WO2017056645A1 - 原子力プラントの解体方法 - Google Patents
原子力プラントの解体方法 Download PDFInfo
- Publication number
- WO2017056645A1 WO2017056645A1 PCT/JP2016/070966 JP2016070966W WO2017056645A1 WO 2017056645 A1 WO2017056645 A1 WO 2017056645A1 JP 2016070966 W JP2016070966 W JP 2016070966W WO 2017056645 A1 WO2017056645 A1 WO 2017056645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dismantling
- fuel
- pool
- reactor
- water
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/02—Details of handling arrangements
- G21C19/04—Means for controlling flow of coolant over objects being handled; Means for controlling flow of coolant through channel being serviced, e.g. for preventing "blow-out"
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/02—Details of handling arrangements
- G21C19/06—Magazines for holding fuel elements or control elements
- G21C19/07—Storage racks; Storage pools
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/02—Details of handling arrangements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/20—Arrangements for introducing objects into the pressure vessel; Arrangements for handling objects within the pressure vessel; Arrangements for removing objects from the pressure vessel
- G21C19/207—Assembling, maintenance or repair of reactor components
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D1/00—Details of nuclear power plant
- G21D1/003—Nuclear facilities decommissioning arrangements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- This disclosure relates to, for example, a method for dismantling a nuclear power plant that has been decommissioned.
- a schedule including a plurality of processes such as a dismantling process of each device and building and a carrying-out process of spent fuel is established.
- nuclear power plants contain radioactive waste, so in the process of dismantling the reactor area, the target equipment is usually transferred into a pool provided near the reactor, and the target equipment is dismantled underwater.
- Patent Document 1 describes that a nuclear reactor is dismantled by remote control using a dismantling manipulator in a pool provided near the nuclear reactor.
- nuclear power plant decommissioning requires safe storage and storage of radioactive waste. Therefore, a process for constructing a storage facility for safely and temporarily storing radioactive waste such as in-furnace structures and spent fuel is usually incorporated into the schedule.
- the radioactive waste and spent fuel temporarily stored in this storage facility are planned to be transported and embedded in a radioactive material burying facility constructed at a location remote from the nuclear power plant.
- At least some embodiments of the present invention provide a nuclear plant dismantling method that can greatly reduce the cost required for dismantling without reducing the efficiency of dismantling work of the nuclear plant. With the goal.
- a nuclear plant dismantling method includes: Removing fuel from the reactor vessel and storing it in a fuel storage pool; Carrying out the fuel from the fuel storage pool; After the fuel is taken out from the reactor vessel, the reactor internal structure in the reactor vessel is taken out to the working pool located above the reactor vessel and containing water, and stored in the working pool. Dismantling the in-furnace structure in the treated water; Carrying out the dismantled internal structure from the working pool; Draining the water from the working pool after carrying out the furnace internals out of the working pool; and The operation of taking out and dismantling the in-furnace structure starts before completion of the removal of the fuel from the fuel storage pool.
- the present inventors have found that the longer the period of watering the work pool, the higher the cost.
- a water filling facility such as a pump for supplying water to a working pool may require maintenance costs of 100 million units per year. Therefore, if the dismantling of the reactor internal structure is postponed due to the problem of the radioactive material burial facility, and the work pool is continuously filled with water, the cost required for decommissioning will increase significantly. Therefore, in the method for dismantling the nuclear plant of (1) above, the removal of the in-reactor structure and the dismantling work are started before the completion of the fuel removal from the fuel storage pool.
- the water in the working pool can be drained at an early stage.
- the maintenance cost of the water filling facility can be reduced, and thus the cost required for decommissioning can be greatly reduced.
- the efficiency of the entire decommissioning will not be reduced.
- the water in the work pool and the fuel storage pool should be drained only after the fuel has been delivered and after the removal and dismantling of the in-furnace structure has been completed. I can't pull it out. Therefore, in the method of (2), as described in (1) above, the operation of taking out and dismantling the in-furnace structure is started before the completion of carrying out the fuel from the fuel storage pool.
- the use of the storage pool and the fuel storage pool can be terminated at an early stage, and the water in these pools can be drained early. Therefore, the maintenance cost of the water filling facility can be further reduced.
- the removal of the fuel from the reactor vessel and the movement of the fuel to the fuel storage pool are performed in the water.
- the reactor internals are removed from the reactor vessel and dismantled in water. Therefore, the fuel carry-out step and the dismantling step of the in-furnace structure can be performed efficiently.
- the method further includes the step of accommodating the dismantled internal structure from the working pool after being disassembled in a shielding container and storing it in a dry temporary storage facility.
- the dismantled reactor internal structure is housed in a shielded container and stored in a temporary storage facility.
- the in-furnace structure can be safely and temporarily stored.
- the temporary storage facility is provided outside the reactor vessel and the working pool and in a containment vessel for storing the reactor vessel.
- the construction period of the temporary storage facility can be shortened, and the removal and dismantling of the in-furnace structure can be further advanced. Therefore, the maintenance cost of the water filling facility can be reduced.
- the removal and dismantling of the in-furnace structure can be further advanced by starting the removal and dismantling of the in-furnace structure before the completion of the construction of the temporary storage facility. it can. Therefore, the maintenance cost of the water filling facility can be further reduced.
- any of the above methods (1) to (5) Further comprising disassembling equipment other than the nuclear reactor in the containment vessel of the nuclear power plant, The removal and dismantling of the in-furnace structure starts before the dismantling of the equipment is started. (7) In one embodiment, in the method of (6) above, The removal and dismantling work of the in-furnace structure is completed before the dismantling of the equipment is started. (8) In one embodiment, in the method of (6) or (7) above, The equipment includes at least one of a steam generator, pressurizer, recirculation pump or containment spray for the nuclear power plant.
