WO2017057623A1 - 基板処理装置および基板処理方法 - Google Patents
基板処理装置および基板処理方法 Download PDFInfo
- Publication number
- WO2017057623A1 WO2017057623A1 PCT/JP2016/078903 JP2016078903W WO2017057623A1 WO 2017057623 A1 WO2017057623 A1 WO 2017057623A1 JP 2016078903 W JP2016078903 W JP 2016078903W WO 2017057623 A1 WO2017057623 A1 WO 2017057623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- gas
- processing chamber
- unit
- wafer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/67034—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02101—Cleaning only involving supercritical fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/6719—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67772—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/335—Cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
Definitions
- a chemical solution such as a wet etching process or a cleaning process is performed by supplying a chemical solution to a substrate such as a semiconductor wafer. After the chemical treatment, a rinse treatment and a shake-off drying treatment are performed. As the pattern formed on the substrate is miniaturized and the aspect ratio is increased, there is a high possibility that the pattern collapses due to the surface tension of the liquid that is going out of the pattern recess during drying. In order to cope with this problem, recently, a drying process using a sublimable substance has been performed after the rinsing process (see, for example, Patent Document 1).
- a substrate holding unit that holds a substrate having a first surface coated with a sublimable substance and a second surface opposite to the first surface, and a substrate held by the substrate holding unit.
- a processing chamber for housing, a heating unit for heating the inside of the processing chamber to sublimate a sublimable material applied to the first surface of the substrate, and a gas supply unit for supplying a gas to the processing chamber.
- the gas supply unit has a gas injection port for injecting gas, and the gas injection port is provided at a position outside an edge of the substrate held by the substrate holding unit, and the substrate holding unit
- a substrate processing apparatus for forming a gas flow that flows in a direction along the first surface or the second surface of the substrate held by the substrate.
- FIG. 1 is a schematic side view showing an overall configuration of a sublimation processing system 1 (substrate processing apparatus).
- the sublimation processing system 1 includes a load port (carrying in / out unit) 2, an atmospheric transfer chamber 4, a load lock chamber 6, and a sublimation processing unit 8.
- a gate valve 5 is provided between the atmospheric transfer chamber 4 and the load lock chamber 6, and a gate valve 7 is also provided between the load lock chamber 6 and the sublimation processing unit 8.
- the sublimation processing system 1 includes a control device 100.
- the control device 100 is a computer, for example, and includes a control unit 101 and a storage unit 102.
- the storage unit 102 stores a program for controlling various processes executed in the sublimation processing system.
- the control unit 101 controls the operation of the sublimation processing system by reading and executing the program stored in the storage unit 102.
- Such a program may be recorded on a computer-readable storage medium and may be installed in the storage unit 102 of the control device 100 from the storage medium.
- Examples of the computer-readable storage medium include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnetic optical disk (MO), and a memory card.
- a plurality of compartments 86 (in other words, a plurality of compartments 86 separated from each other with respect to the thickness direction of the wafer W, that is, the arrangement direction of the wafers W) are separated from each other in the interior space of the processing chamber 81.
- a plurality of partition plates 87 for partitioning are provided.
- the area of each partition plate 87 is larger than that of the wafer W, and when the wafer W is viewed from above, the contour of the wafer W is completely included in the contour of the partition plate 87 (see also FIG. 5). Both ends in the horizontal direction of the partition plate 87 are connected to the side wall 81 a of the processing chamber 81.
- the gate valve 7 described above is provided on the front surface of the processing chamber 81.
- the gate valve 7 is driven by an actuator 78 and a valve body 71 having an opening 72 of a size through which a wafer holding portion of the second wafer transfer mechanism 62 capable of simultaneously transferring a plurality of wafers W can be passed.
- a movable valve element 73 that closes the opening 72 of the first valve.
- the shape of the opening 72 and the valve body 73 is, for example, a rectangle.
- gas injection ports 74 related to the uppermost section 86 are provided with reference numerals.
