WO2017056669A1 - プラグ及びその製造方法 - Google Patents

プラグ及びその製造方法 Download PDF

Info

Publication number
WO2017056669A1
WO2017056669A1 PCT/JP2016/072212 JP2016072212W WO2017056669A1 WO 2017056669 A1 WO2017056669 A1 WO 2017056669A1 JP 2016072212 W JP2016072212 W JP 2016072212W WO 2017056669 A1 WO2017056669 A1 WO 2017056669A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plug
main body
coating
surface layer
Prior art date
Application number
PCT/JP2016/072212
Other languages
English (en)
French (fr)
Inventor
東田 泰斗
日高 康善
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/763,405 priority Critical patent/US20180281037A1/en
Priority to MX2018003118A priority patent/MX2018003118A/es
Priority to JP2017542962A priority patent/JP6515300B2/ja
Priority to EP16850846.3A priority patent/EP3357595B1/en
Priority to CN201680054432.8A priority patent/CN108025338B/zh
Priority to BR112017028179-1A priority patent/BR112017028179B1/pt
Publication of WO2017056669A1 publication Critical patent/WO2017056669A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs
    • B21B25/02Guides, supports, or abutments for mandrels, e.g. carriages or steadiers; Adjusting devices for mandrels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B25/00Mandrels for metal tube rolling mills, e.g. mandrels of the types used in the methods covered by group B21B17/00; Accessories or auxiliary means therefor ; Construction of, or alloys for, mandrels or plugs

