WO2017057422A1 - 薄膜型lc部品およびその実装構造 - Google Patents

薄膜型lc部品およびその実装構造 Download PDF

Info

Publication number
WO2017057422A1
WO2017057422A1 PCT/JP2016/078552 JP2016078552W WO2017057422A1 WO 2017057422 A1 WO2017057422 A1 WO 2017057422A1 JP 2016078552 W JP2016078552 W JP 2016078552W WO 2017057422 A1 WO2017057422 A1 WO 2017057422A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
capacitor
inductor
substrate
component
Prior art date
Application number
PCT/JP2016/078552
Other languages
English (en)
French (fr)
Inventor
植木紀行
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201690001126.3U priority Critical patent/CN208061869U/zh
Priority to JP2017543467A priority patent/JPWO2017057422A1/ja
Publication of WO2017057422A1 publication Critical patent/WO2017057422A1/ja
Priority to US15/928,217 priority patent/US20180226391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/10Inductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/19011Structure including integrated passive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/19015Structure including thin film passive components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19103Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device interposed between the semiconductor or solid-state device and the die mounting substrate, i.e. chip-on-passive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors

Definitions

  • the present invention relates to an LC component, and more particularly, to a thin film LC component suitable for thickness reduction and a mounting structure thereof.
  • IPD Integrated Passive Device
  • Patent Document 1 discloses that in the process of forming a thin film circuit, a dielectric film of a thin film capacitor and an interlayer insulating film of a thin film inductor are simultaneously formed.
  • a capacitor is formed by sequentially forming a first electrode layer, a dielectric layer, and a second electrode layer on a substrate, and a planar inductor composed of a magnetic film and a coil is formed thereon, whereby the capacitor And ensuring the isolation of the inductor.
  • JP-A-6-53406 Japanese Patent Laid-Open No. 2001-44778
  • IPD is a passive component formed by a thin film process, its thickness dimension can be greatly reduced compared to passive components formed by a thick film process or a sheet multilayer process.
  • An object of the present invention is to provide a thin-film LC component that is thin and has a small area and in which the parasitic inductance of the thin-film capacitor is suppressed, and a mounting structure thereof.
  • the thin film LC component of the present invention is A substrate having a first surface and a second surface facing each other; A thin film capacitor formed on the first surface by a thin film process; A thin film inductor formed by a thin film process in a region of the second surface at least partially overlapping the thin film capacitor in plan view; An interlayer connection conductor formed on the substrate and connecting the thin film capacitor and the thin film inductor; An insulating layer formed on the first surface side and covering the thin film capacitor; A terminal electrode formed on the surface of the insulating layer and connected to the thin film capacitor and the thin film inductor; It is characterized by having.
  • the area of the formation region of the thin film capacitor and the thin film inductor is reduced in plan view.
  • the terminal electrode is formed not on the thin-film inductor formation side of the substrate but on the thin-film capacitor formation side, the thin-film capacitor can be placed at the shortest distance on the circuit formed on the printed wiring board (mounting substrate), and the parasitic inductance Is reduced.
  • the substrate is interposed between the thin film inductor and the thin film capacitor, that is, the thin film inductor is separated from the thin film capacitor, it is difficult for eddy current to flow through the electrode film of the thin film capacitor. Therefore, a thin film inductor having a high Q value is configured.
  • the thin film inductor and the thin film capacitor each have a first end and a second end, the first end of the thin film capacitor and the second end of the thin film inductor are connected, and the plurality of terminal electrodes are:
  • the thin film capacitor includes at least three terminal electrodes respectively connected to the first end of the thin film capacitor, the second end of the thin film capacitor, and the first end of the thin film inductor. Accordingly, it is only necessary to electrically provide three terminal electrodes on the outside.
  • an LC low-pass filter or a smoothing circuit can be configured simply by connecting these terminal electrodes to a circuit on the substrate.
  • the thin film inductor is composed of a plurality of thin film inductors each having a first end and a second end, and the plurality of terminal electrodes are connected to the first ends of the plurality of thin film inductors. It is preferable to include terminal electrodes connected to each other. Thereby, a low-pass filter and a smoothing circuit having different time constants can be selectively used between a plurality of inductors and a shared capacitor.
  • the thin film capacitor includes a first electrode film parallel to the first surface, a second electrode film facing the first electrode film, and the first electrode film.
  • the dielectric thin film is interposed between one electrode film and the second electrode film, and the dielectric thin film is preferably a barium strontium titanate thin film.
  • the total thickness including the substrate, the thin film capacitor, the thin film inductor, and the insulating layer is preferably 100 ⁇ m or less. If it is this size, it can arrange
  • the mounting structure of the thin film type LC component of the present invention is a mounting structure of a semiconductor chip, a capacitor and an inductor on a mounting substrate, The semiconductor chip is mounted face down on the substrate via bumps,
  • the capacitor and the inductor are: A substrate having a first surface and a second surface facing each other; A thin film capacitor formed on the first surface by a thin film process; A thin film inductor formed by a thin film process in a region of the second surface that substantially overlaps the thin film capacitor in plan view; An interlayer connection conductor formed on the substrate and connecting the thin film capacitor and the thin film inductor; An insulating layer formed on the first surface side and covering the thin film capacitor; A terminal electrode formed on the surface of the insulating layer and connected to the thin film capacitor and the thin film inductor; It is configured as a thin film type LC component having The thin film LC component is arranged in a gap between the mounting substrate and the semiconductor chip.
  • a thin-film LC component having a small thickness and a small area or a thin-film LC component in which the parasitic inductance of the thin-film capacitor is suppressed is mounted on the substrate together with the semiconductor chip.
  • the present invention it is possible to configure a thin-film LC component having a thin and small area, a thin-film LC component in which the parasitic inductance of the thin-film capacitor is suppressed, and a small electronic device including the thin-film LC component.
  • FIG. 1A is a plan view of the thin film type LC component 101 according to the first embodiment
  • FIG. 1C is a bottom view of the thin film type LC component 101
  • FIG. 1B is a plan view of FIG. It is a longitudinal cross-sectional view of the thin film type LC component 101 in the XX line in B).
  • FIG. 2 is a circuit diagram of the thin film LC component 101.
  • FIG. 3A is a plan view in a state where a plurality of thin films for forming a thin film capacitor is formed on the substrate 10
  • FIG. 3B is a cross-sectional view taken along the line XX.
  • FIG. 4A is a plan view showing a state in which a plurality of thin films in the thin film capacitor forming portion is patterned
  • FIG. 4B is a cross-sectional view taken along the line XX.