- the gas injection port 74 injects gas toward the gap 90a between each wafer W and the partition plate 87 located above the wafer W and the gap 90b between the wafer W and the partition plate 87 located therebelow. .
- the purge gas injected into the gap 90a and the gap 90b flows toward the exhaust port 82.
- the purge gas flow formed in each of the gaps 90a and 90b is changed in the width direction of the wafer (the horizontal direction in FIG. 3) so that the flow rates of the purge gas flowing through the gaps 90a and 90b (in the respective sections 86) are substantially equal. It is preferable to provide the gas injection ports 74 so as to be evenly distributed. Only the gap 90a needs to be purged with the gas of the sublimable substance. However, for a smooth gas flow in the processing chamber 81, it is desirable that the gas flows in the gap 90b at the same flow rate as the gap 90a. .
- the position of the end of each partition plate 87 on the gate valve 7 side is preferably set as close as possible to the closed valve body 73.
- the wafer W placed on the wafer support member 89 is sublimated by being heated to a temperature higher than the sublimation temperature of the sublimable substance on the wafer W by the heat generated by the heater 88, and becomes a gas state.
- the exhaust port passes through the gaps 90 a and 90 b.
- a purge gas flow toward 82 (flowing from the left side to the right side in FIG. 2) is formed. Therefore, the gas of the sublimable substance flows along the purge gas flow and is discharged from the processing chamber 81.
- the gate valve 7 is opened while the gate valve 5 is closed.
- the second wafer transfer mechanism 62 takes out the wafers W in the processing chamber 81 in a lump and places them on the buffer shelf 61 in the load lock chamber 6 in a reduced pressure atmosphere.
- the purge gas flows in the vicinity of the surface (first surface) of the wafer W in the processing chamber 81 in the direction along the surface during the sublimation process, the purge gas flows from the surface of the wafer W.
- the sublimated substance that has been sublimated is quickly discharged out of the processing chamber 81 on the purge gas flow. For this reason, the gas of the sublimation substance does not stay around the wafer W. For this reason, it is derived from the sublimable substance once detached from the wafer W after sublimation, or foreign substances contained in the sublimable substance and released to the periphery of the wafer together with the sublimation of the sublimable substance.
- the control device 100 controls a gas temperature regulator (a heater or a cooler) (not shown) provided in the gas line 77 based on the stored timing.
- the internal space of the processing chamber 81 is divided into the plurality of compartments 86 separated in the vertical direction by the partition plate 87, so that the gate valve 7 is connected to the exhaust port 82 in each compartment 86.
- a relatively high flow rate of purge gas is generated with strong directivity. For this reason, the gas of the sublimation substance removed from the wafer W can be discharged to the exhaust port 82 more smoothly.
- partition plate 87 It is preferable to provide the partition plate 87, but it is not necessary to provide it.
- plate-like wafer support members 92 that extend horizontally from the side walls 81a on both sides of the processing chamber 81 toward the central portion of the internal space of the processing chamber 81 are provided in a multi-tiered manner. May be. 4 shows a state in which the peripheral portion of one wafer W is supported by a pair of left and right wafer support members 92 corresponding to each other.
- the purge gas injected from the gas injection port is made at a relatively high flow rate at the wafer. It can flow in the direction along the surface of W.
- the heater provided on the partition plate 87 in the configuration shown in FIGS. 2 and 3 can be installed on the wall of the processing chamber 81.
- the wafer support member 92 is configured to support a device non-formation region at the peripheral portion of the surface (first surface) of the wafer W. If the surface of the wafer W is directed upward when the partition plate 87 is not present, the foreign matter falls on the surface of the wafer W when an abnormality occurs in the processing and a foreign matter is generated in the processing chamber, and the device of the wafer W is removed. There is a possibility of contamination. By keeping the surface of the wafer W facing down, the possibility of such occurrence can be greatly reduced.
- the purge gas is injected from the gas injection port 74 provided in the valve body 73 of the gate valve 7, but instead, it is provided on both the left and right sides of the gate valve 7 as shown in FIGS. 5 and 6.
- the gas may be injected from a gas injection pipe 94 extending in the vertical direction.