Definitions

  • the present disclosure relates to a plug, and more particularly to a plug used for drilling a billet and a method for manufacturing the plug.
  • the Mannesmann pipe manufacturing method is widely adopted as a seamless pipe manufacturing method.
  • a billet heated to a predetermined temperature is pierced and rolled with a piercing machine.
  • the perforator includes a pair of inclined rolls and a plug.
  • the plug is disposed between the pair of inclined rolls and on the pass line.
  • the piercing machine pushes the billet into the plug while rotating the billet in the circumferential direction by an inclined roll, and pierces and rolls the billet into a hollow shell.
  • an oxide scale film is formed on the surface of the base material in advance when the billet is pierced and rolled.
  • the oxide scale film is formed by subjecting the plug to heat treatment. Thereby, the heat insulation of the surface of a plug, lubricity, and seizure resistance can be ensured.
  • the oxide scale film is gradually worn by repeated piercing and rolling.
  • the coating is worn every time piercing and rolling is performed (each pass).
  • the plug base material is exposed. In this case, melting of the exposed portion of the base material or seizure between the plug and the billet as the mating material occurs, and the plug reaches the end of its life.
  • the wear of the oxide scale film is remarkable, so the life of the plug is very short.
  • the coating usually wears in several passes. Each time the coating wears, a heat treatment is required to generate oxide scale on the surface of the plug base material. The heat treatment generally requires several hours to several tens of hours. Therefore, the formation efficiency of the oxide scale film is low.
  • Japanese Patent No. 4279350 proposes a technique for forming a coating made of iron and an oxide on the surface of a plug base material by arc spraying.
  • the raw material of the film is only an iron wire, and the time required for forming the film is as short as several minutes to several tens of minutes. Therefore, a film can be formed on the surface of the base material at low cost and high efficiency.
  • the thermal spray coating has higher adhesion to the base material and higher wear resistance than the oxide scale coating. For this reason, the lifetime of the plug can be extended.
  • Japanese Patent Application Laid-Open No. 2013-248619 discloses that a thermal spray coating containing iron and iron oxide is formed on the surface of the base material of the plug, and then the heat treatment is performed on the plug.
  • Japanese Patent Application Laid-Open No. 61-286077 discloses that a coating is formed by spraying a metal powder on the surface of a metal core for a steel pipe rolling mill, and then subjected to a hot isostatic pressing process on the metal core. ing.
  • Japanese Patent Publication No. 5-36502 and Japanese Patent Application Laid-Open No. 3-125076 disclose a method for forming a sprayed coating, although it is not applied to a plug for drilling a billet.
  • Japanese Examined Patent Publication No. 5-36502 discloses that a thermal spray coating of cemented carbide is formed on the surface of a base material, a plated film of Ni—P alloy is formed on the thermal spray coating, and then hot isostatic pressing is applied to the base material. It is disclosed to perform pressure treatment.
  • the coating formed by arc spraying of iron wire has high adhesion to the plug base material and high wear resistance, the life of the plug can be extended.
  • the coating may peel off from the surface of the base material during drilling.
  • the plug is melted and the billet is seized on the plug, starting from the exposed portion.
  • This disclosure is intended to provide a plug that can suppress peeling of a film and a method for manufacturing the plug.
  • the plug according to the present disclosure is used for drilling a billet.
  • the plug includes a plug main body, a main body film, and a surface film.
  • the main body film is formed on the surface of the plug main body.
  • the main body film contains iron and iron oxide.
  • the surface layer film is formed on the main body film.
  • the surface film contains iron and iron oxide.
  • the surface layer film has a porosity that is lower than the porosity of the region of the main body film that is adjacent to the surface layer film and has a thickness equal to the thickness of the surface layer film.
  • the present disclosure relates to a method for manufacturing a plug.
  • the plug is used for drilling the billet.
  • the manufacturing method includes a step of preparing a plug main body, a step of performing arc spraying using an iron wire to form a main body coating on the surface of the plug main body, and a spraying distance at the time when the formation of the main body coating is completed.
  • FIG. 1 is a partial cross-sectional view of a plug according to an embodiment.
  • FIG. 2 is an enlarged view of the II portion of the plug shown in FIG.
  • FIG. 3 is an example of a micro observation image of the cross section of the film.
  • FIG. 4 is a luminance histogram of the micro observation image shown in FIG.
  • FIG. 5 is a luminance histogram of the micro observation image shown in FIG. 3 and is a diagram for explaining the ternarization of the micro observation image.
  • FIG. 6 is a ternary image obtained from the micro observation image shown in FIG.
  • FIG. 7 is a diagram for explaining a method of manufacturing the plug shown in FIG.
  • FIG. 8 is a graph showing the relationship between the thermal spray distance during film formation and the porosity of the film.
  • FIG. 9 is a graph showing the relationship between the thermal spray distance during film formation and the oxide content in the film.
  • FIG. 10 is a graph showing the relationship between the thermal spray distance during film formation and the tensile strength of the film.
  • FIG. 11A is a diagram for explaining the effect of the plug according to the embodiment.
  • FIG. 11B is a diagram for explaining the effect of the plug according to the embodiment.
  • FIG. 12A is a diagram for explaining a mechanism in which film peeling occurs in a conventional plug.
  • FIG. 12B is a diagram for explaining a mechanism in which film peeling occurs in a conventional plug.
  • FIG. 12C is a diagram for explaining a mechanism in which film peeling occurs in a conventional plug.
  • FIG. 12D is a diagram for explaining a mechanism in which film peeling occurs in a conventional plug.
  • FIG. 12A to FIG. 12D are diagrams for explaining a mechanism in which film peeling occurs in a conventional plug. 12A to 12D schematically show a cross section near the surface of the plug.
  • a film 102 is formed on the surface of the plug body 101 before the perforation of the billet.
  • the film 102 includes a void 103.
  • the crack C propagates along the interface between the plug body 101 and the film 102 due to a load in the shear direction acting on the film 102.
  • peeling of the film 102 occurs.
  • the inventors of the present invention thought that peeling of the coating could be suppressed by suppressing the deformation and cracking of the coating during the drilling of the billet.
  • the inventors have further studied and completed the plug and the manufacturing method thereof according to the embodiment.
  • the plug according to the embodiment is used for drilling a billet.
  • the plug includes a plug main body, a main body film, and a surface film.
  • the main body film is formed on the surface of the plug main body.
  • the main body film contains iron and iron oxide.
  • the surface layer film is formed on the main body film.
  • the surface film contains iron and iron oxide.
  • the surface layer film has a porosity that is lower than the porosity of a region of the main body film that is adjacent to the surface layer film and has a thickness equal to the thickness of the surface layer film (first configuration).
  • the surface layer film is further formed on the main body film formed on the surface of the plug main body.
  • the porosity of the surface film is lower than the porosity of the main body film in the vicinity of the surface film. Therefore, the surface layer film is denser than the main body film and has a high strength. For this reason, in the surface layer film and the main body film covered with the surface layer film, deformation due to the load in the shear direction is less likely to occur, and generation of cracks due to deformation is suppressed. As a result, it can suppress that each membrane
  • the porosity of the surface film may be 2.5% or less (second configuration).
  • the porosity of the surface film is sufficiently low, and the surface film can be made denser and higher in strength. Therefore, the effect of suppressing the deformation of each film and the occurrence of cracks can be further enhanced, and the peeling of each film can be more reliably suppressed.
  • the thickness of the surface film may be 250 ⁇ m or less (third configuration).
  • the heat dissipation of the surface film can be improved. Thereby, the temperature rise of the surface layer film during drilling can be suppressed, and the occurrence of billet image sticking to the plug can be suppressed.
  • the plug manufacturing method includes a step of preparing a plug body, a step of performing arc spraying using an iron wire to form a body film on the surface of the plug body, and a time point when the formation of the body film is completed A step of performing arc spraying using an iron wire at a spraying distance shorter than the spraying distance to form a surface film on the main body film (fourth configuration).
  • the surface coating is formed by performing arc spraying with a short spraying distance after the main body coating is formed.
  • the porosity of the surface layer film is lower than the porosity of the region in the vicinity of the surface layer film of the main body film, and the main body film is covered with the dense and high strength surface layer film. Therefore, deformation of each film due to the load in the shear direction during drilling hardly occurs, and generation of cracks due to the deformation is suppressed. As a result, it can suppress that each film
  • both the main body film and the surface film are formed by arc spraying of iron wire. That is, the main body film and the surface film are formed by the same material and the same method. For this reason, a main body membrane
  • arc spraying may be performed while gradually increasing the spraying distance (fifth configuration).
  • coats is comparatively short.
  • the content rate of iron is high and the content rate of an oxide becomes low.
  • membrane with respect to a plug main body can be improved.
  • the spraying distance when forming the region on the surface film side of the main body film is relatively long. Therefore, in the region on the surface film side, the oxide content is high and the thermal conductivity is low. Thereby, the heat-insulating property of the main body film is improved, and the occurrence of billet seizure on the plug can be suppressed.
  • the plug 10 includes a plug body 1, a body film 2, and a surface film 3.
  • the plug 10 is shown in cross section.
  • the plug body 1 has a circular cross-sectional shape, and its outer diameter increases from the front end to the rear end of the plug body 1. In short, the shape of the plug body 1 is substantially bullet-like.
  • the main body film 2 is formed on the surface of the plug main body 1.
  • the body coat 2 covers the entire surface of the plug body 1 except for the rear end face of the plug body 1.
  • the thickness of the main body film 2 may not be constant throughout. For example, in the main body coating 2, the thickness of the portion located on the tip portion 11 of the plug main body 1 is larger than the thickness of the portion located on the trunk portion 12 of the plug main body 1.
  • the surface film 3 is formed on the main body film 2.
  • the surface film 3 covers the entire body film 2.
  • the thickness of the surface layer film 3 is smaller than the thickness of the main body film 2.
  • the thickness of the surface coating 3 is substantially constant throughout.
  • the thickness of the surface film 3 is preferably 250 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the thickness of the surface film 3 is preferably 50 ⁇ m or more.
  • FIG. 2 is an enlarged view of a portion II shown in FIG.
  • the main body film 2 and the surface film 3 contain iron and iron oxide.
  • the main body film 2 and the surface film 3 are mainly composed of iron and iron oxide, there are cases where elements and / or compounds other than iron and iron oxide are slightly included.
  • the iron content decreases from the plug main body 1 side toward the surface film 3, and the iron oxide content increases.
