WO2012026103A1 - 鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法 - Google Patents

鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法 Download PDF

Info

Publication number
WO2012026103A1
WO2012026103A1 PCT/JP2011/004646 JP2011004646W WO2012026103A1 WO 2012026103 A1 WO2012026103 A1 WO 2012026103A1 JP 2011004646 W JP2011004646 W JP 2011004646W WO 2012026103 A1 WO2012026103 A1 WO 2012026103A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
vehicle body
vibration component
vibration
excess centrifugal
Prior art date
Application number
PCT/JP2011/004646
Other languages
English (en)
French (fr)
Inventor
後藤 修
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to AU2011294664A priority Critical patent/AU2011294664B2/en
Priority to CN201180041199.7A priority patent/CN103097225B/zh
Priority to US13/818,112 priority patent/US9162688B2/en
Priority to ES11819579T priority patent/ES2798769T3/es
Priority to CA2808269A priority patent/CA2808269C/en
Priority to JP2012530529A priority patent/JP5522259B2/ja
Priority to EP11819579.1A priority patent/EP2610129B1/en
Priority to KR1020137006955A priority patent/KR101449354B1/ko
Publication of WO2012026103A1 publication Critical patent/WO2012026103A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled

Definitions

  • the present invention relates to an apparatus and method for estimating the acceleration of a left-right vibration component acting on a vehicle body when the railway vehicle travels in a curved section, and more particularly to a railway vehicle suitable for a case where the railway vehicle has a vehicle body tilting device.
  • the present invention relates to a vibration component acceleration estimation device and a vibration component acceleration estimation method.
  • ⁇ ⁇ Railway vehicles such as Shinkansen generate vibrations in the left-right direction as vibration accelerations such as swaging and rolling are added during travel. Since this vibration worsens the ride comfort, a general railway vehicle is equipped with a vibration suppression device, and an air spring, a coil spring, or a damper is interposed between the vehicle body and the carriage to absorb the impact received by the vehicle from the carriage. In addition, vibrations of the vehicle body are attenuated by interposing an actuator that expands and contracts in the left-right direction.
  • a fluid pressure actuator using pneumatic or hydraulic pressure as a driving source, an electric actuator using electric power as a driving source, or the like is employed.
  • the actuator has a main body connected to one of the trolley side and the vehicle body side, and a movable rod connected to the other side, and detects acceleration in the left-right direction acting on the vehicle body by an acceleration sensor, and according to the detected acceleration By expanding and contracting the rod, the body is vibrated, and at the same time, the damping force is adjusted to attenuate the vibration.
  • the acceleration detected by the acceleration sensor includes not only a vibration component that generates vibration in the vehicle body but also a steady component that constantly acts on the vehicle body due to centrifugal force. Therefore, if the expansion / contraction movement of the actuator is controlled based only on the output from the acceleration sensor, the vibration of the vehicle body may not be effectively suppressed.
  • a damper having a variable damping force is employed to suppress vibration of the vehicle body, and when the railway vehicle travels in a curved section, the damper is connected to the skyhook.
  • a vibration component acceleration estimation device and a vibration component acceleration estimation method for estimating the acceleration of a vibration component acting on a vehicle body are disclosed.
  • the estimation device disclosed in this document includes a detection means for detecting lateral acceleration acting on the vehicle body, and a lateral theory acting on the vehicle body based on the track information and the traveling speed of the railway vehicle at the traveling point of the railway vehicle.
  • the theoretical excess centrifugal acceleration calculating means for obtaining the excess centrifugal acceleration ⁇ L, and the vibration for obtaining the acceleration of the vibration component acting on the vehicle body based on the acceleration detected by the detecting means and the theoretical excess centrifugal acceleration ⁇ L obtained by the theoretical excess centrifugal acceleration calculating means And an acceleration calculation means.
  • the railway vehicle in order to obtain the theoretical excess centrifugal acceleration ⁇ L, the railway vehicle has a vehicle body tilt mechanism having a vehicle body tilt device that tilts the vehicle body with respect to the carriage, and the vehicle body tilt device. And the following formula (a) or (b) is used.
  • ⁇ L D ⁇ (V 2 / R ⁇ g ⁇ C / G ⁇ ⁇ g ⁇ ⁇ ) (a)
  • ⁇ L D ⁇ (V 2 / R ⁇ g ⁇ C / G ⁇ ⁇ ) (b)
  • D is a positive / negative sign representing the turning direction
  • V is a traveling speed
  • R is a radius of curvature of the track
  • g is a gravitational acceleration
  • C is a cant amount of the track
  • G Indicates the gauge
  • indicates the curve coefficient
  • indicates the inclination angle of the vehicle body with respect to the carriage.
  • An object of the present invention is to provide a vibration component acceleration estimating apparatus and a vibration component acceleration estimating method for a railway vehicle that can estimate the acceleration of the vibration component of the vehicle with a simple configuration.
  • the present inventor repeated a running test of an actual machine, changed the calculation formula of the theoretical excess centrifugal acceleration ⁇ L in the curve section, and investigated the degree of suppression of vibrations.
  • an appropriate correction coefficient is set in the calculation formula for the theoretical excess centrifugal acceleration ⁇ L, the vibration suppressing effect is hardly changed even if the vehicle body inclination angle ⁇ is not strictly considered.
  • the traveling speed V for operating the vehicle body inclination device is high, for example, 275 [km / h] or more in the case of the Shinkansen.
  • ⁇ L it is presumed that the influence of the vehicle body inclination angle ⁇ is much smaller than the traveling speed V.
  • the present invention has been completed on the basis of the above knowledge, and the gist of the present invention is a railway vehicle vibration component acceleration estimation apparatus shown in (1) below, and a railway vehicle vibration component acceleration estimation shown in (2) below. Is in the way.
  • a railway vehicle vibration component acceleration estimating device that estimates acceleration of a vibration component in a lateral direction acting on a vehicle body when a railway vehicle having a vehicle body tilting device travels in a curved section, Acceleration detecting means for detecting lateral acceleration acting on the vehicle body;
  • the trajectory information at the travel point of the railway vehicle, the traveling speed of the railway vehicle, and the information on the ON / OFF operation of the vehicle body tilt are acquired, and the lateral direction acting on the vehicle body based on the following equation (1) or
  • a theoretical excess centrifugal acceleration computing means for computing the theoretical excess centrifugal acceleration ⁇ L
  • Vibration acceleration calculation means for deriving acceleration of a vibration component acting on the vehicle body based on the acceleration detected by the acceleration detection means and the theoretical excess centrifugal acceleration ⁇ L obtained by the theoretical excess centrifugal acceleration calculation means.
  • ⁇ ON and ⁇ OFF are correction coefficients
  • V is a traveling speed
  • R is a radius of curvature of the track
  • g is a gravitational acceleration
  • C is a cant amount of the track
  • G shows a gauge.
  • the vibration acceleration calculation means calculates a difference between the acceleration detected by the acceleration detection means and the theoretical excess centrifugal acceleration ⁇ L obtained by the theoretical excess centrifugal acceleration calculation means, and calculates the acceleration of the vibration component. It is preferable that the configuration is derived.
  • the vibration acceleration calculation unit further processes a signal indicating the derived acceleration of the vibration component with a high-pass filter.
  • a railway vehicle vibration component acceleration estimation method for estimating acceleration of a vibration component in a lateral direction acting on a vehicle body when a railway vehicle having a vehicle body tilting device travels in a curved section, An acceleration detection step for detecting lateral acceleration acting on the vehicle body;
  • the trajectory information at the travel point of the railway vehicle, the traveling speed of the railway vehicle, and the information on the ON / OFF operation of the vehicle body tilt are acquired, and the lateral direction acting on the vehicle body based on the following equation (1) or
  • a theoretical excess centrifugal acceleration calculating step for calculating the theoretical excess centrifugal acceleration ⁇ L of
  • a vibration acceleration calculation step for deriving acceleration of a vibration component acting on the vehicle body based on the acceleration detected in the acceleration detection step and the theoretical excess centrifugal acceleration ⁇ L obtained in the theoretical excess centrifugal acceleration calculation step.
