WO2017065401A1 - 미세조류 또는 이끼류 파괴용 조성물 - Google Patents

미세조류 또는 이끼류 파괴용 조성물 Download PDF

Info

Publication number
WO2017065401A1
WO2017065401A1 PCT/KR2016/009070 KR2016009070W WO2017065401A1 WO 2017065401 A1 WO2017065401 A1 WO 2017065401A1 KR 2016009070 W KR2016009070 W KR 2016009070W WO 2017065401 A1 WO2017065401 A1 WO 2017065401A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
microalgae
algae
unsubstituted
Prior art date
Application number
PCT/KR2016/009070
Other languages
English (en)
French (fr)
Inventor
조훈
유순종
백승호
차형준
Original Assignee
주식회사 큐얼스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160044946A external-priority patent/KR101819190B1/ko
Application filed by 주식회사 큐얼스 filed Critical 주식회사 큐얼스
Priority to JP2018534449A priority Critical patent/JP6732917B2/ja
Priority to US15/762,368 priority patent/US11044909B2/en
Priority to CN201680059534.9A priority patent/CN108347925B/zh
Priority to BR112018007330-0A priority patent/BR112018007330B1/pt
Priority to EP16855619.9A priority patent/EP3363288B1/en
Publication of WO2017065401A1 publication Critical patent/WO2017065401A1/ko
Priority to PH12018500655A priority patent/PH12018500655A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/04Nitrogen directly attached to aliphatic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Definitions

