WO2017065340A1 - 2차원 하이브리드 복합체 제조 방법 - Google Patents

2차원 하이브리드 복합체 제조 방법 Download PDF

Info

Publication number
WO2017065340A1
WO2017065340A1 PCT/KR2015/011833 KR2015011833W WO2017065340A1 WO 2017065340 A1 WO2017065340 A1 WO 2017065340A1 KR 2015011833 W KR2015011833 W KR 2015011833W WO 2017065340 A1 WO2017065340 A1 WO 2017065340A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
graphite
dimensional
graphene
materials
Prior art date
Application number
PCT/KR2015/011833
Other languages
English (en)
French (fr)
Inventor
허승헌
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to CN201580002003.1A priority Critical patent/CN107848803B/zh
Priority to US14/916,388 priority patent/US20170253824A1/en
Priority to JP2017545513A priority patent/JP6424280B2/ja
Publication of WO2017065340A1 publication Critical patent/WO2017065340A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • C10M2201/0413Carbon; Graphite; Carbon black used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide

Definitions

  • the present invention relates to a two-dimensional hybrid composite manufacturing method that can solve the problem that occurs in the two-dimensional plate material, that is, the step problem, defect problem, spreading problem, etc. that occur as the two-dimensional plate material overlaps.
  • Ceramic nanoplates (nanoclay, ZnO nanoplates, TiO 2 nanoplates, WS 2 , MoS 2 , oxides, shells, calcium carbonates, sulfides, etc.), metal flakes (silver flakes, copper flakes), graphite, carbon nanoplates, Graphene, graphene nanoplates, graphene oxide, etc. are plate materials.
  • Composite compounds, organic-inorganic hybrid materials, and the like may also be formed in a plate shape.
  • plate materials are very important in the fields of strength enhancement (bending strength, tensile strength, etc.), electrical conductivity improvement, thermal conductivity improvement, filler material, gas permeation prevention, lubricant (solid or liquid), liquid heat transfer body and the like.
  • the plate materials are classified into non-graphite type ⁇ ceramic nano plate, metal flake, composite compound, organic-inorganic hybrid material, etc. ⁇ and graphite type (carbon flake, earth phase graphite, plate graphite, impression graphite, artificial graphite, etc.), carbon nano Plate, graphene, graphene oxide, graphite oxide and the like.
  • Non-graphite plate-like materials are typically about 5 nm thick.
  • WS 2 and MOS 2 which are very important as solid lubricants, can be manufactured so that the number of layers of nanoplatelets is controlled to several layers or less.
  • the thickness of graphite is 100 nm or more, the thickness of graphene nanoplates is 5 to 100 nm, and the thickness of graphene and graphene oxide (graphite oxide) is approximately 5 to 7 nm (1 to 20 layers) or less. to be.
  • the graphite has a thick plate structure that forms a weak van der Waals bond between the layers, the thickness of the van der Waals bond breaks preferentially in the process of grinding the graphite to become thinner do. However, it is difficult to be less than 100 nm thick.
  • Carbon nanoplates (hereinafter referred to as 'CNP') generally have a much thinner structure than graphite, and their thickness is about 5 to 200 nm.
  • a plate-like material by using a GIC (Graphite Intercalated Compound) is inserted between the graphite layer. That is, the GIC is heat-treated or microwaved at an appropriate temperature to produce expanded graphite (Expanded Graphite, hereinafter referred to as 'EG') formed between the layers of graphite and the layers being expanded to form a larvae, and then subjected to mechanical treatment and ultrasonic waves.
  • the plate-like material is manufactured by separating the layer having a weak bond inside the EG (ie, between the nanoplates) by means of treatment, chemical treatment, application of shear force, ball milling, or the like. Called "EP").
  • the EP can also be classified as a kind of carbon nano plate, and in this specification, the carbon nano plate is described as a concept including EP.
  • Graphene (Graphene, hereinafter referred to as 'GP') is a very thin carbon nanostructure new material in which quantum mechanical properties are expressed unlike graphite or CNP.
  • the physical properties of graphene such as electrical conductivity, thermal conductivity, strength, flexibility, gas permeation prevention properties are known to be the best among the materials found or made to date. In particular, while flexible and stretchable are simultaneously expressed, the strength can be increased to 30%, and the electrical and physical properties are maintained.
  • Such graphene typically has a number of single carbon atom layers having a honeycomb structure of 1 to 20 layers, and the thickness is about 5 to 7 nm or less considering that the interlayer spacing is about 3.4 ⁇ .
  • Graphene oxide Graphene Oxide, hereinafter referred to as 'GO'
  • graphite oxide Graphite Oxide, also referred to as 'GO' hereinafter, that is, the specification GO is referred to collectively graphene oxide and graphite oxide
  • the reduction method is largely divided into a thermal reduction method and a chemical reduction method.
  • graphene can be made by applying energy (microwave, photon, IR, laser, etc.) to graphene oxide.
  • graphene can be further separated from graphite by immersing it in a solvent having good affinity with graphite.
  • Typical solvents include GBL, NMP, etc., but the quality of graphene is good but it is difficult to mass produce.
  • graphene may also be manufactured by chemical synthesis, bottom production, and chemical splitting of carbon nanotubes. Specific examples include solvent exfoliation of graphite, mechanical grinding of graphite (ultrasound, milling, gas phase high speed blading), electrical exfoliation, synthesis, and the like.
  • the oxygen content of the graphene surface oxidizer is usually 5wt% or less compared to the carbon backbone.
  • the oxygen content by the surface oxidizer is all defined as 'graphene' up to 5 wt% or less compared to the carbon backbone.
  • FIG. 1 illustrates a conceptual diagram of a contact cross section between a 0-dimensional material (particle type), a 1-dimensional material (linear), and a 2-dimensional material (plate) in order to explain the excellent physical properties of the two-dimensional plate material.
  • the two-dimensional plate material may be overlapped with each other, that is, overlapping between surfaces, which is impossible in the 0-dimensional material and the 1-dimensional material.
  • the conceptual diagram of FIG. 1 can be further examined through the case where 0-dimensional material (powder), 1-dimensional material (fiber, etc.) and 2-dimensional material (plate material) are respectively mixed in a specific matrix.
  • the particle, linear, and plate-like materials are not directly bonded to each other, that is, when the resin, dispersant, organic material, inorganic material, organic-inorganic material, and third material are added to the two particles.
  • the force between the two points is the closest distance.
  • linear materials the forces acting linearly, and in the case of plate materials, the attractive force between the faces. Even if the direct contact is not made in this way, the surface-to-face attraction is most effective even when the space between the plate materials is spaced apart.
  • a few milligrams of electrical conductivity effects of tunneling, breakdown, etc.
  • the same principles apply to strength (tension, flexion, bending, high temperature strength, etc.), thermal conductivity, barriers (blocking ions, gases, liquids, etc.), and functional manifestations (surfaces, etc.).
  • the adverse effect occurs when the thickness of the two-dimensional plate material is large.
  • the two-dimensional thick material overlaps as shown in the schematic diagram of FIG. Due to this step problem, empty spaces between the two-dimensional plate materials are created, the contact cross sections are in line contact, electrical conductivity, thermal conductivity, filling rate, barrier properties, film density, thickness control, film uniformity, interface bonding, etc.
  • the physical properties of all are reduced, the same problem occurs when the third material such as resin is compounded and the thick plate material spatial separation occurs.
  • graphite is a very inexpensive and industrially important material, but it is increasingly used in industries such as electronics and IT, which are developing day by day. This is because the above step problem is seriously undermined.
  • the thin two-dimensional material is easy to be wrinkled, as shown in the schematic diagram of FIG. 4, as it is not unfolded and acts as an impurity, but also acts as a defect between the space between the crumpled plate material inner space and the crumpled plate material. Therefore, physical properties such as electrical conductivity, thermal conductivity, filling rate, barrier property, film density, thickness controllability, film uniformity, and interfacial bonding property are all degraded, and a third plate material such as resin is compounded so that the thick plate material is spaced apart. The same problem occurs when this occurs.
  • the present invention solves the problem of step difference and void space between the plate materials in the process of compounding plate materials such as carbon flakes, carbon nanoplates (CNP), graphene, graphene oxide, which are significantly different in thickness and flexibility. I would like to.
  • the present invention for solving the above-mentioned problems "(a) preparing a first plate-like material in a solid or liquid phase; (b) mixing a second plate-like material having a thickness thinner and more flexible than the first plate-like material with the first plate-like material; (c) mixing the solid or liquid binder with the first and second plate materials so that the first and second plate materials are partially in contact or spaced apart from each other; And (d) solidifying the complex formed through the steps (a) to (c); It provides a two-dimensional hybrid composite manufacturing method comprising a.
  • the first plate material is a plate ceramic, nano clay, ZnO nano plate, TiO 2 nano plate, WS 2 , MoS 2 , oxide, shell, calcium carbonate, sulfide, metal flake, silver flake, copper flake, carbon flake, Carbon nanoplate, graphene, graphene oxide, graphite oxide, graphene oxide reduced material, graphite oxide reduced material, electrical peeling result of graphite, physical peeling result of graphite, solvent peeling result of graphite, graphite physical One or more of the results of chemical exfoliation and mechanical exfoliation of graphite may be applied.
  • any one or more of carbon nanoplates having a thickness of 200 nm or less, graphene, and graphene oxide may be applied.
  • the additives include proteins, amino acids, fats, polysaccharides, monosaccharides, glucose, vitamins, fruit acids, surfactants, dispersants, BYK, functional materials, solvents, Oils, Dispersants, Acids, Bases, Salts, Ions, Labeling Agents, Adhesives, Oxides, Ceramics, Magnetic Materials, Organics, Biomaterials, Plate Materials, Nanoplate Materials, Nanoparticles, Nanowires
  • One or more of carbon nanotubes, nanotubes, ceramic nanopowders, quantum dots, zero-dimensional materials, one-dimensional materials, two-dimensional materials, hybrid materials, organic-inorganic hybrid materials, inks, pastes, and plant extracts may be applied.
  • the present invention comprises the steps of "(a ') preparing a binder; (b ') attaching a first plate material and a second plate material having a thickness thinner and more flexible than the first plate material to the surface of the binder; It provides a two-dimensional hybrid composite manufacturing method comprising a.
  • the present invention it is possible to maximize the physical properties of the two-dimensional plate material by solving the step problem when the two-dimensional plate material overlap.
  • 1 is a cross-sectional conceptual view of contact portions between 0-dimensional, 1-dimensional, and 2-dimensional materials.
  • 2 is a conceptual diagram of mutual influence when there is a spatial distance between 0-dimensional, 1-dimensional, and 2-dimensional materials.
  • 3 is a conceptual diagram of a step problem that occurs in the two-dimensional plate material.
  • FIG. 4 is a conceptual diagram of the problem of wrinkled two-dimensional plate material.
  • FIG. 5 is a conceptual diagram illustrating a principle of solving a step problem, a wrinkled problem, and an empty space problem.
  • 6 to 8 are conceptual views of a situation showing a situation in which the plate materials effectively affect the mixed state of the binder.
  • 9 to 11 are conceptual views of a situation in which the plate materials mutually influence in various forms in a state in which the binder is mixed (not shown in the figure).
  • FIG. 13 is a FE-SEM photograph of a carbon plate-graphene hybrid material in which a step problem is overcome.
  • 15 is a FE-SEM photograph of a material in which silver nanowires and silver nanoparticles are added to a graphite-carbon nanoplate-graphene oxide hybrid plate-like material.
  • FIG. 16 is a FE-SEM photograph of a material in which a dispersant is added to a graphite-carbon nanoplatelet-graphene oxide hybrid plate-like material.
  • FIG. 17 is a FE-SEM photograph of a material in which silver nanowires and silver nanoparticles are added to such a graphite-carbon nanoplate-graphene oxide hybrid plate-like material.
  • FIG. 18 is a FE-SEM photograph of a material in which a dispersant is added to a graphite-carbon nanoplatelet-graphene oxide hybrid plate-like material.
  • Best mode for carrying out the method for producing a two-dimensional hybrid composite according to the present invention is as follows.
  • the first plate material is plate ceramic, nano clay, ZnO nano plate, TiO 2 nano plate, WS 2 , MoS 2 , oxide, shell, calcium carbonate, sulfide, metal flake, silver flake, copper flake, carbon flake, carbon Nanoplate, graphene, graphene oxide, graphite oxide, graphene oxide reduced material, graphite oxide reduced material, electrical peeling result of graphite, physical peeling result of graphite, solvent peeling result of graphite, physicochemical of graphite Characterized in that any one or more of the peeling result, mechanical peeling result of the graphite,
  • the second plate-like material is characterized in that any one or more of carbon nanoplates, graphene, graphene oxide having a thickness of less than 200nm,
  • step (c) protein, amino acid, fat, polysaccharide, monosaccharide, glucose, vitamin, fruit acid, surfactant, dispersant, BYK, functional material, solvent, oil, dispersant, acid, base, Salts, ions, labeling agents, adhesives, oxides, ceramics, magnetic materials, organic materials, biomaterials, plate materials, nano plate materials, nanoparticles, nanowires, carbon nanotubes, nanotubes, ceramic nanopowders, quantum dots, It is characterized by further mixing any one or more additives of 0-dimensional material, 1-dimensional material, 2-dimensional material, hybrid material, organic-inorganic hybrid material, ink, paste, plant extract.
  • the present invention reflects the above technical idea is "(a) preparing a first plate-like material in a solid or liquid phase; (b) mixing a second plate-like material having a thickness thinner and more flexible than the first plate-like material with the first plate-like material; (c) mixing the solid or liquid binder with the first and second plate materials so that the first and second plate materials are partially in contact or spaced apart from each other; And (d) solidifying the complex formed through the steps (a) to (c); It provides a hybrid composite production method comprising a.
  • the present invention will be described for each step.
  • This step is to prepare the first plate-like material in a solid or liquid phase.
  • the first plate material is a plate ceramic, nano clay, ZnO nano plate, TiO 2 nano plate, WS 2 , MoS 2 , oxide, shell, calcium carbonate, sulfide, metal flake, silver flake, copper flake, carbon flake, Carbon nanoplate, graphene, graphene oxide, graphite oxide, graphene oxide reduced material, graphite oxide reduced material, electrical peeling result of graphite, physical peeling result of graphite, solvent peeling result of graphite, graphite physical One or more of the results of chemical exfoliation and mechanical exfoliation of graphite may be applied.
  • This step is a step of mixing the second plate-like material, which is thinner and more flexible than the first plate-like material, with the first plate-like material.
  • the second plate-like material may be applied to any one or more of carbon nanoplates, graphene, graphene oxide having a thickness of 200nm or less.
  • carbon nanoplates and graphene may be used in all fields such as thermal conductivity, barrier, strength, electrical conductivity, solid lubricant, liquid thermal conductor, and polymer filler.
  • the carbon nanoplate may be prepared by separating a layer of expanded graphite prepared by expanding GIC (Graphite Intercalated Compound).
  • GIC Graphite Intercalated Compound
  • the carbon nanoplate having a thickness of 5 to 200 nm may be mixed at 20 wt% or less.
  • the flexible plate-like material may be applied to graphene, in this case, the graphene may be applied to the one prepared by reducing the graphite oxide.
  • the graphene having a layer number of 1 to 20 may be mixed at 20 wt% or less with respect to the total composite.
  • a solid or liquid binder is mixed with the first and second plate materials to partially contact or be spaced apart from each other.
  • the binder is a material for bonding the first and second plate-like materials, and may be polymer, resin, binder, curable polymer, monomer, precursor, ceramic precursor, organic / inorganic hybrid, ceramic sol, silane, silane, etc.
  • the first and second plate-like materials and the binder may be hybridized in a solid or liquid state.
