WO2017057553A1 - Laminated body - Google Patents

Laminated body Download PDF

Info

Publication number
WO2017057553A1
WO2017057553A1 PCT/JP2016/078790 JP2016078790W WO2017057553A1 WO 2017057553 A1 WO2017057553 A1 WO 2017057553A1 JP 2016078790 W JP2016078790 W JP 2016078790W WO 2017057553 A1 WO2017057553 A1 WO 2017057553A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
resin layer
insulating resin
less
opposite
Prior art date
Application number
PCT/JP2016/078790
Other languages
French (fr)
Japanese (ja)
Inventor
前中 寛
靖 乾
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202110376117.XA priority Critical patent/CN113059875B/en
Priority to KR1020187005357A priority patent/KR101887337B1/en
Priority to EP16851724.1A priority patent/EP3339021B1/en
Priority to JP2016560838A priority patent/JP6235733B2/en
Priority to US15/763,736 priority patent/US10477671B2/en
Priority to CN201680058141.6A priority patent/CN108136734A/en
Publication of WO2017057553A1 publication Critical patent/WO2017057553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0284Details of three-dimensional rigid printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/44Number of layers variable across the laminate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09745Recess in conductor, e.g. in pad or in metallic substrate

Definitions

  • the present invention relates to a laminate including an insulating resin layer and a metal foil or a metal plate.
  • a laminate in which a metal foil or a metal plate is laminated on one side or both sides of an insulating resin layer is known.
  • Such a laminate is used, for example, in a heat generating device such as a light emitting diode (LED) device or a power semiconductor, a module including the heat generating device, and the like in order to suppress a temperature rise during use.
  • a heat generating device such as a light emitting diode (LED) device or a power semiconductor
  • a module including the heat generating device and the like in order to suppress a temperature rise during use.
  • Patent Document 1 discloses a laminate including an insulating resin layer and a copper foil or a copper plate integrated on both surfaces of the insulating resin layer.
  • the insulating resin layer has a thermal conductivity of 4 W / m ⁇ K or more.
  • the total thickness of both the copper foil or the copper plate integrated on both surfaces of the insulating resin layer is 600 ⁇ m or more.
  • Patent Document 2 discloses a laminate comprising a ceramic substrate and a metal plate bonded to both surfaces of the ceramic substrate via a silver-copper brazing filler metal layer.
  • a ceramic substrate is disposed between two metal plates instead of an insulating resin layer.
  • Patent Document 2 when a ceramic substrate is used, there is a problem that peeling is likely to occur after a thermal cycle because the linear expansion coefficient of the ceramic substrate is considerably low.
  • An object of the present invention is to provide a laminate that can reduce thermal resistance and can suppress peeling after a cooling and heating cycle.
  • an insulating resin layer a first metal material that is a metal foil or a metal plate, and a second metal material that is a metal foil or a metal plate
  • the first metal material is Laminated on the first surface of the insulating resin layer
  • the second metal material is laminated on a second surface opposite to the first surface of the insulating resin layer
  • the thickness of the insulating resin layer is 200 ⁇ m or less
  • the total thickness of the first metal material and the second metal material is 200 ⁇ m or more
  • the thickness of the first metal material is the second metal.
  • the ratio to the thickness of the material is 0.2 or more and 5 or less, and the surface area of the surface opposite to the insulating resin layer side of the first metal material is the insulating resin layer side of the second metal material A laminate having a ratio of the surface to the surface area opposite to that of 0.5 to 2 is provided.
  • a ratio of a linear expansion coefficient of the insulating resin layer to a linear expansion coefficient of the first metal material is 0.5 or more and 2 or less, and the insulating resin The ratio of the linear expansion coefficient of the layer to the linear expansion coefficient of the second metal material is 0.5 or more and 2 or less.
  • the insulating resin layer has an elastic modulus at 25 ° C. of 1 GPa or more and 50 GPa or less.
  • the side surface of the first metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
  • the side surface of the second metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
  • the first metal material is a circuit.
  • the laminate according to the present invention there is an insulating resin layer portion where the first metal material is not laminated, and the surface of the first metal material opposite to the insulating resin layer side is present.
  • the arithmetic average roughness Ra is 2 ⁇ m or less, and the arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side is 0.1 ⁇ m or more.
  • the surface area of the surface of the first metal material on the side of the insulating resin layer is the surface area of the surface opposite to the side of the insulating resin layer of the first metal material.
  • the ratio to is 0.8 or more and less than 1.0.
  • the first metal material is a circuit
  • the second metal material is a circuit
  • the laminate according to the present invention there is an insulating resin layer portion where the second metal material is not laminated, and the surface of the second metal material opposite to the insulating resin layer side is present.
  • the arithmetic average roughness Ra is 2 ⁇ m or less, and the arithmetic average roughness Ra of the surface of the second metal material on the insulating resin layer side is 0.1 ⁇ m or more.
  • the surface area of the surface of the second metal material opposite to the side of the insulating resin layer the surface area of the surface of the second metal material on the side of the insulating resin layer.
  • the ratio to is 0.8 or less.
  • the glass transition temperature of the insulating resin layer is 150 ° C. or higher.
  • the insulating resin layer is not a prepreg.
  • the surface of the first metal material opposite to the insulating resin layer side is exposed.
  • the insulating resin layer includes an inorganic filler.
  • the laminate according to the present invention includes an insulating resin layer, a first metal material that is a metal foil or a metal plate, and a second metal material that is a metal foil or a metal plate, and the first metal material is , Laminated on the first surface of the insulating resin layer, and the second metal material is laminated on a second surface opposite to the first surface of the insulating resin layer,
  • the thickness of the insulating resin layer is 200 ⁇ m or less
  • the total thickness of the first metal material and the second metal material is 200 ⁇ m or more
  • the thickness of the first metal material is the second
  • the ratio of the metal material to the thickness is 0.2 or more and 5 or less
  • the surface area of the surface opposite to the insulating resin layer side of the first metal material is the insulating resin layer of the second metal material. Since the ratio of the surface to the surface opposite to the side is 0.5 or more and 2 or less, the thermal resistance can be lowered. , Peeling after the cooling and heating cycle can be suppressed.
  • FIG. 1 is a cross-sectional view showing a laminated body according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a laminate according to the second embodiment of the present invention.
  • the laminate according to the present invention includes an insulating resin layer, a first metal material, and a second metal material.
  • the first metal material is a metal foil or a metal plate.
  • the second metal material is a metal foil or a metal plate.
  • the first metal material is laminated on the first surface (one surface) of the insulating resin layer
  • the second metal material is the insulating resin layer.
  • the insulating resin layer has a thickness of 200 ⁇ m or less.
  • the total thickness of the first metal material and the second metal material is 200 ⁇ m or more.
  • the ratio of the thickness of the first metal material to the thickness of the second metal material is 0.2. It is 5 or less.
  • the ratio of the surface area of the surface opposite to the insulating resin layer side of the first metal material to the surface area of the surface opposite to the insulating resin layer side of the second metal material is 0.5 or more and 2 or less.
  • the thermal resistance can be lowered, and peeling after the thermal cycle can be suppressed.
  • FIG. 1 is a cross-sectional view showing a laminated body according to the first embodiment of the present invention.
  • the first metal material 12 is a metal foil or a metal plate.
  • the second metal material 13 is a metal foil or a metal plate.
  • the first metal material 12 is laminated on the first surface (one surface) of the insulating resin layer 11.
  • the second metal material 13 is laminated on the second surface (the other surface) of the insulating resin layer 11.
  • the first metal material 12 and the second metal material 13 are circuits.
  • the first metal material 12 and the second metal material 13 are formed in partial regions on each of the first surface and the second surface of the insulating resin layer 11.
  • the first metal material and the second metal material may be formed in a partial region on at least one of the first surface and the second surface of the insulating resin layer.
  • the side surface of the first metal material 12 is inclined inwardly toward the surface side opposite to the insulating resin layer 11 side, and the side surface of the second metal material 13 is inclined to the insulating resin layer. It inclines inside as it goes to the surface side opposite to the 11th side.
  • the laminated body 1 there is an insulating resin layer 11 portion where the first metal material 12 is not laminated.
  • the laminated body there may be an insulating resin layer portion where the first metal material is not laminated.
  • FIG. 2 is a cross-sectional view showing a laminate according to the second embodiment of the present invention.
  • the first metal material 12 and the second metal material 13 are formed in partial regions on each of the first surface and the second surface of the insulating resin layer 11. Yes.
  • the first metal material 12 is formed in a partial region on the first surface of the insulating resin layer 11, and is a circuit.
  • the second metal material 13A is formed in the entire region on the second surface of the insulating resin layer 11, and no circuit is formed.
  • the second metal material may be formed in the entire region on the second surface, may not be formed with a circuit, or may be a metal material before circuit formation. .
  • the thickness of the insulating resin layer 11 is 200 ⁇ m or less.
  • the total thickness of the first metal material 12 and the second metal material 13 is 200 ⁇ m or more.
  • the ratio (thickness of the first metal material 12 / thickness of the second metal material 13) is 0.2 or more and 5 or less.
  • the ratio (surface area of the surface opposite to the insulating resin layer 11 side of the first metal material 12 / surface area of the surface opposite to the insulating resin layer 11 side of the second metal material 13) is 0.5 or more, 2 It is as follows.
  • the first metal material, the insulating resin layer, and the second metal material are integrated.
  • the thickness of the insulating resin layer is 200 ⁇ m or less. From the viewpoint of effectively reducing the thermal resistance and effectively suppressing peeling after the cooling and heating cycle, the thickness of the insulating resin layer is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less. From the viewpoint of enhancing the insulation reliability, the thickness of the insulating resin layer is preferably 40 ⁇ m or more, more preferably 60 ⁇ m or more. The thickness of the insulating resin layer is an average of the entire thickness of the insulating resin layer.
  • the total thickness of the first metal material and the second metal material is 200 ⁇ m or more. From the viewpoint of effectively improving heat dissipation, the total thickness of the first metal material and the second metal material is preferably 400 ⁇ m or more. From the viewpoint of lightness and handleability, the total thickness of the first metal material and the second metal material is preferably 2 mm or less.
  • the ratio (the thickness of the first metal material / the thickness of the second metal material) is 0.2 or more and 5 or less. From the viewpoint of effectively reducing the thermal resistance and effectively suppressing the peeling after the cooling and heating cycle, the above ratio (the thickness of the first metal material / the thickness of the second metal material) is preferably 0.00. It is 3 or more, more preferably 0.6 or more, still more preferably 0.8 or more, preferably 3 or less, more preferably 1.6 or less, and still more preferably 1.2 or less.
  • the thickness of the first metal material is an average of the total thickness of the first metal material.
  • the thickness of the second metal material is an average of the total thickness of the second metal material.
  • the thickness of the insulating resin layer, the thickness of the first metal material, and the thickness of the second metal material were determined by observing the cross section of the laminate with, for example, a microscope (such as “VHX-5000” manufactured by Keyence Corporation). It can be evaluated by measuring.
  • the ratio (surface area of the surface opposite to the insulating resin layer side of the first metal material / surface area of the surface opposite to the insulating resin layer side of the second metal material) is 0.5 or more and 2 or less. . From the viewpoint of effectively reducing the thermal resistance and effectively suppressing peeling after the thermal cycle, the above ratio (surface area of the first metal material opposite to the insulating resin layer side / second metal)
  • the surface area of the surface opposite to the insulating resin layer side of the material is preferably 0.6 or more, and preferably 1.67 or less.
  • the surface area can be measured, for example, by observing with an image size measuring instrument (“IM-6125” manufactured by Keyence Corporation).
  • IM-6125 manufactured by Keyence Corporation
  • the ratio of the linear expansion coefficient of the insulating resin layer to the linear expansion coefficient of the first metal material is preferably 0.5 or more, more preferably 0.6 or more, preferably 2 or less, more preferably 1.8 or less.
  • the ratio of the linear expansion coefficient of the insulating resin layer to the linear expansion coefficient of the second metal material is preferably 0.5 or more, more preferably 0.6 or more, preferably 2 or less, more preferably 1.8 or less.
  • the linear expansion coefficient of the insulating resin layer is preferably 5 ppm / ° C. or more, more preferably 10 ppm / ° C. or more, preferably 35 ppm / ° C. or less, more preferably 30 ppm. / ° C or less.
  • the linear expansion coefficient is measured using a thermomechanical analyzer under conditions from 25 ° C. to the glass transition temperature.
  • thermomechanical analyzer examples include “TMA-60” manufactured by Shimadzu Corporation.
  • the elastic modulus at 25 ° C. of the insulating resin layer is preferably 1 GPa or more, more preferably 5 GPa or more, preferably 50 GPa or less, more preferably 20 GPa or less.
  • the above elastic modulus is measured at 25 ° C. using a dynamic viscoelasticity measuring device.
  • the dynamic viscoelasticity measuring apparatus include “DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.
  • the side surface of the first metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
  • the side surface of the second metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
  • the etching amount when etching the metal material can be adjusted.
  • the first metal material may be laminated on the entire first surface of the insulating resin layer, or may be laminated on a partial region of the first surface of the insulating resin layer.
  • the second metal material may be laminated on the entire second surface of the insulating resin layer, or may be laminated on a partial region of the second surface of the insulating resin layer.
  • the arithmetic average roughness Ra of the surface of the first metal material opposite to the insulating resin layer side is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the arithmetic mean roughness Ra of the surface opposite to the insulating resin layer side of the first metal material may be 0 ⁇ m.
  • the arithmetic average roughness Ra of the surface of the second metal material opposite to the insulating resin layer side is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the arithmetic average roughness Ra of the surface of the second metal material opposite to the insulating resin layer side may be 0 ⁇ m.
  • the arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the arithmetic average roughness Ra of the surface of the second metal material on the insulating resin layer side is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • the arithmetic average roughness Ra is measured according to JIS B0601: 1994. Specifically, the arithmetic average roughness Ra is measured as follows.
  • the arithmetic average roughness Ra is measured at a moving speed of 0.6 mm using a surface roughness meter (“Surfcom Flex” manufactured by Tokyo Seimitsu Co., Ltd.).
  • Ratio of the surface area of the surface of the first metal material opposite to the insulating resin layer side to the surface area of the surface of the first metal material on the insulating resin layer side (insulating resin layer side of the first metal material) may be greater than 1 or 1.
  • the above ratio surface area opposite to the insulating resin layer side of the first metal material / insulating resin layer side of the first metal material
  • the surface area is preferably 0.8 or more, preferably less than 1.
  • Ratio of the surface area of the surface opposite to the insulating resin layer side of the second metal material to the surface area of the surface of the second metal material on the insulating resin layer side (insulating resin layer side of the second metal material) may be greater than 1 or 1.
  • the above ratio surface area opposite to the insulating resin layer side of the second metal material / insulating resin layer side of the second metal material
  • the surface area is preferably 0.8 or more, preferably less than 1.
  • the glass transition temperature of the insulating resin layer is preferably 150 ° C. or higher, more preferably 180 ° C. or higher.
  • the higher the glass transition temperature, the better, and the upper limit of the glass transition temperature is not particularly limited.
  • the glass transition temperature is measured at a rate of temperature increase of 5 ° C./min using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the insulating resin layer may be a prepreg or not a prepreg. From the viewpoint of further improving heat dissipation and insulation, the insulating resin layer is preferably not a prepreg.
  • a nonwoven fabric is impregnated with an insulating resin.
  • the nonwoven fabric may be a glass cloth.
  • the surface of the first metal material opposite to the insulating resin layer side is exposed, or the surface of the first metal material opposite to the insulating resin layer side is exposed. It is preferable that the protective film is laminated. In the laminate, the surface of the first metal material opposite to the insulating resin layer side is exposed, or the surface of the first metal material opposite to the insulating resin layer side is exposed. It can be used in the state where the protective film is laminated. In addition, after such a laminated body is incorporated in an electronic component, another electronic component member may be laminated on the surface of the first metal material opposite to the insulating resin layer side.
  • the surface of the second metal material opposite to the insulating resin layer side is exposed, or the surface of the second metal material opposite to the insulating resin layer side is exposed. It is preferable that the protective film is laminated. In the laminate, the surface of the second metal material opposite to the insulating resin layer side is exposed, or the second metal material is protected on the surface opposite to the insulating resin layer side. It can be used in a state where films are laminated. In addition, after such a laminated body is incorporated in an electronic component, another electronic component member may be laminated on the surface of the second metal material opposite to the insulating resin layer side.
  • the material for the insulating resin layer examples include a curable compound (A) and a curing agent (B).
  • the insulating resin layer is, for example, a cured product of a curable composition (insulating resin layer material) containing a curable compound and a thermosetting agent.
  • the material of the said insulating resin layer contains an inorganic filler (C).
  • the insulating resin layer preferably contains an inorganic filler (C).
  • the curable compound (A) may be a curable compound (A1) having a molecular weight of less than 10,000, a curable compound (A2) having a molecular weight of 10,000 or more, and a molecular weight of less than 10,000. Both a certain curable compound (A1) and a curable compound (A2) having a molecular weight of 10,000 or more may be used. As for a sclerosing
  • Curable compound (A1) examples of the curable compound (A1) having a molecular weight of less than 10,000 include curable compounds having a cyclic ether group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. The curable compound having a cyclic ether group is preferably a curable compound having an epoxy group or an oxetanyl group. As for a sclerosing
  • the curable compound (A1) may contain an epoxy compound (A1a) having an epoxy group, or may contain an oxetane compound (A1b) having an oxetanyl group.
  • the curable compound (A1) preferably has an aromatic skeleton.
  • the aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton.
  • a biphenyl skeleton or a fluorene skeleton is preferred. In this case, the thermal cycle resistance and heat resistance of the cured product are further enhanced.
  • the epoxy compound (A1a) having an epoxy group examples include an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, and an epoxy having a fluorene skeleton.
  • the monomer examples include an epoxy monomer having a biphenyl skeleton, an epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton, an epoxy monomer having a xanthene skeleton, an epoxy monomer having an anthracene skeleton, and an epoxy monomer having a pyrene skeleton.
  • These hydrogenated products or modified products may be used.
  • an epoxy compound (A1a) only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
  • Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
  • Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl.
  • Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
  • Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
  • Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene,
  • Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2
  • Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
  • oxetane compound (A1b) having an oxetanyl group include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylate bis [(3- Ethyl-3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, and oxetane-modified phenol novolac.
  • an oxetane compound (A1b) only 1 type may be used and 2 or more types may be used together.
  • the curable compound (A1) preferably has two or more cyclic ether groups.
  • the content of the curable compound having two or more cyclic ether groups in 100% by weight of the curable compound (A1) is preferably 70% by weight or more. Preferably they are 80 weight% or more and 100 weight% or less.
  • the content of the curable compound having two or more cyclic ether groups in the total 100% by weight of the curable compound (A1) may be 10% by weight or more and 100% by weight or less.
  • the entire curable compound (A1) may be a curable compound having two or more cyclic ether groups.
  • the molecular weight of the curable compound (A1) is less than 10,000.
  • the molecular weight of the curable compound (A1) is preferably 200 or more, more preferably 1200 or less, still more preferably 600 or less, and particularly preferably 550 or less.
  • the adhesiveness of the surface of the cured product is lowered, and the handleability of the curable composition is further enhanced.
  • the molecular weight of the curable compound (A1) is not more than the above upper limit, the adhesiveness of the cured product is further enhanced.
  • the cured product is hard and hard to be brittle, and the adhesiveness of the cured product is further enhanced.
  • the molecular weight in the curable compound (A1) means a molecular weight that can be calculated from the structural formula when it is not a polymer and when the structural formula can be specified. Means weight average molecular weight.
  • the insulating resin layer 100% by weight of the material excluding the solvent and the inorganic filler (when the material of the insulating resin layer does not include the solvent and includes the inorganic filler, the insulating resin is included in 100% by weight of the material excluding the inorganic filler.
  • the insulating resin layer material does not contain a solvent and does not contain an inorganic filler in 100% by weight of the material excluding the solvent.
  • the content of the curable compound (A1) is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, and still more preferably 70% by weight.
  • % By weight or less, particularly preferably 60% by weight or less, and most preferably 50% by weight or less.
  • content of the curable compound (A1) is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further enhanced.
  • content of the curable compound (A1) is not more than the above upper limit, the coating property at the production of the insulating resin layer is increased.
  • Curable compound (A2) is a curable compound having a molecular weight of 10,000 or more.
  • the curable compound (A2) having a molecular weight of 10,000 or more is generally a polymer, and the molecular weight generally means a weight average molecular weight.
  • the curable compound (A2) preferably has an aromatic skeleton.
  • the heat resistance of the cured product increases and the moisture resistance of the cured product also increases.
  • the curable compound (A2) may have an aromatic skeleton in any part of the entire polymer, and has in the main chain skeleton. Or may be present in the side chain.
  • the curable compound (A2) preferably has an aromatic skeleton in the main chain skeleton.
  • hardenable compound (A2) only 1 type may be used and 2 or more types may be used together.
  • the aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton.
  • a biphenyl skeleton or a fluorene skeleton is preferred. In this case, the thermal cycle resistance and heat resistance of the cured product are further enhanced.
  • a curable resin such as a thermoplastic resin and a thermosetting resin can be used.
  • the curable compound (A2) is preferably a thermoplastic resin or a thermosetting resin.
  • the curable compound (A2) is preferably a curable resin.
  • the curable compound (A2) is preferably a thermoplastic resin, and is preferably a thermosetting resin.
  • thermoplastic resin and thermosetting resin are not particularly limited.
  • the thermoplastic resin is not particularly limited, and examples thereof include styrene resin, phenoxy resin, phthalate resin, thermoplastic urethane resin, polyamide resin, thermoplastic polyimide resin, ketone resin, and norbornene resin.
  • the thermosetting resin is not particularly limited, and examples thereof include amino resins, phenol resins, thermosetting urethane resins, epoxy resins, thermosetting polyimide resins, and amino alkyd resins. Examples of the amino resin include urea resin and melamine resin.
  • the curable compound (A2) is a styrene resin, phenoxy. It is preferably a resin or an epoxy resin, more preferably a phenoxy resin or an epoxy resin, and even more preferably a phenoxy resin.
  • a phenoxy resin or an epoxy resin further increases the heat resistance of the cured product.
  • use of a phenoxy resin further lowers the elastic modulus of the cured product and further improves the cold-heat cycle characteristics of the cured product.
  • the curable compound (A2) may not have a cyclic ether group such as an epoxy group.
  • styrene resin specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Styrene polymers having a styrene-glycidyl methacrylate structure are preferred.
  • styrene monomer examples include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, p-ethyl styrene, pn- Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.
  • the phenoxy resin is specifically a resin obtained by reacting, for example, an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
  • the phenoxy resin has a bisphenol A skeleton, bisphenol F skeleton, bisphenol A / F mixed skeleton, naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton or dicyclopentadiene skeleton. It is preferable.
  • the phenoxy resin has a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, or a biphenyl skeleton, and at least one of the fluorene skeleton and the biphenyl skeleton. More preferably, it has a skeleton.
  • Use of the phenoxy resin having these preferable skeletons further increases the heat resistance of the cured product.
  • the epoxy resin is an epoxy resin other than the phenoxy resin.
  • the epoxy resins include styrene skeleton-containing epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, biphenol type epoxy resins, naphthalene type epoxy resins, and fluorene type epoxy resins. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.
  • the molecular weight of the curable compound (A2) is 10,000 or more.
  • the molecular weight of the curable compound (A2) is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less.
  • the molecular weight of the curable compound (A2) is not less than the above lower limit, the cured product is hardly thermally deteriorated.
  • the molecular weight of the curable compound (A2) is not more than the above upper limit, the compatibility between the curable compound (A2) and other components is increased. As a result, the heat resistance of the cured product is further increased.
  • the content of the curable compound (A2) is preferably 20% by weight or more, more preferably 30% by weight or more, preferably 60% by weight in 100% by weight of the material excluding the solvent and inorganic filler. Hereinafter, it is more preferably 50% by weight or less.
  • the content of the curable compound (A2) is not less than the above lower limit, the handleability of the curable composition is improved.
  • the content of the curable compound (A2) is not more than the above upper limit, dispersion of the inorganic filler (C) becomes easy.
  • Curing agent (B) The material of the insulating resin layer preferably contains a curing agent (B). As for a hardening
  • the curing agent (B) preferably has an aromatic skeleton or an alicyclic skeleton.
  • the curing agent (B) preferably includes an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound) or an acid anhydride curing agent (acid anhydride), and includes an amine curing agent. More preferred.
  • the acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a water additive of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, It is preferable to include a water additive of an acid anhydride or a modified product of the acid anhydride.
  • the curing agent (B) preferably contains a basic curing agent, a phenol resin having a melamine skeleton or a triazine skeleton, or a phenol resin having an allyl group. Furthermore, it is preferable that a hardening
  • dicyandiamide is included.
  • the imidazole curing agent is also a kind of amine curing agent.
  • curing agent (B) contains both a dicyandiamide and an imidazole hardening
  • Whether the curing agent (B) is a basic curing agent is determined by placing 1 g of the curing agent in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and heating the mixture with stirring at 80 ° C. for 1 hour. Next, when an insoluble component in the liquid after heating is removed by filtration to obtain an extract, it is judged that the pH of the extract is basic.
  • the amine curing agent examples include dicyandiamide, imidazole compound, diaminodiphenylmethane, and diaminodiphenylsulfone.
  • the amine curing agent is more preferably a dicyandiamide or an imidazole curing agent.
  • the curing agent (B) preferably includes a curing agent having a melting point of 180 ° C. or higher, and includes an amine curing agent having a melting point of 180 ° C. or higher. It is more preferable.
  • imidazole curing agent examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl.
  • phenol curing agent examples include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly ( And di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane.
  • a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group is preferable.
  • phenol curing agents include MEH-8005, MEH-8010 and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical), LA-7052, LA-7054, and LA-7751.
  • LA-1356 and LA-3018-50P all of which are manufactured by DIC
  • PS6313 and PS6492 all of which are manufactured by Gunei Chemical Co., Ltd.
  • Examples of the acid anhydride having an aromatic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride include, for example, a styrene / maleic anhydride copolymer, a benzophenone tetracarboxylic acid anhydride, and a pyromellitic acid anhydride.
  • Trimellitic anhydride 4,4'-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydroanhydride
  • Examples include phthalic acid, methylhexahydrophthalic anhydride, and trialkyltetrahydrophthalic anhydride.
  • Examples of commercially available acid anhydrides having an aromatic skeleton, water additives of the acid anhydrides, or modified products of the acid anhydrides include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (all of which are manufactured by Manac), Ricacid MTA-10, Jamaicacid MTA-15, Ricacid TMTA, Jamaicacid TMEG-100, Jamaicacid TMEG-200, Jamaicacid TMEG-300, Ricacid TMEG-500, Jamaicacid TMEG-S, Ricacid TH, Ricacid HT-1A, Jamaicacid HH, Guatemalacid MH-700, Jamaicacid MT-500, Jamaicacid DSDA and Guatemalacid TDA-100 (all manufactured by Shin Nippon Rika) EPICLON B4400, EPICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).
  • the acid anhydride having an alicyclic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, a water additive of the acid anhydride, or the A modified product of an acid anhydride, or an acid anhydride having an alicyclic skeleton obtained by addition reaction of a terpene compound and maleic anhydride, a water additive of the acid anhydride, or a modified product of the acid anhydride It is preferable. By using these curing agents, the flexibility of the cured product and the moisture resistance and adhesion of the cured product are further increased.
  • Examples of the acid anhydride having an alicyclic skeleton, a water addition of the acid anhydride, or a modified product of the acid anhydride include methyl nadic acid anhydride, acid anhydride having a dicyclopentadiene skeleton, and the acid anhydride And the like.
  • Examples of commercially available acid anhydrides having the alicyclic skeleton, water additions of the acid anhydrides, or modified products of the acid anhydrides include Jamaicacid HNA and Ricacid HNA-100 (all of which are manufactured by Shin Nippon Rika Co., Ltd.) , And EpiCure YH306, EpiCure YH307, EpiCure YH308H, EpiCure YH309 (all of which are manufactured by Mitsubishi Chemical Corporation) and the like.
  • the curing agent (B) is also preferably methyl nadic acid anhydride or trialkyltetrahydrophthalic anhydride. Use of methyl nadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the cured product.
  • the content of the curing agent (B) is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 40% by weight in 100% by weight of the material excluding the solvent and inorganic filler. % Or less, more preferably 25% by weight or less. It is easy to fully harden a curable composition as content of a hardening
  • Inorganic filler (C) By using the inorganic filler (C), the thermal conductivity of the cured product is considerably increased. As for an inorganic filler (C), only 1 type may be used and 2 or more types may be used together.
  • the thermal conductivity of the inorganic filler (C) is preferably 10 W / m ⁇ K or more, more preferably 15 W / m ⁇ K or more, and still more preferably 20 W / m ⁇ . K or more.
  • the upper limit of the thermal conductivity of the inorganic filler (C) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m ⁇ K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m ⁇ K are easily available.
  • the inorganic filler (C) is preferably alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide, and alumina, boron nitride, aluminum nitride, silicon nitride, silicon carbide, Zinc oxide or magnesium oxide is more preferable. Use of these preferable inorganic fillers further increases the thermal conductivity of the cured product.
  • the inorganic filler (C) other than silica is more preferably spherical alumina, crushed alumina or spherical aluminum nitride, and even more preferably spherical alumina or spherical aluminum nitride. Use of these preferable inorganic fillers further increases the thermal conductivity of the cured product.
  • the new Mohs hardness of the inorganic filler (C) is preferably 12 or less, more preferably 9 or less. When the new Mohs hardness of the inorganic filler (C) is 9 or less, the workability of the cured product is further enhanced.
  • the inorganic filler (C) is preferably synthetic magnesite, crystalline silica, zinc oxide, or magnesium oxide.
  • the new Mohs hardness of these inorganic fillers is 9 or less.
  • the inorganic filler (C) may contain a spherical filler (spherical filler), may contain a crushed filler (crushed filler), or may contain a plate-like filler (plate-like filler). Good. It is particularly preferable that the inorganic filler (C) includes a spherical filler. Since spherical fillers can be filled at high density, the use of spherical fillers further increases the thermal conductivity of the cured product.
  • crushed filler examples include crushed alumina and crushed silica.
  • the crushing filler is obtained, for example, by crushing a lump-like inorganic substance using a uniaxial crusher, a biaxial crusher, a hammer crusher, a ball mill, or the like.
  • the filler in the cured product tends to be bridged or effectively brought into a close structure. Therefore, the thermal conductivity of the cured product is further increased.
  • the crushing filler is cheap compared with a normal filler. For this reason, the cost of a curable composition becomes low by use of a crushing filler.
  • the silica is preferably crushed silica (crushed silica). By using the crushed silica, the moisture resistance of the cured product is further enhanced, and the voltage resistance is further unlikely to be lowered when the pressure cooker test of the cured product is performed.
  • the average particle size of the crushed filler is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, and preferably 1 ⁇ m or more.
  • the crushed filler can be dispersed with high density in the curable composition, and the withstand voltage of the cured product is further enhanced.
  • the average particle diameter of the crushed filler is not less than the above lower limit, it becomes easy to fill the crushed filler with high density.
  • the aspect ratio of the crushed filler is not particularly limited.
  • the aspect ratio of the crushed filler is preferably 1.5 or more, and preferably 20 or less. Fillers with an aspect ratio of less than 1.5 are relatively expensive and increase the cost of the curable composition. When the aspect ratio is 20 or less, filling of the crushed filler is easy.
  • the aspect ratio of the crushed filler can be determined, for example, by measuring the crushed surface of the filler using a digital image analysis particle size distribution measuring device (“FPA” manufactured by Nippon Lucas).
  • FPA digital image analysis particle size distribution measuring device
  • the average particle diameter of the inorganic filler (C) is preferably 0.1 ⁇ m or more, and preferably 40 ⁇ m or less. When the average particle diameter is not less than the above lower limit, the inorganic filler (C) can be easily filled at a high density. When the average particle size is not more than the above upper limit, the withstand voltage of the cured product is further enhanced.
  • the above-mentioned “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured with a laser diffraction particle size distribution measuring apparatus.
  • the material of the insulating resin layer 100% by weight of the material excluding the solvent (if the material of the insulating resin layer does not include the solvent, the material of the insulating resin layer includes the solvent in 100% by weight of the material of the insulating resin layer.
  • the content of the inorganic filler (C) is preferably 50% by weight or more, more preferably 70% by weight or more, preferably 97 % By weight or less, more preferably 95% by weight or less.
  • the material for the insulating resin layer may contain other components generally used for the insulating resin layer such as a dispersant, a chelating agent, and an antioxidant in addition to the components described above.
  • First metal material and second metal material examples include aluminum, copper, gold, and a graphite sheet.
  • the metal material is preferably gold, copper, or aluminum, and more preferably copper or aluminum.
  • the metal material is more preferably copper.
  • the metal material is preferably a metal foil.
  • Curing agent (B) (1) Alicyclic skeleton acid anhydride (“MH-700” manufactured by Shin Nippon Rika Co., Ltd.) (2) Biphenyl skeleton phenolic resin (“MEH-7851-S” manufactured by Meiwa Kasei Co., Ltd.) (3) Isocyanur-modified solid dispersion type imidazole (imidazole curing accelerator, “2MZA-PW” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • Inorganic filler (C) (1) 5 ⁇ m alumina (crushed alumina, “LT300C” manufactured by Nippon Light Metal Co., Ltd., average particle size 5 ⁇ m) (2) Boron nitride (“MBN-010T” manufactured by Mitsui Chemicals, average particle size: 0.9 ⁇ m) (3) Aluminum nitride (“MAN-2A” manufactured by Mitsui Chemicals, average particle size 1.3 ⁇ m)
  • Epoxysilane coupling agent (“KBE403” manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Examples 1 to 16 and Comparative Examples 1 to 6 Using a homodisper type stirrer, the blending components shown in Tables 1 to 3 below were blended in the blending amounts shown in Tables 1 to 3 below and kneaded to prepare an insulating material.
  • the above insulating material was applied to a release PET sheet (thickness 50 ⁇ m) to a target thickness, dried in an oven at 90 ° C. for 30 minutes, and the solvent was evaporated to prepare a sheet-like insulating material.
  • the obtained sheet-like insulating material was laminated on a metal plate with a thermal laminator, and a laminate having a three-layer structure having an insulating resin layer was obtained. Produced. Thereafter, curing was performed at 180 ° C. for 1 hour to obtain a cured laminated structure. Then, the laminated body which has a predetermined area ratio was produced by etching the metal layer part of this laminated structure.
  • metal plates were fabricated by punching press processing so that the predetermined area and the front and back areas were the same.
  • the metal plate and the sheet-like insulating material are bonded with a thermal laminator, and have a predetermined area ratio, and the area ratio between the insulating layer surface of the metal layer portion and the metal layer surface opposite to the insulating layer surface is the same.
  • a laminate having a three-layer structure before curing was produced. Then, it hardened
  • the glass transition temperature of the obtained cured product was measured at a heating rate of 5 ° C./min using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the elastic modulus of the cured product (insulating resin layer) was measured at 25 ° C. using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
  • thermomechanical analyzer manufactured by Shimadzu Corporation
  • TMA-60 thermomechanical analyzer
  • the arithmetic average roughness Ra was measured at a moving speed of 0.6 mm using a surface roughness meter (“Surfcom Flex” manufactured by Tokyo Seimitsu Co., Ltd.).
  • the thermal conductivity of the cured product (insulating resin layer) was measured using a thermal conductivity meter (“Rapid Thermal Conductivity Meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.).
  • Thermal resistance A heating element having the same size as the laminated body, controlled at 60 ° C., and having a smooth surface was prepared. The obtained laminate was pressed against the heating element at a pressure of 1 kgf, and the thermal resistance was evaluated by measuring the temperature of the opposite surface of the heating element with a thermocouple. Thermal resistance was determined according to the following criteria.
  • Composition is shown in Tables 1 to 3 below.
  • the configurations of the laminate and the evaluation results of the laminate are shown in Tables 4 to 6 below.

Abstract

Provided is a laminated body capable of lowering thermal resistance and capable of suppressing peeling after a cooling/heating cycle. The laminated body according to the present invention is provided with an insulating resin layer, a first metal material that is a metal foil or a metal plate and a second metal material that is a metal foil or a metal plate, wherein the first metal material is laminated on a first surface of the insulating resin layer and the second metal material is laminated on a second surface of the insulating resin layer that is opposite the first surface, the thickness of the insulating resin layer is at most 200 μm, the total thickness of the first metal material and the second metal material is no less than 200 μm, the ratio of the thickness of the first metal material to the thickness of the second metal material is 0.2-5 and the ratio of the surface area of the surface of the first metal material that is opposite the insulating resin layer side to the surface area of the surface of the second metal material that is opposite the insulating resin layer side is 0.5-2.

