WO2014030313A1 - Light-emitting device, light source for lighting use, and lighting device - Google Patents

Light-emitting device, light source for lighting use, and lighting device Download PDF

Info

Publication number
WO2014030313A1
WO2014030313A1 PCT/JP2013/004781 JP2013004781W WO2014030313A1 WO 2014030313 A1 WO2014030313 A1 WO 2014030313A1 JP 2013004781 W JP2013004781 W JP 2013004781W WO 2014030313 A1 WO2014030313 A1 WO 2014030313A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
resist
light emitting
metal pattern
emitting device
Prior art date
Application number
PCT/JP2013/004781
Other languages
French (fr)
Japanese (ja)
Inventor
浩規 北川
真樹 木部
堀内 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014506645A priority Critical patent/JP5793678B2/en
Priority to CN201390000106.0U priority patent/CN203932097U/en
Publication of WO2014030313A1 publication Critical patent/WO2014030313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0271Arrangements for reducing stress or warp in rigid printed circuit boards, e.g. caused by loads, vibrations or differences in thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/27Retrofit light sources for lighting devices with two fittings for each light source, e.g. for substitution of fluorescent tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/06Arrangement of electric circuit elements in or on lighting devices the elements being coupling devices, e.g. connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09872Insulating conformal coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09936Marks, inscriptions, etc. for information
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10113Lamp
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2009Reinforced areas, e.g. for a specific part of a flexible printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1322Encapsulation comprising more than one layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/288Removal of non-metallic coatings, e.g. for repairing