  • a difference between the acceleration detected in the acceleration detection step and the theoretical excess centrifugal acceleration ⁇ L obtained in the theoretical excess centrifugal acceleration calculation step is calculated to calculate the acceleration of the vibration component. It is preferable that the configuration is derived.
  • a signal indicating the acceleration of the derived vibration component is further processed by a high-pass filter.
  • the vibration component acceleration estimating apparatus and the vibration component acceleration estimating method of the present invention the left and right vibrations generated in the vehicle body are generated even when the vehicle is tilted when the vehicle travels a curved section. Since the calculation formula (the above formula (1)) that does not refer to the vehicle body inclination angle is used to obtain the theoretical excess centrifugal acceleration for suppressing the acceleration, the parameter is compared with the conventional calculation formula (the above formula (a)). Since the vehicle body inclination angle can be reduced and the calculation formula can be simplified, the capacity of the memory for storing the parameters can be reduced, and the system can be simplified. Then, the acceleration of the vibration component acting on the vehicle body can be accurately derived based on the calculated theoretical excess centrifugal acceleration, and the vibration suppression of the vehicle body can be realized using this.
  • FIG. 1 is a schematic diagram showing a configuration example of a railway vehicle equipped with the vibration component acceleration estimating apparatus of the present invention.
  • FIG. 2 is a schematic diagram showing a track including a curved section as an example of a track on which a railway vehicle travels.
  • FIG. 3 is a diagram illustrating an example of a map in which track information is associated with travel points.
  • FIG. 4 is a schematic diagram showing a state when the railway vehicle travels in a curved section.
  • FIG. 4A shows a case where the vehicle body tilting operation is ON
  • FIG. 4B shows a case where the vehicle body tilting operation is OFF.
  • FIG. 5 is a diagram illustrating an example of the behavior of the theoretical excess centrifugal acceleration when traveling in a curved section.
  • FIG. 1 is a schematic diagram showing a configuration example of a railway vehicle equipped with the vibration component acceleration estimating apparatus of the present invention.
  • one vehicle of a railway vehicle is composed of a vehicle body 1 and a carriage 2 that supports the vehicle body 1 in the front-rear direction and travels on a rail 4.
  • the vehicle body 1 is elastically supported by an air spring 5 interposed between the body 2 and the carriage 2, and the carriage 2 is elastically supported by an axial spring 6 interposed between the axle 3.
  • an actuator 7 capable of extending and contracting in the left-right direction of the vehicle is interposed between the carriage 2 and the vehicle body 1.
  • An actuator 7 shown in FIG. 1 is an electric actuator, and a screw groove is formed in a main shaft 22 of an electric motor 21 on the main body side.
  • a ball screw nut 23 is screwed to the main shaft 22 and is coaxial with the main shaft 22.
  • the rod-shaped rod 24 is fixed to the ball screw nut 23.
  • the actuator 7 has one end on the electric motor 21 side connected to the vehicle body 1 side of the railway vehicle and the other end on the rod 24 side connected to the carriage 2 side of the rail vehicle.
  • a fluid pressure damper 8 having a variable damping force is interposed between the carriage 2 and the vehicle body 1 in parallel with the actuator 7.
  • Acceleration sensors 9 for detecting left and right vibration acceleration acting on the vehicle body 1 are installed at the four corners of the vehicle body 1 in the front, rear, left and right directions.
  • the vehicle body 1 is provided with a vibration suppression controller 10 that controls the operation of the actuator 7 and the fluid pressure damper 8 to control the vibration suppression.
  • the vibration suppression controller 10 includes a theoretical excess centrifugal acceleration calculation unit 11, a vibration acceleration calculation unit 12, and a vibration control unit 13.
  • the theoretical excess centrifugal acceleration calculation unit 11 acquires the track information at the travel point of the railway vehicle, the travel speed of the railway vehicle, and the information on the ON / OFF operation of the vehicle body tilt, and the theoretical excess centrifugal acceleration in the lateral direction acting on the vehicle body 1. ⁇ L is calculated.
  • the vibration acceleration calculation unit 12 derives the acceleration of the vibration component acting on the vehicle body 1 based on the acceleration detected by the acceleration sensor 9 and the theoretical excess centrifugal acceleration ⁇ L obtained by the theoretical excess centrifugal acceleration calculation unit 11. Based on the vibration component acceleration output from the vibration acceleration calculation unit 12, the vibration control unit 13 mainly sends a drive signal that controls the operation of the actuator 7.
  • the actuator 7 controls the rotation angle of the main shaft 22 of the electric motor 21 according to a command from the vibration suppression controller 10 according to the vibration component acceleration acting on the vehicle body 1.
  • the rotational motion of the main shaft 22 of the electric motor 21 is converted into a linear motion by the ball screw mechanism so that the rod 24 expands and contracts, and the actuator 7 vibrates the vehicle body 1 and simultaneously adjusts its damping force. Vibration can be damped.
  • the fluid pressure damper 8 also exhibits a vibration damping effect.
  • the railway vehicle shown in FIG. 1 has a vehicle body tilting device, and when traveling at a high speed in a curved section, the vehicle body 1 is tilted with respect to the carriage 2 by varying the internal pressure of the air spring 5 on the left and right. be able to.
  • This vehicle body tilt control is performed by a command from the vehicle body tilt controller 14 different from the vibration suppression controller 10, independent of the above-described vibration suppression control.
  • an electric actuator is used as the actuator 7, but a fluid pressure actuator can also be used.
  • FIG. 2 is a schematic diagram showing a track including a curved section as an example of a track on which a railway vehicle travels.
  • the curved section in a trajectory in which a straight section, a curved section, and a straight section are successively connected along the traveling direction of the vehicle, the curved section has a transition between the straight section and a steady curved section having a constant curvature radius.
  • a relaxation curve section is provided on each of the entrance side and the exit side of the steady curve section.
  • the relaxation curve section is located between the straight section and the steady curve section with different curvature radii and cant amount, and the straight section and the steady curve section are smoothly connected by continuously changing the curvature radius and the cant amount. To do.
  • the curvature radius of the relaxation curve section on the entrance side (hereinafter referred to as “relaxation curve entrance section”) is infinite at first after being connected to the straight section, but gradually, the curvature of the steady curve section as the vehicle progresses. It approaches the radius and coincides with the radius of curvature of the steady curve section at the boundary with the steady curve section.
  • the radius of curvature of the relaxation curve section on the exit side (hereinafter referred to as “relaxation curve exit section”) initially matches the curvature radius of the steady curve section. It gradually increases with progress and becomes infinite at the boundary with the straight section.
  • a clothoid curve or a sine half-wavelength decreasing curve is used as the orbit of the relaxation curve section.
  • the clothoid curve trajectory is a curved trajectory in which the radius of curvature increases or decreases in proportion to the travel distance of the relaxation curve section, and is often used for conventional lines.
  • the trajectory of the sine half-wave decreasing curve is a curved trajectory in which the radius of curvature changes so as to draw a sine curve with respect to the travel distance of the relaxation curve section, and is frequently used for the Shinkansen.
  • FIG. 3 is a diagram showing an example of a map in which trajectory information is associated with travel points.
  • the theoretical excess centrifugal acceleration calculation unit 11 has a map in which its trajectory information is associated with a travel point in its own memory.
  • the trajectory information registered in this map includes, as shown in FIG. 3, the type of travel section (relaxation curve entrance section, relaxation curve exit section, steady curve section, straight section, etc.), curve section turning direction, steady state
  • the curvature radius of the curve section, the cant amount of the curve section, and the curve pattern of the relaxation curve section (such as a clothoid curve and a sine half-wavelength decreasing curve) are included.