  • the present invention relates to a composition for destroying algae or lichens.
  • Microalgae are underwater single-celled organisms that photosynthesize, commonly called phytoplankton. At present, efforts to industrially use microalgae are being actively conducted worldwide. Microalgae can play a role in the treatment of wastewater and immobilization of carbon dioxide due to its various capabilities, and have been used for the production of useful substances such as fuels, cosmetics, feed, food coloring and pharmaceutical raw materials. Useful high value materials are constantly being discovered and expanding their applications.
  • Microalgae is a life resource free from criticism of the energyization of food resources and can produce biofuels with properties similar to those of petroleum diesel.
  • the energy conversion process for biodiesel production from microalgae is largely achieved by the production and harvesting of microalgal biomass, oil extraction from biomass, and transesterification of the extracted oil.
  • oil extraction from algae is one of the most controversial and costly bottlenecks for high fat productivity and biodiesel production. Therefore, an efficient oil extraction apparatus and method must be preceded for biodieselization from microalgae.
  • microalgae include harmful algae that cause abnormal growth of algae such as green algae and red algae.
  • Green algae refers to a phenomenon in which floating algae, or phytoplankton, multiply and accumulate on the surface of water in eutrophic lakes or slow-flowing streams, thereby turning the color of the green color significantly green. These green algae generally occur only in fresh water. Plant wastewater, domestic sewage, fertilizers, pesticides, livestock and human manure, and other land pollutants enter rivers or lakes, are sedimented in the lower part of the body of water, decomposed by bacteria and decomposed. Organics produce nitrogen and phosphorus, which feed plankton, causing green algae in sea and fresh water.
  • the organisms causing green algae include green algae, diatoms, cyanobacteria, and vegetable flagella, among which cyanobacteria are the main cause.
  • the red tide phenomenon refers to a phenomenon in which the color of the sea changes to red, reddish brown, tan, green, yellow green and yellow due to abnormal growth of plankton due to the influx of organic pollutants, nitrogen and phosphorus from the land to the sea.
  • the causative agents of such red tide are mainly flagella algae and diatoms.
  • Green algae and red algae caused by these harmful algae are depleted of dissolved oxygen in the sea, and the seas become scarcely oxygen, resulting in large-scale death of fish and fish and fish, and large amounts of plankton attached to the fish's gills.
  • flagella algae Cokollidinium will cause harmful toxins will cause the death of fish.
  • about 50% of the animal protein consumed by more than 2 billion people in the world is supplied from the sea, and the destruction of marine ecosystems due to red tides can seriously affect these food resources, further degrading the value of water use, Beyond economic value, it causes a large environmental problem.
  • microalgae can not only produce bioenergy but also inhibit harmful environmental problems.
  • an oil extraction process is required to increase the extraction yield of intracellular fat by destroying the cell membrane of the microalgae.
  • Representative oil extraction methods used to date include solvent extraction (Chiara Samori et al., Bioresource Technology , 101: 3274, 2010), Soxhlet extraction (Ayhan Demirbas a and M.
  • Lichens also produce various nitrogen compounds in their carcasses, and if they multiply in large quantities, green algae may occur, and they may attach to glass or walls and cause aesthetic discomfort in aquariums and exhibition halls, as well as in household tanks, large water tanks, reservoirs, Industrial facilities, such as aquaculture farms, can deteriorate water quality and deteriorate the functionality of the facility. Therefore, management is necessary to prevent and remove moss.
  • the present inventors have confirmed that the benzyl amine-based, benzamide-based and / or phenyl propenone-based compounds having a specific substituent have a cell membrane destruction effect of microalgae. To complete.
  • Microalgae or moss destroying composition comprising benzyl amine-based, benzamide-based and / or phenyl propenone-based compounds having an effect of destroying algae or lichens and microalgae using the same It is to provide a method of destroying moss.
  • composition for destroying microalgae or moss comprising a compound represented by at least one of formulas 1 to 3 or a salt thereof as an active ingredient:
  • a 1 to A 3 are each independently hydrogen, deuterium, -N (R 11 ) (R 12 ), a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 2 -C 10 alkenyl group, Substituted or unsubstituted C 2 -C 10 alkynyl group, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 1 -C 10 hetero Cycloalkyl group, substituted or unsubstituted C 3 -C 10 cycloalkenyl group, substituted or unsubstituted C 1 -C 10 heterocycloalkenyl group, substituted or unsubstituted C 6 -C 60 aryl group and substituted or unsubstituted C 1 -C 60 heteroaryl group,
  • R 1 to R 3 , R 11 and R 12 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, -OH, cyano group, nitro group, amino group, amidino group, substituted or unsubstituted Selected from a substituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 2 -C 10 alkenyl group, a substituted or unsubstituted C 2 -C 10 alkynyl group, and a substituted or unsubstituted C 1 -C 10 alkoxy group; ,
  • b1 to b3 are each independently selected from an integer of 0 to 5, and when b1 is 2 or more, two or more R 1 are the same or different from each other, and when b2 is 2 or more, two or more R 2 are the same or different from each other, b3 When two or more, two or more R 3 are the same or different from each other,
  • n1 to n3 are each independently selected from an integer of 0 to 10,
  • the destruction of the microalgae or moss comprising the step of treating the microalgae or algae destruction composition to the algae culture, marine microalgae culture, green algae or red tide occurrence area, or green algae or red tide occurrence region
  • a method is provided.
  • the term 'region' means a place with an environment where green algae or red tide can occur, and encompasses all aquatic environments, including sea water or fresh water.
  • the term 'treatment' refers to contacting the composition to microalgae or moss, and may include the step of injecting the composition into the water system containing the microalgae or moss for the contact, the injection Sprayed onto the surface in the form, comprising a stirring step, or moving on the surface.
  • the method may use an 'out-water treatment method'.
  • the term 'out-of-water treatment method' refers to the treatment of the microalgae or moss destruction composition by pulling up water in the water system to remove microalgae or moss and then discharge the treated water back into the water system.
  • the term 'water system' refers to a source of water and may include, for example, natural water systems such as reservoirs, lakes, rivers, and artificial water systems such as farms, fishing grounds, culture fields, golf courses, and reservoirs.
  • the method includes the steps of sucking raw water containing microalgae or moss from the water system; Treating the composition with the raw water; And discharging the treated water back to the water system.
  • the method may be used to prevent red algae or green algae caused by nutrients, which may be caused when discharged together with the treated water. It may further comprise the step of removing moss and the like.
  • the removing may include physical methods such as precipitation, solid-liquid separation or simple filtration or chemical methods using copper sulfate, chlorine-based materials, ultraviolet light, ozone, and the like.
  • the method may further include aggregating algae by treating the raw water with a flocculant before treating the composition. Since the composition input amount can be reduced by flocculating the aggregate produced by the flocculant using air bubbles and then removing or precipitating and treating the composition with the separated supernatant, it can be advantageous in terms of cost, and a high concentration of the composition is discharged. If possible, side effects can be prevented.
  • coagulant aluminum sulfate, ferric sulfate, ferric chloride, polyaluminum chloride, polysulfite aluminum silicate, polyaluminum hydrochloride silicate or polyamine may be used, and sodium alginate, sodium silicate, bentonite or kaolin may be used as a coagulant.
  • PH adjusting agents which are acidic or alkaline may be used.
  • the method may use 'in-water treatment method'.
  • 'in-water treatment' refers to the removal of microalgae or moss by spraying the composition in the water.
  • the composition is low in toxicity to other organisms compared to the toxicity to algae, so it can be used to treat microalgae or moss by spraying at an appropriate concentration in the appropriate range.
  • the concentration may be the type, pH, salinity, temperature, composition, area, depth, use, or aquatic biodistribution, type or concentration, or distribution of microalgae or lichens to be treated, or the purpose of destroying the algae or lichens, or It can be adjusted according to the achievement goal.
  • the 'in-water treatment method' may also include a step for removing other remaining compositions, residual microalgae or moss, organic substances, nutrients, and dead microalgae or moss, such as the 'out-water treatment method'.
  • the removing step may include a method of physically filtration using filter paper, or removing and then flocculating flocculant together or sequentially.
  • the removal step may also include generating bubbles to supply oxygen to the water, increase efficiency and allow flocculation to float without precipitation.
  • the composition may be used to prevent the occurrence of green algae or red algae caused by microalgae or moss.
  • the amount of microalgae or moss is small and the residual composition can prevent the occurrence of microalgae or moss, it can be advantageous to further reduce the spread amount of the composition.
  • the killed microalgae or lichens may contribute to the generation of green algae or red algae as nutrients, and thus, further include physical filtration, chemical treatment, or generating bubbles, such as in or out of the water system. can do.
  • the microalgae or moss destruction composition is treated in a moss culture plant, a marine microalgae culture plant, a green algae or a red tide region or a green algae or a red tide occurrence region, thereby inhibiting the growth and proliferation of the algae, thereby preventing green algae and red tide damage. There is an effect to prevent.
  • Example 1 is Chattonella Marina , Heterosigma circular Heterosigma according to Evaluation Example 2 circularisquama), kokeulrodinium poly Cri Koh des (shows Cochlodinium Polykrikoides) and heteroaryl Sigma (Heterosigma) when treated with the compound 35 synthesized in Example 35 the culture medium, respectively, the living cell ratio of the micro-algae of the above mentioned four according to the time .
  • FIG. 2 shows the results of microscopic observation of four microalgae treated with Compound 35 according to Evaluation Example 2, wherein (a), (b), (c) and (d) are coclodinium polycricoides ( Cochlodinium Polykrikoides), heteroaryl Sigma (Heterosigma), heteroaryl kaepsa circulator La Surgical probably (Heterosigma circularisquama ) and Chattonella Marina , where (a) -1, (a) -3, (b) -1, (c) -1 and (d) -1 are not treated with compound 35 Microalgal group is shown.
  • coclodinium polycricoides Cochlodinium Polykrikoides
  • heteroaryl Sigma Heterosigma
  • heteroaryl kaepsa circulator La Surgical probably Heterosigma circularisquama
  • Chattonella Marina where (a) -1, (a) -3, (b) -1, (c) -1 and (d) -1 are not treated
  • FIG. 3 when processing a micro when seutiseu (Microcystis) in accordance with Example 2 Evaluation of the compound 2 and represents the number of living cells in the micro during seutiseu (Microcystis) in time.
  • FIG. 4 shows the results of toxicity evaluation of Daphnia magna for Compounds 33 and 35 according to Evaluation Example 3.
  • FIG. 5 shows the results of toxicity evaluation against zebrafish ( Danio rerio ) for Compounds 33 and 35 according to Evaluation Example 4.
  • FIG. 5 shows the results of toxicity evaluation against zebrafish ( Danio rerio ) for Compounds 33 and 35 according to Evaluation Example 4.
  • composition for destroying microalgae or lichens includes a compound represented by at least one of the following Chemical Formulas 1 to 3 or a salt thereof as an active ingredient:
  • a 1 to A 3 are each independently hydrogen, deuterium, -N (R 11 ) (R 12 ), a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 2 -C 10 alkenyl group, substituted or unsubstituted C 2 -C 10 alkynyl group, substituted or unsubstituted C 1 -C 10 alkoxy group, substituted or unsubstituted C 3 -C 10 cycloalkyl group, substituted or unsubstituted C 1 -C 10 heterocycloalkyl group, substituted or unsubstituted C 3 -C 10 cycloalkenyl group, substituted or unsubstituted C 1 -C 10 heterocycloalkenyl group, substituted or unsubstituted C 6 -C 60 aryl Group and substituted or unsubstituted C 1 -C 60 heteroaryl group,
  • R 11 and R 12 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, -OH, cyano group, nitro group, amino group, amidino group, substituted or unsubstituted C 1- It may be selected from a C 10 alkyl group, a substituted or unsubstituted C 2 -C 10 alkenyl group, a substituted or unsubstituted C 2 -C 10 alkynyl group, and a substituted or unsubstituted C 1 -C 10 alkoxy group.
  • a 1 to A 3 are each independently -N (R 11 ) (R 12 ), a substituted or unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C Can be selected from a 1 -C 10 alkoxy group, a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 10 aryl group, and a substituted or unsubstituted C 1 -C 10 heteroaryl group
  • the present invention is not limited thereto.
  • a 1 to A 3 may be independently selected from the group represented by Formulas 4-1 to 4-16, but are not limited thereto.
  • * is a binding site with a neighboring atom.
  • R 11 to R 14 and R 21 are each independently,
  • R 11 to R 14 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, and a tert. -Butyl group;
  • R 21 may be selected from hydrogen, deuterium, -F, -Cl, -Br, -I and -OH, but is not limited thereto.
  • b11 is selected from an integer of 0 to 2
  • b12 is selected from an integer of 0 to 3
  • b13 is selected from an integer of 0 to 4,
  • b14 is selected from an integer of 0 to 5
  • b15 is selected from an integer of 0 to 6
  • b16 may be selected from an integer of 0 to 7.
  • b11 represents the number of R 21.
  • b11 is 2 or more, two or more R 21 may be the same as or different from each other.
  • the meanings of b12 to b16 may be understood through the description of b11 and the structures of Chemical Formulas 4-1 to 4-16.
  • b11 to b16 may be each independently 0 or 1.
  • a 1 to A 3 may be independently selected from the group represented by Formulas 5-1 to 5-23, but are not limited thereto.
  • * is a binding site with a neighboring atom.
  • R 1 to R 3 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, -OH, cyano group, nitro group, amino group, amidino group, or substituted Selected from an unsubstituted C 1 -C 10 alkyl group, a substituted or unsubstituted C 2 -C 10 alkenyl group, a substituted or unsubstituted C 2 -C 10 alkynyl group, and a substituted or unsubstituted C 1 -C 10 alkoxy group Can be.
  • R 1 to R 3 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, -OH, cyano group, nitro group, amino group, amidino It may be selected from the group and a substituted or unsubstituted C 1 -C 10 alkyl group, but is not limited thereto.
  • R 1 to R 3 are each independently, and R 1 to R 3 are each independently hydrogen, deuterium, -F, -Cl, -Br, -I, and -OH Can be selected from.
  • b1 to b3 are each independently selected from an integer of 0 to 5, when b1 is 2 or more, two or more R 1 are the same or different from each other, and when b2 is 2 or more, two or more R 2 are When the same or different from each other, and b3 is 2 or more, two or more R 3 may be the same or different from each other.
  • b1 to b3 may be each independently 0, 1, or 2.
  • R 1 to R 3 when b1 to b3 is 1, R 1 to R 3 is -Br or -OH, when b1 to b3 is 2, the R 1 to R 3 may be -Cl.
  • two R 1 , two R 2 and two R 3 may be present in a para position.
  • n1 to n3 may be each independently selected from integers of 0 to 10.
  • n1 to n3 may be each independently selected from integers of 0 to 3, but are not limited thereto.
  • the microalgae or moss destruction composition is a compound represented by at least one of the following formulas 1-1 to 1-6, 2-1 to 2-6 and 3-1 to 3-6 or salts thereof It may include as an active ingredient, but is not limited to:
  • a 1 to A 3 are each independently selected from the group represented by Formulas 5-1 to 5-23,
  • * is a binding site to a neighboring atom
  • n1 to n3 may be each independently selected from integers of 0 to 3.
  • the microalgae or moss destruction composition may include at least one of the following compounds 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 or a salt thereof as an active ingredient. May be, but is not limited to:
  • microalgae or moss in particular harmful algae causing green algae or red algae, is affected by the chemical structure of the specific substituent of the compound included in the microalgae or algae destruction composition. Therefore, in order to enhance the microalgae or moss destruction effect, it is necessary to have a substituent having excellent algal activity. In addition, the algae activity should be excellent in a small amount so that secondary contamination by the microalgae or lichen destruction composition does not occur.
  • the inventors of the present invention confirmed that the compound represented by the formula (1) including the benzylamine group, the compound represented by the formula (2) including the benzamide group and the compound represented by the formula (3) including the phenylpropenone group have excellent algal activity It was.
  • a C 1 -C 10 alkyl group means a linear or branched aliphatic hydrocarbon monovalent group having 1 to 10 carbon atoms, and specific examples thereof include methyl group, ethyl group, propyl group, isobutyl group, and sec-butyl group. Groups, ter-butyl groups, pentyl groups, hexyl groups and the like.
  • the C 1 -C 10 alkoxy group refers to a monovalent group having a chemical formula of —OA 101 (wherein A 101 is the C 1 -C 10 alkyl group), and specific examples thereof include a methoxy group and an ethoxy group. , Propoxyl groups and the like.
  • a C 2 -C 10 alkenyl group refers to a hydrocarbon group including at least one carbon double bond in the middle or terminal of the C 2 -C 10 alkyl group, and specific examples thereof include an ethenyl group, a propenyl group, and a butenyl group. Etc. are included.
  • a C 2 -C 10 alkynyl group refers to a hydrocarbon group including at least one carbon triple bond in the middle or terminal of the C 2 -C 10 alkyl group, and specific examples thereof include an ethynyl group and a propynyl group. (propynyl), and the like.
  • a C 3 -C 10 cycloalkyl group means a monovalent saturated hydrocarbon monocyclic group having 3 to 10 carbon atoms, and specific examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclo Heptyl group and the like.
  • a C 1 -C 10 heterocycloalkyl group means a monovalent monocyclic group having 1 to 10 carbon atoms including at least one hetero atom selected from N, O, P, and S as a ring-forming atom, and a Specific examples include tetrahydrofuranyl group, tetrahydrothiophenyl group and the like.
  • a C 3 -C 10 cycloalkenyl group is a monovalent monocyclic group having 3 to 10 carbon atoms, and refers to a group having at least one double bond in the ring but not having aromaticity, and specific examples thereof include cyclo Pentenyl groups, cyclohexenyl groups, cycloheptenyl groups and the like.
  • a C 1 -C 10 heterocycloalkenyl group is a C 1 -C 10 monovalent monocyclic group containing at least one hetero atom selected from N, O, P, and S as a ring-forming atom, wherein It has one double bond.
  • Specific examples of the C 1 -C 10 heterocycloalkenyl group include 2,3-dihydrofuranyl group, 2,3-dihydrothiophenyl group, and the like.
  • a C 6 -C 60 aryl group refers to a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms.
  • Specific examples of the C 6 -C 60 aryl group include a phenyl group, naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, chrysenyl group and the like.
  • the C 6 -C 60 aryl group includes two or more rings, the two or more rings may be fused to each other.
  • C 1 -C 60 heteroaryl group used herein means a monovalent group containing at least one hetero atom selected from N, O, P, and S as a ring-forming atom and having a carbocyclic aromatic system having 1 to 60 carbon atoms.
  • Specific examples of the C 1 -C 60 heteroaryl group include a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a pyridazinyl group, a triazinyl group, a quinolinyl group, an isoquinolinyl group, and the like.
  • the C 1 -C 60 heteroaryl group includes two or more rings, the two or more rings may be fused to each other.
  • the salt may be prepared in situ or separately reacted with an inorganic base or an organic base during the final separation, purification, and synthesis of the compound according to one embodiment of the present invention.
  • the salt may form a salt with a base when the compound of the present invention contains an acidic group.
  • alkalis such as lithium salts, sodium salts or potassium salts.
  • Salts with metals Salts with alkaline earth metals such as barium or calcium; Salts with other metals such as magnesium salts;
  • Organic base salts such as salts with dicyclohexylamine; Salts with basic amino acids such as lysine or arginine.
  • an acid addition salt may be formed.
  • acid addition salt include, but are not limited to, inorganic acids, especially hydrofluoric acid (eg, hydrofluoric acid, hydrobromic acid, Hydroiodic acid or hydrochloric acid), salts with nitric acid, carbonate, sulfuric acid or phosphoric acid; Salts with lower alkyl sulfonic acids such as methanesulfonic acid, trifluoromethanesulfonic acid or ethanesulfonic acid; Salts with benzenesulfonic acid or p-toluenesulfonic acid; Salts with organic carboxylic acids such as acetic acid, fumaric acid, tartaric acid, oxalic acid, maleic acid, malic acid, succinic acid or citric acid; And salts with amino acids such as glutamic acid or aspartic acid.
  • hydrofluoric acid eg, hydrofluoric acid, hydrobromic acid, Hydroiodic acid or hydrochloric acid
  • the compound according to an embodiment of the present invention may include a derivative in the form of a hydrate or solvate of the compound (JM Keith, 2004, Trahedron Letters , 45 (13), 2739-2742).
  • Compounds according to one embodiment of the present invention may be isolated from nature or prepared by chemical synthesis known in the art, and usually, after the substituent compounds are reacted with a suitable reaction solvent to obtain an intermediate product, the intermediate product is subjected to It can manufacture by making it react in a suitable reaction solvent.
  • the reaction solvent that can be used in the production process is not particularly limited as long as it is not involved in the reaction, for example, ethers such as diethyl ether, tetrahydrofuran, dioxane; Halogenated hydrocarbons such as dichloromethane and chloroform; Amines such as pyridine, piperidine and triethylamine, acetone; Alkyl ketones such as methyl ethyl ketone and methyl isobutyl; Alcohols such as methanol, ethanol and propanol; Aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, acetonitrile, dimethyl sulfoxide, hexamethyl phosphate triamide, and the like, and especially non-reactive used in organic synthesis.
  • ethers such as diethyl ether, tetrahydrofuran, dioxane
  • Halogenated hydrocarbons such as dichloromethane and
  • a solvent capable of separating the water generated during the reaction by the Dean-Stark trap is preferred.
  • examples of such a solvent include, but are not limited to, benzene, toluene, xylene, and the like.
  • Separation and purification of the reaction product is carried out through a process such as concentration, extraction, and the like, which is commonly performed in organic synthesis, and separation and purification may be performed through purification by column chromatography on silica gel, if necessary.
  • the invention also encompasses any modification to the methods for preparing compounds according to one embodiment of the invention, wherein the intermediate product obtainable at any stage thereof can be used as starting material for the remaining stages,
  • the material may be formed in the reaction system under reaction conditions, or the reaction components may be used in the form of its salts or optically enantiomers.
  • isomers such as substantially pure geometric (cis or trans) isomers, optical isomers (enantiomers) or racemates, depending on the type of substituents, intermediate products and preparation methods used to prepare the compounds according to the invention. And all such possible isomers are included in the scope of the present invention.
  • the composition for destroying microalgae or moss provides a method for destroying microalgae or moss.
  • the microalgae or moss destruction method includes the step of treating the microalgae or algae destruction composition to the algae culture plant, marine microalgae culture plant, green algae or red tide occurrence region, or green algae or red tide occurrence region. do.
  • the microalgae or moss are algae or lichens that can produce algae and biodiesel that can cause green algae or red algae, for example, algae, diatoms, diatoms, green algae, euglenoid algae, flagella algae, sulfur It may be selected from green algae, coarse algae, algae with algae with biodiesel production capacity, but is not limited thereto.
  • Moss is a plant belonging to the moss or stream that often grows in wet or shady areas.
  • Dione steel Oledipodiopsida
  • Polytrichopsida Polytrichopsida
  • Tetrapididopsida Tetraphidopsida
  • Brion river Brion river
  • the blue-green algae are micro during seutiseu (Microcystis), Ana vena (Anabaena), Apa nijon Menon (Aphanizomenon), and come la thoria (Oscillatoria) in algae may be selected from, but is not limited to such.
  • the algae may be selected from among Closterium , Pediastrum , and Scenedesmus genus algae, but is not limited thereto.
  • the oil Glacier cannabinoid (Euglenoid s) bird may be a trad cello Pseudomonas (Trachelomonas) or euglena (Euglena) in birds, and the like.
  • the single mother birds pyridinium (Peridinium), heteroaryl Sigma (Heterosigma), heteroaryl kaepsa (Heterocapsa), kokeulrodinium (Cochlodinium), Centrum (Prorocentrum) to Pro, sera tium (Ceratium), noktil Luca (Noctiluca), script when Ella ( Scrippsiella), Dino pisiseu (dinophysis), Alexandria Solarium (Alexandrium), yuteu repti Ella (Eutreptiella), pieces terrier (Pfiesteria), Chateau Nella (Chattonella), Emilia California (Emiliania) and Jim nodi nium (Gymnodinium) in selecting from among bird It may be, but is not limited thereto.
  • the yellow green alga may be a genus of algae ( Uroglena ), but is not limited thereto.
  • the dinoflagellates and the chloromonadophyceae is interrogating Sigma (Heterosigma), heteroaryl kaepsa (Heterocapsa), kokeulrodinium (Cochlodinium), Centrum (Prorocentrum), ceramide tium (Ceratium) to Pro, noktil Luca (Noctiluca), script when Ella ( Scrippsiella), Dino pisiseu (dinophysis), Alexandria Solarium (Alexandrium), yuteu repti Ella (Eutreptiella), pieces terrier (Pfiesteria), Chateau Nella (Chattonella), Emilia California (Emiliania) and Jim nodi nium (Gymnodinium) in selecting from among bird It may be, but is not limited thereto.
  • the algae having the biodiesel production ability may be selected from Pseudochoricystis , Botryococcus and Dunaliella , but are not limited thereto.
  • the microalgae or the algae destruction composition containing the compound represented by the formula (1) to Formula (51) of the present invention or a salt thereof is used in the algae culture, marine microalgae, green algae or red algae, or green algae or red algae When treating in the expected area, it can be used in the range of 1 ⁇ M to 100 ⁇ M, for example, in the range of 1 ⁇ M to 30 ⁇ M, based on the final concentration of the treatment area.
  • microalgae or lichen destruction composition according to an embodiment of the present invention.
  • These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.
  • the reaction product was separated by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase, and yellow liquid N '-(3,4-Dichloro-benzyl) -N, N-diethyl-ethane-1, 2-diamine was obtained.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel, and yellow liquid N '-(3,4-Dichloro-benzyl) -N, N-diethyl-propane-1, 3-diamine was obtained.
  • the reactant was separated by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase, and yellow liquid N '-(3,4-Dichloro-benzyl) -N, N-dimethyl-ethane-1, 2-diamine was obtained.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a colorless liquid (3,4-Dichloro-benzyl)-(2-methoxy-ethyl) -amine.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel to obtain a colorless liquid (3,4-Dichloro-benzyl)-(4,4-dimethoxy-butyl) -amine. .
  • the reactant was separated from the silica gel-filled column with a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl)-(3-methyl-butyl) -amine.
  • the reaction product was separated by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase, and yellow liquid N '-(3,4-Dichloro-benzyl) -N, N-dimethyl-propane-1, 3-diamine was obtained.
  • the reaction product was separated from the silica gel-filled column by using a mixed solvent of Ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid 3,4-Dichloro-N- (2-diethylamino-ethyl) -benzamide.
  • reaction product was separated from the silica gel-packed column by using a mixed solvent of Ethyl acetate and n-hexane as a mobile phase to obtain a yellow solid 3,4-Dichloro-N- (2-dimethylamino-ethyl) -benzamide.
  • the reaction product was separated from the silica gel-filled column by using a mixed solvent of Ethyl acetate and n-hexane as a mobile phase to obtain a red solid 3,4-Dichloro-N- (3-dimethylamino-propyl) -benzamide.
  • the reactant was separated from the silica gel-packed column by using a mixed solvent of Ethyl acetate and n-hexane as a mobile phase to obtain a pale yellow solid 3,4-Dichloro-N- (3-diethylamino-propyl) -benzamide.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel to obtain a colorless liquid (3,4-Dichloro-benzyl) -ethyl-amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a colorless liquid (3,4-Dichloro-benzyl) -propyl-amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl) -phenyl-amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a colorless liquid Butyl- (3,4-dichloro-benzyl) -amine.
  • reaction product was separated from the silica gel-packed column with a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (4-Chloro-phenyl)-(3,4-dichloro-benzyl) -amine.
  • the reactant was separated by using a solvent mixture of ethyl acetate and n-hexane in a column filled with silica gel as a mobile phase to obtain a white solid 3- (3,4-Dichloro-phenyl) -1-phenyl-propenone.
  • the reaction product was separated from the silica gel-packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl)-(4-fluoro-phenyl) -amine.
  • the reactant was separated by using a solvent mixture of ethyl acetate and n-hexane in a column filled with silica gel as a mobile phase to obtain a white solid 3- (3,4-Dichloro-phenyl) -1-phenyl-propenone.
  • reaction product was separated from the silica gel-packed column with a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (4-Bromo-phenyl)-(3,4-dichloro-benzyl) -amine.
  • the reaction product was separated from the silica gel packed column with ethyl acetate, a mixed solvent of n-hexane and methanol as a mobile phase, and a red liquid (3,4-Dichloro-benzyl) -pyridin-2-ylmethyl-amine was obtained.
  • reaction product was separated from the silica gel packed column with ethyl acetate, a mixed solvent of n-hexane and methanol as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl) -pyridin-3-ylmethyl-amine.
  • the reaction product was separated from the silica gel-packed column by using a mixed solvent of ethyl acetate, n-hexane and methanol as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl) -pyridin-4-ylmethyl-amine.
  • the reaction product was separated from the silica gel-filled column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a pale yellow liquid Benzyl- (3,4-dichloro-benzyl) -amine.
  • the reaction product was separated by using a mixed solvent of ethyl acetate, n-hexane and methanol as a mobile phase, and yellow liquid (3,4-Dichloro-benzyl)-(2-pyridin-4-yl-ethyl)- obtained amine.
  • the reaction product was separated by using a mixed solvent of ethyl acetate, n-hexane and methanol as a mobile phase, and yellow liquid (3,4-Dichloro-benzyl)-(2-pyridin-3-yl-ethyl)- obtained amine.
  • the reactant was separated by using a mixed solvent of ethyl acetate, n-hexane and methanol as a mobile phase, and a dark yellow liquid (3,4-Dichloro-benzyl)-(2-pyridin-2-yl-ethyl) -amine was obtained.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a light yellow liquid Cyclopentyl- (3,4-dichloro-benzyl) -amine.
  • the reactant was separated from the silica gel-filled column with a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid (3,4-Dichloro-benzyl) -phenethyl-amine.
  • the reaction product was separated from the silica gel-packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a yellow liquid Cyclohexyl- (3,4-dichloro-benzyl) -amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a liquid cycloheptyl- (3,4-dichloro-benzyl) -amine.
  • the reaction product was separated from the silica gel-packed column with a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a light red liquid Benzyl- (2-pyridin-2-yl-ethyl) -amine.
  • the reaction product was separated from the silica gel-packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a colorless liquid 2-[(2-Pyridin-2-yl-ethylamino) -methyl] -phenol.
  • the reaction product was separated by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase, and a light red liquid (2-Bromo-benzyl)-(2-pyridin-2-yl-ethyl) -amine was added. Got it.
  • the reaction product was separated from the silica gel-filled column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a pale yellow liquid (3-Bromo-benzyl)-(2-pyridin-2-yl-ethyl) -amine. .
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel, and a light red liquid (4-Bromo-benzyl)-(2-pyridin-2-yl-ethyl) -amine was added. Got it.
  • the reaction product was separated by using a solvent mixture of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel to obtain a pale yellow liquid Benzyl-cycloheptyl-amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a white liquid (3,4-Dichloro-benzyl) -indan-1-yl-amine.
  • the reaction product was separated from the silica gel packed column by using a mixed solvent of ethyl acetate and n-hexane as a mobile phase to obtain a colorless liquid Cyclobutyl- (3,4-dichloro-benzyl) -amine.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel to obtain a colorless liquid Cyclooctyl- (3,4-dichloro-benzyl) -amine.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel and colorless liquid N, N-dibutyl-N '-(3,4-dichlorobenzyl) propane-1,3-diamine Got it.
  • the reactants were separated by a mixed solvent of ethyl acetate and n-hexane as a mobile phase in a column filled with silica gel, and a colorless liquid 2-[[3- (3,4-Dichlorobenzylamino) propyl]-(2-hydroxyethyl) amino] ethanol Got.
  • the compounds 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 synthesized in Examples 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 The microalgal destruction effect was analyzed by measuring the IC 50 (Inhibitory Concentration 50, the concentration that can control the microalgal cell number 50%) value.
  • IC 50 the value of IC 50 can be obtained by the following Equation 1:
  • Y represents the algae activity (%) according to the inoculation concentration of each compound
  • A is the maximum algae activity (%) according to the inoculation concentration
  • D is the minimum algae activity (%) according to the inoculation concentration
  • C is inoculation IC 50 value in concentration range
  • B means-Hillslope (slope in the four parameter logistic curve described below).
  • the algicidal activity was calculated through the following Equation 2:
  • Algal activity (%) (1-Tt / Ct) x 100
  • T (treatment) and C (control), respectively, means the value expressed by the number of cells in the algae density when the compound was inoculated and not inoculated, and t means the number of days after inoculation .
  • the microalgae were incubated in a culture flask at a temperature of 20 ° C. and light, and Guillard's f / 2 medium used in the art was used as a medium (Guillard RRL and Keller MD. Culturing dinoflagellates.In : Spector (Ed.), Dinoflagellates.New York: Academic Press; 1984, 391442).
  • the cultured microalgae were transferred to a 24-well plate, followed by Chattonella Marina , Heterosigma circularisquama , Cochlodinium Cochlodinium. Polykrikoides ) and Heterosigma akashiwo synthesized in exponential growth phase, Examples 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 47, 5 to 10, 12, 13, 17 to 43 and 45 to 47 were treated at concentrations of 0.1, 0.2, 0.5, 1, 2 and 5 uM, respectively, and then incubated for 1 day.
  • Microcystis aeruginosa compounds 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 synthesized in Examples 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 Each was treated at concentrations of 0.1, 0.2, 0.5, 1, 2, 5, 10, 15 and 20 uM and incubated for 5 days.
  • Example 1 One 2.9 1.76 2.3 1.58 4.89
  • Example 2 2 2.6 3.4 0.327 1.3 0.57
  • Example 3 3 > 5 3.1 > 5 2.25 8.41
  • Example 5 5 > 5 > 5 > 5 > 5 1.3 14.17
  • Example 6 6 > 5 4.8 4.417 1.3 8.64
  • Example 7 7 2 1.5 1.53 0.28 11.61
  • Example 8 8 0.81 3.3 0.29 1.26 0.09
  • Example 17 > 5 > 5 > 5 > 5 1.18 > 20
  • Example 18 18.2.367 > 5 4.38 0.73 11.83
  • Example 19 19 3.5 > 5 4.14 1.27 13.8
  • Example 20 3.16 2.86 3.516 0.44 > 20
  • Example 21 21 > 5 3.3 3.6 1.28 9.66
  • Example 23 23 > 5 > 5 > 5 > 5 1.54 11.07
  • Example 25 > 5 2.83 4 1.19 11.11
  • Example 26 3.4 > 5 > 5 0.72
  • Example 9 9 > 5 1.97 4.55 1.85 0.97
  • Example 10 10 > 5 > 5 > 5 1.63 > 5
  • Example 12 12 > 5 > 5 > 5 1.55 > 5
  • Example 13 13 4.5 5 2.22 2.27 > 5
  • Benzyl amines Example 37
  • Example 42 42 0.52 > 5 > 5 0.15 > 5
  • Example 43 43
  • Example 38 38 0.91 > 5 > 5 0.13 > 5 n-bromo benzyl amines
  • Example 39 39 1.12 > 5 > 5 0.28 > 5
  • Example 40 40 0.74 > 5 3.5 0.57 > 5
  • Example 41 41 0.72 > 5 > 5 0.14 > 5 Phenyl propenone
  • Example 22 22 > 5 > 5 > 5 1.66 3.67 > 5
  • Example 24 24 > 5
  • Compounds 1 to 3, 5 to 10, 12, 13, 17 to 43 and synthesized in Examples 1 to 3, 5 to 10, 12, 13, 17 to 43 and 45 to 51 and 45 to 51 respectively represent Chattonella Marina , Heterosigma and Heterosigma.
  • circularisquama) poly kokeulrodinium Cri Koh des (Cochlodinium Polykrikoides), heteroaryl Sigma Oh Casio (Heterosigma akashiwo) and micro during seutiseu (Microcystis aeruginosa ) can be found to have a killing effect on at least one species.
  • IC 50 value is greater than 5
  • Figure 2 is a microscopic observation of the four microalgae after treatment with Compound 35, (a), (b), (c) and (d) are Cochlodinium Polykrikoides ( Cochlodinium Polykrikoides, respectively) ), heteroaryl Sigma Oh Casio (Heterosigma akashiwo), heteroaryl kaepsa circulator La Surgical probably (Heterosigma circularisquama ) and Chattonella Marina , of which (a) -1, (a) -3, (b) -1, (c) -1 and (d) -1 are not treated with compound 35 Not control group.
  • Cochlodinium Polykrikoides Cochlodinium Polykrikoides, respectively
  • heteroaryl Sigma Oh Casio Heterosigma akashiwo
  • heteroaryl kaepsa circulator La Surgical probably Heterosigma circularisquama
  • Chattonella Marina of which (a) -1, (
  • Example 2 In order to investigate the microalgae destructive effect of the synthesized Compound 2 in a micro when seutiseu (Microcystis aeruginosa) culture: In (40 mL, the initial populations 100X10 4 gae / mL) in DMSO and BG11 Medium 0.5, 1 and 2 Each was treated with a solution of Compound 2 at ⁇ M concentration and observed for 2 days. As a control, microalgal cultures not treated with a solution of Compound 2 were used, and the results are shown in FIG. 3.
  • Compound 2 was shown to have a high algicidal effect against Microcystis .
  • Daphnia culture 200 mL, 30 animals was treated with a solution of compounds 33 and 35 at concentrations of 5, 10 and 15 ⁇ M in DMSO and M4 medium, respectively, and the results are shown in FIG. 4.
  • the survival rate of zebrafish was 100%.
  • the concentration was 50% to control the cell number of flagella algae (see Table 1 At 15 times the concentration of about 1 ⁇ M (see IC 50 values), it can be concluded that the use of solutions of compounds 33 and 35 at concentrations that can effectively destroy microalgae is harmless to zebrafish survival.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Agronomy & Crop Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 개시는 미세조류 또는 이끼류 파괴용 조성물에 관한 것으로, 상기 미세조류 또는 이끼류 파괴용 조성물은 이끼류 배양장, 해양 미세조류 배양장, 녹조 또는 적조가 발생된 지역 또는 녹조나 적조 발생 예상 지역에 처리되어 미세조류의 생장 및 증식을 억제함으로써, 녹조 및 적조 피해를 예방할 수 있는 효과가 있다.

