WO2017061162A1 - 光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置 - Google Patents

光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置 Download PDF

Info

Publication number
WO2017061162A1
WO2017061162A1 PCT/JP2016/071730 JP2016071730W WO2017061162A1 WO 2017061162 A1 WO2017061162 A1 WO 2017061162A1 JP 2016071730 W JP2016071730 W JP 2016071730W WO 2017061162 A1 WO2017061162 A1 WO 2017061162A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
evaluation value
value calculation
function
radius
Prior art date
Application number
PCT/JP2016/071730
Other languages
English (en)
French (fr)
Inventor
祥平 松岡
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201680058879.2A priority Critical patent/CN108139294B/zh
Priority to JP2017544395A priority patent/JP6731935B2/ja
Publication of WO2017061162A1 publication Critical patent/WO2017061162A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present invention relates to an optical element evaluation value calculation method, an evaluation value calculation program, and an evaluation value calculation device for calculating an evaluation value of an optical element.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-318025 (hereinafter referred to as “Patent Document 1”) describes a specific example of this type of evaluation method.
  • the defocus amount on the image plane is approximately proportional to the partial curvature of the lens surface shape error near the design shape at each lens height of the design shape.
  • a partial curvature at the height is derived, a curvature proportional coefficient that is a defocus amount on the image plane per unit curvature at each lens height is obtained, and the defocus amount is estimated from the curvature ratio coefficient and the partial curvature.
  • the correlation between the shape evaluation result and the optical performance is high, highly accurate lens evaluation is possible.
  • each coefficient included in a polynomial function is used to set an optical element model including a shape error. It is necessary to give values to many coefficients for which it is difficult to grasp the correlation with the error. Since it is difficult to grasp the appropriate value to be given to each coefficient, the number of simulations inevitably increases, and a large amount of calculation is required to set the optimum tolerance, and it takes a lot of time. Is pointed out.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an evaluation value calculation method for calculating an evaluation value, which is suitable for easily performing modeling of an optical element necessary for tolerance setting and the like.
  • An evaluation value calculation program and an evaluation value calculation device are provided.
  • An evaluation value calculation method for an optical element includes a step of acquiring a shape error that is a deviation from a design value for a test surface of the optical element, and each of the optical elements among the acquired shape errors
  • the weight function is defined as a set of functions W M [k] expressed by the following equation using the relative position k with respect to the position i.
  • a constant term for "the [k], -W M" W M [k] of the second derivative W M is [-u], W M" [ 0] ⁇ W M [0] ⁇ 0.
  • U is a positive number.
  • the step of extracting the components of the weight function in the step of extracting the components of the weight function, 2 of the radius u that is centered on each position i of the optical element and is smaller than the effective radius among the shape errors acquired in the acquiring step.
  • the component of the weight function may be extracted by calculating the inner product of the value included in the double range and the weight function.
  • the weighting function is orthogonal to the 0th order function and the 1st order function under the inner product, for example.
  • the weight function is, for example, a cosine function.
  • the weight function has a cosine component of a half cycle to one cycle within a range of twice the radius u, for example.
  • the weight function has, for example, the largest second derivative when the relative position k is zero and zero second derivative when the relative position k is ⁇ u or u.
  • the second derivative is the largest, and when the relative position k is -u or u, the first derivative is zero or a value close to zero.
  • the radius u is, for example, the radius of the light beam incident on the test surface of the optical element.
  • the radius u is, for example, the largest light beam diameter. Is set to a value of 10% or less of the light beam radius.
  • An optical element evaluation value calculation method is provided with a step in which at least position information and a component amount in the optical axis direction corresponding to the position information are provided for a test surface of the optical element, And a step of setting a weighting function based on the position information and the component amount.
  • an optical element evaluation value calculation program is a program for causing a computer to execute the evaluation value calculation method described above.
  • An evaluation value calculation apparatus for an optical element includes a means for acquiring a shape error that is a deviation from a design value for a test surface of the optical element, and the optical element among the acquired shape errors.
  • the weight function is defined as a set of functions W M [k] expressed by the following equation using the relative position k with respect to the position i.
  • a constant term for "the [k], -W M" W M [k] of the second derivative W M is [-u], W M" [ 0] ⁇ W M [0] ⁇ 0.
  • U is a positive number.
  • an evaluation value calculation method, an evaluation value calculation program, and an evaluation value calculation device for calculating an evaluation value which are suitable for easily performing modeling of an optical element necessary for tolerance setting and the like. Is done.
  • Optical elements such as plastic lenses may have complicated shape errors due to non-uniform resin shrinkage.
  • the deviation from the design value for the test surface of the optical element is defined as a shape error.
  • evaluation of optical performance against a complicated shape error is often performed on an optical element having the same luminous flux diameter and effective diameter, that is, a single lens such as a collimator or a small-diameter lens close to a stop.
  • the light beam diameter is the diameter of the light beam passing through the optical surface of the optical element
  • the effective diameter is a region (diameter) in the optical element through which light can pass.
  • light beam diameter it means the diameter of the light beam
  • light beam radius it means the radius of the light beam
  • effective diameter it means the diameter of the region, and when written as “effective radius”, it means the radius of the region.
  • some optical elements such as a projection optical system mounted on a projector or a scanning optical system mounted on a printer / scanner have a large-diameter or complicated shape, and have a light beam diameter.
  • the shape error is reproduced on the optical design software, that is, modeling is performed and an optical simulation is performed to evaluate the optical performance of the optical element.
  • a sign U unit: mm
  • a sign u unit: mm
  • the present inventor aggregated the surface shapes of plastic lenses (mass-produced products) having an effective diameter of 10 mm (effective radius U is 5 mm) or more, and analyzed what kind of shape error occurs.
  • the shape error after removing the approximate R component obtained from the spherical approximate expression was Fourier transformed and decomposed into a spatial frequency component normalized by the effective diameter.
  • the spatial frequency 1 of the shape error corresponds to the R component remaining after removal of the approximate R component
  • the spatial frequency 2 of the shape error corresponds to the quartic function component.
  • the spatial frequency of the shape error is abbreviated as “shape error frequency”.
  • Fig. 1 shows the analysis results based on the aggregated surface shape of plastic lenses (mass-produced products).
  • the horizontal axis indicates the shape error frequency normalized by the effective diameter
  • the vertical axis indicates the RMS (Root (Mean Square) value of each shape error frequency component.
  • components having a shape error frequency of 7 or less occupy 98% or more of the whole. Therefore, regarding the shape error of an optical element exemplified by a plastic lens (mass-produced product), it is considered sufficient to consider only components having a shape error frequency of 7 or less.
  • FIG. 2 shows components having a shape error frequency of 7 or less shown in FIG.
  • the horizontal axis represents the ratio of the light beam diameter (light beam diameter having the light beam radius u) to the effective diameter
  • the vertical axis represents the RMS value of each shape error frequency component
  • various lines represent the light beam diameter.
  • the normalized shape error frequency (1-7) is shown.
  • a horizontal axis ratio of 0.4 indicates a case where the luminous flux diameter is 40% of the effective diameter
  • a horizontal axis ratio of 0.4 is a luminous flux having an effective diameter of 40%.
  • the RMS value of each shape error frequency component normalized by the diameter is shown.
  • shape error frequency [normalized with beam diameter] the shape error frequency normalized with beam diameter
  • shape error frequency [normalized by light beam diameter n%] the shape error frequency normalized by the light beam diameter having a size of n% of the effective diameter
  • the present inventor has a refractive index N of 1.63 at a wavelength of 630 nm, a shape error on a sine curve of RMS 0.050 ⁇ m occurs in a virtual lens having an F value of 4, and the wavelength of the light beam is 630 nm.
  • the amount of decrease in MTF value in some cases was investigated.
  • FIGS. 3 to 6 The survey results are shown in Figures 3-6.
  • the horizontal axis indicates the shape error frequency [normalized by the beam diameter n%]
  • the vertical axis indicates the amount of decrease in the MTF value
  • the thick solid line, the solid solid line, and the thin solid line indicate These show the MTF values at 20 lines / mm, 60 lines / mm, and 100 lines / mm, respectively.
  • 3A to 6A show the amount of decrease in the MTF value on the design image plane
  • FIG. 3B to FIG. 6B show the best image plane (the most focused image plane). ) Shows the amount of decrease in the MTF value.
  • the MTF value is adjusted by adjusting the design image plane to the best image plane.
  • the decrease can be suppressed, it can be seen that when the shape error frequency [normalized at a light beam diameter of 100%] is 2 or more, even if the design image plane is adjusted to the best image plane, the decrease in MTF value cannot be suppressed. That is, if the shape error frequency [normalized at 100% light beam diameter] is 1 or less, defocusing only occurs, but if the shape error frequency [normalized at 100% light beam diameter] is 2 or more, the spot Deterioration occurs.
  • 4 (a) and 4 (b) show respective shape errors when the light beam diameter is 40% of the effective diameter in the values shown in FIGS. 3 (a) and 3 (b), respectively. It shows the result of multiplying the expected appearance value of the frequency [normalized at a light beam diameter of 40%].
  • 5 (a) and 5 (b) show the values when the light beam diameter is 25% of the effective diameter in the values shown in FIGS. 3 (a) and 3 (b), respectively. The figure is obtained by multiplying the expected appearance value of the shape error frequency [normalized at a beam diameter of 25%].
  • 6 (a) and 6 (b) show the values when the luminous flux diameter is 10% of the effective diameter in the values shown in FIGS. 3 (a) and 3 (b), respectively.
  • the figure is obtained by multiplying the expected appearance value of the shape error frequency [normalized with a beam diameter of 10%]. Note that the expected appearance value of each shape error frequency [normalized by the beam diameter n%] in FIGS. 4 to 6 is calculated based on the result shown in FIG.
  • the shape error frequency [normalized with a light beam diameter of 40%] 1 affects 20 lines /
  • the MTF value of mm decreases by 30% or more.
  • the MTF value of 20 lines / mm can be obtained due to the influence of the shape error frequency [normalized with a light beam diameter of 40%] 2. It will only drop slightly.
  • the design image plane has 20 lines / piece due to the influence of the shape error frequency [normalized with a light beam diameter of 25%] 1.
  • the MTF value of mm decreases by about 20%.
  • FIG. 5B by adjusting from the design image plane to the best image plane, as shown in FIG. 5B, there is almost no decrease in the MTF value due to the influence of each shape error frequency [normalized with a beam diameter of 25%].
  • each shape error may occur regardless of the design image plane or the best image plane. There is almost no decrease in the MTF value due to the influence of the frequency [normalized at a beam diameter of 10%].
  • the shape error frequency [normalized by the beam diameter] that affects the MTF value is mainly a component of 1, and the result that the MTF value decreases when adjustment to the best image plane cannot be obtained. It was.
  • the variation in the defocus amount of each light flux increases, the best image plane cannot be adjusted depending on the light flux. In this case, a decrease in the MTF value cannot be suppressed.
  • an evaluation value highly related to the defocus amount for each light beam is introduced.
  • the evaluation value is a shape error of the test surface of the optical element, which is a shape error included in a light beam diameter smaller than the effective diameter, and a weight representing the shape of the shape error itself.
  • the inner product itself with the function that is, the amount itself of the shape error itself included in the measurement value) or a value based on the inner product is introduced.
  • a value having the largest absolute value among the inner product values at each position i within the beam diameter is used as a representative value, and a PV value (difference between the maximum value and the minimum value) of the inner product value at each position i is used.
  • a PV value difference between the maximum value and the minimum value
  • the weight function is preferably, for example, a cosine function (including one that can be regarded as a cosine function).
  • the cosine function at frequency 1 (see FIGS. 4 to 6), which is the main factor that decreases the MTF value before defocusing, can be cited as one suitable weighting function. Since the defocus amount is a quadratic function component, a quadratic function that can be regarded as a part of a cosine function having an extremely small frequency may be used as the weight function. An intermediate function between the cosine function and the quadratic function may be used as the weight function.
  • the weighting function used for calculating the evaluation value is, for example, a cosine function having a cosine component with a period greater than zero to one period within the beam diameter, in other words, the frequency f (0 A cosine function satisfying ⁇ f ⁇ 1) is conceivable.
  • a more preferable weight function is a cosine function having a frequency f (0.5 ⁇ f ⁇ 1) with respect to the beam diameter.
  • FIG. 7A shows local defocus
  • FIG. 7B shows a corresponding surface shape (basic model) that generates the local defocus shown in FIG. 7A.
  • a basic model that generates a predetermined amount of defocus locally (only within a part of the beam diameter) is defined. By adding / subtracting the basic model, it becomes easy to convert the evaluation value highly related to the defocus amount into various shape errors.