Description

積層体Laminated body
 本発明は、絶縁樹脂層と、金属箔又は金属板とを備える積層体に関する。 The present invention relates to a laminate including an insulating resin layer and a metal foil or a metal plate.
 絶縁樹脂層の片面又は両面に、金属箔又は金属板が積層されている積層体が知られている。このような積層体は、例えば、発光ダイオード(LED)装置やパワー半導体等の発熱デバイス、並びに、該発熱デバイスを含むモジュール等において、使用時の温度上昇を抑えるために用いられている。 A laminate in which a metal foil or a metal plate is laminated on one side or both sides of an insulating resin layer is known. Such a laminate is used, for example, in a heat generating device such as a light emitting diode (LED) device or a power semiconductor, a module including the heat generating device, and the like in order to suppress a temperature rise during use.
 下記の特許文献1には、絶縁樹脂層と、絶縁樹脂層の両面に一体化された銅箔又は銅板とを備える積層板が開示されている。上記絶縁樹脂層の熱伝導率は4W/m・K以上である。上記絶縁樹脂層の両面に一体化された上記銅箔又は銅板の両者の合計の厚みは600μm以上である。 The following Patent Document 1 discloses a laminate including an insulating resin layer and a copper foil or a copper plate integrated on both surfaces of the insulating resin layer. The insulating resin layer has a thermal conductivity of 4 W / m · K or more. The total thickness of both the copper foil or the copper plate integrated on both surfaces of the insulating resin layer is 600 μm or more.
 また、下記の特許文献2には、セラミックス基板と、セラミック基板の両面に、銀-銅系ろう材層を介して接合された金属板とを備える積層体が開示されている。この積層体では、2つの金属板の間に、絶縁樹脂層ではなく、セラミック基板が配置されている。 Patent Document 2 below discloses a laminate comprising a ceramic substrate and a metal plate bonded to both surfaces of the ceramic substrate via a silver-copper brazing filler metal layer. In this laminate, a ceramic substrate is disposed between two metal plates instead of an insulating resin layer.
特開2006-76263号公報JP 2006-76263 A 特開2014-118310号公報JP 2014-118310 A
 特許文献1に記載の積層体では、熱抵抗を低くすることができなかったり、冷熱サイクル後の剥離を抑えることができなかったりする。特許文献1の実施例及び比較例で示された積層体の全てにおいて、十分に低い熱抵抗と、冷熱サイクル後の十分に優れた剥離防止性との双方が達成されていない。 In the laminate described in Patent Document 1, the thermal resistance cannot be lowered, or the peeling after the thermal cycle cannot be suppressed. In all of the laminates shown in the examples and comparative examples of Patent Document 1, both a sufficiently low thermal resistance and a sufficiently excellent anti-peeling property after a cooling / heating cycle are not achieved.
 また、特許文献2に記載のように、セラミックス基板を用いれば、セラミック基板の線膨張率がかなり低いために、冷熱サイクル後に、剥離が生じやすいという問題がある。 Further, as described in Patent Document 2, when a ceramic substrate is used, there is a problem that peeling is likely to occur after a thermal cycle because the linear expansion coefficient of the ceramic substrate is considerably low.
 本発明の目的は、熱抵抗を低くすることができ、冷熱サイクル後の剥離を抑えることができる積層体を提供することである。 An object of the present invention is to provide a laminate that can reduce thermal resistance and can suppress peeling after a cooling and heating cycle.
 本発明の広い局面では、絶縁樹脂層と、金属箔又は金属板である第1の金属材と、金属箔又は金属板である第2の金属材とを備え、前記第1の金属材が、前記絶縁樹脂層の第1の表面に積層されており、かつ、前記第2の金属材が、前記絶縁樹脂層の前記第1の表面とは反対の第2の表面に積層されており、前記絶縁樹脂層の厚みが200μm以下であり、前記第1の金属材と前記第2の金属材との合計の厚みが200μm以上であり、前記第1の金属材の厚みの、前記第2の金属材の厚みに対する比が、0.2以上、5以下であり、前記第1の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第2の金属材の前記絶縁樹脂層側とは反対の表面の表面積に対する比が、0.5以上、2以下である、積層体が提供される。 In a wide aspect of the present invention, an insulating resin layer, a first metal material that is a metal foil or a metal plate, and a second metal material that is a metal foil or a metal plate, the first metal material is Laminated on the first surface of the insulating resin layer, and the second metal material is laminated on a second surface opposite to the first surface of the insulating resin layer, The thickness of the insulating resin layer is 200 μm or less, the total thickness of the first metal material and the second metal material is 200 μm or more, and the thickness of the first metal material is the second metal. The ratio to the thickness of the material is 0.2 or more and 5 or less, and the surface area of the surface opposite to the insulating resin layer side of the first metal material is the insulating resin layer side of the second metal material A laminate having a ratio of the surface to the surface area opposite to that of 0.5 to 2 is provided.
 本発明に係る積層体のある特定の局面では、前記絶縁樹脂層の線膨張率の、前記第1の金属材の線膨張率に対する比が、0.5以上、2以下であり、前記絶縁樹脂層の線膨張率の、前記第2の金属材の線膨張率に対する比が、0.5以上、2以下である。 In a specific aspect of the laminate according to the present invention, a ratio of a linear expansion coefficient of the insulating resin layer to a linear expansion coefficient of the first metal material is 0.5 or more and 2 or less, and the insulating resin The ratio of the linear expansion coefficient of the layer to the linear expansion coefficient of the second metal material is 0.5 or more and 2 or less.
 本発明に係る積層体のある特定の局面では、前記絶縁樹脂層の25℃での弾性率が1GPa以上、50GPa以下である。 In a specific aspect of the laminate according to the present invention, the insulating resin layer has an elastic modulus at 25 ° C. of 1 GPa or more and 50 GPa or less.
 本発明に係る積層体のある特定の局面では、前記第1の金属材の側面が、前記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜している。 In a specific aspect of the laminate according to the present invention, the side surface of the first metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
 本発明に係る積層体のある特定の局面では、前記第2の金属材の側面が、前記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜している。 In a specific aspect of the laminate according to the present invention, the side surface of the second metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
 本発明に係る積層体のある特定の局面では、前記第1の金属材が回路である。 In a specific aspect of the laminate according to the present invention, the first metal material is a circuit.
 本発明に係る積層体のある特定の局面では、前記第1の金属材が積層されていない絶縁樹脂層部分が存在し、前記第1の金属材の前記絶縁樹脂層側とは反対の表面の算術平均粗さRaが2μm以下であり、かつ前記第1の金属材の絶縁樹脂層側の表面の算術平均粗さRaが0.1μm以上である。 In a specific aspect of the laminate according to the present invention, there is an insulating resin layer portion where the first metal material is not laminated, and the surface of the first metal material opposite to the insulating resin layer side is present. The arithmetic average roughness Ra is 2 μm or less, and the arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side is 0.1 μm or more.
 本発明に係る積層体のある特定の局面では、前記第1の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第1の金属材の前記絶縁樹脂層側の表面の表面積に対する比が、0.8以上、1.0未満である。 In a specific aspect of the laminate according to the present invention, the surface area of the surface of the first metal material on the side of the insulating resin layer is the surface area of the surface opposite to the side of the insulating resin layer of the first metal material. The ratio to is 0.8 or more and less than 1.0.
 本発明に係る積層体のある特定の局面では、前記第1の金属材が回路であり、前記第2の金属材が回路である。 In a specific aspect of the laminate according to the present invention, the first metal material is a circuit, and the second metal material is a circuit.
 本発明に係る積層体のある特定の局面では、前記第2の金属材が積層されていない絶縁樹脂層部分が存在し、前記第2の金属材の前記絶縁樹脂層側とは反対の表面の算術平均粗さRaが2μm以下であり、かつ前記第2の金属材の絶縁樹脂層側の表面の算術平均粗さRaが0.1μm以上である。 In a specific aspect of the laminate according to the present invention, there is an insulating resin layer portion where the second metal material is not laminated, and the surface of the second metal material opposite to the insulating resin layer side is present. The arithmetic average roughness Ra is 2 μm or less, and the arithmetic average roughness Ra of the surface of the second metal material on the insulating resin layer side is 0.1 μm or more.
 本発明に係る積層体のある特定の局面では、前記第2の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第2の金属材の前記絶縁樹脂層側の表面の表面積に対する比が、0.8以下である。 In a specific aspect of the laminate according to the present invention, the surface area of the surface of the second metal material opposite to the side of the insulating resin layer, the surface area of the surface of the second metal material on the side of the insulating resin layer. The ratio to is 0.8 or less.
 本発明に係る積層体のある特定の局面では、前記絶縁樹脂層のガラス転移温度が150℃以上である。 In a specific aspect of the laminate according to the present invention, the glass transition temperature of the insulating resin layer is 150 ° C. or higher.
 本発明に係る積層体のある特定の局面では、前記絶縁樹脂層がプリプレグではない。 In a specific aspect of the laminate according to the present invention, the insulating resin layer is not a prepreg.
 本発明に係る積層体のある特定の局面では、前記第1の金属材の前記絶縁樹脂層側とは反対側の表面が露出しているか、又は、前記第1の金属材の前記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されている。 On the specific situation with the laminated body which concerns on this invention, the surface on the opposite side to the said insulating resin layer side of the said 1st metal material is exposed, or the said insulating resin layer of the said 1st metal material A protective film is laminated on the surface opposite to the side.
 本発明に係る積層体のある特定の局面では、前記第1の金属材の前記絶縁樹脂層側とは反対側の表面が露出している。 In a specific aspect of the laminate according to the present invention, the surface of the first metal material opposite to the insulating resin layer side is exposed.
 本発明に係る積層体のある特定の局面では、前記絶縁樹脂層が、無機フィラーを含む。 In a specific aspect of the laminate according to the present invention, the insulating resin layer includes an inorganic filler.
 本発明に係る積層体は、絶縁樹脂層と、金属箔又は金属板である第1の金属材と、金属箔又は金属板である第2の金属材とを備え、上記第1の金属材が、上記絶縁樹脂層の第1の表面に積層されており、かつ、上記第2の金属材が、上記絶縁樹脂層の上記第1の表面とは反対の第2の表面に積層されており、上記絶縁樹脂層の厚みが200μm以下であり、上記第1の金属材と上記第2の金属材との合計の厚みが200μm以上であり、上記第1の金属材の厚みの、上記第2の金属材の厚みに対する比が、0.2以上、5以下であり、上記第1の金属材の上記絶縁樹脂層側とは反対の表面の表面積の、上記第2の金属材の上記絶縁樹脂層側とは反対の表面の表面積に対する比が、0.5以上、2以下であるので、熱抵抗を低くすることができ、冷熱サイクル後の剥離を抑えることができる。 The laminate according to the present invention includes an insulating resin layer, a first metal material that is a metal foil or a metal plate, and a second metal material that is a metal foil or a metal plate, and the first metal material is , Laminated on the first surface of the insulating resin layer, and the second metal material is laminated on a second surface opposite to the first surface of the insulating resin layer, The thickness of the insulating resin layer is 200 μm or less, the total thickness of the first metal material and the second metal material is 200 μm or more, and the thickness of the first metal material is the second The ratio of the metal material to the thickness is 0.2 or more and 5 or less, and the surface area of the surface opposite to the insulating resin layer side of the first metal material is the insulating resin layer of the second metal material. Since the ratio of the surface to the surface opposite to the side is 0.5 or more and 2 or less, the thermal resistance can be lowered. , Peeling after the cooling and heating cycle can be suppressed.
図1は、本発明の第1の実施形態に係る積層体を示す断面図である。FIG. 1 is a cross-sectional view showing a laminated body according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る積層体を示す断面図である。FIG. 2 is a cross-sectional view showing a laminate according to the second embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る積層体は、絶縁樹脂層と、第1の金属材と、第2の金属材とを備える。上記第1の金属材は、金属箔又は金属板である。上記第2の金属材は、金属箔又は金属板である。 The laminate according to the present invention includes an insulating resin layer, a first metal material, and a second metal material. The first metal material is a metal foil or a metal plate. The second metal material is a metal foil or a metal plate.
 本発明に係る積層体では、上記第1の金属材が、上記絶縁樹脂層の第1の表面(一方の表面)に積層されており、かつ、上記第2の金属材が、上記絶縁樹脂層の上記第1の表面とは反対の第2の表面(他方の表面)に積層されている。 In the laminate according to the present invention, the first metal material is laminated on the first surface (one surface) of the insulating resin layer, and the second metal material is the insulating resin layer. Are stacked on the second surface (the other surface) opposite to the first surface.
 本発明に係る積層体では、上記絶縁樹脂層の厚みが200μm以下である。本発明に係る積層体では、上記第1の金属材と上記第2の金属材との合計の厚みが200μm以上である。本発明に係る積層体では、上記第1の金属材の厚みの、上記第2の金属材の厚みに対する比(第1の金属材の厚み/第2の金属材の厚み)が、0.2以上、5以下である。本発明に係る積層体では、上記第1の金属材の上記絶縁樹脂層側とは反対の表面の表面積の、上記第2の金属材の上記絶縁樹脂層側とは反対の表面の表面積に対する比(第1の金属材の絶縁樹脂層側とは反対の表面の表面積/第2の金属材の絶縁樹脂層側とは反対の表面の表面積)が、0.5以上、2以下である。 In the laminate according to the present invention, the insulating resin layer has a thickness of 200 μm or less. In the laminated body according to the present invention, the total thickness of the first metal material and the second metal material is 200 μm or more. In the laminated body according to the present invention, the ratio of the thickness of the first metal material to the thickness of the second metal material (the thickness of the first metal material / the thickness of the second metal material) is 0.2. It is 5 or less. In the laminate according to the present invention, the ratio of the surface area of the surface opposite to the insulating resin layer side of the first metal material to the surface area of the surface opposite to the insulating resin layer side of the second metal material. The surface area of the surface opposite to the insulating resin layer side of the first metal material / the surface area of the surface opposite to the insulating resin layer side of the second metal material is 0.5 or more and 2 or less.
 本発明では、上記の構成が備えられているので、熱抵抗を低くすることができ、冷熱サイクル後の剥離を抑えることができる。 In the present invention, since the above-described configuration is provided, the thermal resistance can be lowered, and peeling after the thermal cycle can be suppressed.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る積層体を示す断面図である。 FIG. 1 is a cross-sectional view showing a laminated body according to the first embodiment of the present invention.
 図1に示す積層体1は、絶縁樹脂層11と、第1の金属材12と、第2の金属材13とを備える。第1の金属材12は、金属箔又は金属板である。第2の金属材13は、金属箔又は金属板である。 1 includes an insulating resin layer 11, a first metal material 12, and a second metal material 13. The first metal material 12 is a metal foil or a metal plate. The second metal material 13 is a metal foil or a metal plate.
 第1の金属材12は、絶縁樹脂層11の第1の表面(一方の表面)に積層されている。第2の金属材13は、絶縁樹脂層11の第2の表面(他方の表面)に積層されている。本実施形態では、第1の金属材12及び第2の金属材13は、回路である。第1の金属材12及び第2の金属材13は、絶縁樹脂層11の第1の表面及び第2の表面のそれぞれにおいて、一部の領域に形成されている。第1の金属材及び第2の金属材は、絶縁樹脂層の第1の表面及び第2の表面の少なくとも一方において、一部の領域に形成されていてもよい。本実施形態では、第1の金属材12の側面が、絶縁樹脂層11側とは反対の表面側に向かうに従って、内側に傾斜しており、第2の金属材13の側面が、絶縁樹脂層11側とは反対の表面側に向かうに従って、内側に傾斜している。積層体1では、第1の金属材12が積層されていない絶縁樹脂層11部分が存在する。積層体では、第1の金属材が積層されていない絶縁樹脂層部分が存在してもよい。積層体1では、第2の金属材13が積層されていない絶縁樹脂層11部分が存在する。積層体では、第2の金属材が積層されていない絶縁樹脂層部分が存在してもよい。 The first metal material 12 is laminated on the first surface (one surface) of the insulating resin layer 11. The second metal material 13 is laminated on the second surface (the other surface) of the insulating resin layer 11. In the present embodiment, the first metal material 12 and the second metal material 13 are circuits. The first metal material 12 and the second metal material 13 are formed in partial regions on each of the first surface and the second surface of the insulating resin layer 11. The first metal material and the second metal material may be formed in a partial region on at least one of the first surface and the second surface of the insulating resin layer. In the present embodiment, the side surface of the first metal material 12 is inclined inwardly toward the surface side opposite to the insulating resin layer 11 side, and the side surface of the second metal material 13 is inclined to the insulating resin layer. It inclines inside as it goes to the surface side opposite to the 11th side. In the laminated body 1, there is an insulating resin layer 11 portion where the first metal material 12 is not laminated. In the laminated body, there may be an insulating resin layer portion where the first metal material is not laminated. In the laminate 1, there is an insulating resin layer 11 portion where the second metal material 13 is not laminated. In the laminated body, there may be an insulating resin layer portion where the second metal material is not laminated.
 図2は、本発明の第2の実施形態に係る積層体を示す断面図である。 FIG. 2 is a cross-sectional view showing a laminate according to the second embodiment of the present invention.
 図1に示す積層体1では、第1の金属材12及び第2の金属材13は、絶縁樹脂層11の第1の表面及び第2の表面のそれぞれにおいて、一部の領域に形成されている。図2に示す積層体1Aでは、第1の金属材12は、絶縁樹脂層11の第1の表面において、一部の領域に形成されており、回路である。積層体1Aでは、第2の金属材13Aは、絶縁樹脂層11の第2の表面において、全体の領域に形成されており、回路形成されていない。このように、例えば、第2の金属材は、第2の表面において、全体の領域に形成されていてもよく、回路形成されてなくてもよく、回路形成前の金属材であってもよい。 In the laminate 1 shown in FIG. 1, the first metal material 12 and the second metal material 13 are formed in partial regions on each of the first surface and the second surface of the insulating resin layer 11. Yes. In the laminated body 1A shown in FIG. 2, the first metal material 12 is formed in a partial region on the first surface of the insulating resin layer 11, and is a circuit. In the laminated body 1A, the second metal material 13A is formed in the entire region on the second surface of the insulating resin layer 11, and no circuit is formed. Thus, for example, the second metal material may be formed in the entire region on the second surface, may not be formed with a circuit, or may be a metal material before circuit formation. .