Description

미세조류 또는 이끼류 파괴용 조성물
본 발명은 미세조류 또는 이끼류 파괴용 조성물에 관한 것이다.
미세조류는 광합성을 하는 수중 단세포 생물로 일반적으로 식물성 플랑크톤 이라고 불린다. 현재 미세조류를 산업적으로 활용하기 위한 노력이 전세계 적으로 활발히 진행되고 있다. 미세조류는 다양한 능력에 기인하여 폐수의 처리, 이산화탄소의 고정화 등의 역할을 수행할 수 있으며 연료물질, 화장품, 사료, 식용 색소와 의약용 원료 물질 등의 유용 물질을 생산하는 목적으로 사용되어 왔고, 유용한 고부가가치 물질들이 지속적으로 발견되어 그 활용범위를 넓혀 가고 있다.
미세조류는 식량 자원의 에너지화라는 비판에서 자유로운 생명자원으로, 석유계 디젤과 유사한 물성을 가진 바이오 연료를 생산할 수 있다. 미세조류로부터 바이오디젤 생산을 위한 에너지 전환 공정은 크게 미세조류 바이오매스의 생산 및 수확, 바이오매스로부터 오일 추출공정, 추출된 오일의 전이 에스테르 반응에 의해 이루어진다. 특히 이중 조류로부터의 오일추출공정은 비용이 많이 들어 논쟁이 되고 있는 공정 중의 하나로 높은 지방생산성과 바이오디젤 생산의 bottleneck이라 할 수 있다. 그러므로 미세조류로부터 바이오디젤화를 위해서는 효율적 오일추출장치 및 방법이 선행되어야 한다.
반면, 미세조류에는 녹조현상이나 적조현상과 같이 조류의 이상 증식을 유발하는 유해조류도 포함된다. 녹조현상이란 부영양화된 호수나 유속이 느린 하천에서 부유성의 조류, 즉, 식물플랑크톤이 대량 증식하여 수면에 집적함으로써 물색을 현저하게 녹색으로 변화시키는 현상을 가리키는 말이다. 이러한 녹조현상은 일반적으로 담수에서만 발생하는데 공장폐수와 생활하수, 비료, 농약, 가축과 사람의 분뇨 등등 각종 육상 오염물질들이 강 또는 호수로 유입되고 수역의 하부에 침작되어 박테리아에 의해 분해되며 분해된 유기물들이 플랑크톤의 먹이가 되는 질소와 인을 생성시켜 해수 및 담수에서 녹조가 발생하게 된다. 이러한 녹조는 수중의 용존산소를 감소시키며, 독성녹조 및 각종 녹조플랑크톤을 생성시켜 어류 및 수생생물을 폐사시키고, 또한 육지로부터 대량 유입된 유기물들이 침전된 수역 저부에는 침전된 중금속들이 수중으로 용출되어 담수를 오염시키고 어류를 중독시킬 수 있으며, 나아가서는 환경파괴 및 자연 미관의 손상 등 많은 문제점을 불러일으키게 된다. 녹조를 일으키는 원인생물은 녹조류, 규조류, 남조류 및 식물성 편모충류 등이 있으며, 이 중에서 남조류가 주된 원인이 된다. 또한, 적조현상이란 육지로부터 유기오염 물질이나 질소, 인 등이 바다로 다량 유입되어 플랑크톤의 비정상적인 증식으로 인해 바다의 색깔이 적색, 적갈색, 황갈색, 녹색, 황녹색 및 황색 등으로 변하는 현상을 말한다. 이러한 적조를 일으키는 원인생물은 주로 편모조류 및 규조류이다.
이러한 유해조류로부터 유발된 녹조현상 및 적조현상은 수중의 용존 산소가 결핍되어 바다는 순식간에 산소가 희박한 상태가 되어 물고기 및 어폐류가 대량 폐사하게 되고, 대량 번식된 플랑크톤은 물고기의 아가미에 붙어서 물고기를 질식시키기도 하며, 특히 편모조류인 코콜리디니움은 유해 독소를 발생시켜 물고기의 죽음을 초래하게 된다. 또한 현재 세계 20억 이상의 인구가 소비하는 동물성 단백질의 50% 가량은 바다에서 공급되는데 적조현상에 따른 해양생태계의 파괴는 이러한 식량자원에도 심각한 영향을 미치게 되며, 나아가 수역 이용 가치를 저하시키고, 더 나아가 경제적인 가치를 초월하여 커다란 환경 문제를 야기하게 된다.
따라서, 미세조류는 바이오 에너지를 생산할 수 있을 뿐만 아니라 유해한 환경 문제를 저해할 수 있다. 이러한 미세조류를 이용하기 위해서는 미세조류의 세포막을 파괴시켜 세포내 지방의 추출 수율을 높이기 위한 오일 추출 과정이 필요하다. 현재까지 사용되고 있는 대표적인 오일 추출법은 용매추출법(Chiara Samori et al., Bioresource Technology, 101:3274, 2010), 속슬렛 (Soxhlet) 추출법(Ayhan Demirbas a and M. Fatih Demirbas, Energy Conversion and Management, 52(2011):163, 2011), 초임계추출법(Mohamed El Hattab et al., Journal of Chromatography A, 1143:1, 2007), 삼투충격법(Jae-Yon Lee et al., Bioresource Thchnology, 101:575, 2010), 전자파 및 음파 추출법(Choi I et al., Journal of Fooe Provcessing and Preservation, 30(4):40, 2010), Cracking or hydrocracking법(Zecchina A et al., Chem A Eur J, 13:2440, 2007) 및 Pyrolysis법(Miao X and Wu Q, J Biotechnol, 110:85, 2004)이 있다.
하지만, 이러한 방법은 낮은 추출 수율, 운전 고비용 및 복잡성 등의 문제점을 안고 있다. 따라서, 미세조류로부터 효율적인 오일을 추출하기 위해서는 보다 간편하면서도 효율적인 전처리 방법의 개발이 필요한 실정이다.
이끼류 또한 이들의 사체에서 다양한 질소화합물이 생성되고, 다량 증식하는 경우 녹조 현상이 유발될 수 있으며, 유리나 벽면에 부착하여 수족관, 전시장 등에서 미관상 불쾌함을 유발할 뿐만 아니라 가정용 수조, 대형 물탱크, 저수조, 양식장과 같은 산업 시설의 경우 수질을 악화시키고 시설의 기능성을 저하시킬 수 있으므로, 역시 이끼 발생 예방 및 제거 방면으로 관리가 필요한 실정이다.
이에, 본 발명자들은 특정 치환기를 가지는 벤질아민(benzyl amine)계, 벤즈아마이드(benzamide)계 및/또는 페닐프로페논(phenyl propenone)계 화합물이 미세조류의 세포막 파괴 효과가 있다는 것을 확인함으로써, 본 발명을 완성하게 되었다.
미세조류 또는 이끼류 파괴 효과가 있는 벤질아민(benzyl amine)계, 벤즈아마이드(benzamide)계 및/또는 페닐프로페논(phenyl propenone)계 화합물을 포함하는 미세조류 또는 이끼류 파괴용 조성물 및 이를 이용한 미세조류 또는 이끼류의 파괴방법을 제공하는 것이다.
일 측면에 따르면, 하기 화학식 1 내지 화학식 3 중 적어도 하나로 표시되는 화합물 또는 그의 염을 유효성분으로 포함하는 미세조류 또는 이끼류 파괴용 조성물이 제공된다:
<화학식 1>
Figure PCTKR2016009070-appb-I000001
<화학식 2>
Figure PCTKR2016009070-appb-I000002
<화학식 3>
Figure PCTKR2016009070-appb-I000003
상기 화학식 1 내지 3 중,
A1 내지 A3는 각각 독립적으로, 수소, 중수소, -N(R11)(R12), 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기, 치환 또는 비치환된 C1-C10알콕시기, 치환 또는 비치환된 C3-C10시클로알킬기, 치환 또는 비치환된 C1-C10헤테로시클로알킬기, 치환 또는 비치환된 C3-C10시클로알케닐기, 치환 또는 비치환된 C1-C10헤테로시클로알케닐기, 치환 또는 비치환된 C6-C60아릴기 및 치환 또는 비치환된 C1-C60헤테로아릴기 중에서 선택되고,
R1 내지 R3, R11 및 R12는 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기, 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기 및 치환 또는 비치환된 C1-C10알콕시기 중에서 선택되고,
b1 내지 b3는 각각 독립적으로, 0 내지 5의 정수 중에서 선택되고, b1이 2 이상일 경우 2 이상의 R1은 서로 동일하거나 상이하고, b2가 2 이상일 경우 2 이상의 R2는 서로 동일하거나 상이하고, b3이 2 이상일 경우 2 이상의 R3은 서로 동일하거나 상이하고,
n1 내지 n3는 각각 독립적으로, 0 내지 10의 정수 중에서 선택되고,
상기 치환된 C1-C10알킬기, 치환된 C2-C10알케닐기, 치환된 C2-C10알키닐기, 치환된 C1-C10알콕시기, 치환된 C3-C10시클로알킬기, 치환된 C1-C10헤테로시클로알킬기, 치환된 C3-C10시클로알케닐기, 치환된 C1-C10헤테로시클로알케닐기, 치환된 C6-C60아릴기 및 치환된 C1-C60헤테로아릴기 중 적어도 하나의 치환기는, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기 및 C1-C10알킬기 중에서 선택된다.
다른 측면에 따르면, 상기 미세조류 또는 이끼류 파괴용 조성물을 이끼류 배양장, 해양 미세조류 배양장, 녹조 또는 적조 발생 지역, 또는 녹조나 적조 발생 예상 지역에 처리하는 단계를 포함하는 미세조류 또는 이끼류의 파괴방법이 제공된다. 용어 '지역'은 녹조나 적조가 발생할 수 있는 환경을 지닌 곳을 의미하며, 해수 또는 민물을 모두 포함하는 모든 수계 환경을 포함한다. 용어 '처리'는 미세조류 또는 이끼류에 상기 조성물을 접촉시키는 것을 의미하는 것으로서, 상기 접촉을 위하여 상기 미세조류 또는 이끼류가 포함된 수계에 상기 조성물을 투입하는 단계를 포함할 수 있는데, 상기 투입은 분사 형태로 수면 위에 살포되거나, 교반 단계를 포함하거나, 또는 수면 위를 이동하며 이루어질 수 있다.
일 구체예에서, 상기 방법은 '수계 외 처리방법'을 이용할 수 있다. 용어 '수계 외 처리방법'은 수계의 물을 끌어올려 상기 미세조류 또는 이끼류 파괴용 조성물을 처리하여 미세조류 또는 이끼류를 제거한 다음 그 처리수를 다시 수계로 방류하는 것을 의미한다. 용어 '수계'는 물의 공급원을 의미하는 것으로 예를 들어, 저수지, 호수, 하천 등의 자연수계 및 양식장, 낚시터, 배양장, 골프장, 저수조 등의 인공수계를 포함할 수 있다. 구체적으로 상기 방법은 수계로부터 미세조류 또는 이끼류가 포함된 원수를 흡입하는 단계; 상기 원수에 상기 조성물을 처리하는 단계; 및 처리수를 다시 수계로 방류하는 단계를 포함할 수 있다. 상기 방법은 상기 처리수와 함께 그대로 방류되는 경우 유발될 수 있는 영양염류에 의한 적조 또는 녹조 등을 예방하기 위해, 잔류하는 조성물, 잔류 미세조류 또는 이끼류, 유기물질, 영양염류 및 사멸한 미세조류 또는 이끼류 등을 제거하는 단계를 더 포함할 수 있다. 상기 제거하는 단계는 침전, 고액분리 또는 단순 여과와 같은 물리적 방법 또는 황산동, 염소계 물질, 자외선, 또는 오존 등을 이용하는 화학적 방법을 포함할 수 있다.
또한 상기 방법은 상기 조성물을 처리하는 단계 전, 원수에 응집제를 처리하여 조류를 응집시키는 단계를 더 포함할 수 있다. 상기 응집제에 의해 생성된 응집물을 공기방울을 이용하여 부상시킨 후 제거하거나 또는 침전시킨 후 분리한 상층액에 조성물을 처리함으로써 조성물 투입량을 줄일 수 있으므로, 비용면에서 유리할 수 있고, 고농도의 조성물이 방류되는 경우 유발될 수 있는 부작용을 예방할 수 있다. 상기 응집제로는 황산알루미늄, 황산제이철, 염화제이철, 폴리염화알루미늄, 폴리황상규산알루미늄, 폴리수산화염화규산알루미늄 또는 폴리아민이 사용될 수 있고, 응집보조제로 알긴산나트륨, 규산나트륨, 벤토나이트 또는 카오린이 사용될 수 있으며, 산 또는 알칼리성인 pH 조절제가 사용될 수 있다.
다른 구체예에서, 상기 방법은 '수계 내 처리방법'을 이용할 수 있다. 용어 '수계 내 처리방법'은 수계 중에 조성물을 살포하여 미세조류 또는 이끼류를 제거하는 것을 의미한다. 상기 조성물은 조류에 대한 독성에 비하여, 기타 생물에 대한 독성이 낮으므로 적절한 범위에 적절한 농도로 살포되어 미세조류 또는 이끼류를 처리하기 위해 사용될 수 있다. 상기 농도는 살포될 수계의 종류, pH, 염분, 온도, 조성, 넓이, 깊이, 용도, 또는 수생 생물 분포, 처리할 미세조류 또는 이끼류의 종류, 농도 또는 분포, 또는 미세조류 또는 이끼류 파괴의 목적 또는 달성 목표 등에 따라 조절될 수 있다. 상기 '수계 내 처리방법' 또한 상기 '수계 외 처리방법'과 같이 기타 잔류하는 조성물, 잔류 미세조류 또는 이끼류, 유기물질, 영양염류 및 사멸한 미세조류 또는 이끼류 등을 제거하기 위한 단계를 더 포함할 수 있다. 상기 제거 단계는 여과지를 이용하여 물리적으로 여과하거나, 또는 응집제를 함께 또는 순차적으로 살포하여 부유시킨 후 제거하는 방법을 포함할 수 있다. 상기 제거 단계는 또한 물에 산소를 공급하고, 효율성을 증가시키며 응집물이 침전되지 않고 부유할 수 있도록 하기 위하여 기포를 발생시키는 단계를 포함할 수 있다.
또 다른 구체예에서 상기 조성물은 미세조류 또는 이끼류에 의한 녹조나 적조 발생을 예방하기 위해 사용될 수 있다. 이 경우 미세조류 또는 이끼류의 양이 적고 잔류 조성물이 미세조류 또는 이끼류의 발생을 예방할 수 있으므로 조성물의 살포량을 더욱 줄일 수 있어 유리할 수 있다. 그러나 이 경우에도 사멸한 미세조류 또는 이끼류가 영양염류로서 녹조나 적조의 발생에 일조할 수 있으므로, 상기 수계 내 또는 외 처리방법과 같이 물리적 여과, 화학적 처리, 또는 기포를 발생시키는 단계 등을 더 포함할 수 있다.
상기 미세조류 또는 이끼류 파괴용 조성물은 이끼류 배양장, 해양 미세조류 배양장, 녹조 또는 적조가 발생된 지역 또는 녹조나 적조 발생 예상 지역에 처리되어 미제조류의 생장 및 증식을 억제함으로써, 녹조 및 적조 피해를 예방할 수 있는 효과가 있다.
도 1은 평가예 2에 따라 샤토넬라 마리나(Chattonella Marina), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama), 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides) 및 헤테로시그마(Heterosigma) 배양액 각각을 실시예 35에서 합성된 화합물 35로 처리하였을 때, 시간에 따른 상기 4종의 미세조류의 생존 세포 비율을 나타낸 것이다.
도 2는 평가예 2에 따라 4종의 미세조류를 화합물 35로 처리한 후 현미경으로 관찰한 결과로서, (a), (b), (c) 및 (d)는 각각 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides), 헤테로시그마(Heterosigma), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama) 및 샤토넬라 마리나(Chattonella Marina)을 나타내고, (a)-1, (a)-3, (b)-1, (c)-1 및 (d)-1은 화합물 35로 처리하지 않은 대미세조류조군을 나타낸다.
도 3은 평가예 2에 따라 마이크로시스티스(Microcystis)를 화합물 2로 처리하였을 때, 시간에 따른 마이크로시스티스(Microcystis)의 생존 세포수를 나타낸다.
도 4는 평가예 3에 따라 화합물 33 및 35 각각에 대하여 물벼룩(Daphnia magna)에 대한 독성 평가를 수행한 결과이다.
도 5는 평가예 4에 따라 화합물 33 및 35 각각에 대하여 제브라피쉬(Danio rerio)에 대한 독성 평가를 수행한 결과이다.
미세조류 또는 이끼류 파괴용 조성물은 하기 화학식 1 내지 화학식 3 중 적어도 하나로 표시되는 화합물 또는 그의 염을 유효성분으로 포함한다:
<화학식 1>
Figure PCTKR2016009070-appb-I000004
<화학식 2>
Figure PCTKR2016009070-appb-I000005
<화학식 3>
Figure PCTKR2016009070-appb-I000006
상기 화학식 1 내지 3 중, A1 내지 A3는 각각 독립적으로, 수소, 중수소, -N(R11)(R12), 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기, 치환 또는 비치환된 C1-C10알콕시기, 치환 또는 비치환된 C3-C10시클로알킬기, 치환 또는 비치환된 C1-C10헤테로시클로알킬기, 치환 또는 비치환된 C3-C10시클로알케닐기, 치환 또는 비치환된 C1-C10헤테로시클로알케닐기, 치환 또는 비치환된 C6-C60아릴기 및 치환 또는 비치환된 C1-C60헤테로아릴기 중에서 선택될 수 있고,
상기 R11 및 R12는 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기, 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기 및 치환 또는 비치환된 C1-C10알콕시기 중에서 선택될 수 있다.
예를 들어, 상기 화학식 1 내지 3 중, A1 내지 A3는 각각 독립적으로, -N(R11)(R12), 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C1-C10알콕시기, 치환 또는 비치환된 C3-C10시클로알킬기, 치환 또는 비치환된 C6-C10아릴기 및 치환 또는 비치환된 C1-C10헤테로아릴기 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
일 실시예에 따르면, 상기 화학식 1 내지 3 중, A1 내지 A3는 각각 독립적으로, 하기 화학식 4-1 내지 4-16으로 표시되는 그룹 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016009070-appb-I000007
상기 화학식 4-1 내지 4-16 중, *는 이웃한 원자와의 결합 사이트이다.
상기 화학식 4-1 내지 4-16 중, R11 내지 R14 및 R21은 각각 독립적으로,
수소, 중수소, -F, -Cl, -Br, -I, -OH 및 치환 또는 비치환된 C1-C10알킬기 중에서 선택될 수 있다.
예를 들어, 상기 화학식 4-1 내지 4-16 중, 상기 R11 내지 R14는 각각 독립적으로, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기 및 tert-부틸기; 및
-OH기로 치환된 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기 및 tert-부틸기; 중에서 선택되고,
상기 R21은 수소, 중수소, -F, -Cl, -Br, -I 및 -OH 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 4-1 내지 4-16 중,
b11은 0 내지 2의 정수 중에서 선택되고,
b12는 0 내지 3의 정수 중에서 선택되고,
b13은 0 내지 4의 정수 중에서 선택되고,
b14는 0 내지 5의 정수 중에서 선택되고,
b15는 0 내지 6의 정수 중에서 선택되고,
b16은 0 내지 7의 정수 중에서 선택될 수 있다.
여기서, b11은 R21의 개수를 나타낸 것으로, b11이 2 이상인 경우, 2 이상의 R21은 서로 동일하거나 상이할 수 있다. 상기 b12 내지 b16의 의미는 b11에 대한 설명 및 상기 화학식 4-1 내지 4-16의 구조를 통해 이해될 수 있다.
예를 들어, 상기 화학식 4-1 내지 4-16 중, 상기 b11 내지 b16은 각각 독립적으로, 0 또는 1일 수 있다.
일 실시예에 따르면, 상기 화학식 1 내지 3 중, 상기 A1 내지 A3는 각각 독립적으로, 하기 화학식 5-1 내지 5-23로 표시되는 그룹 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016009070-appb-I000008
Figure PCTKR2016009070-appb-I000009
상기 화학식 5-1 내지 5-23 중, *는 이웃한 원자와의 결합 사이트이다.
상기 화학식 1 내지 3 중, R1 내지 R3은 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기, 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기 및 치환 또는 비치환된 C1-C10알콕시기 중에서 선택될 수 있다.
예를 들어, 상기 화학식 1 내지 3 중, R1 내지 R3은 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기 및 치환 또는 비치환된 C1-C10알킬기 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
예를 들어, 상기 화학식 1 내지 3 중, R1 내지 R3은 각각 독립적으로, 상기 R1 내지 R3은 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I 및 -OH 중에서 선택될 수 있다.
상기 화학식 1 내지 3 중, b1 내지 b3는 각각 독립적으로, 0 내지 5의 정수 중에서 선택되고, b1이 2 이상일 경우 2 이상의 R1은 서로 동일하거나 상이하고, b2가 2 이상일 경우 2 이상의 R2는 서로 동일하거나 상이하고, b3이 2 이상일 경우 2 이상의 R3은 서로 동일하거나 상이할 수 있다.
예를 들어, 상기 화학식 1 내지 3 중, 상기 b1 내지 b3는 각각 독립적으로, 0, 1, 또는 2일 수 있다.
일 실시예에 따르면, 상기 화학식 1 내지 3 중, 상기 b1 내지 b3이 1인 경우, 상기 R1 내지 R3은 -Br 또는 -OH이고, 상기 b1 내지 b3이 2인 경우, 상기 R1 내지 R3은 -Cl일 수 있다.
일 실시예에 따르면, 상기 화학식 1 내지 3 중, 상기 b1 내지 b3이 2인 경우, 2 개의 R1, 2 개의 R2 및 2개의 R3는 각각 파라(para) 위치로 존재할 수 있다.
상기 화학식 1 내지 3 중, n1 내지 n3는 각각 독립적으로, 0 내지 10의 정수 중에서 선택될 수 있다.
예를 들어, 상기 화학식 1 내지 3 중, n1 내지 n3는 각각 독립적으로, 0 내지 3의 정수 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
일 구현예에 따르면, 상기 미세조류 또는 이끼류 파괴용 조성물은 하기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중 적어도 하나로 표시되는 화합물 또는 그의 염을 유효성분으로 포함할 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016009070-appb-I000010
Figure PCTKR2016009070-appb-I000011
Figure PCTKR2016009070-appb-I000012
상기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중,
A1 내지 A3 및 n1 내지 n3에 대한 설명은 본 명세서에 기재된 바를 참조한다.
예를 들어, 상기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중,
A1 내지 A3는 각각 독립적으로, 하기 화학식 5-1 내지 5-23으로 표시되는 그룹 중에서 선택되고,
Figure PCTKR2016009070-appb-I000013
Figure PCTKR2016009070-appb-I000014
상기 화학식 5-1 내지 5-23 중, *는 이웃한 원자와의 결합 사이트이고,
n1 내지 n3는 각각 독립적으로, 0 내지 3의 정수 중에서 선택될 수 있다.
일 실시예에 따르면, 상기 미세조류 또는 이끼류 파괴용 조성물은 하기 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51 중 적어도 하나의 화합물 또는 그의 염을 유효성분으로 포함할 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2016009070-appb-I000015
Figure PCTKR2016009070-appb-I000016
Figure PCTKR2016009070-appb-I000017
Figure PCTKR2016009070-appb-I000018
Figure PCTKR2016009070-appb-I000019
Figure PCTKR2016009070-appb-I000020
Figure PCTKR2016009070-appb-I000021
Figure PCTKR2016009070-appb-I000022
Figure PCTKR2016009070-appb-I000023
미세조류 또는 이끼류, 특히 녹조 또는 적조를 유발하는 유해조류의 파괴 효과는, 미세조류 또는 이끼류 파괴용 조성물에 포함된 화합물이 갖는 특정 치환기의 화학 구조에 영향을 받는다. 따라서, 미세조류 또는 이끼류 파괴 효과를 높이기 위해서는 살조 활성이 우수한 치환기를 가져야 한다. 또한, 미세조류 또는 이끼류 파괴용 조성물에 의한 2차 오염문제가 발생되지 않도록 적은 양만으로도 살조 활성이 우수하여야 한다.