  • the theoretical excess centrifugal acceleration calculating unit 11 obtains the traveling position of the vehicle by transmission from a vehicle monitor (not shown) that monitors and records the traveling point and speed of the railway vehicle, collates with the map, and detects the vehicle from the corresponding track information. Recognize what section you are driving. At the same time, the theoretical excess centrifugal acceleration calculation unit 11 acquires the traveling speed of the railway vehicle. Further, the theoretical excess centrifugal acceleration calculating unit 11 acquires information on the vehicle body tilt operation ON / OFF from the vehicle body tilt controller 14 and recognizes whether or not the vehicle is tilted.
  • the travel point information can be acquired by, for example, GPS, in addition to being acquired from the vehicle monitor.
  • the traveling speed of the vehicle can be acquired, for example, by transmission from a vehicle information controller (not shown) mounted on the leading vehicle, or by the vibration suppression controller 10 itself receiving a fast pulse and calculating it.
  • Information on the operation ON / OFF of the vehicle body tilt is acquired by transmission directly from the vehicle body tilt controller 14 or via the vehicle information controller, or when the vibration suppression controller 10 also serves as the vehicle body tilt controller 14 Can also perform acquisition processing in the vibration suppression controller 10 itself.
  • FIG. 4 is a schematic diagram showing a state when the railway vehicle travels in a curved section.
  • FIG. 4A shows a case where the vehicle body tilting operation is ON
  • FIG. 4B shows a case where the vehicle body tilting operation is OFF.
  • the theoretical excess centrifugal acceleration calculation unit 11 refers to the acquired various information and (1) below
  • the theoretical excess centrifugal acceleration ⁇ L in the left-right direction acting on the vehicle body 1 is calculated based on the equation (2).
  • ⁇ ON and ⁇ OFF are correction coefficients
  • V is a traveling speed
  • R is a radius of curvature of the track
  • g is a gravitational acceleration
  • C is a cant amount of the track
  • G shows a gauge.
  • the theoretical excess centrifugal acceleration calculation unit 11 first calculates the steady curve section by the above formula (1) or (2).
  • the theoretical excess centrifugal acceleration ⁇ L1 in the case of traveling is calculated.
  • the excess centrifugal acceleration ⁇ L is 0 (zero) without acting on the vehicle, so the theoretical excess centrifugal acceleration calculation unit 11 performs the travel distance x1 of the relaxation curve entrance section.
  • the theoretical excess centrifugal acceleration ⁇ L when traveling in the relaxation curve entrance section and the relaxation curve exit section is linearly interpolated using the theoretical excess centrifugal acceleration ⁇ L1 of the steady curve section. Is calculated.
  • FIG. 5 is a diagram showing an example of the behavior of the theoretical excess centrifugal acceleration when traveling in a curved section.
  • the theoretical excess centrifugal acceleration ⁇ L ( ⁇ L1) is constant in the steady curve section, and the theoretical excess centrifugal acceleration ⁇ L in the relaxation curve entrance section is , And increases from 0 to the theoretical excess centrifugal acceleration ⁇ L1 of the steady curve section according to the travel distance x1 of the section, and the theoretical excess centrifugal acceleration ⁇ L of the relaxation curve exit section of the steady curve section according to the travel distance x2 of the section.
  • the theoretical excess centrifugal acceleration ⁇ L1 decreases from zero.
  • the above-described various information (track information at the traveling point of the railway vehicle, traveling speed V of the railway vehicle, and information on the operation ON / OFF of the vehicle body tilt)
  • the theoretical excess centrifugal acceleration ⁇ L1 in the steady curve section is calculated, and the theoretical excess centrifugal acceleration ⁇ L in the relaxation curve section is calculated using this result.
  • the theoretical excess centrifugal acceleration ⁇ L can be obtained over the entire region.
  • the theoretical excess centrifugal acceleration ⁇ L in the relaxation curve section is calculated using the theoretical excess centrifugal acceleration ⁇ L1 in the steady curve section. It is also possible to obtain the radius of curvature at the points and change the theoretical excess centrifugal acceleration ⁇ L in those sections to be directly calculated based on the above formula (1) or (2).
  • the correction coefficients ⁇ ON and ⁇ OFF indicate that the vehicle body 1 and the carriage 2 elastically supported on the axle 3 by the air spring 5 and the shaft spring 6 travel in a curved section.
  • the coefficient is set in consideration of the fact that the vehicle body 1 is inclined to the outside of the curved track as the air spring 5 and the shaft spring 6 are bent by the action of centrifugal force.
  • the correction coefficient ⁇ ON is a coefficient used when the vehicle body tilting operation is ON. Even if the above equation (1) that does not refer to the vehicle body tilt angle ⁇ is performed in advance, This coefficient is set so that the suppression effect hardly changes.
  • correction coefficients ⁇ ON and ⁇ OFF are given positive and negative (plus / minus) signs according to the turning direction of the curve section. For example, when the sign of the acceleration detected by the acceleration sensor 9 is positive when traveling in a right turn curve section, the signs of the correction coefficients ⁇ ON and ⁇ OFF are also positive. When traveling in a curved section, the sign of acceleration detected by the acceleration sensor 9 is negative, and the signs of the correction coefficients ⁇ ON and ⁇ OFF are also negative. The signs of the correction coefficients ⁇ ON and ⁇ OFF are selected from the trajectory information in the map according to the travel point.
  • the vibration acceleration calculation unit 12 includes the theoretical excess centrifugal acceleration ⁇ L calculated by the theoretical excess centrifugal acceleration calculation unit 11 and the left and right detected by the acceleration sensor 9.
  • the direction acceleration ⁇ F is taken in, the theoretical excess centrifugal acceleration ⁇ L is subtracted from the acceleration ⁇ F, and the difference between the two is calculated, and this difference is set as the acceleration of the vibration component. That is, the vibration acceleration calculation unit 12 removes the steady component caused by the centrifugal force from the acceleration ⁇ F that is applied to the vehicle body 1 and detected by the acceleration sensor 9 when the vehicle travels in the curved section, and suppresses vibration due to the operation of the actuator 7. The acceleration of the vibration component necessary for the control is extracted.
  • a signal indicating the vibration component acceleration calculated by the vibration acceleration calculation unit 12 is output to the vibration control unit 13, and the vibration control unit 13 performs expansion and contraction motion that suppresses vibration in the actuator 7 based on the vibration component acceleration.
  • Send drive signal is output to the vibration control unit 13, and the vibration control unit 13 performs expansion and contraction motion that suppresses vibration in the actuator 7 based on the vibration component acceleration.
  • the signal indicating the vibration component acceleration calculated by the vibration acceleration calculation unit 12 includes noise in a low frequency band of 0.5 Hz or less, for example, although a steady component due to centrifugal force is removed. There are many cases. For this reason, it is preferable to process the signal indicating the calculated vibration component acceleration with a high-pass filter to remove noise. By removing noise with a high-pass filter, it is possible to more stably realize vibration suppression particularly in the relaxation curve entrance section and the relaxation curve exit section.
  • the theoretical excess centrifugal force for suppressing the lateral vibration generated in the vehicle body is used to obtain the acceleration, the vehicle body is compared with the conventional calculation formula (the above formula (a) disclosed in Patent Document 1). Parameters that do not refer to the tilt angle can be reduced, and the calculation formula can be simplified. For this reason, it becomes possible to reduce the capacity of the memory for storing the parameters, and the system for calculating the theoretical excess centrifugal acceleration can be simplified. Then, the acceleration of the vibration component acting on the vehicle body can be accurately derived based on the calculated theoretical excess centrifugal acceleration, and the vibration suppression of the vehicle body can be realized using this.
  • the acceleration of the vibration component in the left-right direction acting on the vehicle body can be simplified when the railway vehicle having the vehicle body tilting device travels in the curved section.
  • the configuration can be accurately estimated, and this can be used to suppress left-right vibration generated in the vehicle body. Therefore, the present invention is extremely useful for comfortable operation of railway vehicles.