- the removal and dismantling of the in-furnace structure can be further advanced, thereby further reducing the maintenance cost of the water filling facility.
- water in the working pool can be drained early by performing the step of dismantling the in-furnace structure at a relatively early stage of the schedule.
- the maintenance cost of the water filling facility can be reduced, and thus the cost required for decommissioning can be greatly reduced.
- the efficiency of the entire decommissioning will not be reduced.
- FIG. 1 is a cross-sectional view of a nuclear reactor according to an embodiment. It is a schematic block diagram which shows the nuclear reactor containment vessel and its peripheral equipment which concern on one Embodiment. It is a flowchart which shows the dismantling method of the nuclear power plant which concerns on one Embodiment. It is a figure which shows the process chart of the decommissioning of the nuclear power plant which concerns on one Embodiment. It is a figure which shows the process chart of the decommissioning of the nuclear power plant in a prior art example.
- FIG. 1 is a schematic configuration diagram of a nuclear power plant 1 according to an embodiment.
- a nuclear power plant 1 includes a nuclear reactor 2 for generating steam by thermal energy generated in a fission reaction, a steam turbine 4 driven by the steam generated in the nuclear reactor 2, and a steam turbine. And a generator 6 that is driven by the rotation of the four rotation shafts.
- the nuclear reactor 2 shown in FIG. 1 is a pressurized water nuclear reactor (PWR: Pressurized Water Reactor).
- the reactor 2 may be a boiling water reactor (BWR) or, unlike a light water reactor including a pressurized water reactor and a boiling water reactor, a moderator or It may be a reactor of a type using a substance other than light water as a coolant.
- BWR boiling water reactor
- a nuclear reactor 2 includes a primary cooling loop 10 through which primary cooling water (primary coolant) flows, a reactor vessel (pressure vessel) 11 provided in the primary cooling loop 10, a pressurizer 14, a steam generator 16, and a primary coolant pump. 18.
- the primary coolant pump 18 is configured to circulate primary cooling water in the primary cooling loop 10.
- the pressurizer 14 is configured to pressurize the primary cooling water in the primary cooling loop 10 so that the primary cooling water does not boil.
- the reactor vessel 11, the pressurizer 14, the steam generator 16, and the primary coolant pump 18 constituting the reactor 2 are stored in a reactor containment vessel (hereinafter simply referred to as a containment vessel) 19.
- the reactor vessel 11 contains fuel rods 12 containing pellet-like nuclear fuel (for example, uranium fuel, MOX fuel, etc.), and the primary energy in the reactor vessel 11 is generated by the thermal energy generated by the fission reaction of this fuel.
- the cooling water is heated.
- the reactor vessel 11 is provided with a control rod 13 for absorbing and adjusting the number of neutrons generated in the core containing nuclear fuel in order to control the reactor power.
- the primary cooling water heated in the reactor vessel 11 is sent to the steam generator 16 to generate steam by heating the secondary cooling water (secondary coolant) flowing through the secondary cooling loop 20 by heat exchange.
- Steam generated in the steam generator 16 is sent to the steam turbine 4 including the high-pressure turbine 21 and the low-pressure turbine 22 to rotate the steam turbine 4.
- the steam turbine 4 is connected to a generator 6 through a rotating shaft, and the generator 6 is driven by the rotation of the rotating shaft to generate electric energy.
- a moisture separator / heater 23 is provided between the high-pressure turbine 21 and the low-pressure turbine 22 so that the steam after working in the high-pressure turbine 21 is heated again and then sent to the low-pressure turbine 22. ing.
- the secondary cooling loop 20 is provided with a condenser 24, a low-pressure feed water heater 26, a deaerator 27, and a high-pressure feed water heater 29, and the steam after working in the low-pressure turbine 22 supplies these devices. It is condensed and heated in the course of passing, and returns to the steam generator 16.
- the secondary cooling loop 20 is provided with a condensate pump 25 and a feed water pump 28, and the secondary cooling water is circulated in the secondary cooling loop 20 by these pumps.
- the condenser 24 is supplied with cooling water (for example, seawater) for cooling the steam from the low-pressure turbine 22 by heat exchange via the pump 15.
- FIG. 2 is a cross-sectional view of the nuclear reactor 2 according to an embodiment.
- the arrows in the figure indicate the flow of the coolant.
- the nuclear reactor 2 includes a nuclear reactor vessel 11 and a reactor internal structure 80.
- the in-reactor structure 80 is, for example, a structure having a positioning function or a support function for the fuel assembly 50, a structure having a guide function or a positioning function for the control rod 13, or a coolant channel in the reactor vessel 11. Including a structure for forming.
- This in-furnace structure 80 may be called an internal structure.
- the in-core structure 80 includes an upper core support plate 68, a lower core support plate 69, a core support rod 70, an upper core plate 71, a core tank 72, a lower core plate 73, or A control rod cluster guide tube 75 is included.
- the internal structure when the nuclear reactor 2 is a boiling water reactor, includes a structure having a function of removing moisture in the steam.
- the reactor vessel 11 includes a reactor vessel body 60 and a reactor vessel lid (upper mirror) 61 that can be opened and closed.
- the reactor vessel main body 60 has a cylindrical shape whose lower portion is closed by a lower mirror 65 having a hemispherical shape.
- the reactor vessel body 60 includes a coolant inlet part (inlet nozzle) 66 for supplying light water (coolant) as primary cooling water to an upper part, and a coolant outlet part (exit nozzle) 67 for discharging light water. And are formed. Further, the reactor vessel main body 60 is formed with a water injection nozzle (water injection pipe stand) (not shown) separately from the coolant inlet portion 66 and the coolant outlet portion 67.
- An upper core support plate 68 is fixed above the coolant inlet portion 66 and the coolant outlet portion 67 inside the reactor vessel main body 60, and supports the lower core so as to be positioned in the vicinity of the lower mirror 65 below.