본 발명의 발명자들은 벤질아민기를 포함하는 상기 화학식 1로 표시되는 화합물, 벤즈아마이드기를 포함하는 화학식 2로 표시되는 화합물 및 페닐프로페논기를 포함하는 화학식 3으로 표시되는 화합물이 살조 활성이 우수하다는 것을 확인하였다.
본 명세서 중 C1-C10알킬기는, 탄소수 1 내지 10의 선형 또는 분지형 지방족 탄화수소 1가(monovalent) 그룹을 의미하며, 구체적인 예에는, 메틸기, 에틸기, 프로필기, 이소부틸기, sec-부틸기, ter-부틸기, 펜틸기, 헥실기 등이 포함된다.
본 명세서 중 C1-C10알콕시기는, -OA101(여기서, A101은 상기 C1-C10알킬기임)의 화학식을 갖는 1가 그룹을 의미하며, 이의 구체적인 예에는, 메톡시기, 에톡시기, 프로폭시기 등이 포함된다.
본 명세서 중 C2-C10알케닐기는, 상기 C2-C10알킬기의 중간 또는 말단에 하나 이상의 탄소 이중 결합을 포함한 탄화수소 그룹을 의미하며, 이의 구체적인 예에는, 에테닐기, 프로페닐기, 부테닐기 등이 포함된다.
본 명세서 중 C2-C10알키닐기는, 상기 C2-C10알킬기의 중간 또는 말단에 하나 이상의 탄소 삼중 결합을 포함한 탄화수소 그룹을 의미하며, 이의 구체적인 예에는, 에티닐기(ethynyl), 프로피닐기(propynyl), 등이 포함된다.
본 명세서 중 C3-C10시클로알킬기는, 탄소수 3 내지 10의 1가 포화 탄화수소 모노시클릭 그룹을 의미하며, 이의 구체예는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기 등을 포함한다.
본 명세서 중 C1-C10헤테로시클로알킬기는, N, O, P 및 S 중에서 선택된 적어도 하나의 헤테로 원자를 고리-형성 원자로서 포함한 탄소수 1 내지 10의 1가 모노시클릭 그룹을 의미하며, 이의 구체예는 테트라히드로퓨라닐기(tetrahydrofuranyl), 테트라히드로티오페닐기 등을 포함한다.
본 명세서 중 C3-C10시클로알케닐기는 탄소수 3 내지 10의 1가 모노시클릭 그룹으로서, 고리 내에 적어도 하나의 이중 결합을 가지나, 방향족성을 갖지 않는 그룹을 의미하며, 이의 구체예는 시클로펜테닐기, 시클로헥세닐기, 시클로헵테닐기 등을 포함한다.
본 명세서 중 C1-C10헤테로시클로알케닐기는 N, O, P 및 S 중에서 선택된 적어도 하나의 헤테로 원자를 고리-형성 원자로서 포함한 탄소수 1 내지 10의 1가 모노시클릭 그룹으로서, 고리 내에 적어도 하나의 이중 결합을 갖는다. 상기 C1-C10헤테로시클로알케닐기의 구체예는, 2,3-디히드로퓨라닐기, 2,3-디히드로티오페닐기 등을 포함한다.
본 명세서 중 C6-C60아릴기는 탄 원자수 6 내지 60개의 카보사이클릭 방향족 시스템을 갖는 1가(monovalent) 그룹을 의미한다. 상기 C6-C60아릴기의 구체예는, 페닐기, 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 크라이세닐기 등을 포함한다. 상기 C6-C60아릴기가 2 이상의 고리를 포함할 경우, 상기 2 이상의 고리들은 서로 융합될 수 있다.
본 명세서 중 C1-C60헤테로아릴기는 N, O, P 및 S 중에서 선택된 적어도 하나의 헤테로 원자를 고리-형성 원자로서 포함하고 탄소수 1 내지 60개의 카보사이클릭 방향족 시스템을 갖는 1가 그룹을 의미하고, 상기 C1-C60헤테로아릴기의 구체예는, 피리디닐기, 피리미디닐기, 피라지닐기, 피리다지닐기, 트리아지닐기, 퀴놀리닐기, 이소퀴놀리닐기 등을 포함한다. 상기 C1-C60헤테로아릴기가 2 이상의 고리를 포함할 경우, 2 이상의 고리들은 서로 융합될 수 있다.
상기 치환된 C1-C10알킬기, 치환된 C2-C10알케닐기, 치환된 C2-C10알키닐기, 치환된 C1-C10알콕시기, 치환된 C3-C10시클로알킬기, 치환된 C1-C10헤테로시클로알킬기, 치환된 C3-C10시클로알케닐기, 치환된 C1-C10헤테로시클로알케닐기, 치환된 C6-C60아릴기 및 치환된 C1-C60헤테로아릴기 중 적어도 하나의 치환기는, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기 및 C1-C10알킬기 중에서 선택된다.
또한, 본 명세서 중, 염은 본 발명의 일 구현예에 따른 화합물을 최종적으로 분리, 정제 및 합성하는 동안에 동일반응계에서 제조하거나 별도로 무기 염기 또는 유기 염기와 반응시켜 제조할 수 있다. 상기 염으로는 본 발명의 화합물이 산성기를 함유하고 있을 경우, 염기와 염을 형성할 수 있는 데, 이러한 염으로는 예를 들면, 이에 한정되지는 않으나 리튬염, 나트륨염 또는 칼륨염과 같은 알칼리금속과의 염; 바륨 또는 칼슘과 같은 알칼리토금속과의 염; 마그네슘염과 같은 기타 금속과의 염; 디시클로헥실아민과의 염과 같은 유기 염기염; 리신 또는 아르기닌과 같은 염기성 아미노산과의 염을 포함할 수 있다. 또한, 본 발명의 화합물이 분자 내에 염기성 기를 함유하는 경우에는 산부가염을 형성할 수 있으며, 이러한 산부가염의 예로는, 이에 한정되지는 않으나, 무기산, 특히 할로겐화수소산(예컨대, 불소화수소산, 브롬화수소산, 요오드화수소산 또는 염화수소산), 질산, 탄산, 황산 또는 인산과의 염; 메탄술폰산, 트리플루오로메탄술폰산 또는 에탄술폰산과 같은 저급알킬 술폰산과의 염; 벤젠술폰산 또는 p-톨루엔술폰산과의 염; 아세트산, 푸마르산, 타르타르산, 옥살산, 말레산, 말산, 숙신산 또는 시트르산과 같은 유기카르복실산과의 염; 및 글루탐산 또는 아스파르트산과 같은 아미노산과의 염을 포함할 수 있다.
또한, 본 발명의 일 구현예에 따른 화합물은 상기 화합물의 수화물 또는 용매화물의 형태로 된 유도체를 포함할 수 있다(J. M. Keith, 2004, Trahedron Letters, 45(13), 2739-2742).
본 발명에 일 구현예에 따른 화합물은 천연으로부터 분리되거나 당 업계에 공지된 화학적 합성법으로 제조될 수 있으며, 통상적으로 치환기 화합물들을 적절한 반응용매와 함께 반응시켜 중간체 생성물을 수득한 후, 상기 중간체 생성물을 적절한 반응용매에서 반응시킴으로써 제조할 수 있다.
상기 제조과정에서 사용될 수 있는 반응용매로는 반응에 관여하지 않는 한 특별한 제한은 없으며, 예를 들면 디에틸 에테르, 테트라히드로푸란, 디옥산 등의 에테르류; 디클로로메탄, 클로로포름 등의 할로겐화 탄화수소류; 피리딘, 피페리딘, 트리에틸아민 등의 아민류, 아세톤; 메틸에틸케톤, 메틸이소부틸 등의 알킬케톤류; 메탄올, 에탄올, 프로판올 등의 알코올류; N,N-디메틸포름아미드, N,N-디메틸아세트아미드, 아세토니트릴, 디메틸술폭시드, 헥사메틸인산트리아미드 등의 비프로톤성 극성용매를 들 수 있으며, 특히 통상적으로 유기합성에서 사용되는 비반응성 유기용매 중에서 딘-스탁 트랩에 의해 반응 중 생성되는 물을 분리할 수 있는 용매가 선호된다. 이러한 용매의 예로는, 벤젠, 톨루엔, 크실렌 등이 있으나 이에 한정되지는 않는다. 반응 생성물의 분리 및 정제는 유기합성에서 통상적으로 수행되는 농축, 추출 등의 과정을 통해 이루어지며, 필요에 따라 실리카겔 상에서 컬럼 크로마토그래피에 의한 정제 작업을 통해 분리 및 정제를 수행할 수 있다.
본 발명은 또한 본 발명의 일 구현예에 따른 화합물 제조방법들에 대한 임의의 변형을 포함하고, 여기서 그의 임의의 단계에서 수득할 수 있는 중간체 생성물은 나머지 단계들의 출발물질로 사용될 수 있으며, 상기 출발물질은 반응 조건하에 반응계 내에서 형성되거나, 반응 성분들은 그의 염 또는 광학적으로 거울상체의 형태로 사용될 수 있다.
또한 본 발명에 따른 화합물을 제조하기 위해 사용된 치환기들의 종류, 중간체 생성물 및 제조방법의 선택에 따라 가능한 이성질체, 예컨대 실질적으로 순수한 기하학적(시스 또는 트랜스) 이성질체, 광학 이성질체(거울상체) 또는 라세미체의 형태일 수 있으며, 이러한 가능한 이성질체 모두 본 발명의 영역에 포함된다.
한편, 본 발명의 다른 측면에 따르면, 상기 미세조류 또는 이끼류 파괴용 조성물을 이용하여 미세조류 또는 이끼류를 파괴하는 방법을 제공한다. 구체적으로, 상기 미세조류 또는 이끼류의 파괴 방법은 상기 미세조류 또는 이끼류 파괴용 조성물을 이끼류 배양장, 해양 미세조류 배양장, 녹조 또는 적조 발생 지역, 또는 녹조나 적조 발생 예상 지역에 처리하는 단계를 포함한다.
상기 미세조류 또는 이끼류는 녹조현상 또는 적조현상을 일으킬 수 있는 조류 및 바이오디젤을 생산할 수 있는 조류 또는 이끼류이며, 예를 들어 조류의 경우, 남조류, 규조류, 녹조류, 유글레노이드 조류, 편모조류, 황녹색조류, 와편모조류, 침편모조류 및 바이오디젤 생산능을 가진 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
이끼류는 습하거나 그늘진 지역에서 종종 생장하는 이끼류 또는 선류에 속하는 식물로서 상기 이끼류는 타카키온강(Takakiopsida), 스파그논강(Sphagnopsida), 안드레아에온강(Andreaeopsida), 안드레아오브리온강(Andreaeobryopsida), 오에디포디온강(Oedipodiopsida), 폴리트리촌강(Polytrichopsida), 테트라피돈강(Tetraphidopsida), 및 브리온강(Bryopsida) 이끼 중에서 선택되는 것일 수 있으나, 이에 한정되는 것은 아니다.
상기 남조류는 마이크로시스티스(Microcystis), 아나베나(Anabaena), 아파니존메논(Aphanizomenon) 및 오실라토리아(Oscillatoria) 속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 규조류는 시네드라(Synedra), 아스테리오넬라(Asterionella), 시클로텔라(Cyclotella), 멜로시라(Melosira), 스켈레토네마 코스타튬(Skeletonema costatum), 카에토세로스 ( Chaetoceros), 탈라시오시라(Thalassiosira), 렙토실린드루스(Leptocylindrus), 니츠쉬이아(Nitzschia), 실린드로세카(Cylindrotheca), 유캄피아(Eucampia) 및 오돈텔라(Odontella) 속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 녹조류는 클로스테리움(Closterium), 페디아스트룸(Pediastrum) 및 세네데스무스(Scenedesmus) 속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 유글레노이드(Euglenoids) 조류는 트라첼로모나스(Trachelomonas) 또는 유글레나(Euglena) 속 조류일 수 있으나, 이에 한정되는 것은 아니다.
상기 편모조류는 페리디늄(Peridinium), 헤테로시그마(Heterosigma), 헤테로캡사 ( Heterocapsa ), 코클로디니움(Cochlodinium), 프로로센트룸(Prorocentrum), 세라티움(Ceratium), 녹틸루카( Noctiluca), 스크립시엘라(Scrippsiella), 디노피시스(dinophysis), 알렉산드리움(Alexandrium), 유트렙티엘라(Eutreptiella), 피스테리아(Pfiesteria), 샤토넬라(Chattonella), 에밀리아니아(Emiliania) 및 짐노디니움(Gymnodinium) 속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 황녹색조류는 유로글레나(Uroglena) 속 조류일 수 있으나, 이에 한정되는 것은 아니다.
상기 와편모조류 및 상기 침편모조류는 테로시그마(Heterosigma), 헤테로캡사 (Heterocapsa), 코클로디니움(Cochlodinium), 프로로센트룸(Prorocentrum), 세라티움(Ceratium), 녹틸루카(Noctiluca), 스크립시엘라(Scrippsiella), 디노피시스(dinophysis), 알렉산드리움(Alexandrium), 유트렙티엘라(Eutreptiella), 피스테리아(Pfiesteria), 샤토넬라(Chattonella), 에밀리아니아(Emiliania) 및 짐노디니움(Gymnodinium) 속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 바이오디젤 생산능을 가진 조류는 슈도크리시스티스(Pseudochoricystis), 보트리오코커스(Botryococcus) 및 두날리엘라(Dunaliella)속 조류 중에서 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 화학식 1 내지 51로 표시되는 화합물 또는 그의 염을 함유하는 미세조류 또는 이끼류 파괴용 조성물을 이끼류 배양장, 해양 미세조류 배양장, 녹조현상 또는 적조현상이 발생한 지역, 또는 녹조나 적조현상 발생예상 지역에 처리할 경우, 처리 지역의 최종 농도를 기준으로 1μM 내지 100μM의 범위, 예를 들어, 1μM 내지 30μM의 범위로 사용할 수 있다.
이하, 실시예를 들어, 본 발명의 일 구현예를 따르는 미세조류 또는 이끼류 파괴용 조성물에 대하여 보다 구체적으로 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
(실시예: 화합물의 제조)
합성을 하기 위하여 사용된 모든 화합물은 Sigma-Aldrich 사, TCI 사, Junsei 사, 및 Merck 사로부터 입수하여 사용하였다. 수분에 민감한 화합물의 경우 N2 분위기 하에서 반응시켰다.
각 화합물의 1H Nuclear magnetic resonance(NMR)을 YH300(Oxford 사)을 사용하여, 300MHz 및 296K에서 CDCl3 또는 DMSO의 TMS를 표준 시료로 하여 측정하였다. 상기 NMR의 화학적 이동량은 ppm 단위로 표시하였으며, J-coupling 결합 상수는 Hz(Hertz) 단위로 측정하였다.
실시예 1
화합물 1(N'-(3,4-Dichloro-benzyl)-N,N-diethyl-ethane-1,2-diamine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N,N-Diethylethylenediamine 0.664 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색의 액체 N'-(3,4-Dichloro-benzyl)-N,N-diethyl-ethane-1,2-diamine을 얻었다.
Yield : 89.5 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.18 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.76 (s, 1H), δ 2.68 (m, 8H), δ 1.06 (t, J=6.9 Hz, 6H)
실시예 2
화합물 2(N'-(3,4-Dichloro-benzyl)-N,N-diethyl-propane-1,3-diamine)이 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N,N-Diethyl-1,3-diaminopropane 0.744 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색의 액체 N'-(3,4-Dichloro-benzyl)-N,N-diethyl-propane-1,3-diamine을 얻었다.
Yield : 90. 75 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.73 (s, 2H), δ 2.66 (t, J=6.5 Hz, 2H), δ 2.57 (m, 6H), δ 1.72 (m, J=6.5 Hz, 1H), δ 1.05 (t, J=7.3 Hz, 6H)
실시예 3
화합물 3(N'-(3,4-Dichloro-benzyl)-N,N-dimethyl-ethane-1,2-diamine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N,N-Dimethylethylenediamine 0.503 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색의 액체 N'-(3,4-Dichloro-benzyl)-N,N-dimethyl-ethane-1,2-diamine을 얻었다.
Yield : 93.2 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=2.2 Hz, 1H), δ 7.39 (d, J=8.4 Hz, 1H), δ 7.18 (dd, J=8.4 and 2.2 Hz, 1H), δ 3.76 (s, 2H), δ 2.68 (m, J=5.8 Hz, 2H), δ 2.45 (t, J=5.8 Hz, 2H), δ 2.21 (s, 6H), δ 2.12 (s, 1H)
실시예 5
화합물 5((3,4-Dichloro-benzyl)-(2-methoxy-ethyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 2-Methoxyethylamine 0.429 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색의 액체 (3,4-Dichloro-benzyl)-(2-methoxy-ethyl)-amine을 얻었다.
Yield : 92.1 %
1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.18 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.76 (s, 2H), δ 3.52 (t, J=5.1 Hz, 2H), δ 3.35 (s, 3H), δ 2.79 (t, J=5.3 Hz, 2H)
실시예 6
화합물 6((3,4-Dichloro-benzyl)-(4,4-dimethoxy-butyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-Aminobutyraldehyde Dimethyl Acetal 0.761 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색의 액체 (3,4-Dichloro-benzyl)-(4,4-dimethoxy-butyl)-amine을 얻었다.
Yield : 87.15%
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 1.8 Hz, 1H), δ 4.38 (t, J=5.49 Hz, 1H), δ 3.74 (s, 2H), δ 3.31 (s, 6H), δ 2.64 (t, 2H), δ 1.69 (m, 4H)
실시예 7
화합물 7((3,4-Dichloro-benzyl)-(3-methyl-butyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Isoamylamine 0.498 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체의 (3,4-Dichloro-benzyl)-(3-methyl-butyl)-amine을 얻었다.
Yield : 94 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=2.19 Hz, 1H), δ 7.38 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 2.19 Hz, 1H), δ 3.74 (s, 2H), δ 2.63 (t, 2H), δ 1.70 (m, J=6.9 Hz, 1H), δ 1.42 (m, J=6.9 Hz, 2H), δ 1.28 (b, 1H), δ 0.90 (d, 6H)
실시예 8
화합물 8(N'-(3,4-Dichloro-benzyl)-N,N-dimethyl-propane-1,3-diamine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N,N-Dimethyl-1,3-propanediamine 0.583 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체의 N'-(3,4-Dichloro-benzyl)-N,N-dimethyl-propane-1,3-diamine을 얻었다.
Yield : 89.9 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.4 Hz, 1H), δ 7.17 (dd, J=8.4 and 1.8 Hz, 1H), δ 3.74 (s, 2H), δ 2.66 (t, J=6.9 Hz, 2H), δ 2.34 (t, J=6.9 Hz, 2H), δ 2.22 (s, 6H), δ 1.72 (m, J=6.9 Hz, 3H)
실시예 9
화합물 9(3,4-Dichloro-N-(2-diethylamino-ethyl)-benzamide)의 합성
THF 20ml에 3,4-Dichlorobenzoyl Chloride 1 g (4.774 mmol)를 녹인 다음 N,N-Diethylethylenediamine 0.621 g (4.774 mmol)을 넣고, Triethylamine 1 ml (7.161 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30 ml로 3회 추출하여 이를 합하고, 무수 황산 마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 Ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 3,4-Dichloro-N-(2-diethylamino-ethyl)-benzamide을 얻었다.
Yield : 94.1 %
1H NMR (300 MHz, CDCl3) δ 7.90 (d, J=2.1 Hz, 1H), δ 7.62 (dd, J=8.0 and 2.1 Hz, 1H), δ 7.51 (d, J=8.0 Hz, 1H), δ 7.1 (b, 1H), δ 3.51 (m, J=5.1 Hz, 2H), δ 2.69 (t, J=5.1 Hz, 2H), δ 2.63 (m, J=6.9 Hz, 4H), δ 1.08 (t, J=6.9 Hz, 6H)
실시예 10
화합물 10(3,4-Dichloro-N-(2-dimethylamino-ethyl)-benzamide)의 합성
THF 20ml에 3,4-Dichlorobenzoyl Chloride 1 g (4.774 mmol)를 녹인 다음 N,N-Dimethylethylenediamine 0.420 g (4.774 mmol)을 넣고, Triethylamine 1 ml (7.161 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30 ml로 3회 추출하여 이를 합하고, 무수 황산 마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 Ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 고체 3,4-Dichloro-N-(2-dimethylamino-ethyl)-benzamide을 얻었다.
Yield :95 %
1H NMR (300 MHz, CDCl3) δ 7.91 (d, J=2.2 Hz, 1H), δ 7.65 (dd, J=8.0 and 2.2 Hz, 1H), δ 7.52 (d, J=8.0 Hz, 1H), δ 6.96 (b, 1H), δ 3.55 (m, J=5.8 Hz, 2H), δ 2.58 (t, J=5.8 Hz, 2H), δ 2.30 (s, 6H)
실시예 12
화합물 12(3,4-Dichloro-N-(3-dimethylamino-propyl)-benzamide)의 합성
THF 20ml에 3,4-Dichlorobenzoyl Chloride 1 g (4.774 mmol)를 녹인 다음 N,N-Dimethyl-1,3-propanediamine 0.487 g (4.774 mmol)을 넣고, Triethylamine 1 ml (7.161 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30 ml로 3회 추출하여 이를 합하고, 무수 황산 마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 Ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 붉은색 고체 3,4-Dichloro-N-(3-dimethylamino-propyl)-benzamide을 얻었다.