Abstract

車体傾斜装置を有する鉄道車両が曲線区間を走行する際に車体に作用する左右方向の振動成分の加速度を推定する装置は、車体に作用する左右方向の加速度を検出するセンサと、走行地点の軌道情報、走行速度および車体傾斜の動作ON/OFFの情報を取得し、下記式により、車体に作用する理論超過遠心加速度αLを演算する演算部と、センサで検出した加速度および演算部で求めた加速度αLに基づいて、車体に作用する振動成分の加速度を導出する演算部とを備える。車体傾斜ONの場合:αL=ηON×(V2/Rg×C/G)、車体傾斜OFFの場合:αL=ηOFF×(V2/R-g×C/G)。上記両式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量およびGは軌間を示す。これにより、車体に発生する左右方向の振動を抑制するため、振動成分の加速度を簡易な構成で推定できる。

Description

鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法
 本発明は、鉄道車両が曲線区間を走行するに際し、車体に作用する左右方向の振動成分の加速度を推定する装置および方法に関し、特に、鉄道車両が車体傾斜装置を有する場合に適した鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法に関する。
 新幹線などの鉄道車両は、走行中に、スウェイング、ローリングなどの振動加速度が付加されるのに伴って、左右方向の振動が発生する。この振動は乗り心地を悪化させることから、一般の鉄道車両では振動抑制装置が搭載され、車体と台車の間に空気バネやコイルバネやダンパなどを介装して車体が台車から受ける衝撃を吸収するとともに、左右方向に伸縮するアクチュエータを介装して車体の振動を減衰させるようになっている。
 アクチュエータとしては、空圧または油圧を駆動源とする流体圧式アクチュエータや、電力を駆動源とする電動式アクチュエータなどが採用される。アクチュエータは、台車側および車体側のいずれか一方に本体が連結され、他方に可動のロッドが連結されており、車体に作用する左右方向の加速度を加速度センサによって検出し、検出した加速度に応じてロッドを伸縮動させることにより、車体を加振すると同時に、自身の減衰力を調整し、振動を減衰させる。
 ところで、鉄道車両が曲線区間を走行する際、加速度センサで検出される加速度には、車体に振動を発生させる振動成分のみならず、遠心力に起因して定常的に車体に作用する定常成分が重畳されるため、加速度センサからの出力のみに基づいてアクチュエータの伸縮動を制御するのでは、車体の振動を効果的に抑制することができないおそれがある。
 この問題を解決する従来の技術として、例えば、特許文献1には、車体の振動を抑制するのに減衰力可変のダンパを採用し、鉄道車両が曲線区間を走行するに際し、そのダンパをスカイフックセミアクティブ制御するために、車体に作用する振動成分の加速度を推定する振動成分加速度推定装置および振動成分加速度推定方法が開示されている。
 同文献に開示される推定装置は、車体に作用する左右方向の加速度を検出する検知手段と、鉄道車両の走行地点における軌道情報および鉄道車両の走行速度に基づいて車体に作用する左右方向の理論超過遠心加速度αLを求める理論超過遠心加速度演算手段と、検知手段で検知した加速度と理論超過遠心加速度演算手段で求めた理論超過遠心加速度αLとに基づいて車体に作用する振動成分の加速度を求める振動加速度演算手段とを備えた構成である。同文献に開示される推定装置および推定方法では、理論超過遠心加速度αLを求めるのに、鉄道車両が台車に対して車体を傾斜させる車体傾斜装置を有する車体傾斜機構付の場合と、車体傾斜装置を有しない非傾斜車両である場合とに区分し、下記の(a)式または(b)式を用いることとしている。
 車体傾斜機構付の場合:
  αL=D×(V/R-g×C/G×β-g×θ) ・・・(a)
 非傾斜車体の場合:
  αL=D×(V/R-g×C/G×β) ・・・(b)
 ただし、上記の(a)、(b)式中で、Dは旋回方向を表す正負の符号、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、Gは軌間、βは曲線係数、およびθは台車に対する車体の傾斜角度をそれぞれ示す。
特開2009-40081号公報
 しかし、前記特許文献1に開示される推定装置および推定方法では、車体傾斜装置を有する鉄道車両の場合、理論超過遠心加速度を求めるのに上記(a)式を用いることから、参照するパラメータが多く、算出式も複雑である。このため、多大なパラメータを記憶する大容量のメモリが必要となり、システムが複雑化し大規模になる。
 本発明は、上記の問題に鑑みてなされたものであり、車体傾斜装置を有する鉄道車両が曲線区間を走行するに際し、車体に発生する左右方向の振動を抑制するため、車体に作用する左右方向の振動成分の加速度を簡易な構成で推定することができる鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法を提供することを目的とする。
 本発明者は、上記目的を達成するために実機の走行試験を繰り返し、曲線区間での理論超過遠心加速度αLの算出式を種々変更して振動の抑制度合いを調査した結果、車体傾斜装置を動作させる場合、理論超過遠心加速度αLの算出式で適切な補正係数を設定すれば、車体傾斜角度θを厳格に考慮しなくても、振動の抑制効果がほとんど変わらないことを知見した。これは、車体傾斜角度θが最大でも2°程度と小さく、車体傾斜装置を動作させる走行速度Vが、例えば新幹線の場合は275[km/h]以上と高速であることから、理論超過遠心加速度αLを算出するに当たり、走行速度Vに比べて車体傾斜角度θの影響が格段に小さいことによると推測される。
 本発明は、上記の知見に基づいて完成させたものであり、その要旨は、下記(1)に示す鉄道車両の振動成分加速度推定装置、および下記(2)に示す鉄道車両の振動成分加速度推定方法にある。
 (1)車体傾斜装置を有する鉄道車両が曲線区間を走行する際に、車体に作用する左右方向の振動成分の加速度を推定する鉄道車両の振動成分加速度推定装置であって、
 車体に作用する左右方向の加速度を検出する加速度検出手段と、
 鉄道車両の走行地点における軌道情報、鉄道車両の走行速度、および車体傾斜の動作ON/OFFの情報を取得し、下記の(1)式または(2)式に基づいて、車体に作用する左右方向の理論超過遠心加速度αLを演算する理論超過遠心加速度演算手段と、
 加速度検出手段で検出した加速度、および理論超過遠心加速度演算手段で求めた理論超過遠心加速度αLに基づいて、車体に作用する振動成分の加速度を導出する振動加速度演算手段とを備えることを特徴とする鉄道車両の振動成分加速度推定装置である。
 車体傾斜動作ONの場合:
  αL=ηON×(V/R-g×C/G) ・・・(1)
 車体傾斜動作OFFの場合:
  αL=ηOFF×(V/R-g×C/G) ・・・(2)
 ただし、上記の(1)式と(2)式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、およびGは軌間をそれぞれ示す。
 上記の推定装置において、前記振動加速度演算手段は、前記加速度検出手段で検出した加速度と前記理論超過遠心加速度演算手段で求めた理論超過遠心加速度αLとの差を演算して前記振動成分の加速度を導出する構成であることが好ましい。
 上記の推定装置において、前記振動加速度演算手段は、導出した前記振動成分の加速度を示す信号をさらにハイパスフィルタで処理する構成とすることが好ましい。
 (2)車体傾斜装置を有する鉄道車両が曲線区間を走行する際に、車体に作用する左右方向の振動成分の加速度を推定する鉄道車両の振動成分加速度推定方法であって、
 車体に作用する左右方向の加速度を検出する加速度検出ステップと、
 鉄道車両の走行地点における軌道情報、鉄道車両の走行速度、および車体傾斜の動作ON/OFFの情報を取得し、下記の(1)式または(2)式に基づいて、車体に作用する左右方向の理論超過遠心加速度αLを演算する理論超過遠心加速度演算ステップと、