- a plurality of gas injection ports 96 are provided in the gas injection tube 94 at intervals in the vertical direction.
- gas is injected from a gas injection port 96 at a certain height position into a gap 90b between the lower surface of the wafer W and the partition plate 87 below it, and the height below the gap 90b.
- Gas is injected from the gas injection port 96 at a position into the gap 90a between the upper surface of the wafer W and the partition plate 87 above the wafer W (in this respect, the gate valve 7 (It is the same as the gas injection port 74 provided in the valve body 73.)
- an electrostatic dust collecting device that adsorbs and collects charged foreign substances contained in the gas of the sublimable substance by electrostatic force near an exhaust port 82 such as a rear wall of the processing chamber 81.
- a vessel 98 may be provided.
- the electrostatic precipitator 98 may adsorb positively charged foreign matter or adsorb negatively charged foreign matter.
- the sublimation processing unit 8 is a batch processing unit that processes a plurality of wafers W simultaneously, but may be a single wafer processing unit that processes a single wafer. Also in this case, contamination of the wafer W can be prevented by generating a purge gas flow that flows in the direction along the surface of the wafer W in the vicinity of the surface of the wafer W.
- the sublimable substance solution In a wafer having a surface with a high aspect ratio unevenness or a three-dimensional integrated circuit, the sublimable substance solution must be sufficiently infiltrated into the recesses when the sublimable substance is applied. For this purpose, (1) maintaining a state in which a liquid film of a thick sublimable substance solution is formed on the surface (first surface) of an object (substrate) such as a wafer, and (2) applying a sublimable substance.
- the inventors' research has shown that it is necessary to quickly dry the sublimable material solution later.
- the sublimation substance is reduced by reducing the rotation speed of the object to be processed. What is necessary is to make it difficult for centrifugal force to act on the liquid film of the solution.
- a paddle (liquid film) of a sublimable substance solution may be formed on the surface of the object to be processed without rotating the object to be processed.
- the temperature of the sublimable substance solution is raised through the object to be processed, whereby the solvent constituting the sublimable substance solution is rapidly evaporated.
- the object to be processed may be heated by a hot plate provided below the object to be processed, on which the liquid film of the sublimable substance solution is formed on the upper surface.
- the object to be processed may be heated by spraying a heated liquid or heated gas to the object to be processed with a nozzle installed below the object to be processed.
- the object to be processed and the sublimable substance solution may be heated by a hot plate or a heating lamp (for example, an LED lamp) installed above the object to be processed.
- the sublimable substance solution may be heated by spraying a heated gas (for example, dry air or nitrogen gas) to the object to be processed with a nozzle installed above the object to be processed.
- a heated gas for example, dry air or nitrogen gas
- the object to be processed and the sublimable substance solution are heated. May be. Further, at this time, the solvent of the evaporated sublimable substance solution may be removed from the surrounding space of the target object by sucking the lower space of the target object.
- the inside of the processing chamber 201 is in a reduced pressure state of, for example, an internal pressure of about 10 Pa to several tens of Pa by being sucked by the vacuum pump 208.
- Proximity pins 204 provided on the upper surface of the hot plate 202 ensure a narrow gap (gap) between the upper surface of the hot plate 202 and the lower surface of the wafer W. Thereby, even if the inside of the processing chamber 201 is evacuated, the wafer W can be prevented from sticking to the upper surface of the hot plate 202.
- the gas injected from the gas nozzle 205 flows in the direction along the first surface in the vicinity of the first surface of the wafer W. For this reason, the gas supplied from the gas nozzle 205 is generated not only by improving the heating efficiency of the wafer W as described above, but also by sublimating the sublimable substance adhering to the surface (upper surface) of the wafer W.
- the sublimation gas serves as a purge gas for expelling the sublimation gas from the space above the wafer W.
- the gas used is arbitrary. A higher thermal conductivity of the gas is preferable. If there is a gas that promotes the sublimation reaction of the sublimable substance, such a gas may be used.