Yield : 97.6 %
1H NMR (300 MHz, CDCl3) δ 9.02 (b, 1H), δ 7.88 (d, J=1.8 Hz, 1H), δ 7.65 (dd, J=8.4 and 1.8 Hz, 1H), δ 7.51 (d, J=8.4 Hz, 1H), δ 3.59 (m, J=5.8 Hz, 2H), δ 2.61 (t, J=5.8 Hz, 2H), δ 2.37 (s, 6H), δ 1.84 (m, J=5.8 Hz, 2H)
실시예 13
화합물 13(3,4-Dichloro-N-(3-diethylamino-propyl)-benzamide)의 합성
THF 20ml에 3,4-Dichlorobenzoyl Chloride 1 g (4.774 mmol)를 녹인 다음 N,N-Diethyl-1,3-diaminopropane 0.621 g (4.774 mmol)을 넣고, Triethylamine 1 ml (7.161 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30 ml로 3회 추출하여 이를 합하고, 무수 황산 마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 Ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 노란색 고체 3,4-Dichloro-N-(3-diethylamino-propyl)-benzamide을 얻었다.
Yield : 91.2 %
1H NMR (300 MHz, CDCl3) δ 9.31 (b, 1H), δ 7.89 (d, J=2.1 Hz, 1H), δ 7.68 (dd, J=8.4 and 2.1 Hz, 1H), δ 7.51 (d, J=8.4 Hz, 1H), δ 3.59 (m, J=5.4 Hz, 2H), δ 2.68 (m, 6H), δ 1.81 (m, J=5.4 Hz, 2H), δ 1.09 (t, J=6.9 Hz, 6H)
실시예 17
화합물 17((3,4-Dichloro-benzyl)-ethyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Ethylamine 0.257 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 (3,4-Dichloro-benzyl)-ethyl-amine을 얻었다.
Yield : 95.4 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=2.1 Hz, 1H), δ 7.38 (d, J=8.4 Hz, 1H), δ 7.17 (dd, J=8.4 and 2.1 Hz, 1H), δ 3.74 (s, 2H), δ 2.69 (m, J=6.9, 2H), δ 1.28 (b, 1H), δ 1.15 (t, J=6.9 Hz, 3H)
실시예 18
화합물 18((3,4-Dichloro-benzyl)-propyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Propylamine 0.337 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 (3,4-Dichloro-benzyl)-propyl-amine을 얻었다.
Yield : 94.3 %
1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.4 Hz, 1H), δ 7.17 (dd, J=8.4 and 1.8 Hz, 1H), δ 3.73 (s, 2H), δ 2.58 (t, J=7.3 Hz, 2H), δ 1.58 (m, J=7.3 Hz, 2H), δ 1.42 (b, 1H), δ 0.94 (t, J=7.3 Hz, 3H)
실시예 1 9
화합물 19((3,4-Dichloro-benzyl)-phenyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Aniline 0.532 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란 액체 (3,4-Dichloro-benzyl)-phenyl-amine을 얻었다.
Yield : 87 %
1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.2 (m, 3H), δ 6.76 (tt, J=7.3 and 1.0 Hz, 1H), δ 6.59 (dt, J=7.3 and 1.0 Hz, 2H), δ 4.29 (s, 2H), δ 4.10 (b, 1H)
실시예 20
화합물 20(Butyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Buthylamine 0.417 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 Butyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 93.4 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=2.1 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 2.1 Hz, 1H), δ 3.74 (s, 2H), δ 2.62 (t, J=6.9 and 7.3 Hz, 2H), δ 1.53 (m, J= 6.9 Hz, 4H), δ 1.25 (b, 1H), δ 0.93 (t, J=7.32 Hz, 3H)
실시예 21
화합물 21((4-Chloro-phenyl)-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-Chloroaniline 0.728 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (4-Chloro-phenyl)-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 89 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.41 (d, J=8.0 Hz, 1H), δ 7.19 (dd, J= 8.0 and 1.8 Hz, 1H), δ 7.13 (dt, J=9.8 and 2.2 Hz, 2H), δ 6.52 (dt, J=9.8 and 2.2 Hz, 2H), δ 4.28 (s, 2H), δ 4.14 (b, 1H)
실시예 22
화합물 22(3-(3,4-Dichloro-phenyl)-1-phenyl-propenone)의 합성
Ethanol 20ml에 3,4-Dichlorobenzaldehyde 1 g (5.741 mmol)를 녹인 다음 Acetophenone 0.686 g (5.714 mmol)을 넣고 녹인다. 모두 녹은 후 혼합물을 0℃ 이하에서 교반 시켜주며 4M NaOH 1.2 ml를 서서히 적가한 후 실온에서 약 3시간 동안 교반하였다. 반응의 진행정도를 TLC로 확인하여 출발물질이 더 이상 나타나지 않게 되면 반응물을 차가운 Ethanol로 씻어 주며 필터 한다. 반응물을 Silica gel이 충진된 Column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 흰색 고체 3-(3,4-Dichloro-phenyl)-1-phenyl-propenone을 얻는다.
Yield : 73.2 %
1H NMR (300 MHz, CDCl3) δ 8.04 (dt, 2H), δ 7.74 (d, J=1.83 Hz, 1H), δ 7.68 (s, 1H), δ 7.64 (tt, 1H), δ 7.55 (m, 5H)
실시예 23
화합물 23((3,4-Dichloro-benzyl)-(4-fluoro-phenyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-Fluoroaniline 0.640 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-(4-fluoro-phenyl)-amine을 얻었다.
Yield : 86 %
1H NMR (300 MHz, CDCl3) δ 7.46 (d, J=1.8 Hz, 1H), δ 7.41 (d, J= 8.0 Hz, 1H), δ 7.21 (dd, J= 8.0 and 1.8 Hz 1H), δ 6.91 (m, 2H), δ 6.53 (m, 2H), δ 4.26 (s, 2H), δ 4.01 (b, 1H)
실시예 24
화합물 24(1-(4-Chloro-phenyl)-3-(3,4-dichloro-phenyl)-propenone)의 합성
Ethanol 20ml에 3,4-Dichlorobenzaldehyde 1 g (5.741 mmol)를 녹인 다음 4-Chloroacetophenone 0.883 g (5.714 mmol)을 넣고 녹인다. 모두 녹은 후 혼합물을 0℃ 이하에서 교반 시켜주며 4M NaOH 1.2 ml를 서서히 적가한 후 실온에서 약 3시간 동안 교반하였다. 반응의 진행정도를 TLC로 확인하여 출발물질이 더 이상 나타나지 않게 되면 반응물을 차가운 Ethanol로 씻어 주며 필터 한다. 반응물을 Silica gel이 충진된 Column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 흰색 고체 3-(3,4-Dichloro-phenyl)-1-phenyl-propenone을 얻는다.
Yield : 75.8 %
1H NMR (300 MHz, CDCl3) δ 7.99 (dt, 2H), δ 7.74 (d, J=1.83 Hz, 1H), δ 7.68 (s, 1H), δ 7.52 (m, 5H)
실시예 25
화합물 25((4-Bromo-phenyl)-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-Bromoaniline 0.982 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (4-Bromo-phenyl)-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 30.5%
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.41 (d, J=8.0 Hz, 1H), δ 7.26 (tt, 2H), δ 7.19 (dd, J=8.0 and 1.8 Hz, 1H), δ 6.48 (tt, 2H), δ 4.29 (d, 2H), δ 4.16 (b, 1H)
실시예 26
화합물 26((3,4-Dichloro-benzyl)-pyridin-2-ylmethyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 2-Picolylamine 0.617 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 붉은색 액체 (3,4-Dichloro-benzyl)-pyridin-2-ylmethyl-amine을 얻었다.
Yield : 73.3 %
1H NMR (300 MHz, CDCl3) δ 8.57 (d, 1H), δ 7.68 (td, J=7.6 and 1.8 Hz, 1H), δ 7.48 (d, J=1.8 Hz, 1H), δ 7.40 (d, J=8.0 Hz, 1H), δ 7.30 (d, J=8.0 Hz, 1H), δ 7.21 (m, 2H), δ 3.90 (s, 2H), δ 3.79 (s, 2H), δ 2.16 (b, 1H)
실시예 27
화합물 27((3,4-Dichloro-benzyl)-pyridin-3-ylmethyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 3-Picolylamine 0.617 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-pyridin-3-ylmethyl-amine을 얻었다.
Yield : 69.8 %
1H NMR (300 MHz, CDCl3) δ 8.57 (d, J=1.8 Hz, 1H), δ 8.53 (dd, J=4.7 and 1.8 Hz, 1H), δ 7.72 (d, J=7.7 Hz, 1H), δ 7.47 (d, J=1.8 Hz, 1H), δ 7.41 (d, J=8.43 Hz, 1H), δ 7.30 (m, 1H), δ 7.20 (dd, J=8.4 and 1.8 Hz, 1H), δ 3.80 (s, 2H), δ 3.77 (s, 2H), δ 2.04 (b, 1H)
실시예 28
화합물 28((3,4-Dichloro-benzyl)-pyridin-4-ylmethyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-Picolylamine 0.617 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-pyridin-4-ylmethyl-amine을 얻었다.
Yield : 72 %
1H NMR (300 MHz, CDCl3) δ 8.57 (dd, 2H), δ 7.47 (d, J=1.83 Hz, 1H), δ 7.42 (d, J=8.0 Hz, 1H), δ 7.29 (dd, 2H), δ 7.20 (dd, J=8.0 and 1.83 Hz, 1H), δ 3.81 (s, 2H), δ 3.76 (s, 2H), δ 1.75 (b, 1H)
실시예 29
화합물 29(Benzyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Benzylamine 0.612 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 노란색 액체 Benzyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 89.1 %
1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=2.2 Hz, 1H), δ 8.74 (d, J=8.0 Hz, 1H), δ 8.73 (m, 5H), δ 7.20 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.79 (s, 2H), δ 3.76 (s, 2H), δ 1.60 (b, 1H)
실시예 30
화합물 30((3,4-Dichloro-benzyl)-(2-pyridin-4-yl-ethyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 4-(2-Aminoethyl)pyridine 0.698 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-(2-pyridin-4-yl-ethyl)-amine을 얻었다.
Yield : 76.7 %
1H NMR (300 MHz, CDCl3) δ 8.53 (d, 2H), δ 7.39 (m, 2H), δ 7.15 (m, 3H), δ 3.76 (s, 2H), δ 2.91 (m, 2H), δ 2.83 (m, 2H), δ 2.37 (b, 1H)
실시예 31
화합물 31((3,4-Dichloro-benzyl)-(2-pyridin-3-yl-ethyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 3-(2-Aminoethyl)pyridine 0.698 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-(2-pyridin-3-yl-ethyl)-amine을 얻었다.
Yield : 62.24 %
1H NMR (300 MHz, CDCl3) δ 8.48 (s, 2H), δ 7.54 (dt, 1H), δ 7.39 (m, 2H), δ 7.26 (m, 1H), δ 7.13 (dd, J=8.4 and 2.1 Hz, 1H), δ 3.76 (s, 2H), δ 2.90 (m, 4H)
실시예 32
화합물 32((3,4-Dichloro-benzyl)-(2-pyridin-2-yl-ethyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 0.698 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate, n-hexane과 methanol의 혼합용매를 이동상으로 하여 분리시키고 어두운 노란색 액체 (3,4-Dichloro-benzyl)-(2-pyridin-2-yl-ethyl)-amine을 얻었다.
Yield : 37.3 %
1H NMR (300 MHz, CDCl3) δ 8.55 (d, 1H), δ 7.64 (td, J=7.6 and 1.8 Hz, 1H), δ 7.41 (d, J=1.8 Hz 1H), δ 7.37 (d, J=8.0 Hz, 1H), δ 7.18 (m, 3H), δ 3.78 (s, 2H), δ 3.01 (m, 4H)
실시예 33
화합물 33(Cyclopentyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Cyclopentylamine 0.486 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 노란색 액체 Cyclopentyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 96 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.39 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.72 (s, 2H), δ 3.12 (m, J=6.5 Hz, 1H), δ 1.87 (m, 8H)
실시예 34
화합물 34((3,4-Dichloro-benzyl)-phenethyl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 2-Phenylethylamine 0.692 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 (3,4-Dichloro-benzyl)-phenethyl-amine을 얻었다.
Yield : 87.4 %
1H NMR (300 MHz, CDCl3) δ 7.38 (m, 7H), δ 7.12 (dd, J=8.4 and 1.8 Hz, 1H), δ 3.74 (s, 2H), δ 2.89 (m, 4H)
실시예 35
화합물 35(Cyclohexyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Cyclohexylamine 0.566 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 노란색 액체 Cyclohexyl-(3,4-dichloro-benzyl)-amine 을 얻었다.
Yield : 70.2 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.38 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.76 (s, 2H), δ 2.47 (m, 1H), δ 1.91 (m, 10H)
실시예 36
화합물 36(Cycloheptyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Cycloheptylamine 0.646 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 액체 Cycloheptyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 64 %
1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=1.8 Hz, 1H), δ 7.38 (d, J=8.4 Hz, 1H), δ 7.17 (dd, J=8.4 and 1.8 Hz, 1H), δ 3.76 (s, 2H), δ 2.47 (m, 1H), δ 1.91 (m, 12H)
실시예 37
화합물 37(Benzyl-(2-pyridin-2-yl-ethyl)-amine)의 합성
Methanol 10ml에 Benzaldehyde 1 g (9.423 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 1.151 g (9.423 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.53 g (14.13 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 붉은색 액체 Benzyl-(2-pyridin-2-yl-ethyl)-amine을 얻었다.
Yield : 87 %
1H NMR (300 MHz, CDCl3) δ 8.53 (d, 1H), δ 7.61 (td, J=7.6 and 1.8 Hz, 1H), δ 7.31 (m, 7H), δ 3.83 (s, 2H), δ 3.08 (m, 4H)
실시예 38
화합물 38(2-[(2-Pyridin-2-yl-ethylamino)-methyl]-phenol)의 합성
Methanol 10ml에 Salicylaldehyde 1 g (8.189 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 1.000 g (8.189 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.46 g (12.28 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 2-[(2-Pyridin-2-yl-ethylamino)-methyl]-phenol을 얻었다.
Yield : 52.5 %
1H NMR (300 MHz, CDCl3) δ 8.53 (d, 1H), δ 7.64 (td, J=7.7 and 1.8 Hz, 1H), δ 7.17 (m, 3H), δ 7.00 (d, 1H), δ 6.82 (m, 2H), δ 4.01 (s, 2H), δ 3.13 (m, 4H)
실시예 39
화합물 39((2-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine)의 합성
Methanol 10ml에 2-Bromobenzaldehyde 1 g (5.405 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 0.660 g (5.405 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.30 g (8.10 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 붉은색 액체 (2-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine을 얻었다.
Yield : 31.8 %
1H NMR (300 MHz, CDCl3) δ 8.54 (m, 1H), δ 7.62 (td, J=7.6 and 1.8 Hz, 1H), δ 7.53 (dd, J=8.0 and 1.1 Hz, 1H), δ 7.38 (dd, J=7.6 and 1.8 Hz, 1H), δ 7.29 (td, 1H), δ 7.1 (d, J=7.6 Hz, 1H), δ 7.14 (m, 2H), δ 3.90 (s, 2H), δ 3.07 (m, 4H), δ 2.08 (b, 1H)
실시예 40
화합물 40((3-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine)의 합성
Methanol 10ml에 3-Bromobenzaldehyde 1 g (5.405 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 0.660 g (5.405 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.30 g (8.10 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 노란색 액체 (3-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine을 얻었다.
Yield : 40.5 %
1H NMR (300 MHz, CDCl3) δ 8.54 (d, J=4.3 Hz, 1H), δ 7.63 (td, J=7.7 and 1.8 Hz, 1H), δ 7.46 (s, 1H), δ 7.37 (d, J=7.7 Hz, 1H), δ 7.23 (m, 4H), δ 3.79 (s, 2H), δ 3.06 (m, 4H)
실시예 41
화합물 41((4-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine)의 합성
Methanol 10ml에 4-Bromobenzaldehyde 1 g (5.405 mmol)를 녹인 다음 2-(2-Aminoethyl)pyridine 0.660 g (5.405 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.30 g (8.10 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 붉은색 액체 (4-Bromo-benzyl)-(2-pyridin-2-yl-ethyl)-amine을 얻었다.
Yield : 68.3 %
1H NMR (300 MHz, CDCl3) δ 8.53 (d, J=4.7 Hz, 1H), δ 7.62 (td, J=7.7 and 1.8 Hz, 1H), δ 7.43 (d, 2H), δ 7.19 (m, 4H), δ 3.78 (s, 2H), δ 3.06 (m, 4H)
실시예 42
화합물 42(Benzyl-cycloheptyl-amine)의 합성
Methanol 10ml에 Benzaldehyde 1 g (9.423 mmol)를 녹인 다음 Cycloheptylamine 1.066 g (9.423 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.53 g (14.13 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 연 노란색 액체 Benzyl-cycloheptyl-amine을 얻었다.
Yield : 73.2 %
1H NMR (300 MHz, CDCl3) δ 7.37 (m, 5H), δ 3.77 (s, 2H), δ 2.69 (m, 1H), δ 1.89 (m, 12H)
실시예 43
화합물 43(Benzyl-cyclohexyl-amine)의 합성
Methanol 10ml에 Benzaldehyde 1 g (9.423 mmol)를 녹인 다음 Cyclohexylamine 0.934 g (9.423 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.53 g (14.13 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 Benzyl-cyclohexyl-amine을 얻었다.
Yield : 61.8 %
1H NMR (300 MHz, CDCl3) δ 7.32 (m, 5H), δ 3.77 (s, 2H), δ 3.16 (m, 1H), δ 1.90 (m, 10H)
실시예 45
화합물 45((3,4-Dichloro-benzyl)-indan-1-yl-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 1-Aminoindan 0.761 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 흰색 액체 (3,4-Dichloro-benzyl)-indan-1-yl-amine을 얻었다.
Yield : 61.2 %
1H NMR (300 MHz, CDCl3) δ 7.52 (d, J=1.8 Hz, 1H), δ 7.39 (m, 2H), δ 7.25 (m, 4H), δ 4.28 (t, J=6.5 Hz, 1H), δ 3.91 (m, 2H), δ 3.00 (m, 1H), δ 2.87 (m, 1H), δ 2.46 (m, 1H), δ 1.87 (m, 1H)
실시예 46
화합물 46(Cyclobutyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Cyclobuthylamine 0.406 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 Cyclobutyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 45.7 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=2.19 Hz, 1H), δ 7.38 (d, J=8.4 Hz, 1H), δ 7.16 (dd, J= 8.4 and 2.19 Hz, 1H), δ 3.65 (s, 2H), δ 3.30 (m, 1H), δ 2.25 (m, 2H), δ 1.73 (m, 4H)
실시예 47
화합물 47(Cyclooctyl-(3,4-dichloro-benzyl)-amine)의 합성
Methanol 10ml에 3,4-Dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 Cyclooctylamine 0.727 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 이를 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 Cyclooctyl-(3,4-dichloro-benzyl)-amine을 얻었다.
Yield : 73.5 %
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.8 Hz, 1H), δ 7.38 (d, J=8.0 Hz, 1H), δ 7.17 (dd, J=8.0 and 1.8 Hz, 1H), δ 3.72 (s, 2H), δ 2.70 (m, 1H), δ 1.80 (m, 14H)
실시예 48
화합물 48(N'-(3,4-Dichloro-benzyl)-N, N-diethyl-propane-1,3-diamineㅇ2HCl) 의 합성
Methylene chloride에 20mL에 N'-(3,4-Dichlorobenzyl)-N,N-diethyl-propane-1,3-diamine 1g (3.457 mmol)을 녹인 다음 hydrogen chloride (7 mmol)을 넣고, 10 분 동안 교반시켰다. 고체가 생성되면 생성물을 여과하여 N'-(3,4-Dichlorobenzyl)-N,N-diethyl-propane-1,3-diamineㅇ2HCl의 염(즉, 화합물 1의 염)을 얻었다.
Yield : 100%
1H NMR (300 MHz, DMSO-d 6) δ 10.72 (b, 1H), δ 9.86 (b, 2H), δ 7.97 (d, J=1.47 Hz 1H), δ 7.72 (d, J=8.07 Hz 1H), δ 7.63 (dd, J=8.07 and 1.47 Hz 1H), δ 4.15 (s, 2H), δ 3.15 (m, 8H), δ 2.18 (m, 2H), δ 1.24 (t, J=6.96 Hz, 6H)
실시예 49
화합물 49(N,N-Dibutyl-N'-(3,4-dichlorobenzyl)ethane-1,2-diamine)의 합성
Methanol 10ml에 3,4-dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N,N-Dibutylethylenediamine 0.984 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행 정도는 TLC(Thin Layer Chromatography)로 확인하였으며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 methylene chloride 30ml로 2회 추출하여 추출물을 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압 증류하였다. 생성물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 N,N-dibutyl-N'-(3,4-dichlorobenzyl)ethane-1,2-diamine을 얻었다.
Yield : 86.3%
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.83 Hz, 1H), δ 7.39 (d, J=8.04 Hz, 1H), δ 7.17 (dd, J=1.83 and 8.04 Hz, 1H), δ 3.74 (s, 2H), δ 2.62 (m, 4H), δ 2.38 (t, J=6.96 Hz, 4H), δ 1.46 (m, 8H), δ 0.92 (t, J=6.96 Hz, 6H)
실시예 50
화합물 50(N,N-Dibutyl-N'-(3,4-dichlorobenzyl)propane-1,3-diamine)의 합성
Methanol 10ml에 3,4-dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 3-(Dibutylamino)propylamine 1.064 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행 정도는 TLC로 확인하며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 추출물을 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압 증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 N,N-dibutyl-N'-(3,4-dichlorobenzyl)propane-1,3-diamine을 얻었다.
Yield : 70.4%
1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=1.83 Hz, 1H), δ 7.38 (d, J=8.07 Hz, 1H), δ 7.17 (dd, J=1.83 and 8.07 Hz, 1H), δ 3.72 (s, 2H), δ 6.65 (t, J=6.6 Hz, 2H), δ 2.46 (m, 6H), δ 1.69 (m, 2H), δ 1.45 (m, 10H), δ 0.93 (t, J=7.32 Hz, 1H)
실시예 51
화합물 51(2-[[3-(3,4-Dichlorobenzylamino)propyl]-(2-hydroxyethyl)amino]ethanol) 의 합성
Methanol 10ml에 3,4-dichlorobenzaldehyde 1 g (5.714 mmol)를 녹인 다음 N-(3-Aminopropyl)diethanolamine 0.926 g (5.714 mmol)을 넣고, 실온에서 1시간 동안 반응시켰다. 여기에 Sodium Borohydride 0.32 g (8.45 mmol)을 서서히 가한 후 1시간 동안 교반하였다. 반응의 진행 정도는 TLC로 확인하였으며, 반응이 더 이상 진행되지 않으면 혼합물에 물 40 ml를 가한 후 Methylene chloride 30ml로 2회 추출하여 추출물을 합하고, 무수 황산마그네슘으로 물을 제거한 다음 감압 증류하였다. 반응물을 Silica gel이 충진된 column에서 ethyl acetate와 n-hexane의 혼합용매를 이동상으로 하여 분리시키고 무색 액체 2-[[3-(3,4-Dichlorobenzylamino)propyl]-(2-hydroxyethyl)amino]ethanol을 얻었다.
Yield : 64.1%
1H NMR (300 MHz, CDCl3) δ 7.42 (m, 2H), δ 7.19 (dd, J=2.19 and 8.43 Hz, 1H), δ 3.71 (s, 2H), δ 3.63 (t, J=5.13, 4H), δ 2.73 (m, 8H), δ 1.70 (m, 2H)
평가예 1(IC50 측정에 따른 미세조류 파괴 효과의 평가)
IC50(Inhibitory Concentration 50) 측정
상기 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51이 미세조류에 대하여 살조 효과를 갖는지를 조사하기 위해, 편모조류인 샤토넬라(Chattonella Marina), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama), 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides) 및 헤테로시그마 아카시오(Heterosigma akashiwo)와 남조류인 마이크로시스티스(Microcystis)를 상기 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51로 처리하였다. 상기 처리 후, 상기 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51의 미세조류 파괴 효과를 IC50(Inhibitory Concentration 50, 미세조류 세포수를 50% 제어할 수 있는 농도) 값을 측정하여 분석하였다.
구체적으로, IC50의 값은 하기 수학식 1에 의하여 구할 수 있다:
<수학식 1>
Figure PCTKR2016009070-appb-I000024
상기 식 중, Y는 화합물 각각의 접종농도에 따른 살조활성 (%)을 나타내며, A는 접종농도에 따른 최대 살조활성 (%), D는 접종농도에 따른 최소 살조활성 (%), C는 접종농도 범위 내의 IC50 값, B는 - Hillslope (후술하는 four Parameter logistic curve에서의 - 기울기) 값을 의미한다.
상기 살조활성(Algicidal activity)은 하기 수학식 2를 통해 계산하였다:
<수학식 2>
살조활성 (%) = (1-Tt/Ct)x 100
상기 식 중, T (처리구)와 C (대조구)는 각각 화합물이 접종되었을 때와 접종되지 않았을 때의 조류밀도를 세포수로 표현한 값을 의미하고, t는 접종 후 일(day)수를 의미한다.
먼저, 상기 미세조류를 배양 플라스크 상에서 20℃의 온도 및 빛이 있는 조건에서 배양하였으며, 배지로는 당업계에서 사용되고 있는 Guillard's f/2 medium를 사용하였다 (Guillard RRL and Keller MD. Culturing dinoflagellates. In: Spector (Ed.), Dinoflagellates. New York: Academic Press; 1984, 391442).
상기 배양된 미세조류를 24웰 플레이트로 옮긴 다음, 샤토넬라 마리나(Chattonella Marina), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama), 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides) 및 헤테로시그마 아카시오(Heterosigma akashiwo)들이 지수 성장기 (exponential growth phase), 상기 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 47에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 47를 각각 0.1, 0.2, 0.5, 1, 2 및 5 uM의 농도로 처리한 다음, 1일간 배양하였다.
또한, 마이크로시스티스(Microcystis aeruginosa)에 대하여, 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51을 각각 0.1, 0.2, 0.5, 1, 2, 5, 10, 15 및 20 uM의 농도로 처리한 다음 5일간 배양하였다.
이때 대조군으로는 실시예에서 합성된 화합물을 처리하지 않은 군을 사용하였다. 배양 이후, 각 조류별 세포수를 Burker Tukr hemacytometer를 이용하여 측정하고, 상기 수학식 1에 따라 sigmaplot version 11.2 softerware(standard curve: four parameter logistic curve)를 사용하여 IC50 값을 계산하였고, 그 결과를 하기 표 1 및 2에 나타내었다.
화합물 Chattonella Marina Heterocapsa Circularisquama Cochlodinium Polykrikoides Heterosigma Akashiwo Microcystis aeruginosa
3,4-디클로로 벤질 아민계
실시예 1 1 2.9 1.76 2.3 1.58 4.89
실시예 2 2 2.6 3.4 0.327 1.3 0.57
실시예 3 3 >5 3.1 >5 2.25 8.41
실시예 5 5 >5 >5 >5 1.3 14.17
실시예 6 6 >5 4.8 4.417 1.3 8.64
실시예 7 7 2 1.5 1.53 0.28 11.61
실시예 8 8 0.81 3.3 0.29 1.26 0.09
실시예 17 17 >5 >5 >5 1.18 >20
실시예 18 18 2.67 >5 4.38 0.73 11.83
실시예 19 19 3.5 >5 4.14 1.27 13.8
실시예 20 20 3.16 2.86 3.516 0.44 >20
실시예 21 21 >5 3.3 3.6 1.28 9.66
실시예 23 23 >5 >5 >5 1.54 11.07
실시예 25 25 >5 2.83 4 1.19 11.11
실시예 26 26 3.4 >5 >5 0.72 >20
실시예 27 27 >5 3.55 2 0.79 >20
실시예 28 28 >5 >5 >5 2.28 15.24
실시예 29 29 3.46 3.23 2.75 0.6 14.38
실시예 30 30 3.47 1.91 2.7 0.42 >20
실시예 31 31 3.5 1.6 0.424 0.59 >20
실시예 32 32 0.31 1.05 0.5 0.18 19.58
실시예 33 33 0.32 1.04 0.36 0.243 19.47
실시예 34 34 0.46 1.5 0.875 0.12 5.97
실시예 35 35 0.29 1.14 0.15 0.218 14.59
실시예 36 36 0.25 0.69 0.15 0.263 3.09
실시예 45 45 1.44 2 0.31 1.14 >20
실시예 46 46 1.13 3.08 1.667 0.482 15.79
실시예 47 47 0.5 1.19 0.1 0.34 14.97
실시예 48 48 - - - - 0.78
실시예 49 49 - - - - 0.88
실시예 50 50 - - - - 0.54
실시예 51 51 - - - - 2.27
화합물 Chattonella Marina Heterocapsa Circulariaquama Cochlodinium Polykrikoides Heterosigma Akashiwo Microcystis aeruginosa
3,4-디클로로 벤즈아마이드계
실시예 9 9 >5 1.97 4.55 1.85 0.97
실시예 10 10 >5 >5 >5 1.63 >5
실시예 12 12 >5 >5 >5 1.55 >5
실시예 13 13 4.5 5 2.22 2.27 >5
벤질 아민계
실시예 37 37 0.34 >5 >5 0.13 >5
실시예 42 42 0.52 >5 >5 0.15 >5
실시예 43 43 >5 >5 >5 0.67 >5
2-히드록시 벤질 아민계
실시예 38 38 0.91 >5 >5 0.13 >5
n-브로모 벤질 아민계
실시예 39 39 1.12 >5 >5 0.28 >5
실시예 40 40 0.74 >5 3.5 0.57 >5
실시예 41 41 0.72 >5 >5 0.14 >5
페닐 프로페논계
실시예 22 22 >5 >5 1.66 3.67 >5
실시예 24 24 >5 >5 1.33 1.7 >5
표 1 및 2에 보여진 바와 같이, 실시예 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51에서 합성된 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51은 각각 샤토넬라 마리나(Chattonella Marina), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama), 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides), 헤테로시그마 아카시오(Heterosigma akashiwo) 및 마이크로시스티스(Microcystis aeruginosa) 중 적어도 1종에 대하여 살조 효과가 있음을 알 수 있다.
참고로, IC50 값이 5보다 큰 경우, 미세조류의 살조 효과가 거의 없음을 의미한다.
평가예 2(생존 세포 비율(surviving cells rate) 측정에 따른 미세조류 파괴 효과의 평가)
화합물 35의 미세조류 파괴 효과
실시예 35에서 합성된 화합물 35의 미세조류 파괴 효과를 조사하기 위해, 샤토넬라 마리나(Chattonella Marina), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama), 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides), 및 헤테로시그마 아카시오(Heterosigma akashiwo) 배양액(40 mL, 초기 개체수: 15X104개 내지 18X104개 /mL) 각각을 화합물 35의 용액(1 μM in DMSO(dimethyl sulfoxide) 및 f/2 medium)으로 6시간 동안 처리하였다. 대조군으로서 화합물 35의 용액으로 처리되지 않은 미세조류 배양액을 사용하였다. 상기 처리 후, 시간에 따른 미세조류의 생존 세포 비율의 측정 및 미세조류의 파괴 관찰 결과를 각각 도 1 및 2에 나타내었다.
도 1에서, 시간에 따라 미세조류의 생존 세포 비율이 감소하는 것으로 나타났는데, 이로부터 화합물 35가 상기 4종의 미세조류에 대하여 높은 살조 효과를 가짐을 알 수 있다.
한편, 도 2는 상기 4종의 미세조류를 화합물 35로 처리한 후 현미경으로 관찰한 결과로서, (a), (b), (c) 및 (d)는 각각 코클로디니움 폴리크리코이데스(Cochlodinium Polykrikoides), 헤테로시그마 아카시오(Heterosigma akashiwo), 헤테로캡사 서큘라리스쿠아마 (Heterosigma circularisquama) 및 샤토넬라 마리나(Chattonella Marina)을 나타내고, 이 중 (a)-1, (a)-3, (b)-1, (c)-1 및 (d)-1은 화합물 35로 처리하지 않은 대조군을 나타낸다.
도 2를 참조하면, 상기 4종의 미세조류를 화합물 35로 처리한 경우(도 2 중 (a)-2, (a)-4, (b)-2, (b)-3, (c)-2, (c)-3, (d)-2 및 (d)-3), 실제로 4종의 미세조류가 파괴되었음을 알 수 있다.
화합물 2의 미세조류 파괴 효과
실시예 2에서 합성된 화합물 2의 미세조류 파괴 효과를 조사하기 위해, 마이크로시스티스(Microcystis aeruginosa) 배양액(40 mL, 초기 개체수: 100X104개/mL)을 DMSO 및 BG11 Medium 중 0.5, 1 및 2 μM 농도의 화합물 2의 용액으로 각각 처리하여 2일간 관찰하였고, 대조군으로서 화합물 2의 용액으로 처리되지 않은 미세조류 배양액을 사용하였으며, 그 결과를 도 3에 나타내었다.
도 3을 참조하면, 화합물 2는 마이크로시스티스(Microcystis)에 대하여, 높은 살조 효과를 갖는 것으로 나타났다.
평가예 3(물벼룩에 대한 급성 독성 평가)
실시예 33 및 35에서 제조된 화합물 33 및 35 각각에 대하여, 물벼룩(Daphnia magna)에 대한 급성 독성 평가(acute toxicity tests)를 수행하였다.
구체적으로, 물벼룩 배양액(200 mL, 30마리)을 각각 DMSO 및 M4 medium 중 5, 10 및 15 μM 농도의 화합물 33 및 35의 용액으로 2일간 처리하였고, 그 결과를 도 4에 나타내었다.
도 4를 참조하면, 화합물 33 및 35의 용액의 농도가 5 μM인 경우에도 미제조류의 생존율이 각각 100% 및 75%인 것으로 나타났는데, 상기 농도는 편모조류의 세포수를 50% 제어할 수 있는 농도(표 1의 IC50값 참조)인 약 1 μM의 5배가 되는 농도로서, 결론적으로 미세조류를 효과적으로 파괴할 수 있는 농도의 화합물 33 및 35 용액의 사용은 물벼룩의 생존에 무해함을 알 수 있다.
평가예 4(제브라피쉬에 대한 급성 독성 평가)
실시예 33 및 35에서 제조된 화합물 33 및 35 각각에 대하여, 제브라피쉬(Danio rerio)에 대한 급성 독성 평가를 수행하였다.
구체적으로, 부화 후 3개월 된 2cm 크기의 제브라피쉬를 실험 시작 전 14일 동안 순응(acclimatized)시켰다. 순응 기간 동안 하루에 2회 먹이를 공급하였다. 이후, 화합물 33 및 35의 용액을 0, 5, 10, 15, 20, 25 및 30 μM의 농도로 제조하였고, 제브라피쉬 배양액(10 L, 초기 개체수: 총 10마리(1마리/L))에 대하여 화합물 33 및 35의 용액을 농도별로 2주간 처리하여 급성 독성 평가를 수행하였고, 그 결과를 도 5에 나타내었다.
도 5를 참조하면, 화합물 33 및 35 용액의 농도가 15μM인 경우에도 제브라피쉬의 생존율이 100%인 것으로 나타났는데, 상기 농도는 편모조류의 세포수를 50% 제어할 수 있는 농도(표 1의 IC50값 참조)인 약 1μM의 15배가 되는 농도로서, 결론적으로 미세조류를 효과적으로 파괴할 수 있는 농도의 화합물 33 및 35 용액의 사용은 제브라피쉬의 생존에 무해함을 알 수 있다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당해 기술 분야의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (26)

