种。
  12. 根据权利要求11所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述的甲烷类有机金属包括三甲基铝、三甲基镓、烷基铝、三乙基铝。
  13. 根据权利要求10所述的背光源用黄色硅酸盐荧光粉的制造方法,其特征在于,所述的氧气的流量范围是0.01-1.0m3
PCT/CN2015/099498 2015-10-23 2015-12-29 一种背光源用黄色硅酸盐荧光粉及其制造方法 WO2017067071A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510696001.9A CN105441070B (zh) 2015-10-23 2015-10-23 一种背光源用黄色硅酸盐荧光粉及其制造方法
CN201510696001.9 2015-10-23

Publications (1)

Publication Number Publication Date
WO2017067071A1 true WO2017067071A1 (zh) 2017-04-27

Family

ID=55551726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099498 WO2017067071A1 (zh) 2015-10-23 2015-12-29 一种背光源用黄色硅酸盐荧光粉及其制造方法

Country Status (2)

Country Link
CN (1) CN105441070B (zh)
WO (1) WO2017067071A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753325B (zh) * 2016-11-21 2019-08-20 东台市天源光电科技有限公司 一种高显色、低光衰红色荧光粉及其制备方法
CN108485665A (zh) * 2018-06-21 2018-09-04 东台市天源光电科技有限公司 一种新型含碳二亚胺结构荧光粉及其制备方法
CN109054811B (zh) * 2018-08-01 2021-08-20 东台市天源光电科技有限公司 硫化物红色荧光粉及其制备方法和采用该荧光粉的发光装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585805A (zh) * 2012-01-19 2012-07-18 杭州杭科光电有限公司 一种多发射峰的led白光荧光粉及其制备方法
CN103725282A (zh) * 2013-12-06 2014-04-16 江门市远大发光材料有限公司 一种经包覆的硅酸盐荧光粉及其包膜方法
CN104212441A (zh) * 2014-07-24 2014-12-17 昆明理工大学 一种绿色光激励荧光粉及其制备方法
TW201522572A (zh) * 2013-11-01 2015-06-16 Merck Patent Gmbh 矽酸鹽磷光體

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225696A (ja) * 2010-04-19 2011-11-10 Sharp Corp 赤色系発光蛍光体、その製造方法および赤色系発光蛍光体を用いた発光装置
JP2013067710A (ja) * 2011-09-21 2013-04-18 Dexerials Corp 被覆蛍光体の製造方法、被覆蛍光体及び白色光源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102585805A (zh) * 2012-01-19 2012-07-18 杭州杭科光电有限公司 一种多发射峰的led白光荧光粉及其制备方法
TW201522572A (zh) * 2013-11-01 2015-06-16 Merck Patent Gmbh 矽酸鹽磷光體
CN103725282A (zh) * 2013-12-06 2014-04-16 江门市远大发光材料有限公司 一种经包覆的硅酸盐荧光粉及其包膜方法
CN104212441A (zh) * 2014-07-24 2014-12-17 昆明理工大学 一种绿色光激励荧光粉及其制备方法

Also Published As

Publication number Publication date
CN105441070A (zh) 2016-03-30
CN105441070B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
WO2017067071A1 (zh) 一种背光源用黄色硅酸盐荧光粉及其制造方法
Zhang et al. Fluorination of the tetraphenylethene core: synthesis, aggregation-induced emission, reversible mechanofluorochromism and thermofluorochromism of fluorinated tetraphenylethene derivatives
CN102923765A (zh) 一种铟锡氧化物(ito)纳米粉体及其制造方法
Li et al. Water-soluble Tb 3+ and Eu 3+ complexes based on task-specific ionic liquid ligands and their application in luminescent poly (vinyl alcohol) films
Wang et al. Turn-on fluorescence in a pyridine-decorated tetraphenylethylene: The cooperative effect of coordination-driven rigidification and silver ion induced aggregation
Guo et al. Fabrication of ITO glass supported Tb-MOF film for sensing organic solvent
Li et al. Post-treatment and characterization of novel luminescent hybrid bimodal mesoporous silicas
Pu et al. Synthesis and luminescence properties of (Y, Gd)(P, V) O 4: Eu 3+, Bi 3+ red nano-phosphors with enhanced photoluminescence by Bi 3+, Gd 3+ doping
Liu et al. Synthesis and photophysical properties of crystalline [EuW10O36] 9--based polyoxometalates with lanthanide ions as counter cations
Ma et al. Two 3D metal− organic frameworks as multi-functional materials to detect Fe3+ ions and nitroaromatic explosives and to encapsulate Ln3+ ions for white-light emission
CN105060334B (zh) 一种氮化碳改性的纳米氧化锌无机粉体材料
Ni et al. An investigation of the effect of ligands on thermal stability of luminescent samarium complexes
WO2017045448A1 (zh) 黑色珠光效应颜料及其制备方法
CN115536059A (zh) 一种CsPbBr3纳米片及其制备方法和应用
Damm et al. Thermal decomposition synthesis of Al-doped ZnO nanoparticles: an in-depth study
Bim et al. A new overview on rare earth diphenylphosphinates: Europium characteristic luminescence of low dimensional nanostructured materials
Yan et al. Novel organic–inorganic hybrid soft xerogels with lanthanide complexes through an ionic liquid linkage
JP2012176859A (ja) インジウム錫酸化物粒子及びその製造方法
US10100249B2 (en) Phosphor and method for manufacturing the same
Qi et al. Synthesis of multiple-color emissive carbon dots towards white-light emission
KR100541630B1 (ko) 고-효율 및 장 수명의 전기발광 형광체의 제조방법
Zhang et al. In situ growth strategy to construct perovskite quantum dot@ covalent organic framework composites with enhanced water stability
CN102869749A (zh) 一种硼酸盐基红色发光材料及其制备方法
CN112830942B (zh) 一种可选择性检测金属铜离子的层状荧光材料及其制备方法
CN112662201B (zh) 一种云母基荧光珠光颜料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906587

Country of ref document: EP

Kind code of ref document: A1