WO2017065147A1 - ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法 - Google Patents

ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法 Download PDF

Info

Publication number
WO2017065147A1
WO2017065147A1 PCT/JP2016/080174 JP2016080174W WO2017065147A1 WO 2017065147 A1 WO2017065147 A1 WO 2017065147A1 JP 2016080174 W JP2016080174 W JP 2016080174W WO 2017065147 A1 WO2017065147 A1 WO 2017065147A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbonate
reaction
reaction mixture
Prior art date
Application number
PCT/JP2016/080174
Other languages
English (en)
French (fr)
Inventor
英文 原田
惇悟 田口
伊佐早 禎則
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2017545205A priority Critical patent/JP6939557B2/ja
Priority to EP16855401.2A priority patent/EP3363780B1/en
Priority to US15/766,208 priority patent/US20180290989A1/en
Priority to CN201680054798.5A priority patent/CN108026022B/zh
Publication of WO2017065147A1 publication Critical patent/WO2017065147A1/ja
Priority to US16/738,226 priority patent/US11142506B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/241,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with hetero atoms directly attached in positions 2 and 4
    • C07D265/26Two oxygen atoms, e.g. isatoic anhydride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0031Evaporation of components of the mixture to be separated by heating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a diaryl carbonate and a method for producing the same.
  • the present invention also relates to a method for producing an aromatic polycarbonate resin by a melt transesterification method using the diaryl carbonate.
  • Diaryl carbonate is a compound useful as a raw material for a melt transesterification polycarbonate and has been conventionally produced by a reaction between an aromatic hydroxy compound and phosgene.
  • phosgene is highly toxic, the equipment is highly corrosive, and a large amount of alkali is required to neutralize by-product hydrogen chloride, a method that does not use phosgene is desired.
  • a particularly industrially suitable method is to obtain a dialkyl carbonate from urea and an alkyl alcohol having 3 to 6 carbon atoms, and then transesterify the dialkyl carbonate with an aromatic hydroxy compound to obtain an alkyl aryl carbonate.
  • diaryl carbonate is produced by further disproportionating the alkylaryl carbonate (see, for example, Patent Document 1).
  • this production method if the by-produced alkyl alcohol is reused as a dialkyl carbonate raw material, diaryl carbonate can be produced from inexpensive urea and aromatic hydroxy compound as a result.
  • Diaryl carbonate produced by the above-mentioned method is mixed with by-product nitrogen-containing compounds, and when used in the production method of aromatic polycarbonate resin by the melt transesterification method, polymerization of diaryl carbonate and aromatic dihydroxy compound is performed. There was a problem of inhibiting the reaction.
  • an object of the present invention is to provide a diaryl carbonate having a small amount of a nitrogen-containing compound that inhibits a polymerization reaction.
  • the present inventors have solved the above problems in the method for producing an aromatic polycarbonate resin by the melt transesterification method by using diaryl carbonate containing less than a specific amount of a nitrogen-containing compound.
  • the present invention has been found.
  • the present inventors have found a method for producing such a diaryl carbonate.
  • the present invention is as follows.
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group.
  • a method for producing a diaryl carbonate according to [1] above A first step of reacting urea with an alkyl alcohol to obtain a first reaction mixture comprising a dialkyl carbonate; A second step of reacting the dialkyl carbonate in the first reaction mixture with an aromatic hydroxy compound to obtain a second reaction mixture comprising an alkylaryl carbonate; A third step of disproportionating the alkylaryl carbonate in said second reaction mixture to obtain a third reaction mixture comprising diaryl carbonate; and a fourth step of purifying said third reaction mixture;
  • the third reaction mixture further contains 1000 ppm by mass or more of the compound represented by the formula (I).
  • a diaryl carbonate containing less than 1000 ppm by mass of the compound represented by the formula (I) is used from the top of the column using a distillation column, and the compound represented by the formula (I) from the bottom of the column.
  • the top pressure of the distillation column is 0.01 kPa to 10 kPa
  • the reflux ratio is 2 to 20
  • the method includes a recycling step (sixth step) in which the compound represented by the formula (I) filtered off in the fifth step is collected and the filtrate is returned to the fourth step again.
  • a recycling step (sixth step) in which the compound represented by the formula (I) filtered off in the fifth step is collected and the filtrate is returned to the fourth step again.
  • 3 is a graph showing a change in the solubility of 2H-1,3-benzoxazine-2,4 (3H) -dione (BOD) in diphenyl carbonate (DPC) with temperature.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • the numerical range indicated by using “to” or “from” indicates a range including the numerical values described before and after “to” or “from” as the minimum value and the maximum value, respectively.
  • the content of each component in the mixture means the total amount of the plurality of substances present in the mixture unless there is a specific notice when there are a plurality of substances corresponding to each component in the mixture.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • alkyl group means a linear, branched or cyclic monovalent group of a saturated aliphatic hydrocarbon.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • Cyclobutyl group pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, heptyl group, cycloheptyl group, octyl group, cyclooctyl group, nonyl group, cyclononyl group, decyl group or cyclodecyl group (including isomers) It is done.
  • Examples of “an alkyl group having 1 to 6 carbon atoms” and “an alkyl group having 3 to 6 carbon atoms” are also included.
  • the “alkoxy group” means a group —O-alkyl (wherein the alkyl group has the same meaning as described above).
  • preferred examples of the alkoxy group are “C 1-6 alkoxy groups” such as methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, cyclopropyloxy group, n-butyloxy group.
  • the “aryl group” means a monovalent or polycyclic aromatic hydrocarbon monovalent group.
  • a preferred example of the aryl group is “an aryl group having 6 to 10 carbon atoms”, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • a particularly preferred example of the aryl group is a phenyl group.
  • the “aryl group” may be substituted with an alkyl group having 1 to 6 carbon atoms.
  • aryloxy group means a group —O-aryl (wherein the aryl group has the same meaning as described above).
  • a preferred example of the aryloxy group is “an aryloxy group having 6 to 10 carbon atoms”, and examples thereof include a phenoxy group, a naphthyloxy group, and an anthryloxy group.
  • a particularly preferred example of the aryloxy group is a phenoxy group.
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group
  • the diaryl carbonate of the present invention has the following formula (6): ArO-CO-OAr (6) (Wherein Ar represents a phenyl group or a phenyl group substituted by a halogen atom, an alkyl group, an alkoxy group, an aryl group or an aryloxy group), and represented by the formula (I) It contains less than 1000 ppm by weight of the compound represented.
  • the diaryl carbonate of the present invention is diphenyl carbonate (sometimes referred to herein as “DPC”), and R 1 is a hydrogen atom, and is represented by the formula (I)
  • the compound (2H-1,3-benzoxazine-2,4 (3H) -dione (sometimes referred to herein as “BOD”)) is contained in an amount of less than 1000 ppm by mass.
  • the diaryl carbonate of the present invention has the formula (I) wherein R 1 is the same as the substituent of Ar.
  • the compound represented by the formula contains less than 1000 ppm by mass.
  • a particular aspect of the present invention is DPC containing less than 1000 ppm by weight of BOD.
  • the amount of the compound represented by formula (I) contained in the diaryl carbonate of the present invention is 0.1 mass ppm or more and less than 1000 mass ppm, preferably 900 mass ppm or less, more preferably 800 mass ppm. Or less, particularly preferably 700 mass ppm or less.
  • the diaryl carbonate of the present invention is produced by a method using urea, an alkyl alcohol, and an aromatic hydroxy compound, typically, a ⁇ diaryl carbonate production method> of the present invention described later.
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group
  • R 1 represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, or an aryloxy group
  • (First step) In the first step, urea and alkyl alcohol are reacted to obtain a first reaction mixture containing dialkyl carbonate.
  • the alkyl alcohol used in the first step is represented by the following formula (1): R-OH (1) (Wherein R represents an alkyl group, preferably an alkyl group having 3 to 6 carbon atoms).
  • alkyl alcohols examples include n-propanol, isopropanol, n-butanol, isobutanol, s-butanol, t-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl- 1-butanol, 2-methyl-2-butanol, 3-methyl-1-butanol, 3-methyl-2-butanol, 2,2-dimethyl-1-propanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 4-methyl-1-pentanol, 2,2-dimethyl-1-butanol, 2,3-dimethyl-1-butanol 3,3-dimethyl-1-butanol, 2-ethyl-1-butanol, 3-ethyl-1-butanol It can gel.
  • the reaction between urea and alkyl alcohol is first of the following formula (2): RO-CO-NH 2 (2) (Wherein R is as defined above) is produced, and this is further reacted with an alkyl alcohol to give the following formula (3): RO-CO-OR (3) (Wherein R is as defined above).
  • RO-CO-OR (3) wherein R is as defined above.
  • the reaction from urea to alkyl carbamate is fast, and the reaction from alkyl carbamate to dialkyl carbonate is slow. Since preferable reaction conditions are different in each stage, it is necessary to carry out the reaction in two stages when performing the reaction continuously. However, when the reaction is performed batchwise, it can also be performed sequentially in the same reactor. .
  • the stage of producing alkyl carbamate from urea can be reacted at a relatively low temperature because the reaction is fast.
  • a preferable reaction temperature is 100 to 200 ° C. If the temperature is too high at this stage, a side reaction occurs, which is not preferable.
  • the reaction pressure is suitably from normal pressure to about 2 MPa. Since ammonia is generated in this reaction, a reaction may be performed while discharging ammonia as appropriate while providing a pressure control valve or the like while maintaining a predetermined pressure in the system. In order to selectively bring out only ammonia out of the system, it is also preferable to install a distillation column above the reactor.
  • the reaction time is about 1 to 4 hours. Since the reaction is sufficiently fast, it is not usually necessary, but it can also be performed while flowing an inert gas such as nitrogen through the reaction system. A solvent inert to the reaction can also be used.
  • the reaction temperature is 180 to 260 ° C. because the reaction is slightly slow.
  • the reaction pressure is suitably from normal pressure to about 3 MPa. Since ammonia is also produced in this reaction, a reaction may be carried out while appropriately discharging ammonia while providing a pressure control valve or the like and maintaining the system at a predetermined pressure. In order to selectively bring out only ammonia out of the system, it is also preferable to install a distillation column above the reactor.
  • the reaction time is about 1 to 20 hours. If necessary, an inert gas such as nitrogen can be flowed through the reaction system in order to assist the removal of ammonia.
  • the reactions described above can be carried out in the same reactor or in different reactors, but in either case, it is preferable to use the same catalyst.
  • catalysts for this reaction many catalysts have already been described in JP-A-55-102542, JP-A-57-26645, JP-A-57-175147, etc. Can be used in the present invention.
  • an oxide, hydroxide, halide, inorganic salt, organic acid salt, alkoxide or alkyl alkoxide of one or more metals selected from the group consisting of zinc, magnesium, lead, copper, tin and titanium Preferably used.
  • organic amines such as 1,4-diazabicyclo [2.2.2] octane and 1,8-diazabicyclo [5.4.0] undecene can also be used.
  • the alkyl alcohol represented by the formula (1) is used in an amount of about 0.5 to 10 mol with respect to 1 mol of urea.
  • the amount of the catalyst is suitably 0.1 to 20 mol% with respect to 1 mol of urea.
  • an alcohol suitable for this reaction is an alkyl alcohol having 3 or more carbon atoms. Alkyl alcohols having less than 3 carbon atoms are not preferred because the yield is low and the pressure during the reaction is high.
  • a first reaction mixture containing dialkyl carbonate can be obtained.
  • the first reaction mixture may further contain unreacted alkyl alcohol, intermediate alkyl carbamate, catalyst and the like.
  • unreacted alkyl alcohol, intermediate alkyl carbamate, and at least a portion of the catalyst may be removed from the first reaction mixture by distillation. The separated alkyl alcohol, alkyl carbamate, and catalyst can be used again for the reaction.
  • the aromatic hydroxy compound used in the second step is represented by the following formula (4): Ar-OH (4) (Wherein Ar is as defined above).
  • aromatic hydroxy compounds are phenol, p-chlorophenol, 2,4-dichlorophenol, o-cresol, m-cresol, p-cresol, 2,4-dimethylphenol, 3,4-dimethyl.
  • Phenol 3,5-dimethylphenol, o-ethylphenol, m-ethylphenol, p-ethylphenol, pn-propylphenol, p-isopropylphenol, pn-butylphenol, p-isobutylphenol, pt -Butylphenol, 4-hydroxyanisole, p-phenylphenol, p-phenoxyphenol and the like.
  • the dialkyl carbonate represented by the formula (3) and the aromatic hydroxy compound represented by the formula (4) are reacted to form the following formula (5): ArO-CO-OR (5) (Wherein Ar and R are as defined above)
  • ArO-CO-OR (5) (Wherein Ar and R are as defined above)
  • the alkylaryl carbonate represented by these is obtained.
  • This reaction is carried out at a reaction temperature of about 160 to 250 ° C. and a pressure of about 0.01 to 1 MPa.
  • this reaction is an equilibrium reaction, it is preferable to extract the alkyl alcohol by-produced in order to advance the reaction.
  • the reaction may be carried out in a reactor provided with a distillation tower at the top or in a reactive distillation tower.
  • a distillation column having three or more stages including a condenser stage and a reboiler stage and capable of continuous distillation is preferable.
  • a plate tower using a bubble bell tray, a sieve tray, a valve tray, etc., a packed tower filled with packing materials such as sulzer lab packing, sulzer packing, melapack, Dixon packing, Raschig ring, etc. can be used.
  • packing materials such as sulzer lab packing, sulzer packing, melapack, Dixon packing, Raschig ring, etc.
  • the number of plates referred to here means the actual number of plates in the case of a plate column, and the number of theoretical plates in the case of a packed column.
  • alkyl alcohol is continuously extracted from the top of the column, and alkylaryl carbonate is continuously extracted from the bottom of the column.
  • a method of extracting is more preferable.
  • the reaction time is about 1 to 10 hours. Although it is not usually necessary, it can also be performed while flowing an inert gas such as nitrogen into the reaction system.
  • the catalyst suitable for this reaction may be any catalyst as long as it is generally known as a transesterification catalyst.
  • a metal selected from titanium, aluminum, gallium, tin, and yttrium, an alkoxide, an aryloxide , Alkyl-substituted oxides, acetylacetonates, or adducts of these compounds with other compounds are preferably used.
  • Ti (OX) 4 or Ti (OX) 4 .XOH It is preferable to use a titanium compound represented by the formula (wherein X represents an alkyl group or aryl group having 3 to 6 carbon atoms) or an adduct thereof.
  • Examples of the catalyst represented by the above formula include, for example, titanium tetrapropoxide, titanium tetrabutoxide, titanium tetraamyl oxide, titanium tetrahexyl oxide, titanium tetraphenoxide, titanium tetra (4-methylphenoxide) (each isomer is included) ) Is exemplified.
  • Y 1 2 SnO Y 1 2 Sn (OY 2 ) 2 or Sn (OY 2 ) 4
  • Y 1 represents an alkyl group having 1 to 10 carbon atoms
  • Y 2 represents an alkyl group having 3 to 6 carbon atoms
  • Examples of the catalyst represented by the above formula include diethyl tin oxide, dipropyl tin oxide, dibutyl tin oxide, diamyl tin oxide, dioctyl tin oxide, dibutyl dibutoxy tin, diethyl diamyloxy tin, tetrabutoxy tin, tetraisoamyl. And oxytin (including isomers). Moreover, the compound which changes to these compounds under reaction conditions may be sufficient.
  • the aromatic hydroxy compound represented by the formula (4) is used in an amount of about 0.2 to 10 mol with respect to 1 mol of the dialkyl carbonate represented by the formula (3). More preferably, it is about 1 to 5 moles.
  • the amount of the catalyst is suitably 0.01 to 10 mol% with respect to 1 mol of the dialkyl carbonate represented by the formula (3).
  • a second reaction mixture containing an alkyl aryl carbonate can be obtained.
  • a diaryl carbonate may be generated together with an alkylaryl carbonate.
  • the second reaction mixture may further contain diaryl carbonate, by-produced alkyl alcohol, catalyst, and the like.
  • the alkylaryl carbonate may be separated from the second reaction mixture by distillation, but it is preferable to subject the second reaction mixture to the third step as it is.
  • the alkylaryl carbonate is disproportionated to obtain a disproportionation reaction solution containing diaryl carbonate and 1000 ppm by mass or more of the compound represented by the formula (I). That is, the third step disproportionates the alkyl aryl carbonate represented by the formula (5) to obtain the following formula (6): ArO-CO-OAr (6) (Wherein Ar has the same meaning as above)
  • a third reaction mixture containing a diaryl carbonate represented by the formula (I) and 1000 ppm by mass or more of the compound represented by the formula (I) is obtained. This reaction is carried out at a reaction temperature of about 160 to 250 ° C. and a pressure of about 0.01 to 1 MPa.
  • this reaction is an equilibrium reaction, it is preferable to extract dialkyl carbonate by-produced in order to advance the reaction.
  • the reaction may be carried out in a reactor provided with a distillation tower at the top or in a reactive distillation tower.
  • a distillation column having three or more stages including a condenser stage and a reboiler stage and capable of continuous distillation is preferable. Among these, it is more preferable to use a packed tower.
  • alkylaryl carbonate is supplied from the side of the distillation tower, dialkyl carbonate by-produced is continuously withdrawn from the top of the tower, and from the bottom of the tower, the third containing diaryl carbonate and the compound represented by formula (I). More preferably, the reaction mixture is continuously extracted.
  • the reaction time is about 1 to 10 hours. Although it is not usually necessary, it can also be performed while flowing an inert gas such as nitrogen into the reaction system.
  • transesterification catalyst is used as necessary.
  • Examples and amounts of the transesterification catalyst are the same as in the second step.
  • the third reaction mixture obtained from the third step is purified.
  • the third reaction mixture can usually contain an unreacted alkylaryl carbonate, a catalyst and the like in addition to the diaryl carbonate and the compound represented by the formula (I).
  • the purification is preferably performed using a distillation column.
  • the top pressure of the distillation column is 0.01 kPa to 10 kPa
  • the reflux ratio at the top of the distillation column is 0.5 to 20, preferably 2 to 20 and more preferably 4 to 20, the diaryl carbonate containing less than 1000 ppm by mass of the compound represented by the formula (I) was concentrated from the top of the column, and the compound represented by the formula (I) was concentrated from the bottom of the column.
  • the distillation temperature is usually 100 to 300 ° C, preferably 120 to 280 ° C.
  • the fourth step may include a catalyst separation / removal step as a part of the purification step.
  • the catalyst separation / removal step is preferably performed before the distillation step. For example, it can be carried out by continuously feeding the third reaction mixture to a catalyst separation column (distillation column) and performing flash distillation. Alkyl aryl carbonate, diaryl carbonate and the compound represented by formula (I) are continuously extracted from the top of the catalyst separation column. A catalyst and a small amount of diaryl carbonate are continuously withdrawn from the bottom of the column. The liquid extracted from the top of the column can be used as the third reaction mixture in the distillation step.
  • Flash distillation is performed at a temperature of 100 to 300 ° C. and a pressure of 0.001 to 0.1 MPa.
  • the fourth step may include a step of recovering the alkylaryl carbonate as a part of the purification step.
  • the recovery step is preferably performed before the distillation step and subsequent to the catalyst separation / removal step.
  • the liquid extracted from the top of the catalyst separation tower may be continuously supplied to an alkylaryl carbonate recovery tower (distillation tower) to separate low-boiling components such as alkylaryl carbonate.
  • Diaryl carbonate and the compound represented by formula (I) are continuously extracted from the bottom of the column, and alkylaryl carbonate is continuously extracted from the top of the column.
  • the liquid extracted from the bottom of the column can be used as the third reaction mixture in the distillation step.
  • the liquid extracted from the top of the column can be returned to the third step and reused as a raw material.
  • the distillation temperature in the alkylaryl carbonate recovery step is usually 100 to 300 ° C, preferably 120 to 280 ° C.
  • the pressure is suitably 0.001 to 0.1 MPa.
  • the compound represented by the formula (I) which is gradually concentrated and accumulated in the bottom of the column in the implementation of the fourth step is converted to 80 ° C. to 230 ° C., preferably 82 ° C. Cooling to any temperature in the range of from 150 ° C. to 150 ° C., more preferably from 82 ° C. to 100 ° C., and filtering off by filtration, the temperature being a diaryl of the compound of formula (I) You may set with reference to the solubility to carbonate, for example, the solubility to BPC of BOD shown in FIG.
  • the method of filtration is not particularly limited, and may be according to a conventional method. For example, a method of filtration by natural filtration, vacuum filtration, pressure filtration, or centrifugal filtration is preferable.
  • the filter medium is not particularly limited, and a normal filter medium can be used. However, a filter medium made of plastic fibers such as polypropylene and Teflon (registered trademark) and a metal filter medium such as stainless steel fibers are preferable because they do not drop off fibers.