 絶縁樹脂層11の厚みは200μm以下である。第1の金属材12と第2の金属材13との合計の厚みは200μm以上である。比(第1の金属材12の厚み/第2の金属材13の厚み)は、0.2以上、5以下である。比(第1の金属材12の絶縁樹脂層11側とは反対の表面の表面積/第2の金属材13の絶縁樹脂層11側とは反対の表面の表面積)は、0.5以上、2以下である。 The thickness of the insulating resin layer 11 is 200 μm or less. The total thickness of the first metal material 12 and the second metal material 13 is 200 μm or more. The ratio (thickness of the first metal material 12 / thickness of the second metal material 13) is 0.2 or more and 5 or less. The ratio (surface area of the surface opposite to the insulating resin layer 11 side of the first metal material 12 / surface area of the surface opposite to the insulating resin layer 11 side of the second metal material 13) is 0.5 or more, 2 It is as follows.
 上記積層体では、第1の金属材と絶縁樹脂層と第2の金属材とが一体化されていることが好ましい。 In the laminate, it is preferable that the first metal material, the insulating resin layer, and the second metal material are integrated.
 上記絶縁樹脂層の厚みは、200μm以下である。熱抵抗を効果的に低くし、かつ、冷熱サイクル後の剥離を効果的に抑える観点からは、上記絶縁樹脂層の厚みは、好ましくは150μm以下、より好ましくは100μm以下である。絶縁信頼性を高める観点からは、上記絶縁樹脂層の厚みは、好ましくは40μm以上、より好ましくは60μm以上である。上記絶縁樹脂層の厚みは、絶縁樹脂層の全体の厚みの平均である。 The thickness of the insulating resin layer is 200 μm or less. From the viewpoint of effectively reducing the thermal resistance and effectively suppressing peeling after the cooling and heating cycle, the thickness of the insulating resin layer is preferably 150 μm or less, more preferably 100 μm or less. From the viewpoint of enhancing the insulation reliability, the thickness of the insulating resin layer is preferably 40 μm or more, more preferably 60 μm or more. The thickness of the insulating resin layer is an average of the entire thickness of the insulating resin layer.
 上記第1の金属材と上記第2の金属材との合計の厚みは、200μm以上である。放熱性を効果的に高める観点からは、上記第1の金属材と上記第2の金属材との合計の厚みは、好ましくは400μm以上である。軽量性及び取り扱い性の観点からは、上記第1の金属材と上記第2の金属材との合計の厚みは、好ましくは2mm以下である。 The total thickness of the first metal material and the second metal material is 200 μm or more. From the viewpoint of effectively improving heat dissipation, the total thickness of the first metal material and the second metal material is preferably 400 μm or more. From the viewpoint of lightness and handleability, the total thickness of the first metal material and the second metal material is preferably 2 mm or less.
 上記比(第1の金属材の厚み/第2の金属材の厚み)は、0.2以上、5以下である。熱抵抗を効果的に低くし、かつ、冷熱サイクル後の剥離を効果的に抑える観点からは、上記比(第1の金属材の厚み/第2の金属材の厚み)は、好ましくは0.3以上、より好ましくは0.6以上、更に好ましくは0.8以上、好ましくは3以下、より好ましくは1.6以下、更に好ましくは1.2以下である。上記第1の金属材の厚みは、第1の金属材の全体の厚みの平均である。上記第2の金属材の厚みは、第2の金属材の全体の厚みの平均である。 The ratio (the thickness of the first metal material / the thickness of the second metal material) is 0.2 or more and 5 or less. From the viewpoint of effectively reducing the thermal resistance and effectively suppressing the peeling after the cooling and heating cycle, the above ratio (the thickness of the first metal material / the thickness of the second metal material) is preferably 0.00. It is 3 or more, more preferably 0.6 or more, still more preferably 0.8 or more, preferably 3 or less, more preferably 1.6 or less, and still more preferably 1.2 or less. The thickness of the first metal material is an average of the total thickness of the first metal material. The thickness of the second metal material is an average of the total thickness of the second metal material.
 上記絶縁樹脂層の厚み、上記第1の金属材の厚み、及び上記第2の金属材の厚みは、積層体の断面を、例えばマイクロスコープ(キーエンス社製「VHX-5000」等)により観察し、計測することで、評価することができる。 The thickness of the insulating resin layer, the thickness of the first metal material, and the thickness of the second metal material were determined by observing the cross section of the laminate with, for example, a microscope (such as “VHX-5000” manufactured by Keyence Corporation). It can be evaluated by measuring.
 上記比(第1の金属材の絶縁樹脂層側とは反対の表面の表面積/第2の金属材の絶縁樹脂層側とは反対の表面の表面積)は、0.5以上、2以下である。熱抵抗を効果的に低くし、かつ、冷熱サイクル後の剥離を効果的に抑える観点からは、上記比(第1の金属材の絶縁樹脂層側とは反対の表面の表面積/第2の金属材の絶縁樹脂層側とは反対の表面の表面積)は好ましくは0.6以上、好ましくは1.67以下である。 The ratio (surface area of the surface opposite to the insulating resin layer side of the first metal material / surface area of the surface opposite to the insulating resin layer side of the second metal material) is 0.5 or more and 2 or less. . From the viewpoint of effectively reducing the thermal resistance and effectively suppressing peeling after the thermal cycle, the above ratio (surface area of the first metal material opposite to the insulating resin layer side / second metal) The surface area of the surface opposite to the insulating resin layer side of the material is preferably 0.6 or more, and preferably 1.67 or less.
 上記表面積は、例えば画像寸法測定器(キーエンス社製「IM-6125」)により観察することによって測定することができる。 The surface area can be measured, for example, by observing with an image size measuring instrument (“IM-6125” manufactured by Keyence Corporation).
 冷熱サイクル後の剥離を効果的に抑える観点からは、上記絶縁樹脂層の線膨張率の、上記第1の金属材の線膨張率に対する比(絶縁樹脂層の線膨張率/第1の金属材の線膨張率)は、好ましくは0.5以上、より好ましくは0.6以上、好ましくは2以下、より好ましくは1.8以下である。 From the viewpoint of effectively suppressing peeling after the thermal cycle, the ratio of the linear expansion coefficient of the insulating resin layer to the linear expansion coefficient of the first metal material (linear expansion coefficient of the insulating resin layer / first metal material). The linear expansion coefficient) is preferably 0.5 or more, more preferably 0.6 or more, preferably 2 or less, more preferably 1.8 or less.
 冷熱サイクル後の剥離を効果的に抑える観点からは、上記絶縁樹脂層の線膨張率の、上記第2の金属材の線膨張率に対する比(絶縁樹脂層の線膨張率/第2の金属材の線膨張率)は、好ましくは0.5以上、より好ましくは0.6以上、好ましくは2以下、より好ましくは1.8以下である。 From the viewpoint of effectively suppressing peeling after the thermal cycle, the ratio of the linear expansion coefficient of the insulating resin layer to the linear expansion coefficient of the second metal material (linear expansion coefficient of the insulating resin layer / second metal material). The linear expansion coefficient) is preferably 0.5 or more, more preferably 0.6 or more, preferably 2 or less, more preferably 1.8 or less.
 冷熱サイクル後の剥離を効果的に抑える観点からは、上記絶縁樹脂層の線膨張率は、好ましくは5ppm/℃以上、より好ましくは10ppm/℃以上、好ましくは35ppm/℃以下、より好ましくは30ppm/℃以下である。 From the viewpoint of effectively suppressing peeling after the thermal cycle, the linear expansion coefficient of the insulating resin layer is preferably 5 ppm / ° C. or more, more preferably 10 ppm / ° C. or more, preferably 35 ppm / ° C. or less, more preferably 30 ppm. / ° C or less.
 上記線膨張率は、熱機械分析装置を用いて、25℃からガラス転移温度までの条件で測定される。熱機械分析装置としては、島津製作所社製「TMA-60」等が挙げられる。 The linear expansion coefficient is measured using a thermomechanical analyzer under conditions from 25 ° C. to the glass transition temperature. Examples of the thermomechanical analyzer include “TMA-60” manufactured by Shimadzu Corporation.
 冷熱サイクル後の剥離を効果的に抑える観点からは、上記絶縁樹脂層の25℃での弾性率は好ましくは1GPa以上、より好ましくは5GPa以上、好ましくは50GPa以下、より好ましくは20GPa以下である。 From the viewpoint of effectively suppressing peeling after the thermal cycle, the elastic modulus at 25 ° C. of the insulating resin layer is preferably 1 GPa or more, more preferably 5 GPa or more, preferably 50 GPa or less, more preferably 20 GPa or less.
 上記弾性率は、動的粘弾性測定装置を用いて、25℃の条件で測定される。動的粘弾性測定装置としては、日立ハイテクサイエンス社製「DMS6100」等が挙げられる。 The above elastic modulus is measured at 25 ° C. using a dynamic viscoelasticity measuring device. Examples of the dynamic viscoelasticity measuring apparatus include “DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.
 剥離をより一層抑える観点からは、上記第1の金属材の側面が、上記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜していることが好ましい。剥離をより一層抑える観点からは、上記第2の金属材の側面が、上記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜していることが好ましい。 From the viewpoint of further suppressing peeling, it is preferable that the side surface of the first metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side. From the viewpoint of further suppressing peeling, it is preferable that the side surface of the second metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
 上記第1の金属材の側面が、上記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜させるためには、例えば、金属材をエッチングする際のエッチング量を調整することができる。 In order to incline inwardly as the side surface of the first metal material moves toward the surface side opposite to the insulating resin layer side, for example, the etching amount when etching the metal material can be adjusted. .
 上記第1の金属材は、上記絶縁樹脂層の第1の表面全体に積層されていてもよく、上記絶縁樹脂層の第1の表面の一部の領域に積層されていてもよい。上記第2の金属材は、上記絶縁樹脂層の第2の表面全体に積層されていてもよく、上記絶縁樹脂層の第2の表面の一部の領域に積層されていてもよい。 The first metal material may be laminated on the entire first surface of the insulating resin layer, or may be laminated on a partial region of the first surface of the insulating resin layer. The second metal material may be laminated on the entire second surface of the insulating resin layer, or may be laminated on a partial region of the second surface of the insulating resin layer.
 放熱性をより一層良好にする観点からは、上記第1の金属材の上記絶縁樹脂層側とは反対の表面の算術平均粗さRaは好ましくは2μm以下、より好ましくは1μm以下である。上記第1の金属材の上記絶縁樹脂層側とは反対の表面の算術平均粗さRaは0μmであってもよい。放熱性をより一層良好にする観点からは、上記第2の金属材の上記絶縁樹脂層側とは反対の表面の算術平均粗さRaは好ましくは2μm以下、より好ましくは1μm以下である。上記第2の金属材の上記絶縁樹脂層側とは反対の表面の算術平均粗さRaは0μmであってもよい。 From the viewpoint of further improving heat dissipation, the arithmetic average roughness Ra of the surface of the first metal material opposite to the insulating resin layer side is preferably 2 μm or less, more preferably 1 μm or less. The arithmetic mean roughness Ra of the surface opposite to the insulating resin layer side of the first metal material may be 0 μm. From the viewpoint of further improving the heat dissipation, the arithmetic average roughness Ra of the surface of the second metal material opposite to the insulating resin layer side is preferably 2 μm or less, more preferably 1 μm or less. The arithmetic average roughness Ra of the surface of the second metal material opposite to the insulating resin layer side may be 0 μm.
 接着安定性をより一層高める観点からは、上記第1の金属材の絶縁樹脂層側の表面の算術平均粗さRaは好ましくは0.1μm以上、より好ましくは0.2μm以上である。接着安定性をより一層高める観点からは、上記第2の金属材の絶縁樹脂層側の表面の算術平均粗さRaは好ましくは0.1μm以上、より好ましくは0.2μm以上である。 From the viewpoint of further improving the adhesion stability, the arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side is preferably 0.1 μm or more, more preferably 0.2 μm or more. From the viewpoint of further improving the adhesion stability, the arithmetic average roughness Ra of the surface of the second metal material on the insulating resin layer side is preferably 0.1 μm or more, more preferably 0.2 μm or more.
 上記算術平均粗さRaは、JIS B0601:1994に準拠して測定される。上記算術平均粗さRaは、具体的には、以下のようにして測定される。 The arithmetic average roughness Ra is measured according to JIS B0601: 1994. Specifically, the arithmetic average roughness Ra is measured as follows.
 上記算術平均粗さRaは表面粗さ計(東京精密社製「サーフコム フレックス」)を用いて移動速度0.6mmで測定される。 The arithmetic average roughness Ra is measured at a moving speed of 0.6 mm using a surface roughness meter (“Surfcom Flex” manufactured by Tokyo Seimitsu Co., Ltd.).
 上記第1の金属材の上記絶縁樹脂層側とは反対の表面の表面積の、上記第1の金属材の上記絶縁樹脂層側の表面の表面積に対する比(第1の金属材の絶縁樹脂層側とは反対の表面の表面積/第1の金属材の絶縁樹脂層側の表面の表面積)は1を超えていてもよく、1であってもよい。剥離をより一層抑え、かつ良好な放熱性を維持する観点からは、上記比(第1の金属材の絶縁樹脂層側とは反対の表面の表面積/第1の金属材の絶縁樹脂層側の表面の表面積)は、好ましくは0.8以上、好ましくは1未満である。上記第2の金属材の上記絶縁樹脂層側とは反対の表面の表面積の、上記第2の金属材の上記絶縁樹脂層側の表面の表面積に対する比(第2の金属材の絶縁樹脂層側とは反対の表面の表面積/第2の金属材の絶縁樹脂層側の表面の表面積)は1を超えていてもよく、1であってもよい。剥離をより一層抑え、かつ良好な放熱性を維持する観点からは、上記比(第2の金属材の絶縁樹脂層側とは反対の表面の表面積/第2の金属材の絶縁樹脂層側の表面の表面積)は、好ましくは0.8以上、好ましくは1未満である。 Ratio of the surface area of the surface of the first metal material opposite to the insulating resin layer side to the surface area of the surface of the first metal material on the insulating resin layer side (insulating resin layer side of the first metal material) The surface area opposite to the surface area / the surface area of the surface of the first metal material on the insulating resin layer side) may be greater than 1 or 1. From the viewpoint of further suppressing peeling and maintaining good heat dissipation, the above ratio (surface area opposite to the insulating resin layer side of the first metal material / insulating resin layer side of the first metal material) The surface area) is preferably 0.8 or more, preferably less than 1. Ratio of the surface area of the surface opposite to the insulating resin layer side of the second metal material to the surface area of the surface of the second metal material on the insulating resin layer side (insulating resin layer side of the second metal material) The surface area opposite to the surface area / the surface area of the surface of the second metal material on the insulating resin layer side) may be greater than 1 or 1. From the viewpoint of further suppressing peeling and maintaining good heat dissipation, the above ratio (surface area opposite to the insulating resin layer side of the second metal material / insulating resin layer side of the second metal material) The surface area) is preferably 0.8 or more, preferably less than 1.
 耐熱性をより一層高める観点、及び、冷熱サイクル後の剥離をより一層抑える観点からは、上記絶縁樹脂層のガラス転移温度は好ましくは150℃以上、より好ましくは180℃以上である。上記ガラス転移温度は高いほどよく、上記ガラス転移温度の上限は特に限定されない。 From the viewpoint of further improving the heat resistance and further suppressing the peeling after the cooling and heating cycle, the glass transition temperature of the insulating resin layer is preferably 150 ° C. or higher, more preferably 180 ° C. or higher. The higher the glass transition temperature, the better, and the upper limit of the glass transition temperature is not particularly limited.
 上記ガラス転移温度は得られた硬化物を動的粘弾性測定装置(日立ハイテクサイエンス社製「DMS6100」)を用いて、5℃/分の昇温速度で測定される。 The glass transition temperature is measured at a rate of temperature increase of 5 ° C./min using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
 上記絶縁樹脂層は、プリプレグであってもよく、プリプレグではなくてもよい。放熱性及び絶縁性をより一層良好にする観点からは、上記絶縁樹脂層は、プリプレグではないことが好ましい。上記プリプレグでは、一般的に、不織布に絶縁樹脂が含浸されている。上記不織布は、ガラスクロスであってもよい。 The insulating resin layer may be a prepreg or not a prepreg. From the viewpoint of further improving heat dissipation and insulation, the insulating resin layer is preferably not a prepreg. In the prepreg, generally, a nonwoven fabric is impregnated with an insulating resin. The nonwoven fabric may be a glass cloth.
 上記積層体は、上記第1の金属材の上記絶縁樹脂層側とは反対側の表面が露出しているか、又は、上記第1の金属材の上記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されていることが好ましい。上記積層体は、上記第1の金属材の上記絶縁樹脂層側とは反対側の表面が露出しているか、又は、上記第1の金属材の上記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されている状態で用いることができる。なお、このような積層体は、電子部品に組み込まれた後には、上記第1の金属材の上記絶縁樹脂層側とは反対側の表面に、他の電子部品部材が積層されてもよい。上記積層体は、上記第2の金属材の上記絶縁樹脂層側とは反対側の表面が露出しているか、又は、上記第2の金属材の上記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されていることが好ましい。上記積層体は、上記第2の金属材の上記絶縁樹脂層側とは反対側の表面が露出しているか、又は、第2の金属材の上記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されている状態で用いることができる。なお、このような積層体は、電子部品に組み込まれた後には、上記第2の金属材の上記絶縁樹脂層側とは反対側の表面に、他の電子部品部材が積層されてもよい。 In the laminate, the surface of the first metal material opposite to the insulating resin layer side is exposed, or the surface of the first metal material opposite to the insulating resin layer side is exposed. It is preferable that the protective film is laminated. In the laminate, the surface of the first metal material opposite to the insulating resin layer side is exposed, or the surface of the first metal material opposite to the insulating resin layer side is exposed. It can be used in the state where the protective film is laminated. In addition, after such a laminated body is incorporated in an electronic component, another electronic component member may be laminated on the surface of the first metal material opposite to the insulating resin layer side. In the laminate, the surface of the second metal material opposite to the insulating resin layer side is exposed, or the surface of the second metal material opposite to the insulating resin layer side is exposed. It is preferable that the protective film is laminated. In the laminate, the surface of the second metal material opposite to the insulating resin layer side is exposed, or the second metal material is protected on the surface opposite to the insulating resin layer side. It can be used in a state where films are laminated. In addition, after such a laminated body is incorporated in an electronic component, another electronic component member may be laminated on the surface of the second metal material opposite to the insulating resin layer side.
 以下、積層体の他の詳細を説明する。 Hereinafter, other details of the laminate will be described.
 (絶縁樹脂層)
 上記絶縁樹脂層の材料としては、硬化性化合物(A)及び硬化剤(B)等が挙げられる。上記絶縁樹脂層は、例えば、硬化性化合物及び熱硬化剤を含む硬化性組成物(絶縁樹脂層の材料)の硬化物である。また、上記絶縁樹脂層の材料は、無機フィラー(C)を含むことが好ましい。上記絶縁樹脂層は、無機フィラー(C)を含むことが好ましい。
(Insulating resin layer)
Examples of the material for the insulating resin layer include a curable compound (A) and a curing agent (B). The insulating resin layer is, for example, a cured product of a curable composition (insulating resin layer material) containing a curable compound and a thermosetting agent. Moreover, it is preferable that the material of the said insulating resin layer contains an inorganic filler (C). The insulating resin layer preferably contains an inorganic filler (C).