  1. 하기 화학식 1 내지 화학식 3 중 적어도 하나로 표시되는 화합물 또는 그의 염을 유효성분으로 포함하는 미세조류 또는 이끼류 파괴용 조성물:
    <화학식 1>
    Figure PCTKR2016009070-appb-I000025
    <화학식 2>
    Figure PCTKR2016009070-appb-I000026
    <화학식 3>
    Figure PCTKR2016009070-appb-I000027
    상기 화학식 1 내지 3 중,
    A1 내지 A3는 각각 독립적으로, 수소, 중수소, -N(R11)(R12), 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기, 치환 또는 비치환된 C1-C10알콕시기, 치환 또는 비치환된 C3-C10시클로알킬기, 치환 또는 비치환된 C1-C10헤테로시클로알킬기, 치환 또는 비치환된 C3-C10시클로알케닐기, 치환 또는 비치환된 C1-C10헤테로시클로알케닐기, 치환 또는 비치환된 C6-C60아릴기 및 치환 또는 비치환된 C1-C60헤테로아릴기 중에서 선택되고,
    R1 내지 R3, R11 및 R12는 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기, 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C2-C10알케닐기, 치환 또는 비치환된 C2-C10알키닐기 및 치환 또는 비치환된 C1-C10알콕시기 중에서 선택되고,
    b1 내지 b3는 각각 독립적으로, 0 내지 5의 정수 중에서 선택되고, b1이 2 이상일 경우 2 이상의 R1은 서로 동일하거나 상이하고, b2가 2 이상일 경우 2 이상의 R2는 서로 동일하거나 상이하고, b3이 2 이상일 경우 2 이상의 R3은 서로 동일하거나 상이하고,
    n1 내지 n3는 각각 독립적으로, 0 내지 10의 정수 중에서 선택되고,
    상기 치환된 C1-C10알킬기, 치환된 C2-C10알케닐기, 치환된 C2-C10알키닐기, 치환된 C1-C10알콕시기, 치환된 C3-C10시클로알킬기, 치환된 C1-C10헤테로시클로알킬기, 치환된 C3-C10시클로알케닐기, 치환된 C1-C10헤테로시클로알케닐기, 치환된 C6-C60아릴기 및 치환된 C1-C60헤테로아릴기 중 적어도 하나의 치환기는, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기 및 C1-C10알킬기 중에서 선택된다.
  2. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 A1 내지 A3는 각각 독립적으로, -N(R11)(R12), 치환 또는 비치환된 C1-C10알킬기, 치환 또는 비치환된 C1-C10알콕시기, 치환 또는 비치환된 C3-C10시클로알킬기, 치환 또는 비치환된 C6-C10아릴기 및 치환 또는 비치환된 C1-C10헤테로아릴기 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  3. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 A1 내지 A3는 각각 독립적으로, 하기 화학식 4-1 내지 4-16으로 표시되는 그룹 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물:
    Figure PCTKR2016009070-appb-I000028
    상기 화학식 4-1 내지 4-16 중,
    R11 내지 R14 및 R21은 각각 독립적으로,
    수소, 중수소, -F, -Cl, -Br, -I, -OH 및 치환 또는 비치환된 C1-C10알킬기 중에서 선택되고,
    b11은 0 내지 2의 정수 중에서 선택되고,
    b12는 0 내지 3의 정수 중에서 선택되고,
    b13은 0 내지 4의 정수 중에서 선택되고,
    b14는 0 내지 5의 정수 중에서 선택되고,
    b15는 0 내지 6의 정수 중에서 선택되고,
    b16은 0 내지 7의 정수 중에서 선택되고,
    *는 이웃한 원자와의 결합 사이트이다.
  4. 제3항에 있어서,
    상기 화학식 4-1 내지 4-16 중,
    상기 R11 내지 R14는 각각 독립적으로,
    메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기 및 tert-부틸기; 및
    -OH기로 치환된 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, sec-부틸기 및 tert-부틸기; 중에서 선택되고,
    상기 R21은 수소, 중수소, -F, -Cl, -Br, -I 및 -OH 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  5. 제3항에 있어서,
    상기 화학식 4-1 내지 4-16 중,
    상기 b11 내지 b16은 각각 독립적으로, 0 또는 1인, 미세조류 또는 이끼류 파괴용 조성물.
  6. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 A1 내지 A3는 각각 독립적으로, 하기 화학식 5-1 내지 5-23으로 표시되는 그룹 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물:
    Figure PCTKR2016009070-appb-I000029
    Figure PCTKR2016009070-appb-I000030
    상기 화학식 5-1 내지 5-23 중, *는 이웃한 원자와의 결합 사이트이다.
  7. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 R1 내지 R3은 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I, -OH, 시아노기, 니트로기, 아미노기, 아미디노기 및 치환 또는 비치환된 C1-C10알킬기 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  8. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 R1 내지 R3은 각각 독립적으로, 수소, 중수소, -F, -Cl, -Br, -I 및 -OH 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  9. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 b1 내지 b3는 각각 독립적으로, 0, 1, 또는 2인, 미세조류 또는 이끼류 파괴용 조성물.
  10. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 b1 내지 b3이 1인 경우, 상기 R1 내지 R3은 -Br 또는 -OH이고;
    상기 b1 내지 b3이 2인 경우, 상기 R1 내지 R3은 -Cl인, 미세조류 또는 이끼류 파괴용 조성물.
  11. 제1항에 있어서,
    상기 화학식 1 내지 3 중,
    상기 b1 내지 b3이 2인 경우, 2 개의 R1, 2 개의 R2 및 2개의 R3는 각각 파라(para) 위치로 존재하는, 미세조류 또는 이끼류 파괴용 조성물.
  12. 제1항에 있어서,
    n1 내지 n3는 각각 독립적으로, 0 내지 3의 정수 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  13. 제1항에 있어서,
    하기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중 적어도 하나로 표시되는 화합물 또는 그의 염을 유효성분으로 포함하는, 미세조류 또는 이끼류 파괴용 조성물:
    Figure PCTKR2016009070-appb-I000031
    Figure PCTKR2016009070-appb-I000032
    Figure PCTKR2016009070-appb-I000033
    상기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중,
    A1 내지 A3 및 n1 내지 n3에 대한 설명은 상기 화학식 1 내지 3에 기재된 바와 동일하다.
  14. 제13항에 있어서,
    상기 화학식 1-1 내지 1-6, 2-1 내지 2-6 및 3-1 내지 3-6 중,
    A1 내지 A3는 각각 독립적으로, 하기 화학식 5-1 내지 5-23으로 표시되는 그룹 중에서 선택되고,
    n1 내지 n3는 각각 독립적으로, 0 내지 3의 정수 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물:
    Figure PCTKR2016009070-appb-I000034
    Figure PCTKR2016009070-appb-I000035
    상기 화학식 5-1 내지 5-23 중, *는 이웃한 원자와의 결합 사이트이다.
  15. 제1항에 있어서,
    하기 화합물 1 내지 3, 5 내지 10, 12, 13, 17 내지 43 및 45 내지 51 중 적어도 하나의 화합물 또는 그의 염을 유효성분으로 포함하는, 미세조류 또는 이끼류 파괴용 조성물:
    Figure PCTKR2016009070-appb-I000036
    Figure PCTKR2016009070-appb-I000037
    Figure PCTKR2016009070-appb-I000038
    Figure PCTKR2016009070-appb-I000039
    Figure PCTKR2016009070-appb-I000040
    Figure PCTKR2016009070-appb-I000041
    Figure PCTKR2016009070-appb-I000042
    Figure PCTKR2016009070-appb-I000043
    Figure PCTKR2016009070-appb-I000044
  16. 제1항에 있어서,
    상기 미세조류는 남조류, 규조류, 녹조류, 유글레노이드 조류, 편모조류, 황녹색조류, 와편모조류, 침편모조류 및 바이오디젤 생산능을 가진 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  17. 제1항에 있어서,
    상기 이끼류는 타카키온강(Takakiopsida), 스파그논강(Sphagnopsida), 안드레아에온강(Andreaeopsida), 안드레아오브리온강(Andreaeobryopsida), 오에디포디온강(Oedipodiopsida), 폴리트리촌강(Polytrichopsida), 테트라피돈강(Tetraphidopsida), 및 브리온강(Bryopsida) 이끼 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  18. 제16항에 있어서,
    상기 남조류는 마이크로시스티스(Microcystis), 아나베나(Anabaena), 아파니존메논(Aphanizomenon) 및 오실라토리아(Oscillatoria) 속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  19. 제16항에 있어서,
    상기 규조류는 시네드라(Synedra), 아스테리오넬라(Asterionella), 시클로텔라(Cyclotella), 멜로시라(Melosira), 스켈레토네마 코스타튬(Skeletonema costatum), 카에토세로스 ( Chaetoceros), 탈라시오시라(Thalassiosira), 렙토실린드루스(Leptocylindrus), 니츠쉬이아(Nitzschia), 실린드로세카(Cylindrotheca), 유캄피아(Eucampia) 및 오돈텔라(Odontella) 속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  20. 제16항에 있어서,
    상기 녹조류는 클로스테리움(Closterium), 페디아스트룸(Pediastrum) 및 세네데스무스(Scenedesmus) 속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  21. 제16항에 있어서,
    상기 유글레노이드(Euglenoids) 조류는 트라첼로모나스(Trachelomonas) 또는 유글레나(Euglena) 속 조류인, 미세조류 또는 이끼류 파괴용 조성물.
  22. 제16항에 있어서,
    상기 편모조류는 페리디늄(Peridinium), 헤테로시그마(Heterosigma), 헤테로캡사 ( Heterocapsa ), 코클로디니움(Cochlodinium), 프로로센트룸(Prorocentrum), 세라티움(Ceratium), 녹틸루카( Noctiluca), 스크립시엘라(Scrippsiella), 디노피시스(dinophysis), 알렉산드리움(Alexandrium), 유트렙티엘라(Eutreptiella), 피스테리아(Pfiesteria), 샤토넬라(Chattonella), 에밀리아니아(Emiliania) 및 짐노디니움(Gymnodinium) 속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  23. 제16항에 있어서,
    상기 황녹색조류는 유로글레나(Uroglena) 속 조류인, 미세조류 또는 이끼류 파괴용 조성물.
  24. 제16항에 있어서,
    상기 와편모조류 및 상기 침편모조류는 테로시그마(Heterosigma), 헤테로캡사 (Heterocapsa), 코클로디니움(Cochlodinium), 프로로센트룸(Prorocentrum), 세라티움(Ceratium), 녹틸루카(Noctiluca), 스크립시엘라(Scrippsiella), 디노피시스(dinophysis), 알렉산드리움(Alexandrium), 유트렙티엘라(Eutreptiella), 피스테리아(Pfiesteria), 샤토넬라(Chattonella), 에밀리아니아(Emiliania) 및 짐노디니움(Gymnodinium) 속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  25. 제16항에 있어서,
    상기 바이오디젤 생산능을 가진 조류는 슈도크리시스티스(Pseudochoricystis), 보트리오코커스(Botryococcus) 및 두날리엘라(Dunaliella)속 조류 중에서 선택되는, 미세조류 또는 이끼류 파괴용 조성물.
  26. 제1항의 미세조류 또는 이끼류 파괴용 조성물을 이끼류 배양장, 해양 미세조류 배양장, 녹조 또는 적조 발생 지역, 또는 녹조나 적조 발생 예상 지역에 처리하는 단계를 포함하는 미세조류 또는 이끼류의 파괴방법.
PCT/KR2016/009070 2015-10-14 2016-08-18 미세조류 또는 이끼류 파괴용 조성물 WO2017065401A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018534449A JP6732917B2 (ja) 2015-10-14 2016-08-18 微細藻類または苔類の破壊用組成物
US15/762,368 US11044909B2 (en) 2015-10-14 2016-08-18 Composition for destruction of microalgae or sphaerocarpus
CN201680059534.9A CN108347925B (zh) 2015-10-14 2016-08-18 用于破坏微藻或苔藓的组合物
BR112018007330-0A BR112018007330B1 (pt) 2015-10-14 2016-08-18 Composição para a destruição de microalgas ou musgos, e método de destruição de microalgas ou musgos
EP16855619.9A EP3363288B1 (en) 2015-10-14 2016-08-18 Composition for destruction of microalgae or mosses
PH12018500655A PH12018500655A1 (en) 2015-10-14 2018-03-23 Composition for destruction of microalgae or sphaerocarpus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0143373 2015-10-14
KR20150143373 2015-10-14
KR10-2016-0044946 2016-04-12
KR1020160044946A KR101819190B1 (ko) 2015-10-14 2016-04-12 미세조류 파괴용 조성물