  • FIG. 8 conceptually shows the basic model and the weight function.
  • the basic model (see FIG. 8A) is referred to as a “folded basic model”.
  • Both the bent type and the navel type basic models are models defined for modeling required for tolerance setting and the like, and as illustrated in FIGS. 8A and 8C,
  • the shape is a cosine function, and the shape outside the light beam diameter is smoothly connected to the end within the light beam diameter and extends linearly therefrom.
  • Each of the weight function of the bent type and the navel type is for calculating an evaluation value necessary for setting tolerances, etc., and is orthogonalized by filling the outside of the light beam diameter of the basic model with zero.
  • the weight function of the folding type and the navel type is an even function having an average value of zero, and as illustrated in FIGS. 8B and 8D, the corresponding basic model is expressed as the beam diameter.
  • the zero-order function and the first-order function are orthogonal to each other, and the range outside the beam diameter is zero-filled.
  • the weight function is defined as a set of functions W M [k] expressed by the following equation.
  • u is a positive number.
  • the basic model is defined as a set of functions M M [k] expressed by the following equation.
  • M M [k] k 2 ⁇ N [k] ( ⁇ u ⁇ k ⁇ u)
  • M M [k] M ′ M [u] ⁇ (k ⁇ u) + M M [u] (u ⁇ k)
  • M M [k] M ′ M [u] ⁇ (u ⁇ k) + M M [u] (k ⁇ ⁇ u)
  • the quadratic function component becomes stronger at the center within the light beam diameter having the light beam radius u, and the quadratic function component becomes weaker at the periphery within the light beam diameter.
  • the weight function is attached with a constant term A in order to remove the influence of offset and inclination at the time of measurement, and is orthogonal to the zero-order function and the linear function under the inner product.
  • the thick solid line, the solid solid line, and the thin solid line indicate the defocus amounts within the beam diameter at 20 lines / mm, 60 lines / mm, and 100 lines / mm.
  • the alternate long and short dash line, the broken line, and the dotted line indicate the data of the entire range (100%) within the beam diameter, the data of 90% range based on the center of the beam diameter, The inner product calculated using the data is shown.
  • any inner product calculated using data in the range of 100% to 80% has a high correlation with the defocus amount.
  • the calculation may be simplified by regarding the light beam diameter as constant.
  • the inner product calculated using 90% of the range of data has the highest correlation with the defocus amount. This is because the influence of the peripheral part of the beam diameter is small in the calculation of the MTF value. Therefore, in this embodiment, an evaluation value is obtained by calculating an inner product of a shape error in a 90% range based on the center of the light beam diameter and a weight function.
  • the evaluation value is denoted by a symbol M.
  • the light beam diameter is 25% of the effective diameter
  • the inner product is calculated in the range of about 90% of the data based on the center of the light beam diameter, specifically, the data in the range of 22%.
  • a light beam at each position within the effective diameter incident on the test surface of the optical element is given a measurement point number i, and a shape error at the measurement point number i + k is defined as F i [k].
  • F C [k] the function component
  • F G [k] the slope component
  • F M [k] the cosine component
  • the coefficients C, G and M to be calculated are calculated.
  • the position i is not limited to each position in the entire effective diameter, and may be each position in a partial region within the effective diameter.
  • Equation 4 Equation 4 below.
  • the evaluation value M i can be shown as a weighted sum of the shape error F i [k] as shown in the following Expression 7. That is, the evaluation value M i is represented by a value obtained by multiplying the inner product of the shape error and the weighting coefficient.
  • W M [k] An example of the weight function W M [k] is shown below.
  • each function W M [k] corresponding to the folding weight function is illustrated.
  • FIG. 10 shows a flowchart of tolerance setting.
  • the shape error F i [k] at each position i in the region and the function An inner product with W M [k] is calculated, and an evaluation value M i is calculated by performing a product-sum operation on the calculated inner products.
  • sample data in which the optical performance analyzed in the processing step S13a is associated with the evaluation value calculated in the processing step S13b is stored in the memory of the information processing terminal (S14), and the variable I (I is The initial value is set to zero at the start of execution of the process of the flowchart.) Is incremented by 1 (S15). Processing steps S11 to S15 loop until the variable I reaches n (n is, for example, 1,000).
  • the tolerance setting will be described by taking the second lens L in the imaging optical system shown in FIG. 11 as an example.
  • a shape error is given to the surface r of the second lens L based on the expected appearance value of the shape error frequency illustrated in FIG.
  • a total of 100 L data were created.
  • the optical performance of the second lens L was calculated by reproducing on the optical design software an imaging optical system in which the created second lens L of each data was incorporated.
  • the amount of field curvature (RMS value) which is local defocusing, was employed.
  • the final evaluation value as a conventional example, PV value of the error shape obtained by removing the R component from the test surface r (unit: [mu] m) is calculated, as the present embodiment, PV value of the evaluation value M i (Unit: ⁇ m) was calculated.
  • FIG. 12A shows the relationship in the conventional example, that is, the relationship between the PV value of the error shape obtained by removing the R component from the test surface r and the field curvature (local defocus amount).
  • FIG. 12 (b) the relationship in this embodiment, that is, a PV value of the evaluation value M i, the relationship between the curvature of field (local defocus amount).
  • a defocus amount (RMS wavefront aberration conversion) within 0.10 ⁇ m is set as a target value of optical performance, a sample that satisfies the condition is indicated by ⁇ (good product), and a sample that is not satisfied is indicated by ⁇ (defective product). Plotted.
  • the tolerance of the PV value of the error shape obtained by removing the R component from the test surface r is set to 0.25 ⁇ m. There is a need to. In the conventional example, even though 31 (good products) have achieved the optical performance target value (defocus amount within 0.10 ⁇ m), it is determined as tolerance NG, that is, x (defective product).
  • the by setting the tolerance of the PV value of the evaluation value M i to 0.18 .mu.m it is possible to eliminate the sample to be ⁇ (defective).
  • the correlation between the optical performance and the PV value is high. Therefore, all samples that have achieved the target value of optical performance (defocus amount within 0.10 ⁇ m) are judged as ⁇ (non-defective), and the target value of optical performance (defocus amount within 0.10 ⁇ m) has been achieved. All samples that are not judged as x (defective product). In this example, the yield is improved by 30% compared to the conventional example of FIG.
  • FIGS. 13 to 20 a process for giving a shape error to the test surface of the optical element (for example, processing steps S11 and 12b in FIG. 10) is compared with comparison between the related art and this embodiment. While explaining. The prior art here assumes that the shape error is given by polynomial approximation to the test surface of the optical element.
  • the horizontal axis indicates the position (measurement point position) on the test surface orthogonal to the optical axis direction, and the vertical axis indicates the light.
  • the shape error amount in the axial direction (height direction) is shown. For convenience of explanation, normalized values are used in each of FIGS. 13A to 20D.
  • the dotted line indicates the actual shape error of the test surface of the optical element measured by a scanning type three-dimensional measuring instrument or the like, and the alternate long and short dash line indicates the measured object given by polynomial approximation.
  • the shape error of the surface inspection is shown, and the solid line shows the difference between the two.
  • the table in the right column of FIG. 13A shows values given to the coefficients of the polynomial function necessary for calculating the shape error of the test surface by polynomial approximation.
  • the dotted line indicates the actual shape error of the test surface as in FIG. 13A, and the alternate long and short dash line is approximate based on the weight function according to the present embodiment. 2 shows the shape error of the surface to be measured, and the solid line shows the difference between the two.
  • the table in the right column of FIG. 13B shows parameters (position, width, height (component amount)) for setting the basic model.
  • “fold 1” and “fold 2” indicate parameters for setting the fold-type basic model
  • “navel 1” and “navel 2” indicate parameters for setting the umbilical-type basic model. .
  • a cosine function portion whose width is set to a constant value (light beam diameter) is called a basic model (folded basic model, navel basic model), and the width of the cosine function portion is What is set to an arbitrary value other than a certain value is called a model (folded model, navel model).
  • FIG. 13C and FIG. 13D respectively show a folded model and a navel model set by given values.
  • a prescribed value such as a beam diameter may be applied.
  • the parameter to be given a value by the operator's operation input or the like can be limited to the position and the height.
  • the fold model shown in FIG. 13C is set.
  • the shape error typically has a rotationally symmetric component amount centered on the point of interest (position “0.0” in the figure).
  • the position parameter is the peak position (center position) of the folding model and indicates the distance from the target point. Yes.
  • the width parameter indicates the distance (equivalent to a quarter cycle) from the peak position of the folded model to the height becoming zero. The width is preferably 90% of the luminous flux radius u.
  • each value included in a complex polynomial function that is difficult to grasp the correlation with the shape error is not given a value.
  • a target shape error such as an error cannot be given to the optical element model. That is, since an appropriate shape error cannot be easily given to the optical element model, the number of times of optical simulation (for example, the number of loops in processing steps S11 to S15 in FIG. 10) inevitably increases. It takes a huge amount of calculation and takes a lot of time.
  • simple values such as position, width, and height, which have a high correlation with the shape error and are easy to intuitively grasp the shape error, are set to simple values.
  • a folding type model is set only by giving, and a target shape error such as an actual shape error is given to the optical element model based on the set folding type model. That is, since it is not difficult to give an appropriate shape error to the optical element model, the number of optical simulations (for example, the number of loops in processing steps S11 to S15 in FIG. 10) is inevitably reduced. The amount of computation required to do is reduced and the time required is reduced.
  • the folding type model shown in FIG. 14C is set by giving a value to the “folding 1” parameter. Also in this example, as shown in FIG. 14B, a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • the folding model shown in FIG. 15C is set by assigning a value to the “folding 1” parameter.
  • a larger shape error is given to the optical element model by giving a larger value than the example of FIGS. 13 and 14 to the width parameter.
  • a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • each model can be managed by a combination of specific models such as a basic model with a defined width, modeling becomes easy. Also in this example, as shown in FIG. 16B, a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • a value is given to the parameter of “navel 1” to set the navel model shown in FIG.
  • the position parameter indicates the peak position (center position) of the navel model.
  • the width parameter indicates the distance (corresponding to 1/2 cycle) from the peak position of the navel model to the height becoming zero.
  • the width is preferably 90% of the luminous flux radius u.
  • a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • the navel model shown in FIG. 18D is set.
  • a gentle shape error is given to the optical element model.
  • a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • each model is separated into two navel models having a specific width (for example, 90% of the luminous flux radius u). Since each model can be managed by a combination of specific models such as a basic model with a defined width, modeling becomes easy. Also in this example, as shown in FIG. 19B, a target shape error such as an actual shape error is given to the optical element model only by giving a simple value to a simple parameter.
  • Embodiments of the present invention are not limited to those described above, and various modifications are possible within the scope of the technical idea of the present invention.
  • the embodiment of the present application also includes an embodiment that is exemplarily specified in the specification or a combination of obvious embodiments and the like as appropriate.
  • a function based on a cosine function is employed as the weighting function and the basic model, but in another embodiment, a function based on a Gaussian function may be employed as the weighting function.
  • two models are set at the maximum for each of the folding type and the navel type models, but three or more of each model may be set. As the number of models that can be set increases, a more complicated shape error can be given to the optical element model.
  • the optical performance is evaluated for a lens through which a light beam sufficiently thin with respect to the effective diameter passes, but in another embodiment, for example, a light beam diameter (light beam diameter) exceeding the effective radius U.
  • the optical performance may be evaluated with respect to a lens through which a light beam having a diameter passes.
  • the diameter of the light beam passing through changes depending on the use state such as zoom, aperture, and angle of view.
  • the lens through which the luminous flux exceeding the effective radius U passes is not only a lens in which the passing luminous flux always exceeds the effective radius U, but also in some use states (for example, at a specific zoom magnification or at a specific aperture value). Also included are lenses in which the luminous flux that passes through exceeds the effective radius U only in a constricted state.
  • local defocus in the light beam represents longitudinal aberration in the imaging system, it is a material for determining spot disturbance.
  • local defocus in the light beam represents unevenness of brightness in the blur when the focus is shifted, and thus becomes a material for determining blurring, or a material for determining illumination unevenness in the illumination system. That is, the present invention can be applied not only to the defocusing simulation of the imaging optical system but also to the simulation of blur light amount unevenness of the imaging optical system and the luminance unevenness simulation of the illumination optical system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Head (AREA)

Abstract

光学素子の評価値算出方法を、光学素子の被検面について設計値からの偏差である形状誤差を取得するステップと、取得された形状誤差のうち光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値における重み関数の成分を各位置iについて取り出すステップと、取り出された各位置iにおける重み関数の成分に基づいて評価値を算出するステップとを含むものとした。

Description

光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置
 本発明は、光学素子の評価値を算出する光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置に関する。
 光学素子の被検面を走査型三次元測定器等を用いて測定し、測定結果に基づいて設計値からの偏差である被検面の形状誤差を計算し、計算された形状誤差に基づいて光学素子の光学性能を評価する方法が知られている。例えば特開2001-318025号公報(以下、「特許文献1」と記す。)に、この種の評価方法の具体例が記載されている。
 特許文献1に記載の評価方法は、設計形状の各レンズ高さにおいて像面におけるデフォーカス量が設計形状近傍ではレンズ面の形状誤差の部分曲率に概略比例することから、形状誤差から各レンズ高さにおける部分曲率を導出し、各レンズ高さにおける単位曲率あたりの像面でのデフォーカス量である曲率比例係数を求め、曲率比率係数及び部分曲率からデフォーカス量を推定する。この場合、形状評価結果と光学性能との相関が高いことから、精度の高いレンズ評価が可能となる。
 特許文献1に記載の評価方法では、例えば、最適な公差を設定するための光学シミュレーションを行う場合、形状誤差を含む光学素子モデルを設定するにあたり、多項式関数に含まれる各係数であって、形状誤差との相関を把握することが難しい多数の係数に値を与える必要がある。それぞれの係数に与えるべき適正な値を把握することが難しいため、シミュレーション回数が必然的に多くなり、最適な公差設定を行うのに膨大な計算量が必要になり且つ膨大な時間が掛かるという問題が指摘される。
 本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、公差設定等に必要な光学素子のモデリングを簡易に行うのに適した、評価値を算出する評価値算出方法、評価値算出プログラム及び評価値算出装置を提供することである。
 本発明の一実施形態に係る光学素子の評価値算出方法は、光学素子の被検面について設計値からの偏差である形状誤差を取得するステップと、取得された形状誤差のうち光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値における重み関数の成分を各位置iについて取り出すステップと、取り出された各位置iにおける重み関数の成分に基づいて評価値を算出するステップとを含む。重み関数は、位置iを基準とした相対位置kを用いて、次式により示される関数W[k]の集合として定義される。
[k]=k×N[k]+A (-u≦k≦u)
[k]=0 (k<-u又はu<k)
但し、
 N[k]は、0≦N[-u]で且つ-u≦k≦0の範囲にあるときに単調増加となる偶関数であり、Aは、Σ[k]=0とするための定数項であり、W[k]の二次導関数W”[k]について、-W”[0]≦W”[-u]であり、W”[0]≧0である。また、uは、正の数である。
 また、本発明の一実施形態において、重み関数の成分を取り出すステップでは、取得するステップにて取得された形状誤差のうち光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値と重み関数との内積を算出することにより、重み関数の成分を取り出してもよい。
 また、本発明の一実施形態において、重み関数は、例えば、上記内積のもとで0次関数及び1次関数と直交する。
 また、本発明の一実施形態において、重み関数は、例えば余弦関数である。
 また、本発明の一実施形態において、重み関数は、例えば、半径uの2倍の範囲内において半周期から1周期の余弦成分を持つ。
 また、本発明の一実施形態において、重み関数は、例えば、相対位置kがゼロであるときに二次微分が最も大きくなり且つ相対位置kが-u又はuであるときに二次微分がゼロ又はゼロに近い値となる、若しくは相対位置kがゼロであるときに二次微分が最も大きくなり且つ相対位置kが-u又はuであるときに一次微分がゼロ又はゼロに近い値となる。
 また、本発明の一実施形態において、半径uは、例えば、光学素子の被検面に入射される光束の半径である。
 また、本発明の一実施形態において、光学素子が少なくとも一部の使用状態で光束径が有効径の50%よりも大きくなるものであるとき、半径uは、例えば、光束径が最も大きくなる時の光束半径の10%以下の値に設定される。
 また、本発明の一実施形態に係る光学素子の評価値算出方法は、光学素子の被検面について少なくとも位置情報と位置情報に対応する光軸方向の成分量が与えられるステップと、与えられた位置情報及び成分量に基づいて重み関数を設定するステップとを含むものとしてもよい。
 また、本発明の一実施形態に係る光学素子の評価値算出プログラムは、上記の評価値算出方法をコンピュータに実行させるためのプログラムである。
 また、本発明の一実施形態に係る光学素子の評価値算出装置は、光学素子の被検面について設計値からの偏差である形状誤差を取得する手段と、取得された形状誤差のうち光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値における重み関数の成分を各位置iについて取り出す手段と、取り出された各位置iにおける重み関数の成分に基づいて評価値を算出する手段とを備える。重み関数は、位置iを基準とした相対位置kを用いて、次式により示される関数W[k]の集合として定義される。
[k]=k×N[k]+A (-u≦k≦u)
[k]=0 (k<-u又はu<k)
但し、
 N[k]は、0≦N[-u]で且つ-u≦k≦0の範囲にあるときに単調増加となる偶関数であり、Aは、Σ[k]=0とするための定数項であり、W[k]の二次導関数W”[k]について、-W”[0]≦W”[-u]であり、W”[0]≧0である。また、uは、正の数である。
 本発明の一実施形態によれば、公差設定等に必要な光学素子のモデリングを簡易に行うのに適した、評価値を算出する評価値算出方法、評価値算出プログラム及び評価値算出装置が提供される。
プラスチックレンズ(量産品)の面形状の集計結果に基づく分析結果を示す図である。 図1に示される形状誤差周波数7以下の成分を条件を変えて示す図である。 形状誤差周波数[光束径で正規化]とMTFとの関係を示す図である。 形状誤差周波数[光束径40%で正規化]とMTFとの関係を示す図である。 形状誤差周波数[光束径25%で正規化]とMTFとの関係を示す図である。 形状誤差周波数[光束径10%で正規化]とMTFとの関係を示す図である。 局所的なデフォーカス及びこれに対応する面形状(基本モデル)を示す模式図である。 基本モデル及び重み関数を概念的に示す図である。 形状誤差周波数[光束径で正規化]と、光束径に対して周波数f=0.5となる余弦関数と形状誤差との内積による評価値と、デフォーカス量との関係を示す図である。 光学素子に対する最適な公差を設定するための公差設定のフローチャートを示す図である。 公差設定の説明に用いられるレンズが組み込まれた撮像光学系を示す図である。 従来例及び本発明の一実施形態におけるPV値とデフォーカス量との関係を示す図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。 光学素子の被検面に形状誤差を与える工程について説明する図である。
 以下、本発明の一実施形態について図面を参照しながら説明する。
 プラスチックレンズ等の光学素子は、不均一な樹脂収縮が生じることにより複雑な形状誤差を持つことがある。なお、本実施形態では、光学素子の被検面について設計値からの偏差を形状誤差と定義する。一般に、複雑な形状誤差に対する光学性能の評価は、光束径と有効径とが同じになる光学素子、すなわち、コリメータのような単レンズや絞りに近い小径レンズ等を対象に行われることが多い。なお、光束径は、光学素子の光学面を通過する光束の径であり、有効径は、光を通過させることができる光学素子内の領域(径)である。単に「光束径」と記された場合は、光束の直径を意味し、「光束半径」と記された場合は、光束の半径を意味する。また、単に「有効径」と記された場合は、上記領域の直径を意味し、「有効半径」と記された場合は、上記領域の半径を意味する。
 他方、例えば、プロジェクタ等に搭載される投影光学系や、プリンタ・スキャナに搭載される走査光学系など、一部の光学素子には、大径化や複雑化された形状を持ち、光束径に対して有効径が大きいものがある。この場合、光学設計ソフトウェア上で形状誤差を再現、すなわちモデリングをして光学シミュレーションを行い、光学素子の光学性能を評価する。しかし、光学素子の複雑な形状誤差を光学シミュレーション上で適切に再現することが難しく、例えば、光学素子のモデリングに必要な公差設定等を高精度且つ簡易に行うことが難しい。以下、説明の便宜上、有効半径に符号U(単位:mm)を付し、有効半径Uよりも小さい光束半径に符号u(単位:mm)を付す。
 本発明者は、有効径10mm(有効半径Uが5mm)以上のプラスチックレンズ(量産品)の面形状を集計し、どのような形状誤差がどの程度発生するかを分析した。分析にあたっては、球面近似式より得られる近似R成分を除去したあとの形状誤差をフーリエ変換し、有効径で正規化された空間周波数成分に分解した。なお、例えば、形状誤差の空間周波数1は、近似R成分の除去後に残存するR成分に該当し、形状誤差の空間周波数2は、4次関数成分に該当する。以下、説明の便宜上、形状誤差の空間周波数を「形状誤差周波数」と略記する。
 図1に、プラスチックレンズ(量産品)の面形状の集計結果に基づく分析結果を示す。図1中、横軸は、有効径で正規化された形状誤差周波数を示し、縦軸は、各形状誤差周波成分のRMS(Root Mean Square)値を示す。また、図1中、実線は、低い形状誤差周波数からのRMS値の二乗累積値を1(=100%)に正規化したものを示す。
 図1に示されるように、形状誤差周波数7以下の成分が全体の98%以上を占める。従って、プラスチックレンズ(量産品)に例示される光学素子の形状誤差については、形状誤差周波数7以下の成分だけを考慮すれば十分であるものと考えられる。
 図2に、図1に示される形状誤差周波数7以下の成分を条件を変えて示す。図2中、横軸は、有効径に対する光束径(光束半径uを持つ光束径)の比率を示し、縦軸は、各形状誤差周波数成分のRMS値を示し、各種の線は、光束径で正規化された形状誤差周波数(1~7)を示す。例えば、横軸の比率0.4は、光束径が有効径の40%の大きさを持つ場合を示し、横軸の比率0.4上には、有効径の40%の大きさを持つ光束径で正規化された各形状誤差周波数成分のRMS値が示される。
 光束径が有効径の半分に満たない場合、光束径内での形状誤差周波数が1又は2のものを管理対象とすればよいことが図2から判る。以下、説明の便宜上、光束径で正規化された形状誤差周波数を「形状誤差周波数[光束径で正規化]」と記す。また、有効径のn%の大きさを持つ光束径で正規化された形状誤差周波数を「形状誤差周波数[光束径n%で正規化]」と記す。
 次に、形状誤差周波数[光束径で正規化]とMTF(Modulation Transfer Function)との関係について説明する。ここでは、本発明者は、波長630nmでの屈折率Nが1.63であり、F値が4の仮想レンズにおいてRMS0.050μmのサインカーブ上の形状誤差が発生し、光束の波長が630nmである場合のMTF値の低下量を調査した。
 調査結果を図3~図6の各図に示す。図3~図6の各図中、横軸は、形状誤差周波数[光束径n%で正規化]を示し、縦軸は、MTF値の低下量を示し、太実線、中実線、細実線は、それぞれ、20本/mm、60本/mm、100本/mmでのMTF値を示す。また、図3~図6の各図(a)は、設計像面におけるMTF値の低下量を示し、図3~図6の各図(b)は、最良像面(最もピントの合う像面)におけるMTF値の低下量を示す。
 図3(a)と図3(b)とを比較すると、形状誤差周波数[光束径100%で正規化]が1以下であれば、設計像面から最良像面に調整することでMTF値の低下が抑えられるが、形状誤差周波数[光束径100%で正規化]が2以上の場合、設計像面から最良像面に調整してもMTF値の低下が抑えられないことが判る。すなわち、形状誤差周波数[光束径100%で正規化]が1以下であれば、デフォーカスが発生するだけだが、形状誤差周波数[光束径100%で正規化]が2以上の場合は、スポットの劣化が発生する。
 図4(a)、図4(b)は、それぞれ、図3(a)、図3(b)に示される値に、光束径が有効径の40%の大きさを持つ場合の各形状誤差周波数[光束径40%で正規化]の出現期待値を乗算したものを示す。また、図5(a)、図5(b)は、それぞれ、図3(a)、図3(b)に示される値に、光束径が有効径の25%の大きさを持つ場合の各形状誤差周波数[光束径25%で正規化]の出現期待値を乗算したものを示す。また、図6(a)、図6(b)は、それぞれ、図3(a)、図3(b)に示される値に、光束径が有効径の10%の大きさを持つ場合の各形状誤差周波数[光束径10%で正規化]の出現期待値を乗算したものを示す。なお、図4~図6の各形状誤差周波数[光束径n%で正規化]の出現期待値は、図2に示される結果に基づいて算出される。
 光束径が有効径の40%の大きさを持つ場合、設計像面では、図4(a)に示されるように、形状誤差周波数[光束径40%で正規化]1の影響により20本/mmのMTF値が30%以上低下する。しかし、設計像面から最良像面に調整することで、図4(b)に示されるように、形状誤差周波数[光束径40%で正規化]2の影響により20本/mmのMTF値が僅かに低下するだけとなる。
 光束径が有効径の25%の大きさを持つ場合、設計像面では、図5(a)に示されるように、形状誤差周波数[光束径25%で正規化]1の影響により20本/mmのMTF値が20%程度低下する。しかし、設計像面から最良像面に調整することで、図5(b)に示されるように、各形状誤差周波数[光束径25%で正規化]の影響によるMTF値の低下が殆どない。
 光束径が有効径の10%の大きさを持つ場合、図6(a)、図6(b)に示されるように、設計像面であっても最良像面であっても、各形状誤差周波数[光束径10%で正規化]の影響によるMTF値の低下が殆どない。
 このように、MTF値に影響を与える形状誤差周波数[光束径で正規化]は、主に1の成分であり、最良像面への調整ができない場合にMTF値が低下するという結果が得られた。ここで、光学素子の各位置に入射される全ての光束が同じ量だけデフォーカスする場合に限り、全ての光束について最良像面に調整することが可能となる。別の観点によれば、各光束のデフォーカス量のバラツキが大きくなると、光束によっては最良像面へ調整することができない。この場合、MTF値の低下が抑えられない。
 そこで、本実施形態では、光束ごとのデフォーカス量と関連性の高い評価値を導入する。具体的には、本実施形態では、評価値として、光学素子の被検面の形状誤差であって、有効径よりも小さい光束径内に含まれる形状誤差と、形状誤差自体の形を表す重み関数との内積そのもの(すなわち、測定値に含まれる形状誤差自体の形の量そのもの)、又は内積に基づく値を導入する。
 より詳細には、光束径内の各位置iでの内積値のうち最も絶対値が大きい値を代表値や、各位置iでの内積値のPV値(最大値と最小値の差)を用いることにより、光学性能への影響への大きさを簡便に推定することが可能である。また、各位置iでの内積値の分散や標準偏差をとることにより、位置ごとの光学性能のバラツキを簡便に推定することも可能である。
 光学素子の被検面の形状誤差を評価値に換算する場合の利便性を考慮すると、形状誤差を周波数成分として捉えることが好適である。この場合、内積の計算を簡易にするため、重み関数は、例えば、余弦関数(余弦関数とみなすことができるものも含む。)が好適である。例示的には、デフォーカス前のMTF値が低下する主要因である周波数1(図4~図6参照)の余弦関数が好適な重み関数の1つとして挙げられる。また、デフォーカス量が二次関数成分であることから、周波数が極めて小さい余弦関数の一部とみなすことが可能な二次関数を重み関数としてもよい。また、余弦関数と二次関数の中間的な関数を重み関数としてもよい。
 以上のことから、評価値の算出に用いられる重み関数には、例えば、光束径内においてゼロより大きい周期から1周期の余弦成分を持つ余弦関数、言い換えると、光束径に対して周波数f(0<f≦1)となる余弦関数が考えられる。より好適な重み関数として、光束径に対して周波数f(0.5≦f≦1)となる余弦関数が挙げられる。
 図7(a)に、局所的なデフォーカスを示し、図7(b)に、図7(a)に示される局所的なデフォーカスを発生させる対応面形状(基本モデル)を示す。評価値から光学素子の被検面の形状誤差を換算する場合の利便性を考慮すると、局所的な(一部の光束径内でのみ)所定量のデフォーカスを発生させる基本モデルを定義し、基本モデルを加算・減算することにより、デフォーカス量と関連性の高い評価値から種々の形状誤差への換算が容易となる。
 図7(b)に示されるように、デフォーカスが発生しない領域では、その他の諸収差が発生しないと仮定した場合、二次微分がゼロとなる。そのため、光束径内の中心で二次微分が最も大きくなり且つ光束径内の両端で二次微分がゼロ又はゼロに近い値となる形状が基本モデルとして好適であると考えられる。重み関数は、光束径内において基本モデルと等価であることが要求されることから、例えば、光束径に対して周波数f=0.5となる余弦関数が好適である。
 また、歪曲収差などに注目する場合は、光束径内の両端で二次微分がゼロ又はゼロに近い値となることに代えて、光束径内の両端で一次微分がゼロ又はゼロに近い値となる形状を基本モデルとすることも好適であると考えられる。重み関数は、基本モデルと等価であることが要求されることから、例えば、光束径に対して周波数f=1となる余弦関数が好適である。
 図8に、基本モデル及び重み関数を概念的に示す。具体的には、図8(a)に、光束径(光束半径uを持つ光束径)に対して周波数f=0.5となる基本モデルを示し、図8(b)に、これに対応する重み関数(余弦関数)を示す。また、図8(c)に、光束径(光束半径uを持つ光束径)に対して周波数f=1となる基本モデルを示し、図8(d)に、これに対応する重み関数(余弦関数)を示す。以下、説明の便宜上、光束径に対して周波数f=0.5となる重み関数(余弦関数)を、図8(b)に例示される形から「折れ型重み関数」と記し、これに対応する基本モデル(図8(a)参照)を「折れ型基本モデル」と記す。また、光束径に対して周波数f=1となる重み関数(余弦関数)を、図8(d)に例示される形から「へそ型重み関数」と記し、これに対応する基本モデル(図8(c)参照)を「へそ型基本モデル」と記す。
 折れ型、へそ型の何れの基本モデルも、公差設定等に必要なモデリング用に定義されたモデルであり、図8(a)、図8(c)に例示されるように、光束径内の形状が余弦関数となっており、光束径外の形状が光束径内の端部と滑らかに接続され且つそこから直線上に延びたものとなっている。また、折れ型、へそ型の何れの重み関数も、公差設定等に必要な評価値を算出するためのものであり、基本モデルの光束径外をゼロ埋めして直交化したものである。説明を加えると、折れ型、へそ型の重み関数は、平均値ゼロの偶関数であって、図8(b)、図8(d)に例示されるように、対応する基本モデルを光束径内の範囲において0次関数、1次関数に直交させ、且つ光束径外の範囲をゼロ埋めしたものである。
 また、より詳細な重み関数を次式により示す。重み関数は、次式により示される関数W[k]の集合として定義される。