- a plate 69 is fixed.
- the upper core support plate 68 and the lower core support plate 69 have a disk shape, and a large number of communication holes (not shown) are formed.
- An upper core plate 71 in which a large number of communication holes (not shown) are formed is connected below the upper core support plate 68 via a plurality of core support rods 70.
- a cylindrical reactor core 72 having a predetermined distance from the inner wall surface of the reactor vessel body 60 is disposed.
- the upper part of the core tank 72 is connected to the upper core plate 71 and the lower core plate 73 is connected to the lower part.
- the lower core plate 73 has a disk shape, has a large number of communication holes (not shown), and is supported by the lower core support plate 69.
- the core 74 is formed by an upper core plate 71, a core tank 72, and a lower core plate 73.
- a large number of fuel assemblies 50 and a large number of control rods 13 are arranged inside the core 74.
- a large number of control rods 13 are combined at the upper end portion into a control rod cluster 51 that can be inserted into the fuel assembly 50.
- a number of control rod cluster guide tubes 75 are fixed to the upper core support plate 68 so as to penetrate the upper core support plate 68.
- Each control rod cluster guide tube 75 has a lower end extending to the control rod cluster 51 in the fuel assembly 50.
- the fuel assembly 50 is supported by a support plate (not shown) in a state where a plurality of fuel rods are arranged in a lattice pattern.
- the fission reaction in a plurality of fuel rods included in the fuel assembly 50 is controlled by a control rod cluster 51 including a plurality of control rods 13.
- the control rod cluster 51 is driven by a control rod driving device 76 so that the plurality of control rods 13 included in the control rod cluster 51 move up and down inside the fuel assembly 50.
- the reactor vessel lid 61 constituting the reactor vessel 11 has a hemispherical upper portion and is provided with a control rod drive device 76 of a magnetic jack, and is accommodated in a housing 77 that is integrated with the reactor vessel lid 61.
- a large number of control rod cluster guide tubes 75 have their upper ends extended to the control rod drive device 76, and a control rod cluster drive shaft 78 extended from the control rod drive device 76 passes through the control rod cluster guide tube 75. It extends to the fuel assembly 50 and is configured to be able to grip the control rod cluster 51.
- the control rod drive device 76 extends in the vertical direction and is connected to the control rod cluster 51, and controls the output of the nuclear reactor 2 by moving the control rod cluster drive shaft 78 up and down.
- the control rod drive device 76 moves the control rod cluster drive shaft 78 to extract a predetermined amount of the control rod 13 from the fuel assembly 50, thereby controlling nuclear fission in the reactor core 74.
- the light water filled in the reactor vessel 11 is heated by the generated thermal energy, and the high-temperature light water is discharged from the coolant outlet portion 67 and sent to the steam generator 16 as described above. That is, the nuclear fuel constituting the fuel assembly 50 is fissioned to emit neutrons, and the light water as the moderator and the primary cooling water reduces the kinetic energy of the released fast neutrons to become thermal neutrons. It makes it easy to cause nuclear fission and takes away the generated heat to cool it.
- the control rod 13 into the fuel assembly 50 the number of neutrons generated in the core 74 is adjusted, and by inserting all the control rod 13 into the fuel assembly 50, the nuclear reactor is urgently Can be stopped.
- FIG. 3 is a schematic configuration diagram showing the storage container 19 and its peripheral equipment according to an embodiment.
- a reactor vessel accommodating space 32 formed below the working pool 30 is opened.
- the reactor vessel accommodation space 32 is configured to accommodate most of the reactor vessel 11. That is, with the reactor vessel 11 housed in the reactor vessel housing space 32, only the upper portion of the reactor vessel 11 (reactor vessel lid 61: see FIG. 2) is positioned in the working pool 30.
- the working pool 30 has a dismantling space for dismantling the in-furnace structure 80.
- the working pool 30 communicates with the fuel storage pool 34 via the transfer path 33.
- the transfer path 33 is a flow path for transferring spent fuel (hereinafter referred to as fuel) 84 once taken out from the reactor vessel 11 into the working pool 30 to the fuel storage pool 34.
- the transfer path 33 may be configured to be openable and closable.
- the fuel storage pool 34 may be provided in the auxiliary building 35 adjacent to the storage container 19.
- the transfer path 33 is provided across the storage container 19 and the auxiliary building 35.
- Water is supplied to the working pool 30 or the fuel storage pool 34 by a water filling facility 90.
- the water filling facility 90 includes a storage tank 91 (for example, a fuel replacement water tank) and a pump 92 for supplying water in the storage tank 91 to the working pool 30 or the fuel storage pool 34.
- the nuclear power plant 1 may include dry-type temporary storage facilities 100 and 102 provided outside the storage container 19.
- the temporary storage facility (waste building) 100 for waste is a facility for temporarily storing the in-furnace structure 80 after being dismantled in a shielding container 82.
- the temporary fuel storage facility (fuel building) 102 is a facility for occasionally storing the fuel 84 accommodated in the dry cask 86.
- the nuclear power plant 1 may include a dry-type temporary storage facility (waste temporary storage facility) 110 provided inside the containment vessel 19.
- the temporary storage facility (waste temporary storage facility) 110 is provided in the storage container 19 in an area excluding the work pool 30.
- the temporary storage facility 110 is a facility for temporarily storing the in-furnace structure 80 after being disassembled in a state of being accommodated in the shielding container 82. Since the temporary storage facility 110 is provided inside the storage container 19, the temporary storage facility 110 may be simpler than the temporary storage facility (waste temporary storage facility) 100 provided outside the storage container 19.
- FIG. 4 is a flowchart illustrating a method for dismantling the nuclear power plant 1 according to an embodiment.
- FIG. 5 is a diagram showing a process chart of decommissioning of a nuclear power plant according to one embodiment, and partially corresponds to the flowchart of FIG.
- the steps are simply arranged side by side, but actually, the start point or end point of each step overlaps with other steps as in the process chart shown in FIG. 5. Sometimes it is.
- the dismantling method of the nuclear power plant 1 includes the step S ⁇ b> 1 of taking out the fuel 84 from the reactor vessel 11 and storing it in the fuel storage pool 34, and the fuel storage pool 34.
- the reactor internal structure 80 in the reactor vessel 11 is taken out to the work pool 30, and the water stored in the work pool 30 is removed.
- Step S5 for draining water. Further, in the dismantling method of the nuclear power plant 1, the operation of taking out and dismantling the in-furnace structure 80 is started before the completion of carrying out the fuel 84 from the fuel storage pool 34.
- the operation of taking out and dismantling the in-furnace structure 80 is started before the completion of carrying out the fuel 84 from the fuel storage pool 34.
- the water in the work pool 30 can be drained at an early stage.
- the maintenance cost of the water filling facility 90 can be reduced, and thus the cost required for decommissioning can be greatly reduced.
- the maintenance cost of the water filling facility 90 includes, for example, maintenance costs for the pump 92 and the like.
- the removal and dismantling work of the in-furnace structure 80 is performed ahead of the conventional decommissioning schedule (see FIG. 6), the efficiency of the entire decommissioning will not be reduced.
- the work for taking out and dismantling the in-furnace structure 80 and the work for carrying out the fuel 84 are independent of each other and can be performed simultaneously.
- the in-furnace structure removal / disassembly step S3 may be performed in the first half of all the process periods in the decommissioning schedule (process table).
- the fuel 84 in the state where water is stored in the working pool 30 and the fuel storage pool 34 communicating with the working pool 30, the fuel 84 is taken out from the reactor vessel 11 and the fuel 84 is supplied to the fuel storage pool 34. Is carried out in water, and the reactor internal structure 80 is removed from the reactor vessel 11 and disassembled in water.
- the work pool 30 and the fuel are only collected after the removal of the fuel 84 is completed and the removal and dismantling of the in-furnace structure 80 are completed.
- the storage pool 34 cannot be drained. Therefore, in the above embodiment, as described above, the operation of taking out and dismantling the in-furnace structure 80 is started before the completion of the removal of the fuel 84 from the fuel storage pool 34.
- the use of the storage pool 34 can be terminated at an early stage, and the water of these pools 30 and 34 can be drained early. Therefore, the maintenance cost of the water filling facility 90 can be further reduced.
- the removal of the fuel 84 from the reactor vessel 11 and the movement of the fuel 84 to the fuel storage pool 34 are performed in the water.
- the internal structure 80 is removed from the reactor vessel 11 and disassembled in water. Therefore, the fuel carry-out step S1 and the disassembly step S3 of the in-furnace structure 80 can be performed efficiently.
- step S7 of storing the dismantled reactor internal structure 80 carried out from the working pool 30 in the shielding container 82 and storing it in the dry-type temporary storage facilities (waste temporary storage facilities) 100, 110 is performed. Further prepare. As described above, since the furnace internal structure 80 after being disassembled is stored in the shielding container 82 and stored in the temporary storage facilities 100 and 110, the high-dose furnace is used until it is transferred to the radioactive material burying facility. The internal structure 80 can be temporarily stored safely.
- the temporary storage facility 110 is provided outside the reactor vessel 11 and the working pool 30 and in the containment vessel 19 that stores the reactor vessel 11.
- the construction period of the temporary storage facility 110 can be shortened, and the removal and dismantling of the in-furnace structure 80 can be further advanced. Therefore, the maintenance cost of the water filling facility 90 can be reduced.
- the temporary storage facility 110 in the containment vessel 19 only needs to be able to store at least a part of the shielding vessel 82 containing the in-furnace structure 80 after dismantling.
- the temporary storage facility 110 may store the shielding container 82 in which the disassembled reactor internal structure 80 is accommodated until the temporary storage facility 100 outside the storage container 19 is completed. Thereby, the limited space in the storage container 19 can be used effectively, and the in-furnace structure 80 can be disassembled at an early stage.
- the method for dismantling the nuclear power plant 1 further includes step S6 of constructing a temporary storage facility.
- step S6 the removal and dismantling of the in-furnace structure 80 starts before the construction of the temporary storage facility (waste temporary storage facility) 110 is completed.
- the removal and dismantling work of the in-furnace structure 80 can be further advanced. Therefore, the maintenance cost of the water filling facility 90 can be further reduced.
- the method for dismantling the nuclear power plant 1 further includes a step S8 of dismantling equipment other than the nuclear reactor 2 in the containment vessel 19 of the nuclear power plant 1, and removing and dismantling the in-core structure 80.
- the work starts before the start of dismantling of the equipment.
- the operation of taking out and dismantling the in-furnace structure 80 may be completed before starting dismantling of the equipment.
- Equipment other than the reactor 2 in the containment vessel 19 includes, for example, at least one of a steam generator, a pressurizer, a recirculation pump (in the case of a boiling water reactor), or a containment vessel spray of the nuclear power plant 1. According to these methods, the operation of taking out and dismantling the in-furnace structure 80 can be further advanced, and thereby the maintenance cost of the water filling facility 90 can be further reduced.
- the dismantling method of the nuclear power plant 1 may include a peripheral device dismantling step S9 for dismantling peripheral devices other than the reactor region after completion of the in-reactor structure extraction / disassembly step S3.
- the dismantling method of the nuclear power plant 1 may be performed after the dismantling steps S3 and S8 of the reactor region equipment (including the reactor internal structure 80 and the equipment other than the reactor 2 in the containment vessel 19) are completed.
- Peripheral device disassembly step S9 for disassembling the peripheral device to be removed may be provided.
- a dismantling work preparation step S0 for preparing all dismantling work may be provided before the above-described steps S1 to S8.
- the water in the working pool 30 is drained early by performing the step of dismantling the in-furnace structure 80 at a relatively early stage of the schedule. Can do.
- the maintenance cost of the water filling facility 90 can be reduced, and thus the cost required for decommissioning can be greatly reduced.
- FIG. 6 is a figure which shows the process table
- the water filling period of the pool extends over most of the period of the schedule (decommissioning schedule), and the maintenance cost of the water filling equipment is increased.
- the water filling period of the pool can be shortened by performing the in-furnace structure removal / disassembly step S3 at an early stage.
- the present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.
- the nuclear reactor 2 shown in FIG. 1 is a pressurized water reactor has been described.
- the nuclear reactor 2 may be a boiling water reactor.
- the nuclear power plant 1 shown in FIG. 1 illustrated the nuclear power plant for generating electric power, the nuclear power plant comprised so that energy other than electric power like a motive power etc. may be produced
- expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained.
- a shape including a part or the like is also expressed.
- the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression that excludes the presence of the other constituent elements.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Plasma & Fusion (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
原子力プラントは他のプラントとは異なり放射性廃棄物を含むため、原子炉領域の解体工程においては、通常、原子炉近くに設けられたプール内に対象機器を移送し、水中で対象機器の解体を行うようになっている。例えば特許文献1には、原子炉近くに設けられたプール内において解体用マニピュレータを用いて遠隔操作によって原子炉の解体作業を行うことが記載されている。
原子炉容器から燃料を取り出して燃料貯蔵プールに貯蔵するステップと、
前記燃料貯蔵プールから前記燃料を搬出するステップと、
前記原子炉容器からの前記燃料の取出し後、前記原子炉容器の上方に位置するとともに水が貯留された作業用プールに前記原子炉容器内の炉内構造物を取り出し、前記作業用プールに貯留された前記水の中で前記炉内構造物を解体するステップと、
解体された前記炉内構造物を前記作業用プールから搬出するステップと、
前記炉内構造物の前記作業用プール外への搬出後、前記作業用プールの前記水を抜くステップと、を備え、
前記炉内構造物の取出し及び解体作業は、前記燃料貯蔵プールからの前記燃料の搬出完了前に開始する。
そこで、上記(1)の原子力プラントの解体方法では、炉内構造物の取出し及び解体作業を、燃料貯蔵プールからの燃料の搬出完了前に開始するようにしている。このように、炉内構造物を解体するステップをスケジュール(工程表)の比較的早い段階で行うことにより、作業用プールの水を早期に抜くことができる。作業用プールの水を早期に抜くことで、水張り設備の維持コストを削減でき、よって廃止措置に要するコストを大幅に低減することができる。
また、炉内構造物の取出し及び解体作業を従来のスケジュールよりも前倒しで実施した場合であっても、廃止措置全体の効率低下を引き起こすことはない。
なお、炉内構造物の取出し及び解体作業と、燃料の搬出作業とは、互いに独立した作業工程となるため、これらを同時に実施することも可能である。
前記作業用プール及び該作業用プールに連通する前記燃料貯蔵プールに前記水が貯留された状態で、前記原子炉容器からの前記燃料の取出し及び前記燃料貯蔵プールへの前記燃料の移動を前記水の中で行うとともに、前記炉内構造物の前記原子炉容器からの取出し及び解体を前記水の中で行う。
そこで、上記(2)の方法では、上記(1)に記載したように炉内構造物の取出し及び解体作業を、燃料貯蔵プールからの燃料の搬出完了前に開始するようにしているので、作業用プール及び燃料貯蔵プールの使用を早い段階で終わらせることができ、これらのプールの水を早期に抜くことができる。よって、水張り設備の維持コストをより一層削減できる。
また、上記(2)の方法によれば、作業用プール及び燃料貯蔵プールに水が貯留された状態で、原子炉容器からの燃料の取出し及び燃料貯蔵プールへの燃料の移動を水の中で行うとともに、炉内構造物の原子炉容器からの取出し及び解体を水の中で行うようにしている。そのため、燃料搬出ステップおよび炉内構造物の解体ステップを効率的に行うことができる。
前記作業用プールから搬出された解体後の前記炉内構造物を遮蔽容器に収容し、乾式の一時保管施設に保管するステップをさらに備える。
前記一時保管施設は、前記原子炉容器及び前記作業用プールの外部、且つ、前記原子炉容器を格納する格納容器内に設けられている。
前記一時保管施設を建設するステップをさらに備え、
前記炉内構造物の取出し及び解体作業は、前記一時保管施設の建設完了前に開始する。
前記原子力プラントの格納容器内における原子炉以外の機器を解体するステップをさらに備え、
前記炉内構造物の取出し及び解体作業は、前記機器の解体開始前に開始する。
(7)一実施形態では、上記(6)の方法において、
前記炉内構造物の取出し及び解体作業は、前記機器の解体開始前に完了する。
(8)一実施形態では、上記(6)又は(7)の方法において、
前記機器は、前記原子力プラントの蒸気発生器、加圧器、再循環ポンプまたは格納容器スプレーの少なくとも一つを含む。
また、炉内構造物の取出し及び解体作業を従来のスケジュールよりも前倒しで実施した場合であっても、廃止措置全体の効率低下を引き起こすことはない。
原子炉容器11にはペレット状の核燃料(例えばウラン燃料やMOX燃料等)を含む燃料棒12が収容されており、この燃料の核分裂反応で発生する熱エネルギーにより、原子炉容器11の中の一次冷却水が加熱される。原子炉容器11には、原子炉出力を制御するために、核燃料を含む炉心で生成される中性子数を吸収して調整するための制御棒13が設けられている。なお、原子炉容器11内で加熱された一次冷却水は蒸気発生器16に送られ、熱交換により二次冷却ループ20を流れる二次冷却水(二次冷却材)を加熱して蒸気を発生させる。
なお、他の実施形態において、原子炉2が沸騰水型原子炉である場合、内部構造物(炉内構造物)は、蒸気中の湿分を除去する機能を有する構造物を含む。
原子炉容器本体60は、下部が半球形状をなす下鏡65により閉塞された円筒形状となっている。そして、原子炉容器本体60は、上部に一次冷却水としての軽水(冷却材)を供給する冷却材入口部(入口管台)66と、軽水を排出する冷却材出口部(出口管台)67とが形成されている。また、原子炉容器本体60は、冷却材入口部66及び冷却材出口部67とは別に、図示しない注水ノズル(注水管台)が形成されている。
原子炉容器本体60の内部には、該原子炉容器本体60の内壁面と所定間隔をもって、円筒形状をなす炉心槽72が配置されている。炉心槽72は、上部が上部炉心板71に連結され、下部に下部炉心板73が連結されている。下部炉心板73は、円板形状をなし、図示しない多数の連通孔が形成されており、下部炉心支持板69に支持されている。
炉心74の内部には、多数の燃料集合体50及び多数の制御棒13が配置されている。多数の制御棒13は、上端部がまとめられて制御棒クラスタ51となり、燃料集合体50内に挿入可能となっている。上部炉心支持板68には、該上部炉心支持板68を貫通するように、多数の制御棒クラスタ案内管75が固定されている。各制御棒クラスタ案内管75は、下端部が燃料集合体50内の制御棒クラスタ51まで延出されている。
一実施形態では、格納容器19内には、原子炉容器11から取り出された炉内構造物80を解体するための作業用プール(ピット)30と、格納容器19の上部に設けられたクレーンやホイスト等の移送機構38と、が設けられている。
作業用プール30の底面には、この作業用プール30の下方に形成される原子炉容器収容空間32が開口している。原子炉容器収容空間32は、原子炉容器11の大部分を収容可能に構成されている。すなわち、原子炉容器収容空間32内に原子炉容器11を収容した状態で、原子炉容器11の上部(原子炉容器蓋61:図2参照)のみが作業用プール30内に位置するようになっている。作業用プール30は、炉内構造物80を解体するための解体スペースを有している。
燃料貯蔵プール34は、格納容器19に隣接した補助建屋35内に設けられていてもよい。上記移送路33は、格納容器19と補助建屋35に跨って設けられている。
図4は、一実施形態に係る原子力プラント1の解体方法を示すフローチャートである。図5は、一実施形態に係る原子力プラントの廃止措置の工程表を示す図であり、図4のフローチャートに一部対応している。なお、図4に示すフローチャートは、各ステップを単純に並べて記載しているが、実際には、図5に示す工程表のように、各ステップの開始点又は終了点は他のステップと重複している場合もある。
以下の説明においては、適宜、図1乃至図3の説明で用いた符号を付している。
また、上記原子力プラント1の解体方法では、炉内構造物80の取出し及び解体作業は、燃料貯蔵プール34からの燃料84の搬出完了前に開始するようになっている。
また、炉内構造物80の取出し及び解体作業を従来の廃止措置スケジュール(図6参照)よりも前倒しで実施した場合であっても、廃止措置全体の効率低下を引き起こすことはない。
なお、炉内構造物80の取出し及び解体作業と、燃料84の搬出作業とは、互いに独立した作業工程となるため、これらを同時に実施することも可能である。
なお、炉内構造物取出し・解体ステップS3は、廃止措置スケジュール(工程表)における全工程期間のうち、前半の期間に行うようにしてもよい。
そこで、上記実施形態では、上述したように炉内構造物80の取出し及び解体作業を、燃料貯蔵プール34からの燃料84の搬出完了前に開始するようにしているので、作業用プール30及び燃料貯蔵プール34の使用を早い段階で終わらせることができ、これらのプール30,34の水を早期に抜くことができる。よって、水張り設備90の維持コストをより一層削減できる。
また、上記実施形態によれば、作業用プール30及び燃料貯蔵プール34に水が貯留された状態で、原子炉容器11からの燃料84の取出し及び燃料貯蔵プール34への燃料84の移動を水の中で行うとともに、炉内構造物80の原子炉容器11からの取出し及び解体を水の中で行うようにしている。そのため、燃料搬出ステップS1および炉内構造物80の解体ステップS3を効率的に行うことができる。
このように、解体後の炉内構造物80を遮蔽容器82に収容し、一時保管施設100,110に保管するようにしたので、放射性物質の埋設施設に移送するまでの間、高線量の炉内構造物80を安全に一時保管することができる。
このように、一時保管施設110を格納容器19内に設けることにより、一時保管施設110の建設期間を短くでき、炉内構造物80の取出し及び解体作業をより一層前倒しすることができる。よって、水張り設備90の維持コストを削減できる。
このように、炉内構造物80の取出し及び解体作業を、一時保管施設110の建設完了前に開始することにより、炉内構造物80の取出し及び解体作業をより一層前倒しすることができる。よって、水張り設備90の維持コストをより一層削減できる。
この場合、炉内構造物80の取出し及び解体作業は、前記機器の解体開始前に完了してもよい。
格納容器19内における原子炉2以外の機器は、例えば、原子力プラント1の蒸気発生器、加圧器、再循環ポンプ(沸騰水型原子炉の場合)または格納容器スプレーの少なくとも一つを含む。
これらの方法によれば、炉内構造物80の取出し及び解体作業をより一層前倒しすることができ、これにより水張り設備90の維持コストをより一層削減できる。
あるいは、原子力プラント1の解体方法は、原子炉領域の機器(炉内構造物80および格納容器19内における原子炉2以外の機器を含む)の解体ステップS3、S8の完了後、原子炉領域を除く周辺機器を解体する周辺機器解体ステップS9を備えていてもよい。
さらにまた、上述したステップS1~S8の前に、全ての解体作業の準備を行う解体作業準備ステップS0を備えていてもよい。
なお、図6は、従来例における原子力プラントの廃止措置の工程表を示す図である。図6に示す従来の工程表では、燃料取出し・貯蔵および燃料搬出を行った後、周辺機器の解体を開始していた。そして、周辺機器の解体後、炉内構造物以外の原子炉領域の機器(例えば蒸気発生器等)を解体し、その後炉内構造物の取出し・解体を行っていた。そのため、プールの水張り期間が、日程表(廃止措置スケジュール)の大部分の期間に跨ることとなり、水張り設備の維持コストが嵩んでいた。
これに対し、図5に示すように本実施形態によれば、炉内構造物取出し・解体ステップS3を早期に行うことによって、プールの水張り期間を短縮することができる。
また、図1に示す原子力プラント1は、発電を行うための原子力発電プラントを例示したが、動力等のように電力以外のエネルギーを生成するように構成された原子力プラントであってもよい。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
2 原子炉
4 蒸気タービン
6 発電機
10 一次冷却ループ
11 原子炉容器
12 燃料棒
13 制御棒
16 蒸気発生器
18 一次冷却材ポンプ
19 格納容器
20 二次冷却ループ
30 作業用プール
30A 解体スペース
32 原子炉容器収容空間
33 移送路
34 燃料貯蔵プール
35 補助建屋
38 移送機構
50 燃料集合体
60 原子炉容器本体
80 炉内構造物
82 遮蔽容器
84 燃料
86 乾式キャスク
90 水張り設備
91 貯留タンク
92 ポンプ
100 一時保管施設(廃棄物一時保管施設)
102 燃料一時保管施設
110 一時保管施設(廃棄物一時保管施設)
Claims (8)
- 原子炉容器から燃料を取り出して燃料貯蔵プールに貯蔵するステップと、
前記燃料貯蔵プールから前記燃料を搬出するステップと、
前記原子炉容器からの前記燃料の取出し後、前記原子炉容器の上方に位置するとともに水が貯留された作業用プールに前記原子炉容器内の炉内構造物を取り出し、前記作業用プールに貯留された前記水の中で前記炉内構造物を解体するステップと、
解体された前記炉内構造物を前記作業用プールから搬出するステップと、
前記炉内構造物の前記作業用プール外への搬出後、前記作業用プールの前記水を抜くステップと、を備え、
前記炉内構造物の取出し及び解体作業は、前記燃料貯蔵プールからの前記燃料の搬出完了前に開始することを特徴とする原子力プラントの解体方法。 - 前記作業用プール及び該作業用プールに連通する前記燃料貯蔵プールに前記水が貯留された状態で、前記原子炉容器からの前記燃料の取出し及び前記燃料貯蔵プールへの前記燃料の移動を前記水の中で行うとともに、前記炉内構造物の前記原子炉容器からの取出し及び解体を前記水の中で行うことを特徴とする請求項1に記載の原子力プラントの解体方法。
- 前記作業用プールから搬出された解体後の前記炉内構造物を遮蔽容器に収容し、乾式の一時保管施設に保管するステップをさらに備えることを特徴とする請求項1又は2に記載の原子力プラントの解体方法。
- 前記一時保管施設は、前記原子炉容器及び前記作業用プールの外部、且つ、前記原子炉容器を格納する格納容器内に設けられていることを特徴とする請求項3に記載の原子力プラントの解体方法。
- 前記一時保管施設を建設するステップをさらに備え、
前記炉内構造物の取出し及び解体作業は、前記一時保管施設の建設完了前に開始することを特徴とする請求項3又は4に記載の原子力プラントの解体方法。 - 前記原子力プラントの格納容器内における原子炉以外の機器を解体するステップをさらに備え、
前記炉内構造物の取出し及び解体作業は、前記機器の解体開始前に開始することを特徴とする請求項1乃至5の何れか一項に記載の原子力プラントの解体方法。 - 前記炉内構造物の取出し及び解体作業は、前記機器の解体開始前に完了することを特徴とする請求項6に記載の原子力プラントの解体方法。
- 前記機器は、前記原子力プラントの蒸気発生器、加圧器、再循環ポンプまたは格納容器スプレーの少なくとも一つを含むことを特徴とする請求項6又は7に記載の原子力プラントの解体方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/739,484 US20180190400A1 (en) | 2015-10-02 | 2016-07-15 | Method for decommissioning nuclear power plant |
CA2990579A CA2990579A1 (en) | 2015-10-02 | 2016-07-15 | Method for decommissioning nuclear power plant |
KR1020177036080A KR20180008654A (ko) | 2015-10-02 | 2016-07-15 | 원자력 플랜트의 해체 방법 |
EP16850822.4A EP3301685A4 (en) | 2015-10-02 | 2016-07-15 | Method for decommissioning nuclear power plant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015196789A JP6704231B2 (ja) | 2015-10-02 | 2015-10-02 | 原子力プラントの解体方法 |
JP2015-196789 | 2015-10-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056645A1 true WO2017056645A1 (ja) | 2017-04-06 |
Family
ID=58423505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070966 WO2017056645A1 (ja) | 2015-10-02 | 2016-07-15 | 原子力プラントの解体方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180190400A1 (ja) |
EP (1) | EP3301685A4 (ja) |
JP (1) | JP6704231B2 (ja) |
KR (1) | KR20180008654A (ja) |
CA (1) | CA2990579A1 (ja) |
TW (1) | TWI616894B (ja) |
WO (1) | WO2017056645A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6788570B2 (ja) * | 2017-12-14 | 2020-11-25 | 日立Geニュークリア・エナジー株式会社 | 原子炉圧力容器の解体方法 |
KR102080909B1 (ko) * | 2018-07-06 | 2020-02-24 | 한국수력원자력 주식회사 | 원자로의 해체 시스템 |
DE102018216680B3 (de) * | 2018-09-28 | 2019-12-05 | Siemens Aktiengesellschaft | Verfahren zum Rückbau einer großtechnischen Anlage und mobiles Leittechniksystem für den Rückbau derselben |
KR20200086125A (ko) | 2019-01-08 | 2020-07-16 | 한국원자력연구원 | 원자력시설의 환기 계통 해체방법 및 이를 이용한 시스템 |
KR102308167B1 (ko) * | 2019-05-20 | 2021-10-01 | 한국수력원자력 주식회사 | 해체 원전의 사용후 연료 저장 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240693A (ja) * | 1995-03-02 | 1996-09-17 | Hitachi Ltd | 原子炉圧力容器内構造物の撤去方法および切断方法 |
JP2001021689A (ja) * | 1999-07-09 | 2001-01-26 | Toshiba Corp | 原子炉圧力容器内構造物の撤去方法 |
JP2010008303A (ja) * | 2008-06-30 | 2010-01-14 | Hitachi-Ge Nuclear Energy Ltd | 炉内構造物の搬出方法 |
JP2013002924A (ja) * | 2011-06-15 | 2013-01-07 | Hitachi Plant Technologies Ltd | 橋型クレーン、原子力発電所の解体方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2743445B1 (fr) * | 1996-01-10 | 1998-04-03 | Framatome Sa | Procede et dispositif de demantelement et d'evacuation d'equipements internes inferieurs d'un reacteur nucleaire refroidi par de l'eau sous pression |
-
2015
- 2015-10-02 JP JP2015196789A patent/JP6704231B2/ja active Active
-
2016
- 2016-07-15 US US15/739,484 patent/US20180190400A1/en not_active Abandoned
- 2016-07-15 KR KR1020177036080A patent/KR20180008654A/ko not_active Application Discontinuation
- 2016-07-15 WO PCT/JP2016/070966 patent/WO2017056645A1/ja active Application Filing
- 2016-07-15 EP EP16850822.4A patent/EP3301685A4/en not_active Withdrawn
- 2016-07-15 CA CA2990579A patent/CA2990579A1/en not_active Abandoned
- 2016-08-12 TW TW105125862A patent/TWI616894B/zh not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08240693A (ja) * | 1995-03-02 | 1996-09-17 | Hitachi Ltd | 原子炉圧力容器内構造物の撤去方法および切断方法 |
JP2001021689A (ja) * | 1999-07-09 | 2001-01-26 | Toshiba Corp | 原子炉圧力容器内構造物の撤去方法 |
JP2010008303A (ja) * | 2008-06-30 | 2010-01-14 | Hitachi-Ge Nuclear Energy Ltd | 炉内構造物の搬出方法 |
JP2013002924A (ja) * | 2011-06-15 | 2013-01-07 | Hitachi Plant Technologies Ltd | 橋型クレーン、原子力発電所の解体方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3301685A4 * |
Also Published As
Publication number | Publication date |
---|---|
TW201714184A (zh) | 2017-04-16 |
US20180190400A1 (en) | 2018-07-05 |
EP3301685A4 (en) | 2018-08-08 |
CA2990579A1 (en) | 2017-04-06 |
JP2017067728A (ja) | 2017-04-06 |
KR20180008654A (ko) | 2018-01-24 |
JP6704231B2 (ja) | 2020-06-03 |
TWI616894B (zh) | 2018-03-01 |
EP3301685A1 (en) | 2018-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017056645A1 (ja) | 原子力プラントの解体方法 | |
JP6899840B2 (ja) | 原子炉プラントを動作させる方法、燃料装荷システム、および記憶装置 | |
RU2012140426A (ru) | Небольшая атомная электростанция на быстрых нейтронах с длительным интервалом замены топлива | |
KR101509374B1 (ko) | 방사선 차폐 방법 및 장치 및 구조체의 처리 방법 | |
US10147506B2 (en) | Conformal core cooling and containment structure | |
KR102208215B1 (ko) | 핵 구성요소의 차폐된 재배치를 위한 방법 및 장치 | |
Alemberti et al. | ELSY—european LFR activities | |
CN115885351A (zh) | 核补给燃料装置 | |
Frogheri et al. | The advanced lead fast reactor European demonstrator (ALFRED) | |
JP7052076B2 (ja) | 加圧軽水炉型原子力発電所の生体保護コンクリートの解体方法 | |
JP2017072379A (ja) | 原子炉および原子力プラント | |
JP2024514016A (ja) | 原子炉の燃料補給 | |
JP2020076621A (ja) | 原子力プラントの機器処理方法 | |
JP6049414B2 (ja) | 制御棒クラスタ案内管の回収方法及び装置 | |
JP2024514017A (ja) | 原子炉の燃料補給 | |
US20230290530A1 (en) | Refuelling and/or storage neutron-absorbing rods | |
CN105122377B (zh) | 限制乏燃料池补给水的安全壳内乏燃料储存器 | |
JP2023552785A (ja) | 内部構造物リフティング装置 | |
Ingersoll | Passive safety features for small modular reactors | |
JP6224288B1 (ja) | 原子炉容器蓋の解体方法及び処分方法 | |
JP6005223B2 (ja) | 放射線遮蔽装置及び方法 | |
Schyns et al. | The MYRRHA ADS project in Belgium enters the front end engineering phase | |
JP2004093142A (ja) | 原子力蒸気供給カセット及びそれを用いたパッケージ型原子炉 | |
JP2017021046A (ja) | 原子炉容器蓋の解体方法及び処分方法 | |
JPH11109086A (ja) | ナトリウム冷却型原子炉プラントの使用済燃料取扱い設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177036080 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2990579 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016850822 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |