WO2017061087A1 - 車体傾斜装置を備えた鉄道車両および列車編成 - Google Patents

車体傾斜装置を備えた鉄道車両および列車編成 Download PDF

Info

Publication number
WO2017061087A1
WO2017061087A1 PCT/JP2016/004393 JP2016004393W WO2017061087A1 WO 2017061087 A1 WO2017061087 A1 WO 2017061087A1 JP 2016004393 W JP2016004393 W JP 2016004393W WO 2017061087 A1 WO2017061087 A1 WO 2017061087A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
exhaust
tank
compressor
internal pressure
Prior art date
Application number
PCT/JP2016/004393
Other languages
English (en)
French (fr)
Inventor
忠 山田
雄太 吉松
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US15/766,974 priority Critical patent/US10549766B2/en
Publication of WO2017061087A1 publication Critical patent/WO2017061087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • B61F5/10Bolster supports or mountings incorporating fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/10Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/20Spring action or springs
    • B60G2500/205Air-compressor operation

Definitions

  • the present invention relates to a railway vehicle equipped with a vehicle body tilting device and train formation.
  • a vehicle body tilting device has been proposed that can tilt the posture of the vehicle body relative to the carriage when the railway vehicle is traveling in a curved line.
  • a body tilting method for a railway vehicle there is an air spring type body tilting method in which an air spring is provided between a carriage and a vehicle body.
  • an air spring of a vehicle body tilting device can store compressed air (hereinafter referred to as pressurized air) supplied by a compressor mounted on a railway vehicle provided as a driving power source for a vehicle brake or a vehicle door. Connected to the main tank (Main Reservoir). When running on a curved section, communicate with the air spring on the outer gauge side and the main tank to introduce pressurized air, and at the end of running on the curved section, shut off the air spring on the outer gauge side and the main tank. Compressed air in the outer spring air spring is released into the atmosphere (hereinafter, compressed air exhausted from the air spring is referred to as exhaust pressurized air).
  • exhaust pressurized air When the running line section includes many curved sections, air supply and exhaust to the left and right air springs are frequently performed. As a result, the pressure of the pressurized air in the main tank decreases, and the response of the vehicle body tilting device decreases. .
  • the pressurized air in the main tank is used not only for the vehicle body tilting operation but also for other operations such as air brakes or horns. In such other operations, the used air is released into the atmosphere. Is done. Therefore, even if the pressurized air used in the vehicle body tilting operation is recirculated to the main tank, the internal pressure of the main tank can be reduced.
  • the exhaust pressure air in the exhaust tank is introduced into the compressor and the vehicle body tilting operation is performed, the atmosphere is introduced from the same compressor if the internal pressure of the main tank decreases due to other operations. It was necessary to switch as possible. More specifically, in the above proposal, the output portion of the three-way switching valve is connected to the upstream side of the compressor, one of the two input portions of the three-way switching valve is connected to the exhaust tank, and the other input portion is connected to the atmosphere. Connected to the introduction. Due to such a configuration, in the above proposal, the exhaust pressurized air cannot be used during the introduction of the atmosphere, and the efficiency is lowered.
  • An object of the present invention is to provide a railway vehicle and a train organization that can efficiently supply exhaust pressurized air even when the internal pressure of the main tank decreases.
  • a railway vehicle is a vehicle body tilter that inclines a vehicle body by supplying pressurized air to at least one of a pair of air springs provided between the vehicle body and the carriage frame and on both sides in the vehicle width direction.
  • a railway vehicle including a device, wherein a main tank that stores pressurized air to be supplied to the pair of air springs, and an air supply passage through which pressurized air flows between the main tank and the pair of air springs
  • a plurality of compressors for supplying pressurized air to the main tank, an air discharge passage connected to the pair of air springs for passing the exhaust pressurized air discharged from the air springs, and the air discharge passage.
  • An exhaust tank connected to and storing exhaust pressurized air discharged from each air spring, wherein the plurality of compressors include at least one first compressor that pressurizes air introduced from the atmosphere. Supplementarily it operates against the operation of the first compressor, and at least one second compressor pressurizing the exhaust pressurized air introduced from the exhaust tank.
  • the second compressor for introducing the exhaust pressurized air is provided separately from the first compressor for introducing the atmosphere, and the second compressor is used in the section where the vehicle body tilting operation needs to be continuously performed. Operates auxiliary. For this reason, even when the second compressor is operating, the atmosphere can be introduced by the first compressor independently of the operation of the second compressor. Therefore, even when the internal pressure of the main tank decreases, the operation of the second compressor is stopped. There is no need to maintain a high efficiency state.
  • FIG. 1 is a plan view showing a schematic structure of a railway vehicle in a first embodiment.
  • 6 is a graph showing operating conditions of the second compressor in the first embodiment.
  • FIG. 6 is a plan view showing a schematic structure of a railway vehicle in a second embodiment.
  • FIG. 9 is a plan view showing a schematic structure of train formation in a third embodiment.
  • FIG. 10 is a plan view showing a schematic structure of train organization in a fourth embodiment.
  • the direction in which the vehicle body extends along the traveling direction of the railway vehicle will be referred to as the vehicle longitudinal direction
  • the direction orthogonal to the traveling direction of the railway vehicle will be described as the vehicle width direction.
  • FIG. 1 is a plan view showing a schematic structure of a railway vehicle in the first embodiment.
  • the railway vehicle 1 in the present embodiment includes a vehicle body 2 on which passengers board and a carriage frame 3 that supports wheels (not shown).
  • a pair of air springs 4 provided on both sides in the vehicle width direction are provided between the vehicle body 2 and the carriage frame 3.
  • two bogie frames 3 are provided in the longitudinal direction of the vehicle with respect to one vehicle body 2, and a pair of air springs 4 are provided with respect to the single bogie frame 3.
  • Each air spring 4 has a known configuration such as a diaphragm type air spring.
  • the railway vehicle 1 is provided with a vehicle body tilting device that can tilt the posture of the vehicle body 2 with respect to the bogie frame 3 when the railway vehicle 1 travels in a curved line.
  • the vehicle body tilting device 5 includes a main tank 6 that stores air (pressurized air) supplied to the pair of air springs 4, and an air supply in which pressurized air circulates between the main tank 6 and the pair of air springs 4.
  • a passage 7 and two tilting mechanisms 20 that tilt the posture of the vehicle body 2 with respect to each bogie frame 3 using a pair of air springs 4 corresponding to each bogie frame 3 are provided.
  • the air supply passage 7 is branched so as to be connected to each air spring 4 as the tilt mechanism 20, and includes a pair of air supply passages 13 for supplying pressurized air to each air spring 4.
  • Each air supply passage 13 is provided with an air supply adjustment valve 14 for adjusting the flow rate of pressurized air to each air spring 4.
  • the air supply passage 7 is provided in parallel with the pair of air supply passages 13, and a pair of normal air supply passages 23 in which the air supply adjustment valve 14 is not provided are provided in the middle.
  • a switching valve 24 is provided between the main tank 6 and the pair of air supply passages 13 and the pair of normal air supply passages 23. The switching valve 24 is switched so that either the pair of air supply passages 13 and the pair of normal air supply passages 23 communicate with the main tank 6 as a path through which the pressurized air in the main tank 6 passes.
  • the pair of air springs 4 is connected to an air discharge passage 8 through which air discharged from each air spring 4 (exhaust pressurized air) passes.
  • An exhaust tank 9 that stores exhaust pressurized air exhausted from each air spring 4 is connected to the air discharge passage 8.
  • the air discharge passages 8 are branched so as to be connected to the air springs 4, and a pair of exhaust passages 15 for joining the exhaust pressurized air discharged from the air springs 4 to the air discharge passages 8, and exhaust gas addition after joining.
  • a recirculation passage 18 for guiding the pressurized air to the exhaust tank 9 and an exhaust pressurization air introduction passage 19 described later are included.
  • Each exhaust passage 15 is provided with an air discharge adjusting valve 16 for adjusting the flow rate of the exhaust pressurized air from each air spring 4.
  • a plurality of compressors 11 and 12 that supply pressurized air to the main tank 6 are connected to the main tank 6.
  • the plurality of compressors 11 and 12 include a first compressor 11 that pressurizes air introduced from the atmosphere, and a second compressor 12 that pressurizes exhaust pressurized air introduced from the exhaust tank 9.
  • the first compressor 11 is provided on the air introduction passage 17.
  • the air introduction passage 17 is configured to connect the main tank 6 and the outside so that air can be introduced into the main tank 6.
  • the second compressor 12 is provided on the air discharge passage 8.
  • the exhaust pressurized air introduction passage 19 is configured to connect the exhaust tank 9 and the second compressor 12 and introduce exhaust pressurized air into the main tank 6 via the second compressor 12.
  • the tilt mechanism 20 is provided for each bogie frame 3.
  • One second compressor 12 and one exhaust tank 9 are provided per vehicle.
  • the recirculation passage 18 is disposed so that the exhaust pressurized air discharged from each tilt mechanism 20 is introduced into the exhaust tank 9.
  • the reflux passage 18 may be arranged so that the exhaust pressurized air discharged from each of the tilting mechanisms 20 joins in advance before being introduced into the exhaust tank 9.
  • One main tank 6 is provided per vehicle.
  • the air supply passage 7 is disposed so as to supply pressurized air to each of the tilt mechanisms 20. Instead, there is one port for supplying pressurized air from the main tank 6 to each tilting mechanism 20, and the air supply passage 7 branches in the middle so that pressurized air can be supplied to each tilting mechanism 20. It may be arranged to do.
  • the vehicle body tilting device 5 includes a control unit 10 that performs opening control of each of the adjustment valves 14 and 16, switching control of the switching valve 24, and the like. Further, the control unit 10 can also perform on / off control of the plurality of compressors 11 and 12. That is, the control unit 10 functions as a second compressor control unit 10 a that controls the operation of the second compressor 12.
  • the control unit 10 includes a microcontroller including a RAM and a ROM.
  • signal lines between the control unit 10 and each signal transmission / reception target of the tilt mechanism 20 on the left side are shown by broken lines. A part of the signal line between each signal transmission / reception target of the tilt mechanism 20 on the other side in the vehicle longitudinal direction is omitted.
  • the main tank 6 is provided with a main tank internal pressure detector 21 for detecting the pressure of pressurized air in the main tank 6 (internal pressure of the main tank 6) P6, and the main tank 6 detected by the main tank internal pressure detector 21 is provided.
  • the internal pressure information is sent to the control unit 10.
  • the pressurized air stored in the main tank 6 is used as a drive source to the brake device, door drive device, and horn device (none of which are shown) of the railway vehicle 1 in addition to the pair of air springs 4. Supplied.
  • the control part 10 controls the several compressors 11 and 12 so that the internal pressure P6 of the main tank 6 maintains more than predetermined pressure.