 上記硬化性化合物(A)として、分子量が10000未満である硬化性化合物(A1)を用いてもよく、分子量が10000以上である硬化性化合物(A2)を用いてもよく、分子量が10000未満である硬化性化合物(A1)と、分子量が10000以上である硬化性化合物(A2)との双方を用いてもよい。硬化性化合物(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The curable compound (A) may be a curable compound (A1) having a molecular weight of less than 10,000, a curable compound (A2) having a molecular weight of 10,000 or more, and a molecular weight of less than 10,000. Both a certain curable compound (A1) and a curable compound (A2) having a molecular weight of 10,000 or more may be used. As for a sclerosing | hardenable compound (A), only 1 type may be used and 2 or more types may be used together.
 硬化性化合物(A1):
 上記分子量が10000未満である硬化性化合物(A1)としては、環状エーテル基を有する硬化性化合物が挙げられる。上記環状エーテル基としては、エポキシ基及びオキセタニル基等が挙げられる。上記環状エーテル基を有する硬化性化合物は、エポキシ基又はオキセタニル基を有する硬化性化合物であることが好ましい。硬化性化合物(A1)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Curable compound (A1):
Examples of the curable compound (A1) having a molecular weight of less than 10,000 include curable compounds having a cyclic ether group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. The curable compound having a cyclic ether group is preferably a curable compound having an epoxy group or an oxetanyl group. As for a sclerosing | hardenable compound (A1), only 1 type may be used and 2 or more types may be used together.
 硬化性化合物(A1)は、エポキシ基を有するエポキシ化合物(A1a)を含んでいてもよく、オキセタニル基を有するオキセタン化合物(A1b)を含んでいてもよい。 The curable compound (A1) may contain an epoxy compound (A1a) having an epoxy group, or may contain an oxetane compound (A1b) having an oxetanyl group.
 硬化物の耐熱性及び耐電圧性をより高める観点からは、硬化性化合物(A1)は芳香族骨格を有することが好ましい。 From the viewpoint of further improving the heat resistance and voltage resistance of the cured product, the curable compound (A1) preferably has an aromatic skeleton.
 上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。ビフェニル骨格又はフルオレン骨格が好ましい。この場合には、硬化物の耐冷熱サイクル特性及び耐熱性がより一層高くなる。 The aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton. A biphenyl skeleton or a fluorene skeleton is preferred. In this case, the thermal cycle resistance and heat resistance of the cured product are further enhanced.
 エポキシ基を有するエポキシ化合物(A1a)の具体例としては、ビスフェノール骨格を有するエポキシモノマー、ジシクロペンタジエン骨格を有するエポキシモノマー、ナフタレン骨格を有するエポキシモノマー、アダマンタン骨格を有するエポキシモノマー、フルオレン骨格を有するエポキシモノマー、ビフェニル骨格を有するエポキシモノマー、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマー、キサンテン骨格を有するエポキシモノマー、アントラセン骨格を有するエポキシモノマー、及びピレン骨格を有するエポキシモノマー等が挙げられる。これらの水素添加物又は変性物を用いてもよい。エポキシ化合物(A1a)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the epoxy compound (A1a) having an epoxy group include an epoxy monomer having a bisphenol skeleton, an epoxy monomer having a dicyclopentadiene skeleton, an epoxy monomer having a naphthalene skeleton, an epoxy monomer having an adamantane skeleton, and an epoxy having a fluorene skeleton. Examples of the monomer include an epoxy monomer having a biphenyl skeleton, an epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton, an epoxy monomer having a xanthene skeleton, an epoxy monomer having an anthracene skeleton, and an epoxy monomer having a pyrene skeleton. These hydrogenated products or modified products may be used. As for an epoxy compound (A1a), only 1 type may be used and 2 or more types may be used together.
 上記ビスフェノール骨格を有するエポキシモノマーとしては、例えば、ビスフェノールA型、ビスフェノールF型又はビスフェノールS型のビスフェノール骨格を有するエポキシモノマー等が挙げられる。 Examples of the epoxy monomer having a bisphenol skeleton include an epoxy monomer having a bisphenol A type, bisphenol F type, or bisphenol S type bisphenol skeleton.
 上記ジシクロペンタジエン骨格を有するエポキシモノマーとしては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。 Examples of the epoxy monomer having a dicyclopentadiene skeleton include dicyclopentadiene dioxide and a phenol novolac epoxy monomer having a dicyclopentadiene skeleton.
 上記ナフタレン骨格を有するエポキシモノマーとしては、1-グリシジルナフタレン、2-グリシジルナフタレン、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン等が挙げられる。 Examples of the epoxy monomer having a naphthalene skeleton include 1-glycidylnaphthalene, 2-glycidylnaphthalene, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidyl. Examples include naphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene, and 1,2,5,6-tetraglycidylnaphthalene.
 上記アダマンタン骨格を有するエポキシモノマーとしては、1,3-ビス(4-グリシジルオキシフェニル)アダマンタン、及び2,2-ビス(4-グリシジルオキシフェニル)アダマンタン等が挙げられる。 Examples of the epoxy monomer having an adamantane skeleton include 1,3-bis (4-glycidyloxyphenyl) adamantane and 2,2-bis (4-glycidyloxyphenyl) adamantane.
 上記フルオレン骨格を有するエポキシモノマーとしては、9,9-ビス(4-グリシジルオキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-クロロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-ブロモフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-フルオロフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3-メトキシフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-グリシジルオキシ-3,5-ジクロロフェニル)フルオレン、及び9,9-ビス(4-グリシジルオキシ-3,5-ジブロモフェニル)フルオレン等が挙げられる。 Examples of the epoxy monomer having a fluorene skeleton include 9,9-bis (4-glycidyloxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3-methylphenyl) fluorene, and 9,9-bis (4- Glycidyloxy-3-chlorophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-bromophenyl) fluorene, 9,9-bis (4-glycidyloxy-3-fluorophenyl) fluorene, 9,9-bis (4-Glycidyloxy-3-methoxyphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-glycidyloxy-3,5-dichlorophenyl) Fluorene and 9,9-bis (4-glycidyloxy-3,5-dibromophenyl) Fluorene, and the like.
 上記ビフェニル骨格を有するエポキシモノマーとしては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等が挙げられる。 Examples of the epoxy monomer having a biphenyl skeleton include 4,4'-diglycidylbiphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
 上記バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシモノマーとしては、1,1’-バイ(2,7-グリシジルオキシナフチル)メタン、1,8’-バイ(2,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,7-グリシジルオキシナフチル)メタン、1,8’-バイ(3,7-グリシジルオキシナフチル)メタン、1,1’-バイ(3,5-グリシジルオキシナフチル)メタン、1,8’-バイ(3,5-グリシジルオキシナフチル)メタン、1,2’-バイ(2,7-グリシジルオキシナフチル)メタン、1,2’-バイ(3,7-グリシジルオキシナフチル)メタン、及び1,2’-バイ(3,5-グリシジルオキシナフチル)メタン等が挙げられる。 Examples of the epoxy monomer having a bi (glycidyloxyphenyl) methane skeleton include 1,1′-bi (2,7-glycidyloxynaphthyl) methane, 1,8′-bi (2,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,7-glycidyloxynaphthyl) methane, 1,8′-bi (3,7-glycidyloxynaphthyl) methane, 1,1′-bi (3,5-glycidyloxynaphthyl) methane 1,8'-bi (3,5-glycidyloxynaphthyl) methane, 1,2'-bi (2,7-glycidyloxynaphthyl) methane, 1,2'-bi (3,7-glycidyloxynaphthyl) And methane and 1,2′-bi (3,5-glycidyloxynaphthyl) methane.
 上記キサンテン骨格を有するエポキシモノマーとしては、1,3,4,5,6,8-ヘキサメチル-2,7-ビス-オキシラニルメトキシ-9-フェニル-9H-キサンテン等が挙げられる。 Examples of the epoxy monomer having a xanthene skeleton include 1,3,4,5,6,8-hexamethyl-2,7-bis-oxiranylmethoxy-9-phenyl-9H-xanthene.
 オキセタニル基を有するオキセタン化合物(A1b)の具体例としては、例えば、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、1,4-ベンゼンジカルボン酸ビス[(3-エチル-3-オキセタニル)メチル]エステル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ベンゼン、及びオキセタン変性フェノールノボラック等が挙げられる。オキセタン化合物(A1b)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the oxetane compound (A1b) having an oxetanyl group include, for example, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 1,4-benzenedicarboxylate bis [(3- Ethyl-3-oxetanyl) methyl] ester, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] benzene, and oxetane-modified phenol novolac. As for an oxetane compound (A1b), only 1 type may be used and 2 or more types may be used together.
 硬化物の耐熱性をより一層良好にする観点からは、硬化性化合物(A1)は、環状エーテル基を2つ以上有することが好ましい。 From the viewpoint of further improving the heat resistance of the cured product, the curable compound (A1) preferably has two or more cyclic ether groups.
 硬化物の耐熱性をより一層良好にする観点からは、硬化性化合物(A1)100重量%中、環状エーテル基を2つ以上有する硬化性化合物の含有量は、好ましくは70重量%以上、より好ましくは80重量%以上、100重量%以下である。硬化性化合物(A1)の合計100重量%中、環状エーテル基を2つ以上有する硬化性化合物の含有量は10重量%以上、100重量%以下であってもよい。また、硬化性化合物(A1)の全体が、環状エーテル基を2つ以上有する硬化性化合物であってもよい。 From the viewpoint of further improving the heat resistance of the cured product, the content of the curable compound having two or more cyclic ether groups in 100% by weight of the curable compound (A1) is preferably 70% by weight or more. Preferably they are 80 weight% or more and 100 weight% or less. The content of the curable compound having two or more cyclic ether groups in the total 100% by weight of the curable compound (A1) may be 10% by weight or more and 100% by weight or less. Further, the entire curable compound (A1) may be a curable compound having two or more cyclic ether groups.
 硬化性化合物(A1)の分子量は、10000未満である。硬化性化合物(A1)の分子量は、好ましくは200以上、より好ましくは1200以下、更に好ましくは600以下、特に好ましくは550以下である。硬化性化合物(A1)の分子量が上記下限以上であると、硬化物の表面の粘着性が低くなり、硬化性組成物の取扱性がより一層高くなる。硬化性化合物(A1)の分子量が上記上限以下であると、硬化物の接着性がより一層高くなる。さらに、硬化物が固くかつ脆くなり難く、硬化物の接着性がより一層高くなる。 The molecular weight of the curable compound (A1) is less than 10,000. The molecular weight of the curable compound (A1) is preferably 200 or more, more preferably 1200 or less, still more preferably 600 or less, and particularly preferably 550 or less. When the molecular weight of the curable compound (A1) is not less than the above lower limit, the adhesiveness of the surface of the cured product is lowered, and the handleability of the curable composition is further enhanced. When the molecular weight of the curable compound (A1) is not more than the above upper limit, the adhesiveness of the cured product is further enhanced. Furthermore, the cured product is hard and hard to be brittle, and the adhesiveness of the cured product is further enhanced.
 なお、本明細書において、硬化性化合物(A1)における分子量とは、重合体ではない場合、及び構造式が特定できる場合は、当該構造式から算出できる分子量を意味し、重合体である場合は、重量平均分子量を意味する。 In the present specification, the molecular weight in the curable compound (A1) means a molecular weight that can be calculated from the structural formula when it is not a polymer and when the structural formula can be specified. Means weight average molecular weight.
 絶縁樹脂層の材料のうち、溶剤及び無機フィラーを除く材料100重量%中(絶縁樹脂層の材料が溶剤を含まず無機フィラーを含む場合には、無機フィラーを除く材料100重量%中、絶縁樹脂層の材料が溶剤を含み無機フィラーを含まない場合には、溶剤を除く材料100重量%中、絶縁樹脂層の材料が溶剤を含まずかつ無機フィラーを含まない場合には、絶縁樹脂層の材料100重量%中)、硬化性化合物(A1)の含有量は好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは70重量%以下、特に好ましくは60重量%以下、最も好ましくは50重量%以下である。硬化性化合物(A1)の含有量が上記下限以上であると、硬化物の接着性及び耐熱性がより一層高くなる。硬化性化合物(A1)の含有量が上記上限以下であると、絶縁樹脂層の作製時の塗工性が高くなる。 Of the material of the insulating resin layer, 100% by weight of the material excluding the solvent and the inorganic filler (when the material of the insulating resin layer does not include the solvent and includes the inorganic filler, the insulating resin is included in 100% by weight of the material excluding the inorganic filler. When the layer material contains a solvent and does not contain an inorganic filler, the insulating resin layer material does not contain a solvent and does not contain an inorganic filler in 100% by weight of the material excluding the solvent. The content of the curable compound (A1) is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, and still more preferably 70% by weight. % By weight or less, particularly preferably 60% by weight or less, and most preferably 50% by weight or less. When the content of the curable compound (A1) is not less than the above lower limit, the adhesiveness and heat resistance of the cured product are further enhanced. When the content of the curable compound (A1) is not more than the above upper limit, the coating property at the production of the insulating resin layer is increased.
 硬化性化合物(A2):
 硬化性化合物(A2)は、分子量が10000以上である硬化性化合物である。分子量が10000以上である硬化性化合物(A2)は、一般にポリマーであり、上記分子量は、一般に重量平均分子量を意味する。
Curable compound (A2):
The curable compound (A2) is a curable compound having a molecular weight of 10,000 or more. The curable compound (A2) having a molecular weight of 10,000 or more is generally a polymer, and the molecular weight generally means a weight average molecular weight.
 硬化性化合物(A2)は、芳香族骨格を有することが好ましい。この場合には、硬化物の耐熱性が高くなり、かつ硬化物の耐湿性も高くなる。硬化性化合物(A2)が芳香族骨格を有する場合には、硬化性化合物(A2)は、芳香族骨格をポリマー全体のいずれかの部分に有していればよく、主鎖骨格内に有していてもよく、側鎖中に有していてもよい。硬化物の耐熱性をより一層高くし、かつ硬化物の耐湿性をより一層高くする観点からは、硬化性化合物(A2)は、芳香族骨格を主鎖骨格内に有することが好ましい。硬化性化合物(A2)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The curable compound (A2) preferably has an aromatic skeleton. In this case, the heat resistance of the cured product increases and the moisture resistance of the cured product also increases. In the case where the curable compound (A2) has an aromatic skeleton, the curable compound (A2) may have an aromatic skeleton in any part of the entire polymer, and has in the main chain skeleton. Or may be present in the side chain. From the viewpoint of further increasing the heat resistance of the cured product and further increasing the moisture resistance of the cured product, the curable compound (A2) preferably has an aromatic skeleton in the main chain skeleton. As for a sclerosing | hardenable compound (A2), only 1 type may be used and 2 or more types may be used together.
 上記芳香族骨格としては特に限定されず、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格及びビスフェノールA型骨格等が挙げられる。ビフェニル骨格又はフルオレン骨格が好ましい。この場合には、硬化物の耐冷熱サイクル特性及び耐熱性がより一層高くなる。 The aromatic skeleton is not particularly limited, and examples thereof include a naphthalene skeleton, a fluorene skeleton, a biphenyl skeleton, an anthracene skeleton, a pyrene skeleton, a xanthene skeleton, an adamantane skeleton, and a bisphenol A skeleton. A biphenyl skeleton or a fluorene skeleton is preferred. In this case, the thermal cycle resistance and heat resistance of the cured product are further enhanced.
 硬化性化合物(A2)として、熱可塑性樹脂及び熱硬化性樹脂などの硬化性樹脂等が使用可能である。硬化性化合物(A2)は熱可塑性樹脂又は熱硬化性樹脂であることが好ましい。硬化性化合物(A2)は硬化性樹脂であることが好ましい。硬化性化合物(A2)は熱可塑性樹脂であることが好ましく、熱硬化性樹脂であることも好ましい。 As the curable compound (A2), a curable resin such as a thermoplastic resin and a thermosetting resin can be used. The curable compound (A2) is preferably a thermoplastic resin or a thermosetting resin. The curable compound (A2) is preferably a curable resin. The curable compound (A2) is preferably a thermoplastic resin, and is preferably a thermosetting resin.
 上記熱可塑性樹脂及び熱硬化性樹脂は、特に限定されない。上記熱可塑性樹脂としては特に限定されず、スチレン樹脂、フェノキシ樹脂、フタレート樹脂、熱可塑性ウレタン樹脂、ポリアミド樹脂、熱可塑性ポリイミド樹脂、ケトン樹脂及びノルボルネン樹脂等が挙げられる。上記熱硬化性樹脂としては特に限定されず、アミノ樹脂、フェノール樹脂、熱硬化性ウレタン樹脂、エポキシ樹脂、熱硬化性ポリイミド樹脂及びアミノアルキド樹脂等が挙げられる。上記アミノ樹脂としては、尿素樹脂及びメラミン樹脂等が挙げられる。 The thermoplastic resin and thermosetting resin are not particularly limited. The thermoplastic resin is not particularly limited, and examples thereof include styrene resin, phenoxy resin, phthalate resin, thermoplastic urethane resin, polyamide resin, thermoplastic polyimide resin, ketone resin, and norbornene resin. The thermosetting resin is not particularly limited, and examples thereof include amino resins, phenol resins, thermosetting urethane resins, epoxy resins, thermosetting polyimide resins, and amino alkyd resins. Examples of the amino resin include urea resin and melamine resin.
 硬化物の酸化劣化を抑え、硬化物の耐冷熱サイクル特性及び耐熱性をより一層高め、更に硬化物の吸水率をより一層低くする観点からは、硬化性化合物(A2)は、スチレン樹脂、フェノキシ樹脂又はエポキシ樹脂であることが好ましく、フェノキシ樹脂又はエポキシ樹脂であることがより好ましく、フェノキシ樹脂であることが更に好ましい。特に、フェノキシ樹脂又はエポキシ樹脂の使用により、硬化物の耐熱性がより一層高くなる。また、フェノキシ樹脂の使用により、硬化物の弾性率がより一層低くなり、かつ硬化物の耐冷熱サイクル特性がより一層高くなる。なお、硬化性化合物(A2)は、エポキシ基などの環状エーテル基を有していなくてもよい。 From the viewpoint of suppressing the oxidative deterioration of the cured product, further improving the heat cycle resistance and heat resistance of the cured product, and further reducing the water absorption rate of the cured product, the curable compound (A2) is a styrene resin, phenoxy. It is preferably a resin or an epoxy resin, more preferably a phenoxy resin or an epoxy resin, and even more preferably a phenoxy resin. In particular, use of a phenoxy resin or an epoxy resin further increases the heat resistance of the cured product. Moreover, use of a phenoxy resin further lowers the elastic modulus of the cured product and further improves the cold-heat cycle characteristics of the cured product. The curable compound (A2) may not have a cyclic ether group such as an epoxy group.
 上記スチレン樹脂として、具体的には、スチレン系モノマーの単独重合体、及びスチレン系モノマーとアクリル系モノマーとの共重合体等が使用可能である。スチレン-メタクリル酸グリシジルの構造を有するスチレン重合体が好ましい。 As the styrene resin, specifically, a homopolymer of a styrene monomer, a copolymer of a styrene monomer and an acrylic monomer, or the like can be used. Styrene polymers having a styrene-glycidyl methacrylate structure are preferred.
 上記スチレン系モノマーとしては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、2,4-ジメチルスチレン及び3,4-ジクロロスチレン等が挙げられる。 Examples of the styrene monomer include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, p-methoxy styrene, p-phenyl styrene, p-chloro styrene, p-ethyl styrene, pn- Butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, 2,4-dimethyl Examples include styrene and 3,4-dichlorostyrene.
 上記フェノキシ樹脂は、具体的には、例えばエピハロヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、又は2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂である。 The phenoxy resin is specifically a resin obtained by reacting, for example, an epihalohydrin and a divalent phenol compound, or a resin obtained by reacting a divalent epoxy compound and a divalent phenol compound.