  • the filtrate obtained in the fifth step is again used in the fourth step, for example, in any one of the catalyst separation / removal step, the alkylaryl carbonate recovery step or the distillation step in the fourth step. It can also be returned as a reaction mixture.
  • the manufacturing method of the present invention may include such a recycling process as a sixth process.
  • each step of the production method of the present invention can be carried out in the presence of a solvent inert to the reaction, in the presence of an inert gas, and / or under pressure with an inert gas.
  • each raw material used in the present invention is preferably pure. As a specific purity, 95 to 100% is appropriate.
  • the purity of the dialkyl carbonate as an intermediate is preferably 90 to 100%.
  • a catalyst separation step as described in Japanese Patent Application Laid-Open No. 2004-323384 is provided between the transesterification reaction step and the disproportionation reaction step, and includes a liquid containing most of the alkylaryl carbonate and a catalyst. The liquid may be separated and supplied to the disproportionation reaction step.
  • the present invention also relates to a method for producing an aromatic polycarbonate resin, in which the diaryl carbonate and the aromatic dihydroxy compound according to the present invention are melt-condensed in the presence of a transesterification catalyst.
  • a method for producing an aromatic polycarbonate resin by a melt polymerization method is known, and the diaryl carbonate according to the present invention can be used in such a known production method.
  • the two phenylene groups may each independently be a p-phenylene group, an m-phenylene group or an o-phenylene group, but both must be p-phenylene groups. Is preferred.
  • R 21 and R 22 in the general formula (II) are each independently a halogen atom, a nitro group, an amino group, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, or the like.
  • Preferred specific examples of R 21 and R 22 are fluorine, amino group, methoxy group, methyl group, phenyl group and the like.
  • p and q each independently represent an integer of 0 to 4, preferably an integer of 0 to 2.
  • X represents a single bond or a divalent group selected from the following linking group group (III).
  • R 33 and R 34 each independently represent a hydrogen atom, an alkyl group or an aryl group, or an aliphatic ring formed by combining R 33 and R 34. .
  • aromatic dihydroxy compounds include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, , 2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4- Hydroxyphenyl) octane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) phenylmethane 1,1-bis (4-hydroxyphenyl) -1-phenylethane, bis (4-hydroxyphenyl) diphenylme 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (3-cyclohexyl-4-) Hydroxypheny
  • BPA 2,2-bis (4-hydroxyphenyl) propane
  • diaryl carbonate used in the method for producing the aromatic polycarbonate resin of the present invention is represented by the following formula (6): ArO-CO-OAr (6) (Wherein Ar is as defined above), which is represented by the following formula (I):
  • R 1 has the same meaning as described above
  • diaryl carbonate examples include less than 1000 ppm by mass of a compound represented by the formula (I) (2H-1,3-benzoxazine-2,4 (3H) -dione) in which X is a hydrogen atom.
  • Diphenyl carbonate is mentioned.
  • diaryl carbonate may be used in excess relative to the aromatic dihydroxy compound.
  • the polycondensation reaction between the aromatic dihydroxy compound and diaryl carbonate in the method for producing an aromatic polycarbonate resin is performed in the presence of a catalyst.
  • a catalyst transesterification catalysts, such as a basic compound catalyst used as a catalyst for normal polycarbonate production, can be used.
  • Such a catalyst is preferably at least one selected from the group consisting of alkali metal compounds and alkaline earth metal compounds, such as cesium carbonate, sodium hydrogen carbonate, sodium tetraphenyl boron, disodium phenyl phosphate and It is more preferable to use at least one selected from the group consisting of potassium carbonate, and at least one of cesium carbonate and potassium carbonate is still more preferable.
  • a catalyst can be used individually or in combination of 2 or more types.
  • the catalyst may be added in an arbitrary amount with respect to a total of 1 mol of the aromatic dihydroxy compound.
  • the catalyst is used in a ratio of 1 ⁇ 10 ⁇ 6 mol or less.
  • the method for producing the aromatic polycarbonate resin is preferably carried out in the presence of a cocatalyst in addition to the catalyst (preferably at least one selected from the group consisting of alkali metal compounds and alkaline earth metal compounds).
  • a cocatalyst it is preferable to use a nitrogen-containing compound in a transesterification catalyst.
  • the details of the nitrogen-containing compound are as described above. Specifically, at least one selected from the group consisting of quaternary ammonium hydroxides is preferably used as the cocatalyst, and at least one selected from the group consisting of tetraalkylammonium hydroxides is preferably used. More preferably, tetramethylammonium hydroxide is more preferably used.
  • the amount of the cocatalyst used may be added in an arbitrary amount with respect to 1 mol of the aromatic dihydroxy compound in total, for example, preferably 1 ⁇ 10 ⁇ 3 mol or less.
  • an aromatic polycarbonate resin In the method for producing an aromatic polycarbonate resin, it is preferable to produce an aromatic polycarbonate resin by subjecting an aromatic dihydroxy compound and diaryl carbonate as main raw materials to a polycondensation reaction in a polycondensation reactor in the presence of a catalyst.
  • This polycondensation reaction is a melt polycondensation reaction based on a transesterification reaction.
  • the polycondensation reactor for carrying out the method for producing an aromatic polycarbonate resin one reactor or two or more reactors are used. If two or more reactors are used, they may be connected in series.
  • the polycondensation reactor may be either a vertical type or a horizontal type.
  • Each polycondensation reactor can be provided with a conventionally known stirring device such as a stirring blade.
  • a stirring blade include a vertical stirring blade, a max blend blade, a double helical ribbon blade, a lattice blade, and a glasses blade.
  • the reaction conditions in the polycondensation reactor are preferably set such that the high temperature, high vacuum, and low stirring speed are achieved as the polycondensation reaction proceeds.
  • the liquid level is preferably controlled so that the average residence time in each reactor is about 30 to 120 minutes.
  • the phenol by-produced simultaneously with the melt polycondensation reaction may be distilled out of the system by a distillation pipe attached to each reactor.
  • the degree of vacuum in the method for producing an aromatic polycarbonate resin is preferably 1 Pa to 13.3 kPa, and the internal temperature of the reactor is preferably 140 to 300 ° C.
  • reaction liquid temperature in each tank is as follows: first tank: 170 ° C., second tank: 180 ° C., third tank: 190 ° C., fourth tank: 200
  • the reaction was carried out while extracting the ammonia produced from the upper part of the reflux condenser at an average residence time of 2 hours at 0 ° C., and a liquid containing DBC and butyl carbamate (BCM) was continuously obtained from the fourth tank.
  • BCM butyl carbamate
  • Transesterification reaction distillation process DBC: 48.0% by mass, PhOH: 51.9% by mass, BCM: 0.1% by mass, 0.4 parts by mass of titanium tetrabutoxide (transesterification catalyst) was added to the top of the transesterification reaction distillation column. Continuously fed. At this time, the vapor containing BuOH produced by the transesterification reaction is continuously withdrawn from the top of the transesterification reaction distillation column, while a liquid containing butylphenyl carbonate (BPC) produced by the transesterification reaction is extracted from the bottom of the tower. Extracted continuously.
  • BPC butylphenyl carbonate
  • a liquid extracted from the bottom of the transesterification reaction distillation column is supplied to the center of the disproportionation reaction distillation column, DBC is continuously extracted from the top of the column, and a mixture containing DPC, transesterification catalyst, BPC and BOD is continuously extracted from the bottom of the column. Extracted.
  • Example 31 ⁇ Recycling process>
  • the catalyst separation step and BPC recovery step of the purification step were performed.
  • the filtrate obtained in the crystallization step of Example 20 was added to the mixture obtained from the bottom of the BPC separation column in the BPC recovery step, and subjected to a distillation step in the same manner as in Example 2.
  • the BOD concentration (GC composition) in the obtained tower top DPC was equivalent to the BOD concentration (GC composition) of Example 2 not including recycling.
  • Example 32 to 36 / Comparative Example 5 Polycarbonate polymerization activity evaluation
  • PC polycarbonate
  • BPA bisphenol A
  • the molecular weight analysis of the obtained resin was carried out using a Tosoh high-speed GPC device HLC-8320GPC equipped with three Tosoh ultra-high performance semi-micro SEC columns TSKgel SuperMultipore (registered trademark) HZ-M and chloroform solvent manufactured by Wako Pure Chemical Industries, Ltd. (For HPLC), sample concentration 0.2 w / v%, flow rate 0.350 mL / min, injection volume 10 ⁇ L.
  • the calibration curve was created using Tosoh standard polystyrene kit PStQuick (registered trademark) MP-M.
  • Terminal OH content measurement The measurement of the terminal OH amount was carried out by Cryo NMR manufactured by Bruker. A sample of 0.05 g was dissolved in 1 mL of 0.05 wt% TMS-added heavy chloroform solvent, and 1 H-NMR at a reference frequency of 600 MHz was measured. In the obtained NMR spectrum, the integration ratio of the phenyl group and phenylene group peaks found in the vicinity of 7 to 8 ppm was taken as 100, and the calculation was made from the integration ratio of the hydroxyl group peaks found in the vicinity of 4.7 ppm.
  • the YI value was measured by using a colorimeter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd. and dissolving 6 g of a sample in 60 mL of dichloromethane solvent manufactured by Wako Pure Chemical Industries.
  • Polymerization is started when the flask part of the polymerization apparatus that has been dried and decompressed is immersed in an oil bath set at 205 ° C., and the raw material is melted for 5 minutes while stirring at 4 rpm with a flask-only stirrer. The number was increased to 200 rpm and further stirred for 5 minutes. Stirring was continued while reducing the pressure in the polymerization apparatus from 97 kPa to 27 kPa over 10 minutes, and the time when the alcohol thermometer of the polymerization apparatus showed 100 ° C. was regarded as the start of distillation of phenol by-produced by the reaction of BPA and DPC. Time was recorded.
  • the set temperature of the oil bath and the pressure in the polymerization apparatus are changed stepwise according to the amount of phenol distilled.
  • the oil bath temperature was 260 ° C. and the vacuum state was reached in 10 minutes after the phenol distillate amount reached 90% of the assumed phenol distillate amount.
  • the oil bath set temperature was increased, the pressure in the polymerization apparatus was lowered, and phenol was distilled off.
  • the reaction was completed when the oil bath temperature was 260 ° C. and the mixture was stirred for 1.5 hours in a vacuum state, and the PC in the polymerization apparatus was recovered.
  • Table 3 were obtained according to the BOD content in the used DPC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