 加速度検出ステップで検出した加速度、および理論超過遠心加速度演算ステップで求めた理論超過遠心加速度αLに基づいて、車体に作用する振動成分の加速度を導出する振動加速度演算ステップとを含むことを特徴とする鉄道車両の振動成分加速度推定方法である。
 車体傾斜動作ONの場合:
  αL=ηON×(V/R-g×C/G) ・・・(1)
 車体傾斜動作OFFの場合:
  αL=ηOFF×(V/R-g×C/G) ・・・(2)
 ただし、上記の(1)式と(2)式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、およびGは軌間をそれぞれ示す。
 上記の推定方法において、前記振動加速度演算ステップでは、前記加速度検出ステップで検出した加速度と前記理論超過遠心加速度演算ステップで求めた理論超過遠心加速度αLとの差を演算して前記振動成分の加速度を導出する構成であることが好ましい。
 上記の推定方法において、前記振動加速度演算ステップでは、導出した前記振動成分の加速度を示す信号をさらにハイパスフィルタで処理する構成とすることが好ましい。
 本発明の鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法によれば、鉄道車両が曲線区間を走行するに際し、車体傾斜が行われる場合であっても、車体に発生する左右方向の振動を抑制するための理論超過遠心加速度を求めるのに、車体傾斜角度を参照しない算出式(上記(1)式)を用いることから、従来の算出式(上記(a)式)と比較し、パラメータとして車体傾斜角度を削減でき、算出式も簡略化できるため、パラメータを記憶するメモリの容量を低減することが可能になり、システムを簡易なものにすることができる。そして、算出した理論超過遠心加速度に基づいて車体に作用する振動成分の加速度を的確に導出し、これを用いて車体の振動抑制を実現することができる。
図1は、本発明の振動成分加速度推定装置を搭載した鉄道車両の構成例を示す模式図である。 図2は、鉄道車両が走行する軌道の一例として曲線区間を含む軌道を示す模式図である。 図3は、走行地点に軌道情報を関連付けたマップの一例を示す図である。 図4は、鉄道車両が曲線区間を走行する際の状態を示す模式図であり、図4(a)は車体傾斜の動作ONの場合を、図4(b)は車体傾斜の動作OFFの場合をそれぞれ示している。 図5は、曲線区間を走行する際の理論超過遠心加速度の挙動の一例を示す図である。
 以下に、本発明の鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法について、その実施形態を詳述する。
 図1は、本発明の振動成分加速度推定装置を搭載した鉄道車両の構成例を示す模式図である。同図に示すように、鉄道車両の一車両は、車体1と、この車体1を前後で支持する台車2とから構成され、レール4上を走行する。車体1は、台車2との間に介装された空気バネ5によって弾性支持され、台車2は、車軸3との間に介装された軸バネ6によって弾性支持されている。また、台車2と車体1の間には、車両の左右方向に伸縮動が可能なアクチュエータ7が介装されている。
 図1に示すアクチュエータ7は、電動式アクチュエータであって、本体側となる電動モータ21の主軸22にねじ溝が刻設され、この主軸22にボールねじナット23が螺合し、主軸22と同軸状のロッド24がボールねじナット23に固設された構成である。アクチュエータ7は、電動モータ21側の一端部が鉄道車両の車体1側に連結されるとともに、ロッド24側の他端部が鉄道車両の台車2側に連結されている。
 また、台車2と車体1の間には、アクチュエータ7と並列に減衰力可変の流体圧ダンパ8が介装されている。車体1の前後左右の四隅には、車体1に作用する左右方向の振動加速度を検出する加速度センサ9が設置されている。
 さらに、車体1には、アクチュエータ7および流体圧ダンパ8の作動を制御し振動抑制の制御を司る振動抑制制御器10が設置されている。振動抑制制御器10は、理論超過遠心加速度演算部11と、振動加速度演算部12と、振動制御部13とから構成される。理論超過遠心加速度演算部11は、鉄道車両の走行地点における軌道情報、鉄道車両の走行速度、および車体傾斜の動作ON/OFFの情報を取得し、車体1に作用する左右方向の理論超過遠心加速度αLを演算する。振動加速度演算部12は、加速度センサ9で検出した加速度、および理論超過遠心加速度演算部11で求めた理論超過遠心加速度αLに基づいて、車体1に作用する振動成分の加速度を導出する。振動制御部13は、振動加速度演算部12から出力される振動成分加速度に基づき、主としてアクチュエータ7の作動を制御する駆動信号を送出する。
 車両の走行中、アクチュエータ7は、車体1に作用する振動成分加速度に応じ、振動抑制制御器10からの指令により、電動モータ21の主軸22の回転角が制御される。これにより、アクチュエータ7は、電動モータ21の主軸22の回転運動がボールねじ機構によって直線運動に変換されてロッド24が伸縮動し、車体1を加振すると同時に、自身の減衰力を調整し、振動を減衰させることができる。このとき、流体圧ダンパ8も振動減衰効果を発揮する。
 図1に示す鉄道車両は、車体傾斜装置を有しており、曲線区間を高速で走行する際に、空気バネ5の内圧を左右で異ならせることにより、台車2に対して車体1を傾斜させることができる。この車体傾斜の制御は、上記した振動抑制の制御とは独立し、振動抑制制御器10とは異なる車体傾斜制御器14からの指令によって行われる。
 上記の例では、アクチュエータ7として電動式アクチュエータを用いているが、流体圧式アクチュエータを用いることもできる。
 以下に、鉄道車両が走行する際の振動抑制制御器10による処理の具体的な態様を説明する。
 図2は、鉄道車両が走行する軌道の一例として曲線区間を含む軌道を示す模式図である。同図に示すように、車両の進行方向に沿って直線区間、曲線区間および直線区間が順に連なる軌道において、曲線区間には、直線区間と、曲率半径が一定の定常曲線区間との間の移行を滑らかにするために、定常曲線区間の入口側と出口側のそれぞれに緩和曲線区間が設けられる。緩和曲線区間は、曲率半径およびカント量が互いに異なる直線区間と定常曲線区間との間に位置し、曲率半径およびカント量を連続的に変化させて、直線区間と定常曲線区間とを滑らかに接続する。
 例えば、入口側の緩和曲線区間(以下、「緩和曲線入口区間」という)の曲率半径は、直線区間に連なって最初は無限大であるが、車両の進行に伴って徐々に定常曲線区間の曲率半径に近付き、定常曲線区間との境で定常曲線区間の曲率半径と一致する。出口側の緩和曲線区間(以下、「緩和曲線出口区間」という)は、緩和曲線入口区間とは逆に、その曲率半径は、最初は定常曲線区間の曲率半径と一致しているが、車両の進行に伴って徐々に大きくなり、直線区間との境で無限大となる。
 緩和曲線区間の軌道としては、クロソイド曲線またはサイン半波長逓減曲線が用いられる。クロソイド曲線の軌道は、曲率半径が緩和曲線区間の走行距離に比例して増減する曲線軌道であり、在来線に多く用いられる。サイン半波長逓減曲線の軌道は、曲率半径が緩和曲線区間の走行距離に対してサインカーブを描くように変化する曲線軌道であり、新幹線に多用される。
 図3は、走行地点に軌道情報を関連付けたマップの一例を示す図である。上記の理論超過遠心加速度演算部11は、自身のメモリに、走行地点に軌道情報を関連付けたマップを有している。このマップに登録されている軌道情報には、図3に示すように、走行区間の種別(緩和曲線入口区間、緩和曲線出口区間、定常曲線区間、直線区間など)、曲線区間の旋回方向、定常曲線区間の曲率半径、曲線区間のカント量、および緩和曲線区間の曲線パターン(クロソイド曲線、サイン半波長逓減曲線など)が含まれる。