[k]=k×N[k]+A (-u≦k≦u)
[k]=0 (k<-u又はu<k)
但し、
 N[k]は、0≦N[-u]で且つ-u≦k≦0の範囲にあるときに単調増加となる偶関数であり、Aは、Σ[k]=0とするための定数項であり、W[k]の二次導関数について、-W”[0]≦W”[-u]であり、W”[0]≧0である。また、uは、正の数である。
 また、より詳細な基本モデルを次式により示す。基本モデルは、次式により示される関数M[k]の集合として定義される。
[k]=k×N[k] (-u<k<u)
[k]=M’[u]×(k-u)+M[u] (u≦k)
[k]=M’[u]×(u-k)+M[u] (k≦-u)
 上記に示される通り、重み関数は、光束半径uを持つ光束径内の中心ほど二次関数成分が強くなり、光束径内の周辺ほど二次関数成分が弱くなる。重み関数は、測定時のオフセット及び傾きの影響を除去するため、定数項Aが付けられており、内積のもとで0次関数及び一次関数と直交する。
 図9に、形状誤差周波数[光束径で正規化]と、光束径に対して周波数f=0.5となる余弦関数と形状誤差との内積による評価値と、デフォーカス量との関係を示す。図9中、太実線、中実線、細実線は、20本/mm、60本/mm、100本/mmでの光束径内のデフォーカス量を示す。また、図9中、一点鎖線、破線、点線は、それぞれ、光束径内の全ての範囲(10割)のデータ、光束径の中心を基準とした9割の範囲のデータ、8割の範囲のデータを用いて算出された内積を示す。
 図9に示されるように、10割から8割の範囲のデータを用いて算出された何れの内積もデフォーカス量との相関が高い。すなわち、光学素子内の位置によって光束の幅が違ったり絞りの設定によって光束径が変わったりする場合にも、光束径を一定とみなして計算の簡略化を行っても構わないことを示唆している。なお、9割の範囲のデータを用いて算出された内積がデフォーカス量と最も相関が高い。これは、MTF値の計算には光束径の周辺部の影響が少ないからである。従って、本実施形態では、光束径の中心を基準とした9割の範囲の形状誤差と重み関数との内積を算出して評価値を求めることにする。以下、説明の便宜上、評価値に符号Mを付す。
 次に、光学素子の被検面の形状誤差Fから評価値Mを算出するための数式の導出過程を説明する。ここでは、光束径が有効径の25%の大きさであり、内積の算出には、光束径の中心を基準とした凡そ9割の範囲のデータ、具体的には、22%の範囲のデータが用いられるものとする。有効径全体での測定データ点数が101点あるとし、内積は、そのうちの22%程度に当たる、注目点(光束の中心)を基準とした23点(k=±11)について算出される。
 光学素子の被検面に入射される有効径内の各位置の光束について測定点番号iを付し、測定点番号i+kでの形状誤差をF[k]と定義し、定数成分(0次関数成分)をF[k]と定義し、傾き成分(1次関数成分)をF[k]と定義し、余弦成分をF[k]と定義した場合に、次式1を満足する係数C、G、Mを算出する。なお、位置iは、有効径全体の中の各位置に限らず、有効径内の一部の領域内の各位置であってもよい。
(式1)
Figure JPOXMLDOC01-appb-I000001
 次式2の行列式を解くことにより、上記の式1を満足する解が得られる。
(式2)
Figure JPOXMLDOC01-appb-I000002
 上記の式2は、定数、傾き、余弦のそれぞれの成分が直交することから、次式3で示される。
(式3)
Figure JPOXMLDOC01-appb-I000003
 上記の式3の左辺を計算すると、次式4が得られる。
(式4)
Figure JPOXMLDOC01-appb-I000004
 上記の式4から余弦成分のみをまとめると、次式5が得られる。
(式5)
Figure JPOXMLDOC01-appb-I000005
 上記の式5の分母は一定の値Cを取る。そのため、各測定点番号iにおける評価値Mは、次式6の通り、簡略化して示される。
(式6)
Figure JPOXMLDOC01-appb-I000006
 W[k]=F[k]/Cとすると、次式7の通り、評価値Mを形状誤差F[k]の重み付け和として示すことができる。すなわち、評価値Mは、形状誤差と重み係数との内積を積和演算した値で示される。
(式7)
Figure JPOXMLDOC01-appb-I000007
 下記に、重み関数W[k]の一例を示す。ここでは、折れ型重み関数に対応する各関数W[k]を例示する。
(重み関数例)
[±11]=-0.24313
[±10]=-0.18621
[±9]=-0.13045
[±8]=-0.07698
[±7]=-0.02690
[±6]=0.01878
[±5]=0.05913
[±4]=0.09333
[±3]=0.12067
[±2]=0.14061
[±1]=0.15274
[0]=0.15681
 次に、光学素子に対する最適な公差を設定するための公差設定について説明する。図10に、公差設定のフローチャートを示す。
 図10に示されるように、情報処理端末にインストールされた光学設計ソフトウェア上の仮想的な光学素子モデルに対するパラメータの変更(調整)がオペレータによる入力操作に従って又はソフトウェア上で自動的に行われると(S11)、パラメータ変更後の光学素子モデルで光線追跡が行われて(S12a)、その光学性能が解析される(S13a)。また、これと並行して、パラメータ変更後の光学素子モデルの形状誤差が解析されて(S12b)、解析された形状誤差と重み関数との内積に基づいて評価値が算出される(S13b)。例示的には、光学素子の被検面上の局所的な領域(有効径よりも径の小さい光束が入射する領域)について、該領域内の各位置iの形状誤差F[k]と関数W[k]との内積が算出され、算出された各内積が積和演算されることにより、評価値Mが算出される。
 次いで、処理ステップS13aにて解析された光学性能と、処理ステップS13bにて算出された評価値とを関連付けたサンプルデータが情報処理端末のメモリに保存され(S14)、変数I(Iは、本フローチャートの処理の実行開始時には初期値ゼロに設定されている。)が1インクリメントされる(S15)。処理ステップS11~S15は、変数Iがn(nは例えば1,000)に達するまでループする。
 変数Iがnに達すると(S16:YES)、これまでに得られたn個のサンプルデータに基づいて光学素子の最適な公差が決定される(S17)。
 次に、図11に示される撮像光学系内の第2レンズLを例に取り、公差設定についての説明を行う。
 本例の公差設定では、第2レンズLの被検面rに対し、図1に例示される形状誤差周波数の出現期待値に基づいて乱数により形状誤差を与え、形状誤差を与えた第2レンズLのデータを合計で100個作成した。また、作成された各データの第2レンズLが組み込まれた撮像光学系を光学設計ソフトウェア上で再現することにより、第2レンズLの光学性能を計算した。光学性能の指標としては、局所的なデフォーカスである像面湾曲の量(RMS値)を採用した。また、最終的な評価値には、従来例として、被検面rからR成分を除去した誤差形状のPV値(単位:μm)を算出し、本実施形態として、評価値MのPV値(単位:μm)を算出した。
 図12(a)は、従来例における関係、すなわち、被検面rからR成分を除去した誤差形状のPV値と、像面湾曲量(局所的なデフォーカス量)との関係を示す。また、図12(b)は、本実施形態における関係、すなわち、評価値MのPV値と、像面湾曲量(局所的なデフォーカス量)との関係を示す。図12の例では、デフォーカス量(RMS波面収差換算)0.10μm以内を光学性能の目標値に設定し、それを満足するサンプルを○(良品)、満足しないサンプルを×(不良品)でプロットした。
 図12(a)に示される従来例において、×(不良品)となるサンプルを排除するためには、被検面rからR成分を除去した誤差形状のPV値の公差を0.25μmに設定する必要がある。従来例では、31個の○(良品)が光学性能の目標値(デフォーカス量0.10μm以内)を達成しているにも拘わらず公差NG、すなわち×(不良品)として判定されてしまう。
 これに対し、図12(b)の例では、評価値MのPV値の公差を0.18μmに設定することにより、×(不良品)となるサンプルを排除することができる。図12(b)に示されるように、本例では、光学性能とPV値との相関が高い。そのため、光学性能の目標値(デフォーカス量0.10μm以内)を達成している全てのサンプルが○(良品)として判定され、光学性能の目標値(デフォーカス量0.10μm以内)を達成していない全てのサンプルが×(不良品)として判定される。本例は、図12(a)の従来例と比べて歩留まりが30%向上する。
 また、図12(b)の例では、光学性能とPV値との相関が高いことから、例えば歩留まりが悪い場合のフィードバック処理に有利である。例示的には、評価値MのPV値が下がるように光学素子の金型に修正を加えると、修正に応じた光学性能の改善が見込まれる。
 次に、図13~図20を用いて、光学素子の被検面に形状誤差を与える処理(例えば図10の処理ステップS11、12b等)について、従来技術と本実施形態との比較検証を交えながら説明する。ここでいう従来技術には、光学素子の被検面に対して形状誤差を多項式近似で与えるものを想定している。なお、図13~図20の各図(a)~(d)の何れにおいても、横軸が光軸方向と直交する被検面上の位置(測定点の位置)を示し、縦軸が光軸方向(高さ方向)の形状誤差量を示す。説明の便宜上、図13~図20の各図(a)~(d)の何れにおいても正規化した値となっている。
 図13(a)の左欄のグラフ中、点線は、走査型三次元測定器等で測定された光学素子の被検面の実形状誤差を示し、一点鎖線は、多項式近似で与えられた被検面の形状誤差を示し、実線は、両者の差を示す。また、図13(a)の右欄の表は、多項式近似による被検面の形状誤差の算出に必要な、多項式関数の各係数に与えられる値を示す。
 また、図13(b)の左欄のグラフ中、点線は、図13(a)と同じく被検面の実形状誤差を示し、一点鎖線は、本実施形態に係る重み関数に基づいて近似的に与えられた被検面の形状誤差を示し、実線は、両者の差を示す。また、図13(b)の右欄の表は、基本モデルを設定するためのパラメータ(位置、幅、高さ(成分量))を示す。表中、「折れ1」及び「折れ2」は、折れ型基本モデルを設定するためのパラメータを示し、「へそ1」及び「へそ2」は、へそ型基本モデルを設定するためのパラメータを示す。なお、以下においては、説明の便宜上、余弦関数部の幅が一定値(光束径)に設定されたものを基本モデル(折れ型基本モデル、へそ型基本モデル)と呼び、余弦関数部の幅が一定値以外の任意の値に設定されたものをモデル(折れ型モデル、へそ型モデル)と呼ぶ。
 「折れ1」と「折れ2」の少なくとも一方のパラメータにオペレータによる入力操作に従って又はソフトウェア上で自動的に値が与えられることにより、折れ型基本モデルや折れ型モデルが設定され、「へそ1」と「へそ2」の少なくとも一方のパラメータにオペレータによる入力操作に従って又はソフトウェア上で自動的に値が与えられることにより、へそ型基本モデルやへそ型モデルが設定される。図13(c)、図13(d)は、それぞれ、与えられた値により設定される折れ型モデル、へそ型モデルを示す。なお、幅については、例えば光束径等の規定値が適用されてもよい。この場合、オペレータの操作入力等によって値を与えるべきパラメータを位置と高さだけにすることができる。
 図13の例では、「折れ1」のパラメータに対して値が与えられることにより、図13(c)に示される折れ型モデルが設定される。なお、形状誤差は、典型的には、注目点(図中「0.0」の位置)を中心とした回転対称な成分量を持つ。回転対称な形状誤差に対応する折れ型モデルのパラメータ設定を簡易にするため、位置のパラメータは、折れ型モデルのピーク位置(中心位置)であり、且つ注目点からの距離を示すものとなっている。また、幅のパラメータは、折れ型モデルのピーク位置から高さがゼロになるまでの距離(1/4周期相当)を示すものとなっている。幅は、好適には、光束半径uの9割の値である。
 図13(a)に示されるように、従来は、複雑な多項式関数に含まれる各係数であって、形状誤差との相関を把握することが難しい多数の係数に値を与えなければ、実形状誤差等の目標となる形状誤差を光学素子モデルに与えることができない。すなわち、適切な形状誤差を光学素子モデルに簡単に与えることができないため、光学シミュレーションの回数(例えば図10の処理ステップS11~S15のループ数)が必然的に多くなり、例えば、最適な公差設定を行うのに膨大な計算量が必要になり且つ膨大な時間が掛かる。
 一方、本実施形態では、図13(b)に示されるように、位置、幅、高さという、形状誤差と相関が高く、形状誤差を直感的に把握し易い単純なパラメータに簡単な値を与えるだけで折れ型モデルが設定され、設定された折れ型モデルに基づいて実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。すなわち、適切な形状誤差を光学素子モデルに与えることが難しくないため、光学シミュレーションの回数(例えば図10の処理ステップS11~S15のループ数)が必然的に少なくなり、例えば、最適な公差設定を行うのに必要な計算量が低減され且つ必要な時間が短縮される。
 また、図14の例でも「折れ1」のパラメータに対して値が与えられることにより、図14(c)に示される折れ型モデルが設定される。本例においても、図14(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 また、図15の例でも「折れ1」のパラメータに対して値が与えられることにより、図15(c)に示される折れ型モデルが設定される。本例では、幅のパラメータについて図13や図14の例よりも大きい値が与えられることにより、なだらかな形状誤差が光学素子モデルに与えられている。本例においても、図15(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 図16の例では、図16(b)に示されるように、「折れ1」及び「折れ2」のパラメータに対して値が与えられている。これにより、図16(c)に示される2つの折れ型モデルが設定される。本例では、「折れ1」、「折れ2」のそれぞれの幅のパラメータについて図13や図14の例と同程度の値が与えられている。しかし、「折れ1」、「折れ2」の2つの折れ型モデルが重畳されることにより、図15の例と同程度の幅の折れ型モデルとなるため、なだらかな形状誤差が光学素子モデルに与えられる。言い換えると、本例では、図15の例と同程度の幅の折れ型モデルが特定の幅(例えば光束半径uの9割の値)を持つ2つの折れ型モデルに分離されている。幅が規定された基本モデル等の特定のモデルの組み合わせで各モデルを管理することができるため、モデル化が容易となる。本例においても、図16(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 図17の例では、「へそ1」のパラメータに対して値が与えられることにより、図17(d)に示されるへそ型モデルが設定される。なお、へそ型モデルのパラメータ設定を簡易にするため、位置のパラメータは、へそ型モデルのピーク位置(中心位置)を示すものとなっている。また、幅のパラメータは、へそ型モデルのピーク位置から高さがゼロになるまでの距離(1/2周期相当)を示すものとなっている。幅は、好適には、光束半径uの9割の値である。本例においても、図17(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 図18の例でも「へそ1」のパラメータに対して値が与えられることにより、図18(d)に示されるへそ型モデルが設定される。本例では、幅のパラメータについて図17の例よりも大きい値が与えられることにより、なだらかな形状誤差が光学素子モデルに与えられている。本例においても、図18(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 図19の例では、図19(b)に示されるように、「へそ1」及び「へそ2」のパラメータに対して値が与えられている。これにより、図19(d)に示される2つのへそ型モデルが設定される。本例では、「へそ1」、「へそ2」のそれぞれの幅のパラメータについて図17の例と同程度の値が与えられている。しかし、「へそ1」、「へそ2」の2つのへそ型モデルが重畳されることにより、図18の例と同程度の幅のへそ型モデルとなるため、なだらかな形状誤差が光学素子モデルに与えられる。言い換えると、本例では、図18の例と同程度の幅のへそ型モデルが特定の幅(例えば光束半径uの9割の値)を持つ2つのへそ型モデルに分離されている。幅が規定された基本モデル等の特定のモデルの組み合わせで各モデルを管理することができるため、モデル化が容易となる。本例においても、図19(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が光学素子モデルに与えられる。
 図20の例では、図20(b)に示されるように、「折れ1」及び「へそ1」のパラメータに対して値が与えられている。これにより、図20(c)に示される折れ型モデルと、図20(d)に示されるへそ型モデルが設定される。本例では、「折れ1」、「へそ1」の2種類のモデルが重畳されることにより、1種類のモデルだけでは得られない複雑なモデルとなるため、複雑な形状誤差が光学素子モデルに与えられる。すなわち、本例では、図20(b)に示されるように、単純なパラメータに簡単な値を与えるだけで、実形状誤差等の目標となる形状誤差が複雑であっても、これが適切に光学素子モデルに与えられる。
 以上が本発明の例示的な実施形態の説明である。本発明の実施形態は、上記に説明したものに限定されず、本発明の技術的思想の範囲において様々な変形が可能である。例えば明細書中に例示的に明示される実施形態等又は自明な実施形態等を適宜組み合わせた内容も本願の実施形態に含まれる。
 上記の実施形態では、重み関数及び基本モデルとして余弦関数を元にした関数が採用されているが、別の実施形態では、重み関数としてガウス関数を元にした関数が採用されてもよい。
 また、図13~図20の例では、折れ型、へそ型の各モデルについて最大で2つ設定されているが、それぞれのモデルは、3つ以上設定されてもよい。設定可能なモデルの数を増やすほど複雑な形状誤差を光学素子モデルに与えることができる。
 また、上記においては、有効径に対して十分に細い光束が通過するレンズを対象として光学性能の評価を行っているが、別の実施形態では、例えば有効半径Uを超える光束径(光束直径)を持つ光束が通過するレンズを対象として光学性能の評価を行ってもよい。この場合、uの値を、光束半径と一致させず、光束半径よりもある程度小さい値(例えば光束径が最も大きくなる時の光束半径の10%以下の値)に設定することが好ましい。uをこのような値に設定することにより、有効半径Uを超える光束が通過するレンズについて、光束内の局所的なデフォーカスをシミュレーションすることができる。
 なお、カメラ等の撮影装置に搭載されるレンズ系では、ズームや絞り、画角等の使用状態に応じて、通過する光束の径が変わる。上記の、有効半径Uを超える光束が通過するレンズには、通過する光束が有効半径Uを常に超えるレンズだけでなく、一部の使用状態(例えば特定のズーム倍率時や、特定の絞り値に絞られた状態等)でのみ、通過する光束が有効半径Uを超えるレンズも含まれる。
 光束内の局所的なデフォーカスは、結像系においては縦収差を表すため、スポットの乱れを判断する材料となる。また、光束内の局所的なデフォーカスは、ピントがずれたときのボケ内の明暗ムラを表すため、ボケ味の判断材料となったり、照明系においては照明ムラの判断材料となったりする。すなわち、本発明は、結像光学系のデフォーカスのシミュレーション以外にも、結像光学系のボケの光量ムラのシミュレーションや照明光学系の輝度ムラのシミュレーションにも適用することができる。

Claims (19)

  1.  光学素子の被検面について設計値からの偏差である形状誤差を取得するステップと、
     取得された形状誤差のうち前記光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値における重み関数の成分を各位置iについて取り出すステップと、
     取り出された各位置iにおける重み関数の成分に基づいて評価値を算出するステップと、
    を含み、
     前記重み関数は、
      位置iを基準とした相対位置kを用いて、次式により示される関数W[k]として定義される、
    [k]=k×N[k]+A (-u≦k≦u)
    [k]=0 (k<-u又はu<k)
    但し、
     N[k]は、0≦N[-u]で且つ-u≦k≦0の範囲にあるときに単調増加となる偶関数であり、Aは、Σ[k]=0とするための定数項であり、W[k]の二次導関数W”[k]について、-W”[0]≦W”[-u]であり、W”[0]≧0であり、uは、正の数である、
    光学素子の評価値算出方法。
  2.  前記取り出すステップにて、
      前記値と前記重み関数との内積を算出することにより、前記重み関数の成分を取り出す、
    請求項1に記載の光学素子の評価値算出方法。
  3.  前記重み関数は、
      前記内積のもとで0次関数及び1次関数と直交する、
    請求項2に記載の光学素子の評価値算出方法。
  4.  前記重み関数は、
      余弦関数である、
    請求項2又は請求項3に記載の光学素子の評価値算出方法。
  5.  前記重み関数は、
      前記半径uの2倍の範囲内において半周期から1周期の余弦成分を持つ、
    請求項4に記載の光学素子の評価値算出方法。
  6.  前記重み関数は、
      前記相対位置kがゼロであるときに二次微分が最も大きくなり且つ該相対位置kが-u又はuであるときに二次微分がゼロ又はゼロに近い値となる、若しくは該相対位置kがゼロであるときに二次微分が最も大きくなり且つ該相対位置kが-u又はuであるときに一次微分がゼロ又はゼロに近い値となる、
    請求項1から請求項5の何れか一項に記載の光学素子の評価値算出方法。
  7.  前記半径uは、
      前記被検面に入射される光束の半径である、
    請求項1から請求項6の何れか一項に記載の光学素子の評価値算出方法。
  8.  前記光学素子が少なくとも一部の使用状態で光束径が有効径の50%よりも大きくなるものであるとき、
     前記半径uは、
      光束径が最も大きくなる時の光束半径の10%以下の値に設定される、
    請求項1から請求項6の何れか一項に記載の光学素子の評価値算出方法。
  9.  前記被検面について少なくとも位置情報と位置情報に対応する光軸方向の成分量が与えられるステップと、
     与えられた位置情報及び成分量に基づいて前記重み関数を設定するステップと、
    を含む、
    請求項1から請求項8の何れか一項に記載の光学素子の評価値算出方法。
  10.  請求項1から請求項9の何れか一項に記載の評価値算出方法をコンピュータに実行させるための光学素子の評価値算出プログラム。
  11.  光学素子の被検面について設計値からの偏差である形状誤差を取得する手段と、
      取得された形状誤差のうち前記光学素子の各位置iを中心とし且つ有効半径よりも小さい半径uの2倍の範囲内に含まれる値における重み関数の成分を各位置iについて取り出す手段と、
     取り出された各位置iにおける重み関数の成分に基づいて評価値を算出する手段と、
    を備え、
     前記重み関数は、
      位置iを基準とした相対位置kを用いて、次式により示される関数W[k]の集合として定義される、
    [k]=k×N[k]+A (-u≦k≦u)
    [k]=0 (k<-u又はu<k)
    但し、
     N[k]は、0≦N[-u]で且つ-u≦k≦0の範囲にあるときに単調増加となる偶関数であり、Aは、Σ[k]=0とするための定数項であり、W[k]の二次導関数W”[k]について、-W”[0]≦W”[-u]であり、W”[0]≧0であり、uは、正の数である、
    光学素子の評価値算出装置。
  12.  前記取り出す手段は、
      前記値と前記重み関数との内積を算出することにより、前記重み関数の成分を取り出す、
    請求項11に記載の光学素子の評価値算出装置。
  13.  前記重み関数は、
      前記内積のもとで0次関数及び1次関数と直交する、
    請求項12に記載の光学素子の評価値算出装置。
  14.  前記重み関数は、
      余弦関数である、
    請求項12又は請求項13に記載の光学素子の評価値算出装置。
  15.  前記重み関数は、
      前記半径uの2倍の範囲内において半周期から1周期の余弦成分を持つ、
    請求項14に記載の光学素子の評価値算出装置。
  16.  前記重み関数は、
      前記相対位置kがゼロであるときに二次微分が最も大きくなり且つ該相対位置kが-u又はuであるときに二次微分がゼロ又はゼロに近い値となる、若しくは該相対位置kがゼロであるときに二次微分が最も大きくなり且つ該相対位置kが-u又はuであるときに一次微分がゼロ又はゼロに近い値となる、
    請求項11から請求項15の何れか一項に記載の光学素子の評価値算出装置。
  17.  前記半径uは、
      前記被検面に入射される光束の半径である、
    請求項11から請求項16の何れか一項に記載の光学素子の評価値算出装置。
  18.  前記光学素子が少なくとも一部の使用状態で光束径が有効径の50%よりも大きくなるものであるとき、
     前記半径uは、
      光束径が最も大きくなる時の光束半径の10%以下の値に設定される、
    請求項11から請求項16の何れか一項に記載の光学素子の評価値算出装置。
  19.  前記被検面について少なくとも位置情報と位置情報に対応する光軸方向の成分量が与えられる手段と、
     与えられた位置情報及び成分量に基づいて前記重み関数を設定する手段と、
    を備える、
    請求項11から請求項18の何れか一項に記載の光学素子の評価値算出装置。
PCT/JP2016/071730 2015-10-09 2016-07-25 光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置 WO2017061162A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680058879.2A CN108139294B (zh) 2015-10-09 2016-07-25 光学元件的评价值计算方法、评价值计算装置以及记录介质
JP2017544395A JP6731935B2 (ja) 2015-10-09 2016-07-25 光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-201027 2015-10-09
JP2015201027 2015-10-09

Publications (1)

Publication Number Publication Date
WO2017061162A1 true WO2017061162A1 (ja) 2017-04-13

Family

ID=58487516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071730 WO2017061162A1 (ja) 2015-10-09 2016-07-25 光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置

Country Status (3)

Country Link
JP (1) JP6731935B2 (ja)
CN (1) CN108139294B (ja)
WO (1) WO2017061162A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194266A (ja) * 2000-01-07 2001-07-19 Ricoh Co Ltd レンズ表面形状の評価方法及び評価装置
JP2004361274A (ja) * 2003-06-05 2004-12-24 Pentax Corp 光学面の形状誤差評価装置および評価方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325880A (ja) * 2003-04-25 2004-11-18 Olympus Corp 光学系の設計方法
KR101336399B1 (ko) * 2009-11-19 2013-12-04 캐논 가부시끼가이샤 계측 장치, 가공 방법 및 컴퓨터 판독가능한 저장 매체
CN103809290B (zh) * 2014-01-21 2015-12-09 北京理工大学 一种光学系统面形误差相互补偿优化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001194266A (ja) * 2000-01-07 2001-07-19 Ricoh Co Ltd レンズ表面形状の評価方法及び評価装置
JP2004361274A (ja) * 2003-06-05 2004-12-24 Pentax Corp 光学面の形状誤差評価装置および評価方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN'YA MORITA ET AL.: "Chukan Shuhasu Keijo o Koryo shita Kosen Tsuiseki Simulation ni yoru Kogaku Soshi Kakomen no Hyoka", O PLUS E, vol. 37, no. 6, 25 May 2015 (2015-05-25), pages 438 - 441, ISSN: 0911-5943 *

Also Published As

Publication number Publication date
CN108139294A (zh) 2018-06-08
CN108139294B (zh) 2020-08-14
JP6731935B2 (ja) 2020-07-29
JPWO2017061162A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
US20230222629A1 (en) Imaging system and method for imaging objects with reduced image blur
EP3889568B1 (en) Optical detection method and system, and optical device manufacturing system
JP6494205B2 (ja) 波面計測方法、形状計測方法、光学素子の製造方法、光学機器の製造方法、プログラム、波面計測装置
US8836928B2 (en) Method for measuring wavefront aberration and wavefront aberration measuring apparatus
US20100085559A1 (en) Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element
JP5841844B2 (ja) 画像処理装置及び画像処理方法
US9137526B2 (en) Image enhancement via calibrated lens simulation
JP6112909B2 (ja) シャック・ハルトマンセンサーを用いた形状計測装置、形状計測方法
US7489828B2 (en) Methods, system, and program product for the detection and correction of spherical aberration
Huang High precision optical surface metrology using deflectometry
US9228921B2 (en) Aberration estimating method, program, and image-pickup apparatus
Kang et al. Determination of optimal binary defocusing based on digital correlation for fringe projection profilometry
Fontbonne et al. Experimental validation of hybrid optical–digital imaging system for extended depth-of-field based on co-optimized binary phase masks
WO2017061162A1 (ja) 光学素子の評価値算出方法、評価値算出プログラム及び評価値算出装置
RU2680657C1 (ru) Способ определения волновых аберраций оптической системы
JP2021051038A (ja) 収差推定方法、収差推定装置、プログラムおよび記録媒体
JP2019179237A (ja) リソグラフィマスクのフォーカス位置を決定する方法及びそのような方法を実行するための計測系
US20060007395A1 (en) System and method for wavefront measurement
Kang et al. Evaluating binary defocusing quantitatively in real-time for fringe projection profilometry
JP7059406B2 (ja) 光学部材の位置調整支援装置、光学部材の位置調整支援方法、光学部材の位置調整支援プログラム、レンズ装置の製造方法
JP2021196230A (ja) 光学特性取得方法
JP2011080875A (ja) 屈折率分布の測定装置及び測定方法
JP2017513043A (ja) 局所瞳領域を用いて光学面に対して公差を設定する方法
US7755766B1 (en) Telescope interferometric maintenance evaluation tool
Eliasson Using MTF data to simulate lens performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853317

Country of ref document: EP

Kind code of ref document: A1