  • the iron content of the surface film 3 is higher than at least the iron content in the region 21 of the main body film 2 described later.
  • the main body film 2 includes voids.
  • the surface film 3 also includes slight voids.
  • the porosity of the surface film 3 is lower than the porosity of the region 21 of the main body film 2.
  • the region 21 is a region adjacent to the surface layer film 3 in the main body film 2. That is, the region 21 is a region located on the interface side with the surface film 3 in the main body film 2.
  • the thickness of the region 21 is substantially equal to the thickness of the surface layer film 3.
  • the porosity of the surface layer film 3 is preferably 2.5% or less. The lower the porosity value of the surface coating 3, the better, but it is substantially 0.5% or more.
  • micro-observation images of cross sections of the main body film 2 and the surface film 3 are acquired.
  • the porosity of the region 21 of the main body film 2 is evaluated in the range of the same thickness as the surface layer film 3 on the interface side with the surface layer film 3 in the main body film 2 in the micro observation image.
  • the porosity of the surface film 3 is evaluated by the entire surface film 3 shown in the micro observation image.
  • the evaluation range in the direction orthogonal to the thickness direction (direction parallel to the plug surface) is about 1000 to 1500 ⁇ m. Since it is considered that the voids are distributed almost uniformly in this direction, an almost average void ratio can be calculated by evaluating with a width of about 1000 to 1500 ⁇ m.
  • FIG. 3 is an example of a micro observation image (original image) of the cross section of the film. Iron, iron oxide, and voids in the original image have different colors. Specifically, the color is darker in the order of iron, iron oxide, and voids.
  • the luminance histogram is a graph showing the luminance distribution of pixels in the original image, with the vertical axis representing frequency (number of pixels) and the horizontal axis representing luminance values.
  • the threshold value used for the 3-valued is an intermediate value M 2 of the intermediate value M 1, and the luminance value B 2 and the luminance value B 3 of the luminance value B 1 and the luminance value B 2.
  • B 1 , B 2 , and B 3 are a peak luminance value due to voids, a peak luminance value due to iron oxide, and a peak luminance value due to iron, respectively.
  • FIG. 6 shows a ternary image obtained by ternization of the original image.
  • the pixels having a brightness value of less than M 1 in the original image is black
  • the pixels having a brightness value of less than M 1 or M 2 is gray
  • the black region is the void region
  • the gray region is the iron oxide region
  • the white region is the iron region
  • the number of pixels in each region is counted.
  • the plug body 1 is prepared.
  • a main body film 2 and a surface film 3 are formed on the surface of the plug body 1 by arc spraying.
  • Arc spraying can be performed using, for example, an arc spraying apparatus 4 shown in FIG.
  • the arc spraying device 4 includes a spray gun 41 and a turntable 42.
  • the thermal spray gun 41 melts a thermal spray wire by an arc and sprays it from a nozzle with compressed air.
  • an iron wire is used as the wire for thermal spraying.
  • the iron wire is a carbon steel (ordinary steel) wire mainly composed of iron (Fe).
  • the iron wire is typically a so-called ordinary steel mainly composed of Fe and composed of carbon (C), silicon (Si), manganese (Mn) and impurities, but contains elements such as tungsten (W). You may do it.
  • the plug main body 1 When forming the main body coating 2 and the surface coating 3, the plug main body 1 is placed on the turntable 42 of the arc spraying device 4. The plug body 1 is arc sprayed on the plug body 1 while rotating the plug body 1 about the axis by the turntable 42. Thereby, first, the main body film 2 containing iron and iron oxide is formed on the surface of the plug main body 1. The formation of the main body film 2 ends when a material having a desired thickness is deposited on the surface of the plug main body 1.
  • the main body coating 2 is preferably formed while gradually increasing the spraying distance.
  • the spraying distance refers to the shortest distance from the tip of the nozzle of the spray gun 41 to the surface of the object to be sprayed.
  • the main body coating 2 is formed by placing a spray gun 41 at a predetermined distance from the plug body 1 to start arc spraying, and continuing the arc spray while gradually moving the spray gun 41 away from the plug body 1.
  • the spray distance can be kept constant during the formation of the main body coating 2.
  • the surface film 3 is continuously formed. That is, after the main body film 2 is formed, arc spraying is continued as it is to form the surface layer film 3 on the main body film 2.
  • the thermal spraying distance when forming the surface coating 3 is shorter than the thermal spraying distance when forming the main body coating 2. More specifically, the spraying distance when forming the surface coating 3 is at least shorter than the spraying distance when the formation of the main body coating 2 is completed. That is, after forming the main body film 2 while gradually moving the spray gun 41 away from the plug main body 1, the surface coating 3 is formed by bringing the spray gun 41 close to the plug main body 1 at once.
  • the spraying distance is kept substantially constant. It is preferable that the spraying distance at the time of formation of the surface film 3 is 200 mm or less.
  • the formation of the surface film 3 is finished when a material having a desired thickness is deposited on the main body film 2. Preferably, the formation of the surface film 3 is terminated before the thickness of the surface film 3 exceeds 250 ⁇ m.
  • FIG. 8 is a graph showing the relationship between the spray distance and the porosity of the coating.
  • FIG. 9 is a graph showing the relationship between the spray distance and the oxide content in the coating.
  • FIG. 10 is a graph showing the relationship between the spray distance and the tensile strength of the coating.
  • the porosity of the coating increases. That is, the porosity of the main body coating 2 and the surface coating 3 can be controlled by the spraying distance. As described above, the spraying distance when forming the surface coating 3 is shorter than the spraying distance when the formation of the main body coating 2 is completed. For this reason, the porosity of the surface layer film 3 is lower than the porosity of the region 21 of the main body film 2.
  • the oxide content in the coating increases as the spray distance increases. That is, each content rate of iron and iron oxide of the main body film 2 and the surface layer film 3 can be controlled by the spraying distance. As described above, the main body film 2 is formed while gradually increasing the spraying distance. Therefore, in the main body coating 2, the iron content decreases and the iron oxide content increases from the plug main body 1 side to the surface coating 3 side. The surface coating 3 is formed by shortening the spraying distance after the main body coating 2 is formed. For this reason, the iron content of the surface film 3 is higher than the iron content in at least the region 21 of the main body film 2.
  • the tensile strength of the film decreases as the spray distance increases. That is, the tensile strength of the main body film 2 and the surface film 3 can be controlled by the spraying distance.
  • the spraying distance at the time of forming the surface coating 3 is shorter than the spraying distance at the end of the formation of the main body coating 2. For this reason, the tensile strength of the surface layer film 3 is higher than at least the tensile strength in the region 21 of the main body film 2.
  • the plug main body 1 is removed from the turntable 42 of the arc spraying device 4. Thereby, the plug 10 (FIG. 1) according to the present embodiment is completed.
  • FIG. 11A is a diagram schematically showing a cross section near the surface of the plug 10 before the drilling of the billet is started.
  • the main body film 2 on the plug main body 1 is covered with a surface layer film 3.
  • the surface coating 3 is formed by performing arc spraying of the iron wire at a spraying distance shorter than the spraying distance at the time when the formation of the main body coating 2 is completed. Therefore, the surface layer film 3 has a porosity lower than that of the region adjacent to the surface layer film 3 in the main body film 2, and is dense and has high tensile strength.
  • FIG. 11B is a diagram schematically showing a cross section near the surface of the plug 10 during drilling of the billet.
  • a load in the shearing direction acts on the surface of the surface coating 3.
  • the surface film 3 is dense and has a high tensile strength, so that it is not easily deformed by a load in the shear direction.
  • the main body film 2 is also hardly deformed by being covered with the surface film 3. For this reason, the main body film 2 and the surface film 3 do not generate cracks that lead to peeling. Therefore, peeling of the main body film 2 and the surface film 3 can be suppressed.
  • the main body film 2 and the surface film 3 can be easily formed by arc spraying using an iron wire. Moreover, the main body film
  • the porosity of the surface film 3 is preferably 2.5% or less. Thereby, the surface layer film 3 becomes denser, and the tensile strength of the surface layer film 3 can be sufficiently secured. As a result, deformation of the main body film 2 and the surface film 3 and generation of cracks are effectively suppressed. Therefore, peeling of the main body film 2 and the surface film 3 can be more reliably suppressed. As described above, the lower the porosity value of the surface film 3, the better, but it is substantially 0.5% or more.
  • the thickness of the surface layer film 3 is preferably 250 ⁇ m or less. Thereby, the temperature rise of the surface film 3 during piercing-rolling can be suppressed.
  • the surface coating 3 has a high thermal conductivity because the iron content in the coating is high. Therefore, the surface layer film 3 is easily heated by being in contact with a high temperature billet during piercing and rolling.
  • the thickness of the surface film 3 is too thick, heat is accumulated in the surface film 3 and the surface film 3 becomes high temperature. If the surface layer 3 is too hot, billet seizing on the plug 10 is likely to occur. The occurrence of image sticking can be suppressed by setting the thickness of the surface film 3 to 250 ⁇ m or less.
  • the thickness of the surface layer film 3 is preferably 50 ⁇ m or more.
  • the main body film 2 is formed while gradually increasing the spraying distance. Thereby, since the content rate of iron becomes high in the area
  • a main body film (2) was formed on the surface of each plug main body (1) by arc spraying using an iron wire. In the formation of the main body coating (2), spraying was performed while changing the spraying distance from 200 mm to 1000 mm.
  • the thickness of the main body coating (2) is 1200 ⁇ m at the tip (11) of the plug main body (1) and 500 ⁇ m at the trunk (12).
  • the surface coating (3) was formed on the body coating (2) by arc spraying using an iron wire, and these were used as the plugs according to Examples 1 to 5.
  • Table 1 shows the conditions for forming the surface film (3).
  • the remaining one plug body (1) was not formed with the surface layer film (3), and this was used as a plug according to a comparative example.
  • the thickness of the surface film (3) is 300 ⁇ m, which is larger than 250 ⁇ m. In Example 1, billet image sticking to the plug occurred after one pass. On the other hand, in Examples 2 to 5 in which the thickness of the surface film (3) was 250 ⁇ m or less, billet seizure did not occur on the plug. Therefore, the thickness of the surface layer film (3) is preferably 250 ⁇ m or less from the viewpoint of suppressing the occurrence of image sticking.
  • the porosity of the surface layer film (3) is 2.5% or less, and the denseness and strength of the surface layer film (3) are high. Therefore, no peeling of the film occurred in Examples 1 and 3 to 5.
  • the spray distance when forming the surface layer film (3) is 300 mm, and the porosity of the surface layer film (3) is 2.7%. That is, the denseness and strength of the surface film (3) in Example 2 are lower than those in Examples 1 and 3-5. For this reason, in Example 2, peeling of the film occurred in the fourth pass. From this result, it can be said that the porosity of the surface layer film (3) is preferably 2.5% or less in order to more effectively suppress peeling of the film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

皮膜の剥離を抑制することができるプラグ及びその製造方法を提供する。プラグ(10)は、ビレットの穿孔に用いられる。プラグ(10)は、プラグ本体(1)と、本体皮膜(2)と、表層皮膜(3)とを備える。本体皮膜(2)は、プラグ本体の表面上に形成される。本体皮膜(2)は、鉄及び鉄酸化物を含有する。表層皮膜(3)は、本体皮膜(2)上に形成される。表層皮膜(3)は、鉄及び鉄酸化物を含有する。表層皮膜(3)は、本体皮膜(2)のうち表層皮膜(3)に隣接し且つ表層皮膜(3)の厚みと等しい厚みを有する領域の空隙率よりも低い空隙率を有する。

Description

プラグ及びその製造方法
 本開示は、プラグに関し、より詳細には、ビレットの穿孔に用いられるプラグ及びその製造方法に関する。
 マンネスマン製管法は、継目無管の製造方法として広く採用されている。マンネスマン製管法では、所定温度に加熱されたビレットを穿孔機で穿孔圧延する。穿孔機は、一対の傾斜ロールと、プラグとを備える。プラグは、一対の傾斜ロールの間であって、パスライン上に配置される。穿孔機は、傾斜ロールによってビレットを周方向に回転させながらプラグに押し込み、ビレットを穿孔圧延して中空素管にする。
 従来のプラグは、ビレットの穿孔圧延に際し、予め母材の表面に酸化スケールの皮膜が形成される。酸化スケールの皮膜は、プラグに熱処理を施すことによって形成される。これにより、プラグの表面の遮熱性、潤滑性、及び耐焼き付き性を確保することができる。
 酸化スケールの皮膜は、繰り返しの穿孔圧延によって次第に摩耗する。皮膜は、穿孔圧延を行う毎(パス毎)に摩耗する。皮膜が完全に摩耗して失われると、プラグの母材が露出する。この場合、母材の露出部分での溶損や、プラグと相手材であるビレットとの焼き付き等が生じ、プラグが寿命に至る。
 特に、ステンレス鋼からなるビレットを穿孔する場合、酸化スケールの皮膜の摩耗が顕著であるため、プラグの寿命は非常に短い。ステンレス鋼からなるビレットを穿孔する場合、通常、数パスで皮膜が摩耗してしまう。皮膜が摩耗するたびに、プラグの母材の表面に酸化スケールを生成するための熱処理が必要となる。熱処理は、一般に、数時間から数10時間を要する。よって、酸化スケールの皮膜の形成能率は低い。
 これに対し、特許第4279350号公報では、鉄及び酸化物からなる皮膜をアーク溶射によってプラグの母材の表面に形成する技術が提案されている。特許第4279350号公報では、皮膜の原料は鉄線材のみであり、皮膜の形成に要する時間は数分から数10分程度と短い。よって、低コスト且つ高能率で、母材の表面に皮膜を形成することができる。溶射皮膜は、酸化スケールの皮膜と比較して、母材との密着性及び耐摩耗性が高い。このため、プラグの寿命を長くすることができる。
 特開2013-248619号公報には、鉄及び鉄酸化物を含有する溶射皮膜をプラグの母材の表面に形成し、その後、プラグに熱処理を施すことが開示されている。
 国際公開第2014/013963号には、鉄及び鉄酸化物を含有する溶射皮膜の下地層として、プラグの母材の表面にNi-Cr層を形成することが開示されている。
 特開昭61-286077号公報には、鋼管圧延機用芯金の表面に金属系粉末を溶射して皮膜を形成した後、芯金に熱間等方圧加圧処理を施すことが開示されている。
 特公平5-36502号公報及び特開平3-125076号公報は、ビレットの穿孔用のプラグに適用されるものではないが、溶射皮膜の形成方法を開示する。特公平5-36502号公報には、基材の表面に超硬合金の溶射皮膜を形成し、溶射皮膜上にNi-P合金のメッキ皮膜を形成した後、基材に熱間等方圧加圧処理を施すことが開示されている。特開平3-125076号公報には、基材の表面に耐摩耗材を溶射した後、その上に封孔性のよい粉末材を溶射して封孔処理をし、基材に熱間等方圧加圧処理を施すことが開示されている。
 鉄線材(鋼線材)のアーク溶射によって形成された皮膜は、プラグの母材との密着性及び耐摩耗性が高いため、プラグを長寿命化することができる。しかしながら、例えば、高合金からなる高強度のビレットを穿孔する場合や、ビレットの穿孔長が非常に長い場合等には、穿孔中に母材の表面から皮膜が剥離する可能性がある。皮膜の剥離によって母材が露出すると、露出部分を起点とて、プラグの溶損やプラグに対するビレットの焼き付きが生じる。
 本開示は、皮膜の剥離を抑制することができるプラグ及びその製造方法を提供することを目的とする。
 本開示に係るプラグは、ビレットの穿孔に用いられる。プラグは、プラグ本体と、本体皮膜と、表層皮膜とを備える。本体皮膜は、プラグ本体の表面上に形成される。本体皮膜は、鉄及び鉄酸化物を含有する。表層皮膜は、本体皮膜上に形成される。表層皮膜は、鉄及び鉄酸化物を含有する。表層皮膜は、本体皮膜のうち表層皮膜に隣接し且つ表層皮膜の厚みと等しい厚みを有する領域の空隙率よりも低い空隙率を有する。
 本開示は、プラグの製造方法に関する。プラグは、ビレットの穿孔に用いられる。当該製造方法は、プラグ本体を準備する工程と、鉄線材を用いたアーク溶射を行ってプラグ本体の表面上に本体皮膜を形成する工程と、本体皮膜の形成が終了した時点における溶射距離よりも短い溶射距離で鉄線材を用いたアーク溶射を行い、本体皮膜上に表層皮膜を形成する工程とを備える。
 本開示に係るプラグ及びその製造方法によれば、皮膜の剥離を抑制することができる。
図1は、実施形態に係るプラグの部分断面図である。 図2は、図1に示すプラグのII部分の拡大図である。 図3は、皮膜の断面のミクロ観察画像の一例である。 図4は、図3に示すミクロ観察画像の輝度ヒストグラムである。 図5は、図3に示すミクロ観察画像の輝度ヒストグラムであって、ミクロ観察画像の3値化を説明するための図である。 図6は、図3に示すミクロ観察画像から得られた3値画像である。 図7は、図1に示すプラグの製造方法を説明するための図である。 図8は、皮膜形成時の溶射距離と皮膜の空隙率との関係を示すグラフである。 図9は、皮膜形成時の溶射距離と皮膜中の酸化物の含有率との関係を示すグラフである。 図10は、皮膜形成時の溶射距離と皮膜の引張強度との関係を示すグラフである。 図11Aは、実施形態に係るプラグによる効果を説明するための図である。 図11Bは、実施形態に係るプラグによる効果を説明するための図である。 図12Aは、従来のプラグにおいて皮膜の剥離が発生するメカニズムを説明するための図である。 図12Bは、従来のプラグにおいて皮膜の剥離が発生するメカニズムを説明するための図である。 図12Cは、従来のプラグにおいて皮膜の剥離が発生するメカニズムを説明するための図である。 図12Dは、従来のプラグにおいて皮膜の剥離が発生するメカニズムを説明するための図である。
 本発明者等は、鋭意検討の結果、ビレットの穿孔中のプラグにおいて皮膜の剥離が発生するメカニズムを見出した。図12A~図12Dは、従来のプラグにおいて皮膜の剥離が発生するメカニズムを説明するための図である。図12A~図12Dでは、プラグの表面近傍の断面を模式的に示している。