  • the control unit 10 switches the switching valve 24 so that the pressurized air in the main tank 6 is sent to the pair of air springs 4 via the pair of air supply passages 13, and the body tilt is performed.
  • the switching valve 24 is switched so that the pressurized air in the main tank 6 is sent to the pair of air springs 4 via the normal air supply passage 23.
  • the pair of air springs 4 are provided with a pair of air spring internal pressure detectors 22 for detecting the internal pressure P4 of each air spring 4, and the internal pressure information of each air spring 4 detected by each air spring internal pressure detector 22 is: It is sent to the control unit 10.
  • Each air spring 4 is provided with an automatic height adjusting valve (leveling valve) 29 for automatically adjusting the height of the air spring by automatically supplying and exhausting pressurized air from each normal air supply passage 23. It has been.
  • Each air spring 4 is provided with an air spring height sensor 30 that measures the total height (air spring height) of each air spring 4.
  • the control unit 10 controls the switching valve 24 to connect the air supply passage 13 as a path through which the pressurized air passes and operate the automatic height adjustment valve 29.
  • the height of the air spring (vehicle height) is kept constant.
  • the air supply adjustment valve 14 is independently adjusted by the command signal from the control unit 10 to adjust the flow rate of the pressurized air flowing through each air supply passage 13. .
  • the opening degree of the air discharge adjusting valve 16 is independently adjusted by a command signal from the control unit 10, and the flow rate of the exhaust pressurized air flowing through each exhaust passage 15 is adjusted.
  • control unit 10 obtains the curvature and cant amount of the track at the vehicle presence position by comparing the external information detected by the own vehicle position detection device (not shown) with the track curve database (not shown), A necessary vehicle body tilt command angle is calculated based on the curvature and the cant amount. Based on the vehicle body tilt command angle, the control unit 10 sets the total height of one of the air springs 4 on the outer track side, and when the vehicle body is tilted measured by the target value and the air spring height sensor 30. Is compared with the measured value of the air spring height, and the valve opening amount of the air supply adjustment valve 14 is calculated and its command signal is output.
  • the own vehicle position detection device integrates, for example, a value obtained by multiplying the wheel rotation speed obtained by the rotary encoder by the wheel diameter as a travel distance, and an ATS (automatic train stop device) or ATC (The vehicle position is calculated from the total travel distance from the ground position of the automatic train control device.
  • the target value of the air spring height and the measured value of the air spring height sensor 30 are compared, so that the air supply adjusting valve 14 of the left air spring 4 and the air discharge of both are discharged.
  • the adjustment valve 16 is kept closed, and the air supply adjustment valve 14 of the right air spring 4 is opened, and the total height of the air spring 4 on the outer gauge side (right side) in curve traveling is determined by the turning curvature. And increase according to the amount of cant and traveling speed.
  • the vehicle body 2 is finally tilted by 1 to 2 ° with respect to the carriage frame 3 to reduce the component parallel to the vehicle body floor surface of the centrifugal force applied to the railway vehicle 1, and the vehicle body floor surface applied to the rail vehicle 1.
  • the exhaust tank 9 is provided with a tank exhaust passage 26 extending from the exhaust tank 9 to the outside.
  • An air discharge exhaust valve 27 is interposed in the tank exhaust passage 26.
  • the air discharge exhaust valve 27 is configured to open when the internal pressure P9 of the exhaust tank 9 is higher than a predetermined threshold value so that the exhaust tank 9 is opened to the atmosphere.
  • the threshold value for opening the air discharge exhaust valve 27 is set to a value lower than the lowest value assumed for the internal pressure P4 of the air spring 4.
  • a mechanical relief valve is employed as the air discharge exhaust valve 27.
  • control unit 10 controls the second compressor 12 to operate in an auxiliary manner with respect to the operation of the first compressor 11.
  • the second compressor 12 that introduces the exhaust pressurized air is provided separately from the first compressor 11 that introduces the atmosphere, and the second compressor 12 in the section where the vehicle body tilting operation needs to be performed continuously.
  • the compressor 12 is operated in an auxiliary manner. For this reason, even when the second compressor 12 is in operation, the first compressor 11 can introduce the air independently. Therefore, even when the internal pressure of the main tank 6 decreases, the second compressor 12 It is not necessary to stop the operation, and a highly efficient state can be maintained.
  • the first compressor 11 can be continuously operated even when the second compressor 12 fails, the possibility of stopping the railway vehicle 1 can be reduced.
  • the exhaust tank 9 is provided with an exhaust tank internal pressure detector 25 for detecting the pressure of the exhaust pressurized air in the exhaust tank 9 (internal pressure of the exhaust tank 9) P9.
  • the internal pressure information of the exhaust tank 9 detected in step S3 is sent to the control unit 10.
  • the control unit 10 performs second operation so as to keep the internal pressure P9 of the exhaust tank 9 at atmospheric pressure or higher in order to operate the second compressor 12 with respect to the first compressor 11. Control to stop the operation of the compressor 12 is performed. According to this, the internal pressure P9 of the exhaust tank 9 is detected, and the operation of the second compressor 12 is stopped before the detected internal pressure of the exhaust tank 9 becomes a value that is less than atmospheric pressure (negative pressure). . For example, even if the second compressor 12 can be operated from the internal pressure P6 of the main tank 6, the internal pressure P9 of the exhaust tank 9 can be negative by operating the second compressor 12. Even if the second compressor 12 is operated, the second compressor 12 cannot be operated efficiently. Therefore, by controlling the operation of the second compressor 12 so that the internal pressure P9 of the exhaust tank 9 does not become a negative pressure, the efficiency by using the second compressor 12 can be maintained high.
  • FIG. 2 is a graph showing operating conditions of the second compressor 12 in the first embodiment.
  • the fourth threshold value Pth4 When it is lower (P9 ⁇ Pth3 and P6> Pth4), the operation of the second compressor 12 is started.
  • the first compressor 11 is controlled in accordance with the internal pressure P6 of the main tank 6.
  • the control unit 10 stops the operation of the first compressor 11 when the internal pressure P6 of the main tank 6 is higher than the second threshold value Pth2, and controls the first compressor 11 when the internal pressure P6 of the main tank 6 is lower than the fourth threshold value Pth4. 1 Start compressor operation.
  • the second compressor 12 does not operate and the first Only the compressor 11 operates. That is, when the internal pressure P9 of the exhaust tank 9 is likely to become a negative pressure, the operation of the second compressor 12 is stopped in order to suppress the efficiency reduction of the second compressor 12.
  • the pressurized air is supplied to the air spring 4 using only the first compressor 11.
  • the third threshold value Pth3 is set to the third threshold value with the smallest number of vehicle body tilts (for example, once) as much as possible based on the amount of air that is filled in the exhaust tank 9 by one vehicle body tilt control. It is set to a value exceeding the threshold value Pth3.
  • the operation of the second compressor 12 is performed after the internal pressure of the main tank 6 is under a pressure that does not become excessive and the internal pressure of the exhaust tank 9 is high to some extent and the exhaust pressurized air can be efficiently discharged. Be started.
  • the second compressor 12 can be efficiently operated while the operating rate of the second compressor 12 is lowered.
  • the operating condition (P6 ⁇ Pth4) regarding the internal pressure P6 of the main tank 6 of the second compressor 12 may be the same as the operating condition of the first compressor 11 as described above, but the fourth threshold value Pth4 is set to the first compressor. It is good also as a value lower than the threshold value in 11 operation conditions. Thereby, the operation rate of the 2nd compressor 12 can be lowered
  • the vehicle body tilting device 5 may include another control unit (such as a microcontroller) that controls the operation of the second compressor 12 separately from the control unit 10, or logic that performs the operation control of the second compressor 12.
  • a circuit may be provided.
  • FIG. 3 is a plan view showing a schematic structure of the railway vehicle in the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the vehicle body tilting device 5B of the railway vehicle 1B in the present embodiment is different from that in the first embodiment in that an air release exhaust valve 27B for releasing the exhaust pressurized air from the exhaust tank 9 to the atmosphere. Is composed of a solenoid valve capable of changing the relief pressure.
  • the control unit 10 functions as an exhaust valve control unit 10b that controls the operation of the air discharge exhaust valve 27B.
  • the control unit 10 has an internal pressure P9 of the exhaust tank 9 higher than a fifth threshold value Pth5 (Pth5> Pth3). In such a case, control is performed to open the exhaust tank 9 to the outside by opening the air discharge exhaust valve 27B. Further, the control unit 10 controls the air discharge exhaust valve 27B to be closed when the internal pressure P9 of the exhaust tank 9 is lower than a sixth threshold value Pth6 that is lower than the fifth threshold value Pth5. That is, hysteresis is provided also in the operation control of the air discharge exhaust valve 27B.
  • the internal pressure P9 of the exhaust tank 9 is set to the fifth threshold value or less so that the pressurized air is discharged from the air spring 4 and discharged to the exhaust tank 9. It is possible to prevent the introduction from being disabled.
  • control unit 10 changes the fifth threshold value Pth5 and the sixth threshold value Pth6 according to the internal pressure P4 of the pair of air springs 4 when the railway vehicle 1 satisfies the predetermined condition. More specifically, the control unit 10 determines the fifth threshold value Pth5 and the fifth threshold value Pth5 according to the internal pressure P4 of the pair of air springs 4 when the internal pressure P4 of the air spring 4 detected by the air spring internal pressure detector 22 is stabilized. The sixth threshold value Pth5 is changed. For the internal pressure P4 of the air spring 4 serving as a reference, the lower value of the internal pressures P4 of the pair of air springs 4 detected from each air spring internal pressure detector 22 at a predetermined position on the travel route of the railway vehicle 1 is adopted. . A value obtained by averaging both values of the internal pressure P4 of the pair of air springs 4 may be adopted as the internal pressure P4 of the air spring 4 at a predetermined position.
  • the weight of the vehicle body 2 supported by the air spring 4 increases or decreases, and the internal pressure P4 of each air spring 4 increases or decreases accordingly.
  • the internal pressure P9 of the exhaust tank 9 is lower than the internal pressure P4 of the air spring 4 (formation of a pressure gradient). ) Must be maintained.
  • the internal pressure P9 of the exhaust tank 9 be as high as possible.
  • the control unit 10 sets the opening condition (fifth step) of the air discharge exhaust valve 27B so that the internal pressure P9 of the exhaust tank 9 can be set to a value as high as possible while setting the value to be lower than the internal pressure P4 of the air spring 4.
  • the threshold value Pth5) is changed.
  • a relational expression of the internal pressure P4 of the air spring 4 at the predetermined position, the fifth threshold value Pth5, and the sixth threshold value Pth6 is stored in the memory of the control unit 10.
  • Pth5 P4-A
  • control unit 10 After acquiring the internal pressure P4 of each air spring 4 at a predetermined position, the control unit 10 calculates each threshold value Pth5, Pth6 based on the above relational expression, and uses the calculated value to open the air discharge exhaust valve 27B. Set as valve condition and valve closing condition.