 理論超過遠心加速度演算部11は、鉄道車両の走行地点や速度を監視し記録する図示しない車両モニタから車両の走行位置を伝送で取得し、上記マップと照合して、該当する軌道情報から車両がどのような区間を走行中であるかを認識する。これと同時に、理論超過遠心加速度演算部11は、鉄道車両の走行速度を取得する。さらに、理論超過遠心加速度演算部11は、車体傾斜制御器14から車体傾斜の動作ON/OFFの情報を取得し、車両の傾斜が行われるか否かを認識する。
 なお、走行地点の情報は、車両モニタから取得する以外に、例えばGPSなどでも取得することができる。車両の走行速度は、例えば先頭車両に搭載される図示しない車両情報制御器から伝送で取得したり、振動抑制制御器10自身が速発パルスを受信して演算することにより、取得することができる。車体傾斜の動作ON/OFFの情報は、車体傾斜制御器14から直接または上記の車両情報制御器を介して伝送で取得したり、振動抑制制御器10が車体傾斜制御器14を兼ねている場合は振動抑制制御器10自身の中で取得の処理を行うこともできる。
 図4は、鉄道車両が曲線区間を走行する際の状態を示す模式図であり、同図(a)は車体傾斜の動作ONの場合を、同図(b)は車体傾斜の動作OFFの場合をそれぞれ示している。鉄道車両が曲線区間、すなわち緩和曲線入口区間、定常曲線区間または緩和曲線出口区間を走行する場合、上記の理論超過遠心加速度演算部11は、取得した各種の情報を参照し、下記の(1)式または(2)式に基づいて、車体1に作用する左右方向の理論超過遠心加速度αLを演算する。
 車体傾斜動作ONの場合:
  αL=ηON×(V/R-g×C/G) ・・・(1)
 車体傾斜動作OFFの場合:
  αL=ηOFF×(V/R-g×C/G) ・・・(2)
 ただし、上記の(1)式と(2)式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、およびGは軌間をそれぞれ示す。
 このとき、車両の走行速度Vは、通常、曲線区間の全域にわたり一定であるため、理論超過遠心加速度演算部11は、上記の(1)式または(2)式により、まず、定常曲線区間を走行する場合における理論超過遠心加速度αL1を演算する。そして、曲線区間の前後の直線区間では、理論上、超過遠心加速度αLが車両に作用することなく0(ゼロ)となるため、理論超過遠心加速度演算部11は、緩和曲線入口区間の走行距離x1および緩和曲線出口区間の走行距離x2ごとに、その定常曲線区間の理論超過遠心加速度αL1を用いて線形補間することにより、緩和曲線入口区間および緩和曲線出口区間を走行する場合における理論超過遠心加速度αLを演算する。
 図5は、曲線区間を走行する際の理論超過遠心加速度の挙動の一例を示す図である。同図に示すように、車両が一定の速度で曲線区間の全域を走行する際、定常曲線区間では理論超過遠心加速度αL(αL1)が一定であり、緩和曲線入口区間の理論超過遠心加速度αLは、当該区間の走行距離x1に応じて0から定常曲線区間の理論超過遠心加速度αL1まで増大し、緩和曲線出口区間の理論超過遠心加速度αLは、当該区間の走行距離x2に応じて定常曲線区間の理論超過遠心加速度αL1から0まで減少することになる。
 このように、鉄道車両が曲線区間を走行する場合、取得した各種の情報(鉄道車両の走行地点における軌道情報、鉄道車両の走行速度V、および車体傾斜の動作ON/OFFの情報)から、上記(1)式または(2)式に基づいて、定常曲線区間の理論超過遠心加速度αL1を演算し、この結果を利用して緩和曲線区間の理論超過遠心加速度αLを演算することにより、曲線区間の全域にわたり理論超過遠心加速度αLを得ることができる。
 なお、上記の実施形態では、緩和曲線区間の理論超過遠心加速度αLを定常曲線区間の理論超過遠心加速度αL1を用いて演算するようにしているが、緩和曲線入口区間および緩和曲線出口区間それぞれの各地点における曲率半径を求め、それらの区間における理論超過遠心加速度αLを上記(1)式または(2)式に基づいて直接演算するように変更することもできる。
 ここで、上記の(1)式と(2)式に関し、補正係数ηON、ηOFFは、空気バネ5および軸バネ6によって車軸3に弾性支持された車体1および台車2が曲線区間を走行する際に、遠心力の作用で空気バネ5および軸バネ6が撓むのに伴って車体1が曲線軌道の外側へ傾くことから、これを考慮して設定した係数である。さらにそのうちの補正係数ηONは、車体傾斜の動作がONの場合に用いる係数であり、事前に走行試験を実施し、車体傾斜角度θを参照しない上記(1)式であっても、振動の抑制効果がほとんど変わらないように設定した係数である。
 これらの補正係数ηON、ηOFFは、曲線区間の旋回方向に応じて正負(プラス/マイナス)の符号が付与される。例えば、右旋回の曲線区間を走行するときに加速度センサ9で検知される加速度の符号が正である場合、補正係数ηON、ηOFFの符号も正とし、これとは逆に左旋回の曲線区間を走行するときは、加速度センサ9で検知される加速度の符号が負であり、補正係数ηON、ηOFFの符号も負とする。補正係数ηON、ηOFFの正負の符号は、走行地点に応じて上記マップの軌道情報から選択される。
 このような理論超過遠心加速度演算部11での処理に続いて、上記の振動加速度演算部12は、理論超過遠心加速度演算部11で算出した理論超過遠心加速度αLと、加速度センサ9で検出した左右方向の加速度αFとを取り込み、加速度αFから理論超過遠心加速度αLを引き算して両者の差を演算し、この差を振動成分の加速度とする。すなわち、振動加速度演算部12は、車両が曲線区間を走行する際に車体1に作用し加速度センサ9で検出した加速度αFから、遠心力に起因する定常成分を取り除き、アクチュエータ7の作動による振動抑制の制御に必要な振動成分の加速度を抽出する。
 振動加速度演算部12で算出した振動成分加速度を示す信号は、上記の振動制御部13に出力され、振動制御部13は、その振動成分加速度に基づいて、アクチュエータ7に振動を抑制する伸縮動の駆動信号を送出する。
 ここで、振動加速度演算部12で算出した振動成分加速度を示す信号には、遠心力に起因する定常成分が取り除かれているとはいえ、例えば0.5Hz以下の低周波数帯域にノイズが含まれることが多い。このため、算出した振動成分加速度を示す信号は、ハイパスフィルタで処理し、ノイズを除去することが好ましい。ハイパスフィルタでノイズを除去することにより、特に緩和曲線入口区間および緩和曲線出口区間での振動抑制をより安定して実現することができる。
 以上の通り、鉄道車両が曲線区間を走行する際の振動抑制制御器10による処理により、車体傾斜が行われる場合であっても、車体に発生する左右方向の振動を抑制するための理論超過遠心加速度を求めるのに、車体傾斜角度を参照しない算出式(上記(1)式)を用いることから、従来の算出式(前記特許文献1に開示される上記(a)式)と比較し、車体傾斜角度を参照しない分パラメータを削減することができ、算出式も簡略化することができる。このため、パラメータを記憶するメモリの容量を低減することが可能になり、理論超過遠心加速度を算出するシステムを簡易なものにすることができる。そして、算出した理論超過遠心加速度に基づいて車体に作用する振動成分の加速度を的確に導出し、これを用いて車体の振動抑制を実現することができる。
 本発明の鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法によれば、車体傾斜装置を有する鉄道車両が曲線区間を走行するに際し、車体に作用する左右方向の振動成分の加速度を簡易な構成で的確に推定することができ、これを用いて車体に発生する左右方向の振動を抑制することが可能になる。従って、本発明は、鉄道車両の快適な運行に極めて有用である。
  1:車体、  2:台車、  3:車軸、  4:レール、
  5:空気バネ、  6:軸バネ、  7:アクチュエータ、
  8:流体圧ダンパ、  9:加速度センサ、
  10:振動抑制制御器、  11:理論超過遠心加速度演算部、
  12:振動加速度演算部、  13:振動制御部、
  14:車体傾斜制御器、  21:電動モータ、  22:主軸、
  23:ボールねじナット、  24:ロッド
 