Definitions

  • the present invention relates to a light emitting device, a light source for illumination, and a lighting device, for example, a light emitting device using a light emitting diode (LED: Light Emitting Diode) and a straight tube type LED lamp using the same.
  • a light emitting device for example, a light emitting device using a light emitting diode (LED: Light Emitting Diode) and a straight tube type LED lamp using the same.
  • LED Light Emitting Diode
  • LED is expected to be a new light source in various lamps such as fluorescent lamps and incandescent lamps known from the viewpoint of high efficiency and long life, and research and development of lamps using LEDs (LED lamps) is promoted ing.
  • Patent Document 1 discloses a conventional straight tube LED lamp.
  • the straight tube type LED lamp is constituted of, for example, an elongated case, a pair of caps provided at both ends of the case, and an LED module housed in the case.
  • the LED module includes a substrate (mounting substrate) and a plurality of LED elements mounted on the substrate.
  • the present invention has been made to solve such a problem, and has a first object to provide a light emitting device, a light source for illumination, and a lighting device capable of suppressing the warp of a substrate.
  • the plurality of LED elements in the LED module are manufactured to have the same characteristics, there are variations in the characteristics among the LED elements due to manufacturing variations and the like.
  • Vf forward voltage
  • luminance variations occur between the LED elements.
  • the present invention has been made to solve such a problem, and it is a second object of the present invention to provide a light emitting device, an illumination light source, and an illumination device capable of suppressing variation in luminance among a plurality of light emitting elements. To aim.
  • one aspect of the first light emitting device is a long substrate, a light emitting element mounted on a first main surface of the substrate, and the first light emitting device.
  • a first metal pattern which is a pattern formed on the main surface of 1 and electrically connected to the light emitting element, and a pattern on the second main surface opposite to the first main surface of the substrate And a second metal pattern which is formed and not wired.
  • the second metal pattern may be formed in a mesh shape.
  • a ratio of an area of the second metal pattern to an area of the second main surface is 60% or less, and the first main surface
  • the ratio of the area of the first metal pattern to the area may be equal to or less than the ratio of the area of the second metal pattern to the area of the second major surface.
  • the proportion of the area of the metal pattern may be approximately the same.
  • the first metal pattern and the second metal pattern may be made of the same metal material.
  • the metal material may be copper.
  • the second metal pattern when the substrate is viewed in plan, is at least at least the light emitting element mounted on an end of the substrate in the longitudinal direction. It may be formed so as not to overlap with a part.
  • the second light emitting device further includes an electrode terminal that receives power for making the light emitting element emit light from the outside, and the substrate is viewed in plan.
  • the metal pattern may be formed so as not to overlap with the electrode terminal.
  • a first resist formed on the first main surface so as to cover the first metal pattern, and the first resist And a groove formed in the second resist may not be formed on the first metal pattern.
  • the length in the longitudinal direction of the substrate is L1 and the length in the lateral direction of the substrate is L2, L1 / L2 ⁇ 38.6. It may be
  • the substrate may be a resin substrate made of a resin.
  • the light emitting device further comprises a resist formed on the first main surface so as to cover the first metal pattern, and a plurality of the light emitting elements are provided.
  • the resist may be mounted, and the resist may be a discolored resist.
  • the resist may be discolored from white to yellow.
  • the resist may be discolored by heating.
  • the reflectance of the resist before the color change may be 90% or less. In this case, the reflectance of the resist before the color change may be 85% or more.
  • first illumination light source is characterized by comprising any one of the above-described first light emitting devices and an elongated casing for housing the first light emitting device.
  • an elongated base housed in the housing is further provided, and the first light emitting device is disposed on the base. May be
  • the housing is composed of an elongated translucent cover and an elongated base which constitutes a part of an envelope.
  • the first light emitting device may be disposed on the base.
  • one aspect of the first lighting device according to the present invention is characterized by including any one of the above-described first illumination light sources.
  • one aspect of a second light emitting device comprises a substrate, a plurality of light emitting elements mounted on a first main surface of the substrate, and the first light emitting device. It has a wiring pattern formed on the main surface and electrically connected to the plurality of light emitting elements, and a resist formed on the first main surface to cover the wiring and discolored.
  • the resist may be discolored from white to yellow.
  • the resist may be discolored by heating.
  • the reflectance of the resist before the color change may be 90% or less. Furthermore, the reflectance of the resist before color change may be 85% or more.
  • the resist is formed on the first resist formed on the first main surface so as to cover the wiring, and on the first resist. And a groove formed in the second resist may not be formed on the wiring.
  • one aspect of the second illumination light source according to the present invention is characterized by comprising any one of the above-described second light emitting devices and a housing for housing the second light emitting devices.
  • the case is elongated, and the plurality of light emitting elements are arranged along the longitudinal direction of the case. It is also good. Furthermore, a long base may be accommodated in the housing, and the second light emitting device may be disposed on the base.
  • the casing is composed of an elongated translucent cover and an elongated base which constitutes a part of the envelope.
  • the second light emitting device may be disposed on the base.
  • one aspect of the second lighting device according to the present invention is characterized by including any one of the above-described second illumination light sources.
  • the first light emitting device the first illumination light source, and the second illumination device according to the present invention, it is possible to suppress the warpage of the substrate on which the light emitting element is mounted.
  • the second light emitting device the first illumination light source, and the second illumination device according to the present invention, it is possible to suppress the luminance variation among the plurality of light emitting elements.
  • FIG. 1 is a schematic perspective view of a straight tube type LED lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the straight tube type LED lamp according to the embodiment of the present invention.
  • (A) of FIG. 3 is a plan view (front view) of the surface side of the LED module according to the embodiment of the present invention, and (b) of FIG. 3 is a plan view of the back side of the LED module (rear view) 3
  • (c) is a cross-sectional view of the LED module taken along line AA 'of FIG. 3 (a).
  • FIG. 4 is a partially enlarged cross-sectional view (a cross-sectional view when cut by a plane passing through the tube axis) of the straight tube type LED lamp according to the embodiment of the present invention
  • (b) of FIG. 4 is a cross-sectional view of the straight tube type LED lamp taken along line AA 'of FIG. 4 (a)
  • FIG. 4 (c) is a straight line taken along line BB' of FIG. 4 (a).
  • It is a sectional view of a tube type LED lamp.
  • FIG. 5A is a partially enlarged view of the LED module according to the first embodiment of the present invention as viewed from the second main surface side.
  • FIG. 5A is a partially enlarged view of the LED module according to the first embodiment of the present invention as viewed from the second main surface side.
  • FIG. 5B is a partially enlarged view of the LED module according to the second embodiment of the present invention as viewed from the second main surface side.
  • FIG. 6A is a diagram for explaining the luminance variation in the case of using a conventional LED module (high reflectance resist).
  • FIG. 6B is a view for explaining the luminance variation when the LED module (low reflectance resist) according to the embodiment of the present invention is used.
  • (A) of FIG. 7 is a partially enlarged cross-sectional view of an LED module according to a modification of the embodiment of the present invention, and (b) of FIG. 7 is an AA 'line of (a) of FIG. It is sectional drawing of the same LED module in.
  • FIG. 8 is a perspective view showing the configuration of the illumination device according to the embodiment of the present invention.
  • FIG. 9 is a whole perspective view and a partially enlarged view of a straight tube type LED lamp according to a modification of the embodiment of the present invention.
  • FIG. 10A is a view showing a first modified example of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention.
  • FIG. 10B is a view showing a second modified example of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention.
  • FIG. 11 is a view showing a third modification of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention.
  • FIG. 12 is a view showing a modification of the metal pattern of the first main surface in the LED module according to the embodiment of the present invention.
  • FIG. 13 is a view showing an example of a substrate (before dicing) of the LED module according to the embodiment of the present invention.
  • a straight tube type LED lamp will be described as an example of a light source for illumination.
  • FIG. 1 is a schematic perspective view of a straight tube type LED lamp according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the straight tube type LED lamp according to the embodiment of the present invention.
  • FIG.1 and FIG.2 it does not show about the one part structure (the wiring 13 and the electrode terminal 15) of the LED module 10.
  • FIG. 1 and FIG.2 it does not show about the one part structure (the wiring 13 and the electrode terminal 15) of the LED module 10.
  • the straight tube type LED lamp 1 is a straight tube type LED lamp replacing the conventional straight tube type fluorescent lamp, and is, for example, a 40-type straight tube type LED lamp having a brightness of 2400 lm. is there.
  • the straight tube type LED lamp 1 includes an LED module 10, a long case 20 housing the LED module 10, and one end of the case 20 in the longitudinal direction (tube axis direction).
  • Power supply base (power supply side base) 30 which is a first base provided in the portion, and a non-power supply base, which is a second base provided at the other end of the casing 20 in the longitudinal direction And 40).
  • the straight tube LED lamp 1 further includes a first base 50 and a second base 55 on which the LED module 10 is disposed, the LED module 10 and other electronic components (the LED module 10, A connector 60 for electrically connecting the lighting circuit 90), a reflecting member 70 for reflecting light emitted by the LED module 10 in a predetermined direction, and a mounting member 80 for mounting the first base 50 on the housing 20 , And a lighting circuit 90.
  • a single-sided feeding method in which feeding is performed from one side of only the feeding cap 30 is employed.
  • LED module light emitting device
  • a plurality of elongated LED modules 10 are arranged along the tube axis direction of the housing 20.
  • the plurality of LED modules 10 are arranged such that the longitudinal direction of each substrate 11 is along the longitudinal direction of the housing 20.
  • two LED modules 10 are used.
  • FIG. 3 shows the configuration of the LED module according to the embodiment of the present invention, wherein (a) is a plan view (front view) of the surface side of the LED module and (b) is the LED A plan view (rear view) of the rear side of the module (c) is a cross-sectional view of the LED module taken along line AA 'of (a).
  • the LED module 10 is a surface mount device (SMD: Surface Mount Device) type light emitting device (light emitting module), and the substrate 11 and a first main surface which is one surface of the substrate 11 A plurality of LED elements 12 mounted on the front surface 11a, a wiring 13 formed on the first main surface 11a, and a second main surface (rear surface) 11b which is the other surface of the substrate 11 And a metal pattern 14 formed on the substrate. Furthermore, the LED module 10 includes an electrode terminal 15 and resists 16 and 17.
  • SMD Surface Mount Device
  • the substrate 11 is a mounting substrate for mounting the LED element 12.
  • a rectangular substrate elongated in the tube axis direction of the housing 20 is used as the substrate 11.
  • the surface on which the LED element 12 is mounted is the first main surface 11a, and the surface opposite to the first main surface 11a is the second main surface 11b.
  • the LED element 12 is mounted only on the first main surface 11a of the substrate 11, and the LED element is not mounted on the second main surface 11b.
  • the LED module 10 is mounted on the second base 55 such that the second main surface 11 b side of the substrate 11 faces the mounting surface of the second base 55.
  • a resin substrate based on a resin, a metal base substrate based on a metal, a glass substrate made of glass, or the like can be used.
  • the resin substrate may be, for example, a glass epoxy substrate (CEM-3, FR-4 etc.) made of glass fiber and epoxy resin, a substrate (FR-1 etc.) made of paper phenol or paper epoxy, or polyimide etc.
  • a flexible substrate having flexibility can be used.
  • a metal base substrate an aluminum alloy substrate, an iron alloy substrate, a copper alloy substrate, etc. can be used, for example.
  • a double-sided CEM-3 substrate is used as the substrate 11.
  • the long-sized substrate 11 in the above form is a substrate having an aspect ratio (L1 / L2) of 7.5 or more.
  • the substrate 11 having a thickness of 1.6 mm may be used.
  • the LED element 12 is an example of a light emitting element, and is mounted on the first major surface 11 a on the substrate 11.
  • the plurality of LED elements 12 are arranged in a line in a line along the longitudinal direction of the substrate 11.
  • Each LED element 12 is a so-called SMD type light emitting element in which an LED chip and a phosphor are packaged.
  • Each LED element 12 includes a package (container) 12a, an LED chip 12b accommodated in the package 12a, and a sealing member 12c for sealing the LED chip 12b, as shown in FIG. 3C.
  • the LED element 12 in the present embodiment is a white LED element that emits white light.
  • the package 12a is molded of a white resin or the like, and has a recess (cavity) in the shape of an inverted truncated cone.
  • the inner side surface of the recess is an inclined surface, and is configured to reflect the light from the LED chip 12 b upward.
  • the LED chip 12b is mounted on the bottom of the recess of the package 12a.
  • the LED chip 12 b is a bare chip that emits monochromatic visible light, and is die-bonded and mounted on the bottom of the recess of the package 12 a by a die attach material (die bonding material).
  • a blue LED chip that emits blue light when energized can be used as the LED chip 12 b.
  • the sealing member 12c is made of a translucent material such as silicone resin, and is disposed in the package 12a so as to cover the LED chip 12b.
  • the sealing member 12 c seals the LED chip 12 b to protect the LED chip 12 b.
  • the sealing member 12c in the present embodiment further includes a phosphor as a light wavelength conversion material, and performs wavelength conversion (color conversion) of the light from the LED chip 12b to a predetermined wavelength.
  • the sealing member 12c is filled in the recess of the package 12a, and is sealed up to the opening surface of the recess.
  • the sealing member 12c for example, when the LED chip 12b is a blue LED chip, phosphor-containing yellow phosphor particles of YAG (yttrium aluminum garnet) type dispersed in silicone resin to obtain white light Resin can be used. As a result, the yellow phosphor particles are excited by the blue light of the blue LED chip to emit yellow light. Therefore, from the sealing member 12c, white light is generated as a composite light of the excited yellow light and the blue light of the blue LED chip. Light is emitted.
  • the sealing member 12c may contain a light diffusing material such as silica.
  • the LED element 12 is configured. Although not shown, the LED element 12 has two external connection terminals of positive and negative electrodes, and the external connection terminals and the wiring 13 are electrically connected. In the present embodiment, the LED elements 12 are mounted in a line in a line, but the present invention is not limited to this. Moreover, although the several LED element 12 on the board
  • the wiring 13 is a metal wiring (first metal pattern) patterned in a predetermined shape on the first major surface 11 a of the substrate 11.
  • the wiring 13 is electrically connected to the LED element 12.
  • the wiring 13 is intermittently patterned in the longitudinal direction of the substrate 11 in order to electrically connect the adjacent LED elements 12 to each other.
  • the wiring 13 is also patterned to connect the LED element 12 mounted on the short side of the substrate 11 and the electrode terminal 15.
  • the wires 13 extend along the longitudinal direction of the substrate 11 on both sides of the element row of the LED elements 12 in order to connect the LED elements 12 in parallel and to supply power to the LED elements 12 from the electrode terminals 15. It is also patterned to do. Thus, power is supplied from the electrode terminal 15 to the respective LED elements 12 through the wiring 13.
  • the metal pattern 14 (second metal pattern) is patterned in a predetermined shape on the second major surface 11 b of the substrate 11 using a metal.
  • the metal pattern 14 in the present embodiment is pattern-formed in a mesh shape (mesh shape) as shown in (c) of FIG. 3. More specifically, the metal patterns 14 are formed in a lattice shape.
  • the metal pattern 14 is formed on substantially the entire surface of the second major surface 11 b of the substrate 11 except for a part thereof.
  • the metal pattern 14 is formed in an elongated shape as a whole along the longitudinal direction of the substrate 11 in the same manner as the wiring 13. That is, the metal pattern 14 and the wiring 13 are formed to face each other with the substrate 11 interposed therebetween.
  • the metal pattern 14 functions as a heat radiating member (heat sink) for radiating heat generated by the LED element 12.
  • the metal pattern 14 is not electrically connected to the electronic component, and no operating current flows in the metal pattern 14 while the LED module 10 emits light. That is, the metal pattern 14 is a non-wiring of a structure which does not electrically connect electronic parts (LED element etc.) unlike the wiring 13 through which an operation current flows during light emission of the LED module 10. That is, the metal pattern 14 is in an electrically floating state, and no current flows in the metal pattern 14 to make the LED element 12 emit light.
  • the wiring 13 and the metal pattern 14 having a predetermined shape are formed on both surfaces of the substrate 11 by patterning the metal film. For example, using a substrate 11 having a metal film (such as copper foil) crimped onto the entire surface of both surfaces, the metal film on one surface is etched and patterned to form a wiring 13 of a predetermined shape, and then The metal film on the other surface is etched and patterned to form a metal pattern 14 of a predetermined shape. Thereby, the board
  • the wiring 13 and the metal pattern 14 are portions left when the metal film is etched, a pattern having a predetermined shape may be formed by printing or the like without etching.
  • the wiring 13 and the metal pattern 14 for example, copper (coefficient of linear expansion: 16.8 ⁇ 10 ⁇ 6 / ° C.) or silver (coefficient of linear expansion: 18.9 ⁇ 10 ⁇ 6 / ° C.) is used. be able to.
  • the wiring 13 and the metal pattern 14 may be formed using the same metal material, or may be formed using different metal materials. In the present embodiment, the wiring 13 and the metal pattern 14 are made of the same metal material, and both of them use copper. Further, as described above, in the present embodiment, a resin substrate of CEM-3 (linear expansion coefficient: 27 ⁇ 10 ⁇ 6 / ° C.) is used as the substrate 11.
  • the linear expansion coefficient (thermal expansion coefficient) of the wiring 13 and the metal pattern 14 is smaller than the linear expansion coefficient (thermal expansion coefficient) of the substrate 11.
  • the thickness of each of the wiring 13 and the metal pattern 14 is 35 ⁇ m, but may be 18 ⁇ m, 70 ⁇ m, 105 ⁇ m or the like.
  • the electrode terminal 15 is an external connection terminal (connector) that receives DC power for causing the LED element 12 to emit light from the outside of the LED module 10.
  • the electrode terminal 15 in the present embodiment is configured in a socket type, and has a socket made of resin and a conductive pin for receiving DC power.
  • the conductive pins are electrically connected to the wiring 13 formed on the substrate 11.
  • the resist 16 is an insulating film made of a resin material having an insulating property.
  • the resist 16 is formed so as to cover the entire surface of the first major surface 11 a of the substrate 11 except for the wiring 13 in the connection portion with the LED element 12 and the electrode terminal 15. By covering the wiring 13 with the resist 16, the insulation (withstand voltage) of the substrate 11 can be improved. Further, the formation of the resist 16 can also suppress the oxidation of the wiring 13.
  • a white resin material (white resist) having a high reflectance of about 98% is used as a resist formed on the first major surface 11 a of the substrate 11.
  • the high reflectance resist shows no change in reflectance with time, and the reflectance does not decrease even if it is heated. That is, the high reflectance white resist remains as a white resist without color change.
  • a low reflectance white resist (quasi-white resist) having a reflectance of 90% or less is intentionally used as the resist 16.
  • the resist can be discolored by using the resist of low reflectance.
  • a white resist with low reflectance is used as the resist 16
  • the resist 16 is discolored to have a yellowish appearance by performing a heat treatment before the LED module 10 is incorporated into the housing 20. .
  • the reflectance of the resist 16 is reduced by causing the resist 16 to change color.
  • the reflectance of the resist 16 is reduced by about 2 to 5% due to the color change.
  • the resist 16 before the color change a low reflectance resist having a reflectance of 80% to 90% can be used.
  • the thickness of the resist 16 can be, for example, 5 to 25 ⁇ m.
  • the resist with low reflectance is formed on the substrate 11 and then heat treated to discolor the resist, but the resist with low reflectance is heat treated to discolor. It is also possible to form on the substrate 11 a resist that has been discolored after being allowed to
  • the resist 17 is also an insulating film made of a resin material having an insulating property.
  • the resist 17 is formed on the entire surface of the second major surface 11 b of the substrate 11 so as to cover the metal pattern 14.
  • the resist 17 is made of the same material as the resist 16, and the entire metal pattern 14 is covered with the resist 17.
  • the thickness of the resist 17 can also be, for example, 5 to 25 ⁇ m, similarly to the resist 16. Further, the formation of the resist 17 can prevent the metal pattern 14 from being oxidized.
  • the LED module 10 is configured as described above.
  • the resist 16 may be a white resist having a high reflectance of over 90% (eg, about 98%) instead of a white resist having a low reflectance.
  • the resists 16 and 17 are provided in the present embodiment, the resists 16 and 17 may not be provided.
  • the housing 20 is a translucent straight tube (tube), and as shown in FIG. 2, is a long cylindrical outer shell member (outer tube) having openings at both ends.
  • the housing 20 accommodates the LED module 10, the first base 50, the second base 55, the lighting circuit 90, and the like.
  • the casing 20 uses a cylindrical shape, but the casing 20 does not necessarily have to be a cylindrical shape, and a square tubular shape may be used.
  • the housing 20 can be made of a translucent material, and a glass tube (glass bulb) made of glass, a plastic tube, or the like can be used.
  • a glass tube glass bulb
  • a plastic tube or the like
  • a straight pipe glass pipe made of soda lime glass of 70 to 72% silica (SiO 2 ), or a resin material such as acrylic (PMMA) or polycarbonate (PC)
  • PMMA acrylic
  • PC polycarbonate
  • the same glass tube having a total length of about 1167 mm
  • the 40-type straight tube fluorescent lamp is used.
  • the housing 20 may be provided with a light diffusion portion having a light diffusion function for diffusing the light from the LED module 10.
  • the light diffusion portion include a light diffusion sheet or a light diffusion film formed on the inner surface or the outer surface of the housing 20.
  • a milky white light diffusion film can be formed by adhering a resin or a white pigment containing a light diffusion material (fine particles) such as silica or calcium carbonate to the inner surface or the outer surface of the housing 20.
  • a light diffusion portion there are a lens structure provided inside or outside of the housing 20, or a concave portion or a convex portion formed in the housing 20.
  • the housing 20 can also have a light diffusion function (light diffusion portion).
  • the housing 20 can be provided with a light diffusing function (light diffusing portion) by molding the housing 20 itself using a resin material or the like in which a light diffusing material is dispersed.
  • the feeding cap (first cap) 30 is a cap for supplying power to the LED module 10.
  • the power supply base 30 is a power reception base that receives power for lighting the LED element 12 of the LED module 10 from the outside of the lamp (such as a commercial power source).
  • the power supply cap 30 is formed in a substantially bottomed cylindrical shape, and is provided to cover one of the housing 20 in the longitudinal direction.
  • the power supply base 30 in the present embodiment includes a resin-made power supply base body 31 made of a synthetic resin such as polybutylene terephthalate (PBT) and a pair of power supplies made of a metal material such as brass. It consists of pins 32.
  • PBT polybutylene terephthalate
  • the power supply base 30 is configured to be divisible into a plurality of parts along the axial direction of the power supply base 30.
  • the feed base body 31 in the present embodiment is configured to be disassembled in upper and lower halves with the plane passing through the tube axis of the housing 20 as a divided surface, and the first feed base body portion 31a and the second feed base are configured. It is comprised by the main-body part 31b.
  • the feed cap 30 electrically connects the feed pin 32 to the socket of the lighting circuit 90 through a lead wire, and then the feed pin is formed by the first feed cap body 31a and the second feed cap body 31b.
  • the pair of feed pins 32 are conductive pins for supplying power to the LED module 10.
  • the power supply pin 32 is a power receiving pin that receives power for lighting the LED element 12 of the LED module 10 from an external device such as a lighting fixture.
  • the pair of feed pins 32 is configured to protrude outward from the bottom of the feed cap body 31. For example, by mounting the power supply cap 30 in the socket of the lighting apparatus, the pair of power supply pins 32 receive DC power from a power supply device (power supply circuit) incorporated in the lighting apparatus.
  • the pair of feed pins 32 is connected to the lighting circuit 90 in the housing 20 by lead wires, and the DC power received by the pair of feed pins 32 is supplied to the lighting circuit 90.
  • the pair of power supply pins 32 receive AC power from, for example, a commercial 100 V AC power supply, and supply the AC power to the power supply apparatus.
  • the non-feed cap 40 is locked to the socket of the lighting fixture at the other end of the lamp to support the lamp body.
  • the non-power-supplying cap 40 is formed in a substantially bottomed cylindrical shape, and is provided to cover the other end in the longitudinal direction of the housing 20.
  • the non-feed cap 40 in the present embodiment includes a non-feed cap body 41 made of a synthetic resin such as PBT and a single non-feed pin 42 made of a metallic material such as brass. Become.
  • the non-feed cap 40 is configured to be split into a plurality of parts along the axial direction of the non-feed cap 40 in the same manner as the feed cap 30. That is, the non-power supply cap body 41 is configured to be disassembled in upper and lower halves with the plane passing through the tube axis of the housing 20 as a divided surface, and the first non-power supply cap body portion 41a and the second non-power supply cap It consists of the main part 41b. Further, the non-feed pin 42 is configured to protrude outward from the bottom of the non-feed cap body 41.
  • the non-feed cap 40 configured in this manner is configured such that after the non-feed pin 42 is attached to the first base 50 by the connection member 43, the first non-feed cap body 41a and the second non-feed cap body In a state where the non-feed pin 42, the end of the housing 20, and the second base 55 are sandwiched by 41b, the first non-feed cap body portion 41a and the second non-feed cap body portion 41b are screwed. Are attached to the end of the housing 20.
  • the non-feed cap 40 may be provided with a grounding function, and the non-feed cap 40 may be used as a grounding cap.
  • the non-power supply pin 42 functions as a ground pin and is grounded via the luminaire.
  • the first base 50 and the second base 55 are both made of metal and function as a heat sink for dissipating heat generated by the LED module 10 and as a base for mounting and fixing the LED module 10 Function.
  • the first base 50 is a member which constitutes the outer shell of the heat sink, and as shown in FIG.
  • the first base 50 can be formed, for example, by bending a metal plate such as a galvanized steel plate.
  • the first base 50 has a long bottom (bottom plate) and a first wall 51 and a second wall 52.
  • the first wall 51 and the second wall 52 are formed at both ends of the bottom of the first base 50 in the width direction of the first base 50 (in the width direction of the substrate 11), and the width direction of the first base 50 In this case, both sides of the substrate 11 of the LED module 10 are sandwiched. That is, the first wall 51 faces one side of the substrate 11, and the second wall 52 faces the other side of the substrate 11.
  • the first wall 51 and the second wall 52 are formed in a screen shape by bending a metal plate constituting the first base 50.
  • the substrate 11 of the LED module 10 is sandwiched by the first wall 51 and the second wall 52, and the LED module 10 is formed of the substrate 11 by the first wall 51 and the second wall 52. It is arrange
  • first wall 51 is formed with a plurality of first protrusions 51 a that project from the first wall 51 toward the second wall 52.
  • second wall 52 is formed with a plurality of second protrusions 52 a that project from the second wall 52 toward the first wall 51.
  • FIG. 4 is a partially enlarged cross-sectional view (a cross-sectional view when cut by a plane passing through the tube axis) of the straight tube type LED lamp according to the embodiment of the present invention
  • FIG. I a cross-sectional view of the straight tube LED lamp taken along line AA 'of (a)
  • FIG. 4 is a cross section of the straight tube LED lamp taken along line BB' of (a) FIG.
  • a part of the configuration of the LED module 10 (the wiring 13, the metal pattern 14, the resists 16 and 17) is omitted.
  • the first protrusion 51 a and the second protrusion 52 a are configured to be in contact with the side of the first main surface 11 a of the substrate 11 in the LED module 10.
  • the first protrusion 51 a and the second protrusion 52 a are formed as locking claws that lock on the side of the first main surface 11 a of the substrate 11.
  • the movement of the substrate 11 in the LED module 10 in the direction perpendicular to the first major surface 11 a of the substrate 11 is restricted. That is, the LED module 10 is fixed to the first base 50 by the first protrusion 51 a and the second protrusion 52 a so as not to jump upward.
  • the LED module 10 is positioned on the ground side relative to the first base 50. Even if the LED module 10 does not fall off the first base 50 due to the first protrusion 51 a and the second protrusion 52 a. As described above, since the substrate 11 is held by the first protrusion 51 a and the second protrusion 52 a, the LED module 10 can be easily fixed to the first base 50 without using a screw, an adhesive, or the like. it can.
  • the first protrusion 51 a and the second protrusion 52 a are formed by processing a part of the metal plate constituting the first base 50, and for example, the first wall 51 and the second wall made of a metal plate By embossing the wall 52, a part of the metal plate can be made to project. Thereby, LED module 10 can be fixed to the 1st base 50 by easy composition, without using another member.
  • the substrate 11 in the first projecting portion 51a and the second projecting portion 52a is provided so that the substrate 11 is not easily detached from the first base 50 by vibration, impact or the like.
  • the shape on the side of the first major surface 11 a is substantially flat so as to face the first major surface 11 a.
  • the shape of the first protrusion 51a or the second protrusion 52a on the opposite side to the first main surface 11a side inserts the substrate 11 in contact with the first protrusion 51a or the second protrusion 52a.
  • the substrate 11 has a substantially tapered shape.
  • step-difference part for mounting the 2nd base 55 and the reflecting member 70 in the 1st base 50 is formed.
  • a space area is formed between the bottom of the first base 50 and the reflecting member 70 (the second base 55) by this stepped portion, and an urging portion 53 described later is provided using this space area. It is done.
  • the 1st base 50 is the some 1st notch part 51b formed in the vicinity of the 1st protrusion part 51a, and the 2nd protrusion part 52a. And a plurality of second notched portions 52b formed in the vicinity of.
  • each of the first cutaway portions 51b is cut out so as to straddle the first wall portion 51 and the step portion, and is formed in a slit shape along the longitudinal direction of the first base 50. It is done.
  • each of the second notches 52b is notched so as to straddle the second wall 52 and the step, and is formed in a slit shape along the longitudinal direction of the first base 50. .
  • the substrate 11 when the substrate 11 is fixed to the first base 50 by providing the first notch 51b and the second notch 52b in the vicinity of the first protrusion 51a and the second protrusion 52a, The peripheral portions of the first protrusion 51a and the second protrusion 52a can be easily elastically deformed. Thus, the substrate 11 can be easily fitted into the first protrusion 51 a and the second protrusion 52 a of the first base 50, and the substrate 11 can be easily fixed to the first base 50.
  • a biasing portion 53 is formed at the bottom of the first base 50.
  • the biasing portion 53 is a first member toward the second major surface 11b of the substrate 11 in the LED module 10 (that is, in the direction from the second major surface 11b of the substrate 11 to the first major surface 11a),
  • the pedestal 50, the second pedestal 55, and the reflecting member 70 are configured to be biased.
  • the biasing portion 53 is formed by processing a part of the metal plate constituting the first base 50, and as shown in FIG. 4A, the plate-like bottom plate of the first base 50 It is configured as a leaf spring formed by cutting and raising a part.
  • the biasing portion 53 configured in this manner is configured to abut on the reflecting member 70, and applies a pressure to the reflecting member 70 (second base 55) by biasing by the elastic force of the plate spring. doing.
  • the substrate 11 of the LED module 10 is biased by the biasing unit 53, and the pressing force is applied by the elastic force of the biasing unit 53.
  • the substrate 11 is held by the first and second protrusions 51 a and 52 a and the biasing portion 53 in a state of receiving a pressing force. That is, since the substrate 11 is pressed from the surfaces on both sides of the first main surface 11a and the second main surface 11b, the substrate 11 can be firmly held by the first base 50. Further, since the urging portion 53 is formed by processing a part of the first base 50, the holding performance of the substrate 11 can be improved by a simple configuration.
  • the opening 54 is formed in the bottom part of the 1st base 50, and the attachment member 80 is attached to the said opening 54. As shown in FIG.
  • a second base 55 is disposed between the LED module 10 and the first base 50.
  • the second base 55 is an elongated substantially rectangular substrate, and is a middle-plate heat sink disposed between the first base 50 and the substrate 11 of the LED module 10.
  • the LED module 10 (substrate 11) is placed on the second base 55. That is, the LED module 10 is disposed on the second base 55 in a state where the second base 55 and the second main surface 11 b side of the substrate 11 are in contact with each other. Thereby, the heat generated by the LED element 12 is transferred to the metal pattern 14 through the substrate 11 and transferred from the metal pattern 14 to the second base 55.
  • the lighting circuit 90 is also mounted on the second base 55.
  • the second base 55 is preferably made of a high thermal conductivity material such as metal, and in the present embodiment is an aluminum plate.
  • the plate thickness of the second base 55 is configured to be thicker than the plate thickness of the first base 50.
  • the second base 55 is configured to be longer than the length of the first base 50, and each of the both end portions of the second base 55 is provided by the power supply base 30 or the non-power supply base 40. It is covered and attached to the power supply base 30 or the non-power supply base 40.
  • the second base 55 is sandwiched between the LED module 10 and the first base 50, and by fixing the LED module 10 to the first base 50, the second base 55 is also It can be fixed to the base 50.
  • the first base 50 made of a thin plate-like steel plate that can be easily processed is used as the heat sink and the second base 55 made of aluminum having a high thermal conductivity, While being able to fix LED module 10 easily, a heat sink excellent in heat dissipation can be realized.
  • the second base 55 is mounted on the step portion of the first base 50 via the reflecting member 70, and the surface (rear surface) of the second base 55 on the first base 50 side is the above-described. As described above, the elastic force of the biasing portion 53 of the first base 50 is biased via the reflecting member 70.
  • the connector 60 is a conductive wire electrically connecting adjacent LED modules 10 to each other, and a mounting portion (connector portion) 61 mounted to the electrode terminals 15 of the LED module 10, and the electrode terminals And a power supply line 62 for passing the power supplied to the LED module 10 through 15.
  • the mounting portion 61 is provided at both ends of the power supply line 62, and a substantially rectangular resin molded portion configured to be fitted to the electrode terminal (socket) 15 of the LED module 10, and the resin molded portion And a conductive portion provided on the Also, the power supply line 62 can be configured by a lead wire called a harness.
  • the connector 60 is configured to pass DC power
  • the power supply line 62 includes a high voltage side supply line and a low voltage side supply line.
  • two long LED modules 10 are disposed in the housing 20.
  • the LED module 10 disposed on the side of the power supply cap 30 and the lighting circuit 90 are electrically connected by the connector 60, and DC power is supplied from the lighting circuit 90 to the LED module 10 through the connector 60.
  • adjacent LED modules 10 are also electrically connected by the connector 60, and power is supplied from one LED module 10 to the other LED module through the connector 60.
  • the reflecting member 70 is configured to reflect light emitted by the LED module 10 in a certain direction in order to improve the light extraction efficiency of the lamp.
  • the reflective member 70 is made of a material having electrical insulation and light reflectivity, and can be formed, for example, by processing an insulating reflective sheet made of a biaxially stretched polyester (PET) film or the like.
  • the reflecting member 70 is processed to have a U-shaped cross section, and the first reflecting surface portion in surface contact with the inner surface of the first wall portion 51 in the first base 50, and the second wall portion 52. And a second reflective surface portion in surface contact with the inner surface of Thereby, the light from the LED module 10 is reflected by the first reflective surface portion and the second reflective surface portion of the reflective member 70.
  • the location corresponding to the 1st projection part 51a of the 1st base 50 and the 2nd projection part 52a in reflective member 70 is notched, and when reflective member 70 is arranged inside the 1st base 50.
  • the first protrusion 51 a and the second protrusion 52 a are configured to protrude from the first reflection surface portion and the second reflection portion of the reflection member 70.
  • the reflecting member 70 is disposed between the first base 50 and the second base 55. Specifically, the reflecting member 70 is mounted on the step portion of the first base 50, and the surface of the reflecting member 70 on the side of the first base 50 is the elastic force of the biasing portion 53 of the first base 50. It is energized by
  • a mounting member 80 is attached to an opening formed in the bottom of the first base 50.
  • the attachment member 80 is attached to the first base 50 in a state in which the first base 50 is movable in the longitudinal direction of the first base 50.
  • the mounting member 80 has a hooking piece 81 engaged with the opening 54 formed in the bottom of the first base 50 and a recess 82 formed on the inner surface side of the housing 20.
  • the hooking piece 81 is formed with a gap from the edge of the opening 54 at the bottom of the first base 50 in the longitudinal direction of the first base 50, and is engaged with the edge of the opening 54. Is configured. Specifically, the hooking piece 81 is formed in a hook shape so as to be hooked on the surface of the bottom of the first base 50 on the housing 20 side. Further, an adhesive such as silicone resin is filled in the recess 82 of the mounting member 80, and the mounting member 80 and the housing 20 are adhesively fixed by this adhesive.
  • the attachment member 80 is adhesively fixed to the housing 20, the attachment member 80 is movable with respect to the first base 50, and the attachment member 80 slides with respect to the first base 50. It is configured to In the present embodiment, the hooking piece 81 of the mounting member 80 and the first base 50 are configured to slide.
  • the attachment members 80 are attached to a part of the first base 50, and in the present embodiment, two attachment members 80 are attached to the first base 50.
  • the mounting portion is configured by deforming a part of the bottom portion of the first base 50 outward without providing the mounting member 80, and the first base 50 has the same function as the mounting member 80. You may In this case, the first base 50 and the housing 20 can be fixed by applying an adhesive to the mounting portion of the first base 50.
  • the mounting portion of the first base 50 configured in this way does not have a sliding action like the mounting member 80, but it is not necessary to use the mounting member 80, so the number of parts can be reduced.
  • the lighting circuit 90 is an LED lighting circuit for controlling the lighting state of the LED element 12 in the LED module 10 and is a DC voltage of a desired voltage for energizing the LED element 12 by rectifying the input DC power and the like. A circuit for converting into power and outputting is provided. As shown in FIG. 2, in the present embodiment, the lighting circuit 90 includes a circuit board 90 a and a circuit element group 90 b composed of a plurality of circuit elements mounted on the circuit board 90 a.
  • the circuit board 90a is a printed board on which a predetermined wiring pattern (not shown) for electrically connecting the mounted electronic components to each other is formed, and for example, a glass epoxy board or the like can be used.
  • the circuit element group 90 b includes a plurality of circuit elements for lighting the LED elements 12 of the LED module 10.
  • the circuit element group 90b is configured of, for example, a diode bridge circuit (rectifier circuit) that performs full-wave rectification of input DC power, a fuse element, and the like.
  • a resistor, a capacitor, a coil, a diode, a transistor or the like may be used.
  • the lighting circuit 90 also includes an input socket 90c (input unit) for receiving DC power from a pair of power supply pins 32 provided on the power supply cap 30, and an output socket 90d for outputting DC power to the LED module 10 And an output unit).
  • An input connector terminal electrically connected to the pair of feed pins 32 via a lead wire is inserted into the input socket 90c.
  • an output connector terminal electrically connected to the LED module 10 through a lead wire is inserted into the output socket 90d.
  • the input socket 90c and the output socket 90d are electrically connected to the circuit elements of the circuit element group 90b by a wiring pattern formed on the circuit board 90a.
  • the lighting circuit 90 configured in this manner is placed on the second base 55 and covered by the lighting circuit cover 91.
  • the lighting circuit cover 91 is made of an insulating resin and protects the lighting circuit 90.
  • the circuit element group 90 b may be directly mounted on the substrate 11 of the LED module 10 without using the lighting circuit 90.
  • an input socket may be provided on the substrate 11, the feed pin 32 and the input socket may be connected by lead wires, and a wiring pattern may be formed on the substrate 11 to connect the input socket and the circuit element group 90 b.
  • the output from the circuit element group 90 b (DC power after rectification) can be supplied to the LED element 12 by forming a wiring pattern on the substrate 11.
  • the LED module 10 In the straight tube type LED lamp 1 configured as described above, the LED module 10, the first base 50, the second base 55, the connector 60, the reflection member 70, the mounting member 80, the lighting circuit 90, the lighting circuit cover 91
  • the feed pin 32 and the non-feed pin 42 are integrated as a long light source module. That is, the light source module in which each component is integrated is in a state in which the electrical and physical connection between the components is completed. Then, after the light source module is inserted into the casing 20, the feed pipe main body 31 and the non-feed cap body 41 are attached to both ends of the housing 20, thereby completing the straight tube LED lamp 1. .
  • both ends of the substrate 11 in the longitudinal direction Has warped upward greatly. It has also been found that when a long substrate having an aspect ratio of 38.6 or more is used, both ends of the substrate are significantly warped. As described above, when the substrate is warped, the position of the LED element is changed, which makes it impossible to obtain desired light distribution characteristics.
  • the residual copper ratio is the area of the copper foil after patterning (the copper area after patterning / the copper area before patterning) with respect to the area of the copper foil before patterning. Further, in the present embodiment, since the copper foil is formed on the entire surface of the main surface of the substrate, the residual copper ratio is the area of the copper foil after patterning with respect to the area of the main surface of the substrate (copper area after patterning It can also be expressed as the area of the main surface of the substrate). In addition, the area of copper foil is an area when planarly viewing a board
  • the inventors of the present application conducted a similar experiment using a ceramic substrate instead of the resin substrate.
  • the warp of the substrate is slight regardless of the residual copper ratio of the copper thin film formed on the other main surface (even when the residual copper ratio is 100%) Met.
  • the present invention has been made based on such new findings, and in a double-sided substrate in which a metal film is formed on both sides of the substrate, it is not necessary to pattern only the metal film on one main surface, The metal film on the main surface of the substrate is patterned for wiring, and although not used as a wiring, it is found that the warpage of the substrate can be suppressed by intentionally patterning the metal film on the other main surface.
  • the wiring 13 (first metal pattern) is formed in a pattern on the first major surface 11a of the substrate 11 and is shown in FIG. 3B.
  • the metal pattern 14 (second metal pattern), which is a non-wiring, is formed in a mesh pattern.
  • the residual copper ratio of one main surface of the substrate 11 on which the wiring 13 is patterned is 26.4%
  • the residual copper ratio of the other main surface of the substrate 11 on which the metal pattern 14 is formed is It was 50%.
  • FIG. 5A is a partially enlarged view of the LED module according to the first embodiment of the present invention when viewed from the second main surface 11b side, and the residual copper ratio of the second main surface 11b of the substrate 11 is 52%
  • Metal pattern 14 in the case of FIG. 5B is a partially enlarged view of the LED module according to the second embodiment of the present invention when viewed from the second main surface 11b side, and the remaining copper ratio of the second main surface 11b of the substrate 11 is 25%.
  • a mesh-like metal pattern 14 is formed by removing a square having a side of 1 mm in a matrix from the copper foil formed on the entire surface of the second major surface 11b of the substrate 11. Further, in FIG. 5B, the mesh-like metal pattern 14 is formed by removing a square of 3.5 mm on a side in a matrix from the copper foil formed on the entire surface of the second main surface 11b of the substrate 11. did. In FIGS. 5A and 5B, the line width of the metal pattern 14 is 5 mm. The residual copper ratio of the first major surface 11 a of the substrate 11 is 26.4% in all cases.
  • the amount of warpage was 1.0 mm to 2.0 mm.
  • the average amount of warpage was 1.48 mm.
  • the amount of warpage was 0.04 to 0.2 mm.
  • the average amount of warpage was 0.07 mm.
  • the maximum warpage can be significantly suppressed from 2.0 mm to 0.2 mm by changing the residual copper ratio from 52% to 25%. Moreover, it turned out that it can suppress significantly also from 1.48 to 0.07 mm also about average curvature amount. Thus, it has been found that the warpage can be further improved by changing the residual copper ratio from 52% to 25%.
  • the residual copper ratio of the first main surface 11a of the substrate 11 is 26.4%
  • the residual copper ratio of the second main surface 11b in the substrate 11 is the residual copper ratio of the first main surface 11a. It was found that the warpage of the substrate 11 can be minimized by making it approximately the same. In other words, the ratio of the area of the metal pattern 14 to the area of the second major surface 11 b of the substrate 11 and the ratio of the area of the wiring 13 to the area of the first major surface 11 a of the substrate 11 are substantially the same. Warpage of the substrate 11 can be minimized.
  • the difference between the residual copper ratio of the first main surface 11a and the residual copper ratio of the second main surface 11b is 1.4%
  • the residual copper ratio of the first main surface 11a is If the difference from the residual copper ratio of the second major surface 11 b is 5% or less, warpage of the substrate 11 can be effectively suppressed. That is, in the substrate 11, the difference between the area (copper area) of the wiring 13 in the first major surface 11 a and the area (copper area) of the metal pattern 14 in the second major surface 11 b is the difference between the wiring 13 and the metal pattern 14. Regardless of the shape, it should be within 5%.
  • the heat dissipation of LED element 12 becomes good, so that the residual copper rate of 2nd main surface 11b is high.
  • the residual copper ratio of the second major surface 11b is preferably 25% or more, and more preferably 50% or more.
  • the wiring 13 (first metal pattern) is pattern-formed on the first main surface 11 a of the substrate 11, and the second main surface 11 b of the substrate 11 is formed.
  • a metal pattern 14 (second metal pattern) which is a non-wiring is formed.
  • the extent to which the metal film formed on the second major surface 11b of the substrate 11 is etched can be determined according to the aspect ratio of the substrate and the materials of the wiring 13 and the metal pattern 14, but By patterning the metal film of the main surface 11b of 2 (that is, by making the residual copper ratio less than 100%), at least the substrate with the residual copper ratio of 100% of the second main surface 11b The amount of warpage of 11 can be reduced.
  • the present inventors further examined this residual copper rate.
  • the residual copper ratio of at least the second main surface 11b of the substrate 11 is 60% or less
  • the residual copper ratio of the second main surface 11b of the substrate 11 is the residual copper ratio of the first main surface 11a. It was found that the amount of warpage of the substrate 11 can be largely suppressed in the following cases (60% or less).
  • the residual copper ratio can also be expressed as the copper area after pattern formation with respect to the area of the main surface of the substrate, the metal pattern 14 (second metal pattern) with respect to the area of the second main surface 11b of the substrate 11
  • the area ratio is 60% or less
  • the area ratio of the wiring 13 (first metal pattern) to the area of the first main surface 11 a of the substrate 11 is the metal to the area of the second main surface 11 b of the substrate 11 It was found that the amount of warpage of the substrate 11 can be significantly suppressed by setting the area ratio of the pattern 14 or less.
  • a plurality of LED elements mounted on one substrate are manufactured to have the same characteristics. However, due to manufacturing variations or the like, characteristic variations occur among the LED elements. For example, Vf characteristics may be different between the respective LED elements.
  • a high reflectance resist with a reflectance of about 98% is used to improve light extraction (light flux).
  • a low reflectance resist whose reflectance is 90% or less is intentionally used as the resist 16. That is, the inventor of the present application has found that it is possible to change the color of the resist by using a resist of reflectance, and thereby it is possible to obtain a resist of lower reflectance.
  • the resist can be discolored by heating the low reflectance resist.
  • the resist 16 is discolored to look yellowish. Thereby, the reflectance of the resist can be reduced as compared to that before heating.
  • the method for heating the resist 16 is not particularly limited, and a step of heating the resist 16 may be separately provided during the manufacturing process, or the resist 16 may be heated using an existing heating step. I don't care.
  • reflow solder reflow furnace
  • the reflow soldering can be used to heat the resist 16 without adding a separate heating process.
  • lead solder for example, preheating at 120 to 150 ° C. for 120 seconds and main heating at a peak temperature of 240 ° C. for 10 seconds are performed.
  • lead-free solder preheating at 120 to 200 ° C. for 120 seconds and main heating at a peak temperature of 260 ° C. for 10 seconds are performed.
  • the housing 20 and the first base 50 apply a silicone adhesive to the mounting member 80 provided on the first base 50 to thermally cure (silicone curing furnace)
  • the resist 16 can be heated without using a separate heating step by using the heating step (about 130 ° C., 1 hour) at the time of heat curing.
  • FIG. 6A is a diagram for explaining the luminance variation in the case of using a conventional LED module.
  • FIG. 6B is a view for explaining the luminance variation when the LED module according to the embodiment of the present invention is used.
  • FIG. 6A a white resist with high reflectance (reflectance of 98%) is used as the resist 16A, and as the resist 16 in FIG. 6B.
  • a white resist with low reflectance (a reflectance of 90% or less) is heated and discolored (color-changing resist). That is, the reflectance of the resist 16 in the LED module of the present embodiment shown in FIG. 6B is low.
  • FIG. 6A and FIG. 6B four LED elements 12 are illustrated, and the case where the thing with a moderate brightness, a high brightness, a medium brightness, and a low brightness is located in a line from the left is assumed.
  • the brightness of the high brightness LED element is 100
  • the brightness of the low brightness LED element is 50
  • the brightness of the medium brightness LED element is 75.
  • the luminance is improved by 20% when the white resist of high reflectance is used, and the luminance is improved by 10% when the color-change resist is used. Note that these numerical values are tentatively set so that the effects can be easily understood.
  • the luminance of the high luminance LED element is 120, and the luminance of the low luminance LED element is 60. . Therefore, in the case of FIG. 6A, the maximum luminance difference between the LED elements is 60.
  • the luminance of the high luminance LED element is 110, and the luminance of the low luminance LED element is 55. Therefore, in the case of FIG. 6B, the maximum luminance difference between the LED elements is 55.
  • the maximum luminance difference can be reduced by changing the color using the resist 16 having a low reflectance. Therefore, the brightness variation between the LED elements can be suppressed.
  • the bright spots of the respective LED elements 12 are conspicuous, and the grain of light is felt.
  • the straight tube type LED lamp using the SMD type LED element 12 as in the present embodiment since the light is not emitted between the LED elements 12, the graininess of light can be further felt.
  • the LED module 10 according to the present embodiment, it is possible to effectively suppress the luminance variation between the LED elements, so the above graininess of the straight tube type LED lamp is alleviated. can do.
  • the luminous flux when using a high reflectance resist was 100%
  • the luminous flux when using a black resist was 97%. That is, it was found that the luminous flux does not decrease so much even when a black resist is used. Therefore, it can be estimated that the luminous flux does not decrease so much even when a low reflectance resist having a reflectance of 90% or less is used. That is, even if the resist 16 is used that has a low reflectance and is discolored, the influence on the light extraction efficiency is limited.
  • the LED module 10 and the straight tube type LED lamp 1 in the present embodiment it is possible to suppress the luminance variation at low cost without reducing the luminous flux.
  • the metal pattern 14 is at least the LED element 12 mounted on the end of the substrate 11 in the longitudinal direction. It is preferable that it is formed so as not to overlap with a part. That is, of the plurality of LED elements 12 mounted on the first major surface 11 a of the substrate 11, the second major surface 11 b facing the LED element 12 positioned at the end portion.
  • the metal film copper foil
  • the metal pattern 14 is formed on the second main surface 11 b opposite to the first main surface 11 a on which the LED element 12 is mounted, the LED elements mounted on both ends of the substrate 11 12 (that is, the LED element 12 closer to the second main surface) will be located near the metal pattern 14. Therefore, in order to improve the insulation between the conductive portion (LED element 12) and the metal pattern 14, in the present embodiment, as described above, the LED pattern 12 is positioned at both ends of the substrate 11. And so as not to overlap. Specifically, the end of the metal pattern 14 is present at a position receded from the end (short side) of the substrate 11 in the longitudinal direction. Thereby, since the insulation distance of the conductive part (LED element 12) and the metal pattern 14 in the both ends of the board
  • the metal pattern 14 is formed so as to overlap with a part of the LED element 12. However, when it is desired to further increase the withstand voltage of the substrate 11, the metal pattern 14 is the entire LED element 12. It is better to form so as not to overlap with.
  • the metal pattern 14 is preferably formed so as not to overlap the electrode terminal 15 when the substrate 11 is viewed in plan. That is, a metal pattern is formed on the second main surface 11 b (the second main surface 11 b facing the electrode terminal 15 with the substrate 11 interposed therebetween) facing the electrode terminal 15 provided on the first main surface 11 a of the substrate 11 When patterning a metal film (copper foil) without forming 14, it is preferable to etch away this portion as well.
  • the insulation distance between the conductive portion (electrode terminal 15) and the metal pattern 14 can be increased, the withstand voltage of the substrate 11 can be improved.
  • the resist 16 may have a two-layer structure.
  • a substantially high reflectance resist 16 can be obtained by laminating two low reflectance white resist layers.
  • the resist 16 having a two-layer structure was actually formed, it was confirmed that at least the wiring 13 had high reflectance. That is, the wiring 13 is difficult to see as compared with the case where one layer of low-reflectance white resist is formed.
  • a thin, convex character (a portion where the third layer resist is left) is formed by further applying or printing the resist on the two-layered resist 16 and etching the third layer resist. Can be formed.
  • the cost is increased.
  • FIG. (A) of FIG. 7 is a partially enlarged cross-sectional view of the LED module according to a modification of the embodiment of the present invention, and (b) of FIG. 7 is the same LED at line AA 'of (a) It is sectional drawing of a module.
  • the resist 16 is a two-layer consisting of the lower resist 16a (first resist) and the upper resist 16b (second resist) stacked on the lower resist 16a.
  • the character 18 can be marked by forming the groove 18 a in the upper resist 16 b according to the structure and the shape of the character 18. That is, the character 18 is visually made visible by removing a part of the upper resist 16b.
  • the upper resist 16b is formed to be laminated on the lower resist 16a, and thereafter, the upper resist 16b is matched with the character 18 of a predetermined shape by performing etching or the like.
  • the resist 16 in the portion of the characters 18 (grooves 18 a) is only one layer of the lower resist 16 a.
  • the breakdown voltage is lowered as compared with the other part which is two layers.
  • the resist 16 (lower resist 16a) is formed by coating or the like, the film thickness of the resist 16 (lower resist 16a) is thin at the upper corner of the wiring 13 as shown in FIG. 7B. Become. For this reason, if the characters 18 (grooves 18a) overlap the upper corner of the wiring 13, the withstand voltage is significantly reduced. In fact, when the characters 18 (grooves 18 a) and the wiring 13 were formed in an overlapping manner, a discharge phenomenon occurred.
  • FIG. 8 is a schematic perspective view of a lighting device according to an embodiment of the present invention.
  • a lighting device 2 is a base light, and includes a straight tube LED lamp 1 and a lighting fixture 100.
  • the straight tube LED lamp 1 in the above embodiment is used as a light source for illumination.
  • two straight tube type LED lamps 1 are used.
  • the lighting fixture 100 includes a pair of sockets 110 electrically connected to the straight tube LED lamp 1 and holding the straight tube LED lamp 1 and a fixture body 120 to which the socket 110 is attached.
  • the tool body 120 can be formed, for example, by pressing an aluminum steel plate. Further, the inner surface of the tool body 120 is a reflective surface that reflects the light emitted from the straight tube LED lamp 1 in a predetermined direction (for example, the lower side).
  • the lighting fixture 100 configured in this way is mounted on, for example, a ceiling via a fixture.
  • the lighting apparatus 100 incorporates a power supply circuit or the like for controlling lighting of the straight tube LED lamp 1.
  • a translucent cover member may be provided to cover the straight tube LED lamp 1.
  • the casing 20 is a non-divided cylindrical one, but may be a split type.
  • the LED module 10 shown in FIG. 3 is applied to a split-type straight tube type LED lamp will be described using FIG.
  • FIG. 9 is a whole perspective view and a partially enlarged view of a straight tube type LED lamp according to a modification of the embodiment of the present invention.
  • a straight tube type LED lamp 1A is an example of a light source for illumination which substitutes for a conventional straight tube fluorescent lamp, and has a length covering the LED module 10 and the LED module 10 A light-transmissive cover 20A in the form of a strip, a long base 50A on which the LED module 10 is mounted, the LED module 10 and the base 50A, a cap 30A for feeding, and a cap 40A for non-feeding .
  • a long cylindrical case (outer envelope) is configured by the translucent cover 20A and the base 50A. That is, by connecting the translucent cover 20A and the base 50A, a cylindrical casing having an opening at both ends is formed. Further, when the translucent cover 20A and the base 50A are combined, the outline of the cross section perpendicular to the longitudinal direction is circular.
  • the translucent cover 20A is a translucent member having a substantially semi-cylindrical translucent member, and a cross-sectional shape in a plane (YZ plane) perpendicular to the X axis is substantially a semicircular arc.
  • the translucent cover 20A is fixed to the metal base by engaging the edge portions on both sides in the circumferential direction with the step portion of the base 50A.
  • translucent cover 20A can be formed using resin materials, such as an acryl and a polycarbonate, for example.
  • the base 50A is a long member and is covered by a translucent cover 20A.
  • the base 50A is a metal base made of metal.
  • an extruded material made of aluminum can be used as the base 50A.
  • the base 50A functions as a heat sink for radiating heat generated by the LED module 10, and also functions as a mounting table for mounting and fixing the LED module 10.
  • a part of the base 50A is configured to be exposed to the outside of the lamp.
  • a resin base made of resin may be used as the base 50A.
  • the inner portion of the base 50A on the translucent cover 20A side is a plate-like placement portion 51A having a placement surface on which the LED module 10 is placed.
  • a plurality of heat radiation fins 52A are provided as a heat radiation portion on an outer side portion which is a back surface of the mounting surface of the base 50A.
  • the heat dissipating fins 52A are exposed to the outside of the lamp and provided so as to project outward from the mounting portion 51A.
  • a plurality of heat radiation fins 52A are formed along the longitudinal direction (X-axis direction) of the base 50A.
  • a plurality of heat dissipating fins 52A may be formed along the lateral direction (Y-axis direction) of the base 50A.
  • the step part with which the edge of the both sides of the circumferential direction of translucent cover 20A is engaged is provided in the both ends of the width direction of base 50A.
  • the translucent cover 20A and the base 50A are engaged by sliding the translucent cover 20A in the longitudinal direction onto the base 50A or by fitting the translucent cover 20A from above the base 50A. Can.
  • the translucent cover 20A and the base 50A may be bonded by an adhesive.
  • a rail groove is provided in the longitudinal direction of the base 50A, and in this rail groove, along the end of the translucent cover 20A in the lateral direction or the longitudinal direction of the translucent cover 20A.
  • the translucent cover 20A and the base 50A may be engaged by inserting the provided protrusion.
  • the power supply cap 30A includes a power supply cap body 31A and a pair of power supply pins 32.
  • the base body 31A for feeding is an undivided structure, and is configured in a cap shape so as to cover one end in the longitudinal direction of a long casing composed of the translucent cover 20A and the base 50A. It is done.
  • the non-feed cap 40A includes a non-feed cap body 41A and a pair of non-feed pins.
  • the non-feed mouthpiece main body 41A has an undivided structure, and is cap-shaped to cover the other end of the elongated casing formed by the translucent cover 20A and the base 50A in the longitudinal direction. It is configured.
  • the shape of the metal pattern 14 is meshed, but the present invention is not limited to this.
  • the metal pattern 14 may have a shape other than mesh as long as it has a predetermined residual copper ratio.
  • the metal pattern 14 may be in the form of a plurality or a single line, or may be in the form of a plurality or a single ring.
  • the pattern shape of the metal pattern 14 is not limited to the rectangular shape.
  • the pattern shape of the metal pattern 14 may be a honeycomb shape.
  • the metal pattern 14 (hatched portion in the figure) may be formed so that the portion in which copper is left in a line shape becomes a honeycomb shape, or as shown in FIG.
  • the remaining shape obtained by removing copper in a honeycomb shape may be the metal pattern 14 (hatched portion in the figure).
  • the physical strength of the substrate 11 can be improved by forming the metal pattern 14 into a honeycomb shape as described above.
  • the pattern shape of the metal pattern 14 (hatched portion in the figure) may be triangular.
  • the wiring 13 is formed from one end of the substrate 11 in the longitudinal direction to the other end, but the invention is not limited thereto.
  • the wiring 13 may be formed in a part of the substrate 11 in the longitudinal direction.
  • a dummy pattern (discarded pattern) 13D may be formed in a region of the first main surface 11a of the substrate 11 where the wiring 13 is not formed.
  • FIG. 12 when the wiring 13 (hatched portion) is formed concentrated in the central portion of the substrate 11, dummy patterns 13D (hatched portion in the figure) are formed on each of both ends of the substrate 11.
  • the dummy pattern 13D is a non-wiring like the metal pattern 14 on the second major surface 11b, and is in a floating state electrically.
  • the dummy pattern 13D can be formed simultaneously with the wiring 13, for example.
  • the wiring 13 formed on the first major surface 11 a and the metal pattern 14 formed on the second major surface 11 b are different patterns.
  • the metal pattern 14 may have the same shape.
  • the metal portions on both sides of the substrate 11 may have the same pattern.
  • the metal pattern 14 can have the same shape as the wiring 13.
  • substrate 11 was 300 mm or more, it does not restrict to this.
  • the length L1 of the substrate 11 may be less than 300 mm.
  • the substrate 11 is obtained, for example, by dividing one mother substrate into a plurality of pieces by dicing. However, as shown in FIG. 13, the substrate 11 and the disused substrate 11D discarded after dicing the mother substrate 11M are also obtained. Similarly, a mesh-like metal pattern may be formed. Thereby, the warp of the mother substrate M can be suppressed.
  • the single-sided feeding method in which feeding is performed from one side of only the power supply caps 30, 30A
  • a double-sided feeding method in which feeding is performed from both sides may be used.
  • the power supply caps 30, 30A may be provided instead of the non-power supply caps 40, 40A.
  • the power supply pins 30, 30A are L-shaped bases in which the feed pins 32 are a pair of L-shaped pins, they may be G13 bases.
  • the non-power-supplying caps 40 and 40A may also be G13 caps.
  • a one-pin two-pin base structure in which one of the two bases is one pin (one pin) and the other is two pins (two pins) may be used, or both bases may be two.
  • a two-pin / two-pin base structure with two pins (two pins) may be used.
  • packaged LED element 12 was used as LED module 10, it does not restrict to this.
  • it may be a COB (Chip On Board) type LED module in which a plurality of LED chips are directly mounted on the substrate 11.
  • the plurality of LED chips may be collectively sealed or individually sealed by a sealing member such as a phosphor-containing resin.
  • LED module 10 (LED element 12) was comprised so that white light might be emitted with blue LED chip and yellow fluorescent substance, it does not restrict to this.
  • a phosphor-containing resin containing a red phosphor and a green phosphor may be used to emit white light by combining this with a blue LED.
  • an LED chip that emits a color other than blue may be used.
  • an LED is illustrated as a light emitting element, but a semiconductor light emitting element such as a semiconductor laser, or an EL element such as organic EL (Electro Luminescence) or inorganic EL, or other solid light emitting element May be used.
  • a semiconductor light emitting element such as a semiconductor laser
  • an EL element such as organic EL (Electro Luminescence) or inorganic EL, or other solid light emitting element May be used.
  • the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment.
  • the form is also included in the present invention.
  • the present invention can be widely used in a light emitting device using a light emitting element such as an LED, for example, a light emitting device having a long substrate.
  • the light emitting device can be widely used in an illumination light source, an illumination device, and the like.