下記式(I)で表される化合物を1000質量ppm未満含む、ジアリールカーボネート及びその製造方法。 (式中、Rは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基である。)

Description

ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法
 本発明は、ジアリールカーボネート及びその製造方法に関する。また本発明は、該ジアリールカーボネートを用いる溶融エステル交換法による芳香族ポリカーボネート樹脂の製造方法に関する。
 ジアリールカーボネートは、溶融エステル交換法ポリカーボネートの原料として有用な化合物であり、従来、芳香族ヒドロキシ化合物とホスゲンとの反応により製造されている。しかしながら、ホスゲンは毒性が高いことや、装置の腐蝕性が高い上に、副生する塩化水素を中和するために大量のアルカリが必要なことなどから、ホスゲンを使用しない方法が要望されており、いくつかの試みがなされてきた。
 そのような試みの中で、特に工業的に適した方法として、尿素と炭素数3から6のアルキルアルコールからジアルキルカーボネートを得、次いでジアルキルカーボネートと芳香族ヒドロキシ化合物をエステル交換することによりアルキルアリールカーボネートを得、さらにアルキルアリールカーボネートを不均化することによりジアリールカーボネートを製造する方法が提案されている(例えば、特許文献1参照)。この製造方法においては、副生したアルキルアルコールを再びジアルキルカーボネートの原料として再利用すれば、結果的に、安価な尿素と芳香族ヒドロキシ化合物からジアリールカーボネートを製造することができる。
特開平10-152456号公報
 上述の方法で製造したジアリールカーボネートには、副生する含窒素化合物が混入し、続いて溶融エステル交換法による芳香族ポリカーボネート樹脂の製造方法に用いた場合、ジアリールカーボネートと芳香族ジヒドロキシ化合物との重合反応を阻害するという問題があった。本発明の目的は、上述の問題点に鑑み、重合反応を阻害する含窒素化合物の量の少ないジアリールカーボネートを提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、含窒素化合物を特定量未満含む、ジアリールカーボネートを用いることにより、溶融エステル交換法による芳香族ポリカーボネート樹脂の製造方法における上記課題を解決しうることを見出し、本発明に到達した。加えて本発明者らは、そのようなジアリールカーボネートの製造方法を見出した。
 本発明は、以下のとおりである。
[1] 下記式(I)で表される化合物を1000質量ppm未満含む、ジアリールカーボネート。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基である。)
[2] 上記[1]に記載のジアリールカーボネートの製造方法であって、
尿素とアルキルアルコールとを反応させてジアルキルカーボネートを含む第一の反応混合物を得る第一の工程;
前記第一の反応混合物中のジアルキルカーボネートと芳香族ヒドロキシ化合物とを反応させてアルキルアリールカーボネートを含む第二の反応混合物を得る第二の工程;
前記第二の反応混合物中のアルキルアリールカーボネートを不均化して、ジアリールカーボネートを含む第三の反応混合物を得る第三の工程;及び
前記第三の反応混合物を精製する第四の工程
を含み、ここで、前記第三の反応混合物が、さらに式(I)で表される化合物を1000質量ppm以上含む、製造方法。
[3] 前記第四の工程が、蒸留塔を用いて塔頂部から式(I)で表される化合物を1000質量ppm未満含むジアリールカーボネートを、塔底部から式(I)で表される化合物を濃縮した混合物を得る蒸留工程を含み、かつ、前記蒸留工程が下記(a)及び(b)の条件下で行われる、上記[2]に記載の製造方法。
(a)蒸留塔の塔頂圧力が0.01kPaから10kPa
(b)還流比が2から20
[4] 前記濃縮混合物から析出する式(I)で表される化合物を80℃から230℃の範囲のいずれかの温度で濾別する第五の工程を含む、上記[3]に記載の製造方法。
[5] 前記第五の工程で濾別した式(I)で表される化合物は回収し、濾液を再び第四の工程に戻すリサイクル工程(第六の工程)を含むことを特徴とする、上記[4]に記載の製造方法。
[6] 前記第一の工程のアルキルアルコールが、炭素数3~6のアルキルアルコールである、上記[2]~[5]いずれかに記載の製造方法。
[7] 上記[1]に記載のジアリールカーボネートと芳香族ジヒドロキシ化合物とを用いて、エステル交換触媒の存在下に溶融縮重合させる、芳香族ポリカーボネート樹脂の製造方法。
 溶融エステル交換法による芳香族ポリカーボネートの製造において、式(I)で表される化合物の含有量が1000質量ppm未満であるジアリールカーボネートを使用することにより、従来法のジアリールカーボネートを使用する場合に比べて、重合時間を短縮することができ、その工業的効果は大きい。
ジフェニルカーボネート(DPC)への2H-1,3-ベンゾオキサジン-2,4(3H)-ジオン(BOD)の溶解度の温度変化を示したグラフである。
 本発明において用いられる用語は、他に特に断りのない限り、以下の定義を有する。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」または「から」を用いて示された数値範囲は、「~」または「から」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに混合物中の各成分の含有量は、混合物中に各成分に該当する物質が複数存在する場合、特に断らない限り、混合物中に存在する当該複数の物質の合計量を意味する。
 本発明において、「ハロゲン原子」は、フッ素原子、塩素原子、臭素原子又はヨウ素原子を意味する。
 本発明において、他に特に断りのない限り、「アルキル基」は、直鎖、分岐鎖若しくは環状の、飽和脂肪族炭化水素の1価の基を意味する。「炭素数1~10のアルキル基」の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、シクロヘプチル基、オクチル基、シクロオクチル基、ノニル基、シクロノニル基、デシル基又はシクロデシル基(各異性体を含む)が挙げられる。「炭素数1~6のアルキル基」及び「炭素数3~6のアルキル基」の例もこれに含まれる。
 本発明において、他に特に断りのない限り、「アルコキシ基」は、基-O-アルキル(ここで、アルキル基は上記と同義である)を意味する。本発明において、アルコキシ基の好ましい例は、「炭素数1~6のアルコキシ基」であり、例えば、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、シクロプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、s-ブチルオキシ基、t-ブチルオキシ基、シクロブチルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基又はシクロヘキシルオキシ基(各異性体を含む)が挙げられる。
 本発明において、他に特に断りのない限り、「アリール基」は、単環式若しくは多環式の、芳香族炭化水素の1価の基を意味する。本発明において、アリール基の好ましい例は、「炭素数6~10のアリール基」であり、例えば、フェニル基、ナフチル基又はアントリル基等が挙げられる。アリール基の特に好ましい例は、フェニル基である。また「アリール基」は、炭素数1~6のアルキル基により置換されていてもよい。
 本発明において、「アリールオキシ基」は、基-O-アリール(ここで、アリール基は上記と同義である)を意味する。本発明において、アリールオキシ基の好ましい例は、「炭素数6~10のアリールオキシ基」であり、例えば、フェノキシ基、ナフチルオキシ基又はアントリルオキシ基等が挙げられる。アリールオキシ基の特に好ましい例は、フェノキシ基である。
<ジアリールカーボネート>
 本発明は、下記式(I):
Figure JPOXMLDOC01-appb-C000003

(式中、Rは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基を示す)で表される化合物を1000質量ppm未満含む、ジアリールカーボネートに関する。
 本発明のジアリールカーボネートは、具体的には、下記式(6):
ArO-CO-OAr     (6)
(式中、Arは、フェニル基、あるいはハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基により置換されたフェニル基を示す)で表されるジアリールカーボネートであって、式(I)で表される化合物を1000質量ppm未満含むものである。
 Arがフェニル基である場合、本発明のジアリールカーボネートはジフェニルカーボネート(本明細書では「DPC」と称す場合がある)であって、Rが水素原子である、式(I)で表される化合物(2H-1,3-ベンゾオキサジン-2,4(3H)-ジオン(本明細書では「BOD」と称す場合がある))を1000質量ppm未満含む。
 Arがハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基により置換されたフェニル基である場合、本発明のジアリールカーボネートは、RがArの置換基と同じである、式(I)で表される化合物を1000質量ppm未満含むものである。
 本発明の特定の態様は、BODを1000質量ppm未満含む、DPCである。
 本発明のジアリールカーボネートに含まれる式(I)で表される化合物の量は、0.1質量ppm以上、1000質量ppm未満であり、好ましくは900質量ppm以下であり、より好ましくは800質量ppm以下であり、特に好ましくは700質量ppm以下である。
 本発明のジアリールカーボネートは、尿素とアルキルアルコールと芳香族ヒドロキシ化合物とを用いる方法、典型的には、後述する本発明の<ジアリールカーボネートの製造方法>により製造される。
<ジアリールカーボネートの製造方法>
 本発明はまた、下記式(I):
Figure JPOXMLDOC01-appb-C000004