 図12Aに示すように、ビレットの穿孔前において、プラグ本体101の表面上には皮膜102が形成されている。皮膜102は、空隙103を含む。
 図12Bに示すように、ビレットの穿孔が開始されると、皮膜102には、ビレットとの摩擦力によってその表面に沿う方向(せん断方向)の負荷が作用する。これにより、皮膜102が変形し、変形部分を起点として皮膜102の表面にクラックCが発生する。
 図12Cに示すように、クラックCは、皮膜102に作用するせん断方向の負荷により、プラグ本体101と皮膜102との界面に沿って進展する。その結果、図12Dに示すように、皮膜102の剥離が発生する。
 本発明者等は、ビレットの穿孔中における皮膜の変形及びクラックの発生を抑制すれば、皮膜の剥離を抑制することができると考えた。本発明者等は、さらに検討を重ね、実施形態に係るプラグ及びその製造方法を完成させた。
 実施形態に係るプラグは、ビレットの穿孔に用いられる。プラグは、プラグ本体と、本体皮膜と、表層皮膜とを備える。本体皮膜は、プラグ本体の表面上に形成される。本体皮膜は、鉄及び鉄酸化物を含有する。表層皮膜は、本体皮膜上に形成される。表層皮膜は、鉄及び鉄酸化物を含有する。表層皮膜は、本体皮膜のうち表層皮膜に隣接し且つ表層皮膜の厚みと等しい厚みを有する領域の空隙率よりも低い空隙率を有する(第1の構成)。
 第1の構成によれば、プラグ本体の表面上に形成された本体皮膜の上に、さらに表層皮膜が形成されている。表層皮膜の空隙率は、本体皮膜のうち表層皮膜近傍の領域の空隙率よりも低い。よって、表層皮膜は、本体皮膜よりも緻密であり、高い強度を有する。このため、表層皮膜、及び表層皮膜に覆われた本体皮膜において、せん断方向の負荷による変形が生じにくくなり、変形に起因するクラックの発生が抑制される。結果として、プラグ本体の表面から各皮膜が剥離するのを抑制することができる。
 上記表層皮膜の空隙率は、2.5%以下であってもよい(第2の構成)。
 第2の構成によれば、表層皮膜の空隙率が十分に低く、表層皮膜をより緻密且つ高強度にすることができる。よって、各皮膜の変形及びクラックの発生の抑制効果をさらに高めることができ、各皮膜の剥離をより確実に抑制することができる。
 上記表層皮膜の厚みは、250μm以下であってもよい(第3の構成)。
 第3の構成によれば、表層皮膜の厚みが十分に小さいため、表層皮膜の放熱性を向上させることができる。これにより、穿孔中における表層皮膜の温度上昇を抑制することができ、プラグに対するビレットの焼き付きの発生を抑制することができる。
 実施例に係るプラグの製造方法は、プラグ本体を準備する工程と、鉄線材を用いたアーク溶射を行ってプラグ本体の表面上に本体皮膜を形成する工程と、本体皮膜の形成が終了した時点における溶射距離よりも短い溶射距離で鉄線材を用いたアーク溶射を行い、本体皮膜上に表層皮膜を形成する工程とを備える(第4の構成)。
 第4の構成によれば、表層皮膜は、本体皮膜の形成後、溶射距離を短くしてアーク溶射を行うことにより形成される。これにより、本体皮膜のうち表層皮膜近傍の領域の空隙率よりも表層皮膜の空隙率が低くなり、緻密且つ高強度の表層皮膜によって本体皮膜が覆われることとなる。よって、穿孔中のせん断方向の負荷による各皮膜の変形が生じにくく、変形に起因するクラックの発生が抑制される。その結果、プラグ本体の表面から各皮膜が剥離するのを抑制することができる。
 また、第4の構成によれば、本体皮膜及び表層皮膜の双方を鉄線材のアーク溶射によって形成する。すなわち、本体皮膜及び表層皮膜は、同一の材料及び同一の手法で形成される。このため、本体皮膜及び表層皮膜を同一工程内で連続的に形成することができる。よって、本体皮膜及び表層皮膜を有するプラグを容易に製造することができる。
 上記本体皮膜を形成する工程では、溶射距離を徐々に長くしながらアーク溶射を行ってもよい(第5の構成)。
 アーク溶射では、溶射距離が長くなるほど皮膜中の酸化物の含有率が高くなる。第5の構成によれば、本体皮膜のうちプラグ本体側の領域を形成する際の溶射距離が比較的短い。このため、プラグ本体側の領域では、鉄の含有率が高く、酸化物の含有率が低くなる。これにより、プラグ本体に対する本体皮膜の密着性を向上させることができる。一方、本体皮膜のうち表層皮膜側の領域を形成する際の溶射距離は比較的長い。よって、表層皮膜側の領域では、酸化物の含有率が高くなり、熱伝導率が低くなる。これにより、本体皮膜の遮熱性が向上し、プラグに対するビレットの焼き付きの発生を抑制することができる。
 以下、実施形態について図面を参照しつつ詳細に説明する。図中同一及び相当する構成については同一の符号を付し、同じ説明を繰り返さない。説明の便宜上、各図において、構成を簡略化又は模式化して示したり、一部の構成を省略して示したりする場合がある。
 [プラグの構造]
 まず、プラグの構造について説明する。図1に示すように、実施形態に係るプラグ10は、プラグ本体1と、本体皮膜2と、表層皮膜3とを備える。図1では、プラグ10が断面で示されている。
 プラグ本体1は、横断形状が円形状であり、その外径は、プラグ本体1の先端から後端に向かって大きくなる。要するに、プラグ本体1の形状は、略砲弾状である。
 本体皮膜2は、プラグ本体1の表面上に形成される。本体皮膜2は、プラグ本体1の後端面を除き、プラグ本体1の表面の全体を覆っている。本体皮膜2の厚みは、全体にわたって一定でなくてもよい。例えば、本体皮膜2において、プラグ本体1の先端部11上に位置する部分の厚みは、プラグ本体1の胴部12上に位置する部分の厚みよりも大きくなっている。
 表層皮膜3は、本体皮膜2上に形成される。表層皮膜3は、本体皮膜2の全体を覆っている。表層皮膜3の厚みは、本体皮膜2の厚みよりも小さい。表層皮膜3の厚みは、全体にわたって実質的に一定である。表層皮膜3の厚みは、好ましくは250μm以下であり、より好ましくは200μm以下である。表層皮膜3の厚みは、好ましくは50μm以上である。
 図2は、図1に示すII部分の拡大図である。本体皮膜2及び表層皮膜3は、鉄及び鉄酸化物を含有する。本体皮膜2及び表層皮膜3は、主として鉄及び鉄酸化物で構成されているが、鉄及び鉄酸化物以外の元素及び/又は化合物をわずかに含む場合もある。本体皮膜2では、プラグ本体1側から表層皮膜3に向かうにつれて鉄の含有率が低く、鉄酸化物の含有率が高くなっている。表層皮膜3の鉄の含有率は、少なくとも、後述する本体皮膜2の領域21における鉄の含有率よりも高くなっている。
 本体皮膜2には、空隙が含まれる。表層皮膜3にも、わずかに空隙が含まれる。表層皮膜3の空隙率は、本体皮膜2の領域21の空隙率よりも低い。領域21は、本体皮膜2のうち表層皮膜3に隣接する領域である。すなわち、領域21は、本体皮膜2のうち表層皮膜3との界面側に位置する領域である。領域21の厚みは、表層皮膜3の厚みと実質的に等しい。表層皮膜3の空隙率は、2.5%以下であることが好ましい。表層皮膜3の空隙率の値は低いほどよいが、実質的には0.5%以上である。
 ここで、本体皮膜2及び表層皮膜3における鉄の含有率、鉄酸化物の含有率、及び空隙率の算出方法について説明する。
 まず、本体皮膜2及び表層皮膜3の断面のミクロ観察画像を取得する。本体皮膜2の領域21の空隙率は、ミクロ観察画像において、本体皮膜2のうち表層皮膜3との界面側であって表層皮膜3と同じ厚み分の範囲で評価する。表層皮膜3の空隙率は、ミクロ観察画像に写る表層皮膜3全体で評価する。なお、厚さ方向と直交する方向(プラグ表面に並行する方向)の評価範囲は、1000~1500μm程度とする。この方向には、基本的には、ほぼ均一に空隙が分布していると考えられるため、1000~1500μm程度の幅で評価すると、ほぼ平均的な空隙率を算出できる。
 図3は、皮膜の断面のミクロ観察画像(原画像)の一例である。原画像中の鉄、鉄酸化物、及び空隙は、それぞれ異なる色味を有する。具体的には、鉄、鉄酸化物、及び空隙の順で色が濃くなっている。
 次に、原画像から図4に示す輝度ヒストグラムを作成する。輝度ヒストグラムは、原画像における画素の輝度分布を示すグラフであり、縦軸に頻度(画素数)、横軸に輝度値をとる。この輝度ヒストグラムにおいてピークの検出を行うと、鉄、鉄酸化物、及び空隙の各々に起因する3つのピークが検出される。
 続いて、原画像の3値化を行う。図5に示すように、3値化に用いる閾値は、輝度値Bと輝度値Bとの中間値M、及び輝度値Bと輝度値Bとの中間値Mである。B、B、及びBは、それぞれ、空隙に起因するピークの輝度値、鉄酸化物に起因するピークの輝度値、及び鉄に起因するピークの輝度値である。
 図6に、原画像の3値化によって得られた3値画像を示す。3値画像では、原画像においてM未満の輝度値を有する画素が黒色、M以上M未満の輝度値を有する画素が灰色、M以上の輝度値を有する画素が白色で表示されている。3値画像において、黒色の領域を空隙の領域、灰色の領域を鉄酸化物の領域、白色の領域を鉄の領域とし、各領域の画素数をカウントする。空隙の領域の画素数、鉄酸化物の領域の画素数、及び鉄の領域の画素数の各々を全体の画素数で除することにより、空隙率(%)、鉄酸化物の含有率(%)、及び鉄の含有率(%)が算出される。つまり、空隙率、鉄酸化物の含有率、及び鉄の含有率は、原画像中の画素の比率(面積率)で評価される。
 [プラグの製造方法]
 次に、プラグ10の製造方法について説明する。
 まず、プラグ本体1を準備する。このプラグ本体1の表面に、アーク溶射によって本体皮膜2及び表層皮膜3を形成する。
 アーク溶射は、例えば、図7に示すアーク溶射装置4を用いて行うことができる。アーク溶射装置4は、溶射ガン41と、回転台42とを備える。溶射ガン41は、溶射用の線材をアークによって溶融させ、圧縮空気によってノズルから噴霧する。本実施形態では、溶射用の線材として、鉄線材を使用する。鉄線材は、鉄(Fe)を主成分とする炭素鋼(普通鋼)の線材である。鉄線材は、典型的には、Feを主成分とし、炭素(C)、シリコン(Si)、マンガン(Mn)及び不純物からなる、いわゆる普通鋼であるが、タングステン(W)等の元素を含有していてもよい。
 本体皮膜2及び表層皮膜3の形成に際し、プラグ本体1をアーク溶射装置4の回転台42に配置する。そして、回転台42によってプラグ本体1を軸周りに回転させながら、このプラグ本体1に対して鉄線材のアーク溶射を行う。これにより、まず、鉄及び鉄酸化物を含有する本体皮膜2がプラグ本体1の表面上に形成される。本体皮膜2の形成は、所望の厚みの材料がプラグ本体1の表面上に堆積された時点で終了する。
 本体皮膜2は、溶射距離を徐々に長くしながら形成されることが好ましい。溶射距離とは、溶射ガン41のノズルの先端から溶射対象物の表面までの最短距離を指す。本体皮膜2は、プラグ本体1から所定の距離に溶射ガン41を配置してアーク溶射を開始し、溶射ガン41をプラグ本体1から徐々に遠ざけながらアーク溶射を継続することで形成される。しかしながら、本体皮膜2の形成中、溶射距離を一定に保つこともできる。
 本体皮膜2の形成後、表層皮膜3を続けて形成する。すなわち、本体皮膜2を形成した後、そのままアーク溶射を継続して、本体皮膜2上に表層皮膜3を形成する。
 表層皮膜3を形成する際の溶射距離は、本体皮膜2を形成する際の溶射距離よりも短い。より具体的には、表層皮膜3を形成する際の溶射距離は、少なくとも、本体皮膜2の形成が終了した時点での溶射距離より短い。すなわち、溶射ガン41をプラグ本体1から徐々に遠ざけながら本体皮膜2を形成した後、溶射ガン41をプラグ本体1に一気に近づけて表層皮膜3を形成する。
 表層皮膜3の形成中、溶射距離は実質的に一定に保たれる。表層皮膜3の形成時の溶射距離は、200mm以下であることが好ましい。表層皮膜3の形成は、所望の厚みの材料が本体皮膜2上に堆積された時点で終了する。好ましくは、表層皮膜3の厚みが250μmを超える前に表層皮膜3の形成を終了する。
 ここで、溶射距離についてより詳細に説明する。図8は、溶射距離と皮膜の空隙率との関係を示すグラフである。図9は、溶射距離と皮膜中の酸化物の含有率との関係を示すグラフである。図10は、溶射距離と皮膜の引張強度との関係を示すグラフである。
 図8に示すように、溶射距離が長くなれば皮膜の空隙率は高くなる。すなわち、本体皮膜2及び表層皮膜3の空隙率は、溶射距離によって制御することができる。上述したように、表層皮膜3を形成する際の溶射距離は、本体皮膜2の形成が終了した時点での溶射距離よりも短い。このため、表層皮膜3の空隙率は、本体皮膜2の領域21の空隙率よりも低くなる。
 図9に示すように、溶射距離が長くなれば皮膜における酸化物の含有率は高くなる。すなわち、本体皮膜2及び表層皮膜3の鉄及び鉄酸化物の各含有率は、溶射距離によって制御することができる。上述したように、本体皮膜2は、溶射距離を徐々に長くしながら形成される。よって、本体皮膜2では、プラグ本体1側から表層皮膜3側に向かうにつれて、鉄の含有率が低く、鉄酸化物の含有率が高くなる。表層皮膜3は、本体皮膜2の形成後、溶射距離を短くして形成される。このため、表層皮膜3の鉄の含有率は、少なくとも本体皮膜2の領域21における鉄の含有率より高くなる。
 図10に示すように、溶射距離が長くなれば皮膜の引張強度は低くなる。すなわち、本体皮膜2及び表層皮膜3の引張強度は、溶射距離によって制御することができる。表層皮膜3の形成時の溶射距離は、本体皮膜2の形成の終了時点の溶射距離よりも短い。このため、表層皮膜3の引張強度は、少なくとも本体皮膜2の領域21における引張強度より高くなる。