  • a storage table in which threshold values Pth5 and Pth6 to be set based on the internal pressure P4 of the air spring 4 at a predetermined position may be stored.
  • the upper limit of the internal pressure P9 of the exhaust tank 9 can be brought close to the internal pressure P4 of the air spring 4 even if the internal pressure of the air spring 4 changes depending on the boarding rate.
  • the amount of stored exhaust pressurized air (internal pressure P9 of the exhaust tank 9) can be made as high as possible.
  • the control unit 10 that performs the opening control of the adjustment valves 14 and 16 and the switching control of the switching valve 24 functions as the exhaust valve control unit 10b that controls the operation of the air discharge exhaust valve 27B.
  • the present invention is not limited to this.
  • the vehicle body tilting device 5B may include another control unit (such as a microcontroller) that controls the operation of the air discharge exhaust valve 27B separately from the control unit 10, or the operation of the air discharge exhaust valve 27B. You may provide the logic circuit which controls.
  • the predetermined condition for changing the fifth threshold value Pth5 and the sixth threshold value Pth6 will be illustrated in more detail.
  • the control unit 10 may determine that the railway vehicle 1 satisfies the predetermined condition.
  • the predetermined first speed in this condition is set to a speed close to the stop state (for example, 5 km / h) as a speed indicating the travel start state of the railway vehicle 1.
  • the control unit 10 determines that the traveling speed V of the railway vehicle 1 is once lower than the predetermined first speed (for example, 3 km).
  • control is performed when the passenger boarding door is closed by a sensor (not shown) that detects opening and closing of the passenger boarding door of the railway vehicle 1.
  • the unit 10 may determine that the railway vehicle 1 satisfies the predetermined condition. This also makes it possible to easily detect a state in which the boarding rate is relatively stable in the railway vehicle 1.
  • the third condition can also be set as an AND condition with the first condition and / or the second condition. That is, when the first condition and the third condition are satisfied, it may be determined that the railway vehicle 1 satisfies the predetermined condition. When the second condition and the third condition are satisfied, the railway vehicle 1 1 may be determined to satisfy the predetermined condition, or when all of the first to third conditions are satisfied, the railcar 1 may be determined to satisfy the predetermined condition.
  • the control unit 10 causes the railway vehicle 1 to satisfy the predetermined condition. May be determined.
  • This condition can be applied particularly in train formation in which a plurality of railway vehicles 1 that allow passengers to go to and from each other are connected.
  • the predetermined second speed in this condition is set to a speed (for example, 40 km / h) indicating a state in which the speed is increased to some extent and it is difficult for passengers to travel between the plurality of railway vehicles 1.
  • the control unit 10 causes the traveling speed V of the railway vehicle 1 to be less than a speed lower than the predetermined second speed. If not, it is determined that the condition is not satisfied.
  • the control unit 10 controls the vehicle body tilt when the traveling speed V of the railway vehicle 1 becomes a third speed (for example, 50 km / h) higher than a predetermined second speed. May be executable.
  • the fifth threshold value Pth5 and the sixth threshold value Pth6 for the internal pressure P9 of the exhaust tank 9 are always set and updated after the running of the railway vehicle 1 and before the vehicle body tilt control is started. Accordingly, the vehicle body tilt control can be performed in a state where the upper limit of the internal pressure P9 of the exhaust tank 9 corresponding to the actual state of the internal pressure P4 of the air spring 4 is set.
  • the fourth condition may be added that the railway vehicle 1 is traveling in a straight section and the air spring height is within a predetermined range set based on the reference height.
  • the control unit 10 includes a known traveling section identification unit (not shown), and is configured to identify whether the railway vehicle 1 is traveling in a straight section or a curved section. May be. By adding such conditions, it is possible to more appropriately set the fifth threshold value Pth5 and the sixth threshold value Pth6 for the internal pressure P9 of the exhaust tank 9.
  • the fourth condition can also be set as a condition combined with the first condition, the second condition, and / or the third condition. That is, any one of the first condition, the second condition, and the third condition and the fourth condition may be set as the predetermined condition, or the first condition, the second condition, and the third condition Any two of the conditions and the fourth condition may be set as the predetermined condition, or the first condition, the second condition, the third condition, and the fourth condition may be set as the predetermined condition (AND condition). Good.
  • FIG. 4 is a plan view showing a schematic structure of train formation in the third embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • first and second embodiments a configuration in which the first compressor 11 and the second compressor 12 are provided in one railway vehicle 1 is illustrated.
  • an existing railway vehicle that is, a railway vehicle provided with only the configuration of Patent Document 1 or a normal air introduction type compressor (first compressor 11), when the first and second embodiments are applied.
  • first compressor 11 a normal air introduction type compressor
  • a body tilting device for a railway vehicle that can efficiently supply exhaust pressurized air even when the internal pressure of the main tank decreases is introduced relatively easily even in an existing railway vehicle.
  • 1 illustrates an embodiment for providing a train organization that can be used.
  • air supply passage 7C and air discharge passage 8C extend over two vehicles 1Ca and 1Cb, respectively, so as to form one vehicle body tilting device 5C in units of two vehicles 1Ca and 1Cb. Configured.
  • the recirculation passage 18C between the air spring 4 and the exhaust tank 9 extends over the two vehicles 1Ca and 1Cb.
  • the 2nd compressor 12 is installed in one vehicle 1Ca of two vehicles 1Ca and 1Cb, and the 1st compressor 11 is installed in other vehicles 1Cb.
  • signal lines from the control unit 10 are not shown.
  • the control part 10 is illustrated only in one vehicle 1Ca, you may provide in each vehicle.
  • both the passages 7C and 8C are provided at one end side in the vehicle width direction. You may arrange
  • a plurality of vehicles adopting the conventional air introduction type compressor are regarded as one unit, and the compressor of at least one of the plurality of vehicles is connected to the exhaust tank 9. It replaces with the 2nd compressor 12 which pressurizes the exhaust pressurization air introduced from.
  • the vehicle body tilting device 5C can be introduced relatively easily even in an existing vehicle.
  • space efficiency can be made better than installing the first compressor 11 and the second compressor 12 in one vehicle.
  • one main tank 6 is provided for each vehicle 1Ca, 1Cb.
  • One exhaust tank 9 is also provided for each vehicle 1Ca, 1Cb.
  • the distance of the air discharge passage 8C (recirculation passage 18C) connected between each air spring 4 and each exhaust tank 9 is shortened (constant). It is possible to prevent the deviation of the exhaust speed (the deviation of the pressure gradient) in the plurality of air springs 4. For this reason, the inner diameter of the air discharge passage 8C (recirculation passage 18C) can be made smaller than the inner diameter of the air supply passage 7C. As a result, the space required for disposing the air supply passage 7C and the air discharge passage 8C (recirculation passage 18C) extending between the plurality of vehicles 1Ca, 1Cb can be reduced.
  • the inner diameter of the air discharge passage 8C between each air spring 4 and the exhaust tank 9 may be increased.
  • a plurality of air springs are used. 4 can suppress the deviation of the exhaust speed. Therefore, in this case, the exhaust tank 9 is not necessarily provided in each vehicle 1Ca, 1Cb.
  • FIG. 5 is a plan view showing a schematic structure of train formation in the fourth embodiment.
  • Train formation 51 of the present embodiment is configured to form one vehicle body tilting device 5C in units of three vehicles 1Ca, 1Cb, 1Cc. Accordingly, in the intermediate vehicle 1Cc, the air supply passage 7C and the air discharge passage 8C extend to the adjacent vehicles 1Ca and 1Cb.
  • the second compressor 12 is installed in one of the three vehicles 1Ca, 1Cb, 1Cc, and the first compressor 11 is installed in the other vehicles 1Cb, 1Cc.
  • the exhaust pressurized air is efficiently supplied even if the internal pressure of the main tank 6 is reduced, similarly to the train formation 50 in the third embodiment in which both cars are in one formation.
  • the vehicle body tilting device 5C for a railway vehicle can be introduced relatively easily even in an existing railway vehicle.
  • the 2nd compressor 12 should just be installed in at least 1 vehicle of several vehicles. Therefore, the position of the vehicle (first vehicle, intermediate vehicle, etc.) where the second compressor 12 is installed in a plurality of vehicles constituting one vehicle body tilting device 5C is not limited. Further, the ratio of the number of the second compressors 12 to the number of the first compressors 11 in a plurality of vehicles constituting one vehicle body tilting device 5C can be appropriately changed as long as at least one compressor is installed. Moreover, you may comprise one vehicle body tilting device in units of four or more vehicles. Also in this case, the ratio of the number of the second compressors 12 to the number of the first compressors 11 and the position of the vehicle where the compressors 11 and 12 are installed are not limited.
  • the air release exhaust valve 27 for releasing the exhaust pressurized air from the exhaust tank 9 to the atmosphere in FIGS. 4 and 5 is a mechanical relief valve as in the first embodiment. Although shown as being, it may be configured by an electromagnetic valve capable of changing the relief pressure as in the second embodiment.
  • the railway vehicles 1, 1B or train formations 50, 51 provided with the vehicle body tilting devices 5, 5B, 5C in the above embodiment may be bolsterless type railway vehicles as long as a pair of air springs 4 are used.
  • a railway vehicle using Further, the railway vehicles 1, 1B or train formations 50, 51 provided with the vehicle body tilting devices 5, 5B, 5C in the above embodiment may be configured such that one bogie frame 3 is provided in one vehicle. A configuration in which a plurality of pairs of air springs 4 are provided for one bogie frame 3 may be employed.
  • first compressor 11 and the second compressor 12 a vehicle in which only the first compressor 11 or the second compressor 12 is installed, and a vehicle in which both the first compressor 11 and the second compressor 12 are installed (the above-described implementation). And a train formation in which one vehicle body tilting device is formed.
  • the aspect of the vehicle body tilt control itself is not particularly limited.
  • the curvature of the vehicle body is calculated based on the detection value from the acceleration sensor or gyro sensor and the detection value from the speed sensor, and the vehicle body tilt control is performed based on the calculated value. It is good as well. It is also possible to detect the vehicle position, curvature, etc. by GPS.
  • the main tank 6 is provided in each vehicle, but the capacity may not be the same.
  • the diameter of the air pipe (MR direct pipe) communicating between the main tanks 6 is relatively large, the variation in the capacity of the main tank is acceptable.
  • the main tank 6 may be arranged in a specific vehicle in the train formation.
  • the exhaust tank 9 is provided in each vehicle in the third and fourth embodiments, the present invention is not limited to this.
  • the exhaust tank 9 may be arranged in a specific vehicle in the train formation.
  • the above aspect is useful for efficiently supplying the exhaust pressurized air even when the internal pressure of the main tank decreases in a railway vehicle and train formation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一対の空気バネに供給する加圧エアを貯留するメインタンクと、メインタンクと一対の空気バネとの間で加圧エアが流通するエア供給通路と、メインタンクに加圧エアを供給する複数のコンプレッサと、一対の空気バネに接続され、該空気バネから排出された排気加圧エアを通過させるエア排出通路と、エア排出通路に接続され、各空気バネから排出された排気加圧エアを貯留する排気タンクと、を備え、複数のコンプレッサは、大気から導入した空気を加圧する少なくとも1つの第1コンプレッサと、第1コンプレッサの作動に対して補助的に作動し、排気タンクから導入した排気加圧エアを加圧する少なくとも1つの第2コンプレッサとを含む。