Claims (6)

  1.  車体傾斜装置を有する鉄道車両が曲線区間を走行する際に、車体に作用する左右方向の振動成分の加速度を推定する鉄道車両の振動成分加速度推定装置であって、
     車体に作用する左右方向の加速度を検出する加速度検出手段と、
     鉄道車両の走行地点における軌道情報、鉄道車両の走行速度、および車体傾斜の動作ON/OFFの情報を取得し、下記の(1)式または(2)式に基づいて、車体に作用する左右方向の理論超過遠心加速度αLを演算する理論超過遠心加速度演算手段と、
     加速度検出手段で検出した加速度、および理論超過遠心加速度演算手段で求めた理論超過遠心加速度αLに基づいて、車体に作用する振動成分の加速度を導出する振動加速度演算手段とを備えることを特徴とする鉄道車両の振動成分加速度推定装置。
     車体傾斜動作ONの場合:
      αL=ηON×(V/R-g×C/G) ・・・(1)
     車体傾斜動作OFFの場合:
      αL=ηOFF×(V/R-g×C/G) ・・・(2)
     ただし、上記の(1)式と(2)式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、およびGは軌間をそれぞれ示す。
  2.  前記振動加速度演算手段は、前記加速度検出手段で検出した加速度と前記理論超過遠心加速度演算手段で求めた理論超過遠心加速度αLとの差を演算して前記振動成分の加速度を導出することを特徴とする請求項1に記載の鉄道車両の振動成分加速度推定装置。
  3.  前記振動加速度演算手段は、導出した前記振動成分の加速度を示す信号をさらにハイパスフィルタで処理することを特徴とする請求項1または2に記載の鉄道車両の振動成分加速度推定装置。
  4.  車体傾斜装置を有する鉄道車両が曲線区間を走行する際に、車体に作用する左右方向の振動成分の加速度を推定する鉄道車両の振動成分加速度推定方法であって、
     車体に作用する左右方向の加速度を検出する加速度検出ステップと、
     鉄道車両の走行地点における軌道情報、鉄道車両の走行速度、および車体傾斜の動作ON/OFFの情報を取得し、下記の(1)式または(2)式に基づいて、車体に作用する左右方向の理論超過遠心加速度αLを演算する理論超過遠心加速度演算ステップと、
     加速度検出ステップで検出した加速度、および理論超過遠心加速度演算ステップで求めた理論超過遠心加速度αLに基づいて、車体に作用する振動成分の加速度を導出する振動加速度演算ステップとを含むことを特徴とする鉄道車両の振動成分加速度推定方法。
     車体傾斜動作ONの場合:
      αL=ηON×(V/R-g×C/G) ・・・(1)
     車体傾斜動作OFFの場合:
      αL=ηOFF×(V/R-g×C/G) ・・・(2)
     ただし、上記の(1)式と(2)式中で、ηONとηOFFは補正係数、Vは走行速度、Rは軌道の曲率半径、gは重力加速度、Cは軌道のカント量、およびGは軌間をそれぞれ示す。
  5.  前記振動加速度演算ステップでは、前記加速度検出ステップで検出した加速度と前記理論超過遠心加速度演算ステップで求めた理論超過遠心加速度αLとの差を演算して前記振動成分の加速度を導出することを特徴とする請求項4に記載の鉄道車両の振動成分加速度推定方法。
  6.  前記振動加速度演算ステップでは、導出した前記振動成分の加速度を示す信号をさらにハイパスフィルタで処理することを特徴とする請求項4または5に記載の鉄道車両の振動成分加速度推定方法。
     
PCT/JP2011/004646 2010-08-25 2011-08-22 鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法 WO2012026103A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2011294664A AU2011294664B2 (en) 2010-08-25 2011-08-22 System and method for estimating acceleration of vibration component in railcar
CN201180041199.7A CN103097225B (zh) 2010-08-25 2011-08-22 铁路车辆的振动成分加速度估计装置和振动成分加速度估计方法
US13/818,112 US9162688B2 (en) 2010-08-25 2011-08-22 Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
ES11819579T ES2798769T3 (es) 2010-08-25 2011-08-22 Dispositivo de estimación de la aceleración de componentes vibratorios y método de estimación de la aceleración de componentes vibratorios para vehículos ferroviarios
CA2808269A CA2808269C (en) 2010-08-25 2011-08-22 Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
JP2012530529A JP5522259B2 (ja) 2010-08-25 2011-08-22 鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法
EP11819579.1A EP2610129B1 (en) 2010-08-25 2011-08-22 Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
KR1020137006955A KR101449354B1 (ko) 2010-08-25 2011-08-22 철도 차량의 진동 성분 가속도 추정 장치 및 진동 성분 가속도 추정 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010188368 2010-08-25
JP2010-188368 2010-08-25

Publications (1)

Publication Number Publication Date
WO2012026103A1 true WO2012026103A1 (ja) 2012-03-01

Family

ID=45723125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004646 WO2012026103A1 (ja) 2010-08-25 2011-08-22 鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法

Country Status (10)