 上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格、ビフェニル骨格、アントラセン骨格、ピレン骨格、キサンテン骨格、アダマンタン骨格又はジシクロペンタジエン骨格を有することが好ましい。上記フェノキシ樹脂は、ビスフェノールA型骨格、ビスフェノールF型骨格、ビスフェノールA/F混合型骨格、ナフタレン骨格、フルオレン骨格又はビフェニル骨格を有することがより好ましく、フルオレン骨格及びビフェニル骨格の内の少なくとも1種の骨格を有することが更に好ましい。これらの好ましい骨格を有するフェノキシ樹脂の使用により、硬化物の耐熱性が更に一層高くなる。 The phenoxy resin has a bisphenol A skeleton, bisphenol F skeleton, bisphenol A / F mixed skeleton, naphthalene skeleton, fluorene skeleton, biphenyl skeleton, anthracene skeleton, pyrene skeleton, xanthene skeleton, adamantane skeleton or dicyclopentadiene skeleton. It is preferable. More preferably, the phenoxy resin has a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol A / F mixed skeleton, a naphthalene skeleton, a fluorene skeleton, or a biphenyl skeleton, and at least one of the fluorene skeleton and the biphenyl skeleton. More preferably, it has a skeleton. Use of the phenoxy resin having these preferable skeletons further increases the heat resistance of the cured product.
 上記エポキシ樹脂は、上記フェノキシ樹脂以外のエポキシ樹脂である。上記エポキシ樹脂としては、スチレン骨格含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。 The epoxy resin is an epoxy resin other than the phenoxy resin. Examples of the epoxy resins include styrene skeleton-containing epoxy resins, bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, biphenol type epoxy resins, naphthalene type epoxy resins, and fluorene type epoxy resins. , Phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, epoxy resin having adamantane skeleton, epoxy resin having tricyclodecane skeleton, and epoxy resin having triazine nucleus in skeleton Etc.
 硬化性化合物(A2)の分子量は10000以上である。硬化性化合物(A2)の分子量は、好ましくは30000以上、より好ましくは40000以上、好ましくは1000000以下、より好ましくは250000以下である。硬化性化合物(A2)の分子量が上記下限以上であると、硬化物が熱劣化し難い。硬化性化合物(A2)の分子量が上記上限以下であると、硬化性化合物(A2)と他の成分との相溶性が高くなる。この結果、硬化物の耐熱性がより一層高くなる。 The molecular weight of the curable compound (A2) is 10,000 or more. The molecular weight of the curable compound (A2) is preferably 30000 or more, more preferably 40000 or more, preferably 1000000 or less, more preferably 250,000 or less. When the molecular weight of the curable compound (A2) is not less than the above lower limit, the cured product is hardly thermally deteriorated. When the molecular weight of the curable compound (A2) is not more than the above upper limit, the compatibility between the curable compound (A2) and other components is increased. As a result, the heat resistance of the cured product is further increased.
 絶縁樹脂層の材料のうち、溶剤及び無機フィラーを除く材料100重量%中、硬化性化合物(A2)の含有量は好ましくは20重量%以上、より好ましくは30重量%以上、好ましくは60重量%以下、更に好ましくは50重量%以下である。硬化性化合物(A2)の含有量が上記下限以上であると、硬化性組成物の取扱性が良好になる。硬化性化合物(A2)の含有量が上記上限以下であると、無機フィラー(C)の分散が容易になる。 Of the material of the insulating resin layer, the content of the curable compound (A2) is preferably 20% by weight or more, more preferably 30% by weight or more, preferably 60% by weight in 100% by weight of the material excluding the solvent and inorganic filler. Hereinafter, it is more preferably 50% by weight or less. When the content of the curable compound (A2) is not less than the above lower limit, the handleability of the curable composition is improved. When the content of the curable compound (A2) is not more than the above upper limit, dispersion of the inorganic filler (C) becomes easy.
 硬化剤(B):
 上記絶縁樹脂層の材料は硬化剤(B)を含むことが好ましい。硬化剤(B)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
Curing agent (B):
The material of the insulating resin layer preferably contains a curing agent (B). As for a hardening | curing agent (B), only 1 type may be used and 2 or more types may be used together.
 硬化物の耐熱性をより一層高める観点からは、硬化剤(B)は、芳香族骨格又は脂環式骨格を有することが好ましい。硬化剤(B)は、アミン硬化剤(アミン化合物)、イミダゾール硬化剤、フェノール硬化剤(フェノール化合物)又は酸無水物硬化剤(酸無水物)を含むことが好ましく、アミン硬化剤を含むことがより好ましい。上記酸無水物硬化剤は、芳香族骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むか、又は、脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むことが好ましい。 From the viewpoint of further improving the heat resistance of the cured product, the curing agent (B) preferably has an aromatic skeleton or an alicyclic skeleton. The curing agent (B) preferably includes an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound) or an acid anhydride curing agent (acid anhydride), and includes an amine curing agent. More preferred. The acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a water additive of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, It is preferable to include a water additive of an acid anhydride or a modified product of the acid anhydride.
 硬化剤(B)は塩基性の硬化剤を含むか、メラミン骨格もしくはトリアジン骨格を有するフェノール樹脂を含むか、又はアリル基を有するフェノール樹脂を含むことが好ましい。さらに、無機フィラー(C)の分散性を良好にし、更に硬化物の耐電圧性及び熱伝導性をより一層高める観点からは、硬化剤(B)は塩基性の硬化剤を含むことが好ましい。また、無機フィラー(C)の分散性をより一層良好にし、更に硬化物の耐電圧性及び熱伝導性をより一層高める観点からは、硬化剤(B)は、アミン硬化剤を含むことがより好ましく、ジシアンジアミドを含むことが特に好ましい。上記イミダゾール硬化剤は、アミン硬化剤の1種でもある。また、硬化剤(B)は、ジシアンジアミドとイミダゾール硬化剤との双方を含むことも好ましい。これらの好ましい硬化剤の使用により、無機フィラー(C)の硬化性組成物中での分散性が高くなり、更に耐熱性、耐湿性及び電気物性のバランスに優れた硬化物が得られる。この結果、無機フィラー(C)の含有量が少なくても、熱伝導性がかなり高くなる。特にジシアンジアミドを用いた場合には、硬化物と金属材との接着性がかなり高くなる。 The curing agent (B) preferably contains a basic curing agent, a phenol resin having a melamine skeleton or a triazine skeleton, or a phenol resin having an allyl group. Furthermore, it is preferable that a hardening | curing agent (B) contains a basic hardening | curing agent from a viewpoint which makes the dispersibility of an inorganic filler (C) favorable, and also raises the voltage resistance and heat conductivity of hardened | cured material further. Further, from the viewpoint of further improving the dispersibility of the inorganic filler (C) and further enhancing the voltage resistance and thermal conductivity of the cured product, the curing agent (B) more preferably contains an amine curing agent. Preferably, dicyandiamide is included. The imidazole curing agent is also a kind of amine curing agent. Moreover, it is also preferable that a hardening | curing agent (B) contains both a dicyandiamide and an imidazole hardening | curing agent. By using these preferable curing agents, the dispersibility of the inorganic filler (C) in the curable composition is increased, and a cured product having an excellent balance of heat resistance, moisture resistance and electrical properties can be obtained. As a result, even if there is little content of an inorganic filler (C), thermal conductivity becomes quite high. In particular, when dicyandiamide is used, the adhesion between the cured product and the metal material becomes considerably high.
 なお、硬化剤(B)が塩基性の硬化剤であるか否かは、硬化剤1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して抽出液を得たときに、該抽出液のpHが塩基性であることにより判断される。 Whether the curing agent (B) is a basic curing agent is determined by placing 1 g of the curing agent in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and heating the mixture with stirring at 80 ° C. for 1 hour. Next, when an insoluble component in the liquid after heating is removed by filtration to obtain an extract, it is judged that the pH of the extract is basic.
 上記アミン硬化剤としては、ジシアンジアミド、イミダゾール化合物、ジアミノジフェニルメタン及びジアミノジフェニルスルフォン等が挙げられる。硬化物と金属材との接着性をより一層高める観点からは、上記アミン硬化剤は、ジシアンジアミド又はイミダゾール硬化剤であることがより一層好ましい。硬化性組成物の貯蔵安定性をより一層高める観点からは、硬化剤(B)は、融点が180℃以上である硬化剤を含むことが好ましく、融点が180℃以上であるアミン硬化剤を含むことがより好ましい。 Examples of the amine curing agent include dicyandiamide, imidazole compound, diaminodiphenylmethane, and diaminodiphenylsulfone. From the viewpoint of further improving the adhesion between the cured product and the metal material, the amine curing agent is more preferably a dicyandiamide or an imidazole curing agent. From the viewpoint of further improving the storage stability of the curable composition, the curing agent (B) preferably includes a curing agent having a melting point of 180 ° C. or higher, and includes an amine curing agent having a melting point of 180 ° C. or higher. It is more preferable.
 上記イミダゾール硬化剤としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole curing agent include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl. -2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 '-Mech Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
 上記フェノール硬化剤としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、及びポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。硬化物の柔軟性及び硬化物の難燃性をより一層高める観点からは、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂が好ましい。 Examples of the phenol curing agent include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene modified novolak, decalin modified novolak, poly ( And di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, and poly (di-p-hydroxyphenyl) methane. From the viewpoint of further enhancing the flexibility of the cured product and the flame retardancy of the cured product, a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group is preferable.
 上記フェノール硬化剤の市販品としては、MEH-8005、MEH-8010及びMEH-8015(以上いずれも明和化成社製)、YLH903(三菱化学社製)、LA-7052、LA-7054、LA-7751、LA-1356及びLA-3018-50P(以上いずれもDIC社製)、並びにPS6313及びPS6492(以上いずれも群栄化学社製)等が挙げられる。 Commercially available phenol curing agents include MEH-8005, MEH-8010 and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical), LA-7052, LA-7054, and LA-7751. LA-1356 and LA-3018-50P (all of which are manufactured by DIC), and PS6313 and PS6492 (all of which are manufactured by Gunei Chemical Co., Ltd.).
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’-オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸等が挙げられる。 Examples of the acid anhydride having an aromatic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride include, for example, a styrene / maleic anhydride copolymer, a benzophenone tetracarboxylic acid anhydride, and a pyromellitic acid anhydride. , Trimellitic anhydride, 4,4'-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydroanhydride Examples include phthalic acid, methylhexahydrophthalic anhydride, and trialkyltetrahydrophthalic anhydride.
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA-M及びPEPA(以上いずれもマナック社製)、リカシッドMTA-10、リカシッドMTA-15、リカシッドTMTA、リカシッドTMEG-100、リカシッドTMEG-200、リカシッドTMEG-300、リカシッドTMEG-500、リカシッドTMEG-S、リカシッドTH、リカシッドHT-1A、リカシッドHH、リカシッドMH-700、リカシッドMT-500、リカシッドDSDA及びリカシッドTDA-100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。 Examples of commercially available acid anhydrides having an aromatic skeleton, water additives of the acid anhydrides, or modified products of the acid anhydrides include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (all of which are manufactured by Manac), Ricacid MTA-10, Ricacid MTA-15, Ricacid TMTA, Ricacid TMEG-100, Ricacid TMEG-200, Ricacid TMEG-300, Ricacid TMEG-500, Ricacid TMEG-S, Ricacid TH, Ricacid HT-1A, Ricacid HH, Ricacid MH-700, Ricacid MT-500, Ricacid DSDA and Ricacid TDA-100 (all manufactured by Shin Nippon Rika) EPICLON B4400, EPICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。これらの硬化剤の使用により、硬化物の柔軟性、並びに硬化物の耐湿性及び接着性がより一層高くなる。 The acid anhydride having an alicyclic skeleton, a water additive of the acid anhydride, or a modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, a water additive of the acid anhydride, or the A modified product of an acid anhydride, or an acid anhydride having an alicyclic skeleton obtained by addition reaction of a terpene compound and maleic anhydride, a water additive of the acid anhydride, or a modified product of the acid anhydride It is preferable. By using these curing agents, the flexibility of the cured product and the moisture resistance and adhesion of the cured product are further increased.
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又は該酸無水物の変性物等も挙げられる。 Examples of the acid anhydride having an alicyclic skeleton, a water addition of the acid anhydride, or a modified product of the acid anhydride include methyl nadic acid anhydride, acid anhydride having a dicyclopentadiene skeleton, and the acid anhydride And the like.
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、リカシッドHNA及びリカシッドHNA-100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれも三菱化学社製)等が挙げられる。 Examples of commercially available acid anhydrides having the alicyclic skeleton, water additions of the acid anhydrides, or modified products of the acid anhydrides include Ricacid HNA and Ricacid HNA-100 (all of which are manufactured by Shin Nippon Rika Co., Ltd.) , And EpiCure YH306, EpiCure YH307, EpiCure YH308H, EpiCure YH309 (all of which are manufactured by Mitsubishi Chemical Corporation) and the like.
 硬化剤(B)は、メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸であることも好ましい。メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸の使用により、硬化物の耐水性が高くなる。 The curing agent (B) is also preferably methyl nadic acid anhydride or trialkyltetrahydrophthalic anhydride. Use of methyl nadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the cured product.
 絶縁樹脂層の材料のうち、溶剤及び無機フィラーを除く材料100重量%中、硬化剤(B)の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上、好ましくは40重量%以下、より好ましくは25重量%以下である。硬化剤(B)の含有量が上記下限以上であると、硬化性組成物を充分に硬化させることが容易である。硬化剤(B)の含有量が上記上限以下であると、硬化に関与しない余剰な硬化剤(B)が発生し難くなる。このため、硬化物の耐熱性及び接着性がより一層高くなる。 Of the material of the insulating resin layer, the content of the curing agent (B) is preferably 0.1% by weight or more, more preferably 1% by weight or more, preferably 40% by weight in 100% by weight of the material excluding the solvent and inorganic filler. % Or less, more preferably 25% by weight or less. It is easy to fully harden a curable composition as content of a hardening | curing agent (B) is more than the said minimum. When the content of the curing agent (B) is not more than the above upper limit, it is difficult to generate an excessive curing agent (B) that does not participate in curing. For this reason, the heat resistance and adhesiveness of hardened | cured material become still higher.
 (無機フィラー(C))
 無機フィラー(C)の使用により、硬化物の熱伝導性がかなり高くなる。無機フィラー(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Inorganic filler (C))
By using the inorganic filler (C), the thermal conductivity of the cured product is considerably increased. As for an inorganic filler (C), only 1 type may be used and 2 or more types may be used together.
 硬化物の熱伝導性をより一層高める観点からは、無機フィラー(C)の熱伝導率は好ましくは10W/m・K以上、より好ましくは15W/m・K以上、更に好ましくは20W/m・K以上である。無機フィラー(C)の熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。 From the viewpoint of further increasing the thermal conductivity of the cured product, the thermal conductivity of the inorganic filler (C) is preferably 10 W / m · K or more, more preferably 15 W / m · K or more, and still more preferably 20 W / m ·. K or more. The upper limit of the thermal conductivity of the inorganic filler (C) is not particularly limited. Inorganic fillers having a thermal conductivity of about 300 W / m · K are widely known, and inorganic fillers having a thermal conductivity of about 200 W / m · K are easily available.
 無機フィラー(C)は、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることが好ましく、アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることがより好ましい。これらの好ましい無機フィラーの使用により、硬化物の熱伝導性がより一層高くなる。 The inorganic filler (C) is preferably alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide, and alumina, boron nitride, aluminum nitride, silicon nitride, silicon carbide, Zinc oxide or magnesium oxide is more preferable. Use of these preferable inorganic fillers further increases the thermal conductivity of the cured product.
 シリカ以外の無機フィラー(C)は、球状アルミナ、破砕アルミナ又は球状窒化アルミニウムであることがより好ましく、球状アルミナ又は球状窒化アルミニウムであることが更に好ましい。これらの好ましい無機フィラーの使用により、硬化物の熱伝導性がより一層高くなる。 The inorganic filler (C) other than silica is more preferably spherical alumina, crushed alumina or spherical aluminum nitride, and even more preferably spherical alumina or spherical aluminum nitride. Use of these preferable inorganic fillers further increases the thermal conductivity of the cured product.
 無機フィラー(C)の新モース硬度は、好ましくは12以下、より好ましくは9以下である。無機フィラー(C)の新モース硬度が9以下であると、硬化物の加工性がより一層高くなる。 The new Mohs hardness of the inorganic filler (C) is preferably 12 or less, more preferably 9 or less. When the new Mohs hardness of the inorganic filler (C) is 9 or less, the workability of the cured product is further enhanced.
 硬化物の加工性をより一層高める観点からは、無機フィラー(C)は、合成マグネサイト、結晶シリカ、酸化亜鉛、又は酸化マグネシウムであることが好ましい。これらの無機フィラーの新モース硬度は9以下である。 From the viewpoint of further improving the workability of the cured product, the inorganic filler (C) is preferably synthetic magnesite, crystalline silica, zinc oxide, or magnesium oxide. The new Mohs hardness of these inorganic fillers is 9 or less.
 無機フィラー(C)は、球状のフィラー(球状フィラー)を含んでいてもよく、破砕されたフィラー(破砕フィラー)を含んでいてもよく、板状のフィラー(板状フィラー)を含んでいてもよい。無機フィラー(C)は、球状フィラーを含むことが特に好ましい。球状フィラーは高密度で充填可能であるため、球状フィラーの使用により硬化物の熱伝導性がより一層高くなる。 The inorganic filler (C) may contain a spherical filler (spherical filler), may contain a crushed filler (crushed filler), or may contain a plate-like filler (plate-like filler). Good. It is particularly preferable that the inorganic filler (C) includes a spherical filler. Since spherical fillers can be filled at high density, the use of spherical fillers further increases the thermal conductivity of the cured product.
 上記破砕フィラーとしては、破砕アルミナ及び破砕シリカ等が挙げられる。破砕フィラーは、例えば、一軸破砕機、二軸破砕機、ハンマークラッシャー又はボールミル等を用いて、塊状の無機物質を破砕することにより得られる。破砕フィラーの使用により、硬化物中のフィラーが、橋掛け又は効率的に近接された構造となりやすい。従って、硬化物の熱伝導性がより一層高くなる。また、破砕フィラーは、一般的に、通常のフィラーに比べて安価である。このため、破砕フィラーの使用により、硬化性組成物のコストが低くなる。 Examples of the crushed filler include crushed alumina and crushed silica. The crushing filler is obtained, for example, by crushing a lump-like inorganic substance using a uniaxial crusher, a biaxial crusher, a hammer crusher, a ball mill, or the like. By using the crushed filler, the filler in the cured product tends to be bridged or effectively brought into a close structure. Therefore, the thermal conductivity of the cured product is further increased. Moreover, generally the crushing filler is cheap compared with a normal filler. For this reason, the cost of a curable composition becomes low by use of a crushing filler.
 上記シリカは、破砕されたシリカ(破砕シリカ)であることが好ましい。上記破砕シリカの使用により、硬化物の耐湿性がより一層高くなり、硬化物のプレッシャークッカーテストが行われたときに耐電圧性がより一層低下し難くなる。 The silica is preferably crushed silica (crushed silica). By using the crushed silica, the moisture resistance of the cured product is further enhanced, and the voltage resistance is further unlikely to be lowered when the pressure cooker test of the cured product is performed.
 上記破砕フィラーの平均粒子径は、好ましくは12μm以下、より好ましくは10μm以下、好ましくは1μm以上である。破砕フィラーの平均粒子径が上記上限以下であると、硬化性組成物中に、破砕フィラーを高密度に分散させることが可能であり、硬化物の耐電圧性がより一層高くなる。破砕フィラーの平均粒子径が上記下限以上であると、破砕フィラーを高密度に充填させることが容易になる。 The average particle size of the crushed filler is preferably 12 μm or less, more preferably 10 μm or less, and preferably 1 μm or more. When the average particle size of the crushed filler is not more than the above upper limit, the crushed filler can be dispersed with high density in the curable composition, and the withstand voltage of the cured product is further enhanced. When the average particle diameter of the crushed filler is not less than the above lower limit, it becomes easy to fill the crushed filler with high density.
 破砕フィラーのアスペクト比は特に限定されない。破砕フィラーのアスペクト比は、好ましくは1.5以上、好ましくは20以下である。アスペクト比が1.5未満のフィラーは、比較的高価であり、硬化性組成物のコストが高くなる。上記アスペクト比が20以下であると、破砕フィラーの充填が容易である。 The aspect ratio of the crushed filler is not particularly limited. The aspect ratio of the crushed filler is preferably 1.5 or more, and preferably 20 or less. Fillers with an aspect ratio of less than 1.5 are relatively expensive and increase the cost of the curable composition. When the aspect ratio is 20 or less, filling of the crushed filler is easy.
 上記破砕フィラーのアスペクト比は、例えば、デジタル画像解析方式粒度分布測定装置(日本ルフト社製「FPA」)を用いて、フィラーの破砕面を測定することにより求めることが可能である。 The aspect ratio of the crushed filler can be determined, for example, by measuring the crushed surface of the filler using a digital image analysis particle size distribution measuring device (“FPA” manufactured by Nippon Luft).
 無機フィラー(C)の平均粒子径は、好ましくは0.1μm以上、好ましくは40μm以下である。平均粒子径が上記下限以上であると、無機フィラー(C)を高密度で容易に充填できる。平均粒子径が上記上限以下であると、硬化物の耐電圧性がより一層高くなる。 The average particle diameter of the inorganic filler (C) is preferably 0.1 μm or more, and preferably 40 μm or less. When the average particle diameter is not less than the above lower limit, the inorganic filler (C) can be easily filled at a high density. When the average particle size is not more than the above upper limit, the withstand voltage of the cured product is further enhanced.
 上記「平均粒子径」とは、レーザー回折式粒度分布測定装置により測定した体積平均での粒度分布測定結果から求められる平均粒子径である。 The above-mentioned “average particle diameter” is an average particle diameter obtained from a volume average particle size distribution measurement result measured with a laser diffraction particle size distribution measuring apparatus.
 絶縁樹脂層の材料のうち、溶剤を除く材料100重量%中(絶縁樹脂層の材料が溶剤を含まない場合には、絶縁樹脂層の材料100重量%中、絶縁樹脂層の材料が溶剤を含む場合には、溶剤を除く材料100重量%中)、及び絶縁樹脂層100重量%中、無機フィラー(C)の含有量は好ましくは50重量%以上、より好ましくは70重量%以上、好ましくは97重量%以下、より好ましくは95重量%以下である。無機フィラー(C)の含有量が上記下限以上及び上記上限以下であると、硬化物の熱伝導性が効果的に高くなる。 Of the material of the insulating resin layer, 100% by weight of the material excluding the solvent (if the material of the insulating resin layer does not include the solvent, the material of the insulating resin layer includes the solvent in 100% by weight of the material of the insulating resin layer. In the case of 100% by weight of the material excluding the solvent) and 100% by weight of the insulating resin layer, the content of the inorganic filler (C) is preferably 50% by weight or more, more preferably 70% by weight or more, preferably 97 % By weight or less, more preferably 95% by weight or less. When the content of the inorganic filler (C) is not less than the above lower limit and not more than the above upper limit, the thermal conductivity of the cured product is effectively increased.
 他の成分:
 上記絶縁樹脂層の材料は、上述した成分の他に、分散剤、キレート剤、酸化防止剤等の絶縁樹脂層に一般に用いられる他の成分を含んでいてもよい。
Other ingredients:
The material for the insulating resin layer may contain other components generally used for the insulating resin layer such as a dispersant, a chelating agent, and an antioxidant in addition to the components described above.
 (第1の金属材及び第2の金属材(金属材))
 上記金属材の材料としては、アルミニウム、銅、金、及びグラファイトシート等が挙げられる。熱伝導性をより一層良好にする観点からは、上記金属材の材料は、金、銅又はアルミニウムであることが好ましく、銅又はアルミニウムであることがより好ましい。熱伝導性をより一層良好にする観点、並びにエッチング処理された金属材を容易に形成する観点からは、上記金属材は、銅であることがより好ましい。また、上記金属材は、金属箔であることが好ましい。
(First metal material and second metal material (metal material))
Examples of the material of the metal material include aluminum, copper, gold, and a graphite sheet. From the viewpoint of further improving thermal conductivity, the metal material is preferably gold, copper, or aluminum, and more preferably copper or aluminum. From the viewpoint of further improving the thermal conductivity and from the viewpoint of easily forming the etched metal material, the metal material is more preferably copper. The metal material is preferably a metal foil.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
 以下の材料を用意した。 The following materials were prepared.
 硬化性化合物(A1)
 (1)ビスフェノールA型液状エポキシ樹脂(三菱化学社製「エピコート828US」、Mw=370)
 (2)ビスフェノールF型液状エポキシ樹脂(三菱化学社製「エピコート806L」、Mw=370)
 (3)ナフタレン型液状エポキシ樹脂(DIC社製「EPICLON HP-4032D」、Mw=304)
Curable compound (A1)
(1) Bisphenol A liquid epoxy resin ("Epicoat 828US" manufactured by Mitsubishi Chemical Corporation, Mw = 370)
(2) Bisphenol F type liquid epoxy resin (“Epicoat 806L” manufactured by Mitsubishi Chemical Corporation, Mw = 370)
(3) Naphthalene type liquid epoxy resin (“EPICLON HP-4032D” manufactured by DIC, Mw = 304)
 硬化性化合物(A2)
 (1)エポキシ基含有スチレン樹脂(日油社製「マープルーフG-1010S」、Mw=100,000、Tg=93℃)
 (2)ビスフェノールA型フェノキシ樹脂(三菱化学社製「E1256」、Mw=51,000、Tg=98℃)
Curable compound (A2)
(1) Epoxy group-containing styrene resin (“Marproof G-1010S” manufactured by NOF Corporation, Mw = 100,000, Tg = 93 ° C.)
(2) Bisphenol A type phenoxy resin (“E1256” manufactured by Mitsubishi Chemical Corporation, Mw = 51,000, Tg = 98 ° C.)
 硬化剤(B)
 (1)脂環式骨格酸無水物(新日本理化社製「MH-700」)
 (2)ビフェニル骨格フェノール樹脂(明和化成社製「MEH-7851-S」)
 (3)イソシアヌル変性固体分散型イミダゾール(イミダゾール系硬化促進剤、四国化成工業社製「2MZA-PW」)
Curing agent (B)
(1) Alicyclic skeleton acid anhydride (“MH-700” manufactured by Shin Nippon Rika Co., Ltd.)
(2) Biphenyl skeleton phenolic resin (“MEH-7851-S” manufactured by Meiwa Kasei Co., Ltd.)
(3) Isocyanur-modified solid dispersion type imidazole (imidazole curing accelerator, “2MZA-PW” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
 無機フィラー(C)
 (1)5μmアルミナ(破砕アルミナ、日本軽金属社製「LT300C」、平均粒子径5μm)
 (2)窒化ホウ素(三井化学社製「MBN-010T」、平均粒子径0.9μm)
 (3)窒化アルミニウム(三井化学社製「MAN-2A」、平均粒子径1.3μm)
Inorganic filler (C)
(1) 5 μm alumina (crushed alumina, “LT300C” manufactured by Nippon Light Metal Co., Ltd., average particle size 5 μm)
(2) Boron nitride (“MBN-010T” manufactured by Mitsui Chemicals, average particle size: 0.9 μm)
(3) Aluminum nitride (“MAN-2A” manufactured by Mitsui Chemicals, average particle size 1.3 μm)
 添加剤
 (1)エポキシシランカップリング剤(信越化学工業社製「KBE403」)
Additives (1) Epoxysilane coupling agent (“KBE403” manufactured by Shin-Etsu Chemical Co., Ltd.)
 溶剤
 (1)メチルエチルケトン
Solvent (1) Methyl ethyl ketone
 (実施例1~16及び比較例1~6)
 ホモディスパー型攪拌機を用い、下記の表1~3に示す配合成分を下記の表1~3に示す配合量で配合し、混練し、絶縁材料を調製した。
(Examples 1 to 16 and Comparative Examples 1 to 6)
Using a homodisper type stirrer, the blending components shown in Tables 1 to 3 below were blended in the blending amounts shown in Tables 1 to 3 below and kneaded to prepare an insulating material.
 上記絶縁材料を離型PETシート(厚み50μm)に狙いの厚みに塗工し、90℃のオーブンにて30分乾燥し、溶剤を揮発させ、シート状の絶縁材料を作製した。 The above insulating material was applied to a release PET sheet (thickness 50 μm) to a target thickness, dried in an oven at 90 ° C. for 30 minutes, and the solvent was evaporated to prepare a sheet-like insulating material.
 実施例1~9、12~16、及び比較例1~6については得られたシート状の絶縁材料を金属板上に熱ラミネーターにて貼り合わせ、絶縁樹脂層を有する3層構成の積層体を作製した。その後に180℃で1時間硬化を行い、硬化された積層構造体を得た。その後、この積層構造体の金属層部分をエッチングすることにより所定の面積比率を有する積層体を作製した。実施例10~11については、まず打ち抜きプレス加工により所定の面積かつ表裏の面積が同一になるように加工した金属板を作製した。その後、該金属板とシート状の絶縁材料とを熱ラミネーターにて貼り合せ、所定の面積比率を有しかつ金属層部分の絶縁層面と絶縁層面と反対の金属層面との面積比率が同一である3層構造の硬化前の積層体を作製した。その後、180℃で1時間硬化を行い、所定の面積比率を有しかつ金属層部分の絶縁層面と絶縁層面と反対の金属層面との面積比率が同一である積層体を作製した。 For Examples 1 to 9, 12 to 16, and Comparative Examples 1 to 6, the obtained sheet-like insulating material was laminated on a metal plate with a thermal laminator, and a laminate having a three-layer structure having an insulating resin layer was obtained. Produced. Thereafter, curing was performed at 180 ° C. for 1 hour to obtain a cured laminated structure. Then, the laminated body which has a predetermined area ratio was produced by etching the metal layer part of this laminated structure. For Examples 10 to 11, first, metal plates were fabricated by punching press processing so that the predetermined area and the front and back areas were the same. Thereafter, the metal plate and the sheet-like insulating material are bonded with a thermal laminator, and have a predetermined area ratio, and the area ratio between the insulating layer surface of the metal layer portion and the metal layer surface opposite to the insulating layer surface is the same. A laminate having a three-layer structure before curing was produced. Then, it hardened | cured at 180 degreeC for 1 hour, and the laminated body which has a predetermined area ratio and the same area ratio of the insulating layer surface of a metal layer part and the metal layer surface opposite to an insulating layer surface was produced.
 (評価)
 (1)各層の厚みの測定
 得られた積層体について、積層体の断面をマイクロスコープ(キーエンス社製「VHX-5000」)により観察し、計測することにより、各層の厚みを測定した。
(Evaluation)
(1) Measurement of thickness of each layer About the obtained laminated body, the cross section of the laminated body was observed and measured by the microscope ("VHX-5000" by Keyence Corporation), and the thickness of each layer was measured.
 (2)金属材の絶縁樹脂層とは反対の表面の表面積の測定
 得られた積層体を、画像寸法測定器(キーエンス社製「IM-6125」)により観察することにより、表面積を測定した。
(2) Measurement of the surface area of the surface opposite to the insulating resin layer of the metal material The surface area was measured by observing the obtained laminate with an image size measuring instrument ("IM-6125" manufactured by Keyence Corporation).
 (3)ガラス転移温度の測定
 シート状の絶縁材料を、180℃で1時間硬化させて、硬化物(絶縁樹脂層)を得た。
(3) Measurement of glass transition temperature A sheet-like insulating material was cured at 180 ° C. for 1 hour to obtain a cured product (insulating resin layer).
 得られた硬化物のガラス転移温度を、動的粘弾性測定装置(日立ハイテクサイエンス社製「DMS6100」)を用いて、5℃/分の昇温速度で測定した。 The glass transition temperature of the obtained cured product was measured at a heating rate of 5 ° C./min using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
 (4)弾性率の測定
 シート状の絶縁材料を、180℃で1時間硬化させて、硬化物(絶縁樹脂層)を得た。
(4) Measurement of elastic modulus The sheet-like insulating material was cured at 180 ° C. for 1 hour to obtain a cured product (insulating resin layer).
 動的粘弾性測定装置(日立ハイテクサイエンス社製「DMS6100」)を用いて、25℃の条件で、硬化物(絶縁樹脂層)の弾性率を測定した。 The elastic modulus of the cured product (insulating resin layer) was measured at 25 ° C. using a dynamic viscoelasticity measuring device (“DMS6100” manufactured by Hitachi High-Tech Science Co., Ltd.).
 (5)線膨張率の測定
 シート状の絶縁材料を180℃で1時間硬化させて、硬化物(絶縁樹脂層)を得た。
(5) Measurement of linear expansion coefficient The sheet-like insulating material was cured at 180 ° C. for 1 hour to obtain a cured product (insulating resin layer).
 熱機械分析装置(島津製作所社製「TMA-60」)を用いて、25℃からガラス転移温度間の条件で、硬化物(絶縁樹脂層)の線膨張率、及び、第1,第2の金属材の線膨張率を測定した。 Using a thermomechanical analyzer (“TMA-60” manufactured by Shimadzu Corporation), the linear expansion coefficient of the cured product (insulating resin layer) and the first and second conditions under a condition between 25 ° C. and the glass transition temperature. The linear expansion coefficient of the metal material was measured.
 (6)算術平均粗さRaの測定
 得られた積層体において、第1の金属材の絶縁樹脂層側とは反対側の表面の算術平均粗さRa、第2の金属材の絶縁樹脂層側とは反対側の表面の算術平均粗さRa、第1の金属材の絶縁樹脂層側の表面の算術平均粗さRa、及び、第2の金属材の絶縁樹脂層側の表面の算術平均粗さRaを測定した。
(6) Measurement of arithmetic average roughness Ra In the obtained laminate, the arithmetic average roughness Ra of the surface opposite to the insulating resin layer side of the first metal material, the insulating resin layer side of the second metal material Arithmetic surface roughness Ra of the surface opposite to the surface, arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side, and arithmetic average roughness of the surface of the second metal material on the insulating resin layer side Ra was measured.
 具体的な測定方法に関しては、上記算術平均粗さRaは表面粗さ計(東京精密社製「サーフコム フレックス」)を用いて、移動速度0.6mmで測定した。 Regarding a specific measuring method, the arithmetic average roughness Ra was measured at a moving speed of 0.6 mm using a surface roughness meter (“Surfcom Flex” manufactured by Tokyo Seimitsu Co., Ltd.).
 (7)熱伝導率の測定
 シート状の絶縁材料を、180℃で1時間硬化させて、硬化物(絶縁樹脂層)を得た。
(7) Measurement of thermal conductivity The sheet-like insulating material was cured at 180 ° C. for 1 hour to obtain a cured product (insulating resin layer).
 熱伝導率計(京都電子工業社製「迅速熱伝導率計QTM-500」)を用いて、硬化物(絶縁樹脂層)の熱伝導率を測定した。 The thermal conductivity of the cured product (insulating resin layer) was measured using a thermal conductivity meter (“Rapid Thermal Conductivity Meter QTM-500” manufactured by Kyoto Electronics Industry Co., Ltd.).
 (8)熱抵抗
 積層体と同じサイズを有し、60℃に制御されており、かつ平滑な表面を有する発熱体を用意した。得られた積層体を、上記発熱体に1kgfの圧力で押し付け、発熱体の反対面の温度を熱電対により測定することにより、熱抵抗を評価した。熱抵抗を以下の基準に従って判定した。
(8) Thermal resistance A heating element having the same size as the laminated body, controlled at 60 ° C., and having a smooth surface was prepared. The obtained laminate was pressed against the heating element at a pressure of 1 kgf, and the thermal resistance was evaluated by measuring the temperature of the opposite surface of the heating element with a thermocouple. Thermal resistance was determined according to the following criteria.
 [熱抵抗の判定基準]
 ○○:発熱体と積層体の発熱体側とは反対の表面との温度差が5℃以下
 ○:発熱体と積層体の発熱体側とは反対の表面との温度差が5℃を超え、10℃以下
 △:発熱体と積層体の発熱体側とは反対の表面との温度差が10℃を超え、30℃以下
 ×:発熱体と積層体の発熱体側とは反対の表面との温度差が30℃を超える
[Criteria of thermal resistance]
◯: Temperature difference between the heating element and the surface opposite to the heating element side of the laminate is 5 ° C. or less ○: Temperature difference between the heating element and the surface opposite to the heating element side of the laminate exceeds 5 ° C. 10 ° C or less Δ: Temperature difference between the heating element and the surface opposite to the heating element side of the laminate exceeds 10 ° C, and 30 ° C or less ×: Temperature difference between the heating element and the surface opposite to the heating element side of the laminate Over 30 ℃
 (9)冷熱サイクル後の剥離防止性
 得られた積層体10個をエスペック社製「モデルTSB-51」で-40℃で5分~+125℃で5分の冷熱サイクル試験を1000回行い、浮き及び剥離の発生を確認することにより、冷熱サイクル後の剥離防止性を評価した。冷熱サイクル後の剥離防止性を以下の基準に従って判定した。
(9) Anti-peeling property after cooling cycle 10 laminates obtained were subjected to 1000 cycles of cooling cycle test for 5 minutes at -40 ° C to 5 minutes at + 40 ° C with "Model TSB-51" manufactured by Espec. And by confirming the occurrence of peeling, the peeling prevention property after the thermal cycle was evaluated. The peel resistance after the cooling and heating cycle was determined according to the following criteria.
 [冷熱サイクル後の剥離防止性の判定基準]
 ○○:浮き又は剥離の発生なし
 ○:浮き又は剥離の発生1~2個
 △:浮き又は剥離の発生3~5個
 ×:浮き又は剥離の発生6~10個
[Criteria for peeling prevention after cooling cycle]
○ ○: No floating or peeling occurred ○: 1 to 2 floating or separated occurrences △: 3 to 5 occurred floating or separated ×: 6 to 10 occurrences of floating or separated
 組成を下記の表1~3に示す。積層体の構成及び積層体の評価結果を下記の表4~6に示す。 Composition is shown in Tables 1 to 3 below. The configurations of the laminate and the evaluation results of the laminate are shown in Tables 4 to 6 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1,1A…積層体
 11…絶縁樹脂層
 12…第1の金属材
 13,13A…第2の金属材
DESCRIPTION OF SYMBOLS 1,1A ... Laminated body 11 ... Insulating resin layer 12 ... 1st metal material 13, 13A ... 2nd metal material