- a gas heated in advance may be discharged from the gas nozzle 205. Thereby, heating efficiency can be improved.
- the sublimation process drying process
- the horizontal axis of the graph represents the elapsed time since the wafer W was placed on the hot plate 202, and the vertical axis represents the actual temperature of the wafer W.
- the processing chamber 201 was evacuated by the vacuum pump 208 so that the pressure in the processing chamber 201 was 10 Pa.
- the set temperature of the hot plate 202 was 120 ° C.
- the gas was supplied from the gas nozzle 205 at a supply flow rate such that the pressure in the processing chamber 201 increased to 60 Pa by gas supply while maintaining the same vacuuming conditions by the vacuum pump 208.
- the temperature change of the wafer W when the gas supply from the gas nozzle 205 is not performed is indicated by a broken line
- the temperature change of the wafer W when the gas supply is performed is indicated by a solid line.
- the sublimation treatment can be completed in a short time by supplying the gas. From the viewpoint of improving the heating efficiency of the wafer W, the larger the gas supply flow rate, the better. However, as the gas supply flow rate increases, the pressure in the processing chamber 201 increases. The reason why the processing chamber 201 is evacuated is that the sublimable substance is transferred from the solid phase to the gas phase without passing through the liquid phase (that is, sublimated). For this reason, it is necessary to determine the gas supply amount so that the pressure in the processing chamber 201 is maintained lower than the pressure at which the liquid phase is generated in the sublimable substance.
- the gas supply flow rate from the gas nozzle 205 does not cause an increase in pressure around the wafer W that changes the sublimable substance into a liquid phase, and heat conduction from the hot plate 202 (heating unit) to the wafer W is achieved. It is preferable that the flow rate is such that an amount (concentration) of gas is present around the wafer W.
- a suitable gas flow rate varies depending on various parameters of the processing apparatus such as the chamber internal volume, processing conditions such as the type of sublimation substance, sublimation processing temperature, and the like. Therefore, it is preferable to determine by a test based on the above flow setting concept. .
- the purge gas injected from the gas injection ports 74 and 96 is applied to the surface (first surface) of each wafer W.
- a gas flow that flows in the direction along the back surface near the back surface (second surface) of each wafer W is also formed.
- heat radiation is dominant in the heat transfer in the decompression space, by supplying the gas into the decompression space, this gas also acts as a heat transfer medium, and the heat transfer efficiency can be greatly improved.