 以上のようにして本体皮膜2及び表層皮膜3を形成した後、プラグ本体1をアーク溶射装置4の回転台42から取り外す。これにより、本実施形態に係るプラグ10(図1)が完成する。
 [効果]
 本実施形態に係るプラグ10では、低空隙率の表層皮膜3が本体皮膜2上に形成されている。このため、穿孔中のせん断方向の負荷による本体皮膜2及び表層皮膜3の変形が生じにくく、本体皮膜2及び表層皮膜3におけるクラックの発生を抑制することができる。この効果について、図11A及び図11Bを参照しつつ、より詳細に説明する。
 図11Aは、ビレットの穿孔が開始される前のプラグ10の表面付近の断面を模式的に示す図である。図11Aに示すように、プラグ本体1上の本体皮膜2は、表層皮膜3によって覆われている。表層皮膜3は、本体皮膜2の形成が終了した時点での溶射距離よりも短い溶射距離で鉄線材のアーク溶射を行うことによって形成されている。よって、表層皮膜3は、本体皮膜2のうち表層皮膜3に隣接する領域の空隙率よりも低い空隙率を有し、緻密で引張強度が高い。
 図11Bは、ビレットの穿孔中のプラグ10の表面付近の断面を模式的に示す図である。図11Bに示すように、ビレットの穿孔が開始されると、表層皮膜3の表面にせん断方向の負荷が作用する。しかしながら、表層皮膜3は、緻密であり、高い引張強度を有するため、せん断方向の負荷によって変形しにくい。本体皮膜2も、表層皮膜3によって覆われていることにより変形が生じにくい。このため、本体皮膜2及び表層皮膜3では、剥離に至るほどのクラックは発生しない。よって、本体皮膜2及び表層皮膜3の剥離を抑制することができる。
 本体皮膜2及び表層皮膜3は、鉄線材を用いたアーク溶射によって容易に形成することができる。また、本体皮膜2及び表層皮膜3を同一工程内で連続的に形成することができる。よって、本実施形態によれば、耐剥離性が高い皮膜を有するプラグ10を簡易な方法で製造することができる。
 表層皮膜3の空隙率は、好ましくは2.5%以下である。これにより、表層皮膜3がより緻密になり、表層皮膜3の引張強度を十分に確保することができる。その結果、本体皮膜2及び表層皮膜3の変形、並びにクラックの発生が効果的に抑制される。よって、本体皮膜2及び表層皮膜3の剥離をより確実に抑制することができる。上述したように、表層皮膜3の空隙率の値は低いほどよいが、実質的には0.5%以上である。
 表層皮膜3の厚みは、好ましくは250μm以下である。これにより、穿孔圧延中における表層皮膜3の温度上昇を抑制することができる。前述のとおり、表層皮膜3は皮膜中の鉄の含有率が高いため、熱伝導率が高い。従って、穿孔圧延中は高温のビレットと接することで、表層皮膜3は加熱されやすい。表層皮膜3の厚みが厚すぎると、表層皮膜3中に熱が蓄積され、表層皮膜3が高温となる。表層皮膜3が高温になりすぎると、プラグ10に対するビレットの焼き付きが発生しやすくなる。表層皮膜3の厚みを250μm以下にすることで焼き付きの発生を抑制することができる。
 表層皮膜3の厚みは、好ましくは50μm以上である。これにより、穿孔中のせん断方向の負荷による本体皮膜2及び表層皮膜3の変形を抑制することができ、クラックの発生をより確実に防止することができる。
 本体皮膜2は、溶射距離を徐々に長くしながら形成される。これにより、本体皮膜2のうちプラグ本体1側の領域において鉄の含有率が高くなるため、プラグ本体1と本体皮膜2との密着性を向上させることができる。一方、本体皮膜2のうち表層皮膜2側の領域では、鉄酸化物の含有率が高くなるため、熱伝導率が低くなって遮熱性が向上する。よって、プラグ10に対するビレットの焼き付きの発生を抑制することができる。
 以上、実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 以下、実施例によって本開示をさらに詳しく説明する。ただし、本開示は、以下の実施例に限定されるものではない。
 最大径:77.5mm、全長:230mm、材質:C-0.15質量%、W-3.5質量%を含有する鋼のプラグ本体(1)を6つ準備した。鉄線材を用いたアーク溶射により、各プラグ本体(1)の表面上に本体皮膜(2)を形成した。本体皮膜(2)の形成では、溶射距離を200mmから1000mmまで変更しながら溶射を行った。本体皮膜(2)の厚みは、プラグ本体(1)の先端部(11)で1200μm、胴部(12)で500μmである。
 5つのプラグ本体(1)について、鉄線材を用いたアーク溶射によって本体皮膜(2)上に表層皮膜(3)を形成し、これらを実施例1~5に係るプラグとした。表層皮膜(3)の形成の条件を表1に示す。残りの1つのプラグ本体(1)には表層皮膜(3)を形成せず、これを比較例に係るプラグとした。
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~5及び比較例に係るプラグの各々を用いて、1200℃に加熱した直径:65mm、長さ:400mmのSUS304製のビレットの穿孔圧延を繰り返し実施した。実施例1~5及び比較例の各々について、プラグが損傷するまでの穿孔回数(寿命パス数)と、プラグの損傷状況を確認した。実施例1~5及び比較例における寿命パス数及び損傷状況を表1に示す。
 比較例のプラグでは、3パス後に胴部(12)において皮膜の剥離が発生した。これに対して、実施例3~5では、7~8パス後も皮膜の剥離は生じなかった。実施例1では、1パス後に焼き付きが発生したため、それ以上の穿孔圧延を中止したが、胴部(12)における皮膜の剥離は生じていなかった。実施例2では、4パス後に胴部(12)の皮膜に剥離が発生した。よって、本体皮膜(2)上に表層皮膜(3)を形成することにより、皮膜の剥離を抑制できることがわかる。なお、実施例3~5は、それぞれ表1中の寿命パス数後におけるプラグ先端部(11)の変形が許容範囲を超えたため、それ以上の穿孔圧延を中止した。
 実施例1では、表層皮膜(3)の厚みが300μmであり、250μmよりも大きい。実施例1では、1パス後にプラグに対するビレットの焼き付きが発生した。一方、表層皮膜(3)の厚みが250μm以下である実施例2~5では、プラグに対するビレットの焼き付きは発生しなかった。よって、表層皮膜(3)の厚みは、焼き付き発生の抑制という観点から、250μm以下であることが好ましい。
 実施例1及び3~5では、表層皮膜(3)の空隙率が2.5%以下であり、表層皮膜(3)の緻密性及び強度が高い。このため、実施例1及び3~5では皮膜の剥離が発生しなかった。一方、実施例2では、表層皮膜(3)の形成時の溶射距離が300mmであり、表層皮膜(3)の空隙率が2.7%となっている。すなわち、実施例2における表層皮膜(3)の緻密性及び強度は、実施例1及び3~5と比較して低い。このため、実施例2では4パス目で皮膜の剥離が発生した。この結果から、皮膜の剥離をより効果的に抑制するために、表層皮膜(3)の空隙率は2.5%以下であることが好ましいといえる。
 

Claims (5)

  1.  ビレットの穿孔に用いられるプラグであって、
     プラグ本体と、
     前記プラグ本体の表面上に形成され、鉄及び鉄酸化物を含有する本体皮膜と、
     前記本体皮膜上に形成され、鉄及び鉄酸化物を含有する表層皮膜と、
    を備え、
     前記表層皮膜は、前記本体皮膜のうち前記表層皮膜に隣接し且つ前記表層皮膜の厚みと等しい厚みを有する領域の空隙率よりも低い空隙率を有する、プラグ。
  2.  請求項1に記載のプラグであって、
     前記表層皮膜の空隙率は、2.5%以下である、プラグ。
  3.  請求項1又は2に記載のプラグであって、
     前記表層皮膜の厚みは、250μm以下である、プラグ。
  4.  ビレットの穿孔に用いられるプラグの製造方法であって、
     プラグ本体を準備する工程と、
     鉄線材を用いたアーク溶射を行って前記プラグ本体の表面上に本体皮膜を形成する工程と、
     前記本体皮膜の形成が終了した時点における溶射距離よりも短い溶射距離で鉄線材を用いたアーク溶射を行い、前記本体皮膜上に表層皮膜を形成する工程と、
    を備える、プラグの製造方法。
  5.  請求項4に記載のプラグの製造方法であって、
     前記本体皮膜を形成する工程は、溶射距離を徐々に長くしながらアーク溶射を行う、プラグの製造方法。
PCT/JP2016/072212 2015-09-28 2016-07-28 プラグ及びその製造方法 WO2017056669A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/763,405 US20180281037A1 (en) 2015-09-28 2016-07-28 Plug and Method of Manufacturing the Same
MX2018003118A MX2018003118A (es) 2015-09-28 2016-07-28 Punzon y su metodo de manufactura.
JP2017542962A JP6515300B2 (ja) 2015-09-28 2016-07-28 プラグ及びその製造方法
EP16850846.3A EP3357595B1 (en) 2015-09-28 2016-07-28 Plug and method for manufacturing same
CN201680054432.8A CN108025338B (zh) 2015-09-28 2016-07-28 芯棒及其制造方法
BR112017028179-1A BR112017028179B1 (pt) 2015-09-28 2016-07-28 Pino e método para sua fabricação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-190400 2015-09-28
JP2015190400 2015-09-28

Publications (1)

Publication Number Publication Date
WO2017056669A1 true WO2017056669A1 (ja) 2017-04-06

Family

ID=58423479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072212 WO2017056669A1 (ja) 2015-09-28 2016-07-28 プラグ及びその製造方法

Country Status (7)

Country Link
US (1) US20180281037A1 (ja)
EP (1) EP3357595B1 (ja)
JP (1) JP6515300B2 (ja)
CN (1) CN108025338B (ja)
BR (1) BR112017028179B1 (ja)
MX (1) MX2018003118A (ja)
WO (1) WO2017056669A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705591A4 (en) * 2017-11-02 2020-09-09 Nippon Steel Corporation PUNCH AND MANUFACTURING PROCESS FOR IT

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE042725T2 (hu) * 2017-05-18 2019-07-29 Grob Gmbh & Co Kg Eljárás és készülék bevont felületek minõségének vizsgálatára

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226565A (ja) * 2012-04-24 2013-11-07 Nippon Steel & Sumitomo Metal Corp 穿孔圧延用プラグの製造設備
WO2014013963A1 (ja) * 2012-07-20 2014-01-23 新日鐵住金株式会社 穿孔プラグ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757904B2 (ja) * 1989-01-23 1995-06-21 住友金属工業株式会社 熱処理炉用ロールおよびその製造法
JPH03204106A (ja) * 1989-12-28 1991-09-05 Sumitomo Metal Ind Ltd 熱間継目無管製造用プラグ
JPH08193241A (ja) * 1994-09-26 1996-07-30 Kawasaki Steel Corp 熱間加工用工具及びその製造方法
WO2009057471A1 (ja) * 2007-11-01 2009-05-07 Sumitomo Metal Industries, Ltd. 穿孔圧延用プラグ、その穿孔圧延用プラグの再生方法、およびその穿孔圧延用プラグの再生設備列
CN102296264B (zh) * 2011-06-30 2012-12-26 燕山大学 一种热喷涂陶瓷软线
JP5365723B2 (ja) * 2012-04-24 2013-12-11 新日鐵住金株式会社 穿孔圧延用プラグの製造方法
JP5842772B2 (ja) * 2012-09-11 2016-01-13 Jfeスチール株式会社 継目無鋼管圧延用プラグおよびその製造方法
CN104736262A (zh) * 2013-01-11 2015-06-24 新日铁住金株式会社 热制管用顶头
CN104032255B (zh) * 2014-06-05 2016-03-30 西安交通大学 一种热障涂层孔隙率的控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226565A (ja) * 2012-04-24 2013-11-07 Nippon Steel & Sumitomo Metal Corp 穿孔圧延用プラグの製造設備
WO2014013963A1 (ja) * 2012-07-20 2014-01-23 新日鐵住金株式会社 穿孔プラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3357595A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705591A4 (en) * 2017-11-02 2020-09-09 Nippon Steel Corporation PUNCH AND MANUFACTURING PROCESS FOR IT

Also Published As

Publication number Publication date
BR112017028179A8 (pt) 2023-01-03
CN108025338B (zh) 2019-11-05
JPWO2017056669A1 (ja) 2018-03-22
BR112017028179B1 (pt) 2023-02-07
EP3357595A1 (en) 2018-08-08
CN108025338A (zh) 2018-05-11
EP3357595B1 (en) 2021-05-19
JP6515300B2 (ja) 2019-05-22
EP3357595A4 (en) 2018-09-19
MX2018003118A (es) 2018-06-06
BR112017028179A2 (ja) 2018-08-28
US20180281037A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5169982B2 (ja) プラグ、穿孔圧延機、およびそれを用いた継目無管の製造方法
US10441982B2 (en) Plug for rolling of seamless steel pipe, method for manufacturing the same and method for manufacturing seamless steel pipe using the same
JP5610101B1 (ja) 熱間製管用プラグ
WO2017056669A1 (ja) プラグ及びその製造方法
JP5435184B1 (ja) 穿孔プラグ
JP5365723B2 (ja) 穿孔圧延用プラグの製造方法
JP5273272B1 (ja) 穿孔圧延用プラグの製造方法
JP6540441B2 (ja) プラグの製造方法
JP6696321B2 (ja) プラグ及びその製造方法
WO2013183213A1 (ja) 穿孔圧延用プラグの製造方法
JP7176344B2 (ja) ピアサ-プラグ及びその製造方法
JP5566417B2 (ja) 穿孔プラグの製造方法
JP5339016B1 (ja) 穿孔圧延用プラグの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16850846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017542962

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/003118

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15763405

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017028179

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016850846

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017028179

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171226