Publications (1)

Publication Number Publication Date
WO2017065401A1 true WO2017065401A1 (ko) 2017-04-20

Family

ID=58518288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009070 WO2017065401A1 (ko) 2015-10-14 2016-08-18 미세조류 또는 이끼류 파괴용 조성물

Country Status (1)

Country Link
WO (1) WO2017065401A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108676066A (zh) * 2018-05-29 2018-10-19 深圳大学 一种化合物Malformin C的应用及制备方法
JP2019001752A (ja) * 2017-06-16 2019-01-10 アース製薬株式会社 コケ類除去剤
CN109942537A (zh) * 2018-03-03 2019-06-28 中国人民解放军第二军医大学 一类aldh2激动剂、制备方法及其用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290630A (en) * 1976-01-21 1977-07-30 Sumitomo Chem Co Ltd Algicide
JPH06247804A (ja) * 1993-02-22 1994-09-06 Mitsubishi Gas Chem Co Inc 水中生物防汚剤
WO1999043207A1 (fr) * 1998-02-25 1999-09-02 Nissan Chemical Industries, Ltd. Agents antibacteriens/antifongiques industriels, algicides et agents anti-adhesion biologique contenant des benzylamines
KR20110132355A (ko) * 2009-02-04 2011-12-07 조선대학교산학협력단 유해 조류 방제용 조성물
KR20140105413A (ko) * 2013-02-22 2014-09-01 조선대학교산학협력단 미세조류 파괴용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290630A (en) * 1976-01-21 1977-07-30 Sumitomo Chem Co Ltd Algicide
JPH06247804A (ja) * 1993-02-22 1994-09-06 Mitsubishi Gas Chem Co Inc 水中生物防汚剤
WO1999043207A1 (fr) * 1998-02-25 1999-09-02 Nissan Chemical Industries, Ltd. Agents antibacteriens/antifongiques industriels, algicides et agents anti-adhesion biologique contenant des benzylamines
KR20110132355A (ko) * 2009-02-04 2011-12-07 조선대학교산학협력단 유해 조류 방제용 조성물
KR20140105413A (ko) * 2013-02-22 2014-09-01 조선대학교산학협력단 미세조류 파괴용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3363288A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019001752A (ja) * 2017-06-16 2019-01-10 アース製薬株式会社 コケ類除去剤
CN109942537A (zh) * 2018-03-03 2019-06-28 中国人民解放军第二军医大学 一类aldh2激动剂、制备方法及其用途
CN109942537B (zh) * 2018-03-03 2023-11-17 中国人民解放军第二军医大学 一类aldh2激动剂、制备方法及其用途
CN108676066A (zh) * 2018-05-29 2018-10-19 深圳大学 一种化合物Malformin C的应用及制备方法
CN108676066B (zh) * 2018-05-29 2021-09-10 深圳大学 一种化合物Malformin C的应用及制备方法

Similar Documents

Publication Publication Date Title
WO2010090458A2 (ko) 유해조류 방제용 조성물
WO2017065401A1 (ko) 미세조류 또는 이끼류 파괴용 조성물
WO2021066608A1 (ko) 항노화 유전자 klotho의 발현을 유도하는 화합물 및 이의 용도
WO2021118318A2 (ko) 신규한 인돌 유도체 및 이의 용도
JPH07502747A (ja) カルバメートおよびそれらを含む作物保護剤
NL8002020A (nl) N-gesubstitueerde tetrahydrofthalimiden en op de toepassing hiervan als herbicidale verbinding.
WO2016080810A2 (ko) 바이구아나이드 화합물 및 이의 용도
WO2017018751A1 (ko) Blt 저해 활성을 갖는 신규 화합물 및 이를 유효성분으로 포함하는 염증성 질환 예방 또는 치료용 조성물
WO2021060890A1 (ko) 헤테로아릴아미도피리딘올 유도체 및 이를 유효성분으로 포함하는 자가면역질환의 예방 또는 치료용 약학적 조성물.
AU2019310508A1 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and pharmaceutical composition comprising the same
WO2017095051A2 (ko) 나프토퀴논 유도체를 포함하는 유해조류 제어용 조성물 및 이를 이용한 유해조류 제어방법
KR101819190B1 (ko) 미세조류 파괴용 조성물
WO2012148140A2 (ko) 혈관 신생 억제 및 항산화 효과를 가지는 이미다졸계 알칼로이드 유도체 및 이의 제조방법
WO2009093872A2 (ko) 신규한 디아민 화합물 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 암 치료용 약학 조성물
WO2018008989A1 (ko) 벤조[d]싸이아졸 유도체 또는 그의 염 및 이를 포함하는 약학 조성물
WO2015060613A1 (en) Novel antifungal oxodihydropyridinecarbohydrazide derivative
WO2021096314A1 (ko) 신규한 벤즈이미다졸 유도체 및 이의 용도
WO2018012947A1 (ko) 신규한 유기황화합물, 이의 제조방법 및 이를 유효 성분으로 함유하는 암 또는 염증 질환의 예방 또는 치료용 약학적 조성물
WO2023080765A1 (ko) 신규 옥사다이아졸 유도체 및 이의 용도
WO2019194556A1 (ko) 신규한 6-헤테로아릴아미노-2,4,5-트라이메틸피리딘-3-올 화합물, 또는 이를 포함하는 염증성 장질환 및 자가면역 질환의 예방 또는 치료용 약학 조성물
CN86102262A (zh) N-链烷酰苯胺的制备及其应用
WO2021040333A1 (ko) 4-진저롤 유도체 화합물을 유효성분으로 포함하는 세균 감염병의 예방 또는 치료용 조성물
WO2019156425A1 (ko) 오가노설퍼기를 포함하는 피라졸 카복사마이드 화합물 및 이를 함유하는 살충제 조성물
WO2024075997A1 (ko) 무수 배양조건하의 배양액 분사 방법에 의한 미세조류 생산 시스템, 이를 통해 배양된 헤마토코쿠스 및 헤마토코쿠스에 의해 수득된 아스타잔틴
WO2014185561A1 (ko) 신규한 화합물 또는 이의 약학적으로 허용 가능한 염 및 이를 유효성분으로 함유하는 uch-l1 관련 질환의 예방 또는 치료용 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534449

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15762368

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 12018500655

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018007330

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016855619

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112018007330

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180412