Claims (16)

  1.  絶縁樹脂層と、
     金属箔又は金属板である第1の金属材と、
     金属箔又は金属板である第2の金属材とを備え、
     前記第1の金属材が、前記絶縁樹脂層の第1の表面に積層されており、かつ、前記第2の金属材が、前記絶縁樹脂層の前記第1の表面とは反対の第2の表面に積層されており、
     前記絶縁樹脂層の厚みが200μm以下であり、
     前記第1の金属材と前記第2の金属材との合計の厚みが200μm以上であり、
     前記第1の金属材の厚みの、前記第2の金属材の厚みに対する比が、0.2以上、5以下であり、
     前記第1の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第2の金属材の前記絶縁樹脂層側とは反対の表面の表面積に対する比が、0.5以上、2以下である、積層体。
    An insulating resin layer;
    A first metal material that is a metal foil or a metal plate;
    A second metal material that is a metal foil or a metal plate,
    The first metal material is laminated on the first surface of the insulating resin layer, and the second metal material is a second material opposite to the first surface of the insulating resin layer. Laminated on the surface,
    The insulating resin layer has a thickness of 200 μm or less,
    The total thickness of the first metal material and the second metal material is 200 μm or more,
    The ratio of the thickness of the first metal material to the thickness of the second metal material is 0.2 or more and 5 or less,
    The ratio of the surface area of the surface opposite to the insulating resin layer side of the first metal material to the surface area of the surface opposite to the insulating resin layer side of the second metal material is 0.5 or more, 2 A laminate that is:
  2.  前記絶縁樹脂層の線膨張率の、前記第1の金属材の線膨張率に対する比が、0.5以上、2以下であり、
     前記絶縁樹脂層の線膨張率の、前記第2の金属材の線膨張率に対する比が、0.5以上、2以下である、請求項1に記載の積層体。
    The ratio of the linear expansion coefficient of the insulating resin layer to the linear expansion coefficient of the first metal material is 0.5 or more and 2 or less,
    The laminate according to claim 1, wherein a ratio of a linear expansion coefficient of the insulating resin layer to a linear expansion coefficient of the second metal material is 0.5 or more and 2 or less.
  3.  前記絶縁樹脂層の25℃での弾性率が1GPa以上、50GPa以下である、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the insulating resin layer has an elastic modulus at 25 ° C of 1 GPa or more and 50 GPa or less.
  4.  前記第1の金属材の側面が、前記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜している、請求項1~3のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a side surface of the first metal material is inclined inwardly toward a surface side opposite to the insulating resin layer side.
  5.  前記第2の金属材の側面が、前記絶縁樹脂層側とは反対の表面側に向かうに従って、内側に傾斜している、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein a side surface of the second metal material is inclined inwardly toward the surface side opposite to the insulating resin layer side.
  6.  前記第1の金属材が回路である、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the first metal material is a circuit.
  7.  前記第1の金属材が積層されていない絶縁樹脂層部分が存在し、
     前記第1の金属材の前記絶縁樹脂層側とは反対の表面の算術平均粗さRaが2μm以下であり、かつ前記第1の金属材の絶縁樹脂層側の表面の算術平均粗さRaが0.1μm以上である、請求項1~6のいずれか1項に記載の積層体。
    There is an insulating resin layer portion on which the first metal material is not laminated,
    The arithmetic average roughness Ra of the surface opposite to the insulating resin layer side of the first metal material is 2 μm or less, and the arithmetic average roughness Ra of the surface of the first metal material on the insulating resin layer side is The laminate according to any one of claims 1 to 6, which is 0.1 µm or more.
  8.  前記第1の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第1の金属材の前記絶縁樹脂層側の表面の表面積に対する比が、0.8以上、1.0未満である、請求項1~7のいずれか1項に記載の積層体。 The ratio of the surface area of the surface opposite to the insulating resin layer side of the first metal material to the surface area of the surface of the first metal material on the insulating resin layer side is 0.8 or more and less than 1.0. The laminate according to any one of claims 1 to 7, wherein
  9.  前記第1の金属材が回路であり、
     前記第2の金属材が回路である、請求項1~8のいずれか1項に記載の積層体。
    The first metal material is a circuit;
    The laminate according to any one of claims 1 to 8, wherein the second metal material is a circuit.
  10.  前記第2の金属材が積層されていない絶縁樹脂層部分が存在し、
     前記第2の金属材の前記絶縁樹脂層側とは反対の表面の算術平均粗さRaが2μm以下であり、かつ前記第2の金属材の絶縁樹脂層側の表面の算術平均粗さRaが0.1μm以上である、請求項1~9のいずれか1項に記載の積層体。
    There is an insulating resin layer portion where the second metal material is not laminated,
    The arithmetic average roughness Ra of the surface opposite to the insulating resin layer side of the second metal material is 2 μm or less, and the arithmetic average roughness Ra of the surface of the second metal material on the insulating resin layer side is The laminate according to any one of claims 1 to 9, which is 0.1 袖 m or more.
  11.  前記第2の金属材の前記絶縁樹脂層側とは反対の表面の表面積の、前記第2の金属材の前記絶縁樹脂層側の表面の表面積に対する比が、0.8以下である、請求項1~10のいずれか1項に記載の積層体。 The ratio of the surface area of the surface opposite to the insulating resin layer side of the second metal material to the surface area of the surface of the second metal material on the insulating resin layer side is 0.8 or less. The laminate according to any one of 1 to 10.
  12.  前記絶縁樹脂層のガラス転移温度が150℃以上である、請求項1~11のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 11, wherein the glass transition temperature of the insulating resin layer is 150 ° C or higher.
  13.  前記絶縁樹脂層がプリプレグではない、請求項1~12のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 12, wherein the insulating resin layer is not a prepreg.
  14.  前記第1の金属材の前記絶縁樹脂層側とは反対側の表面が露出しているか、又は、前記第1の金属材の前記絶縁樹脂層側とは反対側の表面に保護フィルムが積層されている、請求項1~13のいずれか1項に記載の積層体。 The surface of the first metal material opposite to the insulating resin layer side is exposed, or a protective film is laminated on the surface of the first metal material opposite to the insulating resin layer side. The laminate according to any one of claims 1 to 13, wherein
  15.  前記第1の金属材の前記絶縁樹脂層側とは反対側の表面が露出している、請求項1~14のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 14, wherein a surface of the first metal material opposite to the insulating resin layer side is exposed.
  16.  前記絶縁樹脂層が、無機フィラーを含む、請求項1~15のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 15, wherein the insulating resin layer contains an inorganic filler.
PCT/JP2016/078790 2015-09-30 2016-09-29 Laminated body WO2017057553A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202110376117.XA CN113059875B (en) 2015-09-30 2016-09-29 Laminate body
KR1020187005357A KR101887337B1 (en) 2015-09-30 2016-09-29 The laminate
EP16851724.1A EP3339021B1 (en) 2015-09-30 2016-09-29 Laminated body
JP2016560838A JP6235733B2 (en) 2015-09-30 2016-09-29 Laminate
US15/763,736 US10477671B2 (en) 2015-09-30 2016-09-29 Laminated body
CN201680058141.6A CN108136734A (en) 2015-09-30 2016-09-29 Laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-195409 2015-09-30
JP2015195409 2015-09-30