  • FIG. 5A is a plan view in a state where the solder resist film 31 is formed in the thin film capacitor forming portion, and FIG. 5B is a cross-sectional view taken along the line XX.
  • FIG. 6A is a plan view of the solder resist film 31 with openings H1, H2, and H3 formed therein, and FIG. 6B is a cross-sectional view taken along the line XX.
  • FIG. 7A is a plan view in a state where the vias 41 and 42 and the terminal electrodes 51, 52, and 53 are formed, and FIG. 7B is a cross-sectional view taken along the line XX.
  • FIG. 7A is a plan view in a state where the vias 41 and 42 and the terminal electrodes 51, 52, and 53 are formed
  • FIG. 7B is a cross-sectional view taken along the line XX.
  • FIG. 8A is a plan view in a state in which a solder resist film 31 partially covering the terminal electrodes 51, 52 and 53 is formed, and FIG. 8B is a cross-sectional view taken along the line XX.
  • FIG. 9A is a plan view in a state where the openings H61 and H62 are formed in the substrate 10 and the like, and FIG. 9B is a cross-sectional view along the line XX.
  • FIG. 10A is a plan view of the substrate 10 with Si through electrodes 61 and 62 formed thereon, and FIG. 10B is a cross-sectional view taken along the line XX.
  • FIG. 11C is a bottom view of the second surface S2 of the substrate 10 with the thin-film inductor conductive pattern 70 formed thereon, FIG.
  • FIG. 11A is a plan view thereof, and FIG. It is sectional drawing in a line.
  • FIG. 12 is an exploded perspective view of the thin-film LC component 102 according to the second embodiment.
  • FIG. 13 is a perspective view of the thin film LC component 102.
  • FIG. 14A is a plan view of a state in which the thin film inductor TFL is formed on the substrate 10L, and
  • FIG. 14B is a cross-sectional view taken along the line XX.
  • FIG. 15A is a plan view of the substrate 10L on which the thin film inductor TFL is formed and the substrate 10C on which the thin film capacitor TFC is bonded, and
  • FIG. 15B is a cross section taken along the line XX.
  • FIG. 16A is a plan view in a state where terminal electrodes 51, 52, and 53 are formed
  • FIG. 16B is a cross-sectional view taken along the line XX.
  • FIG. 17 is a cross-sectional view of an electronic component having a SiP (system a package) structure according to the third embodiment.
  • FIG. 18 is a conceptual diagram showing the connection structure of the smoothing circuit to the microprocessor according to the fourth embodiment.
  • 19A and 19B are circuit diagrams of a thin film type LC component according to the fifth embodiment.
  • FIG. 1A is a plan view of the thin film type LC component 101 according to the first embodiment
  • FIG. 1C is a bottom view of the thin film type LC component 101
  • FIG. 1B is a plan view of FIG. It is a longitudinal cross-sectional view of the thin film type LC component 101 in the XX line in B).
  • the thin film LC component 101 includes a substrate 10 having a first surface S1 and a second surface S2 facing each other.
  • a thin film capacitor TFC is formed on the first surface S1 of the substrate 10, and a thin film inductor TFL is formed on the second surface S2.
  • the thin film inductor TFL is formed in a region overlapping the thin film capacitor TFC in plan view of the substrate 10.
  • the substrate 10 is formed with Si through electrodes 61 and 62 for connecting the thin film capacitor TFC and the thin film inductor TFL.
  • solder resist film (insulating layer) 31 covering the thin film capacitor TFC is formed on the first surface S1 side of the substrate 10.
  • terminal electrodes 51, 52, 53 connected to the thin film capacitor TFC and the thin film inductor TFL are formed.
  • FIG. 2 is a circuit diagram of the thin film LC component 101.
  • ports P1, P2, and P3 correspond to the terminal electrodes 51, 52, and 53, respectively.
  • the thin film type LC component 101 includes a thin film capacitor TFC connected between the ports P1 and P2 and a thin film inductor TFL connected between the ports P2 and P3.
  • the thin film type LC component 101 of this embodiment functions as a low-pass filter or a smoothing circuit using the port P3 as a ground potential, the port P1 as an input port, and the port P2 as an output port.
  • the area of the formation region of the thin film capacitor TFC and the thin film inductor TFL in the plan view is reduced. Further, since the terminal electrodes 51, 52 and 53 are formed not on the thin film inductor TFL formation side of the substrate 10 but on the thin film capacitor TFC formation side, the thin film capacitor TFC is a circuit formed on a printed wiring board (mounting substrate). Can be arranged at the shortest distance, and the parasitic inductance is reduced. Therefore, the resonance frequency of the LC series resonance between the parasitic inductance and the thin film capacitor can be made higher than the operating frequency band, so that a low-pass filter characteristic or a smoothing characteristic can be obtained over a wide band.
  • the substrate 10 is interposed between the thin film inductor TFL and the thin film capacitor TFC, that is, the thin film inductor TFL is separated from the thin film capacitor TFC, it is difficult for eddy current to flow to the electrode of the thin film capacitor TFC. Therefore, a thin film inductor TFL having a high Q value is configured.
  • FIG. 3A, FIG. 4A, FIG. 5A, FIG. 6A, FIG. 7A, FIG. 8A, FIG. 9A, FIG. 10A, and FIG. (A) is a plan view in each step
  • FIG. 3 (B), FIG. 4 (B), FIG. 5 (B), FIG. 6 (B), FIG. 7 (B), FIG. 9B, FIG. 10B, and FIG. 11B are cross-sectional views along the line XX in each step.
  • FIG. 11C is a bottom view.
  • the substrate 10 is, for example, a high-resistance Si substrate.
  • a BST film barium strontium titanate film, (Ba, Sr) TiO 3 film
  • a Pt electrode film 22, a BST film 23, and a Pt electrode film 24 are formed in this order.
  • These BST films are formed by a spin coating process and a baking process, and the Pt electrode film is formed by sputtering.
  • the BST film 21 is used as an adhesion layer for the Si substrate 10. Since the BST film 21 is not related to the capacitance, any film other than the BST film may be used as long as it functions as an adhesion layer for the Si substrate 10.
  • the Pt electrode film may be made of another noble metal material having high conductivity and excellent oxidation resistance, such as Au.
  • the BST films 21, 23, 25 and the Pt electrode films 22, 24 are patterned by photolithography over a predetermined number of times. That is, the Pt electrode film 221 that is subsequently conducted to the port P1 is separated and exposed, and the Pt electrode film 222 that is later conducted to the port P2 is exposed.
  • solder resist film 31 such as epoxy or polyimide is spin-coated.
  • openings H1, H2, and H3 are formed in the solder resist film 31.
  • 0.1 ⁇ m / 1.0 ⁇ m / 0.1 ⁇ m of Ti / Cu / Ti is formed in the openings H1, H2, H3 and on the surface of the solder resist film 31 by sputtering.
  • the conductor film is formed.
  • vias 41, 42, and 43 are formed in the openings H1, H2, and H3.
  • the terminal electrodes 51, 52, 53 are formed by patterning the Ti / Cu / Ti film on the surface of the solder resist film 31.
  • solder resist film 31 is further formed to expose the terminal electrodes 51, 52, and 53.
  • openings H61 and H62 are formed in the substrate 10 by etching, drilling, or the like.
  • a Ti / Cu / Ti conductor film for example, is formed in the openings H61 and H62 and on the second surface S2 of the substrate 10.
  • Si through electrodes (through-silicon vias, TSV) 61 and 62 are formed in the openings H61 and H62.
  • the conductor film on the surface of the second surface S2 of the substrate 10 is removed by a CMP method or the like.
  • a Cu plating film is formed on the second surface S2 of the substrate 10 and patterned to form the second surface S2 of the substrate 10 on the second surface S2. Then, the conductive pattern 70 that acts as the thin film inductor TFL is formed.
  • the second surface S2 of the substrate 10 is spin-coated with a solder resist film 32 such as epoxy or polyimide, so that the thin film type LC component 101 shown in FIGS. obtain.
  • a solder resist film 32 such as epoxy or polyimide