Abstract

A light-emitting device (an LED module (10)) is equipped with: a long substrate (11); an LED element (12) that is mounted on a first main surface of the substrate (11); a first metal pattern (a wiring line (13)) that is patterned on the first main surface of the substrate (11) and is electrically connected to the LED element (12); and a second metal pattern (a metal pattern (14)) that is patterned on a second main surface, which is a surface opposed to the first main surface, of the substrate (11) and is not wired.

Description

発光装置、照明用光源及び照明装置Light emitting device, illumination light source and illumination device
 本発明は、発光装置、照明用光源及び照明装置に関し、例えば、発光ダイオード(LED:Light Emitting Diode)を用いた発光装置及びこれを用いた直管形のLEDランプ等に関する。 The present invention relates to a light emitting device, a light source for illumination, and a lighting device, for example, a light emitting device using a light emitting diode (LED: Light Emitting Diode) and a straight tube type LED lamp using the same.
 LEDは、高効率及び長寿命であることから、従来から知られる蛍光灯や白熱電球等の各種ランプにおける新しい光源として期待されており、LEDを用いたランプ(LEDランプ)の研究開発が進められている。 LED is expected to be a new light source in various lamps such as fluorescent lamps and incandescent lamps known from the viewpoint of high efficiency and long life, and research and development of lamps using LEDs (LED lamps) is promoted ing.
 LEDランプとしては、両端部に電極コイルを有する直管形蛍光灯に代替する直管形のLEDランプ(直管形LEDランプ)、あるいは、電球形蛍光灯や白熱電球に代替する電球形のLEDランプ(電球形LEDランプ)等がある。例えば、特許文献1には、従来の直管形LEDランプが開示されている。 As an LED lamp, a straight tube type LED lamp (straight tube type LED lamp) replacing a straight tube fluorescent lamp having an electrode coil at both ends, or a bulb shape LED replacing a bulb fluorescent lamp or an incandescent lamp There is a lamp (bulb-shaped LED lamp) etc. For example, Patent Document 1 discloses a conventional straight tube LED lamp.
特開2009-043447号公報JP, 2009-043447, A
 直管形LEDランプは、例えば、長尺状の筐体と、筐体の両端部に設けられた一対の口金と、筐体内に収納されたLEDモジュールとによって構成される。LEDモジュールは、基板(実装基板)と、基板に実装された複数のLED素子とを備える。 The straight tube type LED lamp is constituted of, for example, an elongated case, a pair of caps provided at both ends of the case, and an LED module housed in the case. The LED module includes a substrate (mounting substrate) and a plurality of LED elements mounted on the substrate.
 近年、LEDモジュールの長尺化に伴って、LED素子を実装する基板として長尺状のものを用いることが検討されている。しかしながら、長尺状の基板を用いると、基板に反りが発生してしまい、所望の配光特性を得ることができないという問題がある。特に、基板として樹脂基板の両面に金属が形成された両面基板を用いると、基板が大きく反ってしまうということが分かった。 In recent years, along with the lengthening of LED modules, it has been studied to use a long substrate as a substrate for mounting LED elements. However, when a long substrate is used, the substrate is warped, and there is a problem that a desired light distribution characteristic can not be obtained. In particular, it has been found that when a double-sided substrate in which metal is formed on both sides of a resin substrate is used as the substrate, the substrate is largely warped.
 本発明は、このような問題を解決するためになされたものであり、基板の反りを抑制することのできる発光装置、照明用光源及び照明装置を提供することを第1の目的とする。 The present invention has been made to solve such a problem, and has a first object to provide a light emitting device, a light source for illumination, and a lighting device capable of suppressing the warp of a substrate.
 また、LEDモジュールにおける複数のLED素子については、各々が同じ特性を有するように製造されるものではあるが、製造ばらつき等によって、LED素子間には特性のばらつきがある。例えば、各々のLED素子においてVf(順方向電圧)特性が異なっている場合がある。この場合、複数のLED素子を選別することなく1つの基板に実装すると、LED素子間に輝度ばらつきが発生する。 In addition, although the plurality of LED elements in the LED module are manufactured to have the same characteristics, there are variations in the characteristics among the LED elements due to manufacturing variations and the like. For example, Vf (forward voltage) characteristics may be different in each LED element. In this case, if the plurality of LED elements are mounted on one substrate without being sorted out, luminance variations occur between the LED elements.
 本発明は、このような問題を解決するためになされたものであり、複数の発光素子間の輝度ばらつきを抑制することのできる発光装置、照明用光源及び照明装置を提供することを第2の目的とする。 The present invention has been made to solve such a problem, and it is a second object of the present invention to provide a light emitting device, an illumination light source, and an illumination device capable of suppressing variation in luminance among a plurality of light emitting elements. To aim.
 上記第1の目的を達成するために、本発明に係る第1の発光装置の一態様は、長尺状の基板と、前記基板の第1の主面に実装された発光素子と、前記第1の主面にパターン形成され、前記発光素子と電気的に接続された配線である第1の金属パターンと、前記基板の前記第1の主面とは反対側の第2の主面にパターン形成され、非配線である第2の金属パターンと、を有することを特徴とする。 In order to achieve the first object described above, one aspect of the first light emitting device according to the present invention is a long substrate, a light emitting element mounted on a first main surface of the substrate, and the first light emitting device. A first metal pattern, which is a pattern formed on the main surface of 1 and electrically connected to the light emitting element, and a pattern on the second main surface opposite to the first main surface of the substrate And a second metal pattern which is formed and not wired.
 また、本発明に係る第1の発光装置の一態様において、前記第2の金属パターンは、メッシュ状に形成されている、としてもよい。 In one aspect of the first light emitting device according to the present invention, the second metal pattern may be formed in a mesh shape.
 また、本発明に係る第1の発光装置の一態様において、前記第2の主面の面積に対する前記第2の金属パターンの面積の割合は、60%以下であり、前記第1の主面の面積に対する前記第1の金属パターンの面積の割合は、前記第2の主面の面積に対する前記第2の金属パターンの面積の割合以下である、としてもよい。 In one aspect of the first light emitting device according to the present invention, a ratio of an area of the second metal pattern to an area of the second main surface is 60% or less, and the first main surface The ratio of the area of the first metal pattern to the area may be equal to or less than the ratio of the area of the second metal pattern to the area of the second major surface.
 また、本発明に係る第1の発光装置の一態様において、前記第2の主面の面積に対する前記第2の金属パターンの面積の割合と、前記第1の主面の面積に対する前記第1の金属パターンの面積の割合とが、ほぼ同じである、としてもよい。 In one aspect of the first light emitting device according to the present invention, a ratio of an area of the second metal pattern to an area of the second main surface, and the first to the area of the first main surface. The proportion of the area of the metal pattern may be approximately the same.
 また、本発明に係る第1の発光装置の一態様において、前記第1の金属パターンと前記第2の金属パターンとは、同じ金属材料によって構成されている、としてもよい。 In one aspect of the first light emitting device according to the present invention, the first metal pattern and the second metal pattern may be made of the same metal material.
 また、本発明に係る第1の発光装置の一態様において、前記金属材料は、銅である、としてもよい。 In the first aspect of the light emitting device according to the present invention, the metal material may be copper.
 また、本発明に係る第1の発光装置の一態様において、前記基板を平面視したときに、前記第2の金属パターンは、前記基板の長手方向の端部に実装された前記発光素子の少なくとも一部と重ならないように形成されている、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, when the substrate is viewed in plan, the second metal pattern is at least at least the light emitting element mounted on an end of the substrate in the longitudinal direction. It may be formed so as not to overlap with a part.
 また、本発明に係る第1の発光装置の一態様において、さらに、前記発光素子を発光させるための電力を外部から受ける電極端子を有し、前記基板を平面視したときに、前記第2の金属パターンは、前記電極端子と重ならないように形成されている、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, the second light emitting device further includes an electrode terminal that receives power for making the light emitting element emit light from the outside, and the substrate is viewed in plan. The metal pattern may be formed so as not to overlap with the electrode terminal.
 また、本発明に係る第1の発光装置の一態様において、さらに、前記第1の金属パターンを覆うように前記第1の主面に形成された第1のレジストと、前記第1のレジストの上に積層された第2のレジストと、を有し、前記第2のレジストに形成される溝は、前記第1の金属パターンの上に形成されていない、としてもよい。 In one aspect of the first light emitting device according to the present invention, further, a first resist formed on the first main surface so as to cover the first metal pattern, and the first resist And a groove formed in the second resist may not be formed on the first metal pattern.
 また、本発明に係る第1の発光装置の一態様において、前記基板の長手方向の長さをL1とし、前記基板の短手方向の長さをL2とすると、L1/L2≧38.6である、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, assuming that the length in the longitudinal direction of the substrate is L1 and the length in the lateral direction of the substrate is L2, L1 / L2 ≧ 38.6. It may be
 また、本発明に係る第1の発光装置の一態様において、前記基板は、樹脂からなる樹脂基板である、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, the substrate may be a resin substrate made of a resin.
 また、本発明に係る第1の発光装置の一態様において、さらに、前記第1の金属パターンを覆うように前記第1の主面に形成されたレジストを有し、前記発光素子は、複数個実装されており、前記レジストは、変色させたレジストである、としてもよい。 In one embodiment of the first light emitting device according to the present invention, the light emitting device further comprises a resist formed on the first main surface so as to cover the first metal pattern, and a plurality of the light emitting elements are provided. The resist may be mounted, and the resist may be a discolored resist.
 また、本発明に係る第1の発光装置の一態様において、前記レジストを、白色から黄色に変色させている、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, the resist may be discolored from white to yellow.
 また、本発明に係る第1の発光装置の一態様において、前記レジストを、加熱することで変色させている、としてもよい。 Further, in one aspect of the first light emitting device according to the present invention, the resist may be discolored by heating.
 また、本発明に係る第1の発光装置の一態様において、変色させる前の前記レジストの反射率は、90%以下である、としてもよい。この場合、変色させる前の前記レジストの反射率は、85%以上である、としてもよい。 In one aspect of the first light emitting device according to the present invention, the reflectance of the resist before the color change may be 90% or less. In this case, the reflectance of the resist before the color change may be 85% or more.
 また、本発明に係る第1の照明用光源の一態様は、上記いずれかの第1の発光装置と、前記第1の発光装置を収納する長尺状の筐体とを備えることを特徴とする。 Further, one aspect of the first illumination light source according to the present invention is characterized by comprising any one of the above-described first light emitting devices and an elongated casing for housing the first light emitting device. Do.
 また、本発明に係る第1の照明用光源の一態様において、さらに、前記筐体内に収納された長尺状の基台を備え、前記第1の発光装置は、前記基台に配置されている、としてもよい。 Further, in one aspect of the first illumination light source according to the present invention, an elongated base housed in the housing is further provided, and the first light emitting device is disposed on the base. May be
 また、本発明に係る第1の照明用光源の一態様において、前記筐体は、長尺状の透光性カバーと、外囲器の一部を構成する長尺状の基台とからなり、前記第1の発光装置は、前記基台に配置されている、としてもよい。 Further, in one aspect of the first illumination light source according to the present invention, the housing is composed of an elongated translucent cover and an elongated base which constitutes a part of an envelope. The first light emitting device may be disposed on the base.
 また、本発明に係る第1の照明装置の一態様は、上記いずれかの第1の照明用光源を備えることを特徴とする。 Further, one aspect of the first lighting device according to the present invention is characterized by including any one of the above-described first illumination light sources.
 上記第2の目的を達成するために、本発明に係る第2の発光装置の一態様は、基板と、前記基板の第1の主面に実装された複数の発光素子と、前記第1の主面にパターン形成され、前記複数の発光素子と電気的に接続された配線と、前記配線を覆うように前記第1の主面に形成され、変色させたレジストと、を有することを特徴とする。 In order to achieve the above second object, one aspect of a second light emitting device according to the present invention comprises a substrate, a plurality of light emitting elements mounted on a first main surface of the substrate, and the first light emitting device. It has a wiring pattern formed on the main surface and electrically connected to the plurality of light emitting elements, and a resist formed on the first main surface to cover the wiring and discolored. Do.
 また、本発明に係る第2の発光装置の一態様において、前記レジストを、白色から黄色に変色させている、としてもよい。 Further, in one aspect of the second light emitting device according to the present invention, the resist may be discolored from white to yellow.
 また、本発明に係る第2の発光装置の一態様において、前記レジストを、加熱することで変色させている、としてもよい。 In one aspect of the second light emitting device according to the present invention, the resist may be discolored by heating.
 また、本発明に係る第2の発光装置の一態様において、変色させる前の前記レジストの反射率は、90%以下である、としてもよい。さらに、変色させる前の前記レジストの反射率は、85%以上である、としてもよい。 In one aspect of the second light emitting device according to the present invention, the reflectance of the resist before the color change may be 90% or less. Furthermore, the reflectance of the resist before color change may be 85% or more.
 また、本発明に係る第2の発光装置の一態様において、前記レジストは、前記配線を覆うように前記第1の主面に形成された第1のレジストと、前記第1のレジストの上に積層された第2のレジストと、を有し、前記第2のレジストに形成される溝は、前記配線上に形成されていない、としてもよい。 Further, in one aspect of the second light emitting device according to the present invention, the resist is formed on the first resist formed on the first main surface so as to cover the wiring, and on the first resist. And a groove formed in the second resist may not be formed on the wiring.
 また、本発明に係る第2の照明用光源の一態様は、上記いずれかの第2発光装置と、前記第2の発光装置を収納する筐体と、を備えることを特徴とする。 Further, one aspect of the second illumination light source according to the present invention is characterized by comprising any one of the above-described second light emitting devices and a housing for housing the second light emitting devices.
 また、本発明に係る第2の照明用光源の一態様において、前記筐体は、長尺状であり、前記複数の発光素子は、前記筐体の長手方向に沿って配列されている、としてもよい。さらに、前記筐体内に収納された長尺状の基台を備え、前記第2の発光装置は、前記基台に配置されている、としてもよい。 Further, in one aspect of the second illumination light source according to the present invention, the case is elongated, and the plurality of light emitting elements are arranged along the longitudinal direction of the case. It is also good. Furthermore, a long base may be accommodated in the housing, and the second light emitting device may be disposed on the base.
 また、本発明に係る第2の照明用光源の一態様において、前記筐体は、長尺状の透光性カバーと、外囲器の一部を構成する長尺状の基台とからなり、前記第2の発光装置は、前記基台に配置されている、としてもよい。 Further, in one aspect of the second illumination light source according to the present invention, the casing is composed of an elongated translucent cover and an elongated base which constitutes a part of the envelope. The second light emitting device may be disposed on the base.
 また、本発明に係る第2の照明装置の一態様は、上記いずれかの第2の照明用光源を備えることを特徴とする。 Further, one aspect of the second lighting device according to the present invention is characterized by including any one of the above-described second illumination light sources.
 本発明に係る第1の発光装置、第1の照明用光源及び第2の照明装置によれば、発光素子が実装される基板の反りを抑制することができる。 According to the first light emitting device, the first illumination light source, and the second illumination device according to the present invention, it is possible to suppress the warpage of the substrate on which the light emitting element is mounted.
 また、本発明に係る第2の発光装置、第1の照明用光源及び第2の照明装置によれば、複数の発光素子間における輝度ばらつきを抑制することができる。 Further, according to the second light emitting device, the first illumination light source, and the second illumination device according to the present invention, it is possible to suppress the luminance variation among the plurality of light emitting elements.
図1は、本発明の実施の形態に係る直管形LEDランプの概観斜視図である。FIG. 1 is a schematic perspective view of a straight tube type LED lamp according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る直管形LEDランプの分解斜視図である。FIG. 2 is an exploded perspective view of the straight tube type LED lamp according to the embodiment of the present invention. 図3の(a)は、本発明の実施の形態に係るLEDモジュールの表面側の平面図(正面図)であり、図3の(b)は、同LEDモジュールの裏側の平面図(背面図)であり、図3の(c)は、図3の(a)のA-A’線における同LEDモジュールの断面図である。(A) of FIG. 3 is a plan view (front view) of the surface side of the LED module according to the embodiment of the present invention, and (b) of FIG. 3 is a plan view of the back side of the LED module (rear view) 3 (c) is a cross-sectional view of the LED module taken along line AA 'of FIG. 3 (a). 図4の(a)は、本発明の実施の形態に係る直管形LEDランプの一部拡大断面図(管軸を通る平面で切断したときの断面図)であり、図4の(b)は、図4の(a)のA-A’線における同直管形LEDランプの断面図であり、図4の(c)は、図4の(a)のB-B’線における同直管形LEDランプの断面図である。(A) of FIG. 4 is a partially enlarged cross-sectional view (a cross-sectional view when cut by a plane passing through the tube axis) of the straight tube type LED lamp according to the embodiment of the present invention, and (b) of FIG. 4 is a cross-sectional view of the straight tube type LED lamp taken along line AA 'of FIG. 4 (a), and FIG. 4 (c) is a straight line taken along line BB' of FIG. 4 (a). It is a sectional view of a tube type LED lamp. 図5Aは、本発明の実施例1に係るLEDモジュールを第2の主面側から見たときの一部拡大図である。FIG. 5A is a partially enlarged view of the LED module according to the first embodiment of the present invention as viewed from the second main surface side. 図5Bは、本発明の実施例2に係るLEDモジュールを第2の主面側から見たときの一部拡大図である。FIG. 5B is a partially enlarged view of the LED module according to the second embodiment of the present invention as viewed from the second main surface side. 図6Aは、従来のLEDモジュール(高反射率レジスト)を用いた場合の輝度ばらつきを説明するための図である。FIG. 6A is a diagram for explaining the luminance variation in the case of using a conventional LED module (high reflectance resist). 図6Bは、本発明の実施の形態に係るLEDモジュール(低反射率レジスト)を用いた場合の輝度ばらつきを説明するための図である。FIG. 6B is a view for explaining the luminance variation when the LED module (low reflectance resist) according to the embodiment of the present invention is used. 図7の(a)は、本発明の実施の形態の変形例に係るLEDモジュールの一部拡大断面図であり、図7の(b)は、図7の(a)のA-A’線における同LEDモジュールの断面図である。(A) of FIG. 7 is a partially enlarged cross-sectional view of an LED module according to a modification of the embodiment of the present invention, and (b) of FIG. 7 is an AA 'line of (a) of FIG. It is sectional drawing of the same LED module in. 図8は、本発明の実施の形態に係る照明装置の構成を示す斜視図である。FIG. 8 is a perspective view showing the configuration of the illumination device according to the embodiment of the present invention. 図9は、本発明の実施の形態の変形例に係る直管形LEDランプの全体斜視図及び一部拡大図である。FIG. 9 is a whole perspective view and a partially enlarged view of a straight tube type LED lamp according to a modification of the embodiment of the present invention. 図10Aは、本発明の実施の形態に係るLEDモジュールにおける第2の主面の金属パターンの第1変形例を示す図である。FIG. 10A is a view showing a first modified example of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention. 図10Bは、本発明の実施の形態に係るLEDモジュールにおける第2の主面の金属パターンの第2変形例を示す図である。FIG. 10B is a view showing a second modified example of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention. 図11は、本発明の実施の形態に係るLEDモジュールにおける第2の主面の金属パターンの第3変形例を示す図である。FIG. 11 is a view showing a third modification of the metal pattern of the second main surface in the LED module according to the embodiment of the present invention. 図12は、本発明の実施の形態に係るLEDモジュールにおける第1の主面の金属パターンの変形例を示す図である。FIG. 12 is a view showing a modification of the metal pattern of the first main surface in the LED module according to the embodiment of the present invention. 図13は、本発明の実施の形態に係るLEDモジュールの基板(ダイシング前)の一例を示す図である。FIG. 13 is a view showing an example of a substrate (before dicing) of the LED module according to the embodiment of the present invention.
 (実施の形態)
 以下、本発明の実施の形態に係る発光装置、照明用光源及び照明装置について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
Embodiment
Hereinafter, a light emitting device, an illumination light source, and an illuminating device according to an embodiment of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferable specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the components in the following embodiments, components that are not described in the independent claims indicating the highest concept of the present invention are described as optional components.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each drawing is a schematic view and is not necessarily strictly illustrated. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 以下の実施の形態では、照明用光源の一例として、直管形LEDランプについて説明する。 In the following embodiment, a straight tube type LED lamp will be described as an example of a light source for illumination.
 [ランプの全体構成]
 まず、本発明の実施の形態に係る直管形LEDランプ1の構成について、図1及び図2を用いて説明する。図1は、本発明の実施の形態に係る直管形LEDランプの概観斜視図である。図2は、本発明の実施の形態に係る直管形LEDランプの分解斜視図である。なお、図1及び図2では、LEDモジュール10の一部の構成(配線13及び電極端子15)については図示されていない。
[Whole composition of the lamp]
First, the configuration of the straight tube LED lamp 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic perspective view of a straight tube type LED lamp according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the straight tube type LED lamp according to the embodiment of the present invention. In addition, in FIG.1 and FIG.2, it does not show about the one part structure (the wiring 13 and the electrode terminal 15) of the LED module 10. FIG.
 本実施の形態に係る直管形LEDランプ1は、従来の直管形蛍光灯に代替する直管形LEDランプであって、例えば、明るさが2400lmである40形の直管形LEDランプである。 The straight tube type LED lamp 1 according to the present embodiment is a straight tube type LED lamp replacing the conventional straight tube type fluorescent lamp, and is, for example, a 40-type straight tube type LED lamp having a brightness of 2400 lm. is there.
 図1に示すように、直管形LEDランプ1は、LEDモジュール10と、LEDモジュール10を収納する長尺状の筐体20と、筐体20の長手方向(管軸方向)の一方の端部に設けられた第1口金である給電用口金(給電側口金)30と、筐体20の長手方向の他方の端部に設けられた第2口金である非給電用口金(非給電側口金)40とを備える。 As shown in FIG. 1, the straight tube type LED lamp 1 includes an LED module 10, a long case 20 housing the LED module 10, and one end of the case 20 in the longitudinal direction (tube axis direction). Power supply base (power supply side base) 30, which is a first base provided in the portion, and a non-power supply base, which is a second base provided at the other end of the casing 20 in the longitudinal direction And 40).
 図2に示すように、直管形LEDランプ1は、さらに、LEDモジュール10が配置される第1基台50及び第2基台55と、LEDモジュール10と他の電子部品(LEDモジュール10、点灯回路90)とを電気的に接続するコネクタ60と、LEDモジュール10が発する光を所定の方向に反射する反射部材70と、第1基台50を筐体20に取り付けるための取り付け部材80と、点灯回路90とを備える。 As shown in FIG. 2, the straight tube LED lamp 1 further includes a first base 50 and a second base 55 on which the LED module 10 is disposed, the LED module 10 and other electronic components (the LED module 10, A connector 60 for electrically connecting the lighting circuit 90), a reflecting member 70 for reflecting light emitted by the LED module 10 in a predetermined direction, and a mounting member 80 for mounting the first base 50 on the housing 20 , And a lighting circuit 90.
 本実施の形態では、給電用口金30のみの片側一方から給電を行う片側給電方式が採用されている。 In the present embodiment, a single-sided feeding method in which feeding is performed from one side of only the feeding cap 30 is employed.
 以下、直管形LEDランプ1の各構成要素について、図2を参照しながら詳述する。 Hereinafter, each component of the straight tube LED lamp 1 will be described in detail with reference to FIG.
 [LEDモジュール(発光装置)]
 図2に示すように、長尺状のLEDモジュール10は、筐体20の管軸方向に沿って複数枚配置される。複数のLEDモジュール10は、各々の基板11の長手方向が筐体20の長手方向に沿うように並べられている。本実施の形態では、2つのLEDモジュール10を用いている。
[LED module (light emitting device)]
As shown in FIG. 2, a plurality of elongated LED modules 10 are arranged along the tube axis direction of the housing 20. The plurality of LED modules 10 are arranged such that the longitudinal direction of each substrate 11 is along the longitudinal direction of the housing 20. In the present embodiment, two LED modules 10 are used.
 ここで、各LEDモジュール10の詳細構成について、図2を参照しながら、図3を用いて説明する。図3は、本発明の実施の形態に係るLEDモジュールの構成を示したものであって、(a)は、同LEDモジュールの表面側の平面図(正面図)、(b)は、同LEDモジュールの裏側の平面図(背面図)、(c)は、(a)のA-A’線における同LEDモジュールの断面図である。 Here, the detailed configuration of each LED module 10 will be described using FIG. 3 with reference to FIG. FIG. 3 shows the configuration of the LED module according to the embodiment of the present invention, wherein (a) is a plan view (front view) of the surface side of the LED module and (b) is the LED A plan view (rear view) of the rear side of the module (c) is a cross-sectional view of the LED module taken along line AA 'of (a).
 図3に示すように、LEDモジュール10は、表面実装(SMD:Surface Mount Device)型の発光装置(発光モジュール)であって、基板11と、基板11の一方の面である第1の主面(表側の面)11aに実装された複数のLED素子12と、第1の主面11aに形成された配線13と、基板11の他方の面である第2の主面(裏側の面)11bに形成された金属パターン14とを備える。さらに、LEDモジュール10は、電極端子15と、レジスト16及び17とを備える。 As shown in FIG. 3, the LED module 10 is a surface mount device (SMD: Surface Mount Device) type light emitting device (light emitting module), and the substrate 11 and a first main surface which is one surface of the substrate 11 A plurality of LED elements 12 mounted on the front surface 11a, a wiring 13 formed on the first main surface 11a, and a second main surface (rear surface) 11b which is the other surface of the substrate 11 And a metal pattern 14 formed on the substrate. Furthermore, the LED module 10 includes an electrode terminal 15 and resists 16 and 17.
 基板11は、LED素子12を実装するための実装基板である。本実施の形態では、基板11として、筐体20の管軸方向に長尺状をなす矩形基板を用いている。基板11において、LED素子12が実装される面が第1の主面11aであり、第1の主面11aとは反対側の面が第2の主面11bである。LED素子12は、基板11の第1の主面11aにのみ実装されており、第2の主面11bにはLED素子が実装されていない。なお、後述するように、LEDモジュール10は、基板11の第2の主面11b側が第2基台55の載置面と対面するようにして、第2基台55に載置される。 The substrate 11 is a mounting substrate for mounting the LED element 12. In the present embodiment, a rectangular substrate elongated in the tube axis direction of the housing 20 is used as the substrate 11. In the substrate 11, the surface on which the LED element 12 is mounted is the first main surface 11a, and the surface opposite to the first main surface 11a is the second main surface 11b. The LED element 12 is mounted only on the first main surface 11a of the substrate 11, and the LED element is not mounted on the second main surface 11b. As described later, the LED module 10 is mounted on the second base 55 such that the second main surface 11 b side of the substrate 11 faces the mounting surface of the second base 55.
 基板11としては、樹脂をベースとする樹脂基板、金属をベースとするメタルベース基板、又は、ガラスからなるガラス基板等を用いることができる。樹脂基板としては、例えば、ガラス繊維とエポキシ樹脂とからなるガラスエポキシ基板(CEM-3、FR-4等)、紙フェノールや紙エポキシからなる基板(FR-1等)、又は、ポリイミド等からなる可撓性を有するフレキシブル基板を用いることができる。メタルベース基板としては、例えば、アルミニウム合金基板、鉄合金基板又は銅合金基板等を用いることができる。本実施の形態では、基板11として、CEM-3の両面基板を用いている。 As the substrate 11, a resin substrate based on a resin, a metal base substrate based on a metal, a glass substrate made of glass, or the like can be used. The resin substrate may be, for example, a glass epoxy substrate (CEM-3, FR-4 etc.) made of glass fiber and epoxy resin, a substrate (FR-1 etc.) made of paper phenol or paper epoxy, or polyimide etc. A flexible substrate having flexibility can be used. As a metal base substrate, an aluminum alloy substrate, an iron alloy substrate, a copper alloy substrate, etc. can be used, for example. In the present embodiment, a double-sided CEM-3 substrate is used as the substrate 11.
 また、基板11の長手方向の長さ(長辺の長さ)をL1(mm)とし、基板11の短手方向の長さ(短辺の長さ)をL2(mm)とすると、本実施の形態における長尺状の基板11とは、アスペクト比(L1/L2)が7.5以上の基板である。具体的に、L1=300mm~600mmであり、L2=10mm~40mmであり、本実施の形態では、L1=580mm、L2=15mm(アスペクト比38.67)で、厚みが1.0mmの基板11を用いている。なお、厚みが1.6mmの基板11を用いてもよい。 Further, assuming that the length in the longitudinal direction (length of the long side) of the substrate 11 is L1 (mm) and the length in the width direction of the substrate 11 (length of the short side) is L2 (mm), the present embodiment is implemented. The long-sized substrate 11 in the above form is a substrate having an aspect ratio (L1 / L2) of 7.5 or more. Specifically, the substrate 11 is L1 = 300 mm to 600 mm, L2 = 10 mm to 40 mm, and in this embodiment, the substrate 11 is L1 = 580 mm, L2 = 15 mm (aspect ratio 38.67), and has a thickness of 1.0 mm. Is used. The substrate 11 having a thickness of 1.6 mm may be used.
 LED素子12は、発光素子の一例であって、基板11上の第1の主面11aに実装される。本実施の形態では、図3の(a)に示すように、基板11の長手方向に沿って複数のLED素子12がライン状に一列配置されている。 The LED element 12 is an example of a light emitting element, and is mounted on the first major surface 11 a on the substrate 11. In the present embodiment, as shown in (a) of FIG. 3, the plurality of LED elements 12 are arranged in a line in a line along the longitudinal direction of the substrate 11.
 各LED素子12は、LEDチップと蛍光体とがパッケージ化された、いわゆるSMD型の発光素子である。各LED素子12は、図3の(c)に示すように、パッケージ(容器)12aと、パッケージ12aに収容されるLEDチップ12bと、LEDチップ12bを封止する封止部材12cとを備える。本実施の形態におけるLED素子12は、白色光を発する白色LED素子である。 Each LED element 12 is a so-called SMD type light emitting element in which an LED chip and a phosphor are packaged. Each LED element 12 includes a package (container) 12a, an LED chip 12b accommodated in the package 12a, and a sealing member 12c for sealing the LED chip 12b, as shown in FIG. 3C. The LED element 12 in the present embodiment is a white LED element that emits white light.
 パッケージ12aは、白色樹脂等で成型されており、逆円錐台形状の凹部(キャビティ)を備える。凹部の内側面は傾斜面となっており、LEDチップ12bからの光を上方に反射させるように構成されている。 The package 12a is molded of a white resin or the like, and has a recess (cavity) in the shape of an inverted truncated cone. The inner side surface of the recess is an inclined surface, and is configured to reflect the light from the LED chip 12 b upward.
 LEDチップ12bは、パッケージ12aの凹部の底面に実装されている。LEDチップ12bは、単色の可視光を発するベアチップであり、ダイアタッチ材(ダイボンド材)によって、パッケージ12aの凹部の底面にダイボンダィング実装されている。LEDチップ12bとしては、例えば通電されると青色光を発光する青色LEDチップを用いることができる。 The LED chip 12b is mounted on the bottom of the recess of the package 12a. The LED chip 12 b is a bare chip that emits monochromatic visible light, and is die-bonded and mounted on the bottom of the recess of the package 12 a by a die attach material (die bonding material). For example, a blue LED chip that emits blue light when energized can be used as the LED chip 12 b.
 封止部材12cは、シリコーン樹脂等の透光性材料からなり、LEDチップ12bを覆うようにパッケージ12a内に配置される。封止部材12cは、LEDチップ12bを封止してLEDチップ12bを保護する。本実施の形態における封止部材12cは、さらに、光波長変換材として蛍光体を含み、LEDチップ12bからの光を所定の波長に波長変換(色変換)する。封止部材12cは、パッケージ12aの凹部に充填されており、当該凹部の開口面まで封入されている。 The sealing member 12c is made of a translucent material such as silicone resin, and is disposed in the package 12a so as to cover the LED chip 12b. The sealing member 12 c seals the LED chip 12 b to protect the LED chip 12 b. The sealing member 12c in the present embodiment further includes a phosphor as a light wavelength conversion material, and performs wavelength conversion (color conversion) of the light from the LED chip 12b to a predetermined wavelength. The sealing member 12c is filled in the recess of the package 12a, and is sealed up to the opening surface of the recess.
 封止部材12cとしては、例えばLEDチップ12bが青色LEDチップである場合、白色光を得るために、YAG(イットリウム・アルミニウム・ガーネット)系の黄色蛍光体粒子をシリコーン樹脂に分散させた蛍光体含有樹脂を用いることができる。これにより、黄色蛍光体粒子は青色LEDチップの青色光によって励起されて黄色光を放出するので、封止部材12cからは、励起された黄色光と青色LEDチップの青色光との合成光として白色光が放出される。なお、封止部材12cに、シリカ等の光拡散材を含有させても構わない。 As the sealing member 12c, for example, when the LED chip 12b is a blue LED chip, phosphor-containing yellow phosphor particles of YAG (yttrium aluminum garnet) type dispersed in silicone resin to obtain white light Resin can be used. As a result, the yellow phosphor particles are excited by the blue light of the blue LED chip to emit yellow light. Therefore, from the sealing member 12c, white light is generated as a composite light of the excited yellow light and the blue light of the blue LED chip. Light is emitted. The sealing member 12c may contain a light diffusing material such as silica.
 このようにして、LED素子12が構成されている。また、図示しないが、LED素子12は、正極及び負極の2つの外部接続端子を有しており、これらの外部接続端子と配線13とが電気的に接続されている。なお、本実施の形態において、LED素子12は、ライン状に一列で実装されているが、これに限らない。また、基板11上の複数のLED素子12は、配線13によって、直列接続と並列接続とを組み合わせた接続となっているが、全てのLED素子12が直列接続となるように構成されていてもよい。なお、図3の(a)では、1つのLEDモジュール10において30個のLED素子12を用いて10直3並としているが、2400lmの40形直管形LEDランプとしては、2つのLEDモジュール10によって、21直6並(総計126個のLED素子)となるように構成されている。 Thus, the LED element 12 is configured. Although not shown, the LED element 12 has two external connection terminals of positive and negative electrodes, and the external connection terminals and the wiring 13 are electrically connected. In the present embodiment, the LED elements 12 are mounted in a line in a line, but the present invention is not limited to this. Moreover, although the several LED element 12 on the board | substrate 11 is the connection which combined the serial connection and the parallel connection by the wiring 13, even if it is comprised so that all the LED elements 12 may be connected in series. Good. In (a) of FIG. 3, although 30 LED elements 12 are used in one LED module 10 and arranged in 10 straight three, two 40 LED modules with a 40 m straight tube type LED lamp of 2400 lm are used. Thus, it is configured to be 21 straight 6 parallel (a total of 126 LED elements).
 配線13は、基板11の第1の主面11aに所定形状にパターン形成された金属配線(第1の金属パターン)である。配線13は、LED素子12と電気的に接続される。具体的に、配線13は、隣接するLED素子12同士を電気的に接続するために基板11の長手方向に沿って断続的にパターン形成されている。また、配線13は、基板11の短辺側に実装されたLED素子12と電極端子15とを接続するようにもパターン形成されている。さらに、配線13は、LED素子12を並列接続するために、及び、電極端子15からLED素子12に給電するために、LED素子12の素子列の両側において基板11の長手方向に沿って延設するようにもパターン形成されている。これにより、電極端子15から配線13を介して各LED素子12に電力が供給される。 The wiring 13 is a metal wiring (first metal pattern) patterned in a predetermined shape on the first major surface 11 a of the substrate 11. The wiring 13 is electrically connected to the LED element 12. Specifically, the wiring 13 is intermittently patterned in the longitudinal direction of the substrate 11 in order to electrically connect the adjacent LED elements 12 to each other. The wiring 13 is also patterned to connect the LED element 12 mounted on the short side of the substrate 11 and the electrode terminal 15. Furthermore, the wires 13 extend along the longitudinal direction of the substrate 11 on both sides of the element row of the LED elements 12 in order to connect the LED elements 12 in parallel and to supply power to the LED elements 12 from the electrode terminals 15. It is also patterned to do. Thus, power is supplied from the electrode terminal 15 to the respective LED elements 12 through the wiring 13.
 金属パターン14(第2の金属パターン)は、金属を用いて基板11の第2の主面11bに所定形状でパターン形成されている。本実施の形態における金属パターン14は、図3の(c)に示すように、メッシュ状(網目状)にパターン形成されている。より具体的には、金属パターン14は、格子状に形成されている。 The metal pattern 14 (second metal pattern) is patterned in a predetermined shape on the second major surface 11 b of the substrate 11 using a metal. The metal pattern 14 in the present embodiment is pattern-formed in a mesh shape (mesh shape) as shown in (c) of FIG. 3. More specifically, the metal patterns 14 are formed in a lattice shape.
 図3の(b)に示すように、金属パターン14は、一部を除いて基板11の第2の主面11bのほぼ全面に形成されている。本実施の形態において、金属パターン14は、配線13と同様に、基板11の長手方向に沿って全体として長尺状に形成されている。つまり、金属パターン14と配線13とは基板11を挟んで対向するように形成されている。 As shown in (b) of FIG. 3, the metal pattern 14 is formed on substantially the entire surface of the second major surface 11 b of the substrate 11 except for a part thereof. In the present embodiment, the metal pattern 14 is formed in an elongated shape as a whole along the longitudinal direction of the substrate 11 in the same manner as the wiring 13. That is, the metal pattern 14 and the wiring 13 are formed to face each other with the substrate 11 interposed therebetween.