- the purge gas injected from the gas injection port 74 also functions as a heat transfer medium from the heater 88 to the wafer W.
- the substrate to be processed is not limited to a semiconductor wafer, but may be another type of substrate, such as a glass substrate or a ceramic substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
Claims (20)
- 昇華性物質が塗布された第1面と、その反対側の第2面とを有する基板を保持する基板保持部と、
基板保持部により保持された基板を収容する処理室と、
前記基板の第1面に塗布された昇華性物質を昇華させるために前記処理室の内部を加熱する加熱部と、
前記処理室にガスを供給するガス供給部と、を備え、
前記ガス供給部はガスを噴射するガス噴射口を有し、前記ガス噴射口は、前記基板保持部により保持された前記基板の端縁よりも外側の位置に設けられ、前記基板保持部により保持された前記基板の前記第1面または前記第2面に沿う方向に流れるガスの流れを形成することを特徴とする基板処理装置。 - 前記基板保持部は、複数の基板を当該基板の厚さ方向に間隔を空けて並べて保持するように構成され、前記ガス供給部は、各基板に対して前記ガスの流れが形成されるように、各基板に対応して設けられた複数のガス噴射口を有する、請求項1記載の基板処理装置。
- 前記ガス供給部の各ガス噴射口は各基板に対応して一対一の関係で設けられている、請求項2記載の基板処理装置。
- 前記複数のガス噴射口が設けられている側と反対側に1つの排気口が設けられ、前記1つの排気口を介して前記処理室の内部が吸引される、請求項2記載の基板処理装置。
- 前記基板保持部は、前記複数の基板を水平姿勢で鉛直方向に間隔を空けて保持するように構成されている、請求項2記載の基板処理装置。
- 前記処理室内を前記基板の配列方向に関して互いに隔離された複数の区画に区切る複数の仕切り板が設けられ、前記仕切り板は前記基板保持部により保持される前記基板と平行に延び、前記基板保持部は各閉じた区画内に1枚ずつ基板を保持する、請求項2記載の基板処理装置。
- 前記加熱部は、前記各仕切り板に設けられたヒータを有する、請求項6記載の基板処理装置。
- 前記基板保持部は、各基板の前記第2面を下方から支持するために前記各仕切り板に設けられた基板支持部材を有する、請求項6記載の基板処理装置。
- 前記基板保持部は、前記処理室の両側壁から前記処理室の中央部に向けて延び、各基板の前記第2面の周縁部を支持する一対の棚状の基板支持部材の組を複数組有している、請求項5記載の基板処理装置。
- 前記処理室に基板を搬出入するための開口を閉鎖するゲートバルブを更に備え、前記複数のガス噴射口が前記ゲートバルブの弁体に設けられている、請求項5記載の基板処理装置。
- 前記基板保持部は、複数の基板を、各基板の前記第1面を下向きにして水平姿勢で鉛直方向に間隔を空けて並べるよう、保持する、請求項1記載の基板処理装置。
- 前記ガス供給部は、前記基板保持部により保持された前記基板の前記第1面の近傍を前記第1面に沿う方向に流れるガスの流れを形成する、請求項1記載の基板処理装置。
- 前記加熱部は、前記基板保持部により保持された前記基板の前記第2面との間に隙間を空けて配置された熱板を有する、請求項12記載の基板処理装置。
- 前記ガス供給部は、前記基板保持部により保持された前記基板の前記第1面の近傍を前記第1面に沿う方向に流れるガスの流れ、及び前記第2面の近傍を前記第2面に沿う方向に流れるガスの流れを形成する、請求項1記載の基板処理装置。
- 前記ガス供給部の動作を制御する制御部をさらに備え、前記制御部は、前記基板の第1面に塗布された昇華性物質を液相へと変化させる前記基板の周囲の圧力上昇が生じず、かつ、前記加熱部から前記基板への熱伝導が促進されるような量のガスを前記基板の周囲に存在させるような流量で、前記ガス供給部に処理室内にガスを供給させる、請求項4記載の基板処理装置。
- 前記ガス供給部の動作を制御する制御部をさらに備え、前記制御部は、前記基板保持部により保持された基板上に塗布された昇華性物質の昇華が開始される前から、前記ガス供給部に前記ガスを噴射させる、請求項1記載の基板処理装置。
- 前記ガス供給部の動作を制御する制御部をさらに備え、前記制御部は、前記基板保持部により保持された基板上に塗布された昇華性物質が昇華することにより発生した昇華ガスの発生量に応じて、前記ガス供給部から前記処理室内に供給されるガスの供給流量を変化させる、請求項1記載の基板処理装置。
- 前記ガス供給部から前記処理室内に供給されるガスの温度を調整するガス温度調整部と、前記ガス温度調整部の動作を制御する制御部と、をさらに備え、前記制御部は、前記ガス温度調整部により、昇華処理の終了が近づくにつれて前記ガス供給部から前記処理室内に供給されるガスの温度を低下させる、請求項1記載の基板処理装置。
- 昇華性物質が塗布された第1面と、その反対側の第2面とを有する基板を処理室内に配置することと、
前記基板の第1面に塗布された昇華性物質を昇華させるために前記基板を加熱することと、
前記処理室内において前記基板の端縁よりも外側の位置に設けられたガス噴射口からガスを噴射して、前記処理室内に配置された前記基板の前記第1面または前記第2面に沿う方向に流れるガスの流れを形成することと
を備えた基板処理方法。 - 前記基板を処理室内に配置することは、複数の基板を、各基板の前記第1面を下向きにして水平姿勢で鉛直方向に間隔を空けて並べることを含む、請求項19記載の基板処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680056032.0A CN108028193B (zh) | 2015-09-30 | 2016-09-29 | 基板处理装置和基板处理方法 |
KR1020187007906A KR102629526B1 (ko) | 2015-09-30 | 2016-09-29 | 기판 처리 장치 및 기판 처리 방법 |
JP2017543588A JP6518778B2 (ja) | 2015-09-30 | 2016-09-29 | 基板処理装置および基板処理方法 |
US15/764,482 US20180240684A1 (en) | 2015-09-30 | 2016-09-29 | Substrate processing apparatus and substrate processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-193550 | 2015-09-30 | ||
JP2015193550 | 2015-09-30 | ||
JP2016124672 | 2016-06-23 | ||
JP2016-124672 | 2016-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017057623A1 true WO2017057623A1 (ja) | 2017-04-06 |
Family
ID=58423591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/078903 WO2017057623A1 (ja) | 2015-09-30 | 2016-09-29 | 基板処理装置および基板処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180240684A1 (ja) |
JP (1) | JP6518778B2 (ja) |
KR (1) | KR102629526B1 (ja) |
CN (1) | CN108028193B (ja) |
WO (1) | WO2017057623A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230669A1 (ja) * | 2021-04-28 | 2022-11-03 | 株式会社Screenホールディングス | 基板処理方法および基板処理装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118737894A (zh) * | 2018-07-17 | 2024-10-01 | Asml荷兰有限公司 | 粒子束检查装置 |
JP7122911B2 (ja) * | 2018-08-31 | 2022-08-22 | 株式会社Screenホールディングス | 基板処理方法および基板処理装置 |
WO2020100381A1 (ja) * | 2018-11-14 | 2020-05-22 | 東京エレクトロン株式会社 | 基板処理装置及び基板搬送方法 |
US20200294819A1 (en) * | 2019-03-12 | 2020-09-17 | Nissin Ion Equipment Co., Ltd. | Systems and Methods for Substrate Cooling |
CN111834247B (zh) * | 2019-04-23 | 2023-09-08 | 北京北方华创微电子装备有限公司 | 冷却装置和半导体处理设备 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149137A (ja) * | 1985-09-24 | 1987-07-03 | Tomuko:Kk | 乾燥装置 |
JP2015133444A (ja) * | 2014-01-15 | 2015-07-23 | 株式会社東芝 | 半導体製造装置および半導体装置の製造方法 |
JP2015162486A (ja) * | 2014-02-26 | 2015-09-07 | 株式会社Screenホールディングス | 基板乾燥装置および基板乾燥方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4522149A (en) * | 1983-11-21 | 1985-06-11 | General Instrument Corp. | Reactor and susceptor for chemical vapor deposition process |
US20030049372A1 (en) * | 1997-08-11 | 2003-03-13 | Cook Robert C. | High rate deposition at low pressures in a small batch reactor |
KR100347379B1 (ko) * | 1999-05-01 | 2002-08-07 | 주식회사 피케이엘 | 복수매 기판의 박막 증착 공정이 가능한 원자층 증착장치 |
JP3676983B2 (ja) * | 2000-03-29 | 2005-07-27 | 株式会社日立国際電気 | 半導体製造方法、基板処理方法、及び半導体製造装置 |
US6765178B2 (en) * | 2000-12-29 | 2004-07-20 | Applied Materials, Inc. | Chamber for uniform substrate heating |
US7256370B2 (en) * | 2002-03-15 | 2007-08-14 | Steed Technology, Inc. | Vacuum thermal annealer |
US6926775B2 (en) * | 2003-02-11 | 2005-08-09 | Micron Technology, Inc. | Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces |
JP4329403B2 (ja) * | 2003-05-19 | 2009-09-09 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP2008243937A (ja) * | 2007-03-26 | 2008-10-09 | Tokyo Electron Ltd | 基板処理装置及び基板処理方法 |
JP5518303B2 (ja) * | 2008-05-21 | 2014-06-11 | エスペック株式会社 | 熱処理装置 |
KR101650217B1 (ko) * | 2008-12-12 | 2016-08-22 | 시바우라 메카트로닉스 가부시끼가이샤 | 기판 냉각 장치 및 기판 처리 시스템 |
JP2012078048A (ja) * | 2010-10-05 | 2012-04-19 | Koyo Thermo System Kk | 熱処理装置 |
JP5681560B2 (ja) | 2011-05-17 | 2015-03-11 | 東京エレクトロン株式会社 | 基板乾燥方法及び基板処理装置 |
US20150370245A1 (en) * | 2012-12-07 | 2015-12-24 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus, substrate processing method, semiconductor device manufacturing method, and control program |
-
2016
- 2016-09-29 US US15/764,482 patent/US20180240684A1/en not_active Abandoned
- 2016-09-29 WO PCT/JP2016/078903 patent/WO2017057623A1/ja active Application Filing
- 2016-09-29 JP JP2017543588A patent/JP6518778B2/ja active Active
- 2016-09-29 CN CN201680056032.0A patent/CN108028193B/zh active Active
- 2016-09-29 KR KR1020187007906A patent/KR102629526B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62149137A (ja) * | 1985-09-24 | 1987-07-03 | Tomuko:Kk | 乾燥装置 |
JP2015133444A (ja) * | 2014-01-15 | 2015-07-23 | 株式会社東芝 | 半導体製造装置および半導体装置の製造方法 |
JP2015162486A (ja) * | 2014-02-26 | 2015-09-07 | 株式会社Screenホールディングス | 基板乾燥装置および基板乾燥方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022230669A1 (ja) * | 2021-04-28 | 2022-11-03 | 株式会社Screenホールディングス | 基板処理方法および基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20180059772A (ko) | 2018-06-05 |
JPWO2017057623A1 (ja) | 2018-07-19 |
KR102629526B1 (ko) | 2024-01-25 |
JP6518778B2 (ja) | 2019-05-22 |
US20180240684A1 (en) | 2018-08-23 |
CN108028193A (zh) | 2018-05-11 |
CN108028193B (zh) | 2022-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017057623A1 (ja) | 基板処理装置および基板処理方法 | |
JP6022829B2 (ja) | 基板乾燥方法および基板乾燥装置 | |
US6446355B1 (en) | Disk drying apparatus and method | |
KR101546631B1 (ko) | 기판 처리 장치 및 기판 처리 방법 | |
TW201719743A (zh) | 基板處理裝置及基板處理方法 | |
US20210082700A1 (en) | Apparatus and method for treating substrate | |
TW201717271A (zh) | 基板處理裝置及基板處理方法 | |
KR102353111B1 (ko) | 성막 장치 및 성막 장치의 운전 방법 | |
US11721565B2 (en) | Multi-chamber apparatus | |
TW202125678A (zh) | 基板處理裝置及基板處理方法 | |
KR102137512B1 (ko) | 기판 탈가스용 챔버 | |
US10714352B2 (en) | Apparatus and method for treating substrate | |
JP7312235B2 (ja) | 有機膜形成装置、および有機膜形成装置のクリーニング方法 | |
KR102699338B1 (ko) | 성막 장치 및 성막 방법 | |
JP5448456B2 (ja) | 円板状の基板の脱ガスをする装置 | |
JP7303788B2 (ja) | 基板処理装置及び方法 | |
TWI844365B (zh) | 有機膜形成裝置、及有機膜形成裝置的清潔方法 | |
JP6312615B2 (ja) | 基板処理装置及び基板処理方法 | |
JP7138493B2 (ja) | 基板液処理方法、記憶媒体および基板液処理装置 | |
US20240222153A1 (en) | Substrate processing apparatus and method of controlling the same | |
WO2024018986A1 (ja) | 基板処理装置および基板処理方法 | |
JP6880913B2 (ja) | 基板処理装置、基板処理方法及び記憶媒体 | |
KR20190140243A (ko) | 기판 처리 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16851794 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187007906 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017543588 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15764482 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16851794 Country of ref document: EP Kind code of ref document: A1 |