  • 3 to 11 are shown in a single part state for convenience of explanation, but in actuality, the above processing is performed in units of wafers and finally divided into single parts (pieces). Is done.
  • Second Embodiment a thin film type LC component 102 in which a thin film capacitor and a thin film inductor individually produced are integrated will be described.
  • FIG. 12 is an exploded perspective view of the thin film type LC component 102
  • FIG. 13 is a perspective view of the thin film type LC component 102.
  • the dielectric film and the insulating film are not shown.
  • a thin film capacitor TFC is configured on the first surface S1 of the substrate 10C, and a thin film inductor TFL is configured on the second surface S2 of the substrate 10L.
  • FIGS. 14A, 15A, and 16A are all plan views in each step, and FIGS. 14B, 15B, and 16B are all in each step.
  • FIG. 14A, 15A, and 16A are all plan views in each step, and FIGS. 14B, 15B, and 16B are all in each step.
  • a substrate 10L is, for example, a high-resistance Si substrate.
  • a conductor pattern 70 acting as a thin film inductor TFL is formed.
  • a solder resist film 32 covering the conductor pattern 70 is formed by coating.
  • Si through electrodes (through-silicon vias, TSV) 61 and 62 are formed on the substrate 10L.
  • a thin film inductor TFL having Si through electrodes 61 and 62 is formed.
  • a BST film 21, a Pt electrode film 22, a BST film 23, a Pt electrode film 24, and a BST film 25 are sequentially formed on the first surface S1, and a solder resist film is formed.
  • 31 is covered, and vias 41, 42, and 43 are formed.
  • a thin film capacitor TFC is configured.
  • Si through electrodes that are electrically connected to the vias 41 and 42 are formed on the substrate 10C.
  • the substrate 10L on which the thin film inductor TFL shown in FIGS. 14A and 14B is formed and the substrate 10L on which the thin film capacitor TFC is formed are back to back via an anisotropic conductive film (AFC). Join. As a result, the structure shown in FIGS. 15A and 15B is obtained.
  • a Cu plating film is formed on the surface of the solder resist film 31, and the terminal electrodes 51, 52, 53 are formed by patterning the Cu plating film. .
  • the thin film inductor and the thin film capacitor may be formed on different substrates and then joined together to form a thin film LC component.
  • Third Embodiment an example of a mounting structure of a thin film type LC component and an electronic component including the thin film type LC component is shown.
  • FIG. 17 is a cross-sectional view of an electronic component having a SiP (system in package) structure according to the third embodiment.
  • a semiconductor chip 90 and other chip components are mounted on the upper surface of the mounting substrate 80.
  • the semiconductor chip 90 is a BGA (Ball grid array) type package using solder balls 91 and is mounted face-down on the mounting substrate 80 via solder bumps.
  • the thin film LC component 101 is mounted at the mounting position of the semiconductor chip 90 on the mounting substrate 80. That is, the thin film LC component 101 is disposed in the gap between the face surface of the semiconductor chip 90 and the mounting substrate 80.
  • the structure of the thin film LC component 101 is as shown in the first embodiment.
  • the solder ball 91 of the semiconductor chip 90 has a diameter of about 250 ⁇ m before mounting and a diameter of about 200 ⁇ m after mounting. Therefore, when the thickness of the thin film type LC component 101 is 100 ⁇ m or less, the thin film type LC component 101 can be disposed in the gap between the face surface of the semiconductor chip 90 and the mounting substrate 80. Considering the reduction in the size of the solder balls 91, the thickness of the thin film LC component 101 is preferably 70 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the upper part of the mounting substrate 80 is sealed with a sealing resin 82 to form an electronic component 201 having a Sip structure.
  • This electronic component 201 is also a BGA (Ball grid array) type package using solder balls 81 and is surface-mounted on the circuit board 200.
  • the thin film LC component 101 may be bonded to the semiconductor chip 90 side instead of the mounting substrate 80 side.
  • FIG. 18 is a conceptual diagram showing the connection structure of the smoothing circuit to the microprocessor according to the fourth embodiment.
  • the microprocessor chip 98 includes a plurality of circuit blocks having different operating power supply voltages. In each circuit block, individual power supply circuits PSa, PSb, PSc and PSd corresponding to the power supply voltage are formed.
  • the smoothing circuits 101a, 101b, 101c, 101d of the respective power supply circuits PSa, PSb, PSc, PSd are provided outside the microprocessor chip 98 and are connected via a wiring pattern on the substrate.
  • Each of these smoothing circuits 101a, 101b, 101c, and 101d is the thin film type LC component already shown. These thin-film LC parts are arranged in the gap between the microprocessor chip and the substrate.
  • FIGS. 19A and 19B are circuit diagrams of thin film type LC components according to the fifth embodiment.
  • the first ends of the four thin film inductors L1, L2, L3, and L4 are electrically connected to the ports P11, P12, P13, and P14, and the second ends of the thin film inductors L1, L2, L3, and L4.
  • the ends are commonly connected to conduct to the port P2.
  • Both ends of the thin film capacitor C are electrically connected to the port P2 and the port P3.
  • FIG. 19B is different from FIG. 19A in that the first ends of the four thin film inductors L1, L2, L3, and L4 are connected in common and conducted to the port P1.
  • the time constant of the thin-film LC component can be switched by selectively connecting a circuit such as a power supply circuit and the ports P11, P12, P13, and P14.
  • the DC resistance (DCR) can be reduced by connecting the four thin film inductors L1, L2, L3, and L4 in parallel.
  • the thin film inductor TFL is almost entirely formed in a region overlapping with the thin film capacitor TFC in a plan view of the substrate 10 is shown.
  • a part of the thin film inductor TFL is part of the thin film capacitor TFC. It may be formed in a region overlapping with. If at least a part of the thin film inductor TFL is formed in a region overlapping with the thin film capacitor TFC, the area of the thin film capacitor and thin film inductor formation region in plan view is reduced.
  • the conductor pattern 70 is directly formed on the surface of the substrate 10 that is a Si substrate, but a protective film such as SiO 2 is formed on the surface of the Si substrate, The conductor pattern 70 may be formed on the surface.
  • a high-resistance Si substrate is used as a substrate
  • a glass substrate, an alumina ceramic substrate, or the like may be used.
  • the thin film capacitor is formed on the substrate first and the thin film inductor is formed later.
  • the order of forming the thin film capacitor and the thin film inductor on the substrate may be reversed.
  • the substrate may be polished to reduce the plate thickness.
  • the Si through electrode TSV is formed on the substrate (high resistance Si substrate) 10. This is because a through hole is formed in the Si substrate and Cu plating is embedded, but a through conduction path may be formed by doping by implanting impurities into the Si substrate instead of TSV.
  • solder resist films 31 and 32 that are organic interlayer insulating films are formed has been described, but an inorganic insulating film may be formed by a plasma CVD method or the like. Moreover, you may form an insulating film by sticking an insulating resin sheet.
  • the semiconductor substrate is exemplified as the “substrate” according to the present invention, but a glass substrate or a ceramic substrate may be used.
  • TFC Thin film capacitor
  • TFL Thin film inductor TSV ... Si through electrode 10, 10C, 10L ... Substrate 21, 23, 25 ... BST film 22, 24 ... Pt electrode film 31, 32 ... Solder resist film (insulating layer) 41, 42, 43 ... vias 51, 52, 53 ... terminal electrodes 61, 62 ... Si through electrode 70 ... conductive pattern 80 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

薄膜型LC部品(101)は、互いに対向する第1面(S1)および第2面(S2)を有する基板(10)と、第1面(S1)に薄膜プロセスによって形成された薄膜キャパシタ(TFC)と、第2面(S2)のうち平面視で薄膜キャパシタ(TFC)と少なくとも一部が重なる領域に、薄膜プロセスによって形成された薄膜インダクタ(TFL)と、基板(10)に形成され、薄膜キャパシタ(TFC)と薄膜インダクタ(TFL)とを接続する層間接続導体(42,62)と、第1面(S1)側に形成され、薄膜キャパシタ(TFC)を覆う絶縁層(31)と、絶縁層(31)の表面に形成され、薄膜キャパシタ(TFC)および薄膜インダクタ(TFL)に接続された複数の端子電極(51,52,53)と、を有する。

Description

薄膜型LC部品およびその実装構造
 本発明は、LC部品に関し、特に薄型化に適した薄膜型LC部品およびその実装構造に関する。
 シリコン基板やアルミナ基板等に、薄膜プロセスによってインダクタとキャパシタが一体的に形成された薄膜型の受動部品(IPD:Integrated Passive Device)が知られている(例えば、特許文献1,2参照)。
 特許文献1には、薄膜回路を形成する工程において、薄膜キャパシタの誘電体膜と薄膜インダクタの層間絶縁膜とを同時に成膜することが示されている。
 特許文献2には、基板上に第1電極層、誘電体層、第2電極層を順に形成してキャパシタを構成し、その上に磁性膜およびコイルからなる平面インダクタを形成することで、キャパシタとインダクタのアイソレーションを確保することが示されている。
特開平6-53406号公報 特開2001-44778号公報
 IPDは薄膜プロセスにより形成される受動部品であるため、厚膜プロセスやシート多層プロセスにより形成される受動部品に比べ、その厚み寸法を大幅に減らすことができる。
 しかし、特許文献1のように、同一面にインダクタとキャパシタを並べると、必要な基板面積が大きくなってしまい、薄膜型受動部品の大型化は避けられない。
 一方、特許文献2のように、基板上にキャパシタを形成し、その上にインダクタを形成すると、必要な基板面積は小さくなるが、これをプリント配線板等に実装する場合に、プリント配線板上の回路とキャパシタとの距離が相対的に大きくなってしまい、その間に寄生インダクタンスが生じる。したがって、プリント配線板等への実装状態によってLC受動部品の電気的特性が変化してしまう。
 本発明の目的は、薄型且つ小面積であり、薄膜キャパシタの寄生インダクタンスが抑制された薄膜型LC部品、およびその実装構造を提供することにある。
(1)本発明の薄膜型LC部品は、
 互いに対向する第1面および第2面を有する基板と、
 前記第1面に薄膜プロセスによって形成された薄膜キャパシタと、
 前記第2面のうち、平面視で前記薄膜キャパシタと少なくとも一部が重なる領域に、薄膜プロセスによって形成された薄膜インダクタと、
 前記基板に形成され、前記薄膜キャパシタと前記薄膜インダクタとを接続する層間接続導体と、
 前記第1面側に形成され、前記薄膜キャパシタを覆う絶縁層と、
 前記絶縁層の表面に形成され、前記薄膜キャパシタおよび前記薄膜インダクタに接続された端子電極と、
 を有することを特徴とする。
 上記構成により、薄膜キャパシタおよび薄膜インダクタの形成領域の、平面視での面積が縮小化される。また、基板の薄膜インダクタ形成側ではなく、薄膜キャパシタ形成側に端子電極が形成されているので、薄膜キャパシタはプリント配線板(実装基板)に形成されている回路に最短距離で配置でき、寄生インダクタンスが低減される。また、薄膜インダクタと薄膜キャパシタとの間に基板が介在しているので、すなわち、薄膜インダクタは薄膜キャパシタから離れているので、薄膜キャパシタの電極膜にうず電流が流れにくい。そのため、Q値の高い薄膜インダクタが構成される。
(2)前記薄膜インダクタおよび前記薄膜キャパシタはそれぞれ第1端と第2端を有し、前記薄膜キャパシタの第1端と前記薄膜インダクタの第2端とは接続され、前記複数の端子電極は、前記薄膜キャパシタの第1端、前記薄膜キャパシタの第2端、前記薄膜インダクタの第1端にそれぞれ接続された少なくとも3つの端子電極で構成されることが好ましい。これにより、電気的には外部に3つの端子電極を設けるだけでよく、これら端子電極を基板上の回路に接続するだけで、例えばLCローパスフィルタや平滑回路を構成できる。
(3)上記(2)おいて、前記薄膜インダクタは、それぞれ第1端と第2端を有する複数の薄膜インダクタで構成され、前記複数の端子電極は、前記複数の薄膜インダクタの第1端にそれぞれ接続された端子電極を含むことが好ましい。これにより、複数のインダクタと共用のキャパシタとで時定数の異なるローパスフィルタや平滑回路が選択的に使用可能となる。
(4)上記(1)から(3)のいずれかにおいて、前記薄膜キャパシタは、前記第1面に平行な第1電極膜と、当該第1電極膜に対向する第2電極膜と、前記第1電極膜と前記第2電極膜との間に介在する誘電体薄膜とで構成され、前記誘電体薄膜はチタン酸バリウムストロンチウム薄膜であることが好ましい。これにより、小面積でありながら高容量の薄膜キャパシタを構成できるので、小型の薄膜型LC部品が構成できる。
(5)上記(1)から(4)のいずれかにおいて、前記基板、前記薄膜キャパシタ、前記薄膜インダクタおよび前記絶縁層を含む全体の厚みは100μm以下であることが好ましい。このサイズであれば、基板にバンプを介してフェイスダウン実装される半導体チップのフェイス面と基板との間隙に配置できる。
(6)本発明の薄膜型LC部品の実装構造は、半導体チップ、キャパシタおよびインダクタの、実装基板への実装構造であって、
 前記半導体チップは、前記基板にバンプを介してフェイスダウン実装され、
 前記キャパシタおよび前記インダクタは、
 互いに対向する第1面および第2面を有する基板と、
 前記第1面に薄膜プロセスによって形成された薄膜キャパシタと、
 前記第2面のうち平面視で前記薄膜キャパシタとほぼ重なる領域に、薄膜プロセスによって形成された薄膜インダクタと、
 前記基板に形成され、前記薄膜キャパシタと前記薄膜インダクタとを接続する層間接続導体と、
 前記第1面側に形成され、前記薄膜キャパシタを覆う絶縁層と、
 前記絶縁層の表面に形成され、前記薄膜キャパシタおよび前記薄膜インダクタに接続された端子電極と、
 を有する薄膜型LC部品として構成され、
 前記薄膜型LC部品は、前記実装基板と前記半導体チップとの間隙に配置されたことを特徴とする。
 上記構成により、薄型且つ小面積の薄膜型LC部品、または薄膜キャパシタの寄生インダクタンスが抑制された薄膜型LC部品が半導体チップと共に基板へ高密度に実装される。
 本発明によれば、薄型且つ小面積の薄膜型LC部品、薄膜キャパシタの寄生インダクタンスが抑制された薄膜型LC部品、および薄膜型LC部品を備える小型の電子機器が構成できる。
図1(A)は第1の実施形態に係る薄膜型LC部品101の平面図、図1(C)は薄膜型LC部品101の下面図、図1(B)は、図1(A)(B)におけるX-Xラインでの、薄膜型LC部品101の縦断面図である。 図2は薄膜型LC部品101の回路図である。 図3(A)は基板10に薄膜キャパシタ形成用の複数の薄膜を形成した状態での平面図、図3(B)はそのX-Xラインでの断面図である。 図4(A)は、薄膜キャパシタ形成部の複数の薄膜をパターンニングした状態での平面図、図4(B)はそのX-Xラインでの断面図である。 図5(A)は、薄膜キャパシタ形成部にソルダーレジスト膜31を形成した状態での平面図、図5(B)はそのX-Xラインでの断面図である。 図6(A)は、ソルダーレジスト膜31に開口H1,H2,H3を形成した状態での平面図、図6(B)はそのX-Xラインでの断面図である。 図7(A)は、ビア41,42および端子電極51,52,53を形成した状態での平面図、図7(B)はそのX-Xラインでの断面図である。 図8(A)は、端子電極51,52,53を部分的に覆うソルダーレジスト膜31を形成した状態での平面図、図8(B)はそのX-Xラインでの断面図である。 図9(A)は、基板10等に開口H61,H62を形成した状態での平面図、図9(B)はそのX-Xラインでの断面図である。 図10(A)は、基板10にSi貫通電極61,62を形成した状態での平面図、図10(B)はそのX-Xラインでの断面図である。 図11(C)は、基板10の第2面S2に薄膜インダクタ用の導体パターン70を形成した状態での下面図、図11(A)はその平面図、図11(B)はX-Xラインでの断面図である。 図12は、第2の実施形態に係る薄膜型LC部品102の分解斜視図である。 図13は薄膜型LC部品102の斜視図である。 図14(A)は、基板10Lに薄膜インダクタTFLを形成した状態での平面図、図14(B)はそのX-Xラインでの断面図である。 図15(A)は、薄膜インダクタTFLを形成した基板10Lと薄膜キャパシタTFCを形成した基板10Cとを背面同士接合した状態での平面図、図15(B)はそのX-Xラインでの断面図である。 図16(A)は、端子電極51,52,53を形成した状態での平面図、図16(B)はそのX-Xラインでの断面図である。 図17は、第3の実施形態に係る、SiP(system in a package)構造の電子部品の断面図である。 図18は、第4の本実施形態に係るマイクロプロセッサに対する平滑回路の接続構造を示す概念図である。 図19(A)(B)は第5の実施形態に係る薄膜型LC部品の回路図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1(A)は第1の実施形態に係る薄膜型LC部品101の平面図、図1(C)は薄膜型LC部品101の下面図、図1(B)は、図1(A)(B)におけるX-Xラインでの、薄膜型LC部品101の縦断面図である。
 薄膜型LC部品101は、互いに対向する第1面S1および第2面S2を有する基板10を備える。この基板10の第1面S1に薄膜キャパシタTFCが形成されていて、第2面S2に薄膜インダクタTFLが形成されている。薄膜インダクタTFLは、基板10の平面視で薄膜キャパシタTFCと重なる領域に形成されている。
 基板10には、薄膜キャパシタTFCと薄膜インダクタTFLとを接続するSi貫通電極61,62が形成されている。
 また、基板10の第1面S1側に、薄膜キャパシタTFCを覆うソルダーレジスト膜(絶縁層)31が形成されている。
 上記ソルダーレジスト膜31の表面には、薄膜キャパシタTFCおよび薄膜インダクタTFLに接続された端子電極51,52,53が形成されている。
 図2は薄膜型LC部品101の回路図である。図2において、ポートP1,P2,P3は上記端子電極51,52,53にそれぞれ対応する。薄膜型LC部品101は、ポートP1-P2間に接続された薄膜キャパシタTFCと、ポートP2-P3間に接続された薄膜インダクタTFLとで構成される。
 本実施形態の薄膜型LC部品101は、ポートP3をグランド電位、ポートP1を入力ポート、ポートP2を出力ポートとする、ローパスフィルタまたは平滑回路として作用する。
 本実施形態によれば、次のような効果を奏する。
 薄膜キャパシタTFCおよび薄膜インダクタTFLの形成領域の、平面視での面積が縮小化される。また、基板10の薄膜インダクタTFL形成側ではなく、薄膜キャパシタTFC形成側に端子電極51,52,53が形成されているので、薄膜キャパシタTFCはプリント配線板(実装基板)に形成されている回路に最短距離で配置でき、寄生インダクタンスが低減される。そのため、寄生インダクタンスと薄膜キャパシタとのLC直列共振の共振周波数は使用周波数帯より高くでき、そのことで広帯域に亘ってローパスフィルタ特性または平滑特性を得ることができる。
 また、薄膜インダクタTFLと薄膜キャパシタTFCとの間に基板10が介在しているので、すなわち、薄膜インダクタTFLは薄膜キャパシタTFCから離れているので、薄膜キャパシタTFCの電極にうず電流が流れにくい。そのため、Q値の高い薄膜インダクタTFLが構成される。
 次に図1(A)(B)(C)に示した薄膜型LC部品101の詳細構造と、その製造方法について、図3~図11等を参照して説明する。
 図3(A)、図4(A)、図5(A)、図6(A)、図7(A)、図8(A)、図9(A)、図10(A)、図11(A)はいずれも各工程での平面図、図3(B)、図4(B)、図5(B)、図6(B)、図7(B)、図8(B)、図9(B)、図10(B)、図11(B)はいずれも各工程でのX-Xラインでの断面図である。図11(C)は下面図である。
(1)図3(A)(B)において、基板10は例えば高抵抗Si基板である。この基板10の第1面S1に、BST膜(チタン酸バリウムストロンチウム膜、(Ba,Sr)TiO3膜)21、Pt電極膜22、BST膜23、Pt電極膜24を順に形成する。これらBST膜はスピンコート工程と焼成工程とにより形成し、Pt電極膜はスパッタリングにより成膜する。BST膜21はSi基板10に対する密着層として利用する。このBST膜21は容量には無関係であるので、Si基板10に対する密着層として作用する膜であればBST膜以外でもよい。また、上記Pt電極膜には、導電性が良好で耐酸化性に優れた高融点の他の貴金属材料、例えばAuを用いることもできる。
(2)図4(A)(B)に示すように、BST膜21,23,25、Pt電極膜22,24を所定回数に亘るフォトリソグラフィによりパターンニングする。すなわち、後にポートP1に導通するPt電極膜221を分離するとともに露出させ、後にポートP2に導通するPt電極膜222を露出させる。
(3)図5(A)(B)に示すように、エポキシやポリイミド等のソルダーレジスト膜31をスピンコートする。
(4)図6(A)(B)に示すように、ソルダーレジスト膜31に開口H1,H2,H3を形成する。
(5)図7(A)(B)に示すように、スパッタリングにより、開口H1,H2,H3内およびソルダーレジスト膜31の表面に、例えば0.1μm/1.0μm/0.1μmのTi/Cu/Tiの導体膜を成膜する。これにより開口H1,H2,H3にビア41,42,43を形成する。その後、ソルダーレジスト膜31の表面のTi/Cu/Ti膜をパターンニングすることで端子電極51,52,53を形成する。
(6)図8(A)(B)に示すように、ソルダーレジスト膜31をさらに形成し、端子電極51,52,53を露出させる。
(7)図9(A)(B)に示すように、エッチングやドリリング等によって、基板10に開口H61,H62を穿孔する。
(8)図10(A)(B)に示すように、開口H61,H62内および基板10の第2面S2に、例えばTi/Cu/Tiの導体膜を成膜する。これにより開口H61,H62にSi貫通電極(through-silicon via、TSV)61,62を形成する。その後、基板10の第2面S2表面の上記導体膜をCMP法等により除去する。
(9)図11(A)(B)(C)に示すように、基板10の第2面S2にCuめっき膜を形成し、それをパターンニングすることで、基板10の第2面S2に、薄膜インダクタTFLとして作用する導体パターン70を形成する。
(10)その後、基板10の第2面S2に、エポキシやポリイミド等のソルダーレジスト膜32をスピンコートすることによって、図1(A)(B)(C)に示した薄膜型LC部品101を得る。
 なお、図3~図11では、説明の都合上、単一部品の状態で図示したが、実際には、ウエハー単位で上述の処理がなされ、最終的に単一の部品(個片)に分割される。
《第2の実施形態》
 第2の実施形態では、個別に作成した薄膜キャパシタと薄膜インダクタとを一体化した薄膜型LC部品102について示す。
 図12は薄膜型LC部品102の分解斜視図、図13は薄膜型LC部品102の斜視図である。図12では誘電体膜および絶縁膜の図示を省略している。
 本実施形態の薄膜型LC部品102は、基板10Cの第1面S1に薄膜キャパシタTFCが構成されていて、基板10Lの第2面S2に薄膜インダクタTFLが構成されている。
 本実施形態の薄膜型LC部品102の詳細構造と、その製造方法について、図14~図16等を参照して説明する。
 図14(A)、図15(A)、図16(A)はいずれも各工程での平面図、図14(B)、図15(B)、図16(B)はいずれも各工程でのX-Xライン断面図である。
(1)図14(A)(B)において、基板10Lは例えば高抵抗Si基板である。この基板10の第2面S2にCuめっき膜を形成し、それをパターンニングすることで、薄膜インダクタTFLとして作用する導体パターン70を形成する。
(2)続いて、導体パターン70を被覆するソルダーレジスト膜32を塗布形成する。その後、基板10LにSi貫通電極(through-silicon via、TSV)61,62を形成する。これにより、Si貫通電極61,62有する薄膜インダクタTFLを構成する。
(3)図15(A)(B)に示すように、第1面S1にBST膜21、Pt電極膜22、BST膜23、Pt電極膜24、BST膜25を順に形成し、ソルダーレジスト膜31を被覆し、さらにビア41,42,43を形成する。これにより、薄膜キャパシタTFCを構成する。また、基板10Cに、上記ビア41,42と導通するSi貫通電極を形成する。
 その後、図14(A)(B)に示した薄膜インダクタTFLが形成された基板10Lと、上記薄膜キャパシタTFCが形成された基板10Lとを、異方性導電膜(AFC)を介して背面同士接合する。これにより、図15(A)(B)に示した構造を得る。
(4)その後、図16(A)(B)に示すように、ソルダーレジスト膜31の表面にCuめっき膜を形成し、それをパターンニングすることで、端子電極51,52,53を形成する。
 本実施形態のように、薄膜インダクタと薄膜キャパシタは別の基板にそれぞれ形成してから両者を接合することで、薄膜型LC部品を構成してもよい。
《第3の実施形態》
 第3の実施形態では、薄膜型LC部品の実装構造、および薄膜型LC部品を備えた電子部品の例を示す。
 図17は、第3の実施形態に係る、SiP(system in a package)構造の電子部品の断面図である。この電子部品は実装基板80の上面に半導体チップ90やその他のチップ部品が実装されている。半導体チップ90は、はんだボール91によるBGA (Ball grid array)形式のパッケージであり、実装基板80にはんだバンプを介してフェイスダウン実装される。実装基板80上の半導体チップ90の搭載位置に、薄膜型LC部品101が実装されている。すなわち、半導体チップ90のフェイス面と実装基板80との間隙に薄膜型LC部品101が配置されている。薄膜型LC部品101の構造は第1の実施形態で示したとおりである。半導体チップ90のはんだボール91は、実装前で直径250μm、実装後は直径200μm程度である。したがって、薄膜型LC部品101の厚みが100μm以下であることにより、半導体チップ90のフェイス面と実装基板80との間隙に薄膜型LC部品101を配置できる。はんだボール91の縮小化を考慮すれば、薄膜型LC部品101の厚みは、70μm以下であることが好ましく、さらには50μm以下であることが好ましい。
 実装基板80の上部は封止樹脂82で封止され、Sip構造の電子部品201が構成される。この電子部品201もはんだボール81によるBGA (Ball grid array)形式のパッケージであり、回路基板200に表面実装される。
 なお、薄膜型LC部品101は、実装基板80側ではなく、半導体チップ90側に接合してもよい。
《第4の実施形態》
 第4の実施形態では、複数の電源電圧で動作する回路を含むマイクロプロセッサに薄膜型LC部品を適用した例を示す。
 図18は第4の実施形態に係るマイクロプロセッサに対する平滑回路の接続構造を示す概念図である。マイクロプロセッサチップ98は動作電源電圧の異なる複数の回路ブロックを備えている。各回路ブロックには電源電圧に応じた個別の電源回路PSa,PSb,PSc,PSdが形成されている。各電源回路PSa,PSb,PSc,PSdの平滑回路101a,101b,101c,101dはマイクロプロセッサチップ98の外部に設けられ、基板上の配線パターンを介して接続される。これら平滑回路101a,101b,101c,101dの各々は、既に示した薄膜型LC部品である。そして、これら薄膜型LC部品は、マイクロプロセッサチップと基板との間隙に配置される。
《第5の実施形態》
 第5の実施形態では、複数の薄膜インダクタを備える薄膜型LC部品の例を示す。
 図19(A)(B)は第5の実施形態に係る薄膜型LC部品の回路図である。図19(A)に示す例では、4つの薄膜インダクタL1,L2,L3,L4の第1端がポートP11,P12,P13,P14に導通し、薄膜インダクタL1,L2,L3,L4の第2端が共通接続されてポートP2に導通する。薄膜キャパシタCの両端はポートP2とポートP3に導通する。図19(B)に示す例は、4つの薄膜インダクタL1,L2,L3,L4の第1端が共通接続されてポートP1に導通する点で図19(A)とは異なる。
 図19(A)に示す構造によれば、電源回路等の回路とポートP11,P12,P13,P14との選択的接続によって、薄膜型LC部品の時定数を切り替えることができる。
 図19(B)に示す構造によれば、4つの薄膜インダクタL1,L2,L3,L4が並列接続されることにより、直流抵抗(DCR)を小さくできる。
《他の実施形態》
 第1の実施形態では、基板10の平面視で、薄膜インダクタTFLは、そのほぼ全体が薄膜キャパシタTFCと重なる領域に形成されている例を示したが、薄膜インダクタTFLの一部が薄膜キャパシタTFCと重なる領域に形成されていてもよい。薄膜インダクタTFLの少なくとも一部が薄膜キャパシタTFCと重なる領域に形成されていれば、薄膜キャパシタおよび薄膜インダクタの形成領域の、平面視での面積が縮小化される。
 図1(A)(B)(C)に示した例では、Si基板である基板10の表面に導体パターン70を直接形成したが、Si基板の表面にSiO2等の保護膜を形成し、その表面に導体パターン70を形成してもよい。
 第1の実施形態では、高抵抗Si基板を基板として用いた例を示したが、ガラス基板やアルミナセラミック基板等であってもよい。
 第1の実施形態では、基板に薄膜キャパシタを先に形成し、後に薄膜インダクタを形成したが、基板への薄膜キャパシタおよび薄膜インダクタの形成順は逆であってもよい。また、薄膜キャパシタの形成工程と薄膜インダクタの形成工程の間で、基板を研磨して、その板厚を薄くしてもよい。
 第1の実施形態では、基板(高抵抗Si基板)10にSi貫通電極TSVを形成した。これはSi基板に貫通孔を形成し、Cuのめっき埋込によるものであるが、TSVに代えて、Si基板への不純物打ち込みによるドーピングで貫通導通路を形成してもよい。
 第1の実施形態では、有機層間絶縁膜であるソルダーレジスト膜31,32を形成する例を示したが、プラズマCVD法等によって無機絶縁膜を形成してもよい。また、絶縁樹脂シートの貼付によって絶縁膜を形成してもよい。
 以上に示した各実施形態では、本発明に係る「基板」として、半導体基板を例に挙げたが、ガラス基板やセラミック基板であってもよい。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形および変更が適宜可能である。例えば、異なる実施形態で示した構成の部分的な置換または組み合わせが可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
H1,H2,H3…開口
H61,H62…開口
L1,L2,L3,L4…薄膜インダクタ
P1,P2,P3…ポート
P11,P12,P13,P14…ポート
PSa,PSb,PSc,PSd…電源回路
S1…第1面
S2…第2面
TFC…薄膜キャパシタ
TFL…薄膜インダクタ
TSV…Si貫通電極
10,10C,10L…基板
21,23,25…BST膜
22,24…Pt電極膜
31,32…ソルダーレジスト膜(絶縁層)
41,42,43…ビア
51,52,53…端子電極
61,62…Si貫通電極
70…導体パターン
80…実装基板
81,91…はんだボール
82…封止樹脂
90…半導体チップ
98…マイクロプロセッサチップ
101,102…薄膜型LC部品
101a,101b,101c,101d…平滑回路
200…回路基板
201…電子部品
221,222…Pt電極膜

Claims (6)

  1.  互いに対向する第1面および第2面を有する基板と、
     前記第1面に薄膜プロセスによって形成された薄膜キャパシタと、
     前記第2面のうち、平面視で前記薄膜キャパシタと少なくとも一部が重なる領域に、薄膜プロセスによって形成された薄膜インダクタと、
     前記基板に形成され、前記薄膜キャパシタと前記薄膜インダクタとを接続する層間接続導体と、
     前記第1面側に形成され、前記薄膜キャパシタを覆う絶縁層と、
     前記絶縁層の表面に形成され、前記薄膜キャパシタおよび前記薄膜インダクタに接続された複数の端子電極と、
     を有することを特徴とする、薄膜型LC部品。
  2.  前記薄膜インダクタおよび前記薄膜キャパシタはそれぞれ第1端と第2端を有し、
     前記薄膜キャパシタの第1端と前記薄膜インダクタの第2端とは接続され、
     前記複数の端子電極は、前記薄膜キャパシタの第1端、前記薄膜キャパシタの第2端、前記薄膜インダクタの第1端にそれぞれ接続された少なくとも3つの端子電極で構成される、
     請求項1に記載の薄膜型LC部品。
  3.  前記薄膜インダクタは、それぞれ第1端と第2端を有する複数の薄膜インダクタで構成され、
     前記複数の端子電極は、前記複数の薄膜インダクタの第1端にそれぞれ接続された端子電極を含む、請求項2に記載の薄膜型LC部品。
  4.  前記薄膜キャパシタは、前記第1面に平行な第1電極膜と、当該第1電極膜に対向する第2電極膜と、前記第1電極膜と前記第2電極膜との間に介在する誘電体薄膜とで構成され、前記誘電体薄膜はチタン酸バリウムストロンチウム薄膜である、請求項1から3のいずれかに記載の薄膜型LC部品。
  5.  前記基板、前記薄膜キャパシタ、前記薄膜インダクタおよび前記絶縁層を含む全体の厚みは100μm以下である、請求項1から4のいずれかに記載の薄膜型LC部品。
  6.  半導体チップ、キャパシタおよびインダクタの、実装基板への実装構造であって、
     前記半導体チップは、前記基板にバンプを介してフェイスダウン実装され、
     前記キャパシタおよび前記インダクタは、
     互いに対向する第1面および第2面を有する基板と、
     前記第1面に薄膜プロセスによって形成された薄膜キャパシタと、
     前記第2面のうち平面視で前記薄膜キャパシタとほぼ重なる領域に、薄膜プロセスによって形成された薄膜インダクタと、
     前記基板に形成され、前記薄膜キャパシタと前記薄膜インダクタとを接続する層間接続導体と、
     前記第1面側に形成され、前記薄膜キャパシタを覆う絶縁層と、
     前記絶縁層の表面に形成され、前記薄膜キャパシタおよび前記薄膜インダクタに接続された端子電極と、
     を有する薄膜型LC部品として構成され、
     前記薄膜型LC部品は、前記実装基板と前記半導体チップとの間隙に配置された、
     薄膜型LC部品の実装構造。
PCT/JP2016/078552 2015-10-02 2016-09-28 薄膜型lc部品およびその実装構造 WO2017057422A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201690001126.3U CN208061869U (zh) 2015-10-02 2016-09-28 薄膜型lc部件以及其安装结构
JP2017543467A JPWO2017057422A1 (ja) 2015-10-02 2016-09-28 薄膜型lc部品およびその実装構造
US15/928,217 US20180226391A1 (en) 2015-10-02 2018-03-22 Thin film lc component and mounting structure of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-196392 2015-10-02
JP2015196392 2015-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/928,217 Continuation US20180226391A1 (en) 2015-10-02 2018-03-22 Thin film lc component and mounting structure of same

Publications (1)

Publication Number Publication Date
WO2017057422A1 true WO2017057422A1 (ja) 2017-04-06

Family

ID=58423905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078552 WO2017057422A1 (ja) 2015-10-02 2016-09-28 薄膜型lc部品およびその実装構造

Country Status (4)

Country Link
US (1) US20180226391A1 (ja)
JP (2) JPWO2017057422A1 (ja)
CN (1) CN208061869U (ja)
WO (1) WO2017057422A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166880A1 (ja) * 2020-02-17 2021-08-26
IT202200001400A1 (it) 2022-01-27 2023-07-27 Univ Degli Studi Di Messina Metodo di diagnosi della malattia di Alzheimer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120185A (ja) * 2019-01-21 2020-08-06 株式会社村田製作所 フロントエンドモジュール及び通信装置
US11450469B2 (en) 2019-08-28 2022-09-20 Analog Devices Global Unlimited Company Insulation jacket for top coil of an isolated transformer
US11387316B2 (en) 2019-12-02 2022-07-12 Analog Devices International Unlimited Company Monolithic back-to-back isolation elements with floating top plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098269A (ja) * 1996-09-21 1998-04-14 Ngk Spark Plug Co Ltd 回路基板
JPH11195531A (ja) * 1997-12-29 1999-07-21 Taiyosha Denki Kk チップ部品、チップネットワーク部品
JP2004128219A (ja) * 2002-10-02 2004-04-22 Shinko Electric Ind Co Ltd 付加機能を有する半導体装置及びその製造方法
WO2010016171A1 (ja) * 2008-08-04 2010-02-11 株式会社 村田製作所 誘電体薄膜キャパシタの製造方法、及び誘電体薄膜キャパシタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830119A (ja) * 1981-08-17 1983-02-22 ティーディーケイ株式会社 複合型回路部品
JPH0547586A (ja) * 1991-08-16 1993-02-26 Toshiba Corp コンデンサ部品
JP3027081B2 (ja) * 1993-12-09 2000-03-27 アルプス電気株式会社 薄膜素子
JP2007142109A (ja) * 2005-11-17 2007-06-07 Tdk Corp 電子部品
JP5445357B2 (ja) * 2010-06-30 2014-03-19 Tdk株式会社 電子部品及び電子デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098269A (ja) * 1996-09-21 1998-04-14 Ngk Spark Plug Co Ltd 回路基板
JPH11195531A (ja) * 1997-12-29 1999-07-21 Taiyosha Denki Kk チップ部品、チップネットワーク部品
JP2004128219A (ja) * 2002-10-02 2004-04-22 Shinko Electric Ind Co Ltd 付加機能を有する半導体装置及びその製造方法
WO2010016171A1 (ja) * 2008-08-04 2010-02-11 株式会社 村田製作所 誘電体薄膜キャパシタの製造方法、及び誘電体薄膜キャパシタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166880A1 (ja) * 2020-02-17 2021-08-26
WO2021166880A1 (ja) * 2020-02-17 2021-08-26 株式会社村田製作所 半導体装置及びモジュール
JP7388536B2 (ja) 2020-02-17 2023-11-29 株式会社村田製作所 半導体装置及びモジュール
IT202200001400A1 (it) 2022-01-27 2023-07-27 Univ Degli Studi Di Messina Metodo di diagnosi della malattia di Alzheimer

Also Published As

Publication number Publication date
US20180226391A1 (en) 2018-08-09
CN208061869U (zh) 2018-11-06
JPWO2017057422A1 (ja) 2018-04-19
JP7052824B2 (ja) 2022-04-12
JP2020145475A (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP7052824B2 (ja) 薄膜型lc部品およびその実装構造
US6624501B2 (en) Capacitor and semiconductor device
US7298050B2 (en) Semiconductor device, method of manufacturing the same, capacitor structure, and method of manufacturing the same
JP2023022078A (ja) 集積された受動部品を有する接合構造物
US8344478B2 (en) Inductors having inductor axis parallel to substrate surface
US7973246B2 (en) Electronic component
US8018311B2 (en) Microminiature power converter
WO2010050091A1 (ja) 半導体装置
WO2010029668A1 (ja) 集積回路装置
US8907227B2 (en) Multiple surface integrated devices on low resistivity substrates
US10790792B2 (en) LC composite device, processor, and method for manufacturing LC composite device
JP2002299496A (ja) 半導体装置及びその製造方法
JP6288386B2 (ja) 表面実装型lcデバイス
JP2007266182A (ja) 半導体装置及び半導体装置の製造方法
JP2005108929A (ja) 半導体装置及びその製造方法
WO2018008422A1 (ja) Esd保護機能付きインダクタ
US20210329773A1 (en) Integrated passive component
JP4329524B2 (ja) 半導体装置およびその製造方法
JP2009038203A (ja) 半導体装置
US9640477B1 (en) Semiconductor package and method of producing the semiconductor package
JP2022079335A (ja) 受動部品
KR20060124834A (ko) 집적 수동소자 칩 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851593

Country of ref document: EP

Kind code of ref document: A1