 金属パターン14は、LED素子12が発する熱を放熱するための放熱部材(ヒートシンク)として機能する。金属パターン14は、電子部品と電気的に接続されておらず、LEDモジュール10の発光中に金属パターン14には動作電流が流れない。つまり、金属パターン14は、LEDモジュール10の発光中に動作電流が流れる配線13とは異なり、電子部品(LED素子等)同士を電気的に接続しない構成の非配線である。すなわち、金属パターン14は、電気的にはフローティング状態であって、金属パターン14にはLED素子12を発光させるための電流は流れない。 The metal pattern 14 functions as a heat radiating member (heat sink) for radiating heat generated by the LED element 12. The metal pattern 14 is not electrically connected to the electronic component, and no operating current flows in the metal pattern 14 while the LED module 10 emits light. That is, the metal pattern 14 is a non-wiring of a structure which does not electrically connect electronic parts (LED element etc.) unlike the wiring 13 through which an operation current flows during light emission of the LED module 10. That is, the metal pattern 14 is in an electrically floating state, and no current flows in the metal pattern 14 to make the LED element 12 emit light.
 このように、基板11の両面には、金属膜をパターニングすることによって所定形状となっている配線13及び金属パターン14が形成されている。例えば、両面全面に金属膜(銅箔等)が圧着された基板11を用いて、一方の面の金属膜に対してエッチングを施してパターニングすることによって所定形状の配線13を形成し、次に、他方の面の金属膜に対してエッチングを施してパターニングすることによって所定形状の金属パターン14を形成する。これにより、基板11の両面に所定形状の金属パターンが形成された基板11を得ることができる。なお、配線13及び金属パターン14は、金属膜をエッチングしたときに残した部分としているが、エッチングすることなく印刷等によって所定形状のパターンを形成しても構わない。 As described above, the wiring 13 and the metal pattern 14 having a predetermined shape are formed on both surfaces of the substrate 11 by patterning the metal film. For example, using a substrate 11 having a metal film (such as copper foil) crimped onto the entire surface of both surfaces, the metal film on one surface is etched and patterned to form a wiring 13 of a predetermined shape, and then The metal film on the other surface is etched and patterned to form a metal pattern 14 of a predetermined shape. Thereby, the board | substrate 11 with which the metal pattern of the predetermined shape was formed in the both surfaces of the board | substrate 11 can be obtained. Although the wiring 13 and the metal pattern 14 are portions left when the metal film is etched, a pattern having a predetermined shape may be formed by printing or the like without etching.
 配線13及び金属パターン14の金属材料としては、例えば、銅(線膨張係数:16.8×10-6/℃)又は銀(線膨張係数:18.9×10-6/℃)等を用いることができる。配線13と金属パターン14とは同じ金属材料を用いて形成してもよいし、異なる金属材料を用いて形成してもよい。本実施の形態では、配線13と金属パターン14とは、同じ金属材料によって構成されており、いずれも銅を用いている。また、上述のとおり、本実施の形態では、基板11としてCEM-3の樹脂基板(線膨張係数:27×10-6/℃)を用いている。つまり、本実施の形態では、配線13及び金属パターン14の線膨張係数(熱膨張係数)が、基板11の線膨張係数(熱膨張係数)よりも小さくなっている。なお、本実施の形態において、配線13及び金属パターン14の厚さは、いずれも35μmとしているが、18μm、70μm、105μm等とすることもできる。 As a metal material of the wiring 13 and the metal pattern 14, for example, copper (coefficient of linear expansion: 16.8 × 10 −6 / ° C.) or silver (coefficient of linear expansion: 18.9 × 10 −6 / ° C.) is used. be able to. The wiring 13 and the metal pattern 14 may be formed using the same metal material, or may be formed using different metal materials. In the present embodiment, the wiring 13 and the metal pattern 14 are made of the same metal material, and both of them use copper. Further, as described above, in the present embodiment, a resin substrate of CEM-3 (linear expansion coefficient: 27 × 10 −6 / ° C.) is used as the substrate 11. That is, in the present embodiment, the linear expansion coefficient (thermal expansion coefficient) of the wiring 13 and the metal pattern 14 is smaller than the linear expansion coefficient (thermal expansion coefficient) of the substrate 11. In the present embodiment, the thickness of each of the wiring 13 and the metal pattern 14 is 35 μm, but may be 18 μm, 70 μm, 105 μm or the like.
 電極端子15は、LED素子12を発光させるための直流電力を、LEDモジュール10の外部から受電する外部接続端子(コネクタ)である。本実施の形態における電極端子15は、ソケット型に構成されており、樹脂製のソケットと、直流電力を受電するための導電ピンとを有する。当該導電ピンは、基板11上に形成された配線13と電気的に接続されている。電極端子15(ソケット)にコネクタ60(図2参照)の装着部61が装着されることにより、電極端子15はコネクタ60から電力の供給を受ける。なお、電極端子15としては、樹脂ソケットではなく、矩形状にパターン形成された金属電極とすることもできる。 The electrode terminal 15 is an external connection terminal (connector) that receives DC power for causing the LED element 12 to emit light from the outside of the LED module 10. The electrode terminal 15 in the present embodiment is configured in a socket type, and has a socket made of resin and a conductive pin for receiving DC power. The conductive pins are electrically connected to the wiring 13 formed on the substrate 11. By mounting the mounting portion 61 of the connector 60 (see FIG. 2) to the electrode terminal 15 (socket), the electrode terminal 15 receives power supply from the connector 60. In addition, as the electrode terminal 15, not a resin socket but a metal electrode patterned in a rectangular shape may be used.
 レジスト16は、絶縁性を有する樹脂材料によって構成された絶縁膜である。レジスト16は、LED素子12及び電極端子15との接続部分における配線13を除いて、基板11の第1の主面11aの全面を覆うように形成されている。配線13をレジスト16によって被覆することで基板11の絶縁性(耐圧)を向上させることができる。また、レジスト16を形成することによって、配線13が酸化してしまうことを抑制することもできる。 The resist 16 is an insulating film made of a resin material having an insulating property. The resist 16 is formed so as to cover the entire surface of the first major surface 11 a of the substrate 11 except for the wiring 13 in the connection portion with the LED element 12 and the electrode terminal 15. By covering the wiring 13 with the resist 16, the insulation (withstand voltage) of the substrate 11 can be improved. Further, the formation of the resist 16 can also suppress the oxidation of the wiring 13.
 ここで、基板11の第1の主面11aに形成するレジストとしては、一般的に、反射率が98%程度の高反射率の白色樹脂材料(白レジスト)が用いられる。高反射率のレジストは、反射率の経時的な変化がみられず、また、加熱されても反射率が低下しない。つまり、高反射率の白レジストは、色変化せずに白レジストのままである。 Here, as a resist formed on the first major surface 11 a of the substrate 11, generally, a white resin material (white resist) having a high reflectance of about 98% is used. The high reflectance resist shows no change in reflectance with time, and the reflectance does not decrease even if it is heated. That is, the high reflectance white resist remains as a white resist without color change.
 一方、本実施の形態では、レジスト16として、あえて反射率が90%以下である低反射率の白レジスト(準白レジスト)を用いている。このように、低反射率のレジストを用いることで、レジストを変色させることができる。本実施の形態では、レジスト16として、低反射率の白色レジストを用いているので、白色から黄色に変色させることができる。具体的には、低反射率のレジスト16を基板11に形成した後、LEDモジュール10を筐体20に組み込む前に加熱処理を行うことによって、レジスト16を黄色みがかったように変色させている。このように、レジスト16を変色させることで、レジスト16の反射率が低下する。例えば、レジスト16の反射率は、変色によって、2~5%程度低下する。 On the other hand, in the present embodiment, a low reflectance white resist (quasi-white resist) having a reflectance of 90% or less is intentionally used as the resist 16. Thus, the resist can be discolored by using the resist of low reflectance. In this embodiment, since a white resist with low reflectance is used as the resist 16, it is possible to change the color from white to yellow. Specifically, after forming the low-reflectance resist 16 on the substrate 11, the resist 16 is discolored to have a yellowish appearance by performing a heat treatment before the LED module 10 is incorporated into the housing 20. . Thus, the reflectance of the resist 16 is reduced by causing the resist 16 to change color. For example, the reflectance of the resist 16 is reduced by about 2 to 5% due to the color change.
 なお、変色させる前のレジスト16としては、反射率が80%以上90%以下の低反射率のレジストを用いることができる。また、レジスト16の厚みとしては、例えば5~25μmとすることができる。 Note that, as the resist 16 before the color change, a low reflectance resist having a reflectance of 80% to 90% can be used. The thickness of the resist 16 can be, for example, 5 to 25 μm.
 また、本実施の形態では、レジスト16を形成する際、低反射率のレジストを基板11に形成した後に加熱処理してレジストを変色させているが、低反射率のレジストを加熱処理して変色させてから、変色させたレジストを基板11に形成しても構わない。 Further, in the present embodiment, when the resist 16 is formed, the resist with low reflectance is formed on the substrate 11 and then heat treated to discolor the resist, but the resist with low reflectance is heat treated to discolor. It is also possible to form on the substrate 11 a resist that has been discolored after being allowed to
 レジスト17も、レジスト16と同様に、絶縁性を有する樹脂材料によって構成された絶縁膜である。レジスト17は、金属パターン14を覆うように基板11の第2の主面11bの全面に形成されている。本実施の形態において、レジスト17は、レジスト16と同じ材料によって構成されており、また、金属パターン14の全部がレジスト17によって被覆されている。レジスト17の厚みも、レジスト16と同様に、例えば5~25μmとすることができる。また、レジスト17を形成することによって、金属パターン14が酸化してしまうことを防止することができる。 Similarly to the resist 16, the resist 17 is also an insulating film made of a resin material having an insulating property. The resist 17 is formed on the entire surface of the second major surface 11 b of the substrate 11 so as to cover the metal pattern 14. In the present embodiment, the resist 17 is made of the same material as the resist 16, and the entire metal pattern 14 is covered with the resist 17. The thickness of the resist 17 can also be, for example, 5 to 25 μm, similarly to the resist 16. Further, the formation of the resist 17 can prevent the metal pattern 14 from being oxidized.
 以上のようにしてLEDモジュール10が構成される。なお、レジスト16としては、低反射率の白色レジストではなく、反射率が90%を越える(例えば98%程度)の高反射率の白レジストを用いてもよい。これにより、LED素子12から放出された光が基板11に戻ってきたときに(例えば筐体20の内面で反射して戻ってきたときに)当該光をレジスト16で反射させることができるので、光取り出し効率を向上させることができる。また、本実施の形態では、レジスト16、17を設けたが、レジスト16、17は、設けなくても構わない。 The LED module 10 is configured as described above. The resist 16 may be a white resist having a high reflectance of over 90% (eg, about 98%) instead of a white resist having a low reflectance. Thereby, when the light emitted from the LED element 12 is returned to the substrate 11 (for example, when it is reflected and returned from the inner surface of the housing 20), the light can be reflected by the resist 16; Light extraction efficiency can be improved. Further, although the resists 16 and 17 are provided in the present embodiment, the resists 16 and 17 may not be provided.
 [筐体]
 筐体20は、透光性を有する直管(チューブ)であり、図2に示すように、両端部に開口を有する長尺筒状の外郭部材(外管)である。筐体20には、LEDモジュール10、第1基台50、第2基台55、及び点灯回路90等が収納される。本実施の形態において、筐体20は、円筒状のものを用いているが、必ずしも円筒状である必要はなく、角筒状のものを用いても構わない。
[Case]
The housing 20 is a translucent straight tube (tube), and as shown in FIG. 2, is a long cylindrical outer shell member (outer tube) having openings at both ends. The housing 20 accommodates the LED module 10, the first base 50, the second base 55, the lighting circuit 90, and the like. In the present embodiment, the casing 20 uses a cylindrical shape, but the casing 20 does not necessarily have to be a cylindrical shape, and a square tubular shape may be used.
 筐体20は、透光性材料によって構成することができ、ガラス製のガラス管(ガラスバルブ)又はプラスチック管等を用いることができる。例えば、筐体20として、シリカ(SiO)が70~72[%]のソーダ石灰ガラスによって構成された直管(ガラス管)、又は、アクリル(PMMA)やポリカーボネート(PC)等の樹脂材料からなる直管(プラスチック管)を用いることができる。本実施の形態では、40形の直管形蛍光灯に用いられるものと同じガラス管(全長が約1167mm)を用いている。 The housing 20 can be made of a translucent material, and a glass tube (glass bulb) made of glass, a plastic tube, or the like can be used. For example, as the housing 20, a straight pipe (glass pipe) made of soda lime glass of 70 to 72% silica (SiO 2 ), or a resin material such as acrylic (PMMA) or polycarbonate (PC) Straight pipe (plastic pipe) can be used. In this embodiment, the same glass tube (having a total length of about 1167 mm) as that used for the 40-type straight tube fluorescent lamp is used.
 また、筐体20に、LEDモジュール10からの光を拡散させるための光拡散機能を有する光拡散部を設けてもよい。これにより、LEDモジュールから放射された光を、筐体20を通過する際に拡散させることができる。光拡散部としては、例えば、筐体20の内面又は外面に形成された光拡散シート又は光拡散膜等がある。具体的には、シリカや炭酸カルシウム等の光拡散材(微粒子)を含有する樹脂や白色顔料を筐体20の内面又は外面に付着させることで、乳白色の光拡散膜を形成することができる。その他の光拡散部として、筐体20の内部又は外部に設けられたレンズ構造物、あるいは、筐体20に形成された凹部又は凸部がある。例えば、筐体20の内面又は外面にドットパターンを印刷したり、筐体20の一部を加工したりすることで、筐体20に光拡散機能(光拡散部)を持たせることもできる。あるいは、筐体20そのものを、光拡散材が分散された樹脂材料等を用いて成形することで、筐体20に光拡散機能(光拡散部)を持たせることもできる。 Further, the housing 20 may be provided with a light diffusion portion having a light diffusion function for diffusing the light from the LED module 10. Thereby, the light emitted from the LED module can be diffused when passing through the housing 20. Examples of the light diffusion portion include a light diffusion sheet or a light diffusion film formed on the inner surface or the outer surface of the housing 20. Specifically, a milky white light diffusion film can be formed by adhering a resin or a white pigment containing a light diffusion material (fine particles) such as silica or calcium carbonate to the inner surface or the outer surface of the housing 20. As another light diffusion portion, there are a lens structure provided inside or outside of the housing 20, or a concave portion or a convex portion formed in the housing 20. For example, by printing a dot pattern on the inner surface or the outer surface of the housing 20 or processing a part of the housing 20, the housing 20 can also have a light diffusion function (light diffusion portion). Alternatively, the housing 20 can be provided with a light diffusing function (light diffusing portion) by molding the housing 20 itself using a resin material or the like in which a light diffusing material is dispersed.
 [給電用口金]
 給電用口金(第1口金)30は、LEDモジュール10に電力を供給するための口金である。また、給電用口金30は、LEDモジュール10のLED素子12を点灯させるための電力を、ランプ外部(商用電源等)から受ける受電用口金である。給電用口金30は、略有底円筒形状に構成されており、筐体20の長手方向の一方を蓋するように設けられる。本実施の形態における給電用口金30は、図2に示すように、ポリブチレンテレフタレート(PBT)等の合成樹脂からなる樹脂製の給電用口金本体31と、真ちゅう等の金属材料からなる一対の給電ピン32とからなる。
[Cap for feed]
The feeding cap (first cap) 30 is a cap for supplying power to the LED module 10. Further, the power supply base 30 is a power reception base that receives power for lighting the LED element 12 of the LED module 10 from the outside of the lamp (such as a commercial power source). The power supply cap 30 is formed in a substantially bottomed cylindrical shape, and is provided to cover one of the housing 20 in the longitudinal direction. As shown in FIG. 2, the power supply base 30 in the present embodiment includes a resin-made power supply base body 31 made of a synthetic resin such as polybutylene terephthalate (PBT) and a pair of power supplies made of a metal material such as brass. It consists of pins 32.
 給電用口金30は、当該給電用口金30の軸方向に沿って複数に分割可能に構成されている。本実施の形態における給電用口金本体31は、筐体20の管軸を通る平面を分割面として上下半分に分解可能に構成されており、第1給電用口金本体部31aと第2給電用口金本体部31bとによって構成される。なお、給電用口金30は、給電ピン32を点灯回路90のソケットにリード線を介して電気的に接続した後に、第1給電用口金本体部31a及び第2給電用口金本体部31bで給電ピン32と筐体20の端部と第2基台55とを挟み込んだ状態で、第1給電用口金本体部31aと第2給電用口金本体部31bとをネジ止めすることにより、筐体20の端部に取り付けられる。 The power supply base 30 is configured to be divisible into a plurality of parts along the axial direction of the power supply base 30. The feed base body 31 in the present embodiment is configured to be disassembled in upper and lower halves with the plane passing through the tube axis of the housing 20 as a divided surface, and the first feed base body portion 31a and the second feed base are configured. It is comprised by the main-body part 31b. The feed cap 30 electrically connects the feed pin 32 to the socket of the lighting circuit 90 through a lead wire, and then the feed pin is formed by the first feed cap body 31a and the second feed cap body 31b. By sandwiching the first power supply base body 31a and the second power supply base body 31b in a state in which the second base 55 and the end portion of the housing 20 and the second base 55 are sandwiched, the housing 20 is Attached to the end.
 一対の給電ピン32は、LEDモジュール10に電力を供給するための導電性のピンである。また、給電ピン32は、LEDモジュール10のLED素子12を点灯させるための電力を、照明器具等の外部機器から受ける受電ピンである。一対の給電ピン32は、給電用口金本体31の底部から外方に向かって突出するように構成されている。例えば、給電用口金30を照明器具のソケットに装着させることによって、一対の給電ピン32は、照明器具に内蔵された電源装置(電源回路)から直流電力を受ける状態となる。一対の給電ピン32は、リード線によって筐体20内の点灯回路90と接続されており、一対の給電ピン32が受電した直流電力は点灯回路90に供給される。 The pair of feed pins 32 are conductive pins for supplying power to the LED module 10. In addition, the power supply pin 32 is a power receiving pin that receives power for lighting the LED element 12 of the LED module 10 from an external device such as a lighting fixture. The pair of feed pins 32 is configured to protrude outward from the bottom of the feed cap body 31. For example, by mounting the power supply cap 30 in the socket of the lighting apparatus, the pair of power supply pins 32 receive DC power from a power supply device (power supply circuit) incorporated in the lighting apparatus. The pair of feed pins 32 is connected to the lighting circuit 90 in the housing 20 by lead wires, and the DC power received by the pair of feed pins 32 is supplied to the lighting circuit 90.
 なお、電源装置は、ランプ外部の照明器具ではなく、直管形LEDランプ1が内蔵するように構成してもよい。この場合、一対の給電ピン32は、例えば商用100Vの交流電源から交流電力を受けて、電源装置に供給することになる。 In addition, you may comprise a power supply device so that the straight tube | pipe type LED lamp 1 may be built in instead of the lighting fixtures outside a lamp | ramp. In this case, the pair of power supply pins 32 receive AC power from, for example, a commercial 100 V AC power supply, and supply the AC power to the power supply apparatus.
 [非給電用口金]
 非給電用口金40は、ランプの他端において照明器具のソケットに係止され、ランプ本体を支持する。非給電用口金40は、略有底円筒形状に構成されており、筐体20の長手方向の他方の端部を蓋するように設けられる。本実施の形態における非給電用口金40は、図2に示すように、PBT等の合成樹脂からなる非給電用口金本体41と、真ちゅう等の金属材料からなる1本の非給電ピン42とからなる。
[Cap for non-feeding]
The non-feed cap 40 is locked to the socket of the lighting fixture at the other end of the lamp to support the lamp body. The non-power-supplying cap 40 is formed in a substantially bottomed cylindrical shape, and is provided to cover the other end in the longitudinal direction of the housing 20. As shown in FIG. 2, the non-feed cap 40 in the present embodiment includes a non-feed cap body 41 made of a synthetic resin such as PBT and a single non-feed pin 42 made of a metallic material such as brass. Become.
 非給電用口金40は、給電用口金30と同様に、非給電用口金40の軸方向に沿って複数に分割可能に構成されている。つまり、非給電用口金本体41は、筐体20の管軸を通る平面を分割面として上下半分に分解可能に構成されており、第1非給電用口金本体部41aと第2非給電用口金本体部41bとからなる。また、非給電ピン42は、非給電用口金本体41の底部から外方に向かって突出するように構成される。 The non-feed cap 40 is configured to be split into a plurality of parts along the axial direction of the non-feed cap 40 in the same manner as the feed cap 30. That is, the non-power supply cap body 41 is configured to be disassembled in upper and lower halves with the plane passing through the tube axis of the housing 20 as a divided surface, and the first non-power supply cap body portion 41a and the second non-power supply cap It consists of the main part 41b. Further, the non-feed pin 42 is configured to protrude outward from the bottom of the non-feed cap body 41.
 このように構成される非給電用口金40は、接続部材43によって非給電ピン42を第1基台50に取り付けた後に、第1非給電用口金本体部41a及び第2非給電用口金本体部41bで非給電ピン42と筐体20の端部と第2基台55とを挟み込んだ状態で、第1非給電用口金本体部41aと第2非給電用口金本体部41bとをネジ止めすることにより、筐体20の端部に取り付けられる。 The non-feed cap 40 configured in this manner is configured such that after the non-feed pin 42 is attached to the first base 50 by the connection member 43, the first non-feed cap body 41a and the second non-feed cap body In a state where the non-feed pin 42, the end of the housing 20, and the second base 55 are sandwiched by 41b, the first non-feed cap body portion 41a and the second non-feed cap body portion 41b are screwed. Are attached to the end of the housing 20.
 なお、非給電用口金40にアース機能を持たせて、非給電用口金40をアース用口金として用いても構わない。この場合、非給電ピン42は、アースピンとして機能し、照明器具を介して接地される。 Note that the non-feed cap 40 may be provided with a grounding function, and the non-feed cap 40 may be used as a grounding cap. In this case, the non-power supply pin 42 functions as a ground pin and is grounded via the luminaire.
 [基台]
 第1基台50及び第2基台55は、いずれも金属製であり、LEDモジュール10で発生する熱を放熱するヒートシンクとして機能するとともに、LEDモジュール10を載置及び固定するための基台として機能する。
[Base]
The first base 50 and the second base 55 are both made of metal and function as a heat sink for dissipating heat generated by the LED module 10 and as a base for mounting and fixing the LED module 10 Function.
 第1基台50は、ヒートシンクの外郭を構成する部材であり、図2に示すように、長尺状に構成されている。第1基台50は、例えば、亜鉛めっき鋼板等の金属板を折り曲げ加工等することによって形成することができる。 The first base 50 is a member which constitutes the outer shell of the heat sink, and as shown in FIG. The first base 50 can be formed, for example, by bending a metal plate such as a galvanized steel plate.
 第1基台50は、長尺状の底部(底板部)と、第1壁部51及び第2壁部52とを有する。第1壁部51及び第2壁部52は、底部における第1基台50の短手方向(基板11の幅方向)の両端部に形成されており、当該第1基台50の短手方向においてLEDモジュール10の基板11の両側面を挟むように構成されている。すなわち、第1壁部51は、基板11の一方の側面に対面し、第2壁部52は、基板11の他方の側面に対面するように形成されている。第1壁部51及び第2壁部52は、第1基台50を構成する金属板を折り曲げ加工することによって衝立状に形成されている。このように、LEDモジュール10の基板11は第1壁部51と第2壁部52とによって挟持されており、LEDモジュール10は、第1壁部51と第2壁部52とによって基板11の短手方向の動きが規制された状態で第1基台50に配置されている。 The first base 50 has a long bottom (bottom plate) and a first wall 51 and a second wall 52. The first wall 51 and the second wall 52 are formed at both ends of the bottom of the first base 50 in the width direction of the first base 50 (in the width direction of the substrate 11), and the width direction of the first base 50 In this case, both sides of the substrate 11 of the LED module 10 are sandwiched. That is, the first wall 51 faces one side of the substrate 11, and the second wall 52 faces the other side of the substrate 11. The first wall 51 and the second wall 52 are formed in a screen shape by bending a metal plate constituting the first base 50. Thus, the substrate 11 of the LED module 10 is sandwiched by the first wall 51 and the second wall 52, and the LED module 10 is formed of the substrate 11 by the first wall 51 and the second wall 52. It is arrange | positioned at the 1st base 50 in the state by which the movement of the transversal direction was controlled.
 また、第1壁部51には、当該第1壁部51から第2壁部52に向かって突出する複数の第1突出部51aが形成されている。同様に、第2壁部52には、当該第2壁部52から第1壁部51に向かって突出する複数の第2突出部52aが形成されている。 Further, the first wall 51 is formed with a plurality of first protrusions 51 a that project from the first wall 51 toward the second wall 52. Similarly, the second wall 52 is formed with a plurality of second protrusions 52 a that project from the second wall 52 toward the first wall 51.
 ここで、図4を用いて、筐体20内に収納されたときにおける、LEDモジュール10、第1基台50、第2基台55及び反射部材70等の位置関係について詳細に説明する。図4の(a)は、本発明の実施の形態に係る直管形LEDランプの一部拡大断面図(管軸を通る平面で切断したときの断面図)であり、図4の(b)は、(a)のA-A’線における同直管形LEDランプの断面図であり、図4の(c)は、(a)のB-B’線における同直管形LEDランプの断面図である。なお、図4では、LEDモジュール10の一部の構成(配線13、金属パターン14、レジスト16、17)は省略している。 Here, the positional relationship of the LED module 10, the first base 50, the second base 55, the reflecting member 70, and the like when stored in the housing 20 will be described in detail with reference to FIG. (A) of FIG. 4 is a partially enlarged cross-sectional view (a cross-sectional view when cut by a plane passing through the tube axis) of the straight tube type LED lamp according to the embodiment of the present invention, and (b) of FIG. Is a cross-sectional view of the straight tube LED lamp taken along line AA 'of (a), and (c) of FIG. 4 is a cross section of the straight tube LED lamp taken along line BB' of (a) FIG. In FIG. 4, a part of the configuration of the LED module 10 (the wiring 13, the metal pattern 14, the resists 16 and 17) is omitted.
 図4の(c)に示すように、第1突出部51a及び第2突出部52aは、LEDモジュール10における基板11の第1の主面11a側に当接されるように構成されている。具体的に、第1突出部51a及び第2突出部52aは、基板11の第1の主面11a側において係止するような係止爪として形成されている。これにより、LEDモジュール10における基板11は、基板11の第1の主面11aに対して垂直な方向における動きが規制される。つまり、第1突出部51aと第2突出部52aとによって、LEDモジュール10は、上方に飛び出さないようにして第1基台50に固定されている。 As shown in (c) of FIG. 4, the first protrusion 51 a and the second protrusion 52 a are configured to be in contact with the side of the first main surface 11 a of the substrate 11 in the LED module 10. Specifically, the first protrusion 51 a and the second protrusion 52 a are formed as locking claws that lock on the side of the first main surface 11 a of the substrate 11. Thereby, the movement of the substrate 11 in the LED module 10 in the direction perpendicular to the first major surface 11 a of the substrate 11 is restricted. That is, the LED module 10 is fixed to the first base 50 by the first protrusion 51 a and the second protrusion 52 a so as not to jump upward.
 このように構成することで、直管形LEDランプ1を照明器具に取り付けた後であっても、すなわち、当該LEDモジュール10が第1基台50よりも地面側に位置するようになった場合あっても、LEDモジュール10は、第1突出部51a及び第2突出部52aによって第1基台50から外れ落ちない。このように、第1突出部51a及び第2突出部52aによって基板11を押さえているので、ネジや接着剤等を用いることなく、LEDモジュール10を第1基台50に容易に固定することができる。 By this configuration, even after the straight tube LED lamp 1 is attached to the lighting fixture, that is, the LED module 10 is positioned on the ground side relative to the first base 50. Even if the LED module 10 does not fall off the first base 50 due to the first protrusion 51 a and the second protrusion 52 a. As described above, since the substrate 11 is held by the first protrusion 51 a and the second protrusion 52 a, the LED module 10 can be easily fixed to the first base 50 without using a screw, an adhesive, or the like. it can.
 第1突出部51a及び第2突出部52aは、第1基台50を構成する金属板の一部を加工することによって形成されており、例えば、金属板からなる第1壁部51及び第2壁部52をエンボス加工することによって金属板の一部を突出させて形成することができる。これにより、別部材を用いることなく、簡単な構成によって、LEDモジュール10を第1基台50に固定することができる。 The first protrusion 51 a and the second protrusion 52 a are formed by processing a part of the metal plate constituting the first base 50, and for example, the first wall 51 and the second wall made of a metal plate By embossing the wall 52, a part of the metal plate can be made to project. Thereby, LED module 10 can be fixed to the 1st base 50 by easy composition, without using another member.
 さらに、第1突出部51a及び第2突出部52aでは、振動や衝撃等によって基板11が第1基台50から脱落しにくいように、第1突出部51a又は第2突出部52aにおける基板11の第1の主面11a側の形状が、第1の主面11aに対向するような略平面となっている。一方、第1突出部51a又は第2突出部52aにおける第1の主面11a側とは反対側の形状は、基板11を第1突出部51a又は第2突出部52aに当接させて挿入する際、基板11を第1突出部51a又は第2突出部52aに対して押し込みやすくするために、略テーパ状となっている。 Furthermore, in the first projecting portion 51a and the second projecting portion 52a, the substrate 11 in the first projecting portion 51a or the second projecting portion 52a is provided so that the substrate 11 is not easily detached from the first base 50 by vibration, impact or the like. The shape on the side of the first major surface 11 a is substantially flat so as to face the first major surface 11 a. On the other hand, the shape of the first protrusion 51a or the second protrusion 52a on the opposite side to the first main surface 11a side inserts the substrate 11 in contact with the first protrusion 51a or the second protrusion 52a. In this case, in order to make it easy to push the substrate 11 into the first protrusion 51a or the second protrusion 52a, the substrate 11 has a substantially tapered shape.
 また、図4の(b)及び(c)に示すように、第1基台50には、第2基台55及び反射部材70を載置するための段差部が形成されている。この段差部によって、第1基台50の底部と反射部材70(第2基台55)との間には空間領域が構成され、この空間領域を利用して、後述する付勢部53が設けられている。 Moreover, as shown to (b) and (c) of FIG. 4, the level | step-difference part for mounting the 2nd base 55 and the reflecting member 70 in the 1st base 50 is formed. A space area is formed between the bottom of the first base 50 and the reflecting member 70 (the second base 55) by this stepped portion, and an urging portion 53 described later is provided using this space area. It is done.
 さらに、図4の(a)及び(c)に示すように、第1基台50は、第1突出部51aの近傍に形成された複数の第1切り欠き部51bと、第2突出部52aの近傍に形成された複数の第2切り欠き部52bとを有する。本実施の形態において、第1切り欠き部51bのそれぞれは、第1壁部51及び段差部に跨るようにして切り欠かれており、第1基台50の長手方向に沿ってスリット状に形成されている。同様に、第2切り欠き部52bのそれぞれは、第2壁部52及び段差部に跨るようにして切り欠かれており、第1基台50の長手方向に沿ってスリット状に形成されている。 Furthermore, as shown to (a) and (c) of FIG. 4, the 1st base 50 is the some 1st notch part 51b formed in the vicinity of the 1st protrusion part 51a, and the 2nd protrusion part 52a. And a plurality of second notched portions 52b formed in the vicinity of. In the present embodiment, each of the first cutaway portions 51b is cut out so as to straddle the first wall portion 51 and the step portion, and is formed in a slit shape along the longitudinal direction of the first base 50. It is done. Similarly, each of the second notches 52b is notched so as to straddle the second wall 52 and the step, and is formed in a slit shape along the longitudinal direction of the first base 50. .
 このように、第1突出部51a及び第2突出部52aの近傍に第1切り欠き部51b及び第2切り欠き部52bを設けることにより、基板11を第1基台50に固定する際、第1突出部51a及び第2突出部52aの周辺部を容易に弾性変形させることができる。これにより、基板11を第1基台50の第1突出部51a及び第2突出部52aに容易に嵌め込むことができ、基板11を容易に第1基台50に固定することができる。 Thus, when the substrate 11 is fixed to the first base 50 by providing the first notch 51b and the second notch 52b in the vicinity of the first protrusion 51a and the second protrusion 52a, The peripheral portions of the first protrusion 51a and the second protrusion 52a can be easily elastically deformed. Thus, the substrate 11 can be easily fitted into the first protrusion 51 a and the second protrusion 52 a of the first base 50, and the substrate 11 can be easily fixed to the first base 50.
 また、図4の(a)に示すように、第1基台50の底部には付勢部53が形成されている。付勢部53は、LEDモジュール10における基板11の第2の主面11bに向かって(すなわち、基板11の第2の主面11bから第1の主面11aに向かう方向に)、第1基台50、第2基台55及び反射部材70を付勢するように構成されている。 Further, as shown in (a) of FIG. 4, a biasing portion 53 is formed at the bottom of the first base 50. The biasing portion 53 is a first member toward the second major surface 11b of the substrate 11 in the LED module 10 (that is, in the direction from the second major surface 11b of the substrate 11 to the first major surface 11a), The pedestal 50, the second pedestal 55, and the reflecting member 70 are configured to be biased.
 付勢部53は、第1基台50を構成する金属板の一部を加工することによって形成されており、図4の(a)に示すように、第1基台50の板状の底板部を切り起こして形成された板バネとして構成されている。このように構成された付勢部53は、反射部材70に当接するように構成されており、板バネの弾性力による付勢によって反射部材70(第2基台55)に対して押圧を付与している。 The biasing portion 53 is formed by processing a part of the metal plate constituting the first base 50, and as shown in FIG. 4A, the plate-like bottom plate of the first base 50 It is configured as a leaf spring formed by cutting and raising a part. The biasing portion 53 configured in this manner is configured to abut on the reflecting member 70, and applies a pressure to the reflecting member 70 (second base 55) by biasing by the elastic force of the plate spring. doing.
 このように、LEDモジュール10の基板11は付勢部53によって付勢されており、当該付勢部53による弾性力によって押圧力が付与されている。これにより、基板11は、第1突出部51a及び第2突出部52aと付勢部53とによって押圧力を受けた状態で挟持される。すなわち、基板11は、第1の主面11a及び第2の主面11bの両側の面から押さえられる状態となるので、基板11を第1基台50に強固に保持させることができる。また、付勢部53は第1基台50の一部を加工することによって形成されているので、簡単な構成によって基板11の保持性能を向上させることができる。 As described above, the substrate 11 of the LED module 10 is biased by the biasing unit 53, and the pressing force is applied by the elastic force of the biasing unit 53. Thus, the substrate 11 is held by the first and second protrusions 51 a and 52 a and the biasing portion 53 in a state of receiving a pressing force. That is, since the substrate 11 is pressed from the surfaces on both sides of the first main surface 11a and the second main surface 11b, the substrate 11 can be firmly held by the first base 50. Further, since the urging portion 53 is formed by processing a part of the first base 50, the holding performance of the substrate 11 can be improved by a simple configuration.
 なお、図4の(a)に示すように、第1基台50の底部には開口54が形成されており、当該開口54には、取り付け部材80が取り付けられている。 In addition, as shown to (a) of FIG. 4, the opening 54 is formed in the bottom part of the 1st base 50, and the attachment member 80 is attached to the said opening 54. As shown in FIG.
 また、図4の(a)~(c)に示すように、LEDモジュール10と第1基台50との間には、第2基台55が配置されている。第2基台55は、長尺状の略矩形状の基板であって、第1基台50とLEDモジュール10の基板11との間に配置される中板ヒートシンクである。第2基台55の上にはLEDモジュール10(基板11)が載置される。すなわち、第2基台55と基板11の第2の主面11b側が接触した状態で、LEDモジュール10は第2基台55に配置される。これにより、LED素子12で発生した熱は、基板11を介して金属パターン14に伝達され、金属パターン14から第2基台55へと伝達する。なお、第2基台55には、LEDモジュール10の他に点灯回路90も載置される。 Further, as shown in (a) to (c) of FIG. 4, a second base 55 is disposed between the LED module 10 and the first base 50. The second base 55 is an elongated substantially rectangular substrate, and is a middle-plate heat sink disposed between the first base 50 and the substrate 11 of the LED module 10. The LED module 10 (substrate 11) is placed on the second base 55. That is, the LED module 10 is disposed on the second base 55 in a state where the second base 55 and the second main surface 11 b side of the substrate 11 are in contact with each other. Thereby, the heat generated by the LED element 12 is transferred to the metal pattern 14 through the substrate 11 and transferred from the metal pattern 14 to the second base 55. In addition to the LED module 10, the lighting circuit 90 is also mounted on the second base 55.
 第2基台55は、金属等の高熱伝導性材料によって構成することが好ましく、本実施の形態では、アルミ板である。なお、本実施の形態では、第2基台55の板厚が第1基台50の板厚よりも厚くなるように構成されている。また、第2基台55は、第1基台50の長さよりも長くなるように構成されており、第2基台55の両端部のそれぞれは、給電用口金30又は非給電用口金40によって覆われており、給電用口金30又は非給電用口金40に取り付けられている。 The second base 55 is preferably made of a high thermal conductivity material such as metal, and in the present embodiment is an aluminum plate. In the present embodiment, the plate thickness of the second base 55 is configured to be thicker than the plate thickness of the first base 50. In addition, the second base 55 is configured to be longer than the length of the first base 50, and each of the both end portions of the second base 55 is provided by the power supply base 30 or the non-power supply base 40. It is covered and attached to the power supply base 30 or the non-power supply base 40.
 また、第2基台55は、LEDモジュール10と第1基台50との間に挟まれており、LEDモジュール10を第1基台50に固定することによって、第2基台55も第1基台50に固定することができる。このように、本実施の形態では、ヒートシンクとして、加工しやすい薄板状の鋼板からなる第1基台50を用いるともに熱伝導率の高いアルミニウムからなる第2基台55とを用いているので、LEDモジュール10の固定を簡単に行うことができるとともに放熱性に優れたヒートシンクを実現することができる。 Further, the second base 55 is sandwiched between the LED module 10 and the first base 50, and by fixing the LED module 10 to the first base 50, the second base 55 is also It can be fixed to the base 50. As described above, in the present embodiment, since the first base 50 made of a thin plate-like steel plate that can be easily processed is used as the heat sink and the second base 55 made of aluminum having a high thermal conductivity, While being able to fix LED module 10 easily, a heat sink excellent in heat dissipation can be realized.
 また、第2基台55は、反射部材70を介して第1基台50の段差部に載置されており、第2基台55の第1基台50側の面(裏面)は、上述のように、反射部材70を介して第1基台50における付勢部53の弾性力によって付勢されている。 The second base 55 is mounted on the step portion of the first base 50 via the reflecting member 70, and the surface (rear surface) of the second base 55 on the first base 50 side is the above-described. As described above, the elastic force of the biasing portion 53 of the first base 50 is biased via the reflecting member 70.
 [コネクタ]
 図2に示すように、コネクタ60は、隣り合うLEDモジュール10同士を電気的に接続する導電線であり、LEDモジュール10の電極端子15に装着される装着部(コネクタ部)61と、電極端子15を介してLEDモジュール10に供給する電力を通すための電力供給線62とを有する。
[connector]
As shown in FIG. 2, the connector 60 is a conductive wire electrically connecting adjacent LED modules 10 to each other, and a mounting portion (connector portion) 61 mounted to the electrode terminals 15 of the LED module 10, and the electrode terminals And a power supply line 62 for passing the power supplied to the LED module 10 through 15.
 装着部61は、電力供給線62の両端部に設けられており、LEDモジュール10の電極端子(ソケット)15と嵌合するように構成された略矩形状の樹脂成形部と、当該樹脂成形部に設けられた導電部とからなる。また、電力供給線62は、ハーネスと呼ばれるリード線によって構成することができる。本実施の形態において、コネクタ60は直流電力を通すように構成されており、電力供給線62は、高圧側供給線と低圧側供給線とからなる。 The mounting portion 61 is provided at both ends of the power supply line 62, and a substantially rectangular resin molded portion configured to be fitted to the electrode terminal (socket) 15 of the LED module 10, and the resin molded portion And a conductive portion provided on the Also, the power supply line 62 can be configured by a lead wire called a harness. In the present embodiment, the connector 60 is configured to pass DC power, and the power supply line 62 includes a high voltage side supply line and a low voltage side supply line.
 なお、本実施の形態において、筐体20内には2つの長尺状のLEDモジュール10が配置されている。給電用口金30側に配置されたLEDモジュール10と点灯回路90とはコネクタ60によって電気的に接続されており、当該コネクタ60を介して点灯回路90からLEDモジュール10へと直流電力が供給される。また、図1に示すように、隣り合うLEDモジュール10同士もコネクタ60によって電気的に接続され、コネクタ60を介して一方のLEDモジュール10から他方のLEDモジュールへと電力が供給される。 In the present embodiment, two long LED modules 10 are disposed in the housing 20. The LED module 10 disposed on the side of the power supply cap 30 and the lighting circuit 90 are electrically connected by the connector 60, and DC power is supplied from the lighting circuit 90 to the LED module 10 through the connector 60. . Further, as shown in FIG. 1, adjacent LED modules 10 are also electrically connected by the connector 60, and power is supplied from one LED module 10 to the other LED module through the connector 60.
 [反射部材]
 図2に示すように、反射部材70は、ランプの光取り出し効率を向上させるために、LEDモジュール10が発する光を一定の方向に反射するように構成されている。反射部材70は、電気絶縁性及び光反射性を有する材料によって構成されており、例えば、二軸延伸ポリエステル(PET)フィルム等からなる絶縁反射シートを加工することによって構成することができる。
[Reflecting member]
As shown in FIG. 2, the reflecting member 70 is configured to reflect light emitted by the LED module 10 in a certain direction in order to improve the light extraction efficiency of the lamp. The reflective member 70 is made of a material having electrical insulation and light reflectivity, and can be formed, for example, by processing an insulating reflective sheet made of a biaxially stretched polyester (PET) film or the like.
 本実施の形態において、反射部材70は、断面コの字状に加工されており、第1基台50における第1壁部51の内面と面接触する第1反射面部と、第2壁部52の内面に面接触する第2反射面部とを有する。これにより、LEDモジュール10からの光は、反射部材70の第1反射面部及び第2反射面部によって反射される。なお、反射部材70における第1基台50の第1突出部51a及び第2突出部52aに対応する箇所は切り欠かれており、反射部材70を第1基台50の内部に配置したときに、第1突出部51a及び第2突出部52aは反射部材70の第1反射面部及び第2反射部から突出するように構成されている。 In the present embodiment, the reflecting member 70 is processed to have a U-shaped cross section, and the first reflecting surface portion in surface contact with the inner surface of the first wall portion 51 in the first base 50, and the second wall portion 52. And a second reflective surface portion in surface contact with the inner surface of Thereby, the light from the LED module 10 is reflected by the first reflective surface portion and the second reflective surface portion of the reflective member 70. In addition, the location corresponding to the 1st projection part 51a of the 1st base 50 and the 2nd projection part 52a in reflective member 70 is notched, and when reflective member 70 is arranged inside the 1st base 50. The first protrusion 51 a and the second protrusion 52 a are configured to protrude from the first reflection surface portion and the second reflection portion of the reflection member 70.
 また、反射部材70は、第1基台50と第2基台55との間に配置される。具体的に、反射部材70は、第1基台50の段差部に載置されており、反射部材70の第1基台50側の面は第1基台50の付勢部53の弾性力によって付勢されている。 Also, the reflecting member 70 is disposed between the first base 50 and the second base 55. Specifically, the reflecting member 70 is mounted on the step portion of the first base 50, and the surface of the reflecting member 70 on the side of the first base 50 is the elastic force of the biasing portion 53 of the first base 50. It is energized by
 [取り付け部材]
 図4の(a)に示すように、第1基台50の底部には形成された開口には、取り付け部材80が取り付けられている。取り付け部材80は、第1基台50が第1基台50の長手方向に対して可動する状態で第1基台50に取り付けられている。
[Mounting member]
As shown in (a) of FIG. 4, a mounting member 80 is attached to an opening formed in the bottom of the first base 50. The attachment member 80 is attached to the first base 50 in a state in which the first base 50 is movable in the longitudinal direction of the first base 50.
 取り付け部材80は、第1基台50の底部に形成された開口54に掛合する掛合片81と、筐体20の内面側に形成された凹部82とを有する。 The mounting member 80 has a hooking piece 81 engaged with the opening 54 formed in the bottom of the first base 50 and a recess 82 formed on the inner surface side of the housing 20.
 掛合片81は、第1基台50の長手方向において、第1基台50の底部における開口54の縁部とは隙間をあけて形成されるとともに、当該開口54の縁部に掛合するようにして構成されている。具体的に、掛合片81は、第1基台50の底部の筐体20側の面に引っ掛かるようにしてフック状に形成されている。また、取り付け部材80の凹部82にはシリコーン樹脂等の接着剤が充填されており、この接着剤によって取り付け部材80と筐体20とが接着固定される。 The hooking piece 81 is formed with a gap from the edge of the opening 54 at the bottom of the first base 50 in the longitudinal direction of the first base 50, and is engaged with the edge of the opening 54. Is configured. Specifically, the hooking piece 81 is formed in a hook shape so as to be hooked on the surface of the bottom of the first base 50 on the housing 20 side. Further, an adhesive such as silicone resin is filled in the recess 82 of the mounting member 80, and the mounting member 80 and the housing 20 are adhesively fixed by this adhesive.
 このように、取り付け部材80は、筐体20に対しては接着固定されているが、第1基台50に対しては可動であり、取り付け部材80は第1基台50に対して摺動するように構成されている。本実施の形態では、取り付け部材80の掛合片81と第1基台50とが摺動するように構成されている。取り付け部材80は、第1基台50の一部に取り付けられており、本実施の形態では、第1基台50に2個取り付けられている。 As described above, although the attachment member 80 is adhesively fixed to the housing 20, the attachment member 80 is movable with respect to the first base 50, and the attachment member 80 slides with respect to the first base 50. It is configured to In the present embodiment, the hooking piece 81 of the mounting member 80 and the first base 50 are configured to slide. The attachment members 80 are attached to a part of the first base 50, and in the present embodiment, two attachment members 80 are attached to the first base 50.
 なお、取り付け部材80を設けずに、第1基台50の底部の一部を外側に向けて変形させることで取り付け部を構成し、第1基台50に取り付け部材80と同等の機能を持たせてもよい。この場合、第1基台50の取り付け部に接着剤を塗布することで第1基台50と筐体20とを固定することができる。このように構成される第1基台50の取り付け部には、取り付け部材80のような摺動作用はないが、取り付け部材80を用いなくてもよいので、部品点数を削減することができる。 Note that the mounting portion is configured by deforming a part of the bottom portion of the first base 50 outward without providing the mounting member 80, and the first base 50 has the same function as the mounting member 80. You may In this case, the first base 50 and the housing 20 can be fixed by applying an adhesive to the mounting portion of the first base 50. The mounting portion of the first base 50 configured in this way does not have a sliding action like the mounting member 80, but it is not necessary to use the mounting member 80, so the number of parts can be reduced.
 [点灯回路]
 点灯回路90は、LEDモジュール10におけるLED素子12の点灯状態を制御するためのLED点灯回路であって、入力された直流電力を整流等してLED素子12に通電するための所望の電圧の直流電力に変換して出力する回路を備える。図2に示すように、本実施の形態において、点灯回路90は、回路基板90aと、回路基板90aに実装された複数の回路素子からなる回路素子群90bとを備える。
[Lighting circuit]
The lighting circuit 90 is an LED lighting circuit for controlling the lighting state of the LED element 12 in the LED module 10 and is a DC voltage of a desired voltage for energizing the LED element 12 by rectifying the input DC power and the like. A circuit for converting into power and outputting is provided. As shown in FIG. 2, in the present embodiment, the lighting circuit 90 includes a circuit board 90 a and a circuit element group 90 b composed of a plurality of circuit elements mounted on the circuit board 90 a.
 回路基板90aは、実装された電子部品を互いに電気的に接続するための所定の配線パターン(不図示)が形成されたプリント基板であり、例えばガラスエポキシ基板等を用いることができる。 The circuit board 90a is a printed board on which a predetermined wiring pattern (not shown) for electrically connecting the mounted electronic components to each other is formed, and for example, a glass epoxy board or the like can be used.
 回路素子群90bは、LEDモジュール10のLED素子12を点灯させるための複数の回路素子によって構成される。回路素子群90bは、例えば入力された直流電力を全波整流するダイオードブリッジ回路(整流回路)及びヒューズ素子等によって構成される。回路素子群90bとしては、その他必要に応じて、抵抗、コンデンサ、コイル、ダイオード又はトランジスタ等を用いてもよい。 The circuit element group 90 b includes a plurality of circuit elements for lighting the LED elements 12 of the LED module 10. The circuit element group 90b is configured of, for example, a diode bridge circuit (rectifier circuit) that performs full-wave rectification of input DC power, a fuse element, and the like. As the circuit element group 90b, if necessary, a resistor, a capacitor, a coil, a diode, a transistor or the like may be used.
 また、点灯回路90は、給電用口金30に設けられた一対の給電ピン32から直流電力を受電する入力ソケット90c(入力部)と、LEDモジュール10に対して直流電力を出力する出力ソケット90d(出力部)とを備える。入力ソケット90cには、リード線を介して一対の給電ピン32と電気的に接続された入力コネクタ端子が差し込まれる。また、出力ソケット90dには、リード線を介してLEDモジュール10と電気的に接続された出力コネクタ端子が差し込まれる。なお、入力ソケット90c及び出力ソケット90dとは、回路基板90aに形成された配線パターンによって回路素子群90bの回路素子と電気的に接続されている。 The lighting circuit 90 also includes an input socket 90c (input unit) for receiving DC power from a pair of power supply pins 32 provided on the power supply cap 30, and an output socket 90d for outputting DC power to the LED module 10 And an output unit). An input connector terminal electrically connected to the pair of feed pins 32 via a lead wire is inserted into the input socket 90c. Further, an output connector terminal electrically connected to the LED module 10 through a lead wire is inserted into the output socket 90d. The input socket 90c and the output socket 90d are electrically connected to the circuit elements of the circuit element group 90b by a wiring pattern formed on the circuit board 90a.
 このように構成される点灯回路90は、第2基台55上に載置され、点灯回路カバー91によって覆われる。点灯回路カバー91は絶縁樹脂によって構成されており、点灯回路90を保護する。 The lighting circuit 90 configured in this manner is placed on the second base 55 and covered by the lighting circuit cover 91. The lighting circuit cover 91 is made of an insulating resin and protects the lighting circuit 90.
 なお、点灯回路90を用いずに、回路素子群90bをLEDモジュール10の基板11の上に直接実装するように構成してもよい。この場合、基板11上に入力ソケットを設け、給電ピン32と入力ソケットとはリード線によって接続し、入力ソケットと回路素子群90bとは基板11上に配線パターンを形成して接続すればよい。また、回路素子群90bからの出力(整流後の直流電力)は、基板11上に配線パターンを形成することで、LED素子12に供給することができる。 Alternatively, the circuit element group 90 b may be directly mounted on the substrate 11 of the LED module 10 without using the lighting circuit 90. In this case, an input socket may be provided on the substrate 11, the feed pin 32 and the input socket may be connected by lead wires, and a wiring pattern may be formed on the substrate 11 to connect the input socket and the circuit element group 90 b. Further, the output from the circuit element group 90 b (DC power after rectification) can be supplied to the LED element 12 by forming a wiring pattern on the substrate 11.
 以上のように構成される直管形LEDランプ1において、LEDモジュール10、第1基台50、第2基台55、コネクタ60、反射部材70、取り付け部材80、点灯回路90、点灯回路カバー91、給電ピン32及び非給電ピン42は、長尺状の光源モジュールとして一体化される。すなわち、各構成要素が一体化された光源モジュールは、各構成要素同士の電気的及び物理的な接続が完了した状態である。そして、この光源モジュールを筐体20に挿通させた後に、給電用口金本体31及び非給電用口金本体41を筐体20の両端部のそれぞれに取り付けることにより、直管形LEDランプ1が完成する。 In the straight tube type LED lamp 1 configured as described above, the LED module 10, the first base 50, the second base 55, the connector 60, the reflection member 70, the mounting member 80, the lighting circuit 90, the lighting circuit cover 91 The feed pin 32 and the non-feed pin 42 are integrated as a long light source module. That is, the light source module in which each component is integrated is in a state in which the electrical and physical connection between the components is completed. Then, after the light source module is inserted into the casing 20, the feed pipe main body 31 and the non-feed cap body 41 are attached to both ends of the housing 20, thereby completing the straight tube LED lamp 1. .
 [作用効果]
 次に、本実施の形態に係るLEDモジュール10の第1の特徴構成及びその作用効果について、本発明に至った経緯も含めて説明する。
[Function effect]
Next, the first characteristic configuration of the LED module 10 according to the present embodiment and the function and effect thereof will be described including the background of the present invention.
 近年、照明用光源等に用いられるLEDモジュールの長尺化が進み、LED素子を実装する基板としてアスペクト比の大きい長尺状のものを用いることが検討されている。しかしながら、長尺状の基板を用いると、基板に反りが発生することが分かった。 In recent years, the lengthening of the LED module used for the light source for illumination etc. progresses, and using a long thing with a large aspect ratio as a board | substrate which mounts an LED element is examined. However, it was found that warpage occurs in the substrate when a long substrate is used.
 特に、基板として非セラミックス基板を用いると、基板が大きく反ることが分かった。例えば、基板として、樹脂基板の両面に銅箔等の金属膜が形成された両面基板を用いて、一方の主面の金属膜をパターニングして配線を形成すると、基板11の長手方向の両端部が上方に大きく反ってしまった。また、アスペクト比が38.6以上の長尺状の基板を用いると、基板の両端部が顕著に反ってしまうことも分かった。このように、基板に反りが発生するとLED素子の位置が変動し、所望の配光特性を得ることができなくなる。 In particular, it was found that when a non-ceramic substrate was used as the substrate, the substrate was largely warped. For example, when a metal film on one main surface is patterned to form a wiring by using a double-sided substrate in which a metal film such as copper foil is formed on both sides of a resin substrate as a substrate, both ends of the substrate 11 in the longitudinal direction Has warped upward greatly. It has also been found that when a long substrate having an aspect ratio of 38.6 or more is used, both ends of the substrate are significantly warped. As described above, when the substrate is warped, the position of the LED element is changed, which makes it impossible to obtain desired light distribution characteristics.
 本願発明者らの実験によれば、CEM-3の樹脂基板(L1=580mm、L2=15mm、厚み1.0mm)の両面全面に銅箔が形成された基板を用いて、一方の主面のみの銅箔をパターニングして配線を形成した場合、基板の反り量(基準面に対する基板の両短辺の高さ)は7.35mmであった。なお、この実験では、パターニングを行った基板の一方の主面の銅箔の残銅率は26.4%であった。また、基板の他方の主面の銅箔に対してパターニングを行っていないので、残銅率は100%である。ここで、残銅率とは、パターニング前の銅箔の面積に対するパターニング後の銅箔の面積(パターニング後の銅面積/パターニング前の銅面積)のことである。また、本実施の形態では、基板の主面の全面に銅箔が形成されているので、残銅率は、基板の主面の面積に対するパターニング後の銅箔の面積(パターニング後の銅面積/基板の主面の面積)としても表すことができる。なお、銅箔の面積とは、基板を平面視したときの面積、つまり基板との接触面積である。 According to the experiments of the inventors of the present invention, using a substrate in which copper foils are formed on both surfaces of a resin substrate (L1 = 580 mm, L2 = 15 mm, thickness 1.0 mm) of CEM-3, only one main surface is used. When the copper foil was patterned to form a wiring, the amount of warpage of the substrate (heights of both short sides of the substrate with respect to the reference surface) was 7.35 mm. In addition, in this experiment, the residual copper ratio of the copper foil of one main surface of the board | substrate which performed patterning was 26.4%. Moreover, since patterning is not performed with respect to the copper foil of the other main surface of a board | substrate, the remaining copper ratio is 100%. Here, the residual copper ratio is the area of the copper foil after patterning (the copper area after patterning / the copper area before patterning) with respect to the area of the copper foil before patterning. Further, in the present embodiment, since the copper foil is formed on the entire surface of the main surface of the substrate, the residual copper ratio is the area of the copper foil after patterning with respect to the area of the main surface of the substrate (copper area after patterning It can also be expressed as the area of the main surface of the substrate). In addition, the area of copper foil is an area when planarly viewing a board | substrate, ie, a contact area with a board | substrate.
 また、本願発明者らは、樹脂基板の代りにセラミックス基板を用いて同様の実験を行った。その結果、セラミックス基板の場合についても基板の反りはあるものの、他方の主面に形成された銅薄膜の残銅率にかかわらず(残銅率が100%の場合においても)基板の反りは僅かであった。 In addition, the inventors of the present application conducted a similar experiment using a ceramic substrate instead of the resin substrate. As a result, in the case of the ceramic substrate, although there is a warp of the substrate, the warp of the substrate is slight regardless of the residual copper ratio of the copper thin film formed on the other main surface (even when the residual copper ratio is 100%) Met.
 本発明は、このような新たな知見に基づいてなされたものであり、基板の両面に金属膜が形成された両面基板において、一方の主面の金属膜のみをパターニングするのではなく、当該一方の主面の金属膜については配線用にパターニングするとともに、配線としては用いないにもかかわらず、他方の主面の金属膜についてもあえてパターニングすることで、基板の反りを抑制できるということを見出した。 The present invention has been made based on such new findings, and in a double-sided substrate in which a metal film is formed on both sides of the substrate, it is not necessary to pattern only the metal film on one main surface, The metal film on the main surface of the substrate is patterned for wiring, and although not used as a wiring, it is found that the warpage of the substrate can be suppressed by intentionally patterning the metal film on the other main surface. The
 本実施の形態では、図3の(a)に示すように、基板11の第1の主面11aには配線13(第1の金属パターン)をパターン形成し、図3の(b)に示すように、基板11の第2の主面11bには非配線である金属パターン14(第2の金属パターン)をメッシュ状にパターン形成している。このように構成することで、基板11の反り量を大幅に抑制することができた。 In the present embodiment, as shown in FIG. 3A, the wiring 13 (first metal pattern) is formed in a pattern on the first major surface 11a of the substrate 11 and is shown in FIG. 3B. As described above, on the second major surface 11 b of the substrate 11, the metal pattern 14 (second metal pattern), which is a non-wiring, is formed in a mesh pattern. By configuring in this manner, the amount of warpage of the substrate 11 can be significantly suppressed.
 本願発明者らの実験によれば、CEM-3の樹脂基板(L1=580mm、L2=15mm、厚み1.0mm)の両面全面に銅箔が形成された基板11を用いて、一方の主面(第1の主面11a)の銅箔をパターニングして配線13を形成するとともに、他方の主面(第2の主面11b)の銅箔をパターニングして金属パターン14を形成した場合、基板11の反り量は1.91mmであった。つまり、一方の主面のみをパターニングした場合(他方の主面をパターニングしなかった場合)と比べて、5.44mmも反り量を抑制することができた。なお、この実験では、配線13をパターン形成した基板11の一方の主面の残銅率は26.4%であり、金属パターン14をパターン形成した基板11の他方の主面の残銅率は50%であった。 According to the experiments of the present inventors, one main surface is formed using a substrate 11 in which copper foil is formed on both surfaces of a resin substrate (L1 = 580 mm, L2 = 15 mm, thickness 1.0 mm) of CEM-3. While patterning the copper foil of (the first main surface 11a) to form the wiring 13, and patterning the copper foil of the other main surface (the second main surface 11b) to form the metal pattern 14, the substrate The amount of warpage of 11 was 1.91 mm. That is, the warpage amount could be suppressed by 5.44 mm as compared with the case where only one main surface was patterned (the other main surface was not patterned). In this experiment, the residual copper ratio of one main surface of the substrate 11 on which the wiring 13 is patterned is 26.4%, and the residual copper ratio of the other main surface of the substrate 11 on which the metal pattern 14 is formed is It was 50%.
 この結果をもとに、本願発明者らは、残銅率に対する基板の反り量についてさらに実験を行った。この実験結果について、図5A及び図5Bを用いて詳述する。図5Aは、本発明の実施例1に係るLEDモジュールを第2の主面11b側から見たときの一部拡大図であり、基板11の第2の主面11bの残銅率が52%の場合の金属パターン14を示している。図5Bは、本発明の実施例2に係るLEDモジュールを第2の主面11b側から見たときの一部拡大図であり、基板11の第2の主面11bの残銅率が25%の場合の金属パターン14を示している。 Based on this result, the inventors of the present application conducted further experiments on the warpage amount of the substrate with respect to the residual copper ratio. The experimental results will be described in detail with reference to FIGS. 5A and 5B. FIG. 5A is a partially enlarged view of the LED module according to the first embodiment of the present invention when viewed from the second main surface 11b side, and the residual copper ratio of the second main surface 11b of the substrate 11 is 52% Metal pattern 14 in the case of FIG. FIG. 5B is a partially enlarged view of the LED module according to the second embodiment of the present invention when viewed from the second main surface 11b side, and the remaining copper ratio of the second main surface 11b of the substrate 11 is 25%. Metal pattern 14 in the case of FIG.
 図5Aでは、基板11の第2の主面11bの全面に形成された銅箔から、一辺が1mmの正方形をマトリクス状に除去することで、メッシュ状の金属パターン14をパターン形成した。また、図5Bでは、基板11の第2の主面11bの全面に形成された銅箔から、一辺が3.5mmの正方形をマトリクス状に除去することで、メッシュ状の金属パターン14をパターン形成した。なお、図5A及び図5Bにおいて、金属パターン14の線幅は、いずれも5mmとしている。また、基板11の第1の主面11aの残銅率は、いずれも26.4%としている。 In FIG. 5A, a mesh-like metal pattern 14 is formed by removing a square having a side of 1 mm in a matrix from the copper foil formed on the entire surface of the second major surface 11b of the substrate 11. Further, in FIG. 5B, the mesh-like metal pattern 14 is formed by removing a square of 3.5 mm on a side in a matrix from the copper foil formed on the entire surface of the second main surface 11b of the substrate 11. did. In FIGS. 5A and 5B, the line width of the metal pattern 14 is 5 mm. The residual copper ratio of the first major surface 11 a of the substrate 11 is 26.4% in all cases.
 図5Aについて10個のサンプルを作製して、それぞれの反り量を測定すると、反り量は、1.0mm~2.0mmであった。また、平均の反り量は、1.48mmであった。 When ten samples were prepared for FIG. 5A and the amount of warpage was measured, the amount of warpage was 1.0 mm to 2.0 mm. In addition, the average amount of warpage was 1.48 mm.
 また、図5Bについても10個のサンプルを作製して、それぞれの反り量を測定すると、反り量は、0.04~0.2mmであった。また、平均の反り量は、0.07mmであった。 Further, when ten samples were produced also in FIG. 5B and the amount of warpage was measured, the amount of warpage was 0.04 to 0.2 mm. In addition, the average amount of warpage was 0.07 mm.
 この実験結果から、残銅率を52%から25%に変更することで、最大反り量については、2.0mmから0.2mmへと大幅に抑制できることが分かった。また、平均反り量についても、1.48から0.07mmへと大幅に抑制できることが分かった。このように、残銅率を52%から25%に変更することで、反り量をさらに改善できることが分かった。 From this experimental result, it was found that the maximum warpage can be significantly suppressed from 2.0 mm to 0.2 mm by changing the residual copper ratio from 52% to 25%. Moreover, it turned out that it can suppress significantly also from 1.48 to 0.07 mm also about average curvature amount. Thus, it has been found that the warpage can be further improved by changing the residual copper ratio from 52% to 25%.
 つまり、基板11の第1の主面11aの残銅率が26.4%であることから、基板11において第2の主面11bの残銅率を第1の主面11aの残銅率とほぼ同じにすることで、基板11の反りを最小限に抑えることができることが分かった。言い換えると、基板11の第2の主面11bの面積に対する金属パターン14の面積の割合と、基板11第1の主面11aの面積に対する配線13の面積の割合とをほぼ同じにすることで、基板11の反りを最小限に抑えることができる。 That is, since the residual copper ratio of the first main surface 11a of the substrate 11 is 26.4%, the residual copper ratio of the second main surface 11b in the substrate 11 is the residual copper ratio of the first main surface 11a. It was found that the warpage of the substrate 11 can be minimized by making it approximately the same. In other words, the ratio of the area of the metal pattern 14 to the area of the second major surface 11 b of the substrate 11 and the ratio of the area of the wiring 13 to the area of the first major surface 11 a of the substrate 11 are substantially the same. Warpage of the substrate 11 can be minimized.
 また、この実験では、第1の主面11aの残銅率と第2の主面11bの残銅率との差は1.4%であるが、第1の主面11aの残銅率と第2の主面11bの残銅率との差が5%以内であれば、基板11の反りを効果的に抑制することができる。つまり、基板11において、第1の主面11aにおける配線13の面積(銅面積)と第2の主面11bにおける金属パターン14の面積(銅面積)との差が、配線13及び金属パターン14の形状を問わず、5%以内にするとよい。 Moreover, in this experiment, although the difference between the residual copper ratio of the first main surface 11a and the residual copper ratio of the second main surface 11b is 1.4%, the residual copper ratio of the first main surface 11a is If the difference from the residual copper ratio of the second major surface 11 b is 5% or less, warpage of the substrate 11 can be effectively suppressed. That is, in the substrate 11, the difference between the area (copper area) of the wiring 13 in the first major surface 11 a and the area (copper area) of the metal pattern 14 in the second major surface 11 b is the difference between the wiring 13 and the metal pattern 14. Regardless of the shape, it should be within 5%.
 なお、第2の主面11bの残銅率が高いほど、LED素子12の放熱性は良くなる。この観点からは、第2の主面11bの残銅率は、25%以上とすることが好ましく、より好ましくは50%以上である。 In addition, the heat dissipation of LED element 12 becomes good, so that the residual copper rate of 2nd main surface 11b is high. From this viewpoint, the residual copper ratio of the second major surface 11b is preferably 25% or more, and more preferably 50% or more.
 以上、本実施の形態に係るLEDモジュール10によれば、基板11の第1の主面11aには配線13(第1の金属パターン)がパターン形成され、基板11の第2の主面11bには非配線である金属パターン14(第2の金属パターン)が形成されている。これにより、基板11の反り量を大幅に抑制することができるので、所望の配光特性を有するLEDモジュール及びランプを実現することができる。 As described above, according to the LED module 10 according to the present embodiment, the wiring 13 (first metal pattern) is pattern-formed on the first main surface 11 a of the substrate 11, and the second main surface 11 b of the substrate 11 is formed. A metal pattern 14 (second metal pattern) which is a non-wiring is formed. Thereby, since the curvature amount of the board | substrate 11 can be suppressed significantly, the LED module and lamp which have a desired light distribution characteristic are realizable.
 ここで、基板11の第2の主面11bに形成された金属膜をどの程度エッチングするかは、基板のアスペクト比や配線13及び金属パターン14の材料に応じて決定することができるが、第2の主面11bの金属膜をパターニングすることで(つまり、残銅率を100%未満とすることで)、少なくとも第2の主面11bの残銅率が100%のものに対しては基板11の反り量を低減することができる。 Here, the extent to which the metal film formed on the second major surface 11b of the substrate 11 is etched can be determined according to the aspect ratio of the substrate and the materials of the wiring 13 and the metal pattern 14, but By patterning the metal film of the main surface 11b of 2 (that is, by making the residual copper ratio less than 100%), at least the substrate with the residual copper ratio of 100% of the second main surface 11b The amount of warpage of 11 can be reduced.
 本願発明者らは、この残銅率に関して、さらに検討した。この結果、少なくとも、基板11の第2の主面11bの残銅率が60%以下であって、基板11の第2の主面11bの残銅率が第1の主面11aの残銅率以下(60%以下)の場合であれば、基板11の反り量を大幅に抑制できることが分かった。つまり、残銅率は基板の主面の面積に対するパターン形成後の銅面積としても表すことができるので、基板11の第2の主面11bの面積に対する金属パターン14(第2の金属パターン)の面積の割合が60%以下であって、基板11の第1の主面11aの面積に対する配線13(第1の金属パターン)の面積の割合が基板11の第2の主面11bの面積に対する金属パターン14の面積の割合以下とすることで、基板11の反り量を大幅に抑制できることが分かった。 The present inventors further examined this residual copper rate. As a result, the residual copper ratio of at least the second main surface 11b of the substrate 11 is 60% or less, and the residual copper ratio of the second main surface 11b of the substrate 11 is the residual copper ratio of the first main surface 11a. It was found that the amount of warpage of the substrate 11 can be largely suppressed in the following cases (60% or less). That is, since the residual copper ratio can also be expressed as the copper area after pattern formation with respect to the area of the main surface of the substrate, the metal pattern 14 (second metal pattern) with respect to the area of the second main surface 11b of the substrate 11 The area ratio is 60% or less, and the area ratio of the wiring 13 (first metal pattern) to the area of the first main surface 11 a of the substrate 11 is the metal to the area of the second main surface 11 b of the substrate 11 It was found that the amount of warpage of the substrate 11 can be significantly suppressed by setting the area ratio of the pattern 14 or less.
 次に、本実施の形態に係るLEDモジュール10の第2の特徴構成及びその作用効果について、本発明に至った経緯も含めて説明する。 Next, the second characteristic configuration of the LED module 10 according to the present embodiment and the function and effect thereof will be described including the background of the present invention.
 LEDモジュールにおいて、1つの基板に実装される複数のLED素子は、各々が同じ特性を有するように製造される。しかしながら、製造ばらつき等によって、LED素子間に特性ばらつきが生じる。例えば、各々のLED素子間においてVf特性が異なっている場合がある。 In the LED module, a plurality of LED elements mounted on one substrate are manufactured to have the same characteristics. However, due to manufacturing variations or the like, characteristic variations occur among the LED elements. For example, Vf characteristics may be different between the respective LED elements.
 この場合、各LED素子の特性を測定する等してLED素子を予め選別しておき、1つの基板には同程度のVf特性を有するLED素子を実装することが考えられる。しかしながら、このような方法では、コスト高になってしまう。 In this case, it is conceivable to sort the LED elements in advance by measuring the characteristics of each LED element or the like, and mounting the LED elements having similar Vf characteristics on one substrate. However, such a method is costly.
 一方、Vf特性が異なる複数のLED素子を1つの基板に実装すると、複数のLED素子の各々には同じ電流が流れることから、LED素子間において輝度ばらつきが発生する。 On the other hand, when a plurality of LED elements having different Vf characteristics are mounted on a single substrate, the same current flows in each of the plurality of LED elements, so that luminance variation occurs between the LED elements.
 したがって、複数のLED素子を有する1つのLEDモジュールでは、LED素子間に輝度ばらつきが発生するという問題がある。また、このようなLEDモジュールを備えるLEDランプでも輝度ばらつきが発生するという問題がある。 Therefore, in one LED module having a plurality of LED elements, there is a problem that luminance variation occurs between the LED elements. In addition, even in the case of an LED lamp provided with such an LED module, there is a problem that the luminance variation occurs.
 この問題に対して、本願発明者らが鋭意検討した結果、LED素子間にVf特性のばらつきがあったとしても、基板に形成されているレジストを利用することで、輝度ばらつきを抑制することができるということを見出した。以下、詳細に説明する。 With respect to this problem, as a result of intensive studies by the present inventors, even if there is variation in Vf characteristics between LED elements, suppressing variation in luminance by using a resist formed on the substrate. I found that I could do it. The details will be described below.
 上述のように、一般的に、基板11の第1の主面11aを被覆させるレジスト16としては、光取り出し(光束)を向上させるために、反射率が98%程度の高反射率レジストが用いられる。 As described above, generally, as the resist 16 for covering the first major surface 11 a of the substrate 11, a high reflectance resist with a reflectance of about 98% is used to improve light extraction (light flux). Be
 一方、本実施の形態では、レジスト16として、あえて反射率が90%以下の低反射率のレジストを用いることにした。すなわち、本願発明者は、反射率のレジストを用いることでレジストの色を変色させることができ、これによって、より低反射率のレジストを得ることができることを見出した。 On the other hand, in the present embodiment, a low reflectance resist whose reflectance is 90% or less is intentionally used as the resist 16. That is, the inventor of the present application has found that it is possible to change the color of the resist by using a resist of reflectance, and thereby it is possible to obtain a resist of lower reflectance.
 レジストを変色させる方法としては、例えば、レジストを加熱する方法がある。低反射率のレジストを加熱することによって、レジストを変色させることができる。例えば、レジスト16として低反射率の白レジストを用いた場合、このレジスト16を加熱すると、レジスト16は黄色みがかったように変色する。これにより、レジストの反射率を、加熱前に比べて低下させることができる。 As a method of changing the color of the resist, for example, there is a method of heating the resist. The resist can be discolored by heating the low reflectance resist. For example, in the case of using a low-reflectance white resist as the resist 16, when the resist 16 is heated, the resist 16 is discolored to look yellowish. Thereby, the reflectance of the resist can be reduced as compared to that before heating.
 レジスト16を加熱する方法としては、特に限定されるものではなく、製造工程中に、レジスト16を加熱する工程を別途設けてもよいし、既存の加熱工程を利用してレジスト16を加熱しても構わない。 The method for heating the resist 16 is not particularly limited, and a step of heating the resist 16 may be separately provided during the manufacturing process, or the resist 16 may be heated using an existing heating step. I don't care.
 既存の加熱工程を利用する場合、例えば、リフローはんだ(リフロー炉)を用いることが考えられる。この場合、レジスト16が形成された基板11にLED素子12を実装する際に、リフローはんだを用いることで、別途加熱工程を追加することなくレジスト16を加熱することができる。なお、鉛はんだを用いる場合は、例えば、120~150℃で120秒のプリ加熱と、ピーク温度が240℃で10秒間の本加熱とを行う。また、鉛フリーはんだの場合は、120~200℃で120秒のプリ加熱と、ピーク温度が260℃で10秒間の本加熱とを行う。 When using the existing heating process, it is possible to use reflow solder (reflow furnace), for example. In this case, when the LED element 12 is mounted on the substrate 11 on which the resist 16 is formed, the reflow soldering can be used to heat the resist 16 without adding a separate heating process. When lead solder is used, for example, preheating at 120 to 150 ° C. for 120 seconds and main heating at a peak temperature of 240 ° C. for 10 seconds are performed. In the case of lead-free solder, preheating at 120 to 200 ° C. for 120 seconds and main heating at a peak temperature of 260 ° C. for 10 seconds are performed.
 また、筐体20としてガラス管を用いる場合、筐体20と第1基台50とは、第1基台50に設けられた取り付け部材80にシリコーン接着剤を塗布して熱硬化(シリコーン硬化炉)することで固着させているが、この熱硬化時の加熱工程(約130℃、1時間)を利用することでも、別途加熱工程を追加することなくレジスト16を加熱することができる。 When a glass tube is used as the housing 20, the housing 20 and the first base 50 apply a silicone adhesive to the mounting member 80 provided on the first base 50 to thermally cure (silicone curing furnace) The resist 16 can be heated without using a separate heating step by using the heating step (about 130 ° C., 1 hour) at the time of heat curing.
 そして、加熱により変色させたレジスト16を用いることによって、LED素子間の輝度ばらつきを抑制することができる。以下、この点について、図6A及び図6Bを用いて説明する。図6Aは、従来のLEDモジュールを用いた場合の輝度ばらつきを説明するための図である。図6Bは、本発明の実施の形態に係るLEDモジュールを用いた場合の輝度ばらつきを説明するための図である。 And the brightness variation between LED elements can be suppressed by using the resist 16 that has been discolored by heating. Hereinafter, this point will be described with reference to FIGS. 6A and 6B. FIG. 6A is a diagram for explaining the luminance variation in the case of using a conventional LED module. FIG. 6B is a view for explaining the luminance variation when the LED module according to the embodiment of the present invention is used.
 なお、図6Aと図6BとのLEDモジュールでは、レジストの構成のみが異なり、図6Aでは、レジスト16Aとして高反射率(反射率が98%)の白レジストを用い、図6Bでは、レジスト16として低反射率(反射率が90%以下)の白レジストを加熱して変色させたもの(変色レジスト)を用いている。すなわち、図6Bに示す本実施の形態のLEDモジュールにおけるレジスト16の反射率は、低反射率となっている。 6A and 6B, only the configuration of the resist is different. In FIG. 6A, a white resist with high reflectance (reflectance of 98%) is used as the resist 16A, and as the resist 16 in FIG. 6B. A white resist with low reflectance (a reflectance of 90% or less) is heated and discolored (color-changing resist). That is, the reflectance of the resist 16 in the LED module of the present embodiment shown in FIG. 6B is low.