(式中、Rは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基を示す)で表される化合物を1000質量ppm未満含む、ジアリールカーボネートの製造方法に関する。かかる製造方法は、
尿素とアルキルアルコールとを反応させてジアルキルカーボネートを含む第一の反応混合物を得る第一の工程;
前記ジアルキルカーボネートと芳香族ヒドロキシ化合物とを反応させてアルキルアリールカーボネートを含む第二の反応混合物を得る第二の工程;
前記アルキルアリールカーボネートを不均化して、ジアリールカーボネートを含む第三の反応混合物を得る第三の工程;及び
前記反応混合物を精製する第四の工程
を含み、ここで前記第三の反応混合物が、さらに式(I)で表される化合物を1000質量ppm以上含む。
(第一の工程)
 第一の工程では、尿素とアルキルアルコールとを反応させてジアルキルカーボネートを含む第一の反応混合物を得る。第一の工程で用いるアルキルアルコールは、下記式(1):
R-OH     (1)
(式中、Rは、アルキル基を示し、好ましくは炭素数3~6のアルキル基を示す)で表される。そのようなアルキルアルコールの例としては、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、s-ブタノール、t-ブタノール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、2-メチル-2-ブタノール、3-メチル-1-ブタノール、3-メチル-2-ブタノール、2,2-ジメチル-1-プロパノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチル-1-ペンタノール、3-メチル-1-ペンタノール、4-メチル-1-ペンタノール、2,2-ジメチル-1-ブタノール、2,3-ジメチル-1-ブタノール、3,3-ジメチル-1-ブタノール、2-エチル-1-ブタノール、3-エチル-1-ブタノールを挙げることができる。
 尿素とアルキルアルコールとの反応は、まず下記式(2):
RO-CO-NH     (2)
(式中、Rは、上記と同義である)で表されるアルキルカーバメートが生成し、これが更にアルキルアルコールと反応して下記式(3):
RO-CO-OR     (3)
(式中、Rは、上記と同義である)で表されるジアルキルカーボネートになる。通常、尿素からアルキルカーバメートになる反応は速く、アルキルカーバメートからジアルキルカーボネートになる反応は遅い。各段階において好ましい反応条件が異なるため、連続的に反応を行なう場合には2段階に分けて反応することが必要となるが、回分式で行なう場合には同一反応器内で逐次行なうこともできる。
 尿素からアルキルカーバメートを製造する段階は、反応が速いため比較的低温で反応させることが可能である。好ましい反応温度は100~200℃であり、この段階であまり高温にすると副反応が起き好ましくない。反応圧力は常圧~約2MPaが適切である。本反応はアンモニアが生成するため、圧力調節弁等を設け、系内を所定の圧力に保ちつつ適宜アンモニアを排出しながら反応を行ってもよい。アンモニアのみを選択的に系外に出すために、反応器上部に蒸留塔を設置することも好ましい。反応時間は約1~4時間である。反応は充分速いため通常は必要ないが、窒素などの不活性ガスを反応系に流しながら行なうこともできる。また反応に対して不活性な溶媒を使用することもできる。
 アルキルカーバメートからジアルキルカーボネートを製造する段階は、反応がやや遅いため、好ましい反応温度は180~260℃である。反応圧力は常圧~約3MPaが適切である。本反応もアンモニアが生成するため、圧力調節弁等を設け、系内を所定の圧力に保ちつつ適宜アンモニアを排出しながら反応を行ってもよい。アンモニアのみを選択的に系外に出すために、反応器上部に蒸留塔を設置することも好ましい。反応時間は約1~20時間である。必要に応じ、アンモニアの除去を助けるために窒素などの不活性ガスを反応系に流しながら行なうこともできる。
 上に述べた反応は、同一反応器内で行なうこともできるし、それぞれ別の反応器で行なうこともできるが、いずれの場合でも触媒は同一のものを用いるのが好ましい。この反応の触媒としては、特開昭55-102542号公報、特開昭57-26645号公報、特開昭57-175147号公報等に既に多くの触媒が記されているが、いずれの触媒も本発明において使用することができる。その中でも特に、亜鉛、マグネシウム、鉛、銅、スズ及びチタンからなる群より選ばれる1種以上の金属の、酸化物、水酸化物、ハロゲン化物、無機塩、有機酸塩、アルコキシド又はアルキルアルコキシドが好適に使用される。具体的には、酸化亜鉛、酸化マグネシウム、酢酸鉛、酢酸銅、ジブチルスズオキシド、テトラブトキシチタン等を挙げることができる。また、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]ウンデセンといった有機アミンも使用することができる。
 式(1)で表されるアルキルアルコールは、尿素1モルに対して約0.5~10モルが用いられる。触媒の量は、尿素1モルに対して0.1~20モル%が適切である。尚、本反応で適切なアルコールは炭素数3以上のアルキルアルコールである。炭素数が3未満のアルキルアルコールでは収率が低く、また反応時の圧力が高くなるので好ましくない。
 反応終了後、ジアルキルカーボネートを含む第一の反応混合物を得ることができる。第一の反応混合物は、さらに未反応のアルキルアルコール、中間体であるアルキルカーバメート、及び触媒等を含み得る。第二の工程に付す前に、蒸留により未反応のアルキルアルコール、中間体であるアルキルカーバメート、及び触媒の少なくとも一部を第一の反応混合物から除いてもよい。分離されたアルキルアルコール、アルキルカーバメート、及び触媒は、再び反応に用いることができる。
(第二の工程)
 第二の工程では、前記第一の反応混合物中のジアルキルカーボネートと芳香族ヒドロキシ化合物とを反応させてアルキルアリールカーボネートを含む第二の反応混合物を得る。第二の工程で用いる芳香族ヒドロキシ化合物は、下記式(4):
Ar-OH     (4)
(式中、Arは、上記と同義である)で表される。そのような芳香族ヒドロキシ化合物の例としては、フェノール、p-クロロフェノール、2,4-ジクロロフェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,4-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール、p-n-プロピルフェノール、p-イソプロピルフェノール、p-n-ブチルフェノール、p-イソブチルフェノール、p-t-ブチルフェノール、4-ヒドロキシアニソール、p-フェニルフェノール、p-フェノキシフェノール等を挙げることができる。
 すなわち、第二の工程は、式(3)で表されるジアルキルカーボネートと式(4)で表される芳香族ヒドロキシ化合物とを反応させて、下記式(5):
ArO-CO-OR     (5)
(式中、Ar及びRは、上記と同義である)
で表されるアルキルアリールカーボネートを得る。本反応は、約160~250℃の反応温度、約0.01~1MPaの圧力で行なう。また本反応は平衡反応であるため、反応を進行させるために副生したアルキルアルコールを抜き出すことが好ましい。反応は上部に蒸留塔を設けた反応器で行ってもよいし、反応蒸留塔で行ってもよい。
 第二の工程を反応蒸留塔で行う場合は、コンデンサー段とリボイラー段を含む段数が3段以上を有する蒸留塔であって、連続蒸留が可能なものが好ましい。例えば、泡鐘トレイ、シーブトレイ、バルブトレイ等を用いた棚段塔、スルザーラボパッキング、スルザーパッキング、メラパック、ディクソンパッキング、ラシヒリング等の充填物が充填された充填塔等いずれも用いることができる。この中でも棚段塔を用いることがより好ましい。なお、ここでいう段数は、棚段塔の場合は実段数、充填塔の場合は理論段数を意味するものとする。
 例えば、ジアルキルカーボネート、芳香族ヒドロキシ化合物及び触媒を蒸留塔の最上段に連続的に供給しながら、副生したアルキルアルコールを塔頂部より連続的に抜き出し、塔底部からはアルキルアリールカーボネートを連続的に抜き出す方法がより好ましい。反応時間は約1~10時間である。通常は必要ないが、窒素などの不活性ガスを反応系に流しながら行なうこともできる。
 この反応に好適な触媒としては、通常エステル交換触媒として知られるものであればどのようなものでも構わないが、特に、チタン、アルミニウム、ガリウム、スズ、イットリウムから選ばれる金属の、アルコキシド、アリールオキシド、アルキル置換オキシド、アセチルアセトナートのいずれか、又はそれらの化合物と他の化合物とのアダクトが好ましく用いられる。
 上記触媒の中でも、特に、下記式:
Ti(OX)、又は
Ti(OX)・XOH
(式中、Xは、炭素数3~6のアルキル基又はアリール基を示す)で表されるチタン化合物又はそのアダクトを使用することが好ましい。
 上記式で示される触媒の例としては、たとえば、チタニウムテトラプロポキシド、チタニウムテトラブトキシド、チタニウムテトラアミルオキシド、チタニウムテトラヘキシルオキシド、チタニウムテトラフェノキシド、チタニウムテトラ(4-メチルフェノキシド)(各異性体を含む)が例示される。
 また、触媒として、下記式:
SnO、
Sn(OY、又は
Sn(OY
(式中、Yは、炭素数1~10のアルキル基を示し、Yは、炭素数3~6のアルキル基を示す)で表されるスズ化合物を用いることも好ましい。
 上記式で表される触媒の例としては、ジエチルスズオキシド、ジプロピルスズオキシド、ジブチルスズオキシド、ジアミルスズオキシド、ジオクチルスズオキシド、ジブチルジブトキシスズ、ジエチルジアミルオキシスズ、テトラブトキシスズ、テトライソアミルオキシスズ等(各異性体を含む)が挙げられる。また、反応条件下でこれらの化合物に変化する化合物であってもよい。
 本反応において、式(4)で表される芳香族ヒドロキシ化合物は、式(3)で表されるジアルキルカーボネート1モルに対して約0.2~10モルが用いられる。より好ましくは約1~5倍モルである。触媒の量は、式(3)で表されるジアルキルカーボネート1モルに対して0.01~10モル%が適切である。
 反応終了後、アルキルアリールカーボネートを含む第二の反応混合物を得ることができる。本反応では、通常、アルキルアリールカーボネートと共に、ジアリールカーボネートが生成する場合がある。したがって第二の反応混合物は、さらにジアリールカーボネート、副生するアルキルアルコール、及び触媒等を含み得る。第二の工程の終了後、蒸留によりアルキルアリールカーボネートを第二の反応混合物から分離してもよいが、第二の反応混合物をそのまま第三の工程に付すことが好ましい。
(第三の工程)
 第三の工程では、前記アルキルアリールカーボネートを不均化して、ジアリールカーボネートと、式(I)で表される化合物1000質量ppm以上とを含む不均化反応液を得る。すなわち第三の工程は、式(5)で表されるアルキルアリールカーボネートを不均化して、下記式(6):
ArO-CO-OAr     (6)
(式中、Arは、上記と同義である)
で表されるジアリールカーボネートと、式(I)で表される化合物1000質量ppm以上とを含む第三の反応混合物を得る。本反応は、約160~250℃の反応温度、約0.01~1MPaの圧力で行なう。また本反応は平衡反応であるため、反応を進行させるために副生したジアルキルカーボネートを抜き出すことが好ましい。反応は上部に蒸留塔を設けた反応器で行ってもよいし、反応蒸留塔で行ってもよい。
 第三の工程を反応蒸留塔で行う場合は、第二の工程と同様に、コンデンサー段とリボイラー段を含む段数が3段以上を有する蒸留塔であって、連続蒸留が可能なものが好ましい。中でも充填塔を用いることがより好ましい。例えば、アルキルアリールカーボネートを蒸留塔の側部より供給し、副生したジアルキルカーボネートを塔頂部より連続的に抜き出し、塔底部からはジアリールカーボネートと式(I)で表される化合物とを含む第三の反応混合物を連続的に抜き出す方法がより好ましい。反応時間は約1~10時間である。通常は必要ないが、窒素などの不活性ガスを反応系に流しながら行なうこともできる。
 この反応には、必要に応じて、エステル交換触媒が用いられる。エステル交換触媒の例及び量は、第二の工程と同じである。
(第四の工程)
 第四の工程では、第三の工程より得られる第三の反応混合物を精製する。第三の反応混合物は、通常、ジアリールカーボネートと式(I)で表される化合物の他、未反応アルキルアリールカーボネート及び触媒等を含み得る。精製は、蒸留塔を用いて行うことが好ましい。
 例えば、第三の反応混合物の精製は、(a)蒸留塔の塔頂圧力が0.01kPa~10kPa、及び(b)蒸留塔の塔頂部の還流比が0.5~20、好ましくは2~20、更に好ましくは4~20の条件下、塔頂部から式(I)で表される化合物を1000質量ppm未満含むジアリールカーボネートを、塔底部から式(I)で表される化合物等を濃縮した混合物を得る蒸留工程を含む。塔頂部の還流比が2未満であると、ジアリールカーボネート中の式(I)で表される化合物の含有量が1000質量ppm以上となるおそれがある。また、還流比が20超であると精製の効率が低下する。蒸留温度は通常100~300℃、好ましくは120~280℃である。
 なお、第四の工程は、精製工程の一部として、触媒の分離・除去工程を含んでもよい。触媒の分離・除去工程は、上記蒸留工程の前に行われるのが好ましい。例えば、第三の反応混合物を触媒分離塔(蒸留塔)へ連続的に供給し、フラッシュ蒸留することにより実施できる。触媒分離塔の塔頂部からは、アルキルアリールカーボネート、ジアリールカーボネート及び式(I)で表される化合物が連続的に抜き出される。塔底部からは、触媒及び少量のジアリールカーボネートが連続的に抜き出される。塔頂部からの抜き出し液は、上記蒸留工程で第三の反応混合物として用いることができる。または後述するアルキルアリールカーボネートの回収工程に付した後、上記蒸留工程で第三の反応混合物として用いてもよい。塔底部からの抜き出し液は、第二の工程及び/又は第三の工程に戻し、触媒として再使用することができる。
 フラッシュ蒸留は温度100~300℃、圧力は0.001~0.1MPaの範囲で行われる。
 また、第四の工程は、精製工程の一部として、アルキルアリールカーボネートの回収工程を含んでもよい。回収工程は、上記蒸留工程の前であって、かつ上記触媒の分離・除去工程に続いて行われるのが好ましい。例えば、前記触媒分離塔の塔頂部抜き出し液を、アルキルアリールカーボネート回収塔(蒸留塔)へ連続的に供給し、アルキルアリールカーボネートをはじめとする低沸点成分を分離してもよい。塔底部からはジアリールカーボネート及び式(I)で表される化合物が、塔頂部からはアルキルアリールカーボネートが連続的に抜き出される。塔底部からの抜き出し液は、上記蒸留工程で第三の反応混合物として用いることができる。塔頂部からの抜き出し液は、第三の工程に戻し、原料として再使用することができる。
 アルキルアリールカーボネート回収工程の蒸留温度は通常100~300℃、好ましくは120~280℃で行われる。圧力は0.001~0.1MPaが適切である。
(第五の工程/第六の工程)
 本発明の製造方法は、さらに第五の工程として、前記第四の工程の実施で徐々に塔底部に濃縮蓄積される式(I)で表される化合物を80℃~230℃、好ましくは82℃~150℃、より好ましくは82℃~100℃の範囲のいずれかの温度に冷却し濾過により濾別する工程を含んでもよく、またこの温度は、式(I)で表される化合物のジアリールカーボネートへの溶解度、例えば、図1に示したBODのDPCへの溶解度を参考に設定してもよい。これにより、塔底部に蓄積する式(I)で表される化合物を効率よく除去することができる。濾過の方法は特に限定されず、常法に従ってよいが、例えば、自然濾過、減圧濾過、加圧濾過、遠心濾過により濾過する方法が好ましい。濾材も特に限定されず、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が繊維の脱落等がなく好ましい。
 また第五の工程で得られた濾液を、再び第四の工程に、例えば、第四の工程の触媒の分離・除去工程、アルキルアリールカーボネートの回収工程又は蒸留工程のいずれかに、第三の反応混合物として戻すこともできる。本発明の製造方法は、そのようなリサイクル工程を第六の工程として含んでもよい。
 本発明の製造方法の各工程は、反応に対して不活性な溶媒の存在下、不活性ガスの存在下、及び/又は不活性ガスによる加圧下で反応を実施することができる。また、本発明に用いるそれぞれの原料は純粋なものが好ましいことは言うまでもない。具体的な純度としては、95~100%が適切である。また、中間体であるジアルキルカーボネートの純度は、90~100%であることが好ましい。
 本発明の連続製造方法では、上記工程に加え、必要に応じて公知の工程を任意に含めることができる。例えば、エステル交換反応工程と不均化反応工程との間に、特開2004-323384号公報に記載されているような触媒分離工程を設け、アルキルアリールカーボネートの大部分を含む液と触媒を含む液とを分離して不均化反応工程へ供給しても良い。
<芳香族ポリカーボネート樹脂の製造方法>
 本発明はまた、本発明に係るジアリールカーボネートと芳香族ジヒドロキシ化合物とを用いて、エステル交換触媒の存在下に溶融縮重合させる、芳香族ポリカーボネート樹脂の製造方法に関する。溶融重合法による芳香族ポリカーボネート樹脂の製造方法は公知であり、本発明に係るジアリールカーボネートは、そのような公知の製造方法において用いることができる。
 本発明の芳香族ポリカーボネート樹脂の製造方法に用いる芳香族ジヒドロキシ化合物としては、例えば、下記一般式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 一般式(II)中、2つのフェニレン基は、各々独立して、p-フェニレン基、m-フェニレン基及びo-フェニレン基のいずれであってもよいが、両方ともp-フェニレン基であることが好ましい。
 一般式(II)中のR21及びR22は、各々独立して、ハロゲン原子、ニトロ基、アミノ基、アルキル基、アルコキシ基、アリール基又はアリールオキシ基等である。R21及びR22の好ましい具体例は、フッ素、アミノ基、メトキシ基、メチル基、フェニル基等である。
 p及びqは、各々独立して、0~4の整数、好ましくは0~2の整数を示す。Xは、単結合又は下記連結基群(III)から選択される2価の基を示す。連結基群(III)においてR33及びR34は、各々独立して、水素原子、アルキル基若しくはアリール基を示すか、又はR33とR34とが結合して形成される脂肪族環を示す。
Figure JPOXMLDOC01-appb-C000006
 このような芳香族ジヒドロキシ化合物としては、具体的にはビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-フェニルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メトキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシビフェニル、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル、4,4’-ジヒドロキシフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン、2,2’-ジフェニル-4,4’-ジヒドロキシジフェニルスルホニル、2,2’-ジメチル-4,4’-ジヒドロキシジフェニルスルホニル、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、及び1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。
 中でも2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」又は「BPA」ともいう)が安定性、更にはそれに含まれる不純物の量が少ないものの入手が容易である点等の理由により好ましいものとして挙げられる。上記芳香族ジヒドロキシ化合物は、複数種が必要に応じて組み合わされていてもよい。
 本発明の芳香族ポリカーボネート樹脂の製造方法に用いるジアリールカーボネートは、具体的には、下記式(6):
ArO-CO-OAr     (6)
(式中、Arは、上記と同義である)で表されるジアリールカーボネートであって、下記式(I):
Figure JPOXMLDOC01-appb-C000007

(式中、Rは、上記と同義である)で表される化合物を1000質量ppm未満含むものである。
 ジアリールカーボネートの具体例としては、Xが水素原子である、式(I)で表される化合物(2H-1,3-ベンゾオキサジン-2,4(3H)-ジオン)を1000質量ppm未満含む、ジフェニルカーボネートが挙げられる。
 芳香族ポリカーボネート樹脂の製造方法においては、ジアリールカーボネートを芳香族ジヒドロキシ化合物に対して過剰に使用してもよい。
 芳香族ポリカーボネート樹脂の製造方法における芳香族ジヒドロキシ化合物とジアリールカーボネートとの重縮合反応は、触媒の存在下に行う。触媒としては、通常のポリカーボネート製造用触媒として用いられる塩基性化合物触媒等のエステル交換触媒を用いることができる。
 そのような触媒としては、アルカリ金属化合物及びアルカリ土類金属化合物からなる群から選択される少なくとも1種であることが好ましく、炭酸セシウム、炭酸水素ナトリウム、テトラフェニルホウ素ナトリウム、フェニルリン酸二ナトリウム及び炭酸カリウムからなる群から選択される少なくとも1種を用いることがより好ましく、炭酸セシウム及び炭酸カリウムの少なくとも一方が更に好ましい。触媒は、単独又は2種以上を組み合わせて用いることができる。
 触媒は、芳香族ジヒドロキシ化合物の合計1モルに対して、任意の量加えてもよく、例えば1×10-6モル以下の比率で用いられる。
 芳香族ポリカーボネート樹脂の製造方法は、触媒(好ましくは、アルカリ金属化合物及びアルカリ土類金属化合物からなる群から選択される少なくとも1種)に加えて、助触媒の共存下に行われることが好ましい。助触媒を用いることで芳香族ポリカーボネート樹脂をより効率的に調製することができる。
 助触媒としては、エステル交換触媒における含窒素化合物を用いることが好ましい。含窒素化合物の詳細は既述のとおりである。助触媒として具体的には、4級アンモニウムヒドロシキド類からなる群から選択される少なくとも1種を用いることが好ましく、テトラアルキルアンモニウムヒドロキシドからなる群から選択される少なくとも1種を用いることがより好ましく、テトラメチルアンモニウムヒドロキシドを用いることが更に好ましい。
 助触媒の使用量は、芳香族ジヒドロキシ化合物の合計1モルに対して任意の量加えてもよく、例えば1×10-3モル以下が好ましい。
 芳香族ポリカーボネート樹脂の製造方法では、主原料の芳香族ジヒドロキシ化合物とジアリールカーボネートとを、触媒の存在下、重縮合反応器内で重縮合反応させることによって芳香族ポリカーボネート樹脂を製造することが好ましい。この重縮合反応は、エステル交換反応に基づく溶融重縮合反応である。
 芳香族ポリカーボネート樹脂の製造方法を実施する重縮合反応器としては、1器又は2器以上の反応器が用いられる。2器以上の反応器を用いる場合は直列に接続すればよい。重縮合反応器は縦型及び横型のいずれであってもよい。
 それぞれの重縮合反応器には、従来公知の攪拌翼等の攪拌装置を設けることができる。攪拌翼の具体例としては、錨型攪拌翼、マックスブレンド翼、ダブルヘリカルリボン翼、格子翼、メガネ翼等が挙げられる。
 重縮合反応器における反応条件は、重縮合反応の進行とともに高温、高真空、低攪拌速度となるようにそれぞれ設定されることが好ましい。重縮合反応の間、各反応器における平均滞留時間は、約30~120分になるように液面レベルを制御することが好ましい。また各反応器において、溶融重縮合反応と同時に副生するフェノールは、各反応器に取り付けられた留出管により系外に留出させればよい。
 芳香族ポリカーボネート樹脂の製造方法における減圧度は、好ましくは1Pa~13.3kPaであり、反応器の内温は好ましくは140~300℃である。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(BOD濃度の測定)
 実施例1~10で得られた試料(BOD含有DPC)をアセトンに溶かし、内部標準物質としてヘプチルベンゼンを加え、ガスクロマトグラフ分析装置により以下の測定条件で定量した。同様の手順で既知濃度のサンプル溶液を調製して検量線を作成し、DPC中のBOD濃度を解析した。
<測定条件>
測定装置:島津GC-2014
検出器:FID
カラム:GL Sciences Inc. TC-17 ( .30 m×0.25 mm I.D),
カラム温度:70 ℃ (5 min)-12 ℃/min- 190 ℃ (5 min) -12 ℃/min- 250 ℃(30 min)
INJ温度:250℃
DET温度:260℃
入口圧:123.8kPa
カラム流量:1.53ml/min
線速度:35.5cm/s
全流量:81.9ml/min
注入モード:SPLIT
制御モード:線速度
キャリアガス:He
[実施例1~6/比較例1~4]
(ジブチルカーボネート(DBC)合成工程)
 それぞれに還流冷却器及び攪拌器が附属した、連続した4槽の反応器の第1槽に、尿素、ブタノール(BuOH)、ジフェニルエーテル(DPE)、ジブチルスズオキシド(触媒)をそれぞれ1:2:4:0.05モル比で、126kg/hを連続的に供給し、各槽の反応液温度が第1槽:170℃、第2槽:180℃、第3槽:190℃、第4槽:200℃、各槽の平均滞留時間を2時間で、生成するアンモニアを還流冷却器上部から抜き出しながら反応させて、第4槽からDBCとブチルカーバメート(BCM)を含む液を連続的に得た。
 これを触媒分離塔で蒸留することにより、まずDPEと触媒を主成分とする液を塔底部から抜き出し、塔頂部からDPEの一部、DBC、BCM、BuOHを含む液を抜き出した。
 次にBuOH分離塔で、触媒分離塔の塔頂部から抜き出した液を蒸留し、塔頂部からBuOH、塔底部からDPE、DBC、BCMを含む液を抜き出した。
 更にブタノール分離塔の塔底部から抜き出した液に、含有するDBCの2倍モル量のフェノール(PhOH)を加え、BCM分離塔で蒸留し、塔頂部からDBC:48.0質量%、PhOH:51.9質量%、及びBCM:0.1質量%を含む液を得た。
(エステル交換反応蒸留工程)
 DBC:48.0質量%、PhOH:51.9質量%、BCM:0.1質量%に0.4質量部のチタニウムテトラブトキシド(エステル交換触媒)を加え、エステル交換反応蒸留塔の最上段に連続的に供給した。
 このとき、エステル交換反応で生成したBuOHを含む蒸気をエステル交換反応蒸留塔の塔頂部より連続的に抜き出し、一方、塔底部からはエステル交換反応で生成したブチルフェニルカーボネート(BPC)を含む液を連続的に抜き出した。
(不均化反応工程)
 不均化反応蒸留塔の中央部にエステル交換反応蒸留塔塔底部抜き出し液を供給し、DBCを塔頂部から連続的に抜き出し、塔底部からDPC、エステル交換触媒、BPC及びBODを含む混合物を連続的に抜き出した。
(精製工程)
<触媒分離工程・BPC回収工程>
 不均化反応工程で得られた塔底反応混合物をまず触媒分離塔で蒸留し、触媒とDPCの一部を連続的に塔底部から、DPC、BPCを主に含む液を塔頂部から抜き出した。
 次に、触媒分離塔の塔頂部から抜き出した液をBPC分離塔の中央部にフィードし、塔頂部よりBPCを主成分とする液を得、塔底部よりDPCとBODとを含む混合物(DPC:99.49質量%、2H-1,3-ベンゾオキサジン-2,4(3H)-ジオン(BOD):0.51質量%)を得た。
<蒸留工程>
 BPC分離塔の塔底部より得た混合物を、理論段数8段、塔底温度188.5℃、塔頂圧力2kPaのスルーザーパッキン充填蒸留塔の4段目にフィードし、還流比を変えて蒸留することで、塔頂部よりDPCを得た。得られたDPC(塔頂DPC)中のBOD濃度を表1に示す。
Figure JPOXMLDOC01-appb-T000008
[実施例7~30]
<晶析工程>
 釜液中の式(I)の化合物が、塔底部の温度188.5℃以下に下げると析出する濃度に蓄積するまで各実施例の蒸留工程を行った。この釜液を抜き出した後冷却し、式(I)の化合物を析出させ、アドバンテック東洋株式会社製直径330mmのNo.5Cの濾紙を使用した減圧濾過により濾液を回収した。各操作における式(I)の化合物の濃度と晶析条件は表2の通りである。なお、BODのDPCへの溶解度を測定したところ図1の通りであった。
Figure JPOXMLDOC01-appb-T000009
[実施例31]
<リサイクル工程>
 実施例2と同様の方法で、上記精製工程の触媒分離工程・BPC回収工程まで実施した。次いで実施例20の晶析工程で得た濾液を、BPC回収工程のBPC分離塔の塔底部より得た混合物に加えて、実施例2と同様の方法で蒸留工程に付した。得られた塔頂DPC中のBOD濃度(GC組成)は、リサイクルを含まない実施例2のBOD濃度(GC組成)と同等であった。
[実施例32~36/比較例5]
(ポリカーボネート重合活性評価)
 実施例32~36/比較例5では、上記実施例1~4、6及び比較例3にて得られた各DPCについてビスフェノールA(BPA)とのポリカーボネート(PC)重合評価を実施した。
(重合原料)
 DPCは上記表1の実施例1~4、6及び比較例3に示したものを、BPAは新日鐵住金化学製のものをそれぞれ使用した。
(重合触媒)
 和光純薬工業製の炭酸セシウム0.15gを精秤し、100mLメスフラスコを用いて蒸留水に溶解させ、0.005mol/L炭酸セシウム水溶液を得た。
(分子量分析方法)
 得られた樹脂の分子量分析は東ソー製超高性能セミミクロSEC用カラムTSKgel SuperMultipore(登録商標)HZ-Mを3本装備した東ソー製高速GPC装置HLC-8320GPCを使用し、和光純薬工業製クロロホルム溶媒(HPLC用)、サンプル濃度0.2w/v%、流速0.350mL/min、注入量10μLにて実施した。検量線の作成は東ソー製標準ポリスチレンキットPStQuick(登録商標)MP-Mを用いた。
(末端OH量測定)
 末端OH量の測定はブルカー社製クライオNMRにより実施した。0.05wt%TMS添加重クロロホルム溶媒1mLにサンプル0.05gを溶かし、基準周波数600MHzのH-NMRを測定した。得られたNMRスペクトルにおいて7~8ppm付近に見られるフェニル基及びフェニレン基ピークの積分比を100として、4.7ppm付近に見られる水酸基のピークの積分比より算出した。
(YI値分析)
 YI値は日本電色工業製比色計SE2000を使用し、和光純薬工業製ジクロロメタン溶媒60mLにサンプル6gを溶解させ測定を実施した。
(重合装置)
 連結管、空気冷却管、アルコール温度計及び受器からなるガラス製蒸留部並びにステンレス攪拌棒及びテフロン(登録商標)攪拌羽根を装備したフラスコ専用攪拌機を接続した300mLガラス製四つ口フラスコを重合装置とした。重合装置には受器及び空冷管を接続する連結管より窒素導入管及びロータリーポンプが接続し、重合装置内の圧力制御を可能とした。
(重合操作)
 重合装置にBPA70.0g、DPC69.6g(BPAに対してモル比1.06)及び触媒として0.005mol/L炭酸セシウム水溶液30μLを投入した。
 次に、重合装置に投入したBPA、DPC及び触媒を乾燥させるため、フラスコ専用攪拌機にて4rpmで攪拌しつつ、27℃、真空状態において1時間の乾燥を実施し、乾燥終了後、窒素により重合装置内の圧力を97kPaとした。
 乾燥及び復圧を実施した重合装置のフラスコ部を205℃に設定したオイルバスに浸漬した時点から重合開始とし、フラスコ専用攪拌機で4rpmに攪拌しながら5分間原料を溶融させ、フラスコ専用攪拌機の回転数を200rpmに上昇しさらに5分間攪拌した。
 重合装置内の圧力を10分間で97kPaから27kPaまで減圧しつつ攪拌を続け、重合装置のアルコール温度計が100℃を示した時点を、BPAとDPCの反応により副生したフェノールの留出開始として時間を記録した。
 反応により留出したフェノール量が原料仕込み量から想定されるフェノール留出量の30%に達した時点より、フェノール留出量に従ってオイルバスの設定温度及び重合装置内の圧力を段階的に変更し、フェノール留出量が想定フェノール留出量の90%に達した時点より10分間でオイルバス温度260℃、真空状態とした。このときBOD含有量3000質量ppmにおいては上記手順ではフェノールの留出が進行しなかったため、オイルバス設定温度を高め、重合装置内の圧力を低くしフェノールを留出させた。
 オイルバス温度260℃、真空状態にて1.5時間攪拌した時点で反応終了とし重合装置内のPCを回収し、使用したDPCにおけるBOD含有量により表3の結果を得た。
Figure JPOXMLDOC01-appb-T000010
 溶融エステル交換法による芳香族ポリカーボネート樹脂の製造において、式(I)で表される化合物の含有量が、1000質量ppm未満であるジアリールカーボネートを使用することにより、従来法のジアリールカーボネートを使用する場合に比べて、重合時間の著しい短縮と共に、得られた芳香族ポリカーボネート樹脂の末端OH基量を抑制することができた。

Claims (7)

  1.  下記式(I)で表される化合物を1000質量ppm未満含む、ジアリールカーボネート。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基又はアリールオキシ基である。)
  2.  請求項1に記載のジアリールカーボネートの製造方法であって、
    尿素とアルキルアルコールとを反応させてジアルキルカーボネートを含む第一の反応混合物を得る第一の工程;
    前記第一の反応混合物中のジアルキルカーボネートとアリールアルコールとを反応させてアルキルアリールカーボネートを含む第二の反応混合物を得る第二の工程;
    前記第二の反応混合物中のアルキルアリールカーボネートを不均化して、ジアリールカーボネートを含む第三の反応混合物を得る第三の工程;及び
    前記第三の反応混合物を精製する第四の工程
    を含み、ここで前記第三の反応混合物が、さらに式(I)で表される化合物を1000質量ppm以上含む、製造方法。
  3.  前記第四の工程が、蒸留塔を用いて塔頂部から式(I)で表される化合物を1000質量ppm未満含むジアリールカーボネートを、塔底部から式(I)で表される化合物を濃縮した混合物を得る蒸留工程を含み、かつ、前記蒸留工程が下記(a)及び(b)の条件下で行われる、請求項2に記載の製造方法。
    (a)蒸留塔の塔頂圧力が0.01kPaから10kPa
    (b)還流比が2から20
  4.  前記濃縮混合物から析出する式(I)で表される化合物を80℃から230℃の範囲のいずれかの温度で濾別する第五の工程を含む、請求項3に記載の製造方法。
  5.  前記第五の工程で濾別した化学式(I)で表される化合物は回収し、濾液を再び第四の工程に戻すリサイクル工程(第六の工程)を含むことを特徴とする、請求項4に記載の製造方法。
  6.  前記第一の工程のアルキルアルコールが、炭素数3~6のアルキルアルコールである、請求項2~5いずれかに記載の製造方法。
  7.  請求項1に記載のジアリールカーボネートと芳香族ジヒドロキシ化合物とを用いて、エステル交換触媒の存在下に溶融縮重合させる、芳香族ポリカーボネート樹脂の製造方法。
PCT/JP2016/080174 2015-10-14 2016-10-12 ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法 WO2017065147A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017545205A JP6939557B2 (ja) 2015-10-14 2016-10-12 ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法
EP16855401.2A EP3363780B1 (en) 2015-10-14 2016-10-12 Use of diaryl carbonate, method of producing the same, and method for producing aromatic polycarbonate resin
US15/766,208 US20180290989A1 (en) 2015-10-14 2016-10-12 Diaryl carbonate and method for producing the same, and method for producing an aromatic polycarbonate resin
CN201680054798.5A CN108026022B (zh) 2015-10-14 2016-10-12 碳酸二芳基酯及其制造方法、以及芳香族聚碳酸酯树脂的制造方法
US16/738,226 US11142506B2 (en) 2015-10-14 2020-01-09 Diaryl carbonate and method for producing the same, and method for producing an aromatic polycarbonate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-202941 2015-10-14
JP2015202941 2015-10-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/766,208 A-371-Of-International US20180290989A1 (en) 2015-10-14 2016-10-12 Diaryl carbonate and method for producing the same, and method for producing an aromatic polycarbonate resin
US16/738,226 Division US11142506B2 (en) 2015-10-14 2020-01-09 Diaryl carbonate and method for producing the same, and method for producing an aromatic polycarbonate resin

Publications (1)

Publication Number Publication Date
WO2017065147A1 true WO2017065147A1 (ja) 2017-04-20

Family

ID=58517174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080174 WO2017065147A1 (ja) 2015-10-14 2016-10-12 ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法

Country Status (6)

Country Link
US (2) US20180290989A1 (ja)
EP (1) EP3363780B1 (ja)
JP (1) JP6939557B2 (ja)
CN (1) CN108026022B (ja)
TW (1) TWI704133B (ja)
WO (1) WO2017065147A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152455A (ja) * 1996-11-22 1998-06-09 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの製造方法
JP2000063332A (ja) * 1998-08-18 2000-02-29 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの製造方法
JP2003226751A (ja) * 2002-02-05 2003-08-12 Ube Ind Ltd 高純度炭酸ジフェニル組成物とポリカーボネートの製法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980445A (en) * 1996-11-22 1999-11-09 Mitsubishi Gas Chemical Company, Inc. Process for producing diaryl carbonate
JP3994457B2 (ja) 1996-11-22 2007-10-17 三菱瓦斯化学株式会社 アリールカーボネートの製造方法
US6031122A (en) * 1997-03-17 2000-02-29 Mitsubishi Gas Chemical Company, Inc. Process for producing dialkyl carbonate
JP4356120B2 (ja) * 1998-02-19 2009-11-04 三菱化学株式会社 高純度ジアリールカーボネート及びその製造方法
EA010425B1 (ru) * 2004-10-14 2008-08-29 Асахи Касеи Кемикалз Корпорейшн Способ получения диарилкарбоната высокой чистоты
TWI321561B (en) * 2004-12-21 2010-03-11 Asahi Kasei Chemicals Corp Method for producing aromatic carbonate
TW200732290A (en) * 2005-12-16 2007-09-01 Asahi Kasei Chemicals Corp Industrial process for production of high-purity diaryl carbonate
US7851645B2 (en) * 2008-02-11 2010-12-14 Catalytic Distillation Technologies Process for continuous production of organic carbonates or organic carbamates and solid catalysts therefore
CN102557948A (zh) * 2010-12-23 2012-07-11 中国科学院兰州化学物理研究所 一种合成碳酸二丁酯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152455A (ja) * 1996-11-22 1998-06-09 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの製造方法
JP2000063332A (ja) * 1998-08-18 2000-02-29 Mitsubishi Gas Chem Co Inc ジアリールカーボネートの製造方法
JP2003226751A (ja) * 2002-02-05 2003-08-12 Ube Ind Ltd 高純度炭酸ジフェニル組成物とポリカーボネートの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3363780A4 *

Also Published As

Publication number Publication date
CN108026022B (zh) 2021-05-28
EP3363780A4 (en) 2019-05-22
US20180290989A1 (en) 2018-10-11
JPWO2017065147A1 (ja) 2018-08-02
EP3363780A1 (en) 2018-08-22
EP3363780B1 (en) 2022-07-06
TW201731810A (zh) 2017-09-16
JP6939557B2 (ja) 2021-09-22
CN108026022A (zh) 2018-05-11
TWI704133B (zh) 2020-09-11
US20200140399A1 (en) 2020-05-07
US11142506B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
KR100887941B1 (ko) 고순도 디아릴카보네이트의 제조 방법
KR100870850B1 (ko) 고순도 디페닐카보네이트의 공업적 제조 방법
KR101363232B1 (ko) 탄산디아릴을 이용하는 이소시아네이트의 제조 방법
KR101002385B1 (ko) 이소시아네이트의 제조 방법
CA2682512C (en) Isocyanate production process using composition containing carbamic acid ester and aromatic hydroxy compound, and composition for transfer and storage of carbamic acid ester
WO2005000783A1 (ja) 芳香族炭酸エステルの製造方法
KR20080104197A (ko) 고순도 디아릴카보네이트의 공업적 제조 방법
WO2006025424A1 (ja) 高純度ジフェニルカーボネートの工業的製造法
WO2005123657A1 (ja) 芳香族カーボネートの製造方法
WO2017065147A1 (ja) ジアリールカーボネート及びその製造方法、並びに芳香族ポリカーボネート樹脂の製造方法
JP4284635B2 (ja) ポリカーボネートの製造法
JP2002308809A (ja) 新規な1,4−ビス(4−ヒドロキシフェニル)−1−シクロヘキセン類
KR101976886B1 (ko) 디아릴 카르보네이트의 제조 방법
KR101980394B1 (ko) 디아릴 카르보네이트의 제조 방법
US10125083B2 (en) Method for producing diaryl carbonates
US20200277253A1 (en) Multistep process for the preparation of diisocyanates
JP3412475B2 (ja) ポリカーボネートの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855401

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545205

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15766208

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855401

Country of ref document: EP