Description

車体傾斜装置を備えた鉄道車両および列車編成
 本発明は、車体傾斜装置を備えた鉄道車両および列車編成に関する。
 鉄道車両の曲線走行時に台車に対して車体の姿勢を傾斜可能な車体傾斜装置が提案されている。このような鉄道車両の車体傾斜方式として、台車と車体との間に空気バネが設けられた空気バネ式車体傾斜方式が存在している。
 一般に、車体傾斜装置の空気バネは、車両のブレーキや車両ドア等の駆動動力源として設けられた鉄道車両に搭載されたコンプレッサによって供給される圧縮空気(以下、加圧エアと言う)を貯留可能なメインタンク(Main Reservoir)に接続される。曲線区間走行時は、外軌側の空気バネとメインタンクとを連通して加圧エアを導入し、曲線区間走行終了時は、外軌側の空気バネとメインタンクとの間を遮断すると共に外軌側の空気バネ内の圧縮空気を大気中へ放出している(以下、空気バネ内から排気される圧縮空気を排気加圧エアと言う)。走行線区に曲線区間を多く含む場合、左右の空気バネに対する給排気が頻繁に行われ、その結果、メインタンク内の加圧エアの圧力が減少し、車体傾斜装置の作動応答性が低下する。
 このような車体傾斜装置の作動応答性の低下を防止するために、空気バネ内から排気される排気加圧エアを排気タンクに貯留し、当該排気加圧エアを再度メインタンクに還流させる構成が提案されている(特許文献1参照)。
特許第5513175号公報
 ここで、メインタンク内の加圧エアは、車体傾斜動作だけでなく、エアブレーキまたは警笛等の他の動作にも使用され、このような他の動作では、使用された空気が大気中へ放出される。したがって、車体傾斜動作において使用される加圧エアを再度メインタンクに還流させた場合であっても、メインタンクの内圧は低下し得る。
 これに関して、上記提案においては、排気タンク内の排気加圧エアをコンプレッサに導入して車体傾斜動作を行っている際に、他の動作によってメインタンクの内圧が下がると、同じコンプレッサから大気を導入可能なように切換える必要があった。より具体的には、上記提案では、三方切換弁の出力部がコンプレッサの上流側に接続され、三方切換弁の2つの入力部のうちの一方が排気タンクに接続され、他方の入力部が大気導入部に接続されている。このような構成のため、上記提案において、大気導入中は、排気加圧エアを使用することができず効率が低下する。
 本発明の目的は、メインタンクの内圧が低下しても排気加圧エアの供給を効率的に行うことができる鉄道車両および列車編成を提供することである。
 本発明の一態様に係る鉄道車両は、車体と台車枠との間であって車幅方向両側に設けられた一対の空気バネの少なくとも一方に加圧エアを供給して車体を傾斜させる車体傾斜装置を備えた鉄道車両であって、前記一対の空気バネに供給する加圧エアを貯留するメインタンクと、前記メインタンクと前記一対の空気バネとの間で加圧エアが流通するエア供給通路と、前記メインタンクに加圧エアを供給する複数のコンプレッサと、前記一対の空気バネに接続され、該空気バネから排出された排気加圧エアを通過させるエア排出通路と、前記エア排出通路に接続され、各空気バネから排出された排気加圧エアを貯留する排気タンクと、を備え、前記複数のコンプレッサは、大気から導入した空気を加圧する少なくとも1つの第1コンプレッサと、前記第1コンプレッサの作動に対して補助的に作動し、前記排気タンクから導入した前記排気加圧エアを加圧する少なくとも1つの第2コンプレッサとを含んでいる。
 上記構成によれば、大気を導入する第1コンプレッサとは別に排気加圧エアを導入する第2コンプレッサが設けられており、車体傾斜動作を連続的に行う必要がある区間においては第2コンプレッサが補助的に作動する。このため、第2コンプレッサの作動時であっても、それとは独立して第1コンプレッサにより大気を導入することができるため、メインタンクの内圧が下がった場合でも、第2コンプレッサの作動を停止させる必要がなく効率が高い状態を維持することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、鉄道車両および列車編成において、メインタンクの内圧が低下しても排気加圧エアの供給を効率的に行うことができる。
実施の形態1における鉄道車両の概略構造を示す平面図である。 実施の形態1における第2コンプレッサの作動条件を示すグラフである。 実施の形態2における鉄道車両の概略構造を示す平面図である。 実施の形態3における列車編成の概略構造を示す平面図である。 実施の形態4における列車編成の概略構造を示す平面図である。
 以下に、一実施の形態について図面とともに説明する。なお、以下の説明において、鉄道車両の進行方向に沿って車体が延びる方向を車両長手方向とし、鉄道車両の進行方向に対して直交する方向を車幅方向として説明する。
 [実施の形態1]
 図1は実施の形態1における鉄道車両の概略構造を示す平面図である。図1に示すように、本実施の形態における鉄道車両1は、乗客が搭乗する車体2と、車輪(図示せず)を支持する台車枠3とを備える。車体2と台車枠3との間には、車幅方向両側に設けられた一対の空気バネ4が設けられている。鉄道車両1には、1つの車体2に対して車両長手方向に2つの台車枠3が設けられ、1つの台車枠3に対して一対の空気バネ4がそれぞれ設けられる。各空気バネ4は、例えばダイヤフラム式の空気バネ等、公知の構成が採用される。
 鉄道車両1には、鉄道車両1の曲線走行時に台車枠3に対して車体2の姿勢を傾斜可能な車体傾斜装置を備えている。車体傾斜装置5は、一対の空気バネ4に給気する空気(加圧エア)を貯留するメインタンク6と、メインタンク6と一対の空気バネ4との間で加圧エアが流通するエア供給通路7と、各台車枠3に対応する一対の空気バネ4を用いて各台車枠3に対する車体2の姿勢を傾斜させる2つの傾斜機構20と、を備えている。
 エア供給通路7は、傾斜機構20として、各空気バネ4に接続されるように分岐され、加圧エアを各空気バネ4に供給する一対の給気通路13を含んでいる。各給気通路13には、各空気バネ4への加圧エアの流量を調整するためのエア供給用調整弁14が設けられている。さらに、エア供給通路7は、一対の給気通路13に並行して設けられ、途中にエア供給用調整弁14が設けられない一対の平常時用給気通路23が設けられている。エア供給通路7には、メインタンク6と一対の給気通路13および一対の平常時用給気通路23との間に切換え弁24が設けられている。切換え弁24は、メインタンク6内の加圧エアが通過する経路として一対の給気通路13および一対の平常時用給気通路23の何れかとメインタンク6とを連通するように切り換えられる。
 一対の空気バネ4には、各空気バネ4から排出された空気(排気加圧エア)を通過させるエア排出通路8が接続されている。エア排出通路8には、各空気バネ4から排気された排気加圧エアを貯留する排気タンク9が接続されている。エア排出通路8は、各空気バネ4に接続されるように分岐され、各空気バネ4から排出された排気加圧エアをエア排出通路8に合流させる一対の排気通路15、合流後の排気加圧エアを排気タンク9に導く還流通路18および後述する排気加圧エア導入通路19を含んでいる。各排気通路15には、各空気バネ4からの排気加圧エアの流量を調整するためのエア排出用調整弁16が設けられる。
 メインタンク6には、当該メインタンク6に加圧エアを供給する複数のコンプレッサ11,12が接続されている。複数のコンプレッサ11,12は、大気から導入した空気を加圧する第1コンプレッサ11と、排気タンク9から導入した排気加圧エアを加圧する第2コンプレッサ12とを含む。
 第1コンプレッサ11は、大気導入通路17上に設けられる。大気導入通路17は、メインタンク6と外部とを接続し、メインタンク6に大気を導入可能に構成される。第2コンプレッサ12は、エア排出通路8上に設けられる。排気加圧エア導入通路19は、排気タンク9と第2コンプレッサ12とを接続し、第2コンプレッサ12を介して排気加圧エアをメインタンク6に導入するよう構成されている。
 本実施の形態においては、車両長手方向に並んだ2つの台車枠3があり、傾斜機構20が台車枠3ごとに設けられる。第2コンプレッサ12および排気タンク9は、一車両あたりに1つ設けられる。図1の例では、還流通路18は、各傾斜機構20から排出された排気加圧エアがそれぞれ排気タンク9に導入されるように配設されている。これに代えて、還流通路18は、各傾斜機構20から排出された排気加圧エアが予め合流してから排気タンク9に導入されるように配設されてもよい。
 メインタンク6は、一車両あたりに1つ設けられる。図1の例では、エア供給通路7は、各傾斜機構20へそれぞれ加圧エアを供給するように配設されている。これに代えて、メインタンク6から各傾斜機構20へ加圧エアを供給するためのポートは1つとし、エア供給通路7が各傾斜機構20へ加圧エアを供給可能なように途中で分岐するように配設されてもよい。
 車体傾斜装置5は、各調整弁14,16の開度制御、切換え弁24の切換え制御等を行う制御部10を備えている。さらに、制御部10は、複数のコンプレッサ11,12のオン/オフ制御をも行い得る。すなわち、制御部10は、第2コンプレッサ12の作動制御を行う第2コンプレッサ制御部10aとして機能する。制御部10は、RAMおよびROM等を含むマイクロコントローラ等により構成される。
 なお、図1においては、制御部10と紙面左側(車両長手方向一方側)の傾斜機構20の各信号送受信対象との間の信号線が破線で示されているが、制御部10と紙面右側(車両長手方向他方側)の傾斜機構20の各信号送受信対象との間の信号線は一部省略されている。
 メインタンク6には、メインタンク6内の加圧エアの圧力(メインタンク6の内圧)P6を検出するメインタンク内圧検出器21が設けられ、メインタンク内圧検出器21で検出されたメインタンク6の内圧情報は、制御部10に送られる。ここで、メインタンク6に貯留された加圧エアは、一対の空気バネ4の他に、鉄道車両1の制動装置、ドア駆動装置、および警笛装置(何れも図示せず)等へ駆動源として供給される。このため、車体傾斜装置5(一対の空気バネ4)によってメインタンク6内の加圧エアが利用されない状態でもメインタンク6内の加圧エアが他の装置へ供給されることにより消費される場合がある。このため、制御部10は、メインタンク6の内圧P6が所定圧力以上を維持するように複数のコンプレッサ11,12を制御する。
 制御部10は、車体傾斜制御を行う場合には、メインタンク6内の加圧エアが一対の給気通路13を介して一対の空気バネ4に送られるように切換え弁24を切り換え、車体傾斜制御を行わない場合(平常時)には、メインタンク6内の加圧エアが平常時用給気通路23を介して一対の空気バネ4に送られるように切換え弁24を切り換える。
 一対の空気バネ4には、各空気バネ4の内圧P4を検出する一対の空気バネ内圧検出器22が設けられ、各空気バネ内圧検出器22で検出された各空気バネ4の内圧情報は、制御部10に送られる。また、各空気バネ4には、各平常時用給気通路23から自動的に加圧エアを給排気して空気バネ高さを調整する自動高さ調整弁(レべリングバルブ)29が設けられている。また、各空気バネ4には、各空気バネ4の全高(空気バネ高さ)を計測する空気バネ高さセンサ30が設けられている。車体傾斜制御を行わない場合には、制御部10は、切換え弁24を制御して、加圧エアが通過する経路として給気通路13を連通させて、自動高さ調整弁29を動作させることにより、空気バネ高さ(車高)が一定に保たれる。
 車体傾斜制御を行う場合には、エア供給用調整弁14は、制御部10からの指令信号によりそれぞれ独立して開度調整され、各給気通路13を流れる加圧エアの流量が調整される。同様に、エア排出用調整弁16も、制御部10からの指令信号により独立して開度調整され、各排気通路15を流れる排気加圧エアの流量が調整される。
 例えば、制御部10は、自車位置検出装置(図示せず)で検出された外部情報を線路曲線データベース(図示せず)と対照することにより車両存在位置における軌道の曲率、カント量を求め、その曲率、カント量に基づいて必要な車体傾斜指令角を算出する。制御部10は、この車体傾斜指令角に基づいて、外軌側となる何れか一方の空気バネ4の全高を設定し、かかる目標値と、空気バネ高さセンサ30により計測された車体傾斜時の空気バネ高さの計測値とを比較することにより、エア供給用調整弁14の開弁量を算出し、その指令信号を出力する。
 自車位置検出装置は、例えばロータリエンコーダにより得られた車輪回転数に車輪径を乗じて得た値を走行距離として積算し、軌道の近傍に設置されたATS(自動列車停止装置)やATC(自動列車制御装置)の地上子位置からの積算走行距離によって自車位置を算出する。
 例えば左曲線走行のとき、空気バネ高さの目標値と、空気バネ高さセンサ30の計測値とを比較することにより、左方の空気バネ4のエア供給用調整弁14と双方のエア排出用調整弁16を閉弁状態に保持するとともに、右方の空気バネ4のエア供給用調整弁14を開作動し、曲線走行における外軌側(右方)の空気バネ4の全高を旋回曲率とカント量と走行速度とに応じて高くする。これにより、車体2を台車枠3に対して最終的に1~2°傾斜させて、鉄道車両1に加わる遠心力の車体床面に平行な成分を低減させ、鉄道車両1に加わる車体床面に垂直な成分の力を増大させる。車体傾斜制御を終了する場合には、空気バネ4の全高が高くなった側のエア排出用調整弁16が開弁され、対応する空気バネ4の高さが平常時の高さに収まるように調整される。 排気タンク9には、当該排気タンク9から外部に延びるタンク排気通路26が設けられている。タンク排気通路26には、エア放出用排気弁27が介装されている。エア放出用排気弁27は、排気タンク9の内圧P9が所定のしきい値より高い場合に弁開して排気タンク9が大気に開放されるように構成されている。エア放出用排気弁27の弁開のためのしきい値は、空気バネ4の内圧P4において想定される最低値より低い値に設定される。エア放出用排気弁27は、例えば機械式のリリーフ弁が採用される。空気バネ4の内圧P4が排気タンク9の内圧P9より高い状態を維持することにより空気バネ4から排気された排気加圧エアを排気タンク9へスムーズに移動させることができる。
 ここで、制御部10は、第2コンプレッサ12が、第1コンプレッサ11の作動に対して補助的に作動するように制御する。
 上記構成によれば、大気を導入する第1コンプレッサ11とは別に排気加圧エアを導入する第2コンプレッサ12が設けられており、車体傾斜動作を連続的に行う必要がある区間においては第2コンプレッサ12が補助的に作動する。このため、第2コンプレッサ12の作動時であっても、それとは独立して第1コンプレッサ11により大気を導入することができるため、メインタンク6の内圧が下がった場合でも、第2コンプレッサ12の作動を停止させる必要がなく効率が高い状態を維持することができる。
 さらに、第2コンプレッサ12の故障時においても、第1コンプレッサ11を継続的に作動させることができるため、鉄道車両1を停止させる可能性を低減することができる。
 さらに、第2コンプレッサ12の稼働率を下げることにより、第2コンプレッサ12の連続的な熱の発生を防止することができ、第2コンプレッサ12を長寿命化することができる。
 本実施の形態において、排気タンク9には、排気タンク9内の排気加圧エアの圧力(排気タンク9の内圧)P9を検出する排気タンク内圧検出器25が設けられ、排気タンク内圧検出器25で検出された排気タンク9の内圧情報は、制御部10に送られる。
 制御部10(第2コンプレッサ制御部10a)は、第2コンプレッサ12を第1コンプレッサ11に対して補助的に作動させるために、排気タンク9の内圧P9を大気圧以上に保つように、第2コンプレッサ12の作動を停止する制御を行う。これによれば、排気タンク9の内圧P9を検出し、検出された排気タンク9の内圧が大気圧未満(負圧)になるような値になる前に第2コンプレッサ12の作動が停止される。例えば、メインタンク6の内圧P6からは第2コンプレッサ12を作動可能な状況であっても、第2コンプレッサ12を作動させることにより排気タンク9の内圧P9が負圧になるような状況であれば、第2コンプレッサ12を作動させても効率的に第2コンプレッサ12を動作させることができない。したがって、排気タンク9の内圧P9が負圧にならないように、第2コンプレッサ12の作動を停止制御することにより、第2コンプレッサ12を用いることによる効率を高く維持することができる。
 第2コンプレッサ12の作動制御についてより具体的に説明する。図2は実施の形態1における第2コンプレッサ12の作動条件を示すグラフである。制御部10は、排気タンク9の内圧P9が第1しきい値Pth1より低い場合、または、メインタンク6の内圧P6が第1しきい値Pth1より高い第2しきい値Pth2より高い場合(P9<Pth1またはP6>Pth2)に、第2コンプレッサ12の作動を停止する。第1しきい値Pth1は、排気タンク9の内圧P9が負圧にならない値(例えばPth1=25KpaG)に設定される。また、第2しきい値Pth2は、メインタンク6の内圧P6が上限値にならない値(例えばPth2=880KpaG)に設定される。
 一方、排気タンク9の内圧P9が第1しきい値Pth1より高い第3しきい値Pth3より高い場合、かつ、メインタンク6の内圧P6が第2しきい値Pth2より低い第4しきい値Pth4より低い場合(P9<Pth3かつP6>Pth4)に、第2コンプレッサ12の作動を開始する。第3しきい値Pth3は、第1しきい値Pth1より所定の不感帯分低い値(例えばPth3=50KpaG)に設定される。また、第4しきい値Pth4は、第2しきい値Pth2より所定の不感帯分低い値(例えばPth4=780KpaG)に設定される。このように、第2コンプレッサ12の作動開始および停止条件にはヒステリシスが設けられる。
 また、第1コンプレッサ11は、メインタンク6の内圧P6に応じて作動制御される。制御部10は、メインタンク6の内圧P6が第2しきい値Pth2より高い場合に第1コンプレッサ11の作動を停止し、メインタンク6の内圧P6が第4しきい値Pth4より低い場合に第1コンプレッサの作動を開始する。
 この場合、メインタンク6の内圧P6が第4しきい値Pth4より低くても、排気タンク9の内圧P9が第3しきい値Pth3以下であれば、第2コンプレッサ12は作動せず、第1コンプレッサ11のみ作動する。すなわち、排気タンク9の内圧P9が負圧になりそうな場合には、第2コンプレッサ12の効率低下抑制のために、第2コンプレッサ12の作動が停止した状態となる。傾斜区間において車体傾斜制御が開始されると、第1コンプレッサ11のみを用いて空気バネ4に加圧エアが供給される。この結果、空気バネ4から排出された排気加圧エアが排気タンク9に充填されると排気タンク9の内圧P9が上昇する。排気タンク9の内圧P9が第3しきい値Pth3より高くなると第2コンプレッサ12の作動条件が成立するため、第2コンプレッサ12を効率的に動作させることができる。したがって、第3しきい値Pth3は、1回の車体傾斜制御で排気タンク9に充填される空気量(による内圧上昇値)に基づいて、なるべく少ない車体傾斜回数(例えば1回)で当該第3しきい値Pth3を超えるような値に設定される。
 また、メインタンク6の内圧P6が過剰になりそうな場合(P6>Pth2)には、メインタンク6およびメインタンク6から空気供給を受ける他の空気圧機器の過剰な負荷抑制のために、第2コンプレッサ12の作動が停止する。
 このように、メインタンク6の内圧が過剰とならない圧力下であり、かつ、排気タンク9の内圧がある程度高く、効率よく排気加圧エアを吐出できる状態になってから第2コンプレッサ12の作動が開始される。このような制御ロジックを用いて第2コンプレッサ12の作動または停止が制御されることにより、第2コンプレッサ12の稼働率を下げつつ、第2コンプレッサ12を効率的に作動させることができる。
 なお、第2コンプレッサ12のメインタンク6の内圧P6に関する作動条件(P6<Pth4)は、上記のように第1コンプレッサ11の作動条件と同じでもよいが、第4しきい値Pth4を第1コンプレッサ11の作動条件におけるしきい値より低い値としてもよい。これにより、第2コンプレッサ12の稼働率を下げ、第2コンプレッサ12を長寿命化することができる。
 本実施の形態において、各調整弁14,16の開度制御、切換え弁24の切換え制御等を行う制御部10が第2コンプレッサ12の作動制御を行う第2コンプレッサ制御部10aとして機能する態様について説明したが、これに限られない。例えば、車体傾斜装置5は、制御部10とは別に第2コンプレッサ12の作動制御を行う他の制御部(マイクロコントローラ等)を有してもよいし、第2コンプレッサ12の作動制御を行う論理回路を備えていてもよい。
 [実施の形態2]
 図3は実施の形態2における鉄道車両の概略構造を示す平面図である。本実施の形態において上記実施の形態1と同様の構成については同じ符号を付し説明を省略する。図3に示すように、本実施の形態における鉄道車両1Bの車体傾斜装置5Bが実施の形態1と異なる点は、排気タンク9から排気加圧エアを大気開放するためのエア放出用排気弁27Bがリリーフ圧を変化させることができる電磁弁で構成されていることである。
 制御部10は、エア放出用排気弁27Bの作動制御を行う排気弁制御部10bとして機能し、制御部10は、排気タンク9の内圧P9が第5しきい値Pth5(Pth5>Pth3)より高い場合に、エア放出用排気弁27Bを開いて排気タンク9を外部に開放するように制御する。また、制御部10は、排気タンク9の内圧P9が第5しきい値Pth5より低い第6しきい値Pth6より低い場合に、エア放出用排気弁27Bを閉じるように制御する。すなわち、エア放出用排気弁27Bの作動制御においてもヒステリシスが設けられている。
 本実施の形態によれば、実施の形態1と同様に、排気タンク9の内圧P9を第5しきい値以下にすることで、加圧エアの空気バネ4からの排出および排気タンク9への導入が行えなくなるのを防止することができる。
 さらに、制御部10は、鉄道車両1が所定条件を満たす場合、一対の空気バネ4の内圧P4に応じて第5しきい値Pth5および第6しきい値Pth6を変化させる。より具体的には、制御部10は、空気バネ内圧検出器22により検出された空気バネ4の内圧P4が安定したときの一対の空気バネ4の内圧P4に応じて第5しきい値Pth5および第6しきい値Pth5を変化させる。基準となる空気バネ4の内圧P4は、鉄道車両1の走行経路の所定位置において各空気バネ内圧検出器22から検出される一対の空気バネ4の内圧P4のうち低い方の値が採用される。なお、一対の空気バネ4の内圧P4の双方の値を平均した値を所定位置における空気バネ4の内圧P4として採用してもよい。
 各鉄道車両1において乗車率が増減すると空気バネ4が支持する車体2の重量が増減するため、それに応じて各空気バネ4の内圧P4が増減する。前述の通り、空気バネ4から排気された排気加圧エアを排気タンク9へスムーズに移動させるためには、排気タンク9の内圧P9は、空気バネ4の内圧P4より低い状態(圧力勾配の形成)を維持する必要がある。しかし、第2コンプレッサ12を用いた排気加圧エアのメインタンク6への供給をより効率的に行うためには、排気タンク9の内圧P9は、なるべく高い値とすることが望ましい。
 そこで、制御部10は、排気タンク9の内圧P9を空気バネ4の内圧P4より低い値としつつなるべく高い値とすることができるように、エア放出用排気弁27Bの開弁条件(第5しきい値Pth5)を変更する。例えば、制御部10のメモリに、所定位置における空気バネ4の内圧P4、第5しきい値Pth5、および第6しきい値Pth6の関係式が記憶される。例えばPth5=P4-A、Pth6=Pth5-B(A,Bは予め定められる定数)が記憶される。制御部10は、所定位置における各空気バネ4の内圧P4を取得した後、上記関係式に基づいて各しきい値Pth5,Pth6を算出し、算出された値をエア放出用排気弁27Bの開弁条件および閉弁条件として設定する。
 このような関係式の代わりに、所定位置における空気バネ4の内圧P4に基づいて設定されるべき各しきい値Pth5,Pth6がそれぞれ定められる記憶テーブルが記憶されてもよい。
 このような構成によれば、乗車率によって空気バネ4の内圧が変化しても、排気タンク9の内圧P9の上限を空気バネ4の内圧P4に近付けることができるため、第2コンプレッサ12のための排気加圧エアの貯留量(排気タンク9の内圧P9)を可能な限り高くすることができる。
 本実施の形態において、各調整弁14,16の開度制御、切換え弁24の切換え制御等を行う制御部10がエア放出用排気弁27Bの作動制御を行う排気弁制御部10bとして機能する態様について説明したが、これに限られない。例えば、車体傾斜装置5Bは、制御部10とは別にエア放出用排気弁27Bの作動制御を行う他の制御部(マイクロコントローラ等)を有してもよいし、エア放出用排気弁27Bの作動制御を行う論理回路を備えていてもよい。
 第5しきい値Pth5および第6しきい値Pth6を変化させる所定条件についてより詳しく例示する。例えば、第1の条件として、鉄道車両1の走行速度Vが所定の第1速度以上となった場合に、制御部10は、鉄道車両1が所定条件を満たすと判定してもよい。本条件における所定の第1速度は、鉄道車両1の走行開始状態を示す速度として停止状態に近い速度(例えば5km/h)に設定される。なお、チャタリング動作の発生を防止するために、一度、第1の条件を満たした後は、制御部10は、鉄道車両1の走行速度Vが一旦当該所定の第1速度より低い速度(例えば3km/h)未満になってからでないと条件を満たさないと判定する。これにより、例えば、停止状態から走行速度Vが所定の第1速度以上となったことをもって、停車駅からの鉄道車両1の出発を容易に検出できる。したがって、鉄道車両1において乗車率が比較的安定している状態を容易に検出できる。
 これに加えてまたはこれに代えて、例えば、第2の条件として、鉄道車両1の乗客乗降用ドアの開閉を検知するセンサ(図示せず)により、乗客乗降用ドアが閉じた場合に、制御部10は、鉄道車両1が所定条件を満たすと判定してもよい。これによっても、鉄道車両1において乗車率が比較的安定している状態を容易に検出できる。
 また、例えば、第3の条件として、鉄道車両1が予め記憶された所定の停車駅に到着した場合に、制御部10は、鉄道車両1が所定条件を満たすと判定してもよい。例えば、制御部10には、乗客の乗降があり得る停車駅が予め記憶されており、鉄道車両1が停車した場合に、制御部10が当該予め記憶された停車駅か否かを判定する。例えば制御部10は、停車駅を認識することができる公知の車両モニタ装置(図示せず)から停車駅情報を鉄道車両1の停車時に受信し、当該停車駅が予め記憶されている所定の停車駅か否かを判定する。なお、鉄道車両1が停車したことは、走行速度V=0かつ乗客乗降用ドアが開状態であることを条件としてもよい。
 第3の条件も、第1の条件および/または第2の条件とのAND条件として設定できる。すなわち、第1の条件かつ第3の条件が成立した場合に、鉄道車両1が所定条件を満たすと判定されてもよいし、第2の条件かつ第3の条件が成立した場合に、鉄道車両1が所定条件を満たすと判定されてもよいし、第1から第3の条件がすべて成立した場合に、鉄道車両1が所定条件を満たすと判定されてもよい。
 また、例えば、第4の条件として、鉄道車両1の走行速度Vが安定的な走行状態を示す所定の第2速度以上となった場合に、制御部10は、鉄道車両1が所定条件を満たすと判定してもよい。本条件は、特に互いに乗客の行き来が可能な複数の鉄道車両1が連結された列車編成において適用され得る。本条件における所定の第2速度は、速度がある程度速くなり、複数の鉄道車両1間で乗客の行き来が生じ難い状態を示す速度(例えば40km/h)に設定される。なお、チャタリング動作の発生を防止するために、一度第4の条件を満たした後は、制御部10は、鉄道車両1の走行速度Vが一旦当該所定の第2速度より低い速度未満になってからでないと条件を満たさないと判定する。
 さらに、第4の条件を採用する場合、制御部10は、鉄道車両1の走行速度Vが所定の第2速度より高い第3速度(例えば50km/h)以上となった場合に、車体傾斜制御を実行可能としてもよい。この場合、鉄道車両1の走行開始後、車体傾斜制御が開始される前に、必ず排気タンク9の内圧P9についての第5しきい値Pth5および第6しきい値Pth6が設定更新される。したがって、空気バネ4の内圧P4の実情に応じた排気タンク9の内圧P9の上限が設定された状態で車体傾斜制御を行うことができる。
 さらに、第4の条件には、鉄道車両1が直線区間を走行中かつ空気バネ高さが基準高さに基づいて設定される所定範囲内であることが付加されてもよい。この場合、例えば、制御部10は、公知の走行区間識別部(図示せず)を備えており、鉄道車両1が直線区間を走行しているか曲線区間を走行しているかを識別するように構成されてもよい。このような条件を付加することにより、排気タンク9の内圧P9についての第5しきい値Pth5および第6しきい値Pth6の設定をより適切に行うことができる。
 第4の条件も、第1の条件、第2の条件および/または第3の条件と組み合わせた条件として設定できる。すなわち、第1の条件、第2の条件および第3の条件のうちの何れか1つと、第4の条件とを所定条件としてもよいし、第1の条件、第2の条件および第3の条件のうちの何れか2つと、第4の条件とを所定条件としてもよいし、第1の条件、第2の条件、第3の条件および第4の条件を所定条件(AND条件)としてもよい。
 [実施の形態3]
 図4は実施の形態3における列車編成の概略構造を示す平面図である。本実施の形態において上記実施の形態1と同様の構成については同じ符号を付し説明を省略する。
 上記実施の形態1および2には、一の鉄道車両1に第1コンプレッサ11および第2コンプレッサ12を備えた構成が例示されている。しかし、既存の鉄道車両、すなわち、特許文献1の構成または通常の大気導入型のコンプレッサ(第1コンプレッサ11)のみを備えた鉄道車両において、上記実施の形態1および2を適用しようとした場合、既存の鉄道車両のレイアウトではさらに第2コンプレッサ12を追加することがスペース上難しい場合がある。
 そこで、本実施の形態では、メインタンクの内圧が低下しても排気加圧エアの供給を効率的に行うことができる鉄道車両の車体傾斜装置を、既存の鉄道車両でも比較的容易に導入することができる列車編成を提供するための態様を例示する。
 本実施の形態における列車編成50は、エア供給通路7Cおよびエア排出通路8Cが、それぞれ、2つの車両1Ca,1Cbにわたって延び、2つの車両1Ca,1Cb単位で1つの車体傾斜装置5Cを形成するように構成される。本実施の形態では、エア排出通路8Cのうち、空気バネ4と排気タンク9との間の還流通路18Cが2つの車両1Ca,1Cbにわたって延びている。そして、2つの車両1Ca,1Cbのうちの一の車両1Caに第2コンプレッサ12が設置され、他の車両1Cbに第1コンプレッサ11が設置されている。なお、図4においては制御部10からの信号線は図示を省略している。また、制御部10は、一の車両1Caのみに図示しているが、各車両に設けられてもよい。また、エア供給通路7Cおよびエア排出通路8Cは、図4には車幅方向両端側に配設されるように図示されているが、両通路7C,8Cが車幅方向の何れか一端側に配設されてもよいし、車幅方向中央部に配設されてもよい。
 このように、本実施の形態における列車編成50においては、従来の大気導入型コンプレッサを採用する複数の車両を1ユニットとして、当該複数の車両のうちの少なくとも一の車両のコンプレッサを、排気タンク9から導入した排気加圧エアを加圧する第2コンプレッサ12に置き換えている。これにより、一の車両において、新たに第2コンプレッサ12を設置するスペースを設ける必要がなく、既存の車両においても本車体傾斜装置5Cを比較的容易に導入することができる。また、一の車両に第1コンプレッサ11および第2コンプレッサ12を設置するよりもスペース効率を良好にすることができる。
 なお、メインタンク6は、各車両1Ca,1Cbに1つずつ設けられる。また、排気タンク9も、各車両1Ca,1Cbにそれぞれ1つずつ設けられる。
 排気タンク9が各車両1Ca,1Cbに設けられることにより、各空気バネ4と各排気タンク9との間に接続されるエア排出通路8C(還流通路18C)の距離を短く(一定に)することができ、複数の空気バネ4における排気速度の偏り(圧力勾配の偏り)を防止することができる。このため、さらに、エア排出通路8C(還流通路18C)の内径をエア供給通路7Cの内径に比べて小さくすることができる。これにより、複数の車両1Ca,1Cb間に延びるエア供給通路7Cおよびエア排出通路8C(還流通路18C)の配設に要するスペースを小さくすることができる。
 排気タンク9を各車両1Ca,1Cbに設けることに加えてまたはこれに代えて、各空気バネ4と排気タンク9との間のエア排出通路8Cの内径を大きくしてもよい。この場合には、各空気バネ4と排気タンク9との間の距離が長くなっていても(各空気バネ4と排気タンク9との間の各距離が異なっていても)、複数の空気バネ4における排気速度の偏りを抑制することができる。したがって、この場合には、各車両1Ca,1Cbに排気タンク9を必ずしも設けなくてもよい。
 なお、本実施の形態において、2両編成の場合を説明したが、これに限られない。本実施の形態における2両を1ユニットとして、複数ユニットを連結した列車編成としてもよい。
 [実施の形態4]
 図5は実施の形態4における列車編成の概略構造を示す平面図である。本実施の形態において上記実施の形態3と同様の構成については同じ符号を付し説明を省略する。本実施の形態の列車編成51は、3つの車両1Ca,1Cb,1Cc単位で1つの車体傾斜装置5Cを形成するように構成される。したがって、中間車1Ccにおいて、エア供給通路7Cおよびエア排出通路8Cが、隣接する各車両1Ca,1Cbに延びている。そして、3つの車両1Ca,1Cb,1Ccのうちの一の車両1Caに第2コンプレッサ12が設置され、他の車両1Cb,1Ccに第1コンプレッサ11が設置されている。
 本実施の形態における列車編成51においても、2両1編成である実施の形態3における列車編成50と同様に、メインタンク6の内圧が低下しても排気加圧エアの供給を効率的に行うことができる鉄道車両の車体傾斜装置5Cを、既存の鉄道車両でも比較的容易に導入することができる効果を奏する。
 なお、本実施の形態において、3両編成の場合を説明したが、これに限られない。本実施の形態における3両を1ユニットとして、複数ユニットを連結した列車編成としてもよい。
 なお、複数の車両のうちの少なくとも一の車両に第2コンプレッサ12が設置されればよい。したがって、1つの車体傾斜装置5Cを構成する複数の車両において第2コンプレッサ12が設置される車両の位置(先頭車、中間車等)は、限定されない。また、1つの車体傾斜装置5Cを構成する複数の車両において第1コンプレッサ11の数に対する第2コンプレッサ12の数の割合も、各コンプレッサが少なくとも1つずつ設置される限り、適宜変更可能である。また、4両以上の車両単位で1つの車体傾斜装置を構成してもよい。この場合も、第1コンプレッサ11の数に対する第2コンプレッサ12の数の割合や、各コンプレッサ11,12が設置される車両の位置は限定されない。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。例えば、複数の上記実施の形態における各構成要素を任意に組み合わせることとしてもよい。例えば、実施の形態3および4において図4および図5には排気タンク9から排気加圧エアを大気開放するためのエア放出用排気弁27が実施の形態1のような機械式のリリーフ弁であるように示されているが、実施の形態2のようなリリーフ圧を変化させることができる電磁弁で構成されていてもよい。
 また、上記実施の形態における車体傾斜装置5,5B,5Cが設けられる鉄道車両1,1Bないし列車編成50,51は、一対の空気バネ4を用いる限り、ボルスタレス式の鉄道車両でもよいし、ボルスタを用いた鉄道車両でもよい。また、上記実施の形態における車体傾斜装置5,5B,5Cが設けられる鉄道車両1,1Bないし列車編成50,51は、1つの車両に1つの台車枠3が設けられる構成であってもよいし、1つの台車枠3に対して一対の空気バネ4が複数組設けられる構成であってもよい。
 また、上記実施の形態においては、1つの車両に一対の空気バネ4が2組設けられるとともに排気タンク9が1つの車両に1つ設けられる例について説明したが、これに限られず、一対の空気バネ4(1組)ごとに排気タンク9が設けられてもよい。
 また、第1コンプレッサ11および第2コンプレッサ12のうち、第1コンプレッサ11または第2コンプレッサ12のみが設置された車両と、第1コンプレッサ11および第2コンプレッサ12の双方が設置された車両(上記実施の形態1および2のような車両)とを組み合わせて1つの車体傾斜装置が形成される列車編成としてもよい。
 また、車体傾斜制御自体の態様は特に限定されず、例えば、加速度センサまたはジャイロセンサからの検出値と速度センサからの検出値とに基づいて曲率等を演算し、それに基づいて車体傾斜制御を行うこととしてもよい。また、GPSにより自車位置や曲率等を検知することも可能である。
 なお、上記実施の形態3および4において、各車両にメインタンク6を設けているが、その容量は同一でもなくてもよい。特に、メインタンク6間を連通する空気配管(MR直通管)の径は比較的大きいため、メインタンクの容量のばらつきは許容できる。また、MR直通管の径をさらに大きくできる場合には、メインタンク6を列車編成のうち、特定の車両に纏めて配置してもよい。
 同様に、上記実施の形態3および4において、各車両に排気タンク9を設けているが、これに限られない。上記と同様の理由により、排気タンク9を連通する空気配管の径を大きくすることができる場合には、排気タンク9を列車編成のうち、特定の車両に纏めて配置してもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造および/または機能の詳細を実質的に変更できる。
 上記態様は、鉄道車両および列車編成において、メインタンクの内圧が低下しても排気加圧エアの供給を効率的に行うために有用である。
 1,1B…鉄道車両
1Ca,1Cb,1Cc…車両
2…車体
3…台車枠
4…空気バネ
5,5B,5C…車体傾斜装置
6…メインタンク
7,7C…エア供給通路
8,8C…エア排出通路
9…排気タンク
10…制御部
10a…第2コンプレッサ制御部
10b…排気弁制御部
11…第1コンプレッサ
12…第2コンプレッサ
21…メインタンク内圧検出器
22…空気バネ内圧検出器
25…排気タンク内圧検出器
26…タンク排気通路
27,27B…エア放出用排気弁
50,51…列車編成

Claims (6)

  1.  車体と台車枠との間であって車幅方向両側に設けられた一対の空気バネの少なくとも一方に加圧エアを供給して車体を傾斜させる車体傾斜装置を備えた鉄道車両であって、
     前記一対の空気バネに供給する加圧エアを貯留するメインタンクと、
     前記メインタンクと前記一対の空気バネとの間で加圧エアが流通するエア供給通路と、
     前記メインタンクに加圧エアを供給する複数のコンプレッサと、
     前記一対の空気バネに接続され、該空気バネから排出された排気加圧エアを通過させるエア排出通路と、
     前記エア排出通路に接続され、各空気バネから排出された排気加圧エアを貯留する排気タンクと、を備え、
     前記複数のコンプレッサは、大気から導入した空気を加圧する少なくとも1つの第1コンプレッサと、前記第1コンプレッサの作動に対して補助的に作動し、前記排気タンクから導入した前記排気加圧エアを加圧する少なくとも1つの第2コンプレッサとを含む、車体傾斜装置を備えた鉄道車両。
  2.  前記排気タンクの内圧を検出する排気タンク内圧検出器と、
     前記第2コンプレッサの作動制御を行う第2コンプレッサ制御部と、を備え、
     前記第2コンプレッサ制御部は、前記排気タンクの内圧を大気圧以上に保つように、前記第2コンプレッサの作動を停止する制御を行う、請求項1に記載の車体傾斜装置を備えた鉄道車両。
  3.  前記メインタンクの内圧を検出するメインタンク内圧検出器を備え、
     前記第2コンプレッサ制御部は、前記排気タンクの内圧が第1しきい値より低い場合、または、前記メインタンクの内圧が前記第1しきい値より高い第2しきい値より高い場合に、前記第2コンプレッサの作動を停止し、前記排気タンクの内圧が前記第1しきい値より高い第3しきい値より高い場合、かつ、前記メインタンクの内圧が前記第2しきい値より低い第4しきい値より低い場合に、前記第2コンプレッサの作動を開始する、請求項2に記載の車体傾斜装置を備えた鉄道車両。
  4.  前記排気タンクから外部に延びるタンク排気通路と、
     前記タンク排気通路に介装されたエア放出用排気弁と、
     前記排気タンクの内圧を検出する排気タンク内圧検出器と、
     前記エア放出用排気弁の作動制御を行う排気弁制御部と、を備え、
     前記排気弁制御部は、前記排気タンクの内圧が第5しきい値より高い場合に、前記エア放出用排気弁を開いて前記排気タンクを外部に開放するように制御する、請求項1に記載の車体傾斜装置を備えた鉄道車両。
  5.  前記一対の空気バネの内圧を検出する一対の空気バネ内圧検出器を備え、
     前記排気弁制御部は、前記空気バネ内圧検出器により検出された前記空気バネの内圧が安定したときの前記一対の空気バネの内圧に応じて前記第5しきい値を変化させる、請求項4に記載の車体傾斜装置を備えた鉄道車両。
  6.  車体傾斜装置を備え、2つ以上の車両が連結された列車編成であって、
     各車両は、
     車体と台車枠との間であって車幅方向両側に設けられた一対の空気バネと、
     前記一対の空気バネに供給する加圧エアを貯留するメインタンクと、
     前記一対の空気バネの少なくとも一方に前記加圧エアを供給して前記車体を傾斜させる車体傾斜装置と、
     前記メインタンクと前記一対の空気バネとの間で加圧エアが流通するエア供給通路と、
     前記一対の空気バネに接続され、該空気バネから排出された排気加圧エアを通過させるエア排出通路と、
     前記エア排出通路に接続され、各空気バネから排出された排気加圧エアを貯留する排気タンクと、を備え、
     前記複数の車両のうちの少なくとも一の車両は、
     前記排気タンクから還流通路を介して導入した前記排気加圧エアを加圧する第2コンプレッサを備え、
     前記複数の車両のうちの他の車両は、
     大気から導入した空気を加圧する少なくとも1つの第1コンプレッサを備える、列車編成。
PCT/JP2016/004393 2015-10-07 2016-09-29 車体傾斜装置を備えた鉄道車両および列車編成 WO2017061087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/766,974 US10549766B2 (en) 2015-10-07 2016-09-29 Railcar including car-body tilting system and train set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199329 2015-10-07
JP2015199329A JP6564292B2 (ja) 2015-10-07 2015-10-07 車体傾斜装置を備えた鉄道車両および列車編成

Publications (1)

Publication Number Publication Date
WO2017061087A1 true WO2017061087A1 (ja) 2017-04-13

Family

ID=58488301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004393 WO2017061087A1 (ja) 2015-10-07 2016-09-29 車体傾斜装置を備えた鉄道車両および列車編成

Country Status (3)

Country Link
US (1) US10549766B2 (ja)
JP (1) JP6564292B2 (ja)
WO (1) WO2017061087A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564292B2 (ja) * 2015-10-07 2019-08-21 川崎重工業株式会社 車体傾斜装置を備えた鉄道車両および列車編成
JP6650337B2 (ja) * 2016-04-28 2020-02-19 川崎重工業株式会社 鉄道車両の輪重調整装置
IT202000017020A1 (it) * 2020-07-14 2022-01-14 Faiveley Transport Italia Spa Sistema di recupero di aria compressa rilasciata da sospensioni pneumatiche di almeno un veicolo ferroviario o di un convoglio ferroviario

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147195A1 (ja) * 2011-04-28 2012-11-01 日本車輌製造株式会社 鉄道車両の車体傾斜システム
JP5513175B2 (ja) * 2010-03-05 2014-06-04 川崎重工業株式会社 鉄道車両の車体傾斜装置
JP2016037265A (ja) * 2014-08-11 2016-03-22 公益財団法人鉄道総合技術研究所 車体姿勢制御装置及び車体姿勢制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255611A (en) * 1988-10-13 1993-10-26 Sig Schweizerische Industrie-Gesellschaft Tilt compensator for high-speed vehicles, in particular rail vehicles
DE4037672A1 (de) * 1990-11-27 1992-06-04 Man Ghh Schienenverkehr Schienenfahrzeug
US5560589A (en) * 1995-07-12 1996-10-01 Northrop Grumman Corporation Active vibration damping arrangement for transportation vehicles
DE102009014866A1 (de) * 2009-03-30 2010-10-28 Bombardier Transportation Gmbh Fahrzeug mit Wankkompensation
DE202009015735U1 (de) * 2009-09-15 2010-04-22 Bombardier Transportation Gmbh Schienenfahrzeug mit querweicher Anbindung des Wagenkastens am Fahrwerk
ES2798769T3 (es) * 2010-08-25 2020-12-14 Nippon Steel Corp Dispositivo de estimación de la aceleración de componentes vibratorios y método de estimación de la aceleración de componentes vibratorios para vehículos ferroviarios
JP6564292B2 (ja) * 2015-10-07 2019-08-21 川崎重工業株式会社 車体傾斜装置を備えた鉄道車両および列車編成

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5513175B2 (ja) * 2010-03-05 2014-06-04 川崎重工業株式会社 鉄道車両の車体傾斜装置
WO2012147195A1 (ja) * 2011-04-28 2012-11-01 日本車輌製造株式会社 鉄道車両の車体傾斜システム
JP2016037265A (ja) * 2014-08-11 2016-03-22 公益財団法人鉄道総合技術研究所 車体姿勢制御装置及び車体姿勢制御方法

Also Published As

Publication number Publication date
JP6564292B2 (ja) 2019-08-21
JP2017071293A (ja) 2017-04-13
US20180297616A1 (en) 2018-10-18
US10549766B2 (en) 2020-02-04

Similar Documents

Publication Publication Date Title
JP6086973B2 (ja) 軌道式車両、および、その車体傾斜制御方法
WO2017061087A1 (ja) 車体傾斜装置を備えた鉄道車両および列車編成
JP5397566B2 (ja) 鉄道車両の車体傾斜制御方法
JP6713043B2 (ja) 鉄道車両のブレーキを制御する電子空圧装置
JP5513175B2 (ja) 鉄道車両の車体傾斜装置
AU2019201756B2 (en) Distributed Brake Retention and Control System for a Train and Associated Methods
WO2015064751A1 (ja) 車両用ブレーキ装置
JP2015150908A (ja) ブレーキシステム、及び車両
JP2004210279A (ja) 鉄道車両の台車のブレーキ負荷計量配分機能を果たす台車制御ユニット及び方法
CN111547099B (zh) 铁道车辆用制动装置
JP4292973B2 (ja) 鉄道車両の車体傾斜制御方法及び装置
JP2000344099A (ja) 鉄道車両用空気ばねの高さ調整装置
JP5222611B2 (ja) レール輸送用車両
JPH06270805A (ja) 鉄道車両の車体傾斜制御のフェイルセーフ方法
JP2013169934A (ja) 鉄道貨車の空気ばね圧力均一化方法、装置、並びにそれを備えた鉄道貨車
JP2006298128A (ja) 鉄道車両の車体傾斜装置
JP4391500B2 (ja) 逸脱防止装置付自動運転車両
JPS6341787B2 (ja)
ITTO20100734A1 (it) Vettura ferroviaria
JP7073342B2 (ja) 空気供給システム
JP2006327392A (ja) 鉄道車両の車体傾斜制御システム
JP2017081278A (ja) 鉄道車両
KR0144523B1 (ko) 철도차량용 제동장치
EP4101725A1 (en) Braking system for continental railroad vehicle
JPH08154303A (ja) パンタグラフ器の姿勢制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853244

Country of ref document: EP

Kind code of ref document: A1