 また、図6A及び図6Bでは、4つのLED素子12を例示しており、左から輝度が中程度のもの、高いもの、中程度のもの、低いものが並んでいる場合を想定している。図6A及び図6Bに示すように、仮に、高輝度のLED素子の輝度を100とし、低輝度のLED素子の輝度を50とし、中輝度のLED素子の輝度を75としている。また、高反射率の白レジストを用いた場合に輝度が20%向上し、変色レジストを用いた場合に輝度が10%向上したとする。なお、これらの数値は、効果を理解しやすいように、仮に設定したものである。 Moreover, in FIG. 6A and FIG. 6B, four LED elements 12 are illustrated, and the case where the thing with a moderate brightness, a high brightness, a medium brightness, and a low brightness is located in a line from the left is assumed. As shown in FIGS. 6A and 6B, temporarily, the brightness of the high brightness LED element is 100, the brightness of the low brightness LED element is 50, and the brightness of the medium brightness LED element is 75. In addition, it is assumed that the luminance is improved by 20% when the white resist of high reflectance is used, and the luminance is improved by 10% when the color-change resist is used. Note that these numerical values are tentatively set so that the effects can be easily understood.
 この場合、図6Aに示すように、従来のLEDモジュール(高反射率の白レジスト)における輝度分布においては、高輝度のLED素子の輝度は120となり、低輝度のLED素子の輝度は60となる。したがって、図6Aの場合、LED素子間の最大輝度差は60となる。 In this case, as shown in FIG. 6A, in the luminance distribution in the conventional LED module (white resist with high reflectance), the luminance of the high luminance LED element is 120, and the luminance of the low luminance LED element is 60. . Therefore, in the case of FIG. 6A, the maximum luminance difference between the LED elements is 60.
 同様に、図6Bに示すように、本実施の形態におけるLEDモジュール(変色レジスト)における輝度分布においては、高輝度のLED素子の輝度は110となり、低輝度のLED素子の輝度は55となる。したがって、図6Bの場合、LED素子間の最大輝度差は55となる。 Similarly, as shown in FIG. 6B, in the luminance distribution in the LED module (discoloring resist) in the present embodiment, the luminance of the high luminance LED element is 110, and the luminance of the low luminance LED element is 55. Therefore, in the case of FIG. 6B, the maximum luminance difference between the LED elements is 55.
 このように、本実施の形態におけるLEDモジュール10のように、低反射率のレジスト16を用いて変色させることによって、最大輝度差を低減することができる。したがって、LED素子間の輝度ばらつきを抑制できる。 As described above, as in the LED module 10 according to the present embodiment, the maximum luminance difference can be reduced by changing the color using the resist 16 having a low reflectance. Therefore, the brightness variation between the LED elements can be suppressed.
 しかも、レジスト16として低反射率のレジストを用いることで、高反射率のレジストを用いる場合と比べて、コストを削減することもできる。 Moreover, by using a low-reflectance resist as the resist 16, costs can be reduced as compared to the case of using a high-reflectance resist.
 また、直管形LEDランプでは、各LED素子12の輝点が目立って光の粒々感が感じられる。特に、本実施の形態のように、SMD型のLED素子12を用いた直管形LEDランプでは、LED素子12の間が非発光となるので、光の粒々感がより一層感じられる。 Moreover, in the straight tube type LED lamp, the bright spots of the respective LED elements 12 are conspicuous, and the grain of light is felt. In particular, in the straight tube type LED lamp using the SMD type LED element 12 as in the present embodiment, since the light is not emitted between the LED elements 12, the graininess of light can be further felt.
 そこで、直管形LEDランプにおいて、本実施の形態におけるLEDモジュール10を用いることにより、LED素子間の輝度ばらつきを効果的に抑制することができるので、直管形LEDランプにおける上記粒々感を緩和することができる。 Therefore, in the straight tube type LED lamp, by using the LED module 10 according to the present embodiment, it is possible to effectively suppress the luminance variation between the LED elements, so the above graininess of the straight tube type LED lamp is alleviated. can do.
 なお、本実施の形態では、レジスト16として低反射率のレジストを用いているが、光束はあまり低下しないことも確認している。以下、この点に関して、次のような実験を行った。 Although a low reflectance resist is used as the resist 16 in the present embodiment, it is also confirmed that the luminous flux does not significantly decrease. The following experiment was conducted on this point below.
 この実験では、図1に示すような直管形LEDランプにおいて、レジスト16として高反射率レジスト(反射率98%)を用いたLEDモジュールを使用した場合と、レジスト16として黒色レジスト(反射率がゼロに近い)を用いたLEDモジュールを使用した場合とで、光束を測定した。 In this experiment, in a straight tube type LED lamp as shown in FIG. 1, when an LED module using a high reflectance resist (reflectance 98%) is used as the resist 16 and a black resist (reflectance is used as the resist 16 The luminous flux was measured in the case of using the LED module using near zero).
 その結果、高反射率レジストを用いたときの光束を100%とした場合、黒色レジストを用いたときの光束は97%であった。すなわち、黒色レジストを用いた場合であっても、光束はそれほど低下しないことが分かった。したがって、反射率が90%以下の低反射率レジストを用いた場合であっても、光束はそれほど低下しないと推測することができる。つまり、レジスト16として、変色させた低反射率のものを用いても、光取り出し効率への影響は限定的である。 As a result, when the luminous flux when using a high reflectance resist was 100%, the luminous flux when using a black resist was 97%. That is, it was found that the luminous flux does not decrease so much even when a black resist is used. Therefore, it can be estimated that the luminous flux does not decrease so much even when a low reflectance resist having a reflectance of 90% or less is used. That is, even if the resist 16 is used that has a low reflectance and is discolored, the influence on the light extraction efficiency is limited.
 以上、本実施の形態におけるLEDモジュール10及び直管形LEDランプ1によれば、光束を低下させることなく、かつ、低コストで、輝度ばらつきを抑制することができる。 As described above, according to the LED module 10 and the straight tube type LED lamp 1 in the present embodiment, it is possible to suppress the luminance variation at low cost without reducing the luminous flux.
 [その他の作用効果]
 また、本実施の形態では、図3の(b)に示すように、基板11を平面視したときにおいて、金属パターン14は、基板11の長手方向の端部に実装されたLED素子12の少なくとも一部と重ならないように形成されていることが好ましい。つまり、基板11の第1の主面11aに実装された複数のLED素子12のうち最端部に位置するLED素子12に対向する第2の主面11b(基板11を挟んでLED素子12に対向する第2の主面11b)には金属パターン14を形成せずに、金属膜(銅箔)をパターニングするときに、この部分もエッチング除去することが好ましい。
[Other effects]
Further, in the present embodiment, as shown in FIG. 3B, when the substrate 11 is viewed in plan, the metal pattern 14 is at least the LED element 12 mounted on the end of the substrate 11 in the longitudinal direction. It is preferable that it is formed so as not to overlap with a part. That is, of the plurality of LED elements 12 mounted on the first major surface 11 a of the substrate 11, the second major surface 11 b facing the LED element 12 positioned at the end portion When the metal film (copper foil) is patterned without forming the metal pattern 14 on the facing second main surface 11b), it is preferable to etch and remove this portion as well.
 金属パターン14は、LED素子12が実装されている第1の主面11aとは反対側の第2の主面11bに形成されたものであるが、基板11の両端部に実装されたLED素子12(つまり、より第2の主面に近いLED素子12)は、金属パターン14の近くに位置することになる。そこで、導電部(LED素子12)と金属パターン14との絶縁性を向上させるために、本実施の形態では、上記のように、金属パターン14を、基板11の両端部に位置するLED素子12と重畳しないように形成している。具体的には、金属パターン14の端部が基板11の長手方向の端部(短辺)から後退した位置に存在するようにしている。これにより、基板11の両端部における導電部(LED素子12)と金属パターン14との絶縁距離を長くすることができるので、基板11の耐圧を向上させることができる。 Although the metal pattern 14 is formed on the second main surface 11 b opposite to the first main surface 11 a on which the LED element 12 is mounted, the LED elements mounted on both ends of the substrate 11 12 (that is, the LED element 12 closer to the second main surface) will be located near the metal pattern 14. Therefore, in order to improve the insulation between the conductive portion (LED element 12) and the metal pattern 14, in the present embodiment, as described above, the LED pattern 12 is positioned at both ends of the substrate 11. And so as not to overlap. Specifically, the end of the metal pattern 14 is present at a position receded from the end (short side) of the substrate 11 in the longitudinal direction. Thereby, since the insulation distance of the conductive part (LED element 12) and the metal pattern 14 in the both ends of the board | substrate 11 can be lengthened, the proof pressure of the board | substrate 11 can be improved.
 なお、本実施の形態では、金属パターン14は、LED素子12の一部と重畳するように形成されているが、基板11の耐圧をより高くしたい場合には、金属パターン14はLED素子12全体と重複しないように形成する方がよい。 In the present embodiment, the metal pattern 14 is formed so as to overlap with a part of the LED element 12. However, when it is desired to further increase the withstand voltage of the substrate 11, the metal pattern 14 is the entire LED element 12. It is better to form so as not to overlap with.
 また、本実施の形態では、図3の(b)に示すように、基板11を平面視したときにおいて、金属パターン14は、電極端子15と重ならないように形成されていることが好ましい。つまり、基板11の第1の主面11aに設けられた電極端子15に対向する第2の主面11b(基板11を挟んで電極端子15に対向する第2の主面11b)には金属パターン14を形成せずに、金属膜(銅箔)をパターニングするときに、この部分もエッチング除去することが好ましい。 Further, in the present embodiment, as shown in FIG. 3B, the metal pattern 14 is preferably formed so as not to overlap the electrode terminal 15 when the substrate 11 is viewed in plan. That is, a metal pattern is formed on the second main surface 11 b (the second main surface 11 b facing the electrode terminal 15 with the substrate 11 interposed therebetween) facing the electrode terminal 15 provided on the first main surface 11 a of the substrate 11 When patterning a metal film (copper foil) without forming 14, it is preferable to etch away this portion as well.
 これにより、導電部(電極端子15)と金属パターン14との絶縁距離を長くすることができるので、基板11の耐圧を向上させることができる。 Thereby, since the insulation distance between the conductive portion (electrode terminal 15) and the metal pattern 14 can be increased, the withstand voltage of the substrate 11 can be improved.
 また、レジスト16の反射率を向上させるために、レジスト16を2層構造としてもよい。例えば、低反射率の白レジストを2層積層することで、実質的に高反射率のレジスト16を得ることができる。実際に2層構造のレジスト16を形成すると、少なくとも配線13上では高反射率になっていることが確認できた。つまり、低反射率の白レジストを1層形成した場合と比べて、配線13が見えにくくなっていた。 Further, in order to improve the reflectance of the resist 16, the resist 16 may have a two-layer structure. For example, a substantially high reflectance resist 16 can be obtained by laminating two low reflectance white resist layers. When the resist 16 having a two-layer structure was actually formed, it was confirmed that at least the wiring 13 had high reflectance. That is, the wiring 13 is difficult to see as compared with the case where one layer of low-reflectance white resist is formed.
 さらに、レジスト16に、LEDモジュールに文字等の情報をしるしたい場合がある。このような場合、2層構造のレジスト16の上に、さらにレジストを塗布又は印刷して3層目のレジストをエッチングすることによって、細くて凸状の文字(3層目のレジストを残した部分)を形成することができる。しかしながら、この場合、レジストを3層形成する必要があるので、コスト高になる。 Furthermore, there is a case where it is desired to mark information such as characters in the LED module in the resist 16. In such a case, a thin, convex character (a portion where the third layer resist is left) is formed by further applying or printing the resist on the two-layered resist 16 and etching the third layer resist. Can be formed. However, in this case, since it is necessary to form three layers of resist, the cost is increased.
 そこで、2層構造のレジスト16(ダブルレジスト)において、2層目のレジストに溝を設けることで文字をしるすことが考えられる。つまり、レジストを除去した部分を文字として認識できるようにする。この場合、レジストに形成する溝は、配線13の近傍に形成しないことが好ましい。以下、この点について、図7を用いて説明する。図7の(a)は、本発明の実施の形態の変形例に係るLEDモジュールの一部拡大断面図であり、図7の(b)は、(a)のA-A’線における同LEDモジュールの断面図である。 Therefore, it is conceivable to mark a character by providing a groove in the second layer resist in the two-layer resist 16 (double resist). That is, the portion from which the resist is removed can be recognized as characters. In this case, it is preferable that the groove formed in the resist is not formed in the vicinity of the wiring 13. Hereinafter, this point will be described with reference to FIG. (A) of FIG. 7 is a partially enlarged cross-sectional view of the LED module according to a modification of the embodiment of the present invention, and (b) of FIG. 7 is the same LED at line AA 'of (a) It is sectional drawing of a module.
 例えば、図7の(a)に示すように、各LED素子12の位置(順番)が分かるように、文字18として、LED素子12に近くにLED素子の番号をしるしたい場合がある。この場合、図7の(b)に示すように、レジスト16を下側レジスト16a(第1のレジスト)と当該下側レジスト16aに積層された上側レジスト16b(第2のレジスト)との2層構造とし、文字18の形状に合わせて上側レジスト16bに溝18aを掘ることで、文字18をしるすことができる。つまり、上側レジスト16bの一部を抜くことで文字18を視覚的に見えるようにする。具体的には、下側レジスト16aを形成した後に、下側レジスト16aに積層するように上側レジスト16bを形成し、その後、エッチング等を施すことによって所定形状の文字18に合わせて上側レジスト16bのみを選択的に除去する。 For example, as shown in (a) of FIG. 7, it may be desirable to number the LED elements near the LED elements 12 as characters 18 so that the positions (orders) of the LED elements 12 can be known. In this case, as shown in (b) of FIG. 7, the resist 16 is a two-layer consisting of the lower resist 16a (first resist) and the upper resist 16b (second resist) stacked on the lower resist 16a. The character 18 can be marked by forming the groove 18 a in the upper resist 16 b according to the structure and the shape of the character 18. That is, the character 18 is visually made visible by removing a part of the upper resist 16b. Specifically, after the lower resist 16a is formed, the upper resist 16b is formed to be laminated on the lower resist 16a, and thereafter, the upper resist 16b is matched with the character 18 of a predetermined shape by performing etching or the like. Selectively remove
 このとき、文字18(溝18a)が配線13の近傍に存在すると、文字18(溝18a)の部分のレジスト16は下側レジスト16aの一層だけとなる。この場合、配線13の近傍が下側レジスト16aの一層のみとなるので、二層である他の部分と比べて耐圧が低下する。特に、レジスト16(下側レジスト16a)は塗布等によって形成されるので、図7の(b)に示すように、配線13の上側角部ではレジスト16(下側レジスト16a)の膜厚が薄くなる。このため、文字18(溝18a)が配線13の上側角部に重なるように存在すると、耐圧が著しく低下してしまうことになる。実際に、文字18(溝18a)と配線13とを重ねて形成すると、放電現象が発生した。 At this time, when the characters 18 (grooves 18 a) exist in the vicinity of the wiring 13, the resist 16 in the portion of the characters 18 (grooves 18 a) is only one layer of the lower resist 16 a. In this case, since the vicinity of the wiring 13 is only one layer of the lower resist 16a, the breakdown voltage is lowered as compared with the other part which is two layers. In particular, since the resist 16 (lower resist 16a) is formed by coating or the like, the film thickness of the resist 16 (lower resist 16a) is thin at the upper corner of the wiring 13 as shown in FIG. 7B. Become. For this reason, if the characters 18 (grooves 18a) overlap the upper corner of the wiring 13, the withstand voltage is significantly reduced. In fact, when the characters 18 (grooves 18 a) and the wiring 13 were formed in an overlapping manner, a discharge phenomenon occurred.
 そこで、2層構造(複数層構造)のレジスト16において上側のレジストに溝を設けるような場合は、配線13の近傍に当該溝を形成しないことが好ましい。特に、上側のレジストに形成される溝は、配線13の上には形成されていないことが好ましい。逆に言うと、配線13の上には2層のレジストが存在するようにして溝を形成することが好ましい。これにより、基板11の耐圧が低下してしまうことを抑制することができる。 Therefore, in the case where a groove is provided in the resist on the upper side in the resist 16 having a two-layer structure (multiple layer structure), it is preferable not to form the groove in the vicinity of the wiring 13. In particular, it is preferable that the groove formed in the upper resist is not formed on the wiring 13. Conversely, it is preferable to form the groove such that two layers of resist exist on the wiring 13. Thereby, the breakdown voltage of the substrate 11 can be suppressed from decreasing.
 [照明装置]
 次に、本発明の実施の形態に係る照明装置2について、図8を用いて説明する。図8は、本発明の実施の形態に係る照明装置の概観斜視図である。
[Lighting device]
Next, the illumination device 2 according to the embodiment of the present invention will be described with reference to FIG. FIG. 8 is a schematic perspective view of a lighting device according to an embodiment of the present invention.
 図8に示すように、本発明の実施の形態に係る照明装置2は、ベースライトであって、直管形LEDランプ1と照明器具100とを備える。 As shown in FIG. 8, a lighting device 2 according to an embodiment of the present invention is a base light, and includes a straight tube LED lamp 1 and a lighting fixture 100.
 図8に示す直管形LEDランプ1としては、上記実施の形態における直管形LEDランプ1が照明用光源として用いられる。なお、本実施の形態では、図8に示すように、2本の直管形LEDランプ1を用いている。 As the straight tube LED lamp 1 shown in FIG. 8, the straight tube LED lamp 1 in the above embodiment is used as a light source for illumination. In the present embodiment, as shown in FIG. 8, two straight tube type LED lamps 1 are used.
 照明器具100は、直管形LEDランプ1と電気的に接続され、かつ、当該直管形LEDランプ1を保持する一対のソケット110と、ソケット110が取り付けられる器具本体120とを備える。器具本体120は、例えばアルミ鋼板をプレス加工等することによって成形することができる。また、器具本体120の内面は、直管形LEDランプ1から発せられた光を所定方向(例えば、下方である)に反射させる反射面となっている。 The lighting fixture 100 includes a pair of sockets 110 electrically connected to the straight tube LED lamp 1 and holding the straight tube LED lamp 1 and a fixture body 120 to which the socket 110 is attached. The tool body 120 can be formed, for example, by pressing an aluminum steel plate. Further, the inner surface of the tool body 120 is a reflective surface that reflects the light emitted from the straight tube LED lamp 1 in a predetermined direction (for example, the lower side).
 このように構成される照明器具100は、例えば天井等に固定具を介して装着される。なお、照明器具100には、直管形LEDランプ1の点灯を制御するための電源回路等が内蔵されている。また、直管形LEDランプ1を覆うように透光性のカバー部材が設けられていてもよい。 The lighting fixture 100 configured in this way is mounted on, for example, a ceiling via a fixture. The lighting apparatus 100 incorporates a power supply circuit or the like for controlling lighting of the straight tube LED lamp 1. In addition, a translucent cover member may be provided to cover the straight tube LED lamp 1.
 以上のように、本発明の実施の形態に係る直管形LEDランプ1は、照明装置等として実現することができる。 As mentioned above, the straight tube | pipe type LED lamp 1 which concerns on embodiment of this invention is realizable as an illuminating device etc. FIG.
 (変形例)
 次に、上記実施の形態に係る直管形LEDランプの変形例について、図面を用いて説明する。
(Modification)
Next, the modification of the straight tube | pipe type LED lamp which concerns on the said embodiment is demonstrated using drawing.
 上記の実施の形態において、筐体20は、非分割型の筒状のものを用いたが、分割型としてもよい。以下、図3に示すLEDモジュール10を分割型の直管形LEDランプに適用した場合について、図9を用いて説明する。図9は、本発明の実施の形態の変形例に係る直管形LEDランプの全体斜視図及び一部拡大図である。 In the above embodiment, the casing 20 is a non-divided cylindrical one, but may be a split type. Hereinafter, the case where the LED module 10 shown in FIG. 3 is applied to a split-type straight tube type LED lamp will be described using FIG. FIG. 9 is a whole perspective view and a partially enlarged view of a straight tube type LED lamp according to a modification of the embodiment of the present invention.
 図9に示すように、本変形例に係る直管形LEDランプ1Aは、従来の直管形蛍光灯に代替する照明用光源の一例であって、LEDモジュール10と、LEDモジュール10を覆う長尺状の透光性カバー20Aと、LEDモジュール10が載置される長尺状の基台50Aと、LEDモジュール10と基台50Aと、給電用口金30Aと、非給電用口金40Aとを備える。 As shown in FIG. 9, a straight tube type LED lamp 1A according to this modification is an example of a light source for illumination which substitutes for a conventional straight tube fluorescent lamp, and has a length covering the LED module 10 and the LED module 10 A light-transmissive cover 20A in the form of a strip, a long base 50A on which the LED module 10 is mounted, the LED module 10 and the base 50A, a cap 30A for feeding, and a cap 40A for non-feeding .
 本変形例では、透光性カバー20Aと基台50Aとによって長尺筒状の筐体(外囲器)が構成されている。つまり、透光性カバー20Aと基台50Aとを連結することによって、両端部に開口を有する筒状の筐体が構成される。また、透光性カバー20Aと基台50Aとを結合させたときの筐体は、長手方向に垂直な断面における外郭線が円形となっている。 In this modification, a long cylindrical case (outer envelope) is configured by the translucent cover 20A and the base 50A. That is, by connecting the translucent cover 20A and the base 50A, a cylindrical casing having an opening at both ends is formed. Further, when the translucent cover 20A and the base 50A are combined, the outline of the cross section perpendicular to the longitudinal direction is circular.
 透光性カバー20Aは、透光性を有する略半円筒状の透光部材であり、X軸に垂直な面(YZ平面)における断面形状が略半円弧状である。また、透光性カバー20Aは、周方向の両側の縁部が基台50Aの段差部に係合されることにより、金属基台に固定されている。なお、透光性カバー20Aは、例えば、アクリルやポリカーボネート等の樹脂材料を用いて形成することができる。 The translucent cover 20A is a translucent member having a substantially semi-cylindrical translucent member, and a cross-sectional shape in a plane (YZ plane) perpendicular to the X axis is substantially a semicircular arc. The translucent cover 20A is fixed to the metal base by engaging the edge portions on both sides in the circumferential direction with the step portion of the base 50A. In addition, translucent cover 20A can be formed using resin materials, such as an acryl and a polycarbonate, for example.
 基台50Aは、長尺状部材であって、透光性カバー20Aに覆われている。本変形例において、基台50Aは、金属によって構成された金属基台である。基台50Aとしては、例えば、アルミニウムからなる押出材を用いることができる。基台50Aは、LEDモジュール10で発生する熱を放熱するヒートシンクとして機能するとともに、LEDモジュール10を載置及び固定するための載置台として機能する。基台50Aからランプ外部に直接放熱させるために、基台50Aの一部はランプ外部に露出する構成となっている。なお、基台50Aとして、樹脂からなる樹脂基台を用いてもよい。 The base 50A is a long member and is covered by a translucent cover 20A. In the present modification, the base 50A is a metal base made of metal. For example, an extruded material made of aluminum can be used as the base 50A. The base 50A functions as a heat sink for radiating heat generated by the LED module 10, and also functions as a mounting table for mounting and fixing the LED module 10. In order to radiate heat directly from the base 50A to the outside of the lamp, a part of the base 50A is configured to be exposed to the outside of the lamp. A resin base made of resin may be used as the base 50A.
 基台50Aの透光性カバー20A側の内側部分は、LEDモジュール10を載置する載置面を有する板状の載置部51Aとなっている。また、基台50Aの載置面の背面である外側部分には、放熱部として複数の放熱フィン52Aが設けられている。放熱フィン52Aは、ランプ外部に露出しており、載置部51Aからランプ外方に突出するように設けられている。放熱フィン52Aは、基台50Aの長手方向(X軸方向)に沿って複数枚形成されている。なお、放熱フィン52Aは、基台50Aの短手方向(Y軸方向)に沿って複数枚形成されていてもよい。 The inner portion of the base 50A on the translucent cover 20A side is a plate-like placement portion 51A having a placement surface on which the LED module 10 is placed. Further, a plurality of heat radiation fins 52A are provided as a heat radiation portion on an outer side portion which is a back surface of the mounting surface of the base 50A. The heat dissipating fins 52A are exposed to the outside of the lamp and provided so as to project outward from the mounting portion 51A. A plurality of heat radiation fins 52A are formed along the longitudinal direction (X-axis direction) of the base 50A. A plurality of heat dissipating fins 52A may be formed along the lateral direction (Y-axis direction) of the base 50A.
 さらに、基台50Aの幅方向の両端部には、透光性カバー20Aの周方向の両側の縁部が係合される段差部が設けられている。透光性カバー20Aと基台50Aとは、透光性カバー20Aを長手方向に基台50Aにスライドさせることで又は透光性カバー20Aを基台50Aの上から嵌め込むことで係合させることができる。なお、透光性カバー20Aと基台50Aとは、接着剤によって接着されていてもよい。また、接着剤を用いずに、基台50Aの長手方向にレール溝を設け、このレール溝に、透光性カバー20Aの短手方向の端部又は透光性カバー20Aの長手方向に沿って設けられた突起部を挿通させることで、透光性カバー20Aと基台50Aとを係合させてもよい。 Furthermore, the step part with which the edge of the both sides of the circumferential direction of translucent cover 20A is engaged is provided in the both ends of the width direction of base 50A. The translucent cover 20A and the base 50A are engaged by sliding the translucent cover 20A in the longitudinal direction onto the base 50A or by fitting the translucent cover 20A from above the base 50A. Can. The translucent cover 20A and the base 50A may be bonded by an adhesive. Also, without using an adhesive, a rail groove is provided in the longitudinal direction of the base 50A, and in this rail groove, along the end of the translucent cover 20A in the lateral direction or the longitudinal direction of the translucent cover 20A. The translucent cover 20A and the base 50A may be engaged by inserting the provided protrusion.
 給電用口金30Aは、給電用口金本体31Aと一対の給電ピン32とからなる。給電用口金本体31Aは、非分割構造であって、透光性カバー20Aと基台50Aとで構成される長尺状筐体の長手方向の一方の端部を蓋するようにキャップ状に構成されている。 The power supply cap 30A includes a power supply cap body 31A and a pair of power supply pins 32. The base body 31A for feeding is an undivided structure, and is configured in a cap shape so as to cover one end in the longitudinal direction of a long casing composed of the translucent cover 20A and the base 50A. It is done.
 非給電用口金40Aは、非給電用口金本体41Aと一対の非給電ピン42とからなる。非給電用口金本体41Aは、非分割構造であって、透光性カバー20Aと基台50Aとで構成される長尺状筐体の長手方向の他方の端部を蓋するようにキャップ状に構成されている。なお、上記の実施の形態と同様に、非給電用口金40Aにアース機能を持たせても構わない。 The non-feed cap 40A includes a non-feed cap body 41A and a pair of non-feed pins. The non-feed mouthpiece main body 41A has an undivided structure, and is cap-shaped to cover the other end of the elongated casing formed by the translucent cover 20A and the base 50A in the longitudinal direction. It is configured. In addition, you may give a grounding function to the nozzle | cap | die 40A for non electric power feeding similarly to said embodiment.
 (その他)
 以上、本発明に係る照明装置、照明用光源及び照明装置について、実施の形態及び変形例に基づいて説明したが、本発明は、上記の実施の形態及び変形例に限定されるものではない。
(Others)
As mentioned above, although the illuminating device, the light source for illumination, and the illuminating device which concern on this invention were demonstrated based on embodiment and a modification, this invention is not limited to said embodiment and modification.
 例えば、上記の実施の形態及び変形例では、金属パターン14の形状はメッシュ状にしたがこれに限らない。金属パターン14は、所定の残銅率であれば、メッシュ状以外の形状としても構わない。例えば、金属パターン14は、複数又は単数のライン状としてもよいし、複数又は単数の環状としても構わない。 For example, in the above embodiment and modification, the shape of the metal pattern 14 is meshed, but the present invention is not limited to this. The metal pattern 14 may have a shape other than mesh as long as it has a predetermined residual copper ratio. For example, the metal pattern 14 may be in the form of a plurality or a single line, or may be in the form of a plurality or a single ring.
 また、金属パターン14のパターン形状は、矩形状に限らない。例えば、金属パターン14のパターン形状をハニカム形状としてもよい。この場合、例えば、図10Aに示すように、銅をライン状に残す部分がハニカム形状となるように金属パターン14(図中のハッチング部分)を形成してもよいし、図10Bに示すように、ハニカム形状に銅を抜いた残りの形状が金属パターン14(図中のハッチング部分)となるようにしてもよい。このように金属パターン14をハニカム形状とすることによって、基板11の物理的強度を向上させることができる。また、図11に示すように、金属パターン14(図中のハッチング部分)のパターン形状を三角形状にしてもよい。 Further, the pattern shape of the metal pattern 14 is not limited to the rectangular shape. For example, the pattern shape of the metal pattern 14 may be a honeycomb shape. In this case, for example, as shown in FIG. 10A, the metal pattern 14 (hatched portion in the figure) may be formed so that the portion in which copper is left in a line shape becomes a honeycomb shape, or as shown in FIG. The remaining shape obtained by removing copper in a honeycomb shape may be the metal pattern 14 (hatched portion in the figure). The physical strength of the substrate 11 can be improved by forming the metal pattern 14 into a honeycomb shape as described above. Further, as shown in FIG. 11, the pattern shape of the metal pattern 14 (hatched portion in the figure) may be triangular.
 また、上記の実施の形態及び変形例では、配線13は、基板11の長手方向の一方の端部から他方の端部にわたって形成されているが、これに限らない。例えば、配線13は、基板11の長手方向の一部に形成されていてもよい。この場合、基板11の第1の主面11aの配線13が形成されていない領域に、ダミーパターン(捨てパターン)13Dを形成するとよい。例えば、図12に示すように、配線13(ハッチング部分)が基板11の中央部に集中して形成されている場合は、基板11の両端部の各々にダミーパターン13D(図中のハッチング部分)を形成する。これにより、基板11の第1の主面11aにおける金属部分を第1の主面11a全体において均等化できるので、基板11の反りを効果的に抑制することができる。なお、ダミーパターン13Dは、第2の主面11bにおける金属パターン14と同様に非配線であって、電気的にはフローティング状態となっている。ダミーパターン13Dは、例えば配線13と同時に形成することができる。 In the above-described embodiment and modification, the wiring 13 is formed from one end of the substrate 11 in the longitudinal direction to the other end, but the invention is not limited thereto. For example, the wiring 13 may be formed in a part of the substrate 11 in the longitudinal direction. In this case, a dummy pattern (discarded pattern) 13D may be formed in a region of the first main surface 11a of the substrate 11 where the wiring 13 is not formed. For example, as shown in FIG. 12, when the wiring 13 (hatched portion) is formed concentrated in the central portion of the substrate 11, dummy patterns 13D (hatched portion in the figure) are formed on each of both ends of the substrate 11. Form Thereby, since the metal part in the 1st principal surface 11a of substrate 11 can be equalized in the whole 1st principal surface 11a, the curvature of substrate 11 can be controlled effectively. The dummy pattern 13D is a non-wiring like the metal pattern 14 on the second major surface 11b, and is in a floating state electrically. The dummy pattern 13D can be formed simultaneously with the wiring 13, for example.
 また、上記の実施の形態及び変形例では、基板11において、第1の主面11aに形成する配線13と第2の主面11bに形成する金属パターン14とを異なるパターンにしたが、配線13と金属パターン14とは同じ形状であってもよい。つまり、基板11の両面の金属部分を同じパターンとしてもよい。例えば、金属パターン14を配線13と同じ形状とすることができる。 Further, in the above-described embodiment and modification, in the substrate 11, the wiring 13 formed on the first major surface 11 a and the metal pattern 14 formed on the second major surface 11 b are different patterns. And the metal pattern 14 may have the same shape. In other words, the metal portions on both sides of the substrate 11 may have the same pattern. For example, the metal pattern 14 can have the same shape as the wiring 13.
 また、上記の実施の形態及び変形例では、基板11の長手方向の長さL1を300mm以上としたが、これに限らない。例えば、基板11の長さL1を300mm未満としてもよい。このように、基板11の長さL1を300mm未満とすることによって、基板11の反り量をさらに小さくすることができる。 Moreover, in said embodiment and modification, although length L 1 of the longitudinal direction of the board | substrate 11 was 300 mm or more, it does not restrict to this. For example, the length L1 of the substrate 11 may be less than 300 mm. By setting the length L1 of the substrate 11 to less than 300 mm as described above, the amount of warpage of the substrate 11 can be further reduced.
 また、基板11は、例えば1枚のマザー基板をダイシングすることによって複数に分割することで得られるが、図13に示すように、マザー基板11Mをダイシングした後に捨てる捨て基板11Dについても基板11と同様にメッシュ状の金属パターンを形成するとよい。これにより、マザー基板Mについても反りを抑制することができる。 Further, the substrate 11 is obtained, for example, by dividing one mother substrate into a plurality of pieces by dicing. However, as shown in FIG. 13, the substrate 11 and the disused substrate 11D discarded after dicing the mother substrate 11M are also obtained. Similarly, a mesh-like metal pattern may be formed. Thereby, the warp of the mother substrate M can be suppressed.
 また、上記の実施の形態及び変形例では、給電用口金30、30Aのみの片側から給電を行う片側給電方式としたが、両側から給電を行う両側給電方式としても構わない。この場合、非給電用口金40、40Aに代えて、給電用口金30、30Aを設ければよい。 In the above-described embodiment and modification, although the single-sided feeding method in which feeding is performed from one side of only the power supply caps 30, 30A, a double-sided feeding method in which feeding is performed from both sides may be used. In this case, the power supply caps 30, 30A may be provided instead of the non-power supply caps 40, 40A.
 また、上記の実施の形態及び変形例において、給電用口金30、30Aは、給電ピン32が一対のL形ピンであるL形口金としたが、G13口金としても構わない。同様に、非給電用口金40、40AもG13口金としてもよい。このように、2つの口金のうち一方を1本ピン(1ピン)とし、他方を2本ピン(2ピン)とする1ピン-2ピンの口金構造としてもよいし、2つの口金をいずれも2本ピン(2ピン)とする2ピン-2ピンの口金構造としてもよい。 Further, in the above-described embodiment and the modification, although the power supply pins 30, 30A are L-shaped bases in which the feed pins 32 are a pair of L-shaped pins, they may be G13 bases. Similarly, the non-power-supplying caps 40 and 40A may also be G13 caps. As described above, a one-pin two-pin base structure in which one of the two bases is one pin (one pin) and the other is two pins (two pins) may be used, or both bases may be two. A two-pin / two-pin base structure with two pins (two pins) may be used.
 また、上記の実施の形態及び変形例では、LEDモジュール10として、パッケージ化されたLED素子12を用いたが、これに限らない。例えば、基板11上に複数のLEDチップが直接実装された構成であるCOB(Chip On Board)型のLEDモジュールとしても構わない。この場合、複数のLEDチップは、蛍光体含有樹脂等の封止部材によって一括封止されていてもよいし個々に封止されていてもよい。 Moreover, in said embodiment and modification, although packaged LED element 12 was used as LED module 10, it does not restrict to this. For example, it may be a COB (Chip On Board) type LED module in which a plurality of LED chips are directly mounted on the substrate 11. In this case, the plurality of LED chips may be collectively sealed or individually sealed by a sealing member such as a phosphor-containing resin.
 また、上記の実施の形態及び変形例において、LEDモジュール10(LED素子12)は、青色LEDチップと黄色蛍光体とによって白色光を放出するように構成したが、これに限らない。例えば、赤色蛍光体及び緑色蛍光体を含有する蛍光体含有樹脂を用いて、これと青色LEDとを組み合わせることによって白色光を放出するように構成しても構わない。また、青色以外の色を発光するLEDチップを用いても構わない。 Moreover, in said embodiment and modification, although LED module 10 (LED element 12) was comprised so that white light might be emitted with blue LED chip and yellow fluorescent substance, it does not restrict to this. For example, a phosphor-containing resin containing a red phosphor and a green phosphor may be used to emit white light by combining this with a blue LED. Also, an LED chip that emits a color other than blue may be used.
 また、上記の実施の形態及び変形例において、発光素子としてLEDを例示したが、半導体レーザ等の半導体発光素子、又は、有機EL(Electro Luminescence)や無機EL等のEL素子、その他の固体発光素子を用いてもよい。 Further, in the above embodiment and modifications, an LED is illustrated as a light emitting element, but a semiconductor light emitting element such as a semiconductor laser, or an EL element such as organic EL (Electro Luminescence) or inorganic EL, or other solid light emitting element May be used.
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by arbitrarily combining components and functions in each embodiment without departing from the scope of the present invention or embodiments obtained by applying various modifications that those skilled in the art may think to each embodiment. The form is also included in the present invention.
 本発明は、LED等の発光素子を用いた発光装置、例えば長尺状の基板を有する発光装置等において広く利用することができる。また、当該発光装置は、照明用光源又は照明装置等において広く利用することができる。 The present invention can be widely used in a light emitting device using a light emitting element such as an LED, for example, a light emitting device having a long substrate. In addition, the light emitting device can be widely used in an illumination light source, an illumination device, and the like.
 1、1A 直管形LEDランプ
 2 照明装置
 10 LEDモジュール
 11 基板
 11a 第1の主面
 11b 第2の主面
 11M マザー基板
 11D 捨て基板
 12 LED素子
 12a パッケージ
 12b LEDチップ
 12c 封止部材
 13 配線
 13D ダミーパターン
 14 金属パターン
 15 電極端子
 16、16A、17 レジスト
 16a 下側レジスト
 16b 上側レジスト
 18 文字
 18a 溝
 20 筐体
 30、30A 給電用口金
 31、31A 給電用口金本体
 31a 第1給電用口金本体部
 31b 第2給電用口金本体部
 32 給電ピン
 40、40A 非給電用口金
 41、41A 非給電用口金本体
 41a 第1非給電用口金本体部
 41b 第2非給電用口金本体部
 42 非給電ピン
 50 第1基台
 50A 基台
 51 第1壁部
 51a 第1突出部
 51b 第1切り欠き部
 51A 載置部
 52 第2壁部
 52A 放熱フィン
 52a 第2突出部
 52b 第2切り欠き部
 53 付勢部
 54 開口
 55 第2基台
 60 コネクタ
 61 装着部
 62 電力供給線
 70 反射部材
 80 取り付け部材
 81 掛合片
 82 凹部
 90 点灯回路
 90a 回路基板
 90b 回路素子群
 90c 入力ソケット
 90d 出力ソケット
 91 点灯回路カバー
 100 照明器具
 110 ソケット
 120 器具本体
DESCRIPTION OF SYMBOLS 1 and 1A Straight tube type LED lamp 2 Lighting device 10 LED module 11 Substrate 11a 1st main surface 11b 2nd main surface 11M Mother substrate 11D Discarding substrate 12 LED element 12a package 12b LED chip 12c Sealing member 13 Wiring 13D dummy Pattern 14 Metal pattern 15 Electrode terminal 16, 16A, 17 Resist 16a Lower resist 16b Upper resist 18 Character 18a Groove 20 Case 30, 30A Power supply cap 31, 31A Power supply cap body 31a First power supply cap body 31b 2 Charge base body 32 Feeding pin 40, 40A base for non power supply 41, 41A base for non power supply 41a first base for non power supply 41b second base for power non body 42 non power feed pin 50 first group Pedestal 50A base 51 first wall 51a first projection 51 1st notch 51A placing portion 52 2nd wall 52A heat radiation fin 52a 2nd projection 52b 2nd notch 53 biasing portion 54 opening 55 second base 60 connector 61 mounting portion 62 power supply line 70 reflection Member 80 Mounting member 81 Hooking piece 82 Recess 90 Lighting circuit 90a Circuit board 90b Circuit element group 90c Input socket 90d Output socket 91 Lighting circuit cover 100 Lighting fixture 110 Socket 120 Fixture body

Claims (20)

  1.  長尺状の基板と、
     前記基板の第1の主面に実装された発光素子と、
     前記第1の主面にパターン形成され、前記発光素子と電気的に接続された配線である第1の金属パターンと、
     前記基板の前記第1の主面とは反対側の第2の主面にパターン形成され、非配線である第2の金属パターンと、を有する
     発光装置。
    With a long substrate,
    A light emitting element mounted on the first main surface of the substrate;
    A first metal pattern which is a wiring pattern formed on the first main surface and electrically connected to the light emitting element;
    A second metal pattern which is patterned on a second main surface opposite to the first main surface of the substrate and which is not a wire;
  2.  前記第2の金属パターンは、メッシュ状に形成されている
     請求項1に記載の発光装置。
    The light emitting device according to claim 1, wherein the second metal pattern is formed in a mesh shape.
  3.  前記第2の主面の面積に対する前記第2の金属パターンの面積の割合は、60%以下であり、
     前記第1の主面の面積に対する前記第1の金属パターンの面積の割合は、前記第2の主面の面積に対する前記第2の金属パターンの面積の割合以下である
     請求項1又は2に記載の発光装置。
    The ratio of the area of the second metal pattern to the area of the second main surface is 60% or less.
    The ratio of the area of the first metal pattern to the area of the first main surface is equal to or less than the ratio of the area of the second metal pattern to the area of the second main surface. Light emitting device.
  4.  前記第2の主面の面積に対する前記第2の金属パターンの面積の割合と、前記第1の主面の面積に対する前記第1の金属パターンの面積の割合とが、ほぼ同じである
     請求項1~3のいずれか1項に記載の発光装置。
    The ratio of the area of the second metal pattern to the area of the second main surface and the ratio of the area of the first metal pattern to the area of the first main surface are substantially the same. The light emitting device according to any one of to 3.
  5.  前記第1の金属パターンと前記第2の金属パターンとは、同じ金属材料によって構成されている
     請求項1~4のいずれか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 4, wherein the first metal pattern and the second metal pattern are made of the same metal material.
  6.  前記金属材料は、銅である
     請求項5に記載の発光装置。
    The light emitting device according to claim 5, wherein the metal material is copper.
  7.  前記基板を平面視したときに、前記第2の金属パターンは、前記基板の長手方向の端部に実装された前記発光素子の少なくとも一部と重ならないように形成されている
     請求項1~6のいずれか1項に記載の発光装置。
    When the substrate is viewed in plan, the second metal pattern is formed so as not to overlap with at least a part of the light emitting element mounted on an end portion in the longitudinal direction of the substrate. The light-emitting device according to any one of the above.
  8.  さらに、前記発光素子を発光させるための電力を外部から受ける電極端子を有し、
     前記基板を平面視したときに、前記第2の金属パターンは、前記電極端子と重ならないように形成されている
     請求項1~7のいずれか1項に記載の発光装置。
    Furthermore, it has an electrode terminal for receiving power for making the light emitting element emit light from the outside,
    The light emitting device according to any one of claims 1 to 7, wherein the second metal pattern is formed so as not to overlap the electrode terminal when the substrate is viewed in plan.
  9.  さらに、
     前記第1の金属パターンを覆うように前記第1の主面に形成された第1のレジストと、
     前記第1のレジストの上に積層された第2のレジストと、を有し、
     前記第2のレジストに形成される溝は、前記第1の金属パターンの上に形成されていない
     請求項1~8のいずれか1項に記載の発光装置。
    further,
    A first resist formed on the first main surface to cover the first metal pattern;
    And a second resist laminated on the first resist,
    The light emitting device according to any one of claims 1 to 8, wherein a groove formed in the second resist is not formed on the first metal pattern.
  10.  前記基板の長手方向の長さをL1とし、前記基板の短手方向の長さをL2とすると、
     L1/L2≧38.6である
     請求項1~9のいずれか1項に記載の発光装置。
    Assuming that the length in the longitudinal direction of the substrate is L1, and the length in the lateral direction of the substrate is L2.
    The light emitting device according to any one of claims 1 to 9, wherein L1 / L2 ≧ 38.6.
  11.  前記基板は、樹脂からなる樹脂基板である
     請求項1~10のいずれか1項に記載の発光装置。
    The light emitting device according to any one of claims 1 to 10, wherein the substrate is a resin substrate made of a resin.
  12.  さらに、前記第1の金属パターンを覆うように前記第1の主面に形成されたレジストを有し、
     前記発光素子は、複数個実装されており、
     前記レジストは、変色させたレジストである
     請求項1に記載の発光装置。
    And a resist formed on the first main surface to cover the first metal pattern,
    A plurality of light emitting elements are mounted,
    The light emitting device according to claim 1, wherein the resist is a discolored resist.
  13.  前記レジストを、白色から黄色に変色させている
     請求項12に記載の発光装置。
    The light emitting device according to claim 12, wherein the resist is discolored from white to yellow.
  14.  前記レジストを、加熱することで変色させている
     請求項12又は13に記載の発光装置。
    The light emitting device according to claim 12, wherein the resist is discolored by heating.
  15.  変色させる前の前記レジストの反射率は、90%以下である
     請求項12~14のいずれか1項に記載の発光装置。
    The light emitting device according to any one of claims 12 to 14, wherein the reflectance of the resist before color change is 90% or less.
  16.  変色させる前の前記レジストの反射率は、85%以上である
     請求項15に記載の発光装置。
    The light emitting device according to claim 15, wherein the reflectance of the resist before the color change is 85% or more.
  17.  請求項1~16のいずれか1項に記載の発光装置と、
     前記発光装置を収納する長尺状の筐体とを備える
     照明用光源。
    A light emitting device according to any one of claims 1 to 16;
    And a long case for housing the light emitting device.
  18.  さらに、前記筐体内に収納された長尺状の基台を備え、
     前記発光装置は、前記基台に配置されている
     請求項17に記載の照明用光源。
    And a long base housed in the housing.
    The illumination light source according to claim 17, wherein the light emitting device is disposed on the base.
  19.  前記筐体は、長尺状の透光性カバーと、外囲器の一部を構成する長尺状の基台とからなり、
     前記発光装置は、前記基台に配置されている
     請求項17に記載の照明用光源。
    The housing comprises an elongated translucent cover and an elongated base forming a part of the envelope.
    The illumination light source according to claim 17, wherein the light emitting device is disposed on the base.
  20.  請求項17~19のいずれか1項に記載の照明用光源を備える
     照明装置。
    An illumination device comprising the illumination light source according to any one of claims 17 to 19.
PCT/JP2013/004781 2012-08-23 2013-08-07 Light-emitting device, light source for lighting use, and lighting device WO2014030313A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014506645A JP5793678B2 (en) 2012-08-23 2013-08-07 Light emitting device, illumination light source, and illumination device
CN201390000106.0U CN203932097U (en) 2012-08-23 2013-08-07 Light-emitting device, illumination light source and lighting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-184589 2012-08-23
JP2012-184310 2012-08-23
JP2012184310 2012-08-23
JP2012184589 2012-08-23

Publications (1)

Publication Number Publication Date
WO2014030313A1 true WO2014030313A1 (en) 2014-02-27

Family

ID=50149643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004781 WO2014030313A1 (en) 2012-08-23 2013-08-07 Light-emitting device, light source for lighting use, and lighting device

Country Status (3)

Country Link
JP (2) JP5793678B2 (en)
CN (1) CN203932097U (en)
WO (1) WO2014030313A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534327A (en) * 2014-12-29 2015-04-22 苏州汉克山姆照明科技有限公司 LED illuminating module easy to cool down
JP2016171199A (en) * 2015-03-12 2016-09-23 イビデン株式会社 Light emission element mount board
WO2017057553A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Laminated body
FR3042847A1 (en) * 2015-10-23 2017-04-28 Valeo Vision LUMINOUS MODULE FOR A MOTOR VEHICLE WITH ELECTRONIC BIN ENCODING
US9741915B2 (en) 2015-08-03 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. LED module having LED element connected to metal layer exposed by opening in multi-layer resist
US9799803B2 (en) 2015-08-03 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. LED module with multi-layer resist
JP2017212405A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Light source module and lighting device
US10103298B2 (en) 2015-08-03 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. LED module
JP2019080694A (en) * 2017-10-30 2019-05-30 株式会社大一商会 Game machine
WO2022185603A1 (en) * 2021-03-04 2022-09-09 パナソニックIpマネジメント株式会社 Display structure
FR3121497A1 (en) * 2021-04-06 2022-10-07 Valeo Vision Motor vehicle light device comprising a light screen
EP4106502A3 (en) * 2017-11-10 2023-02-08 Seoul Semiconductor Co., Ltd. Light-emitting device filament

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162971A (en) 2015-03-04 2016-09-05 パナソニックIpマネジメント株式会社 Led module
JP6497615B2 (en) 2015-03-04 2019-04-10 パナソニックIpマネジメント株式会社 Mounting board and LED module using the same
JP6726872B2 (en) * 2016-01-07 2020-07-22 パナソニックIpマネジメント株式会社 Lighting device and lighting device
JP6704175B2 (en) * 2016-01-27 2020-06-03 パナソニックIpマネジメント株式会社 LED module and lighting fixture using the same
JP6689225B2 (en) * 2017-03-03 2020-04-28 株式会社大一商会 Amusement machine
JP6797493B2 (en) * 2017-08-04 2020-12-09 株式会社大一商会 Game machine
JP6797490B2 (en) * 2017-08-04 2020-12-09 株式会社大一商会 Game machine
JP6628774B2 (en) * 2017-08-04 2020-01-15 株式会社大一商会 Gaming machine
JP6797491B2 (en) * 2017-08-04 2020-12-09 株式会社大一商会 Game machine
JP6797492B2 (en) * 2017-08-04 2020-12-09 株式会社大一商会 Game machine
JP6888828B2 (en) * 2018-02-19 2021-06-16 株式会社オリンピア Pachinko machine
JP6780863B2 (en) * 2018-02-19 2020-11-04 株式会社オリンピア Game machine
JP6887206B2 (en) * 2018-07-25 2021-06-16 株式会社大一商会 Pachinko machine
JP2021000148A (en) * 2019-06-19 2021-01-07 株式会社オリンピア Game machine
JP7454192B2 (en) * 2020-11-30 2024-03-22 株式会社大一商会 gaming machine
JP2022085935A (en) * 2020-11-30 2022-06-09 株式会社大一商会 Game machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296385A (en) * 1987-05-28 1988-12-02 Matsushita Electric Ind Co Ltd Printed circuit board
JPH0485893A (en) * 1990-07-26 1992-03-18 Matsushita Electric Ind Co Ltd Printed circuit board
JP2004031636A (en) * 2002-06-26 2004-01-29 Matsushita Electric Ind Co Ltd Semiconductor device
JP2007035890A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Light source device and lighting fixture using it
JP2008282017A (en) * 2007-05-10 2008-11-20 Dongbu Hitek Co Ltd Method for designing mask
JP2009274449A (en) * 2009-01-28 2009-11-26 Suzuka Fuji Xerox Co Ltd Led substrate device, led print head and image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4067802B2 (en) * 2001-09-18 2008-03-26 松下電器産業株式会社 Lighting device
JP4969332B2 (en) * 2007-06-19 2012-07-04 シャープ株式会社 Substrate and lighting device
JP5522462B2 (en) * 2010-04-20 2014-06-18 東芝ライテック株式会社 Light emitting device and lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63296385A (en) * 1987-05-28 1988-12-02 Matsushita Electric Ind Co Ltd Printed circuit board
JPH0485893A (en) * 1990-07-26 1992-03-18 Matsushita Electric Ind Co Ltd Printed circuit board
JP2004031636A (en) * 2002-06-26 2004-01-29 Matsushita Electric Ind Co Ltd Semiconductor device
JP2007035890A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Light source device and lighting fixture using it
JP2008282017A (en) * 2007-05-10 2008-11-20 Dongbu Hitek Co Ltd Method for designing mask
JP2009274449A (en) * 2009-01-28 2009-11-26 Suzuka Fuji Xerox Co Ltd Led substrate device, led print head and image forming apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104534327A (en) * 2014-12-29 2015-04-22 苏州汉克山姆照明科技有限公司 LED illuminating module easy to cool down
JP2016171199A (en) * 2015-03-12 2016-09-23 イビデン株式会社 Light emission element mount board
US10103298B2 (en) 2015-08-03 2018-10-16 Panasonic Intellectual Property Management Co., Ltd. LED module
US9741915B2 (en) 2015-08-03 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. LED module having LED element connected to metal layer exposed by opening in multi-layer resist
US9799803B2 (en) 2015-08-03 2017-10-24 Panasonic Intellectual Property Management Co., Ltd. LED module with multi-layer resist
WO2017057553A1 (en) * 2015-09-30 2017-04-06 積水化学工業株式会社 Laminated body
JPWO2017057553A1 (en) * 2015-09-30 2017-10-05 積水化学工業株式会社 Laminate
US10477671B2 (en) 2015-09-30 2019-11-12 Sekisui Chemical Co., Ltd. Laminated body
FR3042847A1 (en) * 2015-10-23 2017-04-28 Valeo Vision LUMINOUS MODULE FOR A MOTOR VEHICLE WITH ELECTRONIC BIN ENCODING
JP2017212405A (en) * 2016-05-27 2017-11-30 パナソニックIpマネジメント株式会社 Light source module and lighting device
JP2019080694A (en) * 2017-10-30 2019-05-30 株式会社大一商会 Game machine
EP4106502A3 (en) * 2017-11-10 2023-02-08 Seoul Semiconductor Co., Ltd. Light-emitting device filament
WO2022185603A1 (en) * 2021-03-04 2022-09-09 パナソニックIpマネジメント株式会社 Display structure
FR3121497A1 (en) * 2021-04-06 2022-10-07 Valeo Vision Motor vehicle light device comprising a light screen
WO2022214497A1 (en) * 2021-04-06 2022-10-13 Valeo Vision Lighting device for a motor vehicle, comprising an illuminated screen

Also Published As

Publication number Publication date
JP5688553B2 (en) 2015-03-25
JPWO2014030313A1 (en) 2016-07-28
JP5793678B2 (en) 2015-10-14
JP2014170947A (en) 2014-09-18
CN203932097U (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5793678B2 (en) Light emitting device, illumination light source, and illumination device
WO2014030289A1 (en) Lamp and lighting device
JP6089309B2 (en) Lamp and lighting device
JP6065322B2 (en) Illumination light source and illumination device
JP6179772B2 (en) Illumination light source and illumination device
JPWO2014045523A1 (en) Illumination light source and illumination device
JP2016170981A (en) Luminaire
JP5971504B2 (en) Illumination light source and illumination device
JP5584841B2 (en) Illumination light source and illumination device
JP6288434B2 (en) Illumination light source and illumination device
JP5942205B2 (en) Lamp and lighting device
JP2014072154A (en) Light source for lighting and lighting device
JP2014072149A (en) Light source for lighting and lighting device
JP6198127B2 (en) LIGHTING LIGHT MANUFACTURING METHOD, LIGHTING LIGHT SOURCE, AND LIGHTING DEVICE
JP5884054B2 (en) Illumination light source and illumination device
JP6156741B2 (en) Illumination light source and illumination device
JP6124054B2 (en) Illumination light source and illumination device
JP6112444B2 (en) Illumination light source and illumination device
JP2014072153A (en) Light source for lighting and lighting device
JP6052733B2 (en) Illumination light source and illumination device
JP5906405B2 (en) Illumination light source and illumination device
WO2014041721A1 (en) Light source for illumination and illumination device
JP6123988B2 (en) Illumination light source and illumination device
JP5891402B2 (en) Illumination light source and illumination device
JP2016170983A (en) Luminaire and light fitting

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000106.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014506645

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830761

Country of ref document: EP

Kind code of ref document: A1