  • Solid phase hybridization can be realized by mechanical mixing, etc., and extrusion, discharging, injection, stretching, pressing, thermocompression, screw extrusion, pressure extrusion, melt extrusion, solid state molding, compression molding, powder molding, cast molding, powder deposition, etc. Can be applied.
  • Raw powders can be placed in a solvent to provide shock waves to maximize dispersion and hybridization.
  • the liquid hybridization proceeds in a liquid state such as ink and paste, and may be performed by adding a blending process and a shock wave providing process.
  • a two-dimensional plate hybrid material which is evenly dispersed by applying molecular shock waves to open gaps between the same plate materials and intercalating plate materials having different thicknesses or heterogeneous plate materials. Can be prepared.
  • micro cavity method micro cavity explosion induction
  • ultrasonic application method molecular unit shear force application method
  • molecular unit shear force application method high pressure ejection method using high pressure ejection with a fine nozzle, high speed homogenizer, etc.
  • ultra fast blading ultra fast sterling
  • Physical energy application such as beads ball sterling (adding fine beads balls and sterling together), high-pressure jetting (compression / spraying into fine cracks), high-speed homogenizer method, etc. can be applied.
  • the above physical energy application method may apply any one or two or more at the same time. For example, a method of imparting high energy shear force while applying ultrasonic waves may be adopted.
  • the shock wave providing process may be minimized in a solution, ink, paste, etc. in which nano-plate materials are well dispersed.
  • the binder may be added to 1 to 50,000 parts by weight relative to 100 parts by weight of the first and second plate-like material.
  • the binder is preferably added in an amount of 20 to 600 parts by weight based on 100 parts by weight of graphene.
  • any one or more of (1) a thermosetting resin, (2) a photocurable resin, (3) a silane compound which causes hydrolysis to cause a condensation reaction, (4) a thermoplastic resin, and (5) a conductive polymer may be used. .
  • thermosetting resin (1) thermosetting resin
  • thermosetting resin may be applied to any one or more of urethane resin, epoxy resin, melamine resin, polyimide.
  • the photocurable resin may be any one or more of epoxy resin, polyethylene oxide, urethane resin, reactive oligomer, reactive monofunctional monomer, reactive difunctional monomer, reactive trifunctional monomer, and photoinitiator.
  • the reactive oligomer may be applied to any one or more of epoxy acrylate, polyester acrylate, urethane acrylate, polyether acrylate, thiolate, organosilicon polymer, and organosilicon copolymer.
  • the reactive monofunctional monomers are 2-ethylhexyl acrylate, oltyldecyl acrylate, isodecyl acrylate, dredyl methacrylate, 2-phenoxyethyl acrylate, nonylphenol ethoxy lake monoacrylate, tetrahydroperfu Any of releasing, ethoxyethyl acrylate, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate The above can be applied.
  • the reactive bifunctional monomer is 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanedioldiacrylate, diethylene glycol diacrylate, driethylene glycol dimethacrylate, neo
  • pentyl glycol diacrylate, ethylene glycol dimethacrylate, tetraethylene glycol methacrylate, polyethylene glycol dimethacrylate, tripropylene glycol diacrylate, and 1,6-hexanediol diacrylate may be applied. Can be.
  • the reactive trifunctional monomer may be applied to any one or more of trimethylol propane acrylate, trimethylol propane trimethacrylate, pentaerythritol triacrylate, glycidyl pentatriacrylate, and glycidyl pentatriacrylate. have.
  • the photoinitiator may be applied to any one or more of benzophenone-based, benzyl dimethyl ketal-based, acetophenone-based, anthraquinone-based, thixoxoxanthone-based.
  • the silane compound may be applied to any one or more of tetraalkoxysilanes, trialkoxysilanes and dialkoxysilanes.
  • any one or more of tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane and tetra-n-butoxysilane can be applied.
  • trialkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane and i-propyltri Methoxysilane, i-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxy Silane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxy
  • the dialkoxysilanes are dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, di-i- Propyldimethoxysilane, di-i-propyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, Di-n-hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyldimethoxysilane, di-n-oc
  • the thermoplastic resin may be polystyrene, polystyrene derivative, polystyrene butadiene copolymer, polycarbonate, polyvinyl chloride, polysulfone, polyether sulfone, polyetherimide, polyacrylate, polyester, polyimide, polyamic acid, cellulose acetate, polyamide , Polyolefin, polymethyl methacrylate, polyether ketone, polyoxyethylene any one or more can be applied.
  • the conductive polymer may be applied to any one or more of polythiophene homopolymer, polythiophene copolymer, polyacetylene, polyaniline, polypyrrole, poly (3,4-ethylenedioxythiophene), pentacene compound.
  • One or more additives of 0-dimensional material, 1-dimensional material, 2-dimensional material, hybrid material, organic-inorganic hybrid material, ink, paste, and plant extract may be further mixed.
  • nanoplate-like materials, nanoparticles, nanowires, carbon nanotubes, nanotubes, ceramic nanopowders, etc. further compensate for the step difference caused when the first plate-like material overlaps with each other (additional expansion of the interface, void filling, etc.).
  • the nanoparticles are powder-type materials, which fill the space generated in the step due to the interplanar interlaminar formation of the plate material, and the nanowires (silver nanowires, copper nanowires, etc.) have an interface length of the stepped portion.
  • the two-dimensional hybrid plate-like material such as a dispersant for improving the hybrid efficiency, a binder for improving the coating properties (prevents packing and lifting of the film), it may be applied by mixing them. They can have the effect of maximizing the contact area between materials and increasing the density, thereby improving the properties of the hybrid composite.
  • additives that can be applied for improving dispersion stability, improving coating properties, manufacturing composites, and the like are surfactants, dispersants, BYKs, solvents, oils, dispersants, acids, bases, salts, and ions.
  • a labeling agent, an adhesive, an oxide, a ceramic, a magnetic substance, an organic substance, a biomaterial, and the like and may be applied together as an additive which is one or more of them.
  • the 0-dimensional nanomaterial, 1-dimensional nona material, and the third plate material two-dimensional nanomaterial
  • metal nanoparticles, metal nanowires (silver nanowires, copper nanowires, etc.), metal nanoflakes, carbon nanotubes (CNT), and the like may improve the electrical conductivity of the coating.
  • solvents organic solvents, amphoteric solvents, aqueous solutions, hydrophilic solvents, etc.
  • oils dispersants, acids, bases, salts, ions, labeling agents, adhesives, etc. It is applied to improve the acidity, coating properties, stability, adhesion, labeling properties, viscosity properties, coating properties, dry properties.
  • oxides, ceramics, magnetic materials, carbon nanotubes, etc. are applied to further express the functionality of the hybrid composite.
  • Copper nanowires or silver nanowires may be used as the metal nanowires.
  • the addition of such metal nanowires can improve the electrical conductivity of the coating.
  • the copper (Cu) nanowires may be coated with a protective film, and the protective film may be formed of a polymer or a metal.
  • the dispersant may include BYK, block copolymer, BTK-Chemie, Triton X-100, polyethylene oxide, polyethylene oxide-polypropylene oxide copolymer, polyvinylpyrrole, polyvinyl alcohol, and Ganex.
  • the surfactant includes LDS (Lithium Dodecyl Sulfate), CTAC (Cetyltrimethyl Ammonium Chloride), DTAB (Dodecyl-trimethyl Ammonium Bromide), nonionic C12E5 (Pentaoxoethylenedocyl ether), Dextrin (polysaccharide), PEO (Poly Ethylene Oxide), One or more of GA (Gum Arabic) and EC (ethylene cellulose) may be applied.
  • LDS Lithium Dodecyl Sulfate
  • CTAC Cetyltrimethyl Ammonium Chloride
  • DTAB Dodecyl-trimethyl Ammonium Bromide
  • nonionic C12E5 Pentaoxoethylenedocyl ether
  • Dextrin polysaccharide
  • PEO Poly Ethylene Oxide
  • GA Ga Arabic
  • EC ethylene cellulose
  • This step is to solidify the complex formed through the steps (a) to (c).
  • the pressure may be applied to the composite to further induce surface contact or to further enhance the space-to-face effective action.
  • the composite may be prepared by dispersing the coating liquid dispersed in the liquid phase, followed by drying, coating, pressing, thermocompression, and the like, to further improve inter-face contact between the plate materials.
  • spatial interaction between the surfaces may be further enhanced than in manufacturing a simple melt composite.
  • a Hummers method including a Modified Hummers method, a Brodie method, a Hofman & Frenzel method, a Hamdi method, and a Staus method may be used.
  • the Modified Hummers method was used. Specifically, 50 g of micrographite powder and 40 g of NaNO 3 are added to a 200 mL H 2 SO 4 solution and cooled, and 250 g of KMnO 4 is slowly added over 1 hour. Then slowly add 4-7 % H 2 SO 4 5L over 1 hour and add H 2 O 2 . After centrifugation, the precipitate is washed with 3% H 2 SO 4 -0.5% H 2 O 2 and distilled water to give a yellow brown aqueous graphene slurry.
  • the chemical reduction method is to disperse well by adding 100 ml of distilled water to 2 g of 3% GO slurry, and then adding 1 ml of hydrazine hydrate and reducing the solution at 100 ° C. for 3 to 24 hours. Filter with water and methanol.
  • a salt of an alkali metal or an alkaline earth metal such as KI or NaCl can be used to remove H 2 O from GO in advance to partially restore the carbon-to-carbon double bond.
  • a method of adding a reducing agent to other GO aqueous solutions includes NaBH 4, Pyrogallol, HI, KOH, Lawesson's reagnet, Vitamin C, Ascorbic acid, and the like.
  • the aqueous graphene slurry obtained in [Example 1] was heat treated at 300 ° C. or higher to obtain graphene powder.
  • heat-reduced graphene powder was prepared by heat treatment at 600 ° C. under a nitrogen inert gas atmosphere.
  • the commercial GIC was treated with microwave for 30 seconds to obtain EP, and then treated with ultrasonic wave for 30 minutes to obtain CNP.
  • GIC was instantaneously placed in an inert atmosphere at 500 ° C., EP was obtained, and then treated with ultrasound for 30 seconds to obtain CNP.
  • the thickness was 5-100 nm in the transmission electron microscope observation.
  • the EP obtained in the intermediate step may also be included in the CNP of the present invention because the CNP is partially bound.
  • a two-dimensional hybrid material may be manufactured by mixing CNP in the EP state and other plate-like materials, that is, graphene or graphite, and then dispersing ultrasonic waves such as ultrasonic waves, for example, without going through the separate ultrasonic process. have.
  • FIG. 12 is an electron microscope photograph of nanoparticles decorated on the surface of graphene as the first plate material and the CNP as the second plate material.
  • the silver-based organometallic compound was attached to the graphene by the liquid reduction method, and in the case of the second plate material, the nickel-based organometallic compound was adsorbed onto the CNP surface and then heat-treated. .
  • these materials were mixed and dispersed in 8.5: 1.5 (CNP-based: graphene), it was found to be significantly lowered to 3.5 ⁇ / ⁇ , and new magnetic properties were expressed.
  • the coercive force was 15Oe and the residual magnetization ratio to saturation magnetization was 3.7%. This shows that a hybrid membrane having soft magnetic properties and good electrical conductivity properties can be realized using the principles of the present invention.
  • Example 2 The graphene obtained in Example 2 and the CNP mixed material obtained in Example 2 were mixed with IPA, and ultrasonic dispersion was performed for 30 seconds to measure electrical conductivity by weight content.
  • the carbon nanoplate-graphene hybridized material shows a nonlinear tendency that the resistance decreases sharply when 20% of graphene is added without showing a linear change according to the content change. This nonlinear trend can be explained by the step overcoming process described in the present invention.
  • the thin and ultra flexible graphene greatly increases the contact area of the stepped portion generated in the carbon nanoplate.
  • this embodiment shows that even in the case of carbon nanoplates that are relatively thinner than flake carbon, there is a step problem, and this step problem can be overcome by using graphene, which is a thinner and more flexible material.
  • This principle can replace graphene if it is thin and conductive, such as graphene (eg, metal nanoplates), and carbon nanoplate-WS 2 nanoplatelets, MoS 2 nanoplatelets, if it is to improve non-conductive solid lubricants.
  • Plate-graphene, graphite-WS 2 nanoplatelet-graphene, MoS 2 nanoplatelet-graphite, in the case of photocatalyst can be expanded by a combination of MoS 2 nanoplatelet-TiO 2 nanoplatelet and the like.
  • thickness and flexibility are key keywords of the present invention, and the change of the nanoplate material (heterogeneous material) is possible according to the desired physical properties, so that the step problem occurring in various two-dimensional plate materials can be solved through the present invention.
  • the hybridization of the three plate materials is shown in FIG. 16.
  • the effect of the present invention by compression and polymer addition also shows the same behavior as in [Example 7] and [Example 8].
  • the third plate material and the fourth plate material may be replaced or added, and in the field of electrical conductivity, the use of metal nanoplates (metal nanoflakes) may be a great help in physical properties. Compression and polymer addition behaviors The behaviors according to [Example 7] to [Example 9] are predicted.
  • Graphite (80%)-carbon nanoplate (15%)-graphene oxide (5%) hybrid plate material has a sheet resistance of 39 ⁇ / ⁇ as shown in [Table 4].
  • Ultrasonic dispersion of 15% silver nanowires (30nm in diameter and 5 microns in length) and 5% 30nm silver nanoparticles was ultrasonically coated and coated to measure the sheet resistance of the film.
  • silver nanowires and silver nanoparticles play a very important role in solving the group problem occurring in the plate materials. In other words, it extends the contact length (not the contact area) at the interface. This complements the contact length problem (especially important for conducting) at the nanoplate interface through the nanowires.
  • nanowires may use metal nanowires such as silver nanowires and copper nanowires, and carbon nanotubes may also be used.
  • the nanoparticles play an important role in filling the empty space generated in the step problem. Therefore, the secondary problems occurring in the two-dimensional hybrid material can be supplemented through other nanoparticles and nanowires.
  • it is very difficult to produce a thick film using only silver nanowires and silver nanoparticles (sand grain-like properties) and as in the present invention, these materials have a thin film property of two-dimensional plate material (excellent formation of laminated coating film by plate structure) and It is fused with thick film property to express new and excellent properties.
  • FIG. 17 is a FE-SEM photograph of a material in which silver nanowires and silver nanoparticles are added to such a graphite-carbon nanoplate-graphene oxide hybrid plate-like material.
  • FIG. 18 is a FE-SEM photograph of a material in which a dispersant is added to a graphite-carbon nanoplatelet-graphene oxide hybrid plate-like material.
  • the thin and flexible graphene oxide greatly increases the contact area of the stepped portion generated in the CNP.
  • the resistance value that was not achieved in graphene oxide (25 ohm / sq) as the first plate material and CNP (20 ohm / sq) as the second plate material was 6 ohm, the smallest value in CNP60% + 40% graphene oxide. / sq
  • This value shows the effectiveness of the present invention and is the best value in the world in the case of coating a thick film without a binder to date. Therefore, it is expected that better physical properties can be expressed when the solvent, dispersion process, coating process, etc.
  • the surface protective film may be coated.
  • the first and second plate-like material is dispersed in a liquid phase in the presence of a dispersant, and then coated on a substrate, and vacuum-dried and heat treated to remove the dispersant, to maximize surface contact through pressure compression, and to protect the coating film.
  • Resin may be formed as a protective film on the surface of the coating film.
  • the resin component is the main component as a binder
  • the first and second plate materials are mixed in a solid phase and the three components are properly mixed.
  • a drying process is required.
  • a stable composite can be produced with one-way orientation through an injection molding process.
  • the binder is a polymer chip or polymer powder
  • the first plate-like material and the second plate-like material are adsorbed (liquid or electrostatic force or van der Waals force) or adhered to these surfaces, and then injection-molded to secure orientation and uniformity.
  • the complex of the present invention can be prepared.
  • the present invention relates to a method for manufacturing a two-dimensional hybrid composite that can solve a problem occurring in a two-dimensional plate material, that is, a step problem, a defect problem, a spread problem, and the like caused by the overlap of the two-dimensional plate material. This is recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)

Abstract

본 발명은 2차원 판상소재에서 발생하는 문제 즉, 2차원 판상소재가 겹쳐짐에 따라 발생하는 단차 문제, 결함문제, 퍼짐문제 등을 해결할 수 있는 2차원 하이브리드 복합체 제조 방법에 관한 것이다. 본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 2차원 하이브리드 복합체 제조 방법」을 제공한다.

Description

2차원 하이브리드 복합체 제조 방법
본 발명은 2차원 판상소재에서 발생하는 문제 즉, 2차원 판상소재가 겹쳐짐에 따라 발생하는 단차 문제, 결함문제, 퍼짐문제 등을 해결할 수 있는 2차원 하이브리드 복합체 제조 방법에 관한 것이다.
세라믹나노판(나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물 등), 금속플레이크(실버플레이크, 구리플레이크), 흑연, 카본나노플레이트, 그래핀, 그래핀나노플레이트, 그래핀산화물 등은 판상소재들이다. 복합화합물, 유무기하이브리드소재 등도 판상으로 성립될 수 있다.
이러한 판상소재들은 강도 증진(휨강도, 인장 강도 등), 전기전도성 향상, 열전도성 향상, 필러소재, 가스투과방지, 윤활제(고체 또는 액체), 액상 열전달체 등의 분야에서 매우 중요하게 이용되고 있다.
판상소재들은 종류별로 크게 비흑연계{세라믹나노판, 금속플레이크, 복합화합물, 유무기하이브리드소재 등}와 흑연계{흑연(카본플레이크, 토상흑연, 판상흑연, 인상흑연, 인조흑연 등), 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물 등}로 나눌 수 있다.
비흑연계 판상소재는 통상적으로 두께가 5nm 가량이다. 또한 고체윤활제로 매우 중요한 WS2 및 MOS2는 나노판의 층수가 몇 층 이하로 제어되도록 제조할 수 있다.
흑연계 판상소재의 경우, 흑연의 두께는 100nm 이상, 그래핀나노플레이트의 두께는 5~100nm 이며, 그래핀 및 그래핀산화물(흑연산화물)의 두께는 대략 5~7nm(1~20층) 이하이다.
흑연계 판상소재를 더욱 구체적으로 살펴보면, 흑연(Graphite)은 층간 약한 반데르발스 결합을 이루고 있는 두꺼운 판 구조로 되어 있으며, 흑연을 분쇄하는 과정에서 상기 반데르발스 결합이 우선적으로 깨지면서 두께가 얇아지게 된다. 그러나 두께가 100nm 이하가 되기는 힘들다.
카본나노플레이트(Carbon Nano Plate, 이하 'CNP'라 함)는 통상적으로 흑연보다는 매우 얇은 구조를 가지게 되어 그 두께는 5~200nm 가량이다.
한편, 이는 흑연층 사이에 화학종이 삽입된 GIC(Graphite Intercalated Compound)를 이용하여 판상소재를 만들 수 있다. 즉, 상기 GIC를 적당한 온도에서 열처리하거나 마이크로웨이브처리를 하여 흑연의 층과 층 사이가 팽창되어 애벌레 같이 길게 형성된 팽창흑연(Expanded Graphite, 이하 'EG'라 함)을 제조한 후, 기계적처리, 초음파처리, 화학적 처리, 전단력 인가, 볼밀링 등의 수단으로 EG 내부에 약한 결합을 갖는 층과 층 사이(즉, 나노플레이트 사이)를 분리시킴으로써 판상소재를 제조하는 것이다(이렇게 제조된 판상소재를 이하에서는 'EP'라 함). 물론 상기 EP도 카본나노플레이트의 일종으로 분류할 수 있으며, 본 명세서에서도 카본나노플레이트는 EP를 포함하는 개념으로 서술한다.
그래핀(Graphene, 이하 'GP'라 함)은 상기 흑연이나 CNP와는 달리 양자역학적 물성들이 발현되는 매우 얇은 탄소나노구조체 신물질이다. 그래핀의 전기전도도, 열전도도, 강도, 유연성, 가스투과방지물성 등의 물성은 현재까지 발견되거나 만들어진 소재 중에서 가장 우수한 것으로 알려져 있다. 특히 유연성(Flexible)과 펴짐성(stretchable)이 동시에 발현되면서 30%까지 늘어날 수 있으면서도 강도가 유지되며, 전기전도물성 및 열전도물성이 그대로 유지된다. 이러한 그래핀은 통상적으로 벌집구조를 갖는 단일 탄소원자층의 개수가 1~20층이며, 층간간격이 약 3.4Å임을 감안하면 두께가 약 5~7nm 이하가 된다.
흑연으로부터 그래핀산화물(Graphene Oxide, 이하 'GO'라 함) 또는 흑연산화물(Graphite Oxide, 이 역시 이하에서는 'GO'라 함, 즉 본 명세서 GO라 함은 그래핀산화물과 흑연산화물을 통칭함)을 제조한 후 GO를 액상, 기상, 고상에서 환원시켜 그래핀을 제조할 수 있다. 이 때 환원 방법은 크게 열환원법 및 화학적 환원법으로 나누어진다. 또한 그래핀은 그래핀산화물에 에너지를 조사(마이크로웨이브, 포톤, IR, 레이저 등)하여 만들 수 있다.
또한 그래핀은 흑연과 친화력이 아주 좋은 용매에 침지시켜 초음파등을 처리하여 흑연을 한층 한층 떼어낼 수 있다. 대표적인 용매는 GBL, NMP 등이 있으며, 그래핀의 품질은 좋으나 양산하기 어려운 단점이 있다.
이 밖에도 화학적 합성방법, 바텀(Bottom) 생성방법, 탄소나노튜브를 화학적으로 쪼개어 펼쳐는 방법 등으로도 그래핀을 제조할 수 있다. 구체적인 예로 흑연의 용매박리법, 흑연의 기계적 분쇄법 (초음파, 밀링, 기상 고속블레이딩), 전기적 박리법, 합성법 등이 있다.
한편, 현재까지 밝혀진 어떠한 방법에 의하더라도 그래핀 표면의 산화기들을 완전히 제거할 수는 없으며, 통상적으로 GO를 제외하고는 그래핀 표면 산화기에 의한 산소 함량은 탄소 백본(backbone) 대비 5wt% 이하이다. 본 발명에서도 표면 산화기에 의한 산소함량이 탄소 백본 대비 5wt% 이하인 것까지를 모두 '그래핀'으로 정의한다.
[도 1]에는 2차원 판 소재들의 뛰어난 물성을 설명하기 위하여 0차원 소재(입자형), 1차원 소재(선형), 2차원 소재(판형) 간 접촉 단면의 개념도를 나타내었다. 2차원 판상소재는 [도 1]에 도시된 바와 같이 0차원 소재 및 1차원 소재에서는 불가능한 판 끼리의 겹침, 즉 면간 겹침이 일어남을 알 수 있다. 특정 매트릭스 내에 0차원 소재(분말), 1차원 소재(섬유 등) 및 2차원 소재(판상소재)를 각각 혼입하는 경우를 통해 [도 1]의 개념도를 좀 더 살펴볼 수 있다. 0차원 소재의 경우 점접촉을 유도하기 위해 상당히 많은 양이 첨가되어야 하며, 많은 점접촉이 유도되더라도 점접촉을 통하여 전달되는 전기 및 열은 최소화된다. 1차원 소재의 경우는 적은 양으로도 손쉽게 점접촉이 유도되며 많은 양을 이용하면 선접촉도 가능하다. 따라서 0차원인 분말형 입자보다는 효율적인 접촉을 통하여 열 및 전기를 전달할 수 있는데 대표적인 경우가 실버나노와이어 투명전도막을 들 수 있다. 그런데 2차원인 판상소재는 면간 겹침이 손쉽게 일어나 열 전도성과 전기 전도성이 전술한 1차원 소재보다도 월등히 향상된다. 따라서 2차원 판상소재는 많은 분야에서 활용될 수 있는 핵심 소재이다.
또한 [도 2]에 도시된 바와 같이 입자형, 선형, 판형 소재끼리 직접 결합하지 않는 상태, 즉 레진, 분산제, 유기물, 무기물, 유무기소재, 제3의 소재 등이 첨가되는 경우 두 입자간에 작용하는 힘은 두 점 사이가 가장 인접거리가 되고, 선형 소재인 경우는 선형으로 작용하는 힘, 판상소재인 경우는 면 사이의 인력이 작용하게 된다. 이와 같이 직접 접촉을 하지 않는 경우에도 판상소재들간 공간이 이격된 상태에서도 면간 인력이 가장 유효하게 된다. 이와 같은 면간 유효한 성질들중 전기전도성(터널링, 절연파괴 등의 효과)인 수 밀리 무게 함량을 넣어 전기전도성을 부여하여 정전방지 효과를 부여할 수 있다. 비슷하게 강도(인장, 굴곡, 꺽임, 고온강도 등), 열전도성, 배리어 (이온, 가스, 액체 등 차단), 기능성 발현 (표면 등)에도 같은 원리가 적용된다.
그러나 2차원 판상소재의 두께가 클 경우에는 역효과가 일어난다. 즉 두꺼운 2차원 소재끼리 겹칠 경우 [도 3]의 모식도에서 보는 것처럼 단차 문제가 발생한다. 이 단차 문제에 의해 2차원 판상소재간 빈 공간이 생성되게 하며, 접촉 단면이 선 접촉이 되게 하며, 전기전도성, 열전도성, 충진율, 배리어물성, 막의 밀도, 두께 제어성, 막의 균일도, 계면 접합성 등의 물성들이 모두 저하되며, 레진과 같은 제 3의 소재가 복합화되어 두꺼운 판상소재가 공간적인 이격이 발생할 때도 같은 문제가 발생하게 된다. 대표적인 예로서 흑연은 값이 매우 싸고 산업적으로 매우 중요한 소재이지만 나날이 발전하는 전자, IT등의 산업에서의 이용이 점점 줄어들고 있는데, 그 이유는 흑연의 물성 향상 기술이 한계에 도달하여 시장이 요구하는 스펙을 만족시킬 수 없기 때문이며, 이 이면에는 전술한 단차문제가 심각하게 도사리고 있는 것이다.
2차원 판상소재가 얇을 경우에도 역효과가 일어난다. 즉 얇은 2차원 소재는 구겨지기 쉬워 [도 4]의 모식도에서 보는 것처럼 펴지지 않고 구겨져 불순물로 작용뿐만 아니라, 구겨진 판상소재 내주의 빈 공간 및 구겨진 판상소재간 공간사이가 결함으로 작용하게 된다. 따라서, 전기전도성, 열전도성, 충진율, 배리어물성, 막의 밀도, 두께 제어성, 막의 균일도, 계면 접합성 등의 물성들이 모두 저하되며, 레진과 같은 제3의 소재가 복합화되어 두꺼운 판상소재가 공간적인 이격이 발생할 때도 같은 문제가 발생하게 된다.
본 발명에서는 두께 및 유연성에서 두드러지게 차이가 나는 카본 플레이크, 카본나노플레이트(CNP), 그래핀, 그래핀산화물 등의 판상소재를 복합화하는 과정에서 발생하는 판상소재간 단차 문제 및 빈 공간 문제를 해결하고자 한다.
전술한 과제 해결을 위해 본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 2차원 하이브리드 복합체 제조 방법」을 제공한다.
상기 제1판상소재로는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상을 적용할 수 있다.
상기 제2판상소재로는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상을 적용할 수 있다.
한편, 상기 (c)단계에서는 첨가제를 더 혼합시킬 수 있는데, 상기 첨가제로는 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상을 적용할 수 있다.
또한, 본 발명은 「(a') 결합재를 준비하는 단계; (b') 제1판상소재 및 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 결합재 표면에 부착시키는 단계; 를 포함하는 2차원 하이브리드 복합체 제조 방법」을 함께 제공한다.
본 발명에 따르면 2차원 판상소재의 겹침시 단차 문제를 해결함으로서 2차원 판상소재의 물성을 극대화시킬 수 있다. 특히 전기전도, 열전도, 방열, 필러, 배리어 등의 분야에 물성이 향상된 2차원 판상소재를 지속적으로 제공할 수 있다.
[도 1]은 0차원, 1차원, 2차원 소재간 접촉부의 단면 개념도이다.
[도 2]는 0차원, 1차원, 2차원 소재간 공간적인 거리가 있을 경우 상호 영향에 대한 개념도이다.
[도 3]은 2차원 판상소재에서 발생하는 단차문제의 개념도이다.
[도 4]는 2차원 판상소재가 구겨지는 문제에 대한 개념도이다.
[도 5]는 단차문제, 구겨지는 문제, 빈공간 문제의 해결 원리를 나타낸 개념도이다.
[도 6] 내지 [도 8]은 결합재가 혼합된 상태에서 판상소재들이 유효하게 영향을 주는 상황을 보여주는 상황에 대한 개념도이다.
[도 9] 내지 [도 11]은 결합재가 혼합된 상태(그림 내에서는 결합재 도시 생략)에서 판상소재들이 다양한 형태로 상호 영향을 주는 상황에 대한 개념도이다.
[도 12]는 단차문제가 극복된 흑연-카본플레이트 하이브리드 소재의 FE-SEM 사진이다.
[도 13]은 단차문제가 극복된 카본플레이트-그래핀 하이브리드 소재의 FE-SEM 사진이다.
[도 14]는 흑연-카본플레이트-그래핀 하이브리드 소재의 FE-SEM 사진이다.
[도 15]는 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 실버나노와이어 및 실버나노입자를 첨가한 소재의 FE-SEM사진이다.
[도 16]은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 분산제가 첨가된 소재의 FE-SEM사진이다.
[도 17]은 이와 같은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 실버나노와이어 및 실버나노입자를 첨가한 소재의 FE-SEM사진이다.
[도 18]은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 분산제가 첨가된 소재의 FE-SEM사진이다.
본 발명에 따른 2차원 하이브리드 복합체 제조 방법의 실시를 위한 최선의 형태는 아래와 같다.
(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계;
(b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계;
(c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및
(d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하되,
상기 제1판상소재는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상인 것을 특징으로 하고,
상기 제2판상소재는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상인 것을 특징으로 하며,
상기 (c)단계에서 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상의 첨가제를 더 혼합시키는 것을 특징으로 하는 것이다.
종래에는 판상소재의 단차 문제를 극복하기 위하여 기존 소재를 완전히 대체하거나 고가(高價) 공정기술들을 활용하여 물성을 향상시키는 방법들을 이용하였지만, 본 발명에서는 간단하게 2차원 소재들의 뛰어난 면간 겹침을 최대한 활용하여 단차문제를 근본적으로 해결하려 하였다.
본 발명에서는 다음의 4가지 기술 사상을 도출하였다.
(1) 서로 다른 두께를 가지는 판상소재의 융합을 통한 단차 문제 극복
(2) 이종(異種) 판상소재의 융합을 통한 단차 문제 극복
(3) 서로 다른 두께를 가지는 판상소재(제1·2판상소재)가 공간적으로 이격되어 있는 상태에서도 공간적인 상호작용에 의한 유효성 극대화
(4) 하이브리드 소재의 고상화에 의한 면간 접촉 또는 공간적 상호작용의 극대화
위와 같은 두 가지 기술 사상의 이면에 깔려 있는 공통인자는 두께가 얇은 판상소재의 유연성 또는 초유연성이다. 즉, 하나의 판상소재에서 단차 문제가 발생하였을 경우 두께가 얇고 유연성이 큰 소재가 단차 발생부위에 삽입되고 [도 3] 내지 [도 5]에 도시된 바와 같이 단차 발생부위 전후 또는 상하 부분에 접촉됨으로써 단차 발생부위의 계면 접합면 면적을 크게 늘릴 수 있다.
위와 같은 기술 사상이 반영된 본 발명은 「(a) 제1판상소재를 고상 또는 액상으로 준비하는 단계; (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계; (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및 (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 하이브리드 복합체 제조 방법」을 제공한다. 이하에서는 본 발명을 각 단계별로 설명한다.
1. (a)단계
본 단계는 제1판상소재를 고상 또는 액상으로 준비하는 단계이다.
상기 제1판상소재로는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상을 적용할 수 있다.
2. (b)단계
본 단계는 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계이다.
상기 제2판상소재는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상을 적용할 수 있다. 이 중 카본나노플레이트와 그래핀은 열전도, 배리어, 강도, 전기전도도, 고체 윤활제, 액상 열전도체, 폴리머 충진제 등의 분야에 모두 이용될 수 있다.
상기 카본나노플레이트는 GIC(Graphite Intercalated Compound)를 팽창시켜 제조된 팽창흑연(Expanded Graphite)의 층을 분리하여 제조된 것을 적용할 수 있다. 상기 제2판상소재로서 카본나노플레이트를 적용하는 경우 5~200nm 두께의 카본나노플레이트를 전체 대비 20wt% 이하로 혼합시킬 수 있다.
또한, 상기 유연성 판상소재로는 그래핀을 적용할 수 있으며, 이 경우 상기 그래핀은 흑연산화물을 환원시켜 제조된 것을 적용할 수 있다. 또한, 상기 (b)단계는 층수가 1~20인 그래핀을 전체 복합체 대비 20wt% 이하로 혼합시킬 수 있다.
3. (c)단계
본 단계는 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계이다.
상기 결합재는 상기 제1·2판상소재를 결합시키는 물질로서, 폴리머, 레진, 바인더, 경화성폴리머, 단량체, 전구체, 세라믹전구체, 유무기하이브리드, 세라믹졸, 실란, 실옥싼 등을 적용할 수 있다.
상기 제1·2판상소재 및 결합재는 고상 또는 액상으로 하이브리드화시킬 수 있다.
고상 하이브리드화는 기계적 믹싱 등으로 실현할 수 있으며, 압출, 토출, 사출, 연신, 압착, 열압착, 스크류압출, 가압압출, 용융압출, 고상성형, 압축성형, 분말성형, 캐스트성형, 분말증착 등에 그대로 적용될 수 있다. 원료분말들은 용매에 넣어 충격파를 제공하여 분산 및 하이브리드화를 극대화시킬 수 있다.
액상 화이브리드화는 잉크, 페이스트 등의 액상 상태에서 진행하는 것으로서, 블렌딩 공정 및 충격파 제공 공정을 추가하여 진행할 수 있다.
상기 제1·2판상소재를 혼합하여 용매에 분산시킬 경우 분자단위 충격파를 가하여 동일 판상소재간의 틈을 벌리고 두께가 다른 판상소재나 이종의 판상소재를 끼어들게 하여 고르게 분산된 2차원 판상 하이브리드 소재가 제조될 수 있다.
분자단위 충격파를 제공하기 위해서는 마이크로 공동법(micro cavity 폭발 유도), 초음파 인가법, 분자단위 전단력 인가법(미세 노즐로 고압 토출시키는 고압 분출법, 고속 호모제나이저 등), 초고속 블레이딩, 초고속 스터링, 비즈볼(beads ball) 스터링(미세 비즈볼을 넣고 같이 스터링하는 방법), 고압분출법(미세틈으로 압착/분출하는 방법), 고속 호모제나이저법 등과 같은 물리적 에너지 인가법을 적용할 수 있다. 위와 같은 물리적 에너지 인가법은 어느 하나를 적용하거나 동시에 둘 이상을 적용할 수 있다. 예를 들어 초음파를 인가하면서 고에너지 전단력을 부여하는 방법을 채택할 수 있다. 나노 판상소재들이 잘 분산된 용액, 잉크, 페이스트 등에서 상기 충격파 제공 공정은 최소화될 수 있다.
상기 결합재는 제1·2판상소재 100중량부 대비 1~50,000중량부 첨가되도록 할 수 있다. 예를 들어 투명전도막 필름을 제조를 위한 비수계 그래핀 코팅액에는 결합재가 그래핀 100중량부 대비 20~600중량부 첨가되는 것이 바람직하다. 이러한 결합재로는 (1) 열경화성 수지, (2) 광경화성 수지, (3) 가수분해하여 축합반응을 일으키는 실란 컴파운드, (4) 열가소성 수지, (5) 전도성 고분자 중 어느 하나 이상을 적용할 수 있다.
(1) 열경화성 수지
상기 열경화성 수지는 우레탄수지, 에폭시수지, 멜라민수지, 폴리이미드 중 어느 하나 이상을 적용할 수 있다.
(2) 광경화성 수지
상기 광경화성 수지는 에폭시수지, 폴리에틸렌옥사이드, 우레탄수지, 반응성 올리고머, 반응성 단관능 모노머, 반응성 2관능 모노머, 반응성 3관능 모노머, 광개시제 중 어느 하나 이상을 적용할 수 있다.
① 반응성 올리고머
상기 반응성 올리고머는 에폭시 아크릴레이트, 폴리에스테르 아크릴레이트, 우레탄 아크릴레이트, 폴리에테르 아크릴레이트, 티올레이트, 유기실리콘 고분자, 유기실리콘 공중합체 중 어느 하나 이상을 적용할 수 있다.
② 반응성 단관능 모노머
상기 반응성 단관능 모노머는 2-에틸헥실아크릴레이트, 올틸데실아크릴레이트, 이소데실아크릴레이트, 드리데실메타크릴레이트, 2-페녹시에틸아크릴레이트, 노닐페놀에톡시레이크모노아크릴레이트, 테트라하이드로퍼푸릴레이트, 에톡시에틸아크릴레이트, 하이드록시에틸아크릴레이트, 하이드록시에틸메타아크릴레이트, 하이드록시프로필아크릴레이트, 하이드록시프로필메타아크릴레이트, 하이드록시부틸아크릴레이트, 하이드록시부틸메타아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
③ 반응성 2관능 모노머
상기 반응성 2관능 모노머는 1,3-부탄디올디아크릴레이트, 1,4-부탄디올디아크릴레이트, 1,6-헥산디올디아크릴레이트, 디에틸렌글리콜디아크릴레이트, 드리에틸렌글리콜디 메타크릴레이트, 네오펜틸글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트, 테트라에틸렌글리콜메타크릴레이트, 폴리에틸렌글리콜디메타크릴레이트, 트리프로필렌글리콜디아크릴레이트, 1,6-헥산디올디아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
④ 반응성 3관능 모노머
상기 반응성 3관능 모노머는 트리메틸올프로판드리아크릴레이트, 트리메틸올프로판트리메타크릴레이트, 펜타에리스리톨트리아크릴레이트, 글리시딜펜타트리아크릴레이트, 글리시딜펜타트리아크릴레이트 중 어느 하나 이상을 적용할 수 있다.
⑤ 광개시제
상기 광개시제는 벤조페논계, 벤질디메틸케탈계, 아세토페논계, 안트라퀴논계, 티윽소잔톤계 중 어느 하나 이상을 적용할 수 있다.
(3) 실란 컴파운드
상기 실란 컴파운드는 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 어느 하나 이상을 적용할 수 있다.
① 테트라알콕시실란류
상기 테트라알콕시실란류는 테트라메톡시실란, 테트라에톡시실란, 테트라-n-프로폭시실란, 테트라-i-프로폭시실란, 테트라-n-부톡시실란 중 어느 하나 이상을 적용할 수 있다.
② 트리알콕시실란류
상기 트리알콕시실란류는 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, n-프로필트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, n-부틸트리메톡시실란, n-부틸트리에톡시실란, n-펜틸트리메톡시실란, n-헥실트리메톡시실란, n-헵틸트리메톡시실란, n-옥틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 시클로헥실트리메톡시실란, 시클로헥실트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, 3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 2-히드록시에틸트리메톡시실란, 2-히드록시에틸트리에톡시실란, 2-히드록시프로필트리메톡시실란, 2-히드록시프로필트리에톡시실란, 3-히드록시프로필트리메톡시실란, 3-히드록시프로필트리에톡시실란, 3-메르캅토프로필트리메톡시실란, 3-메르캅토프로필트리에톡시실란, 3-이소시아네이트프로필트리메톡시실란, 3-이소시아네이트프로필트리에톡시실란, 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 3-(메트)아크릴옥시프로필트리메톡시실란, 3-(메트)아크릴옥시프로필트리에톡시실란, 3-우레이도프로필트리메톡시실란, 3-우레이도프로필트리에톡시실란 중 어느 하나 이상을 적용할 수 있다.
③ 디알콕시실란류
상기 디알콕시실란류는 디메틸디메톡시실란, 디메틸디에톡시실란, 디에틸디메톡시실란, 디에틸디에톡시실란, 디-n-프로필디메톡시실란, 디-n-프로필디에톡시실란, 디-i-프로필디메톡시실란, 디-i-프로필디에톡시실란, 디-n-부틸디메톡시실란, 디-n-부틸디에톡시실란, 디-n-펜틸디메톡시실란, 디-n-펜틸디에톡시실란, 디-n-헥실디메톡시실란, 디-n-헥실디에톡시실란, 디-n-헵틸디메톡시실란, 디-n-헵틸디에톡시실란, 디-n-옥틸디메톡시실란, 디-n-옥틸디에톡시실란, 디-n-시클로헥실디메톡시실란, 디-n-시클로헥실디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 중 어느 하나 이상을 적용할 수 있다.
(4) 열가소성 수지
상기 열가소성 수지는 폴리스티렌, 폴리스티렌 유도체, 폴리스티렌 부타디엔 공중합체, 폴리카보네이트, 폴리염화비닐, 폴리술폰, 폴리에테르술폰, 폴리에테르이미드, 폴리아크릴레이트, 폴리에스테르, 폴리이미드, 폴리아믹산, 셀룰로오스 아세테이트, 폴리아미드, 폴리올레핀, 폴리메틸메타크릴레이트, 폴리에테 르케톤, 폴리옥시에틸렌 중 어느 하나 이상을 적용할 수 있다.
(5) 전도성 고분자
상기 전도성 고분자는 폴리티오펜계 단일중합체, 폴리티오펜계 공중합체, 폴리아세틸렌, 폴리아닐린, 폴리피롤, 폴(3,4-에틸렌디옥시티오펜), 펜타센계 화합물 중 어느 하나 이상을 적용할 수 있다.
본 (c)단계에서는 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상의 첨가제를 더 혼합시킬 수 있다.
상기 첨가제 중 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말 등은 제1판상소재의 면간 겹침시 발생하는 단차 문제의 추가적 보완(계면의 추가적인 확장, 빈 공간 채움 등)을 위한 것이다.
구체적인 예를 들면, 상기 나노입자는 분말형 소재로서 이들은 판상소재의 면간 겸침에 따른 단차에서 발생하는 공간을 채워준고, 상기 나노와이어(실버나노와이어, 구리나노와이어 등)는 단차 부위의 계면 길이를 확장시킨다.
하이브리드 효율 향상을 위한 분산제, 코팅물성 향상(막의 팩킹과 들뜸을 방지)을 위한 바인더 등 2차원 하이브리드 판상소재의 추가적인 물성 향상을 위한 것이 있으며, 이들을 혼합하여 적용할 수도 있다. 이들은 소재 간 접촉 면적을 최대화시키고 밀도를 높여주는 효과를 가져올 수 있으며, 이에 따라 결국 하이브리드 복합체의 물성이 향상된다.
한편, 분산안정성 향상, 코팅물성 향상, 복합체 제조 등을 위해 적용될 수 있는 첨가제는 계면활성제, 분산제, BYK, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질 등이며, 이들 중 어느 하나 이상인 첨가제로 함께 적용할 수 있다. 물론 상기 0차원 나노소재, 1차원 노나소재, 제3판상소재(2차원 나노소재)들도 이에 함께 적용할 수 있다. 특히 금속나노입자, 금속나노와이어(실버나노와이어, 구리나노와이어 등), 금속나노플레이크, 탄소나노튜브(CNT) 등은 코팅물의 전기전도성을 향상시킬 수 있다.
이상의 첨가제 중 용매류(유기용제, 양쪽성용매, 수용액계, 친수성 용매 등), 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제 등은 분산성, 코팅성, 안정성, 접착성, 라벨링물성, 점도물성, 코팅막의 물성, 건조물성등을 향상시키기 위하여 적용하는 것이다.
또한 산화물, 세라믹, 자성체, 탄소나노튜브 등은 하이브리드 복합체의 기능성을 더 발현시키기 위해 적용하는 것이다.
이하에서는 첨가제로 적용될 수 있는 여러 가지 물질들에 대해 상술하기로 한다.
(1) 금속 나노와이어
상기 금속 나노와이어로는 구리 나노와이어 또는 은 나노와이어를 적용할 수 있다. 이러한 금속 나노와이어의 첨가로 코팅물의 전기전도도를 향상시킬 수 있다. 상기 구리(Cu) 나노와이어는 보호막이 코팅된 것을 적용할 수 있으며, 상기 보호막은 폴리머 또는 금속으로 형성시킬 수 있다.
(2) 분산제
상기 분산제로는 BYK, 블록 중공합체(block copolymer), BTK-Chemie, 트리톤 엑스백(Triton X-100), 폴리에틸렌옥사이드, 폴리에틸렌옥사이드-폴리프로필렌옥사이드 공중합체, 폴리비닐피롤, 폴리비닐알코올, 가넥스(Ganax), 전분, 단당류(monosaccharide), 다당류(polysaccharide), 도데실벤젠술폰산 나트륨(dodecyl benzene sulfate), 도데실벤젠설폰산나트륨 (sodium dodecyl benzene sulfonate, NaDDBS), 도데실설폰산나트륨(sodium dodecylsulfonate, SDS), 4-비닐벤조산 세실트리메틸암모늄(cetyltrimethylammounium 4-vinylbenzoate), 파이렌계 유도체(pyrene derivatives), 검 아라빅(Gum Arabic, GA), 나피온(nafion) 중 어느 하나 이상을 적용할 수 있다.
(3) 계면활성제
상기 계면활성제로는 LDS(Lithium Dodecyl Sulfate), CTAC(Cetyltrimethyl Ammonium Chloride), DTAB(Dodecyl-trimethyl Ammonium Bromide), nonionic C12E5(Pentaoxoethylenedocyl ether), 덱스트린(Dextrin(polysaccharide)), PEO(Poly Ethylene Oxide), GA(Gum Arabic), EC(ethylene cellulose) 중 어느 하나 이상을 적용할 수 있다.
4. (d)단계
본 단계는 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계이다. 이 단계에서 상기 복합체에 압력을 가하여 면접촉을 더 유도 시키거나 공간적인 면간 유효 작용을 더욱 증진시킬 수 있다.
일 예로, 상기 복합체가 액상에서 분산된 코팅액을 제조한 후 코팅건조하여 압착, 열압착등을 수행하여 판상소재간 면간접촉을 더욱 향상시킬 수 있다.
다른 예로, 제1·2판상소재 및 결합재가 혼합된 분말 형태의 복합체를 원료로 압출성형하거나 가압성형 하는 경우 단순한 용융복합체 제조시보다 공간적인 면간 상호작 (거리 등)을 더욱 증진시킬 수 있다.
이하에서는 실시예와 함께 본 발명을 상세히 설명한다. 다만 이하의 실시예는 이 기술분야에서 통상의 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것이므로 본 발명의 범위가 기재된 실시예에 한정되는 것은 아니다.
[실시예 1]
흑연 산화물을 제조하는 방법으로는 Modified Hummers 방법을 비롯한 Hummers법, Brodie법, Hofman&Frenzel법, Hamdi법, Staus법 등이 사용될 수 있다.
본 실시예에서는 Modified Hummers 방법을 사용하였다. 구체적으로는, 마이크로 흑연 분말 50g과 NaNO3 40g을 200mL H2SO4 용액에 넣고 냉각시키면서, KMnO4 250g을 1시간에 걸쳐 천천히 넣어 준다. 그 후 4~7% H2SO4 5L를 1시간에 걸쳐 천천히 넣어주고 H2O2을 넣어준다. 그 후 원심 분리하여 침전물을 3%H2SO4-0.5%H2O2 및 증류수로 씻어주면 황갈색의 수계 그래핀 슬러리가 얻어진다.
[실시예 2]
화학적 환원방법을 구체적으로 살펴보면 3% GO 슬러리 2g에 증류수 100ml를 넣어서 잘 분산 시킨 후 히드라진 수화물(hydrazine hydrate) 1ml를 넣고 100℃에서 3~24시간 환원 처리 한다 검은색으로 환원된 그래핀들은 거름종이로 걸러 물과 메탄올을 이용하여 세척해준다. 하이드라이진 수화물과 같은 강력한 환원제를 처리하기 전 KI, NaCl처럼 알카리 금속 혹은 알카리 토금속의 염을 처리하여 GO에서 미리 H2O를 빼내어 탄소간 이중결합을 부분적으로 복원시키는 공정을 사용할 수 있다.
구체적인 실험예로서 5% GO 슬러리에 KI 6g를 첨가하고 6일 동안 방치하여 반응을 완결시킨다. 그 후 증류수로 씻어내고 필터링 한다. 기타 GO수용액에 환원제를 투입하는 방법은 상기 하이드라진법, KI법 이외에도 NaBH4, Pyrogallol, HI, KOH, Lawesson's reagnet, Vitamin C, Ascorbic acid 등이 있다.
[실시예 3]
상기 [실시예 1]에서 얻어진 수계 그래핀 슬러리를 300℃ 이상 열처리하여 그래핀 분말을 얻을 수 있는데 본 발명에서는 질소 불활성 기체 분위기 600℃에서 10분간 열처리하여 열환원 그래핀 분말을 제조하였다.
[실시예 4]
상용 GIC를 마이크로웨이브에서 30초간 처리하여 EP를 얻어낸 후, 초음파에서 30분간 처리하여 CNP를 얻어냈다. 또한 또다른 공정으로서 불활성 분위기 500℃에서 GIC를 순간적으로 집어넣은 후 EP를 얻어낸 후 초음파에서 30초간 처리하여 CNP를 얻어냈다. 두께는 투과형 전자현미경 관찰에서 5~100nm였다. 본 발명에서 중간단계에서 얻어진 EP도 사실상 CNP가 부분적으로 결합되어져 있는 상태이므로 본 발명의 CNP에 포함시킬 수 있다. 이 경우에는 상기 별도의 초음파 공정을 거치지 않고 EP 상태의 CNP와 기타 다른 판상소재 즉, 그래핀 혹은 흑연을 혼합한 후 분자단위 충격파들 예로서 초음파 분산 등을 처리하여 2차원 하이브리드 소재를 제조할 수 있다.
[실시예 5]
[도 12]는 제1판상소재인 그래핀과 제2판상소재인 CNP 표면에 나노입자를 장식한 전자현미경 사진이다. 제1판상소재인 경우 실버계 유기금속화합물을 액상환원법을 이용하여 그래핀에 나노입자를 부착한 경우이며, 제2판상소재인 경우 니켈계 유기금속화합물을 CNP 표면에 흡착시킨후 열처리하여 제조하였다. 이들 소재들을 8.5:1.5 (CNP계 : 그래핀계) 혼합 분산한 경우 3.5Ω/□으로 매우 크게 낮아졌으며, 새로운 자성물성이 발현됨을 알 수 있었다. SQUID를 이용한 자성 측정에서 보자력이 15Oe이고 포화자화 대비 잔류자화 비율이 3.7%였다. 이는 연자성 물성을 보이면서도 좋은 전기전도 물성을 갖는 하이브리드 막이 본 발명의 원리를 이용하여 실현될 수 있음을 보여준다.
[실시예 6]
CNP(85%)-그래핀(15%) 하이브리드 소재에 0.5%를 초음파 분산한 후 코팅하여 막의 면저항을 측정한 결과 2Ω/□ 정도로 전기저항이 4배 이상 향상됨을 알 수 있다. 이는 실버나노입자가 판상소재들에서 발생하는 단체문제를 해결하는데 매우 중요한 역할을 하고 있음을 알 수 있다. 즉, 계면에서의 충진율 (접촉면적이 아님)을 좋게 해주는 결과로 해석되며 [도 13]에서 보는 투과형 전자현미경 관찰에서 보는것처럼 판상 소재 틈에 나노입자들이 개별적으로 분산되어 들어가 있음을 보여준다.
[실시예 7]
상기 [실시예 4]에서 얻어진 CNP와 흑연 혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하여, 이를 [표 1]에 정리하여 나타내었다 (윗표). 흥미로운 점은 플레이크카본-카본나노플레이트 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 및 구겨지는 문제 극복 프로세스로 설명이 가능하다. 즉 얇고 유연한 카본 나노플레이트가 플레이크 카본에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다. 추가로 [도 14]에서 보는 것처럼 플레이크 카본에서 관찰되던 빈 틈 들과 거친 표면들([도 14]의 좌측)이 2차원 하이브리드화 되면서 매끄러워짐을 알 수 있다([도 14] 우측). 압착을 한 경우에도 전기저항이 크게 올라감을 알 수 있으며, 그 변화량도 본 발명의 하이브리드 효과에 따라 크게 변화됨을 알 수 있다. [표 1]의 아랫표는 제3 결합재로서 에폭시 레진을 10% 넣은 결과와 압착결과를 보여주고 있다. 이 결과도 흥미로운 점은 플레이크카본-카본나노플레이트 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 및 구겨지는 문제 극복 프로세스로 설명이 가능하다. 또한 면간 직접결합이 이루어지지 않더라도 공간적인 면간 영향력이 상당히 큼을 알 수 있으며, 이 효과는 압착에 의해 더욱 유효해진다.
표 1
무게함량(%) 플레이크 카본 100 80 60 40 20 0
카본 나노플레이트 0 20 40 60 80 100
면저항(Ω/□, 두께 20㎛) 200 80 60 55 40 30
압착(1ton/㎠) 188 65 49 37 31 24
무게함량(%) 플레이크 카본 100 80 60 40 20 0
카본 나노플레이트 0 20 40 60 80 100
에폭시레진 10 10 10 10 10 10
면저항(Ω/□, 두께 20㎛) 30,000 700 550 490 370 260
압착(1ton/㎠) 25,000 555 510 423 312 199
[실시예 8]
상기 [실시예 2]에서 얻어진 그래핀과 흑연 혼합소재를 IPA에 혼합한 후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 2]에 정리하여 나타내었다. 흥미로운 점은 플레이크카본-그래핀 하이브리드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 그래핀 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 프로세스로 설명이 가능하다. 즉 얇고 초유연한 그래핀이 플레이크 카본에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다.
또한 비선형 거동이 키본 나노플레이트를 사용할 경우와 비교하여 더 심하게 변하는데(좋은 쪽으로) 이는 그래핀의 전기전도 물성 및 초유연성으로 설명이 가능하다. 추가로 [도 15]에서 보는 것처럼 카본 나노플레이트에서 관찰되던 빈 틈들과 거친 표면들([도 15]의 좌측)이 2차원 하이브리드화 되면서 매끄러워짐을 알 수 있다([도 15]의 우측). 압착 및 폴리머 첨가에 의한 본 발명의 효과도 실시예 7과 같은 거동을 보이고 있다.
표 2
무게함량(%) 플레이크 카본 100 80 60 40 20 0
그래핀 0 20 40 60 80 100
면저항(6Ω/□, 두께 20㎛) 200 30 19 14 9 5
압착(1ton/㎠) 154 24 15 11 6 3
무게함량(%) 플레이크 카본 100 80 60 40 20 0
그래핀 0 20 40 60 80 100
에폭시레진 5 5 5 5 5 5
면저항(6Ω/□, 두께 20㎛) 13,500 289 134 110 89 45
압착(1ton/㎠) 11,000 230 99 76 55 39
[실시예 9]
상기 [실시예 2]에서 얻어진 그래핀과 상기 [실시예 2]에서 얻어진 CNP 혼합소재를 IPA에 혼합한 후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 3]에 정리하여 나타내었다. 흥미로운 점은 카본나노플레이트-그래핀 하이브드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 그래핀 20% 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 프로세스로 설명이 가능하다. 즉 얇고 초유연한 그래핀이 카본나노플레이트에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다.
또한 이 실시예는 플레이크카본보다 비교적 얇은 카본나노플레이트인 경우에도 단차문제가 존재하며, 이 단차문제를 좀 더 얇고 유연한 소재인 그래핀을 이용하여 극복할 수 있음을 보여준다. 이 원리는 두께가 그래핀처럼 얇고 도전성이 좋은 소재라면 그래핀을 대체할 수 있으며(예, 금속 나노플레이트), 도전성이 아닌 고체윤활제을 향상시키는 경우라면 카보나노플레이트-WS2나노판, MoS2나노판-그래핀, 흑연-WS2나노판-그래핀, MoS2나노판-흑연, 광촉매인 경우 MoS2나노판-TiO2나노판 등의 조합으로 확장이 가능하다. 즉, 두께와 유연성이 본 발명의 핵심 키워드이며, 원하는 물성에 따라 나노판 소재의 변화(이종소재)가 가능하여 다양한 2차원 판소재에서 발생하는 단차문제들을 본 발명을 통하여 해결할 수 있다. 대표적으로 [도 16]에서 3종 판 소재들의 하이브리드화된 모습을 나타내었다. 압착 및 폴리머 첨가에 의한 본 발명의 효과도 [실시예 7] 및 [실시예 8]과 같은 거동을 보이고 있다.
표 3
무게함량(%) 카본 나노플레이트 100 80 60 40 20 0
그래핀 0 20 40 60 80 100
면저항(7Ω/□, 두께 20㎛) 200 21 15 11 7 5
압착(1ton/㎠) 188 19 13 9 6 4
무게함량(%) 카본 나노플레이트 100 80 60 40 20 0
그래핀 0 20 40 60 80 100
PVA 3 3 3 3 3 3
면저항(7Ω/□, 두께 20㎛) 679 123 96 23 15 11
압착(1ton/㎠) 543 89 76 19 9 6
[실시예 10]
상기 [실시예 2]에서 얻어진 그래핀, 상기 [실시예 2]에서 얻어진 CNP, 흑연 3종혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하였다. 이를 [표 4]에 정리하여 나타내었다. 흥미로운 점은 플레이크카본-카본나노플레이트-그래핀 3종 판소재의 하이브드화는 아주 적은량의 그래핀이 함유되었음에도 [표 1]의 거동보다 매우 뛰어난 물성을 보여줌을 알 수 있다. 이는 흑연플레이크에서 발생하는 단차 및 카본나노플레이트에서 발생하는 단차문제들이 효율적으로 해결이 되도 있는 모습을 보여준다. 향후 공정조건 및 조성 변화를 통하여 매우 뛰어난 하이브리드 소재가 나올 수 있을것으로 기대한다. 따라서 3종 이상의 하이브리드화가 유효함을 알 수 있다. 추가적으로 제3의 판상소재 및 제4의 판상소재들이 교체되거나 추가될 수 있으며, 전기전도분야에서는 금속 나노플레이트 (금속나노플레이크)를 이용하는 것이 물성향성에 큰 도움이 될 수 있다. 압착 및 폴리머 첨가 거동도 [실시예 7]~[실시예 9]에 따른 거동들이 예측된다.
표 4
무게함량(%) 플레이크 카본 95 90 85 80 75 70
카본 나노플레이트 5 5 10 15 20 25
그래핀 0 5 5 5 5 5
면저항(6Ω/□, 두께 20㎛) 100 78 61 42 31 19
[실시예 11]
흑연(80%)-카본나노플레이트(15%)-그래핀산화물(5%) 하이브리드 판상소재는 [표 4]에서 보는 것처럼 면저항이 39Ω/□인데, 이 3종 하이브리드 소재 중량비를 80%로 하고 여기에 15%인 실버나노와이어(직경 30nm, 길이 5미크론)와 30nm급 실버나노입자 5%를 초음파 분산한 후 코팅하여 막의 면저항을 측정한 결과 1Ω/□ 정도로 약 40배 이상 전기전도도가 향상되었음을 알 수 있었다. 이는 실버나노와이어 및 실버나노입자가 판상소재들에서 발생하는 단체문제를 해결하는데 매우 중요한 역할을 하고 있음을 알 수 있다. 즉, 계면에서의 접촉길이(접촉면적이 아님)을 확장시켜주는 역할이다. 이는 나노와이어를 통하여 나노판 계면에서 접촉 길이 문제(특히 전도성인 경우 중요)를 보완시켜준다. 전기전도성 향상인 경우 나노와이어는 실버나노와이어 및 구리나노와이어와 같은 금속나노와이어를 사용할 수 있으며, 탄소나노튜브도 사용이 가능하다. 또한 단차문제에서 발생하는 빈공간을 채워주는 역할을 나노입자가 중요하게 수행함을 알 수 있다. 따라서 2차원 하이브리드 소재에서 발생하는 2차 문제점들을 기타 나노입자 및 나노와이어를 통하여 추가적으로 보충 할 수 있다. 참고로 실버나노와이어 및 실버나노입자만 이용하여 두꺼운 막을 제조하기는 매우 힘들며(모래알 같은 성질), 본 발명에서처럼 이들 소재들은 2차원 판상소재(판구조에 의한 적층형 코팅막 형성이 우수)의 박막성 및 후막성 성질과 융합되어 신규하고 뛰어난 물성들이 추가적으로 발현된다. [도 17]은 이와 같은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 실버나노와이어 및 실버나노입자를 첨가한 소재의 FE-SEM사진이다.
[실시예 12]
흑연80%-카본나노플레이트15%-그래핀산화물5% 하이브리드 판상소재로 좀 더 안정한 막을 만들기 위하여 IPA 분산 공정중(초음파 처리) BYK 시리즈 분산제 및 PVP 바인더를 첨가하여 막을 제조하였다. 분산제를 통하여 다른 두께의 나노 판상소재들의 하이브리드화가 더 균일해지고 소량의 바인더를 통하여 막의 팩킹이 고밀도화가 됨을 알 수 있다. 이들 첨가제들은 2차원 하이브리드 소재에서 추가적으로 발생하는 문제점들을 해결하는데 도움이 될 수 있음을 보여준다. [도 18]은 흑연-카본나노플레이트-그래핀산화물 하이브리드 판상소재에 분산제가 첨가된 소재의 FE-SEM사진이다.
[실시예 13]
제1판상소재인 그래핀 산화물과 제2판상소재인 카본 나노플레이트의 함량 효과 실험을 하였다. 상기 [실시예 4]에서 얻어진 CNP와 [실시예 1]에서 얻어진 그래핀 산화물 GO 혼합소재를 IPA에 혼합한후 초음파 분산을 30초간 수행하여 무게 함량별 전기전도도를 측정하여, 이를 [표 5]에 정리하여 나타내었다. 열처리는 200~500도에서 수행하였다. 흥미로운 점은 카본나노플레이트-그래핀산화물 하이브이드화 소재가 함유량 변화에 따라 직선적인 변화를 보이지 않고 카본나노플레이트가 5% (무게중량) 이상 넣었을 때부터 급격하게 저항이 감소하는 비선형 경향을 보인다. 이런 비선형 경향은 본 발명에서 설명하는 단차 극복 및 구겨짐 방지 프로세스로 설명이 가능하다. 즉 얇고 유연한 그래핀산화물이 CNP에서 발생하는 단차부위의 접촉면적을 크게 늘려주고 있다. 또한 제 1판상소재인 그래핀산화물 (25오옴/sq), 제 2판상소재인 CNP (20오옴/sq)에서 달성하지 못했던 저항값이 CNP60% + 그래핀산화물40%에서 가장 작은값인 6오옴/sq를 보인다. 이 값은 본 발명의 유효성을 보이며, 현재까지 바인더 없이 후막을 코팅하는 경우에서 세계적으로도 베스트 값이다. 따라서 본 발명의 실시예를 기반으로 용매, 분산공정, 코팅공정 등을 최적할 할 경우 더 좋은 물성을 발현시킬수 있을것으로 기대한다. [표 5]는 또한 CNP의 함량이 60% 이하에서는 물성이 나빠지는 경향을 보이는데 효율적인 접촉이 포화되고 나머지 그래핀이 불순물과 같은 결함으로 작용하고 있음을 보여준다. 압착 및 폴리머 첨가 거동도 [실시예 7]~[실시예 9]에 따른 거동들이 예측된다.
표 5
무게함량(%) 카본나노플레이트(20Ω/sq) 100 95 85 70 60 55 50
그래핀산화물(절연체->열처리 후25Ω/sq) 0 5 15 30 40 45 50
면저항(두께 20㎛) 20 17 14 9 6 7 10
[실시예 14]
제1판상소재인 그래핀 산화물과 제 2판상소재인 카본 나노플레이트의 무게함량을 15:85로 고정한후 제 3의 판상소재인 그래핀을 추가하여 하이브리드 효과를 실험하였다. 그래핀은 실시예 2에서 얻어진 RGO 1~10층 소재를 이용하였다. [표 6]에서 보는 것처럼 그래핀을 추가할수록 전기저항이 낮아짐을 알 수 있으며 이는 본 발명의 단차문제 및 개별적인 소재들의 문제들이 크게 개선되었음을 의미한다. 압착 및 폴리머 첨가 거동도 [실시예 7]~[실시예 9]에 따른 거동들이 예측된다.
표 6
무게함량(%) 카본나노플레이트85%/그래핀15%(8Ω/sq) 100 99 95 90 70 50 40
그래핀산화물(25Ω/sq) 0 1 5 10 30 50 60
면저항(두께 20㎛) 8 7.5 6 5.1 4.2 3.1 2.5
결합재의 양이 적거나 결합재의 강도다 약하게 하는 경우 표면 보호막을 코팅할 수 있다. 일예로, 제1·2판상소재를 분산제가 있는 상태에서 액상 분산 혼합한 후 기판에 코팅하고, 진공건조 후 열처리하여 분산제를 제거한 후, 가압압착을 통하여 면접촉을 극대화 시키고, 코팅막을 보호하기 위하여 코팅막 표면에 레진을 보호막으로 형성시킬 수 있다.
또한 결합재로서 레진 성분이 주성분인 것을 적용하는 경우 제1·2판상소재를 고상혼합하여 3가지 성분들을 적절히 혼합 (액상인 경우는 건조과정이 필요하며, 반액상 상태에서 공정중 자연적으로 건조될 수 있다) 한 후 사출성형 공정을 통하여 일방향 배향을 시키면서 안정적인 복합체를 제조할 수 있다.
또한 결합재가 폴리머 칩 혹은 폴리머 분말인 경우 이들 표면에 제1판상소재 및 제 2판상소재를 흡착(액상 혹은 정전기인력 혹은 반데르발스인력 등) 또는 부착시킨 후 사출 성형을 하면 배향성과 균일성이 확보된 본발명의 복합체를 제조할 수 있다.
본 발명은 2차원 판상소재에서 발생하는 문제 즉, 2차원 판상소재가 겹쳐짐에 따라 발생하는 단차 문제, 결함문제, 퍼짐문제 등을 해결할 수 있는 2차원 하이브리드 복합체 제조 방법에 관한 것으로 산업상 이용가능성이 인정된다.

Claims (5)

  1. (a) 제1판상소재를 고상 또는 액상으로 준비하는 단계;
    (b) 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 제1판상소재와 혼합시키는 단계;
    (c) 고상 또는 액상의 결합재를 상기 제1·2판상소재와 혼합시켜 상기 제1·2판상소재가 일부 접촉하거나 상호 이격되도록 하는 단계; 및
    (d) 상기 (a)단계 내지 (c)단계를 거쳐 형성된 복합체를 고상화시키는 단계; 를 포함하는 2차원 하이브리드 복합체 제조 방법.
  2. 제1항에서,
    상기 제1판상소재는 판상세라믹, 나노클레이, ZnO 나노플레이트, TiO2나노플레이트, WS2, MoS2, 산화물, 조개껍질, 탄산칼슘, 황화물, 금속플레이크, 실버플레이크, 구리플레이크, 카본플레이크, 카본나노플레이트, 그래핀, 그래핀산화물, 흑연산화물, 그래핀산화물이 환원된 소재, 흑연산화물이 환원된 소재, 흑연의 전기적 박리결과물, 흑연의 물리적 박리결과물, 흑연의 용매 박리 결과물, 흑연의 물리화학적 박리결과물, 흑연의 기계적박리 결과물 중 어느 하나 이상인 것을 특징으로 하는 2차원 하이브리드 복합체 제조 방법.
  3. 제1항에서,
    상기 제2판상소재는 두께 200nm 이하의 카본나노플레이트, 그래핀, 그래핀산화물 중 어느 하나 이상인 것을 특징으로 하는 2차원 하이브리드 복합체 제조 방법.
  4. 제1항에서,
    상기 (c)단계에서 단백질, 아미노산, 지방, 다당류, 단당류, 포도당, 비타민, 과일산, 계면활성제, 분산제, BYK, 기능성소재, 용매류, 오일류, 분산제, 산(Acid), 염기(Base), 염(Salt), 이온류, 라벨링제, 점착제, 산화물, 세라믹, 자성체, 유기물, 바이오물질, 판상소재, 나노판상소재, 나노입자, 나노와이어, 탄소나노튜브, 나노튜브, 세라믹나노분말, 양자점, 0차원소재, 1차원소재, 2차원소재, 하이브리드소재, 유무기하이브리드소재, 잉크, 페이스트, 식물추출물 중 어느 하나 이상의 첨가제를 더 혼합시키는 것을 특징으로 하는 2차원 하이브리드 복합체 제조 방법.
  5. (a') 결합재를 준비하는 단계;
    (b') 제1판상소재 및 상기 제1판상소재 보다 두께가 얇고 유연성이 있는 제2판상소재를 상기 결합재 표면에 부착시키는 단계; 를 포함하는 2차원 하이브리드 복합체 제조 방법.
PCT/KR2015/011833 2015-10-13 2015-11-05 2차원 하이브리드 복합체 제조 방법 WO2017065340A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580002003.1A CN107848803B (zh) 2015-10-13 2015-11-05 二维混杂复合材料的制备方法
US14/916,388 US20170253824A1 (en) 2015-10-13 2015-11-05 Method for preparing two-dimensional hybrid composite
JP2017545513A JP6424280B2 (ja) 2015-10-13 2015-11-05 2次元ハイブリッド複合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150142682A KR101844345B1 (ko) 2015-10-13 2015-10-13 2차원 하이브리드 복합체 제조 방법
KR10-2015-0142682 2015-10-13

Publications (1)

Publication Number Publication Date
WO2017065340A1 true WO2017065340A1 (ko) 2017-04-20

Family

ID=58517337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011833 WO2017065340A1 (ko) 2015-10-13 2015-11-05 2차원 하이브리드 복합체 제조 방법

Country Status (5)

Country Link
US (1) US20170253824A1 (ko)
JP (1) JP6424280B2 (ko)
KR (1) KR101844345B1 (ko)
CN (1) CN107848803B (ko)
WO (1) WO2017065340A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937089A (zh) * 2017-11-10 2018-04-20 中国科学院兰州化学物理研究所 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用
CN108517238A (zh) * 2018-04-04 2018-09-11 中国科学院宁波材料技术与工程研究所 蛋白质修饰还原氧化石墨烯水润滑添加剂、其制法与应用
CN109126867A (zh) * 2018-07-28 2019-01-04 赵宏伟 一种用于水处理的光催化分离膜及制备方法
CN110257135A (zh) * 2019-05-07 2019-09-20 北京玖星智能科技有限公司 固体润滑剂及其制备方法和用途
CN114703003A (zh) * 2022-04-14 2022-07-05 上海绿晟环保科技有限公司 一种负载碳量子点的纳米材料润滑添加剂及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208886A1 (ko) * 2015-06-22 2016-12-29 한국전기연구원 금속/이차원 나노소재 하이브리드 전도막 및 그 제조방법
CN109011082A (zh) * 2018-06-23 2018-12-18 创意塑胶工业(苏州)有限公司 呼吸面罩
KR102148673B1 (ko) * 2018-09-06 2020-08-27 한국과학기술원 2차원 흑린의 제조 방법, 2차원 흑린을 포함하는 열전 복합체 및 그 제조 방법
WO2020096708A2 (en) * 2018-10-03 2020-05-14 Northwestern University Two-dimensional semiconductor based printable optoelectronic inks, fabricating methods and applications of same
CN109502648B (zh) * 2018-12-10 2020-11-03 中南大学 一种超声辅助的二硫化钼纳米片物理剥离方法及其装置
CN110655060B (zh) * 2019-09-03 2021-09-24 中国农业科学院油料作物研究所 一种双面两亲性载体及其制备方法和应用
CN112442406B (zh) * 2019-09-03 2022-03-08 清华大学 一种多元二维复合材料及其制备方法
CN110628498B (zh) * 2019-10-15 2021-11-05 河北欧狮顿新能源科技有限公司 一种环保水基金属加工液及其制备方法
CN111876213B (zh) * 2020-07-17 2022-05-27 西安唐朝烯材料科技有限公司 耐盐雾腐蚀添加剂、润滑脂、制备方法及其应用
CN113213455A (zh) * 2021-05-13 2021-08-06 无锡纤发新材料科技有限公司 一种微波辅助快速制备磁性石墨烯多维杂化材料的方法
ES2937334B2 (es) * 2021-09-24 2023-10-27 Univ Del Pais Vasco / Euskal Herriko Unibertsitatea Fotocatalizadores de oxido de grafeno y semiconductor
CN116386928B (zh) * 2023-06-02 2023-08-04 山东科技大学 一种海藻酸钠/二氧化钛复合多孔电极材料及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138302A1 (en) * 2011-04-07 2012-10-11 Nanyang Technological University Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof
US20130236715A1 (en) * 2012-03-08 2013-09-12 Aruna Zhamu Graphene oxide gel bonded graphene composite films and processes for producing same
US20140272172A1 (en) * 2013-03-14 2014-09-18 Aruna Zhamu Method for producing conducting and transparent films from combined graphene and conductive nano filaments
WO2015102399A1 (ko) * 2013-12-31 2015-07-09 엘지디스플레이 주식회사 용액 공정용 그래핀 복합층을 갖는 플렉서블 디바이스

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100140792A1 (en) * 2006-10-31 2010-06-10 The Regents Of The University Of California Graphite nanoplatelets for thermal and electrical applications
CN102142550B (zh) * 2011-02-25 2013-10-16 浙江大学 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
CN102142551B (zh) * 2011-02-25 2014-02-19 浙江大学 一种石墨烯纳米片/MoS2复合纳米材料及其合成方法
CN102142548B (zh) * 2011-02-25 2014-01-01 浙江大学 一种石墨烯与MoS2的复合纳米材料及其制备方法
DE102011056761A1 (de) * 2011-12-21 2013-08-08 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Pigmentiertes, feinstrukturiertes tribologisches Kompositmaterial
TW201335350A (zh) * 2012-02-29 2013-09-01 Ritedia Corp 熱傳導膏
US20140005304A1 (en) * 2012-07-02 2014-01-02 Baker Hughes Incorporated Nanocomposite and method of making the same
CN103903861B (zh) * 2014-04-23 2017-05-03 南开大学 金属硫化物与石墨烯复合材料对电极及其制备方法和应用
CN103956470B (zh) * 2014-04-28 2016-04-13 浙江大学 一种二维层状复合薄膜的制备方法及其产品和应用
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138302A1 (en) * 2011-04-07 2012-10-11 Nanyang Technological University Multilayer film comprising metal nanoparticles and a graphene-based material and method of preparation thereof
US20130236715A1 (en) * 2012-03-08 2013-09-12 Aruna Zhamu Graphene oxide gel bonded graphene composite films and processes for producing same
US20140272172A1 (en) * 2013-03-14 2014-09-18 Aruna Zhamu Method for producing conducting and transparent films from combined graphene and conductive nano filaments
WO2015102399A1 (ko) * 2013-12-31 2015-07-09 엘지디스플레이 주식회사 용액 공정용 그래핀 복합층을 갖는 플렉서블 디바이스

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUAN, ZHI-QIANG: "Scalable Production of Transition Metal Bisulphide/graphite Nanoflake Composites for High-performance Lithium Storage", RSC ADVANCES, vol. 4, no. 78, 2014, pages 41543 - 41550, XP055345164 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937089A (zh) * 2017-11-10 2018-04-20 中国科学院兰州化学物理研究所 二硫化钼或二硫化钨量子点作为高温合成润滑油减摩抗磨添加剂的应用
CN108517238A (zh) * 2018-04-04 2018-09-11 中国科学院宁波材料技术与工程研究所 蛋白质修饰还原氧化石墨烯水润滑添加剂、其制法与应用
CN109126867A (zh) * 2018-07-28 2019-01-04 赵宏伟 一种用于水处理的光催化分离膜及制备方法
CN109126867B (zh) * 2018-07-28 2021-05-07 浙江致远环境科技有限公司 一种用于水处理的光催化分离膜及制备方法
CN110257135A (zh) * 2019-05-07 2019-09-20 北京玖星智能科技有限公司 固体润滑剂及其制备方法和用途
CN110257135B (zh) * 2019-05-07 2022-06-07 北京玖星智能科技有限公司 固体润滑剂及其制备方法和用途
CN114703003A (zh) * 2022-04-14 2022-07-05 上海绿晟环保科技有限公司 一种负载碳量子点的纳米材料润滑添加剂及其制备方法
CN114703003B (zh) * 2022-04-14 2023-04-28 上海绿晟环保科技有限公司 一种负载碳量子点的纳米材料润滑添加剂及其制备方法

Also Published As

Publication number Publication date
JP2018504360A (ja) 2018-02-15
US20170253824A1 (en) 2017-09-07
JP6424280B2 (ja) 2018-11-14
CN107848803A (zh) 2018-03-27
CN107848803B (zh) 2021-06-22
KR20170043694A (ko) 2017-04-24
KR101844345B1 (ko) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2017065340A1 (ko) 2차원 하이브리드 복합체 제조 방법
WO2015147501A1 (ko) 복합재료 제조용 카테콜아민-판상흑연 기반 고분자 복합체
Owais et al. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites
Li et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly (vinylidene fluoride)/graphene composites
WO2015012427A1 (ko) 그래핀/흑연나노플레이트/카본나노튜브/나노금속 복합체를 이용한 방열시트 및 그 제조방법
Shen et al. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell‐structured particles
KR101582834B1 (ko) 비수계 그래핀 코팅액 제조 방법
WO2017204562A1 (ko) 코일부품
WO2015147449A1 (ko) 전자기파 차폐시트, 및 이의 제조방법
KR20130032370A (ko) 가스 배리어성 필름, 가스 배리어성 필름의 제조 방법 및 전자 디바이스
Yang et al. High thermal conductive silicone rubber composites constructed by strawberry-structured Al2O3-PCPA-Ag hybrids
WO2011013927A2 (ko) 저온소성용 열경화성 전극 페이스트
WO2015102402A1 (ko) 멀티-기능 배리어층을 갖는 플렉서블 전자 디바이스
WO2016047988A1 (ko) 표면 개질된 질화붕소, 상기 입자가 분산된 조성물, 및 상기 조성물로 코팅된 와이어
WO2023013834A1 (ko) 방열 도료 조성물, 이의 제조방법, 이로부터 형성된 방열 코팅막 및 이를 포함하는 히트씽크
Chen et al. Constructing a BNNS/aramid nanofiber composite paper via thiol-ene click chemistry for improved thermal conductivity
KR20200060175A (ko) 그래핀 잉크 조성물 및 그 제조방법
WO2018164472A1 (ko) 전기전도도가 우수한 전도성 세라믹 조성물
KR101763180B1 (ko) 탄소기반 2차원 하이브리드 박막 제조 방법
WO2015102399A1 (ko) 용액 공정용 그래핀 복합층을 갖는 플렉서블 디바이스
KR101763179B1 (ko) 탄소기반 2차원 하이브리드 소재 제조 방법
KR101495783B1 (ko) 나노클레이의 표면개질을 이용한 산소차단필름의 제조방법
WO2015102403A1 (ko) 멀티-기능 배리어층을 갖는 플렉서블 전자 디바이스
CN107778745A (zh) 一种基于黑磷烯的半导体复合材料及其制备方法与应用
Wei et al. Improved actuation performance and dielectric strength of natural rubber composites by introducing covalent bonds between dielectric filler and polymeric chains

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017545513

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916388

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906303

Country of ref document: EP

Kind code of ref document: A1