Country Link
US (1) US9162688B2 (ja)
EP (1) EP2610129B1 (ja)
JP (1) JP5522259B2 (ja)
KR (1) KR101449354B1 (ja)
CN (1) CN103097225B (ja)
AU (1) AU2011294664B2 (ja)
CA (1) CA2808269C (ja)
ES (1) ES2798769T3 (ja)
TW (1) TWI449643B (ja)
WO (1) WO2012026103A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5503680B2 (ja) * 2012-03-14 2014-05-28 カヤバ工業株式会社 鉄道車両用制振装置
WO2015153845A1 (en) * 2014-04-02 2015-10-08 Sikorsky Aircraft Corporation System and method for improved drive system diagnostics
JP6564292B2 (ja) * 2015-10-07 2019-08-21 川崎重工業株式会社 車体傾斜装置を備えた鉄道車両および列車編成
CN106080643B (zh) * 2016-08-01 2018-05-18 西南交通大学 一种转向架构架横向振动控制装置
JP6374999B2 (ja) * 2017-01-30 2018-08-15 Kyb株式会社 鉄道車両用制振装置
CN108196313B (zh) * 2018-01-22 2019-11-05 浙江大学 一种甚宽频带地震计动态校准中振动台导轨不平顺的补偿方法
CN109094599B (zh) * 2018-08-01 2020-02-14 中车青岛四方机车车辆股份有限公司 一种电磁横向主动减振系统以其控制方法和装置
CN110155101B (zh) * 2019-05-17 2020-11-06 中车青岛四方机车车辆股份有限公司 横向全主动控制减振系统及其中控制器的控制方法
CN113325848B (zh) * 2021-05-31 2022-04-08 广州景骐科技有限公司 颠簸道路车辆控制方法、装置、车辆及存储介质
CN115618686B (zh) * 2022-11-08 2023-09-12 西南交通大学 一种基于行车平稳性的大跨度铁路桥梁刚度评估方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06107172A (ja) * 1992-09-28 1994-04-19 Nippon Sharyo Seizo Kaisha Ltd 曲線情報算出方法及び車体傾斜制御方法
JPH06278606A (ja) * 1992-02-07 1994-10-04 Hitachi Ltd 車両の振動制御装置
JPH09263241A (ja) * 1996-03-29 1997-10-07 Railway Technical Res Inst 車体傾斜制御装置
JP2000351368A (ja) * 1999-06-11 2000-12-19 Sumitomo Metal Ind Ltd 鉄道車両における振動低減方法
JP2004182000A (ja) * 2002-11-29 2004-07-02 Sumitomo Metal Ind Ltd 車体傾斜制御のフェールセーフ方法及び装置、鉄道車両並びにこの方法に使用する曲線判定方法
JP2006315519A (ja) * 2005-05-12 2006-11-24 Sumitomo Metal Ind Ltd 鉄道車両の車体傾斜制御装置及び方法
JP2009040083A (ja) * 2007-08-06 2009-02-26 Kayaba Ind Co Ltd 車体傾斜角度診断装置および車体傾斜角度診断方法
JP2009040081A (ja) 2007-08-06 2009-02-26 Kayaba Ind Co Ltd 振動成分加速度推定装置および振動成分加速度推定方法
JP2009078758A (ja) * 2007-09-27 2009-04-16 Mazda Motor Corp 車両用サスペンション制御装置
JP2009078759A (ja) * 2007-09-27 2009-04-16 Mazda Motor Corp 車両用サスペンション制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157368A1 (de) * 2001-11-23 2003-06-12 Bombardier Transp Gmbh Positionseinstellung eines Fahrzeug-Wagenkörpers
DE10316497A1 (de) * 2003-04-09 2005-01-05 Bombardier Transportation Gmbh Fahrwerk für ein Schienenfahrzeug mit verbesserter Querfederung
EP1627756A1 (en) * 2004-08-20 2006-02-22 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO Anti-roll/pitch system for use in a vehicle and vehicle equipped with such system
TW200904684A (en) * 2007-07-16 2009-02-01 Kayaba Industry Co Ltd Railway vehicle vibration suppression device
DE102009014866A1 (de) * 2009-03-30 2010-10-28 Bombardier Transportation Gmbh Fahrzeug mit Wankkompensation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278606A (ja) * 1992-02-07 1994-10-04 Hitachi Ltd 車両の振動制御装置
JPH06107172A (ja) * 1992-09-28 1994-04-19 Nippon Sharyo Seizo Kaisha Ltd 曲線情報算出方法及び車体傾斜制御方法
JPH09263241A (ja) * 1996-03-29 1997-10-07 Railway Technical Res Inst 車体傾斜制御装置
JP2000351368A (ja) * 1999-06-11 2000-12-19 Sumitomo Metal Ind Ltd 鉄道車両における振動低減方法
JP2004182000A (ja) * 2002-11-29 2004-07-02 Sumitomo Metal Ind Ltd 車体傾斜制御のフェールセーフ方法及び装置、鉄道車両並びにこの方法に使用する曲線判定方法
JP2006315519A (ja) * 2005-05-12 2006-11-24 Sumitomo Metal Ind Ltd 鉄道車両の車体傾斜制御装置及び方法
JP2009040083A (ja) * 2007-08-06 2009-02-26 Kayaba Ind Co Ltd 車体傾斜角度診断装置および車体傾斜角度診断方法
JP2009040081A (ja) 2007-08-06 2009-02-26 Kayaba Ind Co Ltd 振動成分加速度推定装置および振動成分加速度推定方法
JP2009078758A (ja) * 2007-09-27 2009-04-16 Mazda Motor Corp 車両用サスペンション制御装置
JP2009078759A (ja) * 2007-09-27 2009-04-16 Mazda Motor Corp 車両用サスペンション制御装置

Also Published As

Publication number Publication date
CN103097225A (zh) 2013-05-08
CN103097225B (zh) 2015-08-26
CA2808269A1 (en) 2012-03-01
US9162688B2 (en) 2015-10-20
AU2011294664A1 (en) 2013-03-14
CA2808269C (en) 2015-10-13
ES2798769T3 (es) 2020-12-14
KR101449354B1 (ko) 2014-10-08
JP5522259B2 (ja) 2014-06-18
EP2610129A4 (en) 2017-12-13
AU2011294664B2 (en) 2015-01-22
KR20130045930A (ko) 2013-05-06
TWI449643B (zh) 2014-08-21
EP2610129A1 (en) 2013-07-03
US20130158754A1 (en) 2013-06-20
EP2610129B1 (en) 2020-04-15
TW201223809A (en) 2012-06-16
JPWO2012026103A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5522259B2 (ja) 鉄道車両の振動成分加速度推定装置および振動成分加速度推定方法
JP5255780B2 (ja) 鉄道車両の振動制御装置
JP5181323B2 (ja) 鉄道車両用振動制御装置
JP5704306B2 (ja) 鉄道車両用振動制御装置
JP6571264B2 (ja) サスペンション制御装置
JP5522549B2 (ja) 鉄道車両用振動制御装置
JP2009040081A (ja) 振動成分加速度推定装置および振動成分加速度推定方法
JP2011213183A (ja) 可変減衰軸ダンパの異常検出装置及び異常検出方法
JP2012184000A5 (ja)
JP5643124B2 (ja) 車両間ダンパ装置
JP6864490B2 (ja) 鉄道車両の振動制御装置
JP7212538B2 (ja) 操舵制御システム、操舵システム、車両、操舵制御方法およびプログラム
JP2012179970A (ja) サスペンション制御装置
JP5812591B2 (ja) 鉄道車両用振動制御装置
JP2014141257A (ja) 車両間ダンパ装置
JP2024064145A (ja) 車両用制振装置および鉄道車両
JP5874584B2 (ja) 鉄道車両の動揺防止制御装置
JP6399590B2 (ja) 減衰力調整式緩衝器及びそれを用いた車両システム
JP2016022880A (ja) 減衰力調整式緩衝器の制御装置
JPWO2020110846A1 (ja) 鉄道車両用制振装置および鉄道車両用制振装置による異常検出方法
JP2011016491A (ja) 鉄道用車両の制振装置
JP2005082028A (ja) 鉄道車両用振動制御方法及び装置
Yamao et al. 1D31 The performance improvement of active lateral secondary suspension control system for conventional line vehicles by controller switching between straight and curve (Vehicles-Dynamics)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041199.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2808269

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012530529

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13818112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011294664

Country of ref document: AU

Date of ref document: 20110822

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137006955

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011819579

Country of ref document: EP