WO2017054298A1 - 用于移动终端的定位方法、装置及移动终端 - Google Patents

用于移动终端的定位方法、装置及移动终端 Download PDF

Info

Publication number
WO2017054298A1
WO2017054298A1 PCT/CN2015/094224 CN2015094224W WO2017054298A1 WO 2017054298 A1 WO2017054298 A1 WO 2017054298A1 CN 2015094224 W CN2015094224 W CN 2015094224W WO 2017054298 A1 WO2017054298 A1 WO 2017054298A1
Authority
WO
WIPO (PCT)
Prior art keywords
navigation data
data
time
mobile terminal
navigation
Prior art date
Application number
PCT/CN2015/094224
Other languages
English (en)
French (fr)
Inventor
陆晨曦
陈苑锋
康力
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580027805.8A priority Critical patent/CN108029092B/zh
Priority to JP2018516168A priority patent/JP6646741B2/ja
Priority to US15/764,263 priority patent/US11209555B2/en
Publication of WO2017054298A1 publication Critical patent/WO2017054298A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/024Guidance services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/396Determining accuracy or reliability of position or pseudorange measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/019Energy consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a positioning method, a device, and a mobile terminal for a mobile terminal.
  • the Global Navigation Satellite System is a general term for a system that uses navigation satellites to achieve positioning. GNSS can obtain user coordinates on a global scale. It is a widely used positioning technology. However, in urban areas, due to the reflection and occlusion of navigation signals, there are cases where the positioning results drift or even cannot be located.
  • Dead Reckoning is a technology that uses the sensor modules (such as accelerometers, gyroscopes, magnetic field sensors, etc.) on the mobile terminal to calculate the relative position of the user's motion. It does not depend on external wireless signals and can be used in navigation signals. Positioning is achieved in the case of occlusion. However, the accuracy of the DR accumulates errors over time, resulting in a decrease in accuracy.
  • the two sets of positioning systems of GNSS and DR can be simultaneously operated, and the positioning results are respectively output, and the positioning results of the two positioning systems are real-time fusion processed by the central processing unit (CPU) to achieve accurate positioning.
  • the central processing unit CPU
  • the real-time fusion processing by the CPU makes the power consumption of the terminal high.
  • the embodiments of the present invention provide a method, a device, and a mobile terminal for a mobile terminal, which are used to solve the problem of high power consumption of the prior art positioning service.
  • an embodiment of the present invention provides a positioning method for a mobile terminal, where the mobile terminal includes a main processor, and the method includes:
  • the main processor acquires M reliable navigation data from the cached N navigation data of the mobile terminal, N ⁇ M, M ⁇ 1, and M and N are integers, N navigation data is received by the satellite terminal of the mobile terminal during the first time period The navigation signal is calculated;
  • the main processor acquires K position change data of the cached mobile terminal, K ⁇ 1, and K is an integer, and the K position change data is performed by the first Calculating the data monitored by the sensor of the mobile terminal during the time period;
  • the main processor performs fusion processing on the M reliable navigation data and the K position change data to obtain location information of the mobile terminal in the first time period.
  • the main processor acquires M reliable navigation data from the cached N navigation data of the mobile terminal, including:
  • Each of the N navigation data corresponds to a time and a signal strength, and the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of times;
  • the main processor traverses the signal strengths of the N navigation data in order of time;
  • the main processor Determining, by the main processor, that the state of the first navigation data is high, the first navigation data being navigation data that the first signal strength of the N navigation data is greater than or equal to the first threshold;
  • the main processor determines the state of the other navigation data by the following manner: the navigation data after the first navigation data of the N navigation data: if the state of the navigation data at time t i is If the signal strength of the navigation data at time t i+1 is less than the second threshold, determine that the state of the navigation data at the time t i+1 is low; if the state of the navigation data at time t i is low, then When the signal strength of the navigation data at time t i+1 is greater than or equal to the third threshold, determining that the state of the navigation data at the time t i+1 is high; 1 ⁇ i ⁇ n, and i is an integer, the first The second threshold is greater than the third threshold;
  • the main processor determines all navigation data having a high state as the M reliable navigation data.
  • the main processor acquires M reliable navigation data from the cached N navigation data of the mobile terminal, including:
  • Each of the N navigation data corresponds to a time and a signal strength, and the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of times;
  • the main processor traverses the signal strengths of the N navigation data in order of time;
  • the main processor acquires a state of the previous navigation data before the first navigation data of the N navigation data, where the t 0 time corresponding to the previous navigation data is t 1 corresponding to the first navigation data. Before the moment, and the time t 0 is adjacent to the time t 1 ;
  • the main processor determines the state of the N navigation data by: if the state of the navigation data at time t i-1 is high, when the signal strength of the navigation data at time t i is less than the second threshold, determining The state of the navigation data at the time t i is low; if the state of the navigation data at time t i-1 is low, when the signal strength of the navigation data at time t i is greater than or equal to the third threshold, determining the t navigation data state at time i is high; 1 ⁇ i ⁇ n, and i is an integer; the second threshold value is greater than the third threshold;
  • the processor determines all navigation data that is high in status as the M reliable navigation data.
  • each of the navigation data corresponds to a time
  • each of the position change data corresponds to a time.
  • the time of the mth navigation data is the same as the time of the nth position change data
  • the m navigation data is set to match the nth position change data
  • the main processor combines the M reliable navigation data and the K position change data to obtain location information of the mobile terminal in the first time period, including:
  • the main processor acquires matching reliable navigation data and position change data from the M reliable navigation data and the K position change data;
  • the main processor performs fusion processing on the matched reliable navigation data and position change data, and combines other position change data that is not fused, to obtain the location of the mobile terminal in the first time period. information.
  • the navigation data is data calculated by the satellite navigation signal of the mobile terminal to be calculated as position coordinates
  • the main processor uses the M reliable navigation data and the K locations.
  • the change data is subjected to a fusion process to obtain location information of the mobile terminal in the first time period, including:
  • the main processor calculates M position coordinates according to the M reliable navigation data
  • the main processor performs fusion processing on the M position coordinates and the K position change data to obtain location information of the mobile terminal within the first time period.
  • the navigation data is location coordinates.
  • the method further includes:
  • the main processor is in a sleep state
  • the main processor is woken up after the first period of time.
  • the method further includes:
  • the main processor After obtaining the location information of the mobile terminal within the first time period, the main processor enters a sleep state.
  • the location information of the mobile terminal within the first time period includes at least two location coordinates, and each of the location coordinates corresponds to a time instant within the first time period.
  • the embodiment of the present invention further provides a positioning method for a mobile terminal, where the mobile terminal includes a main processor, and the method includes:
  • the main processor acquires M reliable navigation data from the N navigation data, where N ⁇ M, M ⁇ 1, and M is an integer;
  • the main processor obtains location information of the mobile terminal within the first time period according to the M reliable navigation data and the K position change data fusion processes.
  • the method provided by the second aspect may further include all the options of the foregoing first aspect.
  • an embodiment of the present invention provides a positioning apparatus for a mobile terminal, including:
  • An obtaining module configured to acquire M reliable navigation data from the cached N navigation data of the mobile terminal after the first time period, where N ⁇ M, M ⁇ 1, and M and N are integers, N navigation data are calculated by satellite navigation signals of the mobile terminal received during the first time period;
  • the acquiring module is further configured to: after the first time period, acquire K position change data of the cached mobile terminal, K ⁇ 1, and K is an integer, and the K position change data is in the Calculating data monitored by the sensor of the mobile terminal during the first time period;
  • a data processing module configured to perform fusion processing on the M reliable navigation data and the K position change data to obtain location information of the mobile terminal in the first time period.
  • each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of times;
  • the obtaining module is specifically configured to:
  • the first navigation data is navigation data that the first signal strength of the N navigation data is greater than or equal to the first threshold
  • Determining the state of the other navigation data by the navigation data after the first navigation data among the N navigation data if the state of the navigation data at time t i is high, then When the signal strength of the navigation data at time i+1 is less than the second threshold, it is determined that the state of the navigation data at the time t i+1 is low; if the state of the navigation data at time t i is low, then when t i+1 When the signal strength of the navigation data of the moment is greater than or equal to the third threshold, determining that the state of the navigation data at the time t i+1 is high; 1 ⁇ i ⁇ n, and i is an integer; the second threshold is greater than the Third threshold
  • All navigation data with a high status is determined as the M reliable navigation data.
  • each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of times;
  • the obtaining module is specifically configured to:
  • Determining the N data by navigation mode state If the time t i-1 state of the navigation data is high, when the signal strength of the navigation data I t is less than the second threshold time, determining the time t I navigation data state is low; if navigation data t i-1 status at that time is low, when the signal strength of the navigation data in time t I is greater than or equal to the third threshold value, determining the timing of the navigation data I t The state is high; 1 ⁇ i ⁇ n, the second threshold is greater than the third threshold;
  • All navigation data with a high status is determined as the M reliable navigation data.
  • each of the navigation data corresponds to a time
  • each of the position change data corresponds to a time.
  • the time of the mth navigation data is the same as the time of the nth position change data
  • the m navigation data is set to match the nth position change data
  • the data processing module is specifically configured to:
  • the matched reliable navigation data and the location change data are merged, and combined with other location change data that is not fused, the location information of the mobile terminal within the first time period is obtained.
  • the navigation data is data that is calculated by the satellite navigation signal of the mobile terminal and is to be calculated as location coordinates
  • the data processing module is specifically configured to:
  • the device further includes:
  • a wake-up module configured to wake up the positioning device after the first period of time
  • the positioning device is in a sleep state during the first period of time.
  • the device further includes:
  • a hibernation module configured to: after obtaining the location information of the mobile terminal within the first time period, the positioning device is put into a sleep state.
  • an embodiment of the present invention provides a mobile terminal, including: a main processor, a global satellite navigation system GNSS receiver, a sensor, and a coprocessor;
  • the main processor is configured to perform any of the above methods
  • the GNSS receiver is configured to receive a satellite navigation signal of the mobile terminal in a first time period, and calculate the satellite navigation signal as navigation data, where the navigation data is data or a location to be calculated as position coordinates
  • the navigation data is position coordinates
  • the sensor is configured to monitor motion data of the mobile terminal during the first time period
  • the coprocessor is configured to calculate K position change data according to the motion data monitored by the sensor; or the coprocessor is configured to calculate K pieces according to the motion data monitored by the sensor Position change data and used to calculate the navigation data as position coordinates.
  • the first time period includes a second time period, in which the global satellite navigation system GNSS receiver is in a dormant state; and the sensor is in the first time period Is working.
  • the N navigation data and the K position change data obtained in the first time period are respectively cached, and the main processor may acquire the K position change data, and acquiring the M reliable navigation data from the cached N navigation data, and then performing fusion processing on the reliable navigation data and the position change data to obtain the mobile terminal location information. Since the main processor does not need to be turned on in real time in the process of obtaining the N navigation data and the K position change data, the positioning power consumption of the system is reduced.
  • FIG. 1 is a schematic structural diagram of a frame of a mobile terminal according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another mobile terminal according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of a method for locating a mobile terminal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a GNSS receiver and a DR module according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for obtaining reliable navigation data according to an embodiment of the present invention
  • FIG. 6 is a schematic flow chart of a specific implementation manner of a method for obtaining reliable navigation data shown in FIG. 5;
  • FIG. 7 is a schematic flowchart diagram of another method for obtaining reliable navigation data according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a positioning apparatus for a mobile terminal according to an embodiment of the present invention.
  • the GNSS positioning technology and the DR positioning technology are combined to improve the positioning performance, and the GNSS positioning result and the DR positioning result are non-real-time fusion by the main processor to reduce the positioning power consumption.
  • GNSS is a general term for a type of system that uses navigation satellites to achieve positioning, and may include the Global Positioning System (GPS) in the United States, GLONASS in Russia, Galileo in Europe, and China.
  • GPS Global Positioning System
  • GLONASS Global Positioning System
  • Galileo Galileo in Europe
  • QZSS Japan's Quasi-Zenith Satellite System
  • the use of GNSS to obtain user coordinates on a global scale is a widely used positioning technology.
  • GNSS positioning technology has the result that the positioning results drift or even cannot be located.
  • the DR positioning technology calculates the relative position of the user's motion by using a sensor module (such as an accelerometer, a gyroscope, a magnetic field sensor, etc.) on the mobile terminal, and does not depend on an external wireless signal, and can realize positioning when the navigation signal is blocked.
  • a sensor module such as an accelerometer, a gyroscope, a magnetic field sensor, etc.
  • the accuracy of DR positioning will accumulate errors over time, resulting in reduced accuracy.
  • FIG. 1 is a schematic structural diagram of a frame of a mobile terminal according to an embodiment of the present invention.
  • the mobile terminal includes components such as a GNSS receiver 10, a sensor 20, a main processor 30, a coprocessor 40, a first storage unit 50, and a second storage unit 43.
  • the components communicate over one or more buses. It will be understood by those skilled in the art that the structure of the mobile terminal shown in the figure does not constitute a limitation of the present invention, and it may be a bus-shaped structure or a star type. Structures may also include more or fewer components than illustrated, or some components may be combined, or different component arrangements.
  • the mobile terminal can be any mobile or portable electronic device, including but not limited to a mobile phone, a mobile computer, a tablet computer, a personal digital assistant (PDA), a navigation device, and a mobile Internet device (MID). Or a wearable device (Wearable Device), etc.
  • the GNSS receiver 10 is configured to receive a navigation signal sent by the GNSS navigation satellite, and calculate data such as a pseudorange, a navigation message, and a signal strength from the navigation signal.
  • the GNSS receiver 10 may be a GNSS receiver, a GNSS positioning chip, or the like. It can be navigated by a single system satellite in a system such as GPS, GLONASS, Galileo, Beidou, QZSS (single-mode receiver), or it can be compatible with more than one system for positioning (multi-mode receiver).
  • the user position coordinates are calculated by the main processor 30 based on the pseudorange, the navigation message, the signal strength, and the like.
  • the GNSS receiver can be composed of an integrated circuit, such as a GNSS chip.
  • the GNSS receiver includes a first buffer area 11 for buffering data such as the observation and navigation messages.
  • the first buffer area 11 is a storage area integrated in the GNSS receiver and may be composed of an integrated circuit.
  • the sensor 20 may include an accelerometer, a gyroscope, a magnetic field sensor, etc., connected to the coprocessor 40 through a transmission circuit, such as an I2C bus, and transmit physical data measured by itself to the coprocessor 40. deal with.
  • a transmission circuit such as an I2C bus
  • the main processor 30 and the coprocessor 40 are control centers of the mobile terminal, and connect various parts of the entire electronic device by using various interfaces and lines, by running or executing software programs and/or modules stored in the storage unit. And invoking data stored in the storage unit to perform various functions of the electronic device and/or process data.
  • the main processor 30 and the coprocessor 40 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be connected to a plurality of package ICs having the same function or different functions. composition.
  • the main processor 30 and the coprocessor 40 may include only a central processing unit (CPU), or a graphics processing unit (GPU), and a digital signal processor (Digital Signal). Processor, referred to as DSP), and a combination of control chips (eg, baseband chips) in the communication unit.
  • the CPU may be a single computing core, and may also include multiple computing cores.
  • the main processor 30 has more processing power and a more complicated circuit structure, and has higher power consumption.
  • the coprocessor has weak processing capability, but the circuit structure is simple and the power consumption is low.
  • It can be implemented by including a Microcontroller Unit (MCU) or by Sensor Hub technology.
  • the first storage unit 50 is configured to provide the main processor 30 with storage capacity required for code storage and processing.
  • the coprocessor 40 includes a second buffer area 41 for buffering user location change information obtained according to the physical data output by the sensor module.
  • the second storage unit 43 is configured to provide the coprocessor 40 with storage capabilities required for code storage and processing.
  • the first storage unit 50 and the second storage unit 43 can be used to store software programs and modules, and the main processor 30 and the coprocessor 40 are stored in the first storage unit 50 and
  • the software program and module in the second storage unit 43 perform various functional applications of the mobile terminal and implement data processing.
  • the first storage unit 50 and the second storage unit 43 include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application required for at least one function, such as a sound playing program, an image playing program, and the like; the data storage area may store data created according to the use of the mobile terminal. (such as audio data, phone book, etc.).
  • the first storage unit 50 and the second storage unit 43 may include a volatile memory.
  • nonvolatile random access memory (NVRAM), phase change random access memory (PRAM), magnetoresistive random access memory (MRAM), etc. may also include Non-volatile memory, such as at least one disk storage device, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory device, such as NOR flash memory or reverse NAND flash memory.
  • NVRAM nonvolatile random access memory
  • PRAM phase change random access memory
  • MRAM magnetoresistive random access memory
  • Non-volatile memory such as at least one disk storage device, Electrically Erasable Programmable Read-Only Memory (EEPROM), flash memory device, such as NOR flash memory or reverse NAND flash
  • the nonvolatile memory stores an operating system and an application executed by the main processor 30 and the coprocessor 40.
  • the main processor 30 and the coprocessor 40 load operating programs and data from the nonvolatile memory into memory and store the digital content in a plurality of storage devices.
  • the operating system includes various components and/or drivers for controlling and managing conventional system tasks such as memory management, storage device control, power management, and the like, as well as facilitating communication between various hardware and software.
  • the operating system may be an Android system of Google Inc., an iOS system developed by Apple Inc., or a Windows operating system developed by Microsoft Corporation, or an embedded operating system such as Vxworks.
  • the buffer area is a kind of storage unit, which has the capability of fast reading and writing, generally uses a register circuit. to realise.
  • the first buffer area 11 is configured to buffer data that the GNSS receiver 10 needs to pass to the main processor 30.
  • the second buffer area 41 is configured to buffer data that the coprocessor 40 needs to pass to the main processor 40.
  • FIG. 2 is a schematic structural diagram of another mobile terminal according to an embodiment of the present disclosure.
  • the GNSS receiver 10 is not connected to the main processor 30 through a bus, but is directly connected to the coprocessor 40 through a transmission circuit, for example, a transmission circuit.
  • UART Universal Asynchronous Receiver/Transmitter
  • the mobile terminal shown in FIG. 1 receives a navigation signal transmitted by a GNSS navigation satellite through a GNSS receiver 10, and calculates data such as a pseudorange, a navigation message, and a signal strength according to the navigation signal, and buffers the data into a first buffer of the GNSS receiver 10. In area 11. During processing, the main processor 30 reads the pseudorange, navigation message, signal strength and the like from the first buffer area 11 and calculates corresponding user position coordinates.
  • the first buffer area is not provided in the GNSS receiver 10 of the mobile terminal shown in FIG. 2.
  • the GNSS receiver 10 receives the navigation signal sent by the GNSS navigation satellite, and calculates the pseudorange, the navigation message, the signal strength and the like according to the navigation signal, and then no longer caches, but sends the data directly to the association through the transmission circuit.
  • Processor 40 The coprocessor 40 calculates the user location coordinates in real time according to the pseudorange, the navigation message, the signal strength, and the like, and caches the user location coordinates into the second buffer area 41 of the coprocessor 40.
  • Embodiments of the present invention can be applied to non-real time positioning scenarios.
  • the track of the running can be recorded by the mobile phone.
  • the mobile phone can be in the off-screen (off screen) state, that is, the main processor is in a sleep state; at this time, the mobile phone does not calculate the current location in real time, but caches the data of the GNSS and the DR, after the main processor is woken up. Then, based on the cached data, the coordinates of the trajectory when the user runs are calculated.
  • FIG. 3 is a schematic flowchart diagram of a positioning method for a mobile terminal according to an embodiment of the present invention.
  • the positioning method shown in FIG. 3 can be implemented by the mobile terminal shown in FIG. 1 or 2.
  • the mobile terminal includes a main processor, and the method includes:
  • the main processor acquires M reliable navigation data from the cached N navigation data of the mobile terminal, where N ⁇ M, M ⁇ 1, and M and N are integers.
  • the N navigation data is calculated from satellite navigation signals of the mobile terminal received during the first time period.
  • the navigation data may be intermediate data calculated according to satellite signals, such as pseudoranges, navigation messages, signal strengths, etc., and the intermediate data is used to calculate final position coordinates.
  • the navigation data may also be position coordinates calculated from satellite signals.
  • the position coordinates may be latitude and longitude coordinates, or may be other coordinate forms capable of indicating the position of the mobile terminal.
  • the positioning method shown in FIG. 3 can be implemented by the mobile terminal shown in FIG. 1.
  • the GNSS receiver 10 receives the satellite navigation signal of the mobile terminal in the first time period, calculates pseudorange, navigation message, signal strength and the like according to the satellite navigation signal, and calculates the pseudorange Data such as navigation message and signal strength are buffered in the first buffer area 11.
  • the main processor 30 may calculate location coordinates corresponding to the mobile terminal according to the pseudorange, navigation message, signal strength, and the like.
  • the positioning method shown in FIG. 3 can be implemented by the mobile terminal shown in FIG. 2.
  • the GNSS receiver 10 receives the satellite navigation signal of the mobile terminal in the first time period, and calculates intermediate data such as pseudorange, navigation message, and signal strength according to the satellite navigation signal, and the coprocessor
  • the location coordinates corresponding to the mobile terminal are calculated according to the pseudorange, the navigation message, the signal strength, and the like, and the location coordinates are cached in the second buffer area 41.
  • the GNSS receiver 10 may intermittently calculate data such as the pseudorange, navigation message, signal strength, and the like, for example, 1s once or 5s once. Therefore, navigation data of several time points is obtained correspondingly in the first time period.
  • the time information may be acquired according to the satellite navigation signal, or the clock corresponding to the navigation data, such as the clock of the coprocessor 40, may be used to mark the time corresponding to the navigation data, that is, the time. stamp.
  • the N navigation data in the first time period is cached.
  • the main processor can acquire M reliable navigation data from the cached N navigation data.
  • the first moment may be the last moment in the first time period. That is, after the first period of time, the main processor 30 can read the cached navigation data.
  • the signal strength of the satellite signal received by the GNSS receiver 10 may be unstable. When the signal strength of the satellite signal is large, the navigation data calculated according to the satellite signal is accurate, that is, reliable; when the signal strength of the satellite signal is small, the navigation data calculated according to the satellite signal may be inaccurate. That is not reliable. Thus, the main processor 30 acquires M reliable navigation data from the cached navigation data.
  • the main processor 30 can be in a sleep state to reduce power consumption.
  • the cached navigation data can then be processed after the main processor 30 is woken up.
  • the state of the main processor 30 can be various. For example, the main processor 30 is in a sleep state before the first time; the main processor 30 is woken up at the first time, and after the main processor 30 is woken up, the cached navigation data is acquired. If the first time is the last time of the first time period, the main processor 30 is in a sleep state within the first time period; the main processor 30 is after the first time period Wake up, after the main processor 30 is woken up, the cached navigation data is acquired.
  • the main processor 30 can be periodically woken up or can be woken up by the set trigger condition. For example, the main processor is woken up when the mobile terminal is bright; or the main processor is woken up after a positioning process ends.
  • the main processor acquires K position change data of the cached mobile terminal, K ⁇ 1, and K is an integer, and the K position change data is determined by The data monitored by the sensor of the mobile terminal during the first time period is calculated.
  • the sensor 20 monitors motion data of the mobile device (eg, accelerometer, gyroscope, observation data of a magnetic field sensor), and transmits the monitored motion data.
  • the coprocessor 40 is given.
  • a DR module is configured in the coprocessing unit, and the DR module calculates the K position change data of the mobile terminal according to the data monitored by the sensor (including a change of a moving direction and a distance between adjacent moments) That is, the dead reckoning DR is performed, and the K position change data is buffered into the second buffer area 41.
  • the dead reckoning DR may also be intermittent, for example, 1s once or 5s once, etc., so that the position change data of the mobile terminal between two calculation times can be obtained.
  • the coprocessor can record each calculation time by a clock circuit, and save the K position changes The corresponding calculation time, that is, the time stamp, is recorded simultaneously with the data.
  • the time stamp is cached in the second buffer area 41 together with the K position change data.
  • the main processor 30 may be in a sleep state to reduce power consumption. When the main processor 30 is woken up, the cached K position change data can be processed.
  • the position change data may be calculated only when the set condition is satisfied.
  • the position change data of the mobile terminal is calculated when it is detected that the moving distance of the mobile terminal exceeds a certain threshold.
  • the time interval threshold and the spatial motion distance threshold are set at the same time, and when any one of the threshold conditions is satisfied, the position change data can be calculated.
  • the GNSS receiver may be out of synchronization with a clock circuit in the coprocessor, and the N navigation data is saved in the first buffer area 11 of the GNSS receiver 10 together with a corresponding timestamp.
  • the K position change data is stored in the second buffer area 41 of the coprocessor 40 together with the corresponding time stamp.
  • the GNSS receiver 10 and the coprocessor 40 can be clocked by a synchronous clock circuit. In this case, it is not necessary to save the N navigation data and the time stamp corresponding to the K position change data.
  • Step S301 may be performed first, or step S302 may be performed first, or both steps may be performed simultaneously.
  • the order in which the GNSS receiver acquires satellite navigation signals and the motion data of the sensor monitoring mobile terminal is not limited during the first time period.
  • S303 The main processor performs fusion processing on the M reliable navigation data and the K position change data to obtain location information of the mobile terminal in the first time period.
  • the main processor performs fusion processing on the M reliable navigation data and the K position change data.
  • the main processor uses the M reliable navigation data and the K locations Obtaining matching reliable navigation data and position change data in the change data; the main processor fuses the matched reliable navigation data and position change data, and combines other position change data that is not fused processing And obtaining location information of the mobile terminal within the first time period.
  • the number of reliable navigation data may be equal to or less than the number of position change data.
  • the number of the reliable navigation data is equal to the number of the position change data, and each of the navigation data matches a position change data, the number of the other position change data that is not fused processing Zero, that is, all position change data is fused with the matched navigation data.
  • the number of the reliable navigation data is smaller than the number of the position change data, only the matched reliable navigation data and the position change data are merged.
  • each of the navigation data corresponds to one time
  • each of the position change data corresponds to one time.
  • the time of the mth navigation data is the same as the time of the nth position change data
  • the mth The navigation data is set to match the nth position change data.
  • the moment when the mth navigation data is the same as the time of the nth position change data means that the time difference between the two moments is within an allowable error range (ie, the difference between the two moments is less than or equal to the preset Threshold).
  • the calculation time interval of the GNSS navigation data may be longer than the calculation interval of the position change data, or the calculation time interval of the GNSS navigation data may be a multiple of the calculation interval of the position change data.
  • the main processor matches according to a timestamp corresponding to the M reliable navigation data in the first buffer area and a timestamp of the K position change data in the second buffer area.
  • the navigation data and the position change data with the same time stamp or the closest time are merged.
  • the main processor may directly perform the fusion processing on the navigation data and the position change data at the same time without passing the time.
  • the stamp is matched.
  • the main processor may perform the fusion processing of the matched reliable navigation data and the position change data, but is not limited to the following implementation manner:
  • the Kalman filtering process is established according to the time point corresponding to the position change data.
  • the process of performing fusion processing on the matched reliable navigation data and the position change data according to Kalman filtering is as follows:
  • X is the vector to be estimated in the Kalman filter, and may specifically include user coordinates and user motion direction, etc.
  • k represents the time corresponding to the vector to be estimated
  • F k reflects the two adjacent moments (the kth moment and The k+1th time, the kth time before the k+1th time) the change relationship of the X vector
  • Fk is a matrix, which can be obtained according to the output result of the DR module.
  • the observation equation can be established :
  • H k represents the coefficient matrix of the observation equation at the kth moment.
  • K k+1 represents the filter gain of the Kalman filter system at the k+1th moment
  • H k+1 T represents the transposed matrix of H k+1
  • R k+1 represents the k+1th moment
  • the GNSS receiver and the DR module may be, but are not limited to, the following operation modes:
  • a GNSS receiver mode is that the GNSS receiver and the DR module are all turned on, and corresponding navigation data and position change data are calculated.
  • FIG. 4 is a schematic diagram of a GNSS receiver and a DR module according to an embodiment of the present invention. Referring to FIG. 4, during the process in which the main processor combines the matched reliable navigation data and the position change data, the DR module is fully turned on, and the GNSS receiver enters a sleep state after being turned on for a period of time or A low power state while increasing the step of turning on the GNSS receiver at the beginning of each time period.
  • the working state of the GNSS receiver is relatively flexible, and can be alternately in an active state and a sleep state according to preset rules. For example, if the DR module and the GNSS receiver are both turned on for a certain period of time, the host processor can match the bits. The change data and the navigation data are combined for processing. During a certain period of time, the DR module is turned on, and the GNSS receiver sleeps, and the main processor only obtains the location information of the mobile terminal by using the position conversion data.
  • the GNSS receiver and the DR module are alternately turned on, that is, the navigation data and the position change data are alternately calculated. There is no need to match the navigation data and the position change data at this time, and there is no need to perform Kalman filtering.
  • the position coordinate point is obtained according to the navigation data; when only the position change data is present, the position coordinate point is deduced according to the position coordinate point of the previous time.
  • step 303 when the navigation data is data calculated by the satellite navigation signal of the mobile terminal and to be calculated as position coordinates, the main processor will use the M reliable navigation data.
  • the main processor calculates M position coordinates according to the M reliable navigation data
  • the main processor performs fusion processing on the M position coordinates and the K position change data to obtain location information of the mobile terminal within the first time period.
  • the main processor cannot directly refer to the The intermediate data is merged with the position change data.
  • the main processor Before performing the fusion processing, the main processor first calculates the reliable navigation data as corresponding position coordinates, and then performs fusion processing on the M position coordinates and the K position change data by Kalman filtering. Obtaining location information of the mobile terminal within the first time period.
  • the specific fusion process is consistent with the foregoing method, and details are not described herein again.
  • the location information of the mobile terminal within the first time period includes at least two location coordinates, and each of the location coordinates corresponds to a time instant within the first time period.
  • the embodiment may further include the following steps:
  • the main processor After obtaining the location information of the mobile terminal, if no other tasks need to be processed, the main processor can enter a sleep state to reduce power consumption.
  • the N navigation data and the K position change data obtained in the first time period are respectively cached, and the main processor may acquire the K after the first time period. Position change data, and obtain the M reliable navigation data from the N navigation data that has been cached, and then perform fusion processing on the reliable navigation data and the position change data to obtain the mobile terminal. location information. Since the main processor does not need to be turned on in real time in the process of obtaining the N navigation data and the K position change data, the positioning power consumption of the system is reduced.
  • step S101 the acquiring, by the main processor, the M reliable navigation data from the N navigation data of the cached mobile terminal may be, but is not limited to, being implemented by the following two possible implementation manners:
  • FIG. 5 is a schematic flowchart diagram of a method for obtaining reliable navigation data according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of a specific implementation manner of the method for obtaining reliable navigation data shown in FIG. 5.
  • the navigation data before the first time period is not determined by the state or navigation data that is not cached before the first time period.
  • the main processor acquires M reliable navigation data from the cached N navigation data of the mobile terminal, including:
  • S501 The main processor traverses the signal strengths of the N navigation data in order of time.
  • Each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to the sequence of time.
  • the order of the moments refers to the time in which the earlier time is the prior time and the time later is the later time according to the time sequence of the time.
  • the main processor determines that the state of the first navigation data is high, and the first navigation data is navigation data that the first signal strength of the N navigation data is greater than or equal to the first threshold.
  • the main processor 30 determines the first navigation data according to the first threshold, so as to be according to the first navigation
  • the data determines a state of the navigation data after the first navigation data.
  • the first threshold may be preset.
  • the main processor 30 determines the signal strength of the N navigation data according to the sequence of time (as shown in FIG. 6). In the determination process, the state of the navigation data whose first signal strength is greater than or equal to the first threshold is determined to be high, and the navigation data is determined as the first navigation data.
  • the GNSS receiver 10 receives signals of more than one satellite, each satellite signal corresponding to a signal strength, which is generally represented by a signal to noise ratio or a carrier to noise ratio.
  • a signal to noise ratio or a carrier to noise ratio.
  • the average value of the satellite signal strengths participating in the solution at the time T a may be calculated, or the time T a is calculated to participate in the solution.
  • the minimum value of the satellite signal strength, or the average of the signal strengths of the top A satellites sorted by signal strength from large to small in all visible satellites, or the order of the signal strengths from large to small in all visible satellites.
  • the visible satellite is the satellite from which the GNSS receiver 10 is capable of receiving navigation signals.
  • the processor determines a state of the other navigation data by using navigation data that is located after the first navigation data in the N navigation data: if the state of the navigation data at time t i If the signal strength of the navigation data at time t i+1 is less than the second threshold, the state of the navigation data at the time t i+1 is determined to be low; if the state of the navigation data at time t i is low, Then, when the signal strength of the navigation data at time t i+1 is greater than or equal to the third threshold, determining that the state of the navigation data at the time t i+1 is high; 1 ⁇ i ⁇ n, and i is an integer, The second threshold is greater than the third threshold.
  • the processor may determine, according to the state of the first navigation data, the second threshold, and the third threshold.
  • the state of the navigation data at each next moment can be judged based on the state of the navigation data at the previous moment. For example, if it is determined that the state of the navigation data at time t 2 is high, it is determined whether the signal strength of the navigation data at time t 3 is less than the second threshold, and if less, the state of the navigation data at the time t 3 is determined.
  • the third threshold is determined to be high if the value of the navigation data at the time t 3 is high, and if not greater, the state of the navigation data at the time t 3 is determined to be low.
  • the second threshold may be the same as the first threshold, or may be different from the first threshold.
  • S504 The processor determines all navigation data with a high status as the M reliable navigation data.
  • FIG. 7 is a schematic flowchart diagram of another method for obtaining reliable navigation data according to an embodiment of the present invention.
  • navigation data exists before the first navigation data in the first time period, and a state of the previous navigation data is determined, and the main processor is from the cached mobile terminal.
  • Get M reliable navigation data from N navigation data including:
  • S701 The main processor traverses the signal strengths of the N navigation data in order of time.
  • Each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to the sequence of time.
  • the main processor obtains state prior navigation data before the N navigation data in a first navigation data, the navigation data corresponding to the preceding time t 0 corresponding to the first navigation data before a time t, the time t 0 and the time of the adjacent 1 t.
  • the main processor determines a state of the N navigation data by: if a state of the navigation data at time t i-1 is high, when a signal strength of the navigation data at time t i is less than a second threshold Determining that the state of the navigation data at the time t i is low; if the state of the navigation data at time t i-1 is low, when the signal strength of the navigation data at time t i is greater than or equal to the third threshold, determining The state of the navigation data at time t i is high; 1 ⁇ i ⁇ n, and i is an integer, and the second threshold is greater than the third threshold.
  • the main processor may determine, according to the state of the previous navigation data, the first time period. The state of the first navigation data, and then according to the first one in the first time period The state of the navigation data determines the state of the navigation data at the next moment, and so on. Specifically, in another implementation manner, the main processor determines a state of the first navigation data according to a state of the previous navigation data, and determines according to a state of the first navigation data.
  • the specific manner of the state of the navigation data at the next moment is the same as the method described in S503, and details are not described herein again.
  • S704 The processor determines all navigation data with a high status as the M reliable navigation data.
  • FIG. 8 is a schematic structural diagram of a positioning device for a mobile terminal according to an embodiment of the present invention.
  • the positioning device includes at least an obtaining module 810 and a data processing module 820 .
  • the acquiring module 810 is configured to: after the first time period, obtain M reliable navigation data from the N navigation data of the cached mobile terminal, N ⁇ M, M ⁇ 1, and M and N is an integer, and the N navigation data is calculated by a satellite navigation signal of the mobile terminal received in the first time period;
  • the obtaining module 810 is further configured to: after the first time period, acquire K position change data of the cached mobile terminal, K ⁇ 1, and K is an integer, and the K pieces of position change data are Calculating data monitored by the sensor of the mobile terminal during the first time period;
  • the data processing module 820 is configured to perform fusion processing on the M reliable navigation data and the K position change data to obtain location information of the mobile terminal in the first time period.
  • each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of time.
  • the obtaining module 810 is specifically configured to:
  • the first navigation data is navigation data that the first signal strength of the N navigation data is greater than or equal to the first threshold
  • Determining the state of the other navigation data by the navigation data after the first navigation data among the N navigation data if the state of the navigation data at time t i is high, then When the signal strength of the navigation data at time i+1 is less than the second threshold, it is determined that the state of the navigation data at the time t i+1 is low; if the state of the navigation data at time t i is low, then when t i+1 When the signal strength of the navigation data of the moment is greater than or equal to the third threshold, determining that the state of the navigation data at the time t i+1 is high; 1 ⁇ i ⁇ n, and i is an integer; the second threshold is greater than the Third threshold
  • All navigation data with a high status is determined as the M reliable navigation data.
  • each of the N navigation data corresponds to a time and a signal strength
  • the N navigation data respectively correspond to times t 1 , t 2 , . . . , t N according to a sequence of times;
  • the obtaining module 810 is specifically configured to:
  • Determining the N data by navigation mode state If the time t i-1 state of the navigation data is high, when the signal strength of the navigation data I t is less than the second threshold time, determining the time t I navigation data state is low; if navigation data t i-1 status at that time is low, when the signal strength of the navigation data in time t I is greater than or equal to the third threshold value, determining the timing of the navigation data I t The state is high; 1 ⁇ i ⁇ n, the second threshold is greater than the third threshold;
  • All navigation data with a high status is determined as the M reliable navigation data.
  • each of the navigation data corresponds to one time
  • each of the position change data corresponds to one time.
  • the time of the mth navigation data is the same as the time of the nth position change data
  • the m navigation data is set to match the nth position change data
  • the data processing module 820 is specifically configured to:
  • the matched reliable navigation data and the location change data are merged, and combined with other location change data that is not fused, the location information of the mobile terminal within the first time period is obtained.
  • the navigation data is calculated by using a satellite navigation signal of the mobile terminal.
  • the data processing module 820 is specifically configured to:
  • the device further includes:
  • the waking module 830 is configured to wake up the positioning device after the first time period
  • the positioning device is in a sleep state during the first time period.
  • the device further includes:
  • the hibernation module 840 is configured to: after obtaining the location information of the mobile terminal within the first time period, the positioning device is put into a sleep state.
  • the locating device for the mobile terminal provided by the embodiment of the present invention is specifically configured to perform the technical solution provided by the foregoing method embodiments, and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • the embodiment of the invention further provides a mobile terminal.
  • the mobile terminal at least includes: a main processor 30, a global satellite navigation system GNSS receiver 10, a sensor 20, and a coprocessor 40;
  • the main processor 30 is configured to execute the method described in the foregoing method embodiment
  • the GNSS receiver 10 is configured to receive a satellite navigation signal of the mobile terminal in a first time period, and calculate the satellite navigation signal as navigation data, where the navigation data is data to be calculated as position coordinates or The navigation data is position coordinates;
  • the sensor 20 is configured to monitor motion data of the mobile terminal during the first time period
  • the coprocessor 40 is configured to calculate K position change data according to the motion data monitored by the sensor 20; or the coprocessor 40 is configured to use the motion data monitored by the sensor K pieces of position change data are calculated and used to calculate the navigation data as position coordinates.
  • the first time period includes a second time period during which the GNSS receiver 10 is in a sleep state; the sensor 20 is in operation during the first time period. status.
  • the mobile terminal provided by the embodiment of the present invention may perform the technical solution provided by the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the aforementioned program can be stored in a readable storage medium of a computer, mobile phone or other portable device.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例提供一种用于移动终端的定位方法、装置及移动终端,在第一时间段之后,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,并获取缓存的所述移动终端的K个位置变化数据,所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息;其中,所述N个导航数据由在第一时间段内接收到的所述移动终端的卫星导航信号计算得到,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到。本发明实施例提供的定位方法,无需实时对定位数据进行处理,降低了系统的定位功耗。

Description

用于移动终端的定位方法、装置及移动终端 技术领域
本发明实施例涉及通信技术,尤其涉及一种用于移动终端的定位方法、装置及移动终端。
背景技术
全球卫星导航系统(Global Navigation Satellite System,GNSS)是利用导航卫星实现定位的一类系统的总称。GNSS能够在全球范围内获得用户坐标,是一种广泛使用的定位技术,但是在城市地区往往由于导航信号的反射、遮挡,存在定位结果漂移,甚至不能定位的情况。航位推算(Dead Reckoning,DR)是利用移动终端上的传感器模块(例如加速度计、陀螺仪、磁场传感器等)计算出用户运动的相对位置的技术,不依赖于外部无线信号,能够在导航信号被遮挡的情况下实现定位。但是DR的精度会随着时间推移不断积累误差,造成精度下降。
现有技术中,可以将GNSS与DR两套定位系统同时运转,分别输出定位结果,并通过中央处理器(CPU)对两套定位系统的定位结果进行实时融合处理,以实现精准定位。然而,由CPU进行实时融合处理,使得终端的功耗较高。
发明内容
本发明实施例提供一种用于移动终端的定位方法、装置及移动终端,用以解决现有技术定位服务功耗高的问题。
第一方面,本发明实施例提供一种用于移动终端的定位方法,所述移动终端包括主处理器,所述方法包括:
在第一时间段之后,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M和N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导 航信号计算得到;
在所述第一时间段之后,所述主处理器获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到;
所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,包括:
所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
所述主处理器确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
所述主处理器通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数,所述第二阈值大于所述第三阈值;
所述主处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选的,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,包括:
所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
所述主处理器获取所述N个导航数据中第一个导航数据之前的在先 导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
所述主处理器通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值大于所述第三阈值;
所述处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选的,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
所述主处理器从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据和位置变化数据;
所述主处理器将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据,所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
所述主处理器根据所述M个可靠的导航数据,计算得到M个位置坐标;
所述主处理器将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述导航数据为位置坐标。
可选的,所述方法还包括:
在所述第一时间段内,所述主处理器处于休眠状态;
所述主处理器在所述第一时间段之后被唤醒。
可选的,所述方法还包括:
在得到所述第一时间段之内的所述移动终端的位置信息之后,所述主处理器进入休眠状态。
可选的,所述第一时间段之内的所述移动终端的位置信息包括至少两个位置坐标,每个所述位置坐标对应所述第一时间段之内的一个时刻。
第二方面,本发明实施例还提供一种用于移动终端的定位方法,所述移动终端包括主处理器,所述方法包括:
在第一时间段内接收所述移动终端的卫星导航信号;
根据所述卫星导航信号计算得到N个导航数据,并缓存所述N个导航数据,N≥1,且N为整数;
在所述第一时间段内通过所述移动终端的传感器监测所述移动终端的运动数据;
根据所述传感器监测到的运动数据计算得到所述移动终端的K个位置变化数据,并缓存所述K个位置变化数据,K≥1,且K为整数;
在所述第一时间段之后,所述主处理器从所述N个导航数据中获取M个可靠的导航数据,其中,N≥M,M≥1,且M为整数;
所述主处理器根据所述M个可靠的导航数据和所述K个位置变化数据融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选的,第二方面提供的方法还可以包括上述第一方面的所有可选方案。
第三方面,本发明实施例提供一种用于移动终端的定位装置,包括:
获取模块,用于在第一时间段之后,从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M和N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导航信号计算得到;
所述获取模块还用于,在所述第一时间段之后,获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到;
数据处理模块,用于将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
所述获取模块具体用于:
按照时刻的先后顺序遍历所述N个导航数据的信号强度;
确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值大于所述第三阈值;
将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选的,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
所述获取模块具体用于:
按照时刻的先后顺序遍历所述N个导航数据的信号强度;获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的 导航数据的状态为高;1≤i≤n,所述第二阈值大于所述第三阈值;
将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选的,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
所述数据处理模块具体用于:
从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据及位置变化数据;
将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据,所述数据处理模块具体用于:
根据所述M个可靠的导航数据,计算得到M个位置坐标;
将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选的,所述装置还包括:
唤醒模块,用于在所述第一时间段之后唤醒所述定位装置;
所述定位装置在所述第一时间段内处于休眠状态。
可选的,所述装置还包括:
休眠模块,用于在得到所述第一时间段之内的所述移动终端的位置信息之后,使所述定位装置进入休眠状态。
第四方面,本发明实施例提供一种移动终端,包括:主处理器、全球卫星导航系统GNSS接收机、传感器和协处理器;
所述主处理器用于执行上述任意一种方法;
所述GNSS接收机,用于在第一时间段内接收所述移动终端的卫星导航信号,并将所述卫星导航信号计算为导航数据,所述导航数据为待计算为位置坐标的数据或者所述导航数据为位置坐标;
所述传感器,用于在所述第一时间段内监测所述移动终端的运动数据;
所述协处理器,用于根据所述传感器监测到的所述运动数据计算得到K个位置变化数据;或者,所述协处理器用于根据所述传感器监测到的所述运动数据计算得到K个位置变化数据,并用于将所述导航数据计算为位置坐标。
可选的,所述第一时间段包括第二时间段,在所述第二时间段内,所述全球卫星导航系统GNSS接收机处于休眠状态;所述传感器在所述第一时间段内均处于工作状态。
本发明实施例中,所述第一时间段内得到的所述N个导航数据及所述K个位置变化数据分别被缓存,所述主处理器可以在所述第一时间段之后获取所述K个位置变化数据,并从缓存的所述N个导航数据中获取所述M个可靠的导航数据,再对所述可靠的导航数据和位置变化数据进行融合处理,以得到所述移动终端的位置信息。由于所述主处理器无需在得到所述N个导航数据及所述K个位置变化数据的过程中实时开启,降低了系统的定位功耗。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种移动终端的框架结构示意图;
图2为本发明实施例提供的另一种移动终端的框架结构示意图;
图3为本发明实施例提供的一种用于移动终端的定位方法的流程示意图;
图4为本发明实施例提供的一种GNSS接收机及DR模块的运行方式的示意图。
图5为本发明实施例提供的一种获取可靠的导航数据的方法的流程示意图;
图6为图5所示获取可靠的导航数据的方法的具体实施方式的流程示意图;
图7为本发明实施例提供的另一种获取可靠的导航数据的方法的流程示意图;
图8为本发明实施例提供的一种用于移动终端的定位装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例,结合GNSS定位技术及DR定位技术提升定位性能,并通过主处理器对GNSS定位结果及DR定位结果进行非实时融合,以降低定位功耗。
具体地,GNSS是利用导航卫星实现定位的一类系统的统称,可以包括美国的全球定位系统(Global Positioning System,GPS),俄罗斯的格洛纳斯(GLONASS),欧洲的伽利略(Galileo),中国的北斗系统,日本的准天顶卫星系统(Quasi-Zenith Satellite System,QZSS)等。利用GNSS能够在全球范围内获得用户坐标,是一种广泛使用的定位技术。但是,在城市地区由于导航信号容易被建筑物反射或遮挡,GNSS定位技术存在定位结果漂移,甚至不能定位的情况。
DR定位技术是利用移动终端上的传感器模块(例如加速度计、陀螺仪、磁场传感器等)计算出用户运动的相对位置,不依赖于外部无线信号,能够在导航信号被遮挡的情况下实现定位,但是DR定位的精度会随着时间推移不断积累误差,造成精度下降。
图1为本发明实施例提供的一种移动终端的框架结构示意图。请参阅图1,所述移动终端包括GNSS接收机10、传感器20、主处理器30、协处理器40、第一存储单元50和第二存储单元43等组件。所述组件通过一条或多条总线进行通信。本领域技术人员可以理解,图中示出的移动终端的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型 结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。所述移动终端可以是任何移动或便携式电子设备,包括但不限于移动电话、移动电脑、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、导航装置、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等。
GNSS接收机10用于接收GNSS导航卫星发送的导航信号,从所述导航信号中计算出伪距、导航电文、信号强度等数据。所述GNSS接收机10可以是GNSS接收机及GNSS定位芯片等。可以利用GPS、GLONASS、Galileo、北斗系统、QZSS等系统中单一系统的卫星进行导航(单模接收机),也可以同时兼容不止一个系统实现定位(多模接收机)。通过所述主处理器30根据所述伪距、导航电文、信号强度等数据计算得到用户位置坐标。GNSS接收机可以由集成电路组成,例如GNSS芯片。所述GNSS接收机中包括第一缓存区11,用于缓存所述观测量与导航电文等数据。所述第一缓存区11是集成在GNSS接收机内的一块存储区域,可以由集成电路组成。
所述传感器20可以包括加速度计、陀螺仪、磁场传感器等,通过传输电路与所述协处理器40连接,例如I2C总线,并将自身测量到的物理数据传输到所述协处理器40中进行处理。
所述主处理器30与协处理器40为所述移动终端的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储单元内的软件程序和/或模块,以及调用存储在存储单元内的数据,以执行电子设备的各种功能和/或处理数据。所述主处理器30与协处理器40可以由集成电路(Integrated Circuit,简称IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,所述主处理器30及协处理器40可以仅包括中央处理器(Central Processing Unit,CPU),也可以是图形处理器(Graphics Processing Unit,GPU)、数字信号处理器(Digital Signal Processor,简称DSP)、及通信单元中的控制芯片(例如基带芯片)的组合。在本发明实施例中,所述CPU可以是单运算核心,也可以包括多运算核心。
所述主处理器30有更强的处理能力与更复杂的电路结构,功耗较高。所述协处理器处理能力较弱,但电路结构较简单,功耗低,举例来说,可 以包含微控制单元(Microcontroller Unit,MCU),或是通过感测器集线器(Sensor Hub)技术实现。所述第一存储单元50用于为所述主处理器30提供代码存放及处理过程中需要的存储能力。
所述协处理器40包含第二缓存区41,用于缓存根据所述传感器模块输出的所述物理数据处理得到的用户位置变化信息。所述第二存储单元43用于为所述协处理器40提供代码存放及处理过程中需要的存储能力。所述第一存储单元50和所述第二存储单元43可用于存储软件程序以及模块,所述主处理器30及所述协处理器40通过运行存储在所述第一存储单元50和所述第二存储单元43中的软件程序以及模块,执行所述移动终端的各种功能应用以及实现数据处理。所述第一存储单元50和所述第二存储单元43包括程序存储区和数据存储区。其中,所述程序存储区可存储操作系统、至少一个功能所需的应用程序,比如声音播放程序、图像播放程序等等;所述数据存储区可存储根据所述移动终端的使用所创建的数据(比如音频数据、电话本等)等。在本发明实施例中,所述第一存储单元50和所述第二存储单元43可以包括易失性存储器。例如非挥发性动态随机存取内存(Nonvolatile Random Access Memory,NVRAM)、相变化随机存取内存(Phase Change RAM,PRAM)、磁阻式随机存取内存(Magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM),闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)。所述非易失存储器储存所述主处理器30及所述协处理器40所执行的操作系统及应用程序。所述主处理器30及所述协处理器40从所述非易失存储器加载运行程序与数据到内存并将数字内容储存于大量储存装置中。所述操作系统包括用于控制和管理常规系统任务,例如内存管理、存储设备控制、电源管理等,以及有助于各种软硬件之间通信的各种组件和/或驱动器。本发明实施例中,所述操作系统可以是Google公司的Android系统、Apple公司开发的iOS系统或Microsoft公司开发的Windows操作系统等,或者是Vxworks这类的嵌入式操作系统。
缓存区是存储单元的一种,具备快速读写的能力,一般用寄存器电路 来实现。所述第一缓存区11用于缓存所述GNSS接收机10需要传递给所述主处理器30的数据。所述第二缓存区41用于缓存所述协处理器40需要传递给所述主处理器40的数据。
图2为本发明实施例提供的另一种移动终端的框架结构示意图。请参阅图2,在图1所示实施例提供的移动终端的基础上,GNSS接收机10不通过总线与主处理器30连接,而是直接通过传输电路与协处理器40连接,传输电路例如通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART)。
图1所示的移动终端,通过GNSS接收机10接收GNSS导航卫星发送的导航信号,根据所述导航信号计算出伪距、导航电文、信号强度等数据并缓存至GNSS接收机10的第一缓存区11中。处理时,主处理器30从第一缓存区11中读取所述伪距、导航电文、信号强度等数据并计算出对应的用户位置坐标。
与图1所示的移动终端相比,图2所示的移动终端的GNSS接收机10内不设置第一缓存区。GNSS接收机10接收到GNSS导航卫星发送的导航信号,并根据所述导航信号计算出所述伪距、导航电文、信号强度等数据后,不再进行缓存,而是通过传输电路直接发送给协处理器40。协处理器40根据所述伪距、导航电文、信号强度等数据实时计算得到用户位置坐标,并将所述用户位置坐标缓存到协处理器40的第二缓存区41中。
本发明各实施例可以应用于非实时的定位场景。例如:用户在跑步时,可以通过手机记录跑步的轨迹。在记录的过程中,手机可以处于灭屏(熄屏)状态,即主处理器处于休眠状态;此时手机不实时计算当前位置,而是缓存GNSS和DR的数据,待主处理器被唤醒后,再根据缓存的数据计算出用户跑步时的轨迹坐标。
下面以具体地实施例对本发明的技术方案进行详细说明。下述几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本发明实施例提供的一种用于移动终端的定位方法的流程示意图。图3所示的定位方法可以通过图1或图2所示的移动终端来实现。请参阅图3,本发明实施例中,所述移动终端包括主处理器,所述方法包括:
S301:在第一时间段之后,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M与N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导航信号计算得到。
具体地,所述导航数据可以是根据卫星信号计算得到的中间数据,例如伪距、导航电文、信号强度等数据,这些中间数据用于计算最终的位置坐标。或者,所述导航数据也可以是根据卫星信号计算得到的位置坐标。所述位置坐标可以是经纬度坐标,也可以是其它能够表示所述移动终端的位置的坐标形式。
当所述导航数据是例如伪距、导航电文、信号强度的中间数据时,图3所示的定位方法可以通过图1所示的移动终端来实现。具体地,GNSS接收机10在所述第一时间段内接收所述移动终端的卫星导航信号,根据所述卫星导航信号计算出伪距、导航电文、信号强度等数据,并将所述伪距、导航电文、信号强度等数据缓存于所述第一缓存区11内。所述主处理器30可以根据所述伪距、导航电文、信号强度等数据计算出所述移动终端对应的位置坐标。
当所述导航数据是位置坐标时,图3所示的定位方法可以通过图2所示的移动终端来实现。具体地,GNSS接收机10在所述第一时间段内接收所述移动终端的卫星导航信号,并根据所述卫星导航信号计算出伪距、导航电文、信号强度等中间数据后,协处理器40根据所述伪距、导航电文、信号强度等数据计算出所述移动终端对应的位置坐标,并将所述位置坐标缓存到第二缓存区41中。
具体地,在所述第一时间段内,所述GNSS接收机10可以间断性计算所述伪距、导航电文、信号强度等数据,例如1s一次或者5s一次等。因此,在所述第一时间段内会对应获得若干个时刻点的导航数据。获取所述导航数据对应的时刻时,可以根据卫星导航信号获取到时刻信息,或者,可以利用系统中的时钟信号(例如协处理器40的时钟)来标记所述导航数据对应的时刻,即时间戳。
第一时间段内的N个导航数据被缓存。在第一时间段之后的第一时刻之后,主处理器可以从缓存的N个导航数据中获取M个可靠的导航数据。 其中,第一时刻可以为第一时间段中的最后一个时刻。也就是在第一时间段之后,主处理器30可以读取缓存的导航数据。GNSS接收机10接收的卫星信号的信号强度可能不稳定。当卫星信号的信号强度较大时,根据该卫星信号计算得到的导航数据是准确的,即可靠的;当卫星信号的信号强度较小时,根据该卫星信号计算得到的导航数据可能是不准确的,即不可靠的。由此,主处理器30在读取缓存的导航数据时,从中获取M个可靠的导航数据。
在所述导航数据缓存的过程中,主处理器30可以处于休眠状态,以降低功耗。然后在主处理器30被唤醒后,可对所述缓存的导航数据进行处理。具体地,所述主处理器30的状态可以有多种。例如:在所述第一时刻之前,所述主处理器30处于休眠状态;所述主处理器30在所述第一时刻被唤醒,在主处理器30被唤醒之后,获取缓存的导航数据。若第一时刻为第一时间段的最后一个时刻,则在所述第一时间段之内,所述主处理器30处于休眠状态;所述主处理器30在所述第一时间段之后被唤醒,在主处理器30被唤醒之后,获取缓存的导航数据。
具体地,主处理器30可以被周期性的唤醒,或者可以通过设定的触发条件唤醒。例如:当所述移动终端亮屏时主处理器被唤醒;或者一次定位过程结束后主处理器被唤醒。
S302:在所述第一时间段之后,所述主处理器获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到。
具体地,在所述第一时间段内,所述传感器20监测所述移动装置的运动数据(例如:加速度计、陀螺仪、磁场传感器的观测数据),并将监测得到的所述运动数据传输给所述协处理器40。所述协处理单元中运行有DR模块,所述DR模块根据所述传感器监测到的数据计算出所述移动终端的所述K个位置变化数据(包含相邻时刻间的运动方向变化与距离),即进行航位推算DR,并将所述K个位置变化数据缓存至所述第二缓存区41中。所述航位推算DR也可以是间断性的,例如1s一次或者5s一次等,从而能够获得所述移动终端在相邻两次计算时刻间的位置变化数据。所述协处理器可以通过时钟电路来记录每个计算时刻,保存所述K个位置变化 数据的同时记录对应的所述计算时刻,即时间戳。所述时间戳与所述K个位置变化数据一起缓存在所述第二缓存区41中。
在所述K个位置变化数据缓存的过程中,所述主处理器30可以处于休眠状态,以降低功耗。当所述主处理器30被唤醒时,即可对所述缓存的K个位置变化数据进行处理。
可选地,所述航位推算DR的过程中,除了按照固定的时间间隔计算位置变化数据之外,也可以在满足设定条件时才计算位置变化数据。例如:当检测到所述移动终端的运动距离超过某一设定阈值时计算所述移动终端的位置变化数据。或者,也可以根据时间间隔与空间运动距离结合的方式来判断是否需要计算所述移动终端的位置变化数据。例如:同时设定时间间隔阈值与空间运动距离阈值,当任意一个阈值条件被满足时,即可计算位置变化数据。
可选的,所述GNSS接收机与所述协处理器中的时钟电路可能不同步,所述N个导航数据与对应的时间戳一起保存在所述GNSS接收机10的第一缓存区11中,所述K个位置变化数据与对应的时间戳一起保存在所述协处理器40的第二缓存区41中。
可选地,可以通过同步时钟电路对所述GNSS接收机10及所述协处理器40进行时钟同步,此时无需保存所述N个导航数据及所述K个位置变化数据对应的时间戳。
需要说明的是,本发明实施例并不限定执行步骤S301和S302的先后顺序,可以先执行步骤S301,也可以先执行步骤S302,还可以同时执行这两个步骤。此外,在第一时间段之内,GNSS接收机获取卫星导航信号和传感器监测移动终端的运动数据的执行顺序也不被限定。
S303:所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
为了在保证所述移动终端可以正常定位的同时提高所述移动终端的定位精度,所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理。
具体的,所述主处理器从所述M个可靠的导航数据及所述K个位置 变化数据中获取相匹配的可靠的导航数据及位置变化数据;所述主处理器将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
所述可靠的导航数据的数量可以等于或小于所述位置变化数据的数量。当所述可靠的导航数据的数量与所述位置变化数据的数量相等,且每个所述的导航数据均与一个位置变化数据相匹配时,所述其它未被融合处理的位置变化数据的数量为零,即,所有的位置变化数据都与相匹配的所述导航数据进行融合处理。当所述可靠的导航数据的数量小于所述位置变化数据的数量时,仅对相匹配的可靠的导航数据及位置变化数据进行融合处理。
具体地,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配。其中,所述第m个导航数据的时刻与第n个位置变化数据的时刻相同是指所述两个时刻相差的时间在允许的误差范围内(即两个时刻的差值小于或等于预设阈值)。若存在至少两个GNSS导航数据对应的坐标点与同一个位置变化数据对应的DR坐标点相匹配,则仅保留其中一个GNSS导航数据对应的坐标点。为了降低功耗,所述GNSS导航数据的计算时间间隔可以比所述位置变化数据的计算间隔长,或者,GNSS导航数据的计算时间间隔可以是所述位置变化数据的计算间隔的倍数。
在所述主处理器对所述M个可靠的导航数据及所述K个位置变化数据进行匹配的过程中,可选地,当所述GNSS接收机与所述协处理器中的时钟电路不同步时,所述主处理器根据所述第一缓存区中的所述M个可靠的导航数据对应的时间戳和所述第二缓存区中的所述K个位置变化数据的时间戳进行匹配,将时间戳相等或者最接近的导航数据和位置变化数据进行融合处理。
可选地,当所述GNSS接收机与所述协处理器中的时钟电路同步时,所述主处理器可以直接对相同时刻的所述导航数据和位置变化数据进行融合处理,而无需通过时间戳进行匹配。具体地,当所述导航数据为根据 所述移动终端的卫星导航信号计算得到的位置坐标时,所述主处理器将相匹配的可靠的导航数据和位置变化数据进行融合处理可以但不限于通过以下的实现方式来完成:
所述主处理器获取相匹配的导航数据和位置变化数据之后,根据位置变化数据对应的时刻点建立卡尔曼滤波过程。具体根据卡尔曼滤波对所述相匹配的可靠的导航数据及所述位置变化数据进行融合处理的过程如下:
由于DR过程中能够得到用户位置坐标在两个时刻之间的变化量,因此可以据此得到卡尔曼滤波中的状态方程:
Xk+1=Fk·Xk
其中,X是卡尔曼滤波中的待估计向量,具体可以包括用户坐标以及用户运动方向等,k表示所述待估计向量对应的时刻,Fk反映了相邻两个时刻(第k个时刻和第k+1个时刻,所述第k个时刻在所述第k+1个时刻之前)X向量的变化关系,Fk是一个矩阵,可以根据所述DR模块的输出结果得到。
同时,若所述第k个时刻存在与所述位置变化数据匹配的可靠的导航数据,则将所述第k个时刻的所述可靠的导航数据表示为观测向量Zk,则可建立观测方程:
Zk=Hk·Xk
其中Hk表示第k个时刻所述观测方程的系数矩阵。
则本发明实施例中对所述相匹配的可靠的导航数据和位置变化数据进行融合处理的卡尔曼滤波过程可以建立为:
1)初始化卡尔曼滤波参数:X0、P0,其中X0表示所述待估计向量的初始值,P0表示初始化时X0的均方误差矩阵。
2)一步预测:Xk+1/k=Fk·Xk,其中Xk+1/k表示根据第k个时刻的待估计向量得到的第k+1个时刻的预测向量。
3)均方误差矩阵一步预测:Pk+1/k=Fk·Pk·Fk T+Qk,其中Pk表示第k个时刻Xk的均方误差矩阵,Pk+1/k表示根据第k个时刻的均方误差矩阵得到的第k+1个时刻的预测均方误差矩阵,Fk T表示Fk的转置矩阵,Qk表示卡尔曼滤波系统的噪声协方差矩阵,用以表示所述状态方程的可靠程度。
4)计算滤波增益:Kk+1=Pk+1/k·Hk+1 T·(Hk+1·Pk+1/k·Hk+1 T+Rk+1)-1
其中,Kk+1表示第k+1个时刻所述卡尔曼滤波系统的滤波增益,Hk+1 T表示Hk+1的转置矩阵,Rk+1表示第k+1个时刻的观测噪声协方差,用以表示所述观测方程的可靠程度。
5)计算相匹配的所述可靠的导航数据与所述位置变化数据融合后的结果:Xk+1=Xk+1/k+Kk+1·(Zk+1-Hk+1·Xk+1/k)
6)更新均方误差矩阵:Pk+1=(I-Kk+1·Hk+1)·Pk+1/k,其中,I为单位矩阵。
当所述第k+1个时刻不存在与所述位置变化数据匹配的可靠的导航数据时,则本发明实施例中根据所述卡尔曼滤波状态方程对所述其它未被融合处理的位置变化数据建立的卡尔曼滤波过程为:
1)一步预测:Xk+1/k=Fk·Xk,其中Xk+1/k表示根据第k个时刻的待估计向量得到的第k+1个时刻的预测向量。
2)均方误差矩阵一步预测:Pk+1/k=Fk·Pk·Fk T+Qk,其中Pk表示第k个时刻Xk的均方误差矩阵,Pk+1/k表示根据第k个时刻的均方误差矩阵得到的第k+1个时刻的预测均方误差矩阵,Fk T表示Fk的转置矩阵,Qk表示卡尔曼滤波系统的噪声协方差矩阵,用以表示所述状态方程的可靠程度。
3)更新待估计向量的结果:Xk+1=Xk+1/k
4)更新均方误差矩阵:Pk+1=Pk+1/k
在上述对相匹配的可靠的导航数据和位置变化数据进行融合处理的过程中,所述GNSS接收机及DR模块可以但不限于有以下几种运行方式:
一种GNSS接收机方式为:所述GNSS接收机及所述DR模块均全程开启,计算对应的导航数据及位置变化数据。
另一种GNSS接收机方式为:所述DR模块全程开启,所述GNSS接收机间断开启(如图4所示)。图4为本发明实施例提供的一种GNSS接收机及DR模块的运行方式的示意图。请参阅图4,所述主处理器将相匹配的可靠的导航数据和位置变化数据进行融合处理的过程中,所述DR模块全程开启,所述GNSS接收机开启一段时间后进入休眠状态或是低功耗状态,同时在每个时间段的开始时刻增加开启所述GNSS接收机的步骤。在所述DR模块持续开启的前提下,所述GNSS接收机的工作状态比较灵活,可以根据预设的规则交替的处于工作状态和休眠状态。例如:在某一段时间内,DR模块和GNSS接收机均开启,则主处理器可以将匹配的位 置变化数据和导航数据进行融合处理。在某一段时间内,DR模块开启,GNSS接收机休眠,则主处理器只通过位置变换数据来获取移动终端的位置信息。
再一种方式为:所述GNSS接收机与所述DR模块交替开启,即交替计算所述导航数据及所述位置变化数据。此时无需对所述导航数据及所述位置变化数据进行匹配,也无需进行卡尔曼滤波。在只有所述导航数据时,根据所述导航数据得出位置坐标点;在只有所述位置变化数据时,根据前一个时刻的位置坐标点递推出位置坐标点。
具体地,在步骤303中,当所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据时,所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
所述主处理器根据所述M个可靠的导航数据,计算得到M个位置坐标;
所述主处理器将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
当所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的中间数据(例如伪码、导航电文及信号强度)时,所述主处理器不能直接对所述中间数据与位置变化数据进行融合处理。在进行融合处理之前,所述主处理器先将所述可靠的导航数据计算为对应的位置坐标,然后通过卡尔曼滤波对所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。具体的融合过程与前述方法一致,在此不再赘述。
具体地,所述第一时间段之内的所述移动终端的位置信息包括至少两个位置坐标,每个所述位置坐标对应所述第一时间段之内的一个时刻。
在步骤S303之后,本实施例还可以包括以下步骤:
S304:在得到所述第一时间段之内的所述移动终端的位置信息之后,所述主处理器进入休眠状态。
在得到移动终端的位置信息之后,如果没有其它任务需要处理,主处理器可以进入休眠状态,以降低功耗。
本发明实施例,所述第一时间段内得到的所述N个导航数据及所述K个位置变化数据分别被缓存,所述主处理器可以在所述第一时间段之后获取所述K个位置变化数据,并从已经缓存的所述N个导航数据中获取所述M个可靠的导航数据,再对所述可靠的导航数据和位置变化数据进行融合处理,以得到所述移动终端的位置信息。由于所述主处理器无需在得到所述N个导航数据及所述K个位置变化数据的过程中实时开启,降低了系统的定位功耗。
具体地,在步骤S101中,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据可以但不限于通过以下两种可能的实现方式来完成:
图5为本发明实施例提供的一种获取可靠的导航数据的方法的流程示意图。图6为图5所示获取可靠的导航数据的方法的具体实施方式的流程示意图。请参阅图5及图6,在一种可能的实现方式中,所述第一时间段之前的导航数据没有被确定状态或者在第一时间段之前没有被缓存的导航数据。如图5和图6所述,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据包括:
S501:所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度。
所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻。
具体地,所述时刻的先后顺序是指,根据所述时刻的时间顺序,时间较早的时刻为在先时刻,时间较晚的时刻为在后时刻。
S502:所述主处理器确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据。
由于所述第一时间段之前的导航数据没有被确定状态或者第一时间段之前没有导航数据,所述主处理器30根据第一阈值确定所述第一导航数据,以便根据所述第一导航数据确定所述第一导航数据之后的导航数据的状态。其中,第一阈值可以是预先设定的。具体地,所述主处理器30按照时刻的先后顺序对所述N个导航数据的信号强度进行判断(如图6所 示),判断过程中,第一个信号强度大于或等于所述第一阈值的导航数据的状态被确定为高,所述导航数据即被确定为所述第一导航数据。
具体地,在GNSS导航的过程中,所述GNSS接收机10接收到不止一个卫星的信号,每个卫星信号都对应一个信号强度,所述信号强度一般用信噪比或者载噪比表示。在计算某个时刻(例如时刻Ta)接收到的导航数据的信号强度时,可以计算在该时刻Ta参与解算的卫星信号强度的平均值,或者,计算该时刻Ta参与解算的卫星信号强度的最小值,或者,计算所有可见卫星中按信号强度从大到小排序的前A个卫星的信号强度平均值,或者,计算所有可见卫星中按信号强度从大到小排序的前A个卫星中的信号强度的最小值;其中,A不大于B,B为该时刻Ta时所有可见卫星的数量。可见卫星即为所述GNSS接收机10能够接收到导航信号的卫星。
S503:所述处理器通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数,所述第二阈值大于所述第三阈值。
具体地,所述处理器对所述第一导航数据之后的导航数据的状态进行判断时,可以根据所述第一导航数据的状态、所述第二阈值及所述第三阈值判断出下一时刻的导航数据的状态。每个下一时刻的导航数据的状态都可以根据前一个时刻的导航数据的状态进行判断。例如:假设已确定t2时刻的导航数据的状态为高,则判断t3时刻的导航数据的信号强度是否小于所述第二阈值,如果小于,则确定所述t3时刻的导航数据的状态为低,若不小于,则确定所述t3时刻的导航数据的状态为高;假设已确定t2时刻的导航数据的状态为低,则判断t3时刻的导航数据的信号强度是否大于所述第三阈值,如果大于,则确定所述t3时刻的导航数据的状态为高,若不大于,则确定所述t3时刻的导航数据的状态为低。
具体地,由于移动终端进入建筑物内时,导航信号容易被遮挡,此时需要设置较高的第二阈值,以便能够尽快舍弃导航信号强度不足的GNSS 导航数据,而使用通过DR得到的所述移动终端的位置变化数据,从而保证所述移动终端可以正常定位。同理,当所述移动终端离开建筑物内时,由于通过DR得到的所述移动终端的位置变化数据的误差积累较大,此时需要设置较低的第三阈值,即所述第三阈值需要设置为小于所述第二阈值,以便于尽快融合所述GNSS导航数据,以保证所述移动终端的定位精度。可选地,所述第二阈值可以与所述第一阈值相同,也可以与所述第一阈值不相同。
S504:所述处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
图7为本发明实施例提供的另一种获取可靠的导航数据的方法的流程示意图。在另一种可能的实现方式中,所述第一时间段内的第一个导航数据之前存在导航数据,并且之前的导航数据的状态已确定,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,包括:
S701:所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度。
所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻。
S702:所述主处理器获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻。
S703:所述主处理器通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,且i为整数,所述第二阈值大于所述第三阈值。
由于所述第一时间段内的第一个导航数据之前的在先导航数据的状态已确定,所述主处理器可以根据所述在先导航数据的状态来确定所述第一时间段内的第一个导航数据的状态,再根据所述第一时间段内的第一个 导航数据的状态确定下一个时刻的导航数据的状态,以此类推。具体地,在所述另一种实现方式中,所述主处理器根据所述在先导航数据的状态确定所述第一个导航数据的状态,以及根据所述第一个导航数据的状态确定下一时刻的导航数据的状态的具体方式与S503中描述的方法一致,在此不再赘述。
S704:所述处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
本发明实施例还提供一种用于移动终端的定位装置,图8为本发明实施例提供的一种用于移动终端的定位装置的结构示意图。请参阅图8,所述定位装置至少包括获取模块810及数据处理模块820。
具体地,所述获取模块810用于,在第一时间段之后,从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M和N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导航信号计算得到;
所述获取模块810还用于,在所述第一时间段之后,获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到;
所述数据处理模块820,用于将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选地,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻。
所述获取模块810具体用于:
按照时刻的先后顺序遍历所述N个导航数据的信号强度;
确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数 据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值大于所述第三阈值;
将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选地,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
所述获取模块810具体用于:
按照时刻的先后顺序遍历所述N个导航数据的信号强度;获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,所述第二阈值大于所述第三阈值;
将所有状态为高的导航数据确定为所述M个可靠的导航数据。
可选地,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
所述数据处理模块820具体用于:
从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据及位置变化数据;
将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
可选地,所述导航数据为通过所述移动终端的卫星导航信号计算得到 的、待计算为位置坐标的数据,所述数据处理模块820具体用于:
根据所述M个可靠的导航数据,计算得到M个位置坐标;
将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
可选地,所述装置还包括:
唤醒模块830,用于在所述第一时间段之后唤醒所述定位装置;
所述定位装置在所述第一时间段之内处于休眠状态。
可选地,所述装置还包括:
休眠模块840,用于在得到所述第一时间段之内的所述移动终端的位置信息之后,使所述定位装置进入休眠状态。
本发明实施例提供的用于移动终端的定位装置具体用于执行上述各方法实施例提供的技术方案,其实现原理和技术效果类似,在此不再赘述。
本发明实施例还提供一种移动终端。请参阅图1及图2,所述移动终端至少包括:主处理器30、全球卫星导航系统GNSS接收机10、传感器20和协处理器40;
所述主处理器30用于执行上述方法实施例所述的方法;
所述GNSS接收机10,用于在第一时间段内接收所述移动终端的卫星导航信号,并将所述卫星导航信号计算为导航数据,所述导航数据为待计算为位置坐标的数据或者所述导航数据为位置坐标;
所述传感器20,用于在所述第一时间段内监测所述移动终端的运动数据;
所述协处理器40,用于根据所述传感器20监测到的所述运动数据计算得到K个位置变化数据;或者,所述协处理器40用于根据所述传感器监测到的所述运动数据计算得到K个位置变化数据,并用于将所述导航数据计算为位置坐标。
可选地,所述第一时间段包括第二时间段,在所述第二时间段内,所述GNSS接收机10处于休眠状态;所述传感器20在所述第一时间段内均处于工作状态。
本发明实施例提供的移动终端可以执行上述方法实施例提供的技术方案,其实现原理和技术效果类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机、手机或其他便携装置的可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (27)

  1. 一种用于移动终端的定位方法,所述移动终端包括主处理器,其特征在于,所述方法包括:
    在第一时间段之后,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M和N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导航信号计算得到;
    在所述第一时间段之后,所述主处理器获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到;
    所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述主处理器从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,包括:
    所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
    所述主处理器确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
    所述主处理器通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数,所述第二阈值大于所述第三阈值;
    所述主处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  3. 根据权利要求1所述的方法,其特征在于,所述主处理器从缓存 的所述移动终端的N个导航数据中获取M个可靠的导航数据,包括:
    所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
    所述主处理器获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
    所述主处理器通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值大于所述第三阈值;
    所述处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  4. 根据权利要求1-3任一所述的方法,其特征在于,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
    所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
    所述主处理器从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据和位置变化数据;
    所述主处理器将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据,所述主处理器将所述M个可靠的导航数据和所述K个位置变化数据 进行融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
    所述主处理器根据所述M个可靠的导航数据,计算得到M个位置坐标;
    所述主处理器将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
  6. 根据权利要求1-4任一所述的方法,其特征在于,所述导航数据为位置坐标。
  7. 根据权利要求1-6任一所述的方法,其特征在于,所述方法还包括:
    在所述第一时间段内,所述主处理器处于休眠状态;
    所述主处理器在所述第一时间段之后被唤醒。
  8. 根据权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    在得到所述第一时间段之内的所述移动终端的位置信息之后,所述主处理器进入休眠状态。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述第一时间段之内的所述移动终端的位置信息包括至少两个位置坐标,每个所述位置坐标对应所述第一时间段之内的一个时刻。
  10. 一种用于移动终端的定位方法,所述移动终端包括主处理器,其特征在于,所述方法包括:
    在第一时间段内接收所述移动终端的卫星导航信号;
    根据所述卫星导航信号计算得到N个导航数据,并缓存所述N个导航数据,N≥1,且N为整数;
    在所述第一时间段内通过所述移动终端的传感器监测所述移动终端的运动;
    根据所述传感器监测到的数据计算得到所述移动终端的K个位置变化数据,并缓存所述K个位置变化数据,K≥1,且K为整数;
    在所述第一时间段之后,所述主处理器从所述N个导航数据中获取M个可靠的导航数据,其中,N≥M,M≥1,且M为整数;
    所述主处理器根据所述M个可靠的导航数据和所述K个位置变化数据融合处理,得到所述第一时间段之内所述移动终端的位置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述主处理器从所 述N个导航数据中获取M个可靠的导航数据,包括:
    所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
    所述主处理器确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
    所述主处理器通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数,所述第二阈值大于所述第三阈值;
    所述主处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  12. 根据权利要求10所述的方法,其特征在于,所述主处理器从所述N个导航数据中获取M个可靠的导航数据,包括:
    所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述主处理器按照时刻的先后顺序遍历所述N个导航数据的信号强度;
    所述主处理器获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
    所述主处理器通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值 大于所述第三阈值;
    所述处理器将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  13. 根据权利要求10-12任一所述的方法,其特征在于,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
    所述主处理器根据所述M个可靠的导航数据和所述K个位置变化数据融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
    所述主处理器从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据和位置变化数据;
    所述主处理器将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
  14. 根据权利要求10-13任一所述的方法,其特征在于,所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据,所述主处理器根据所述M个可靠的导航数据和所述K个位置变化数据融合处理,得到所述第一时间段之内所述移动终端的位置信息,包括:
    所述主处理器根据所述M个可靠的导航数据,计算得到M个位置坐标;
    所述主处理器根据所述M个位置坐标和所述K个位置变化数据融合处理,得到所述第一时间段之内所述移动终端的位置信息。
  15. 根据权利要求10-13任一所述的方法,其特征在于,所述导航数据为位置坐标。
  16. 根据权利要求10-15任一所述的方法,其特征在于,所述方法还包括:
    在所述第一时间段内,所述主处理器处于休眠状态;
    所述主处理器在所述第一时间段之后被唤醒。
  17. 根据权利要求10-16任一所述的方法,其特征在于,所述方法还包括:
    在得到所述第一时间段之内的所述移动终端的位置信息之后,所述主处理器进入休眠状态。
  18. 根据权利要求10-17任一所述的方法,其特征在于,所述第一时间段之内的所述移动终端的位置信息包括至少两个位置坐标,每个所述位置坐标对应所述第一时间段之内的一个时刻。
  19. 一种用于移动终端的定位装置,其特征在于,包括:
    获取模块,用于在第一时间段之后,从缓存的所述移动终端的N个导航数据中获取M个可靠的导航数据,N≥M,M≥1,且M和N为整数,所述N个导航数据由在所述第一时间段内接收到的所述移动终端的卫星导航信号计算得到;
    所述获取模块还用于,在所述第一时间段之后,获取缓存的所述移动终端的K个位置变化数据,K≥1,且K为整数,所述K个位置变化数据由在所述第一时间段内所述移动终端的传感器监测到的数据计算得到;
    数据处理模块,用于将所述M个可靠的导航数据和所述K个位置变化数据进行融合处理,得到所述第一时间段之内所述移动终端的位置信息。
  20. 根据权利要求19所述的装置,其特征在于,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述获取模块具体用于:
    按照时刻的先后顺序遍历所述N个导航数据的信号强度;
    确定第一导航数据的状态为高,所述第一导航数据为所述N个导航数据中第一个信号强度大于或等于第一阈值的导航数据;
    通过以下方式确定其它导航数据的状态,所述其它导航数据为所述N个导航数据中位于所述第一导航数据之后的导航数据:若ti时刻的导航数据的状态为高,则当ti+1时刻的导航数据的信号强度小于第二阈值时,确定所述ti+1时刻的导航数据的状态为低;若ti时刻的导航数据的状态为低,则当ti+1时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti+1时刻的导航数据的状态为高;1≤i≤n,且i为整数;所述第二阈值大于所述第三阈值;
    将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  21. 根据权利要求19所述的装置,其特征在于,所述N个导航数据中的每个导航数据均对应一个时刻和信号强度,按照时刻的先后顺序,所述N个导航数据分别对应t1、t2、…、tN时刻;
    所述获取模块具体用于:
    按照时刻的先后顺序遍历所述N个导航数据的信号强度;获取所述N个导航数据中第一个导航数据之前的在先导航数据的状态,所述在先导航数据对应的t0时刻在所述第一个导航数据对应的t1时刻之前,且所述t0时刻与所述t1时刻相邻;
    通过以下方式确定所述N个导航数据的状态:若ti-1时刻的导航数据的状态为高,则当ti时刻的导航数据的信号强度小于第二阈值时,确定所述ti时刻的导航数据的状态为低;若ti-1时刻的导航数据的状态为低,则当ti时刻的导航数据的信号强度大于或等于第三阈值时,确定所述ti时刻的导航数据的状态为高;1≤i≤n,所述第二阈值大于所述第三阈值;
    将所有状态为高的导航数据确定为所述M个可靠的导航数据。
  22. 根据权利要求19-21任一所述的装置,其特征在于,每个所述导航数据均对应一个时刻,每个所述位置变化数据均对应一个时刻,当第m个导航数据的时刻与第n个位置变化数据的时刻相同时,所述第m个导航数据被设置为与所述第n个位置变化数据相匹配;
    所述数据处理模块具体用于:
    从所述M个可靠的导航数据及所述K个位置变化数据中获取相匹配的可靠的导航数据及位置变化数据;
    将所述相匹配的可靠的导航数据和位置变化数据进行融合处理,并结合其它未被融合处理的位置变化数据,得到所述第一时间段之内所述移动终端的位置信息。
  23. 根据权利要求19-22任一所述的装置,其特征在于,所述导航数据为通过所述移动终端的卫星导航信号计算得到的、待计算为位置坐标的数据,所述数据处理模块具体用于:
    根据所述M个可靠的导航数据,计算得到M个位置坐标;
    将所述M个位置坐标和所述K个位置变化数据进行融合处理,得到 所述第一时间段之内所述移动终端的位置信息。
  24. 根据权利要求19-23任一所述的装置,其特征在于,所述装置还包括:
    唤醒模块,用于在所述第一时间段之后唤醒所述定位装置;
    所述定位装置在所述第一时间段内处于休眠状态。
  25. 根据权利要求19-23任一所述的装置,其特征在于,所述装置还包括:
    休眠模块,用于在得到所述第一时间段之内的所述移动终端的位置信息之后,使所述定位装置进入休眠状态。
  26. 一种移动终端,其特征在于,包括:主处理器、全球卫星导航系统GNSS接收机、传感器和协处理器;
    所述主处理器用于执行权利要求1-9任一所述的方法;
    所述GNSS接收机,用于在第一时间段内接收所述移动终端的卫星导航信号,并将所述卫星导航信号计算为导航数据,所述导航数据为待计算为位置坐标的数据或者所述导航数据为位置坐标;
    所述传感器,用于在所述第一时间段内监测所述移动终端的运动数据;
    所述协处理器,用于根据所述传感器监测到的所述运动数据计算得到K个位置变化数据;或者,所述协处理器用于根据所述传感器监测到的所述运动数据计算得到K个位置变化数据,并用于将所述导航数据计算为位置坐标。
  27. 根据权利要求26所述的移动终端,其特征在于,所述第一时间段包括第二时间段,在所述第二时间段内,所述全球卫星导航系统GNSS接收机处于休眠状态;所述传感器在所述第一时间段内均处于工作状态。
PCT/CN2015/094224 2015-09-29 2015-11-10 用于移动终端的定位方法、装置及移动终端 WO2017054298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580027805.8A CN108029092B (zh) 2015-09-29 2015-11-10 用于移动终端的定位方法、装置及移动终端
JP2018516168A JP6646741B2 (ja) 2015-09-29 2015-11-10 移動端末のための測位方法及び装置、並びに移動端末
US15/764,263 US11209555B2 (en) 2015-09-29 2015-11-10 Positioning method and apparatus for mobile terminal, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2015/091138 2015-09-29
CN2015091138 2015-09-29

Publications (1)

Publication Number Publication Date
WO2017054298A1 true WO2017054298A1 (zh) 2017-04-06

Family

ID=58422641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094224 WO2017054298A1 (zh) 2015-09-29 2015-11-10 用于移动终端的定位方法、装置及移动终端

Country Status (4)

Country Link
US (1) US11209555B2 (zh)
JP (1) JP6646741B2 (zh)
CN (1) CN108029092B (zh)
WO (1) WO2017054298A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243909A (zh) * 2017-07-26 2017-10-13 武汉盛德物联科技有限公司 智能看护机器人系统
CN113447967A (zh) * 2021-06-28 2021-09-28 西安邮电大学 集成卫星导航基带ip的应用处理器芯片及集成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6956702B2 (ja) * 2018-11-20 2021-11-02 三菱電機株式会社 位置情報出力装置
US11131776B2 (en) * 2019-08-19 2021-09-28 Gm Global Technology Operations, Llc Method and apparatus for Kalman filter parameter selection using map data
CN111060947B (zh) * 2019-12-30 2023-12-22 中国科学院光电研究院 导航定位方法及装置
CN111665532B (zh) * 2020-06-28 2023-06-09 湖南国科微电子股份有限公司 低功耗导航方法、装置、电子设备和可读存储介质
CN113566838A (zh) * 2021-06-29 2021-10-29 中国联合网络通信集团有限公司 基于路线复杂度的导航方法、系统及移动终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769747A (zh) * 2009-12-21 2010-07-07 戴文娟 景点智能导游系统及方法
CN102243315A (zh) * 2011-04-25 2011-11-16 惠州Tcl移动通信有限公司 具有辅助定位功能的移动终端及方法
CN103454659A (zh) * 2012-06-04 2013-12-18 中兴通讯股份有限公司 一种导航中辅助调整移动方向的方法及装置
CN104793223A (zh) * 2015-05-04 2015-07-22 广东远峰电子科技有限公司 一种北斗导航定位电路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0300303D0 (sv) 2003-02-06 2003-02-06 Nordnav Technologies Ab A navigation Method and Apparatus
KR100518852B1 (ko) * 2003-08-25 2005-09-30 엘지전자 주식회사 차량의 후진 개선 추측항법
US7460064B1 (en) * 2006-12-20 2008-12-02 Air Semiconductor, Ltd. Variable measurement rate method for positioning systems
CN101035386A (zh) 2007-04-20 2007-09-12 中兴通讯股份有限公司 一种实现移动终端精确定位的装置及方法
ES2327887B1 (es) * 2007-04-30 2010-08-30 Navento Technologies, S.L. Procedimiento y sistema de localizacion y dispositivo portatil localizable.
JP5270184B2 (ja) 2008-02-13 2013-08-21 古野電気株式会社 衛星航法/推測航法統合測位装置
US8072379B2 (en) * 2008-05-12 2011-12-06 Qualcomm Incorporated GPS power savings using low power sensors
US8892127B2 (en) * 2008-11-21 2014-11-18 Qualcomm Incorporated Wireless-based positioning adjustments using a motion sensor
US8560218B1 (en) * 2008-12-31 2013-10-15 Dp Technologies, Inc. Method and apparatus to correct for erroneous global positioning system data
JP2011149925A (ja) * 2009-12-22 2011-08-04 Casio Computer Co Ltd 測位装置、測位方法およびプログラム
JP5750862B2 (ja) * 2010-01-15 2015-07-22 カシオ計算機株式会社 測位装置、測位方法およびプログラム
JP5509991B2 (ja) 2010-03-29 2014-06-04 富士通株式会社 可搬型携帯端末及び移動形状算出プログラム
US20110291886A1 (en) 2010-05-26 2011-12-01 Krieter Marcus method for marking locations of associated peripheral devices
JP5273126B2 (ja) 2010-09-15 2013-08-28 カシオ計算機株式会社 測位装置、測位方法およびプログラム
KR20120080776A (ko) 2011-01-10 2012-07-18 삼성전자주식회사 추정 위치의 신뢰도 제공 방법 및 이를 구현하는 이동 단말기
US8362949B2 (en) * 2011-06-27 2013-01-29 Google Inc. GPS and MEMS hybrid location-detection architecture
CN102645667A (zh) 2012-04-24 2012-08-22 上海交通大学 基于组合导航的能量优化导航装置
CN102901975A (zh) 2012-10-18 2013-01-30 中兴通讯股份有限公司 一种移动终端和获取移动终端位置信息的方法
US9880286B2 (en) * 2012-12-28 2018-01-30 Trimble Inc. Locally measured movement smoothing of position fixes based on extracted pseudoranges
JP2014190827A (ja) 2013-03-27 2014-10-06 Nec Casio Mobile Communications Ltd 測位装置、測位方法、測位プログラム
CN103312902A (zh) 2013-07-04 2013-09-18 深圳市中兴移动通信有限公司 自动启动应用的方法及装置
CN104749592A (zh) 2013-12-31 2015-07-01 环达电脑(上海)有限公司 具有省电功能的gps导航系统及其省电方法
CN105223595A (zh) 2014-05-26 2016-01-06 联想(北京)有限公司 卫星定位方法和卫星定位装置
CN104598253B (zh) 2015-02-17 2016-10-19 武汉大学 一种在Android内核层实现GNSS/INS组合导航的方法
CN106646567A (zh) * 2016-10-09 2017-05-10 北京摩拜科技有限公司 车辆定位系统和车辆定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769747A (zh) * 2009-12-21 2010-07-07 戴文娟 景点智能导游系统及方法
CN102243315A (zh) * 2011-04-25 2011-11-16 惠州Tcl移动通信有限公司 具有辅助定位功能的移动终端及方法
CN103454659A (zh) * 2012-06-04 2013-12-18 中兴通讯股份有限公司 一种导航中辅助调整移动方向的方法及装置
CN104793223A (zh) * 2015-05-04 2015-07-22 广东远峰电子科技有限公司 一种北斗导航定位电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243909A (zh) * 2017-07-26 2017-10-13 武汉盛德物联科技有限公司 智能看护机器人系统
CN113447967A (zh) * 2021-06-28 2021-09-28 西安邮电大学 集成卫星导航基带ip的应用处理器芯片及集成方法
CN113447967B (zh) * 2021-06-28 2024-04-12 西安邮电大学 集成卫星导航基带ip的应用处理器芯片及集成方法

Also Published As

Publication number Publication date
JP2019502895A (ja) 2019-01-31
JP6646741B2 (ja) 2020-02-14
US11209555B2 (en) 2021-12-28
CN108029092A (zh) 2018-05-11
US20180239027A1 (en) 2018-08-23
CN108029092B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2017054298A1 (zh) 用于移动终端的定位方法、装置及移动终端
EP2129999B1 (en) Multi-sensor data collection and/or processing
US10317536B2 (en) Techniques for affecting a wireless signal-based positioning capability of a mobile device based on one or more onboard sensors
US8185134B2 (en) Multimode GPS-enabled camera
JP6013645B2 (ja) ロケーションサービスを提供しながらのモバイルデバイス電力管理
JP7133903B2 (ja) マルチパス平滑化のための方法およびシステム
US10082583B2 (en) Method and apparatus for real-time positioning and navigation of a moving platform
JP2009192325A (ja) 衛星航法/推測航法統合測位装置
TWI557418B (zh) 用於gnss使能設備之通用混合導航資訊計算方法及系統
JP2018526626A (ja) 視覚慣性オドメトリ姿勢ドリフト較正
US20210190495A1 (en) Use of Offline Algorithm to Determine Location From Previous Sensor Data When Location is Requested
CN110967010A (zh) 基于卫星导航与惯性导航的无盲区车辆定位系统和方法
US10739138B2 (en) Information processing apparatus and control method
JP2014190827A (ja) 測位装置、測位方法、測位プログラム
US12010583B2 (en) Method, apparatus and system for mobile device location determination
WO2020155912A1 (zh) 定位芯片定位的方法及终端设备
Kiesel et al. Real time implementation of a non-coherent deeply coupled GPS/INS system
CN117784183A (zh) 基于终端的运动距离检测方法、装置以及电子设备
CN117692865A (zh) 基于终端的轨迹优化方法、装置以及电子设备
CN118011438A (zh) 一种数据处理方法、装置、计算机、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905210

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018516168

Country of ref document: JP

Ref document number: 15764263

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905210

Country of ref document: EP

Kind code of ref document: A1