Publications (1)

Publication Number Publication Date
WO2017057553A1 true WO2017057553A1 (en) 2017-04-06

Family

ID=58423809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078790 WO2017057553A1 (en) 2015-09-30 2016-09-29 Laminated body

Country Status (7)

Country Link
US (1) US10477671B2 (en)
EP (1) EP3339021B1 (en)
JP (2) JP6235733B2 (en)
KR (1) KR101887337B1 (en)
CN (3) CN113733688A (en)
TW (1) TWI738670B (en)
WO (1) WO2017057553A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060296A1 (en) * 2019-09-27 2021-04-01 日東電工株式会社 Film, and method for producing same
JP6905103B1 (en) * 2020-01-24 2021-07-21 Dowaエコシステム株式会社 Metal recovery method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170911A (en) * 2000-09-22 2002-06-14 Matsushita Electric Ind Co Ltd Heat conduction substrate and semiconductor module using the same
JP2004063575A (en) * 2002-07-25 2004-02-26 Fujikura Ltd Printed board
JP2007027618A (en) * 2005-07-21 2007-02-01 Fuji Name Plate Kk Printed wiring board and its manufacturing method
JP2008294251A (en) * 2007-05-25 2008-12-04 Cmk Corp Printed wiring board and its manufacturing method
JP2009101639A (en) * 2007-10-24 2009-05-14 Ube Ind Ltd Metal foil lamination polyimide resin substrate
JP2009283528A (en) * 2008-05-20 2009-12-03 Toyobo Co Ltd Polyimide base printed wiring board and method of manufacturing the same
JP2011505690A (en) * 2007-11-29 2011-02-24 エルジー イノテック カンパニー,リミティド Printed circuit board, manufacturing method thereof, and panel for manufacturing printed circuit board
JP2011149067A (en) * 2010-01-22 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil, method for producing the same, and copper-clad laminated board
JP2011243256A (en) * 2010-05-19 2011-12-01 Dainippon Printing Co Ltd Suspension flexure substrate, suspension, suspension with head, and hard disk drive
JP2012175081A (en) * 2011-02-24 2012-09-10 Hitachi Chem Co Ltd Printed wiring board and method of manufacturing printed wiring board
JP2013055156A (en) * 2011-09-01 2013-03-21 Ceramission Kk Heat radiation substrate
WO2014030313A1 (en) * 2012-08-23 2014-02-27 パナソニック株式会社 Light-emitting device, light source for lighting use, and lighting device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1194022B1 (en) 1999-06-02 2006-11-02 Ibiden Co., Ltd. Multilayer printed wiring board and method of manufacturing multilayer printed wiring board
JP4278806B2 (en) 1999-12-13 2009-06-17 イビデン株式会社 Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
US6958535B2 (en) 2000-09-22 2005-10-25 Matsushita Electric Industrial Co., Ltd. Thermal conductive substrate and semiconductor module using the same
JP4317380B2 (en) * 2003-04-18 2009-08-19 三井化学株式会社 Modified polyimide resin composition and prepreg and laminate using the same
JP4804705B2 (en) * 2003-04-24 2011-11-02 三井化学株式会社 Metal-clad laminate
JP2008076263A (en) 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd Compound sensor
KR20090108834A (en) 2008-04-14 2009-10-19 삼성전기주식회사 Method of manufacturing insulating sheet and laminated plate clad with metal foil and printed circuit board and printed circuit board thereof using the same
JP2012156449A (en) 2011-01-28 2012-08-16 Fujikura Ltd Printed board and method for manufacturing the same
CN103748673B (en) * 2011-10-28 2016-12-14 积水化学工业株式会社 Laminated body and the manufacture method of power semiconductor modular parts
JP2013103433A (en) * 2011-11-15 2013-05-30 Sekisui Chem Co Ltd Laminate
JP2014118310A (en) 2012-12-14 2014-06-30 Denki Kagaku Kogyo Kk Ceramic circuit board
JP2014150133A (en) * 2013-01-31 2014-08-21 Panasonic Corp Metal foil with resin, printed wiring board, and method for manufacturing printed wiring board
JP6166614B2 (en) * 2013-07-23 2017-07-19 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method
CN103872216B (en) * 2014-03-14 2016-06-15 苏州晶品光电科技有限公司 High-power LED light source module
JP2016012721A (en) * 2014-06-03 2016-01-21 住友ベークライト株式会社 Metal-based mounting board and method of manufacturing metal-based mounting board

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170911A (en) * 2000-09-22 2002-06-14 Matsushita Electric Ind Co Ltd Heat conduction substrate and semiconductor module using the same
JP2004063575A (en) * 2002-07-25 2004-02-26 Fujikura Ltd Printed board
JP2007027618A (en) * 2005-07-21 2007-02-01 Fuji Name Plate Kk Printed wiring board and its manufacturing method
JP2008294251A (en) * 2007-05-25 2008-12-04 Cmk Corp Printed wiring board and its manufacturing method
JP2009101639A (en) * 2007-10-24 2009-05-14 Ube Ind Ltd Metal foil lamination polyimide resin substrate
JP2011505690A (en) * 2007-11-29 2011-02-24 エルジー イノテック カンパニー,リミティド Printed circuit board, manufacturing method thereof, and panel for manufacturing printed circuit board
JP2009283528A (en) * 2008-05-20 2009-12-03 Toyobo Co Ltd Polyimide base printed wiring board and method of manufacturing the same
JP2011149067A (en) * 2010-01-22 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil, method for producing the same, and copper-clad laminated board
JP2011243256A (en) * 2010-05-19 2011-12-01 Dainippon Printing Co Ltd Suspension flexure substrate, suspension, suspension with head, and hard disk drive
JP2012175081A (en) * 2011-02-24 2012-09-10 Hitachi Chem Co Ltd Printed wiring board and method of manufacturing printed wiring board
JP2013055156A (en) * 2011-09-01 2013-03-21 Ceramission Kk Heat radiation substrate
WO2014030313A1 (en) * 2012-08-23 2014-02-27 パナソニック株式会社 Light-emitting device, light source for lighting use, and lighting device

Also Published As

Publication number Publication date
EP3339021A4 (en) 2019-04-24
CN113059875A (en) 2021-07-02
CN113059875B (en) 2023-07-07
US10477671B2 (en) 2019-11-12
KR20180027599A (en) 2018-03-14
JP2018019104A (en) 2018-02-01
CN113733688A (en) 2021-12-03
JP6235733B2 (en) 2017-11-22
KR101887337B1 (en) 2018-08-09
CN108136734A (en) 2018-06-08
TW201729998A (en) 2017-09-01
US20180302976A1 (en) 2018-10-18
EP3339021B1 (en) 2020-05-06
JPWO2017057553A1 (en) 2017-10-05
EP3339021A1 (en) 2018-06-27
TWI738670B (en) 2021-09-11

Similar Documents

Publication Publication Date Title
JP2011168672A (en) Insulation sheet
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
JP2013098217A (en) Method for manufacturing component for power semiconductor module
WO2012073360A1 (en) Insulating sheet and laminated structure
JP2013143440A (en) Metal base substrate
JP4987161B1 (en) Insulation material
JP2018065948A (en) Laminate sheet, manufacturing method of laminate sheet and manufacturing method of semiconductor device
JP5520183B2 (en) Resin composition, resin sheet and laminated structure
JP6235733B2 (en) Laminate
JP2013206902A (en) Manufacturing method of component for power semiconductor module
JP5346363B2 (en) Laminated body
JP5092050B1 (en) Laminated body
JP2013201338A (en) Manufacturing method of power semiconductor module component
JP5114597B1 (en) Laminated body and cut laminated body
JP2017217882A (en) Laminate, semiconductor chip with adhesive layer and metal material, and production method of semiconductor device
JP2013107353A (en) Laminated structure
JP5837839B2 (en) Laminated structure
JP2017186483A (en) Laminated sheet, method of manufacturing semiconductor chip with adhesive layer and metal material, and method of manufacturing semiconductor device
JP6616738B2 (en) LAMINATED SHEET AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
JP2013103433A (en) Laminate
JP4972220B1 (en) Prepreg for electronic parts
JP5276193B1 (en) Manufacturing method of laminate
JP2017065252A (en) Laminate and method for manufacturing laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016560838

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187005357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016851724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15763736

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE