WO2017052265A1 - 파이프 비파괴 검사 장치 - Google Patents

파이프 비파괴 검사 장치 Download PDF

Info

Publication number
WO2017052265A1
WO2017052265A1 PCT/KR2016/010656 KR2016010656W WO2017052265A1 WO 2017052265 A1 WO2017052265 A1 WO 2017052265A1 KR 2016010656 W KR2016010656 W KR 2016010656W WO 2017052265 A1 WO2017052265 A1 WO 2017052265A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
destructive inspection
body portion
tube
inspection device
Prior art date
Application number
PCT/KR2016/010656
Other languages
English (en)
French (fr)
Inventor
박순욱
김대영
이호중
김기백
김종필
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150138472A external-priority patent/KR20170039402A/ko
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to SG11201800728PA priority Critical patent/SG11201800728PA/en
Priority to CN201680048478.9A priority patent/CN107923564B/zh
Priority to JP2018506279A priority patent/JP6523553B2/ja
Publication of WO2017052265A1 publication Critical patent/WO2017052265A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a pipe non-destructive inspection device, and more particularly to a pipe non-destructive inspection device for generating a radiation source to the radiation film provided on the outer periphery of the pipe while traveling inside the pipe.
  • non-destructive inspections are carried out to confirm the weld quality.
  • a radiation film is disposed around a weld surface of a pipe, and a radiation source is inserted into the pipe to check a welding state according to whether radiation is detected on the radiation film. Since the radiation detection amount is reduced in inverse proportion to the square of the distance of the radiation source, it is necessary to position the radiation source on the central axis of the pipe in order to accurately determine the weld defect portion. If the pipe is a curved pipe, there is a problem that it is difficult to accurately position the radiation source on the central axis of the pipe, which may lower the measurement accuracy of the non-destructive inspection.
  • the problem to be solved by the present invention is to provide a pipe non-destructive inspection device that can increase the measurement accuracy of non-destructive inspection by placing the radiation source on the central axis of the pipe in the curved pipe.
  • one aspect (aspect) of the pipe non-destructive inspection device of the present invention is developed outwardly of the body portion, and the wheel provided at the developed end close to the inner wall of the pipe to generate a driving force
  • a traveling control unit configured to control the traveling unit to rotate the body along the circumference of the pipe according to the monitoring result;
  • a guide tube for guiding the feeding tube having a radiation source on the distal side for nondestructive inspection of the pipe, and a first tube drive for moving the guide tube in a first direction with respect to the body portion.
  • traveling parts are provided on both opposite sides of the body part, and one or more traveling parts are provided on one side of the body part in parallel with a traveling direction.
  • the traveling control device controls the rotational speed of the wheels provided in each of the plurality of traveling portions to correspond to the shape of the pipe.
  • each of the plurality of driving parts includes a first leg for supporting the provided wheel, and a second leg overlapping a portion with the first leg, and the overlapping interval of the first leg and the second leg is adjusted. According to the distance of the provided wheel to the body portion is adjusted.
  • the distance between the wheels provided in each of the body portion and the plurality of traveling portions is independently adjusted.
  • the travel control device controls the travel unit such that the body rotates along the circumference of the pipe when an obstacle exists in the front of the moving direction or a recessed portion of the inner wall of the pipe exists according to the monitoring result.
  • the pipe non-destructive inspection device is provided with a running portion on each opposite side of the body portion, and further includes a width adjusting portion for adjusting the width between the wheels of the running portion provided on each of the opposite sides of the body portion.
  • the width adjusting unit adjusts the width between the wheels of the driving unit provided on each of the opposite sides of the body portion so that the force that the wheel of the driving unit pushes the inner wall of the pipe is kept constant.
  • the apparatus may further include a position displacement sensor configured to determine a position of the pipe non-destructive inspection device in the inside of the pipe, wherein the traveling control device refers to the determined position of the pipe non-destructive inspection device in the inside of the pipe.
  • the running part is controlled such that the center of the body part coincides with the central axis of the pipe.
  • the pipe non-destructive inspection device calculates the angle of rotation of the guide tube so that the radiation source exposed to the distal side of the guide tube is located on the central axis of the pipe, and according to the calculated angle of rotation It further comprises an inspection control device for controlling the tube drive.
  • the pipe non-destructive inspection device further comprises a position recognition unit for recognizing the position in the pipe of the body portion, the inspection control device is based on the position of the body portion and the design information of the pipe of the guide tube Calculate the angle of rotation.
  • the inspection control device may adjust the rotation angle of the guide tube based on the position of the body portion, the inner diameter of the pipe, and the curvature of the curved pipe. Calculate.
  • the pipe non-destructive inspection device further comprises a radiation film is installed along the outer periphery of the welded side of the pipe, the inspection control device is the first tube drive unit so that the radiation source is located in the center of the radiation film To control.
  • the pipe non-destructive testing device further includes a feeding device for inserting the feeding tube into the guide tube to transfer the radiation source of the feeding tube to the distal side of the guide tube.
  • the feeding apparatus includes a feeding gear member coupled with a gear portion formed on the outer circumferential surface of the feeding tube, and a driving member for driving the feeding gear member.
  • the pipe non-destructive inspection device further comprises a second tube drive for moving the guide tube in a second direction perpendicular to the first direction with respect to the body portion.
  • the pipe non-destructive inspection device may further include a roll angle measuring unit measuring a roll angle of the body portion, and a position of the body portion, a roll angle of the body portion, and design information of the pipe, such that the radiation source is located on a central axis of the pipe. Calculating a first rotational angle in the first direction and a second rotational angle in the second direction of the guide tube to be positioned, controlling the first tube driving part according to the first rotational angle, and The apparatus further includes an inspection control device that controls the second tube driving unit according to the two rotation angles.
  • FIG. 1 is a side view of a pipe non-destructive inspection device 100 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a pipe non-destructive inspection device 100 according to an embodiment of the present invention.
  • FIG 3 is a front view of the pipe non-destructive inspection device 100 according to an embodiment of the present invention.
  • FIG. 4 is an enlarged perspective view illustrating part 'B' of FIG. 1.
  • FIG. 5 is an enlarged perspective view illustrating a portion 'C' of FIG. 1.
  • FIG. 6 is a view for explaining the operation and effect of the pipe non-destructive inspection apparatus according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a pipe non-destructive inspection device according to another embodiment of the present invention, a perspective view showing a portion corresponding to the 'C' portion of FIG.
  • FIG. 8 and 9 are plan views illustrating operations and effects of the pipe non-destructive inspection device according to the embodiment of FIG. 7.
  • FIG. 10 is a cross-sectional view taken along lines D-D 'and E-E' of FIG. 9.
  • FIG. 11 is a perspective view of a pipe non-destructive inspection device according to another embodiment of the present invention.
  • FIG. 12 is a left side view of the pipe non-destructive inspection device according to another embodiment of the present invention.
  • FIG. 13 is a right side view of the pipe non-destructive inspection device according to another embodiment of the present invention.
  • FIG. 14 is a view showing the width adjustment between the wheels according to an embodiment of the present invention.
  • 15 is a view showing the length adjustment of the wheel according to an embodiment of the present invention.
  • 16 is a block diagram showing a control device according to another embodiment of the present invention.
  • 17 is a view showing the pipe non-destructive inspection apparatus according to another embodiment of the present invention traveling inside the pipe.
  • FIGS. 18 and 19 are views illustrating a pipe non-destructive inspection device according to another embodiment of the present invention traveling inside a pipe whose diameter is changed.
  • 20 is a view illustrating a pipe non-destructive inspection apparatus according to another embodiment of the present invention traveling inside a pipe including a curvature section.
  • 21 is a view showing that the pipe non-destructive inspection device according to another embodiment of the present invention rotates along the circumference of the pipe.
  • 22 to 24 is a view showing that the pipe non-destructive inspection apparatus according to another embodiment of the present invention after running inside the pipe.
  • 25 is a view illustrating a pipe non-destructive inspection device according to another embodiment of the present disclosure to determine a center position in a pipe.
  • FIG. 26 is a view illustrating a pipe non-destructive inspection device correcting a center position in a pipe according to another embodiment of the present invention.
  • FIG. 1 is a side view of a pipe non-destructive inspection device 100 according to an embodiment of the present invention
  • Figure 2 is a plan view of a pipe non-destructive inspection device 100 according to an embodiment of the present invention
  • Figure 3 is The front view of the pipe non-destructive inspection device 100 according to an embodiment.
  • the pipe non-destructive inspection device 100 travels inside the pipe 10, and the radiation source toward the radiation film 20 installed along the outer circumference of the welded portion 12 of the pipe 10. Generates. If no radiation is detected in the radiation film 20, it is determined that the pipe 10 weld 12 is free of defects. When radiation is detected through the radiation film 20, it is determined that the welded portion 12 of the pipe 10 is defective, and the operator grasps the weld defect position based on the position of the radiation film 20 in which the radiation is detected. Perform additional welding on the corresponding weld defect location.
  • Pipe non-destructive inspection device 100 is the body portion 110, the wheel portion 120, the drive unit 130, the guide tube 140, the first tube drive unit 150, the position recognition unit 160, the feeding device 170 And an inspection control device (not shown).
  • the body 110 is located on the central axis of the pipe 10 to travel inside the pipe 10.
  • the body part 110 is provided with a wheel part 120, a driving part 130, a guide tube 140, a first tube driving part 150, a position recognition part 160, and a feeding device 170.
  • the wheel part 120 supports the body part 110 on the inner surface of the pipe 10.
  • the wheel unit 120 may include a driving wheel 121 and an adjusting device 122.
  • a total of four traveling wheels 121 are installed at the upper and lower portions of the body 110, respectively, but the number and positions of the traveling wheels 121 may be variously changed.
  • the adjusting device 122 adjusts the distance between each driving wheel 121 and the body 110.
  • the adjusting device 122 may adjust the distance between the driving wheel 121 and the body part 110 according to the inner diameter of the pipe 10.
  • the adjusting device 122 may adjust the position of each driving wheel 121 by a hydraulic cylinder or a motor.
  • the adjusting device 122 may adjust the position of the driving wheel 121 in the radial direction of the pipe 10 so that each driving wheel 121 is disposed at the same distance from the central axis of the pipe 10. Accordingly, the body portion 110 is located on the central axis of the pipe 10 by the wheel portion 120.
  • the wheel unit 120 may include a shock absorber such as a spring that presses the driving wheel 121 to the inner surface of the pipe 10.
  • the driving unit 130 drives the wheel unit 120 to drive the body unit 110 along the pipe 10.
  • the driving unit 130 may be provided as a driving motor that rotationally drives the driving wheel 121.
  • the feeding tube T has a radiation source S for nondestructive inspection of the pipe 10 on the distal side.
  • the radiation source S may generate radiation such as X-rays, ⁇ -rays, ⁇ -rays, and the like.
  • Guide tube 140 is installed on the front side of the body portion 110 to guide the feeding tube (T).
  • the radiation source S is supplied to the distal side of the guide tube 140 by the feeding device 170.
  • the feeding device 170 may insert the feeding tube T into the guide tube 140 to transfer the radiation source S of the feeding tube T to the distal side of the guide tube 140.
  • the feeding device 170 is a support plate 171 provided on the rear side of the body portion 110, a motor housing 172 installed on the support plate 171, a drive motor 173 (drive member) provided in the motor housing 172.
  • the coupling part 176 is formed at one side of the motor housing 172 so that the feeding gear member 174 connected to the driving shaft of the driving motor 173 and the feeding tube T are inserted.
  • An insertion tube 175 into which the feeding tube T is inserted is formed in the motor housing 172.
  • An insertion part is formed in the insertion tube 175, and the feeding gear member 174 is gear-coupled to the gear part formed on the outer surface of the feeding tube T through the opening part.
  • the driving motor 173 is driven, the feeding tube T is moved to the front side of the body portion 110 through the guide tube of the body portion 110 and inserted into the guide tube 140. Accordingly, the radiation source S provided on the distal side of the feeding tube T is exposed through the tip side of the guide tube 140.
  • the position recognition unit 160 is provided to recognize a position in the pipe 10 of the body unit 110.
  • the position recognition unit 160 is installed on the lower surface of the distal end of the guide tube 140, but the installation position of the position recognition unit 160 is not limited thereto.
  • the location recognition unit 160 may be provided to a camera and an image processor.
  • the image processor may recognize the welding surface in the image inside the pipe 10 captured by the camera, and may recognize the position of the body 110 in the pipe 10.
  • the position recognition unit 160 may measure the moving distance of the body unit 110 by means of an encoder or the like provided to the wheel unit 120, or may recognize the position of the body unit 110 in other ways. It may be.
  • the first tube driver 150 rotates the guide tube 140 in the first direction with respect to the body portion 110.
  • the first direction may be a transverse direction of the body portion 110.
  • 5 is an enlarged perspective view illustrating a portion 'C' of FIG. 1. 1 to 3 and 5, the first tube driving unit 150 includes a support plate 151 provided on the front side of the body part 110, a drive housing 152 fixed to the support plate 151, and a drive housing.
  • Drive motor 153 installed in the 152, drive pulley 154 coupled to the drive shaft of the drive motor 153, driven pulley 156 coupled to the drive pulley 154 through the belt 155, driven pulley ( 156 is rotated and coupled, the rotary arm 157 coupled to one side of the guide tube 140, connecting member 158, connecting member 158 connecting the rotary arm 157 and the guide tube 140, And a fixing member 159 fixed to the guide tube 140.
  • the inspection control device may include a guide tube (not shown) that allows the radiation source S exposed at the distal side of the guide tube 140 to be positioned on the central axis of the pipe 10.
  • the rotation angle of 140 is calculated, and the 1st tube drive part 150 is controlled according to the calculated rotation angle. Accordingly, the drive motor 153 is driven, the driven pulley 156 is rotated by the drive pulley 154 and the rotary arm 157 is rotated, so that the guide tube 140 refers to the central axis of the driven pulley 156. Rotate left and right.
  • the inspection control device may calculate the rotation angle of the guide tube 140 based on the position of the body 110 and the design information of the pipe 10.
  • 6 is a view for explaining the operation and effect of the pipe non-destructive inspection apparatus according to an embodiment of the present invention. Referring to FIG. 6, the body portion 110 moves along the central axis of the pipe 10, but due to the nature of the non-destructive inspection, the radiation source S may not be located at the center of gravity of the body portion 110. Since at least a portion of the non-destructive inspection device 100 is located in the curved pipe, the exposure source 110 must be exposed to the outside, so that the guide tube 140 is not rotated by the first tube driving unit 150.
  • the first tube driving unit 150 is driven according to the position of the body unit 110 and the design information of the pipe 10 (eg, the inner diameter of the pipe, the curvature of the curved pipe, etc.) and the solid line of FIG. 6.
  • the guide tube 140 is rotated, whereby the radiation source S can be positioned at the central axis of the pipe 10 (the center of the radiation film), thereby improving the measurement accuracy of the non-destructive inspection.
  • the feeding tube T may be made of a flexible material such that the feeding tube T may be bent like the guide tube 140.
  • the first tube driver 150 is configured to rotate the guide tube 140, but the first tube driver 150 linearly guides the guide tube 140 in a first direction (transverse direction of the body). It may also be provided as a mechanical device for driving with, and may be used without limitation as long as it moves the guide tube 140 so that the radiation source (S) can be located on the central axis of the pipe (10).
  • the pipe non-destructive inspection device 100 may further include a roll angle measuring unit (not shown) and a second tube driving unit 180.
  • Roll angle measuring unit is installed on the body portion 110 to measure the roll angle of the body portion (110).
  • the roll angle may be an angle at which the body 110 rotates about the central axis of the pipe 10.
  • the roll angle measuring unit may be provided by means such as an angular velocity sensor, a geomagnetic sensor, or an Inertial Measuring Unit (IMU).
  • IMU Inertial Measuring Unit
  • the second tube driving unit 180 may rotate the guide tube 140 in a second direction (the longitudinal direction of the body) perpendicular to the first direction (the transverse direction of the body) with respect to the body part 110.
  • the second tube driving unit 180 may be provided in the support plate 151 may be provided as a drive motor for rotating the driving housing 152 in the longitudinal direction of the body portion 110, the guide tube 140
  • the mechanical structure of the second tube driver 180 is not particularly limited as long as it can move in the longitudinal direction of the body 110.
  • the inspection control device is a guide that allows the radiation source S to be positioned on the central axis of the pipe 10 based on the position of the body portion 110, the roll angle of the body portion 110, and the design information of the pipe 10.
  • the first rotation angle in the first direction and the second rotation angle in the second direction of the tube 140 may be calculated.
  • the inspection control apparatus may control the first tube driver 150 according to the first rotation angle and control the second tube driver 180 according to the second rotation angle.
  • FIG. 8 and 9 are plan views illustrating operations and effects of the pipe non-destructive inspection device according to the exemplary embodiment of FIG. 7, and FIG. 10 is a cross-sectional view taken along lines D-D 'and E-E' of FIG. 9. .
  • the body part 110 travels the pipe 10 in a state inclined by 90 ° as compared to the case shown in FIG. 2.
  • the inspection control device drives the second tube driver 180 rather than the first tube driver 150 to rotate the guide tube 140 in the longitudinal direction of the body 110. Accordingly, the radiation source S is positioned at the center of the radiation film 30, thereby improving the measurement accuracy of the non-destructive inspection.
  • the body portion 110 travels the pipe 10 in a state inclined at an angle smaller than 90 ° as compared to the case shown in FIG. 2.
  • reference numeral 10a denotes a cross section of the pipe along the line D-D 'of FIG. 9
  • reference numeral 10b denotes a cross section of the pipe along the line E-E' in FIG.
  • the center of the body portion 110 is located on the center point C1 of the pipe 10, but the radiation source S is the center point C2 of the radiation film 40. Spaced apart from the distance L.
  • the inspection control device drives the first tube driver 150 to rotate the guide tube 140 in the first direction by the first rotational angle such that the radiation source S is located at the center point C2 of the radiation film 40.
  • the second tube driver 180 is configured to rotate the guide tube 140, but the second tube driver 180 linearly guides the guide tube 140 in a second direction (the longitudinal direction of the body). It may also be provided as a mechanical device for driving with, and may be used without particular limitation as long as it moves the guide tube 140 so that the radiation source (S) can be located on the central axis of the pipe (10).
  • the second tube driving unit 180 may be omitted.
  • the omni wheel omni wheel or mecanum wheel
  • the horizontal state of the body part 110 may be controlled.
  • the radiation source S exposed at the distal side of the guide tube 140 may be positioned on the central axis of the pipe 10 with only the first tube driver 150.
  • FIG. 11 is a perspective view of a pipe non-destructive inspection device according to another embodiment of the present invention
  • FIG. 12 is a left side view of the pipe non-destructive inspection device according to another embodiment of the present invention
  • FIG. 13 is a view of another embodiment of the present invention.
  • the pipe non-destructive inspection device 101 includes a body part 111, a running part 310, 320, 330, 340, a width adjusting part 210, 220, and a monitoring part 410, 420. , 430, position displacement sensors 510, 520, and travel control device 600.
  • the pipe NDT apparatus 101 may include the guide tube 140, the first tube driving unit 150, the position recognition unit 160, the feeding unit 170, the second tube driving unit 180, and the like.
  • An inspection control device can be provided. That is, the pipe non-destructive inspection device 101 can determine whether the welded portion 120 formed in the pipe 10 is defective by using a radiation source.
  • the pipe non-destructive inspection device 101 may include the aforementioned roll angle measuring unit to measure the roll angle of the body portion 111. Meanwhile, since the description of the guide tube 140, the first tube driving unit 150, the position recognition unit 160, the feeding device 170, the inspection control device, and the roll angle measuring unit has been described above, a detailed description thereof will be omitted.
  • the body part 111 serves to support the driving parts 310, 320, 330, and 340, the width adjusting parts 210 and 220, and the monitoring parts 410, 420, and 430.
  • Body portion 111 may be configured by one or more frames are connected to each other.
  • the driving units 310, 320, 330, and 340 are deployed to the outside of the body 111 and serve to generate propulsion by bringing the wheels provided at the deployed ends into close contact with the inner wall of the pipe 10.
  • Pipe non-destructive inspection device 101 is a device for traveling inside the pipe (10). Therefore, in order to maintain the posture of the pipe non-destructive inspection device 101 inside the pipe 10, it is preferable that driving parts 310, 320, 330, and 340 are provided on opposite sides of the body part 111, respectively. Do. The traveling parts 310, 320, 330, and 340 are deployed on both sides of the body part 111, and wheels provided at the ends of the driving parts 310, 320, 330, and 340 are in close contact with the inner wall of the pipe 10. Can be.
  • At least one traveling part 310, 320, 330, and 340 running on one side of the body part 111 provided with the driving parts 310, 320, 330, and 340 is parallel to the long axis of the pipe 10. ) May be provided.
  • both sides of the body portion 111 means the upper side and the lower side of the body portion 111.
  • the left side of FIG. 12 and the right side of FIG. 13 are the front surface of the body portion 111
  • the right side of FIG. 12 and the left side of FIG. 13 represent the rear surface of the body portion 111.
  • the pipe non-destructive inspection device 101 maintains a posture inside the pipe 10. It becomes possible.
  • Each of the driving parts 310, 320, 330, and 340 has a width adjusting gear 311, 321, 331, and 341, a first leg 313, 323, 333, and 343, and a second leg 312, 322, and 332. , 342, wheels 314, 324, 334, 344, and drives 315, 325, 335, 345.
  • the width adjusting gears 311, 321, 331, and 341 may be coupled to the body portion 111 and may rotate based on the coupling portion.
  • Second legs 312, 322, 332, and 342 may be connected to the width adjusting gears 311, 321, 331, and 341.
  • the width adjusting gears 311, 321, 331, and 341 are gear-coupled with the horizontal gears provided in the width adjusting units 210 and 220 to serve to rotate the second legs 312, 322, 332, and 342. Perform.
  • the traveling parts 310, 320, 330, and 340 provided on both sides of the body part 111 rotate between the wheels 314, 324, 334, and 344.
  • the width can be adjusted. Detailed description of the width adjustment between the two wheels (314, 324, 334, 344) will be described later with reference to FIG.
  • the first legs 313, 323, 333, and 343 serve to support the wheels 314, 324, 334, and 344.
  • a detailed description of the distance control of the wheels 314, 324, 334, and 344 with respect to the body 111 will be described later with reference to FIG. 15.
  • the wheels 314, 324, 334, and 344 are in close contact with the inner wall of the pipe 10 and serve to generate propulsion force.
  • the pipe non-destructive inspection device 101 moves by the friction force between the wheels 314, 324, 334, 344 and the inner wall of the pipe 10.
  • the wheels 314, 324, 334, 344 include a mecanum wheel. Accordingly, by controlling the rotation direction of the wheels 314, 324, 334, and 344 provided in the driving units 310, 320, 330, and 340, the pipe non-destructive inspection device 101 may be moved forward or backward. It is also possible to rotate along the circumference of the pipe 10.
  • the driving units 315, 325, 335, and 345 generate a driving force to rotate the wheels 314, 324, 334, and 344.
  • the driving units 315, 325, 335, and 345 may adjust the rotation direction and the rotation speed of the wheels 314, 324, 334, and 344 according to the control signal of the travel control device 600.
  • the width adjusting parts 210 and 220 adjust the width between the wheels 314, 324, 334, and 344 of the driving parts 310, 320, 330, and 340 provided on opposite sides of the body part 111, respectively. Perform. 12 and 13, two traveling parts 310, 320, 330, and 340 are provided on the upper and lower sides of the body part 111, respectively, and the width adjusting parts 210 and 220 are the body parts. The width between the two wheels 314, 324, 334 and 344 on the front or rear of the 111 can be adjusted.
  • the width adjusting parts 210 and 220 may be provided at left and right sides of the body part 111, respectively. As shown in FIG. 12, the width adjusting part 210 provided on the left side of the body part 111 adjusts the width between the wheels 314, 324, 334, and 344 provided on both rear sides of the body part 111. Can be. Similarly, as shown in FIG. 13, the width adjusting part 220 provided on the right side of the body part 111 is disposed between the wheels 314, 324, 334, and 344 provided on both sides of the front surface of the body part 111. The width can be adjusted.
  • the width adjusting parts 210 and 220 include cylinders 211 and 221, pistons 212 and 222, and gear parts 213 and 223.
  • the cylinders 211 and 221 may generate pressure therein to push or pull the pistons 212 and 222. As the cylinders 211 and 221 generate a pushing force, the lengths of the pistons 212 and 222 exposed to the outside become longer, and the pistons 212, which are exposed to the outside as the cylinders 211 and 221 generate a pulling force. 222 can be shortened in length.
  • Gear parts 213 and 223 are connected to ends of the pistons 212 and 222.
  • the gear parts 213 and 223 may horizontally move in a direction connecting the front and rear surfaces of the body part 111 according to the movement of the pistons 212 and 222.
  • Horizontal gears are provided above and below the gear units 213 and 223.
  • the horizontal gear may be coupled to the width adjusting gears 311, 321, 331, and 341 of the driving parts 310, 320, 330, and 340. As the horizontal gear moves horizontally, the width adjusting gears 311, 321, 331, and 341 rotate with respect to the body part 111.
  • the second legs 312, 322, 332, and 342 connected to the width adjusting gears 311, 321, 331, and 341 also reference the body portion 111.
  • the rotation between the wheels 314, 324, 334, 344 based on the body portion 111 is adjusted accordingly.
  • the monitoring unit 410, 420, 430 serves to monitor the inside of the pipe 10. Specifically, the monitoring unit may monitor the front and rear of the driving direction. To this end, the body portion 111 may be provided with a monitoring unit for monitoring the front and rear 410, 420, respectively.
  • the monitoring unit 430 may be provided to monitor the front side for detailed monitoring of the obstacle, the recessed portion of the pipe inner wall or the point of interest existing in the front.
  • An image capturing apparatus such as a camera may serve as the monitoring units 410, 420, and 430.
  • the monitoring unit 410, 420, 430 may include a light source for irradiating light for securing the front view.
  • the position displacement sensors 510 and 520 detect a position of the pipe non-destructive inspection device 101 inside the pipe.
  • the position displacement sensors 510 and 520 may detect the position of the body 111 inside the pipe.
  • the center of the pipe 10 preferably travels along the central axis of the pipe 10. If the center of the pipe non-destructive inspection device 101 is out of the central axis of the pipe 10 is that unnecessary load may be applied to the running portion (310, 320, 330, 340) or the width adjusting portion (210, 220).
  • the center of the pipe non-destructive inspection device 101 may deviate from the central axis of the pipe (10).
  • the position displacement sensors 510 and 520 may determine the distance from the inner wall of the pipe. For example, the position displacement sensors 510 and 520 may irradiate a laser to the inner wall of the pipe, and determine the distance to the inner wall of the pipe using the reflected light. The two position displacement sensors 510 and 520 may irradiate lasers in opposite directions, with reference to the distance detected by each position displacement sensor 510 and 520. It is possible to determine whether or not it coincides with the central axis of (10).
  • Determining whether the center of the pipe non-destructive inspection device 101 and the central axis of the pipe 10 coincide using the detected distance may be performed by the travel control device 600.
  • the travel control device 600 is a travel unit 310, 320, 330, 340 so that the body 111 rotates along the circumference of the pipe 10 according to the monitoring results of the monitoring unit (410, 420, 430) Serves to control.
  • the wheels 314, 324, 334, and 344 of the present invention may be mecanum wheels, and the body part 111 may be moved forward, backward, and rotated according to the rotation direction thereof.
  • the travel control device 600 controls each of the traveling parts 310, 320, 330, and 340 to rotate the wheels 314, 324, 334, and 344 so that the body part 111 rotates along the circumference of the pipe 10. Direction can be determined.
  • the driving control apparatus 600 may perform overall control of the driving units 310, 320, 330, and 340, the width adjusting units 210 and 220, and the monitoring units 410, 420, and 430.
  • FIG. 14 is a view showing the width adjustment between the wheels according to an embodiment of the present invention.
  • the width between the wheels 314 and 324 provided on both sides of the body part 111 may be adjusted by the horizontal movement of the gear part 213.
  • the piston 212 and the gear 213 connected to the piston 212 are horizontally moved by the pressure of the cylinder 211.
  • Horizontal gears are provided above and below the gear unit 213, and the horizontal gears are gear-coupled with the width adjusting gears 311 and 321 of the driving units 310 and 320. Accordingly, as the horizontal gear moves horizontally, the width adjusting gears 311 and 321 rotate based on the connection portion with the body portion 111.
  • the width adjusting gears 311 and 321 are connected to the second legs 312 and 322 of the driving parts 310 and 320, and the second legs 312 and 322 are rotated as the width adjusting gears 311 and 321 rotate. ) Also rotates based on the body portion (111).
  • the second legs 312 and 322 are connected to the first legs 313 and 323, and wheels 314 and 324 are provided at the ends of the first legs 313 and 323.
  • the entire driving part 310, 320 rotates based on the connection point of the body part 111 by the rotation of the width adjusting gears 311 and 321.
  • the running parts 310 and 320 provided on the upper side and the lower side are obliquely deployed at the connection portion with the body portion 111 and are arranged symmetrically with respect to the body portion 111.
  • the distance between the body 111 and the wheels 314 and 324 is changed by the rotation of the driving parts 310 and 320, and thus the width between the two wheels 314 and 324 is adjusted.
  • the width adjusting parts 210 and 220 may be provided at both opposite sides of the body part 111 so that the wheels 314 and 324 of the driving parts 310 and 320 maintain a constant force pushing the inner wall of the pipe 10.
  • the width between the wheels 314 and 324 of the driving parts 310 and 320 may be adjusted.
  • the width adjusting parts 210 and 220 may have widths between the wheels 314 and 324 of the driving parts 310 and 320 provided on opposite sides of the body part 111 so as to correspond to the inner diameter of the pipe 10. Can be adjusted.
  • the width adjusting portions 210, 220 reduce the width between the two wheels 314, 324, and the wheels 314, 324 have a pipe ( When the force pushing the inner wall of 10) is weak, the width adjusting parts 210 and 220 may increase the width between both wheels 314 and 324.
  • the width adjusting units 210 and 220 may adjust the width between the two wheels 314 and 324 with reference to the results monitored by the monitoring units 410, 420 and 430. That is, the inner diameter of the pipe 10 is determined according to the result monitored by the monitoring unit 410, 420, 430, and the width adjusting units 210, 220 are both sides corresponding to the determined inner diameter of the pipe 10. The width between the wheels 314 and 324 is adjusted in advance. The determination of the inner diameter of the pipe 10 based on the monitoring results of the monitoring units 410, 420, and 430 may be performed by the travel control device 600.
  • the width between the two wheels 314 and 324 is adjusted by the width adjusting parts 210 and 220, the force pushing the inner wall of the pipe 10 by each wheel 314 and 324 can be maintained uniformly.
  • FIG. 14 illustrates that the widths of the rear wheels 314 and 324 are adjusted by the width adjusting part 210 provided on the left side of the body part 111, but is provided on the right side of the body part 111.
  • the widths of the front wheels 334 and 344 by the wide width adjusting unit 220 may be similarly adjusted.
  • 15 is a view showing the length adjustment of the wheel according to an embodiment of the present invention.
  • the distance between the body 111 and the wheel 314 may vary according to the overlapping degree of the first leg 313 and the second leg 312.
  • a wheel 314 is provided at the end of the first leg 313, and the second leg 312 is rotatably connected to the body portion 111.
  • some portions of the first leg 313 and the second leg 312 overlap each other, and the distance between the body 111 and the wheel 314 varies depending on the degree of overlap. That is, when the overlapping distance between the first leg 313 and the second leg 312 is long, the distance between the body 111 and the wheel 314 is shortened, and the first leg 313 and the second leg 312 are reduced. If the distance between the overlap is short, the distance between the body portion 111 and the wheel 314 is longer.
  • the degree of overlap between the first legs 313, 323, 333, and 343 and the second legs 312, 322, 332, and 342 may be actively or passively performed.
  • the user may directly adjust the length of the first legs 313, 323, 333, 343 relative to the second legs 312, 322, 332, 342.
  • the user may use the first legs 313, 323, 333, respectively, for the second legs 312, 322, 332, and 342. 343) can adjust the length.
  • a separate driving unit (not shown) for finely adjusting the posture of the pipe non-destructive inspection device 101 is provided so that the first legs 313, 323, 333, and 343 of the second legs 312, 322, 332, and 342 are provided. You can also adjust the length.
  • the first leg (313) for the second leg (312, 322, 332, 342) for each driving portion (310, 320, 330, 340) , 323, 333, and 343 may be adjusted.
  • the first leg 313, 323, 333, and 343 and the second leg 312, 322, 332, and 342 are applied by the pressure.
  • the overlap length between) can be long.
  • the overlap length between the first legs 313, 323, 333, and 343 and the second legs 312, 322, 332, and 342 may be returned to its original state.
  • elastic means (not shown) may be provided to maintain an overlapping length between the first legs 313, 323, 333, and 343 and the second legs 312, 322, 332, and 342.
  • the elastic means may be understood to play a role of transmitting to the body portion 111 by mitigating the impact or pressure applied by the obstacle.
  • FIG. 15 illustrates the length adjustment of the traveling part 310 provided on the rear side of the body part 111, but the remaining driving parts 320, 330, and 340 may perform a similar length adjusting operation.
  • the distance between the body 111 and the wheels 314, 324, 334, 344 provided in each of the plurality of driving parts 310, 320, 330, and 340 may be independently adjusted. Accordingly, the impact generated from each wheel 314, 324, 334, 344 can be buffered by each of the first leg (313, 323, 333, 343) and the second leg (312, 322, 332, 342). Will be.
  • 16 is a block diagram illustrating a driving control apparatus according to another exemplary embodiment of the present invention.
  • the driving control device 600 includes an input unit 610, a storage unit 620, a control unit 630, and an output unit 640.
  • the input unit 610 serves to receive the results monitored by the monitoring unit 410, 420, 430.
  • the pipe non-destructive inspection device 101 according to an embodiment of the present invention, as well as the monitoring unit 410, 420, 430 to detect the direction of gravity or the wheels (314, 324, 334, 344) the inner wall of the pipe 10
  • Various sensors may be provided to detect a force pushing the pressure.
  • the input unit 610 may serve to receive detection results of various sensors provided in the pipe NDT apparatus 101.
  • the pipe non-destructive inspection device 101 can be manually controlled by the user.
  • the input unit 610 may receive a user command.
  • the input unit 610 may receive input information such as sensing information or a command from the monitoring unit 410, 420, 430, a sensor, or a user in a wired or wireless communication manner.
  • the controller 630 performs overall control on the pipe non-destructive inspection device 101 with reference to the input information transmitted from the input unit 610.
  • the controller 630 uses the distance information transmitted from the position displacement sensors 510 and 520 so that the center of the body 111 matches the central axis of the pipe 10.
  • 330 and 340 may be controlled.
  • the wheels 314, 324, 334, and 344 provided in the driving parts 310, 320, 330, and 340 are mecanum wheels, the pipe non-destructive inspection device 101 is perpendicular to the central axis of the pipe 10. Can be moved to match its center to the central axis of the pipe 10.
  • the controller 630 may refer to the monitoring results of the monitoring units 410, 420, and 430 to move the driving units 310, 320, 330, and 340 so that the body 111 rotates along the circumference of the pipe 10. Can be controlled. According to the monitoring result of the monitoring unit 410, 420, 430, if there is an obstacle in the front of the moving direction or if there is a recessed portion of the inner wall of the pipe, the controller 630 may have the body 111 at the circumference of the pipe 10. To control the driving unit 310, 320, 330, 340 to rotate along.
  • the controller 630 may determine the rotation angle of the body 111 to rotate along the circumference of the pipe 10 in consideration of the size and position of the obstacle or the recessed portion.
  • the controller 630 may rotate the body 111 to allow the pipe non-destructive inspection device 101 to travel by avoiding obstacles or depressions. However, when the size of the obstacle or the recessed portion is small enough, the controller 630 may allow the body portion 111 to travel without rotation.
  • the controller 630 may adjust the width of the wheels 314, 324, 334, and 344 so that the width between the wheels 314, 324, 334, and 344 is changed with reference to the force pushing the inner wall of the pipe 10. 210 and 220 can be controlled.
  • the controller 630 may adjust the width control unit 210 to reduce the width between the wheels 314, 324, 334, and 344. 220 can be controlled.
  • the controller 630 adjusts the width to increase the width between the wheels 314, 324, 334 and 344. 210 and 220 can be controlled.
  • the controller 630 may control the rotation speed of the wheels 314, 324, 334, and 344 provided in the plurality of driving units 310, 320, 330, and 340 to correspond to the shape of the pipe 10. have. If the wheels 314, 324, 334, and 344 have the same rotation speed in the curved state of the pipe 10 in front of the driving, some wheels may slip. Accordingly, the controller 630 refers to the input information input from the monitoring unit 410, 420, 430 or other sensor so that the rotation speed of each wheel 314, 324, 334, 344 corresponds to the shape of the pipe 10. Can be controlled.
  • controller 630 may control the monitors 410, 420, and 430 and other sensors (not shown). For example, the controller 630 may control whether the monitors 410, 420, and 430 and the sensors operate.
  • the controller 630 generates a control command for controlling the driving units 310, 320, 330, 340, the width adjusting units 210, 220, the monitoring units 410, 420, 430, and other sensors (not shown).
  • the generated control command may be output by the output unit 640.
  • the control command output by the output unit 640 is transmitted to each module, the corresponding module performs a corresponding operation.
  • the storage 620 temporarily or permanently stores the input information input through the input unit 610 and the control command output through the output unit 640.
  • Information input through the input unit 610 may be used not only for control by the controller 630 but also for observation. For example, the information detected while driving the pipe 10 is transmitted to the user later, and the user can determine the internal state of the pipe 10 through the corresponding information. Alternatively, the information detected while driving the pipe 10 may be transmitted to the user in real time through the output unit 640.
  • the storage unit 620 may store a preset user command.
  • the controller 630 may control each module to automatically perform a corresponding operation with reference to a user command stored in the storage 620.
  • FIGS. 17 to 26 For convenience of description, reference numerals of detailed components of the pipe non-destructive inspection apparatus will be omitted in FIGS. 17 to 26. Components corresponding to the omitted reference numerals are the same as those shown in FIGS. 12, 13, and 16.
  • 17 is a view showing the pipe non-destructive inspection apparatus according to another embodiment of the present invention traveling inside the pipe.
  • the pipe non-destructive inspection device 101 may travel inside the pipe 10. While traveling inside the pipe 10, the pipe non-destructive inspection device 101 may collect state information inside the pipe using the monitoring units 410, 420, and 430 and sensors. In addition, the pipe non-destructive inspection device 101 may determine whether the welded portion 120 formed in the pipe 10 is defective by using a radiation source.
  • the width adjusting units 210 and 220 may adjust the width between both wheels so that each wheel can push the inner wall of the pipe with a uniform force. As each wheel travels while pushing the pipe inner wall with a uniform force, the pipe non-destructive inspection device 101 can travel in a more stable posture.
  • FIGS. 18 and 19 are views illustrating a pipe non-destructive inspection device according to another embodiment of the present invention traveling inside a pipe whose diameter is changed.
  • the pipe non-destructive inspection device 101 may travel the pipe 10 that gradually increases in diameter.
  • Pipe non-destructive inspection device 101 is provided with two width adjusting portions (210, 220).
  • One of the two width adjusters 210 and 220 adjusts the width of both front wheels, and the other adjusts the width of both rear wheels.
  • each of the two wheels 210 and 220 independently adjusts the width of the front wheels and the width of the rear wheels, even if the pipe non-destructive inspection device 101 runs on the pipe 10 whose diameter gradually changes, each wheel The force pushing the inner pipe inner wall may be formed uniformly.
  • the pipe non-destructive inspection device 101 can travel in a stable posture.
  • the corresponding wheel may not be able to push the inner wall of the pipe with sufficient force.
  • the length of the first leg relative to the second leg of the corresponding wheel may be adjusted to compensate for the force that the wheel pushes against the inner wall of the pipe.
  • the pipe NDT apparatus 101 may travel inside the pipe 10 having different diameter sections 10a, 10b, and 10c.
  • the pipe non-destructive inspection device in the pipe (10a, 10b, 10c) whose diameter is changed as the two width adjusting portions (210, 220) independently adjust the width of the front both wheels and the width of both rear wheels Even if 101 travels, the force that each wheel pushes the inner wall of the pipe can be formed uniformly.
  • the controller 630 may control the width adjusting units 210 and 220 with reference to the front state on the driving route.
  • the control unit 630 of the pipe non-destructive inspection device 101 traveling in the section 10a may recognize that the diameter of the section 10b in front of the pipe is changed with reference to the monitoring result by the monitoring units 410 and 430. Thus, as soon as the pipe non-destructive inspection device 101 enters the 10b section, the controller 630 may control the width adjusting units 210 and 220 to increase the width of both wheels. In this case, the controller 630 may control the width adjusting units 210 and 220 to increase the width of the wheels on both sides of the rear side after the width of the wheels on both sides of the front side increases.
  • control unit 630 of the pipe non-destructive inspection device 101 traveling in section 10b may recognize that the diameter of the section 10c in front of the pipe is changed with reference to the result monitored by the monitoring units 410 and 430. .
  • the control unit 630 may control the width adjusting units 210 and 220 to reduce the width of both wheels.
  • the controller 630 may control the width adjusting units 210 and 220 such that the wheel widths on both sides of the rear side are reduced after the wheel widths on both sides of the front side are reduced.
  • 20 is a view illustrating a pipe non-destructive inspection apparatus according to another embodiment of the present invention traveling inside a pipe including a curvature section.
  • the pipe non-destructive inspection device 101 may travel the curvature section of the pipe 10.
  • the number of revolutions of the wheels in contact with the inner wall of the pipe inside the curvature and the number of revolutions of the wheels in contact with the inner wall of the pipe outside the curvature is different.
  • the controller 630 may control the rotation speed of each wheel to enable stable running even in the curvature section. For example, the controller 630 may reduce the rotational speed of the wheels in contact with the inner wall of the pipe in curvature and increase the rotational speed of the wheels in contact with the inner wall of the pipe in the outer curvature. 330 and 340 may be controlled.
  • the pipe non-destructive inspection device 101 can travel in a more stable posture.
  • 21 is a view showing that the pipe non-destructive inspection device according to another embodiment of the present invention rotates along the circumference of the pipe.
  • the pipe non-destructive inspection device 101 may rotate along a circumference inside the pipe 10.
  • the wheel according to the embodiment of the present invention may be a mecanum wheel
  • the control unit 630 is a pipe non-destructive inspection device 101 by controlling the rotation direction of the wheels provided in each of the driving unit (310, 320, 330, 340) It can be made to rotate along the circumference of the pipe 10.
  • the controller 630 may control a rotation direction, a rotation angle, a rotation speed, and the like of the pipe NDT apparatus 101.
  • 22 to 24 is a view showing that the pipe non-destructive inspection apparatus according to another embodiment of the present invention after running inside the pipe.
  • the pipe non-destructive inspection device 101 may travel the curvature section of the pipe 10.
  • driving as shown in FIG. 20 is possible.
  • the attitude of the pipe non-destructive inspection device 101 may become unstable when traveling with the one shown in FIG. 20 while the rotation speed of each wheel is not possible.
  • the pipe non-destructive inspection device 101 can travel the curvature section after rotating along the outer periphery of the pipe (10).
  • the pipe non-destructive inspection device 101 may continue driving after rotating along the outer circumference of the pipe inner wall when there is a recessed portion of the pipe inner wall in front.
  • the controller 630 controls the pipes 310, 320, 330, 340 when it is determined that there is a depression in front of the pipe
  • the non-destructive inspection device 101 can be rotated along the outer periphery of the inner wall of the pipe.
  • the pipe non-destructive inspection device 101 may continue driving after rotating along the outer circumference of the inner wall of the pipe.
  • the controller 630 controls the driving units 310, 320, 330, and 340 when it is determined that an obstacle OB exists in front of the monitor based on the monitoring results by the monitoring units 410 and 430.
  • the pipe non-destructive inspection device 101 can be rotated along the outer periphery of the inner wall of the pipe.
  • FIG. 25 is a view illustrating a pipe non-destructive inspection device according to another embodiment of the present invention to determine a center position in a pipe
  • FIG. 26 is a view of a pipe non-destructive inspection device according to an embodiment of the present invention. It is a figure which shows correction of a position.
  • the position displacement sensors 510 and 520 may determine the position of the pipe non-destructive inspection device in the pipe.
  • Two position displacement sensors 510 and 520 may be provided in the pipe NDT apparatus 101. Each position displacement sensor 510 and 520 irradiates a laser to the inner wall of the pipe, and uses the reflected light to You can determine the distance of.
  • the distance information detected by the position displacement sensors 510 and 520 is transmitted to the travel control device, and the travel control device refers to the position of the pipe non-destructive inspection device 101 with respect to the central axis PC of the pipe with reference to the transmitted information. Can be determined.
  • the traveling control device may control the traveling parts 310, 320, 330, and 340 so that the center RC of the pipe NDT device 101 matches the central axis PC of the pipe.
  • the wheels of the driving units 310, 320, 330, and 340 are mecanum wheels, the pipe non-destructive inspection device may move in a direction perpendicular to the central axis PC of the pipe. Accordingly, the center RC of the pipe NDT apparatus 101 and the center axis PC of the pipe may coincide with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Manipulator (AREA)

Abstract

파이프 비파괴 검사 장치를 제공한다. 파이프 비파괴 검사 장치는 몸체부와, 상기 몸체부의 외측으로 전개되고, 전개된 말단에 구비된 바퀴를 파이프의 내벽에 밀착시켜 추진력을 발생시키는 주행부와, 상기 파이프의 내부를 감시하는 감시부와, 상기 감시 결과에 따라 상기 몸체부가 상기 파이프의 원주를 따라 회전하도록 상기 주행부를 제어하는 주행 제어 장치와, 상기 몸체부에 설치되고, 상기 파이프의 비파괴 검사를 위한 방사선 소스를 말단 측에 갖는 피딩 튜브를 가이드하는 가이드 튜브, 및 상기 가이드 튜브를 상기 몸체부에 대해 제1 방향으로 이동시키는 제1 튜브 구동부를 포함한다.

Description

파이프 비파괴 검사 장치
본 발명은 파이프 비파괴 검사 장치에 관한 것으로, 보다 상세하게는 파이프 내부를 주행하면서 방사선 소스를 파이프의 외주연에 설치된 방사선 필름으로 발생하는 파이프 비파괴 검사 장치에 관한 것이다.
파이프 용접 후 용접 품질을 확인하기 위해 비파괴 검사가 수행된다. 비파괴 검사의 일 예로, 파이프의 용접면 둘레를 따라 방사선 필름을 배치하고, 파이프 내부에 방사선 소스를 삽입하여 방사선 필름에 방사선이 검출되는지 여부에 따라 용접 상태를 확인한다. 방사선 소스의 거리의 제곱에 반비례하여 방사선 검출량이 감소되므로, 용접 결함 부분을 정확하게 판단하기 위해서는 방사선 소스를 파이프의 중심축 상에 위치시킬 필요가 있다. 파이프가 곡관인 경우, 방사선 소스를 파이프의 중심축 상에 정확하게 위치시키기 어려운 문제가 있으며, 이로 인해 비파괴 검사의 측정 정확도가 낮아질 수 있다.
본 발명이 해결하고자 하는 과제는 곡관에서 방사선 소스를 파이프의 중심축 상에 위치시켜 비파괴 검사의 측정 정확도를 높일 수 있는 파이프 비파괴 검사 장치를 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위하여, 본 발명의 파이프 비파괴 검사 장치의 일 면(aspect)은 몸체부와, 상기 몸체부의 외측으로 전개되고, 전개된 말단에 구비된 바퀴를 파이프의 내벽에 밀착시켜 추진력을 발생시키는 주행부와, 상기 파이프의 내부를 감시하는 감시부와, 상기 감시 결과에 따라 상기 몸체부가 상기 파이프의 원주를 따라 회전하도록 상기 주행부를 제어하는 주행 제어 장치와, 상기 몸체부에 설치되고, 상기 파이프의 비파괴 검사를 위한 방사선 소스를 말단 측에 갖는 피딩 튜브를 가이드하는 가이드 튜브, 및 상기 가이드 튜브를 상기 몸체부에 대해 제1 방향으로 이동시키는 제1 튜브 구동부를 포함한다.
여기서, 상기 몸체부의 반대쪽 양측 각각에 주행부가 구비되고, 상기 몸체부의 일측에는 주행 방향에 평행한 2개 이상의 주행부가 구비된다.
또한, 상기 주행 제어 장치는 상기 파이프의 형태에 대응되도록 상기 복수의 주행부 각각에 구비된 바퀴의 회전 속도를 제어한다.
또한, 상기 복수의 주행부 각각은 구비된 바퀴를 지지하는 제 1 레그, 및 상기 제 1 레그와 일부가 중첩되는 제 2 레그를 포함하되, 상기 제 1 레그 및 상기 제 2 레그의 중첩 간격이 조절됨에 따라 상기 몸체부에 대한 상기 구비된 바퀴의 거리가 조절된다.
또한, 상기 몸체부와 상기 복수의 주행부 각각에 구비된 바퀴간의 거리는 독립적으로 조절된다.
또한, 상기 주행 제어 장치는 상기 감시 결과에 따라 이동 방향의 전방에 장애물이 존재하거나, 파이프 내벽의 함몰 부분이 존재하는 경우 상기 몸체부가 상기 파이프의 원주를 따라 회전하도록 상기 주행부를 제어한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 몸체부의 반대쪽 양측 각각에 주행부가 구비되고, 상기 몸체부의 반대쪽 양측 각각에 구비된 주행부의 바퀴간의 폭을 조절하는 폭 조절부를 더 포함한다.
또한, 상기 폭 조절부는 상기 주행부의 바퀴가 상기 파이프의 내벽을 미는 힘이 일정하게 유지되도록 상기 몸체부의 반대쪽 양측 각각에 구비된 주행부의 바퀴간의 폭을 조절한다.
또한, 상기 파이프의 내부에서의 상기 파이프 비파괴 검사 장치의 위치를 판단하는 위치 변위 센서를 더 포함하고, 상기 주행 제어 장치는 상기 판단된 상기 파이프의 내부에서의 상기 파이프 비파괴 검사 장치의 위치를 참조하여 상기 몸체부의 중심이 상기 파이프의 중심축에 일치되도록 상기 주행부를 제어한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 가이드 튜브의 말단 측에 노출된 상기 방사선 소스가 상기 파이프의 중심축 상에 위치되도록 하는 상기 가이드 튜브의 회동 각도를 산출하고, 산출한 회동 각도에 따라 상기 제1 튜브 구동부를 제어하는 검사 제어 장치를 더 포함한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 몸체부의 상기 파이프 내에서의 위치를 인식하기 위한 위치 인식부를 더 포함하고, 상기 검사 제어 장치는 상기 몸체부의 위치 및 상기 파이프의 설계 정보에 기초하여 상기 가이드 튜브의 회동 각도를 산출한다.
또한, 상기 파이프 비파괴 검사 장치의 적어도 일부가 상기 파이프의 곡관 내에 위치하는 경우, 상기 검사 제어 장치는 상기 몸체부의 위치, 상기 파이프의 내경, 및 상기 곡관의 곡률에 기초하여 상기 가이드 튜브의 회동 각도를 산출한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 파이프의 용접부 측의 외주연을 따라 설치되는 방사선 필름을 더 포함하고, 상기 검사 제어 장치는 상기 방사선 소스가 상기 방사선 필름의 중심부에 위치하도록 상기 제1 튜브 구동부를 제어한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 피딩 튜브를 상기 가이드 튜브 내에 삽입시켜 상기 피딩 튜브의 방사선 소스를 상기 가이드 튜브의 말단 측으로 이송하는 피딩 장치를 더 포함한다.
또한, 상기 피딩 장치는, 상기 피딩 튜브의 외주면에 형성된 기어부와 결합된 피딩기어부재, 및 상기 피딩기어부재를 구동하는 구동부재를 포함한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 가이드 튜브를 상기 몸체부에 대해 상기 제1 방향과 수직인 제2 방향으로 이동시키는 제2 튜브 구동부를 더 포함한다.
또한, 상기 파이프 비파괴 검사 장치는 상기 몸체부의 롤각을 측정하는 롤각 측정부, 및 상기 몸체부의 위치, 상기 몸체부의 롤각 및 상기 파이프의 설계 정보에 기초하여, 상기 방사선 소스가 상기 파이프의 중심축 상에 위치되도록 하는 상기 가이드 튜브의 상기 제1 방향으로의 제1 회동 각도 및 상기 제2 방향으로의 제2 회동 각도를 산출하고, 상기 제1 회동 각도에 따라 상기 제1 튜브 구동부를 제어하고, 상기 제2 회동 각도에 따라 상기 제2 튜브 구동부를 제어하는 검사 제어 장치를 더 포함한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
도 1은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 측면도이다.
도 2는 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 평면도이다.
도 3은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 정면도이다.
도 4는 도 1의 'B'부를 확대하여 보여주는 사시도이다.
도 5는 도 1의 'C'부를 확대하여 보여주는 사시도이다.
도 6은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치의 동작 및 작용 효과를 설명하기 위한 도면이다.
도 7은 본 발명의 다른 실시 예에 따른 파이프 비파괴 검사 장치를 설명하기 위한 도면으로서, 도 1의 'C'부에 상응하는 부분을 보여주는 사시도이다.
도 8 및 도 9는 도 7의 실시 예에 따른 파이프 비파괴 검사 장치의 동작 및 작용 효과를 설명하기 위한 평면도이다.
도 10은 도 9의 D-D'선 및 E-E'선에 따른 단면도이다.
도 11은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 사시도이다.
도 12는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 좌측 측면도이다.
도 13은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 우측 측면도이다.
도 14는 본 발명의 실시예에 따른 바퀴간 폭 조절을 나타낸 도면이다.
도 15는 본 발명의 실시예에 따른 바퀴의 길이 조절을 나타낸 도면이다.
도 16은 본 발명의 다른 실시예에 따른 제어 장치를 나타낸 블록도이다.
도 17은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 18 및 도 19는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 지름이 변경되는 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 20은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 곡률 구간이 포함된 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 21은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 원주를 따라 회전하는 것을 나타낸 도면이다.
도 22 내지 도 24는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 내부에서 회전한 이후에 주행하는 것을 나타낸 도면이다.
도 25는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프 내부에서의 중심 위치를 판단하는 것을 나타낸 도면이다.
도 26은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프 내부에서 중심 위치를 보정하는 것을 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
도 1은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 측면도이고, 도 2는 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 평면도이고, 도 3은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치(100)의 정면도이다.
도 1 내지 도 3을 참조하면, 파이프 비파괴 검사 장치(100)는 파이프(10)의 내부를 주행하면서, 파이프(10)의 용접부(12) 외주연을 따라 설치된 방사선 필름(20)을 향해 방사선 소스를 발생시킨다. 방사선 필름(20)에 방사선이 검출되지 않으면, 파이프(10) 용접부(12)에 결함이 없는 것으로 판정된다. 방사선 필름(20)을 통해 방사선이 검출되면, 파이프(10) 용접부(12)에 결함이 있는 것으로 판정되며, 작업자는 방사선이 검출된 방사선 필름(20)의 위치에 기초하여 용접 결함 위치를 파악하여 해당 용접 결함 위치에 대해 추가 용접을 수행한다.
파이프 비파괴 검사 장치(100)는 몸체부(110), 휠부(120), 구동부(130), 가이드 튜브(140), 제1 튜브 구동부(150), 위치 인식부(160), 피딩 장치(170) 및 검사 제어 장치(도시생략)를 포함할 수 있다.
몸체부(110)는 파이프(10)의 중심축 상에 위치하여 파이프(10) 내부를 주행한다. 몸체부(110)에는 휠부(120), 구동부(130), 가이드 튜브(140), 제1 튜브 구동부(150), 위치 인식부(160) 및 피딩 장치(170)가 설치된다.
휠부(120)는 몸체부(110)를 파이프(10)의 내면에 지지한다. 일 실시 예로, 휠부(120)는 주행휠(121)과, 조절장치(122)를 포함할 수 있다. 도시된 예에서, 주행휠(121)은 몸체부(110)의 상부와 하부에 각각 2개씩 총 4개가 설치되어 있으나, 주행휠(121)의 설치 개수와 위치는 다양하게 변경될 수 있다.
조절장치(122)는 각 주행휠(121)과 몸체부(110)의 간격을 조절한다. 조절장치(122)는 파이프(10)의 내경에 따라 주행휠(121)과 몸체부(110)의 간격을 조절할 수 있다. 조절장치(122)는 유압실린더나 모터 등에 의해 각 주행휠(121)의 위치를 조절할 수 있다.
조절장치(122)는 각 주행휠(121)이 파이프(10)의 중심축으로부터 동일한 거리 상에 배치되도록, 주행휠(121)의 위치를 파이프(10)의 반경 방향으로 조절할 수 있다. 이에 따라 몸체부(110)는 휠부(120)에 의해 파이프(10)의 중심축 상에 위치된다.
휠부(120)는 주행휠(121)을 파이프(10)의 내면에 가압하는 스프링과 같은 완충 장치를 구비할 수도 있다. 구동부(130)는 휠부(120)를 구동하여 몸체부(110)를 파이프(10)를 따라 주행시킨다. 구동부(130)는 주행휠(121)을 회전 구동하는 구동 모터로 제공될 수 있다.
피딩 튜브(T)는 말단 측에 파이프(10)의 비파괴 검사를 위한 방사선 소스(S)를 구비한다. 방사선 소스(S)는 X선, γ선, β선 등의 방사선을 발생할 수 있다.
가이드 튜브(140)는 몸체부(110)의 전방 측에 설치되어 피딩 튜브(T)를 가이드한다. 방사선 소스(S)는 피딩 장치(170)에 의해 가이드 튜브(140)의 말단 측으로 공급된다.
도 4는 도 1의 'B'부를 확대하여 보여주는 사시도이다. 도 4를 참조하면, 피딩 장치(170)는 피딩 튜브(T)를 가이드 튜브(140) 내에 삽입시켜 피딩 튜브(T)의 방사선 소스(S)를 가이드 튜브(140)의 말단 측으로 이송할 수 있다. 피딩 장치(170)는 몸체부(110)의 후방 측에 구비된 지지판(171), 지지판(171)에 설치된 모터하우징(172), 모터하우징(172) 내에 설치된 구동모터(173)(구동부재), 구동모터(173)의 구동축에 연결되어 회전하는 피딩기어부재(174), 피딩 튜브(T)가 삽입되도록 모터하우징(172)의 일측에 형성된 결합부(176)를 포함한다.
모터하우징(172) 내에는 피딩 튜브(T)가 삽입되는 삽입관(175)이 형성된다.
삽입관(175)에는 개방부가 형성되고, 개방부를 통해 피딩 튜브(T)의 외면에 형성된 기어부에 피딩기어부재(174)가 기어결합된다. 구동모터(173)의 구동시, 피딩 튜브(T)는 몸체부(110)의 가이드관을 통해 몸체부(110)의 전방 측으로 이동되고, 가이드 튜브(140)에 삽입된다. 이에 따라 피딩 튜브(T)의 말단 측에 구비된 방사선 소스(S)가 가이드 튜브(140)의 선단측을 통해 노출된다.
다시 도 1 내지 도 3을 참조하면, 위치 인식부(160)는 몸체부(110)의 파이프(10) 내에서의 위치를 인식하기 위해 제공된다. 도시된 예에서 위치 인식부(160)는 가이드 튜브(140)의 말단부 하면에 설치되어 있으나, 위치 인식부(160)의 설치 위치는 이에 제한되지 않는다. 일 실시 예로, 위치 인식부(160)는 카메라와, 영상 처리부로 제공될 수 있다. 예컨대, 영상 처리부는 카메라에 의해 촬영된 파이프(10) 내부의 영상에서 용접면을 인식하여, 파이프(10) 내에서의 몸체부(110)의 위치를 인식할 수 있다. 다른 실시 예로, 위치 인식부(160)는 휠부(120)에 제공된 엔코더 등의 수단에 의하여 몸체부(110)의 이동 거리를 측정하거나, 그 밖의 다른 방식으로 몸체부(110)의 위치를 인식할 수도 있다.
제1 튜브 구동부(150)는 가이드 튜브(140)를 몸체부(110)에 대해 제1 방향으로 회동시킨다. 일 실시 예로, 제1 방향은 몸체부(110)의 횡방향일 수 있다. 도 5는 도 1의 'C'부를 확대하여 보여주는 사시도이다. 도 1 내지 도 3, 도 5를 참조하면, 제1 튜브 구동부(150)는 몸체부(110)의 전면 측에 마련된 지지판(151), 지지판(151)에 고정된 구동하우징(152), 구동하우징(152)에 설치된 구동모터(153), 구동모터(153)의 구동축에 결합된 구동풀리(154), 벨트(155)를 통해 구동풀리(154)에 결합된 종동풀리(156), 종동풀리(156)에 결합되어 회동하고, 가이드 튜브(140)의 일측에 결합된 회전암(157), 회전암(157)과 가이드 튜브(140)를 연결하는 연결부재(158), 연결부재(158)를 가이드 튜브(140)에 고정시키는 고정부재(159)를 포함한다.
다시 도 1 내지 도 3을 참조하면, 검사 제어 장치(미도시)는 가이드 튜브(140)의 말단 측에 노출된 방사선 소스(S)가 파이프(10)의 중심축 상에 위치되도록 하는 가이드 튜브(140)의 회동 각도를 산출하고, 산출한 회동 각도에 따라 제1 튜브 구동부(150)를 제어한다. 이에 따라 구동모터(153)가 구동하고, 구동풀리(154)에 의해 종동풀리(156)가 회전하여 회전암(157)이 회전함으로써, 가이드 튜브(140)가 종동풀리(156)의 중심축을 기준으로 좌우 방향으로 회동하게 된다.
검사 제어 장치는 몸체부(110)의 위치 및 파이프(10)의 설계 정보에 기초하여 가이드 튜브(140)의 회동 각도를 산출할 수 있다. 도 6은 본 발명의 일 실시 예에 따른 파이프 비파괴 검사 장치의 동작 및 작용 효과를 설명하기 위한 도면이다. 도 6을 참조하면, 몸체부(110)는 파이프(10)의 중심축 상을 따라 이동하지만, 비파괴 검사의 특성상 방사선 소스(S)는 몸체부(110)의 무게 중심에 위치할 수 없고 몸체부(110)로부터 외부로 노출되어야 하기에, 비파괴 검사 장치(100)의 적어도 일부가 곡관에 위치한 경우, 제1 튜브 구동부(150)에 의해 가이드 튜브(140)가 회동하지 않은 상태에서, 방사선 소스(S)는 도 6의 점선으로 표시된 바와 같이, 파이프(10)의 중심축에서 이탈하게 된다. 이러한 경우, 방사선 소스(S)로부터의 거리의 제곱에 반비례하여 방사선 검출량이 감소되므로, 방사선 소스(S)에 가까운 방사선 필름으로 보다 강한 방사선이 검출되고, 방사선 소스(S)로부터 먼 방사선 필름으로 약한 방사선이 검출되어, 용접 결함 부분을 정확하게 측정하지 못할 수 있다.
본 실시 예에 의하면, 몸체부(110)의 위치 및 파이프(10)의 설계 정보(예컨대, 파이프의 내경, 곡관의 곡률 등)에 따라 제1 튜브 구동부(150)를 구동하여 도 6의 실선과 화살표로서 나타낸 바와 같이 가이드 튜브(140)를 회동시키며, 이에 따라 방사선 소스(S)가 파이프(10)의 중심축(방사선 필름의 중심부)에 위치되도록 하여, 비파괴 검사의 측정 정확도를 향상시킬 수 있다. 가이드 튜브(140)와 같이 피딩 튜브(T)가 굴곡될 수 있도록 피딩 튜브(T)는 유연성 재질로 이루어질 수 있다.
도시된 예에서, 제1 튜브 구동부(150)는 가이드 튜브(140)를 회동시키도록 이루어져 있으나, 제1 튜브 구동부(150)는 가이드 튜브(140)를 제1 방향(몸체부의 횡방향)으로 직선적으로 구동하는 기구 장치로 제공될 수도 있으며, 방사선 소스(S)가 파이프(10)의 중심축 상에 위치될 수 있도록 가이드 튜브(140)를 이동시키는 것이라면 제한되지 않고 사용될 수 있다.
도 7은 본 발명의 다른 실시 예에 따른 파이프 비파괴 검사 장치를 설명하기 위한 도면으로서, 도 1의 'C'부에 상응하는 부분을 보여주는 사시도이다. 도 7의 실시 예를 설명함에 있어서, 앞서 설명한 실시 예와 동일하거나 상응하는 구성요소에 대하여는 중복되는 설명을 생략할 수 있다. 파이프 비파괴 검사 장치(100)는 롤각 측정부(미도시)와, 제2 튜브 구동부(180)를 더 구비할 수 있다.
롤각 측정부는 몸체부(110)에 설치되어 몸체부(110)의 롤각을 측정한다. 롤각은 몸체부(110)가 파이프(10)의 중심축을 중심으로 회전한 각도일 수 있다. 일 실시 예로, 롤각 측정부는 각속도 센서, 지자기 센서, 또는 관성 측정 유닛(IMU; Inertial Measuring Unit) 등의 수단으로 제공될 수 있다.
제2 튜브 구동부(180)는 가이드 튜브(140)를 몸체부(110)에 대해 제1 방향(몸체부의 횡방향)과 수직인 제2 방향(몸체부의 종방향)으로 회동시킬 수 있다. 일 실시 예로, 제2 튜브 구동부(180)는 지지판(151)에 설치되어 구동하우징(152)을 몸체부(110)의 종방향으로 회동시키는 구동모터로 제공될 수 있으나, 가이드 튜브(140)를 몸체부(110)의 종방향으로 이동시킬 수 있는 것이라면 제2 튜브 구동부(180)의 기구적인 구조는 특별히 제한되지 않는다. 제2 튜브 구동부(180)의 구동모터의 구동에 의해, 가이드 튜브(140)는 몸체부의 종방향으로 회동한다.
검사 제어 장치는 몸체부(110)의 위치, 몸체부(110)의 롤각 및 파이프(10)의 설계 정보에 기초하여, 방사선 소스(S)가 파이프(10)의 중심축 상에 위치되도록 하는 가이드 튜브(140)의 제1 방향으로의 제1 회동 각도 및 제2 방향으로의 제2 회동 각도를 산출할 수 있다. 검사 제어 장치는 제1 회동 각도에 따라 제1 튜브 구동부(150)를 제어하고, 제2 회동 각도에 따라 제2 튜브 구동부(180)를 제어할 수 있다.
도 8 및 도 9는 도 7의 실시 예에 따른 파이프 비파괴 검사 장치의 동작 및 작용 효과를 설명하기 위한 평면도이고, 도 10은 도 9의 D-D'선 및 E-E'선에 따른 단면도이다. 먼저 도 8을 참조하면, 몸체부(110)는 도 2에 도시된 경우에 비해 90°만큼 기울어진 상태로 파이프(10)를 주행하고 있다. 도 8의 실시 예에서, 검사 제어 장치는 제1 튜브 구동부(150)가 아닌 제2 튜브 구동부(180)를 구동하여, 가이드 튜브(140)를 몸체부(110)의 종방향으로 회동시키며, 이에 따라 방사선 소스(S)가 방사선 필름(30)의 중심부에 위치하도록 하여, 비파괴 검사의 측정 정확도를 향상시킨다.
도 9 및 도 10을 참조하면, 몸체부(110)는 도 2에 도시된 경우에 비해 90°보다 작은 각도로 기울어진 상태로 파이프(10)를 주행하고 있다. 도 10에서 도면부호 10a는 도 9의 D-D'선에 따른 파이프의 단면을 나타내고, 도면부호 10b는 도 9의 E-E'선에 따른 파이프의 단면을 나타낸다. 가이드 튜브(140)가 회동되지 않은 상태에서, 몸체부(110)의 중심은 파이프(10)의 중심점(C1) 상에 위치하지만, 방사선 소스(S)는 방사선 필름(40)의 중심점(C2)으로부터 거리 L 만큼 이격되어 있다.
검사 제어 장치는 방사선 소스(S)가 방사선 필름(40)의 중심점(C2)에 위치하도록, 제1 튜브 구동부(150)를 구동하여 가이드 튜브(140)를 제1 방향으로 제1 회동 각도만큼 회동시켜 방사선 소스(S)를 몸체부(110)의 횡방향으로 L1만큼 이동시키고, 제2 튜브 구동부(180)를 제2 방향으로 구동하여 가이드 튜브(140)를 제2 회동 각도만큼 회동시켜 방사선 소스(S)를 몸체부(110)의 종방향으로 L2만큼 이동시킨다. 이에 따라 방사선 소스(S)가 방사선 필름(40)의 중심부에 위치되므로, 비파괴 검사의 측정 정확도가 향상된다.
도시된 예에서, 제2 튜브 구동부(180)는 가이드 튜브(140)를 회동시키도록 이루어져 있으나, 제2 튜브 구동부(180)는 가이드 튜브(140)를 제2 방향(몸체부의 종방향)으로 직선적으로 구동하는 기구 장치로 제공될 수도 있으며, 방사선 소스(S)가 파이프(10)의 중심축 상에 위치될 수 있도록 가이드 튜브(140)를 이동시키는 것이라면 특별히 제한되지 않고 사용될 수 있다.
몸체부(110)가 기울어지지 않은 상태로 파이프(10) 내부를 주행할 수 있는 경우, 제2 튜브 구동부(180)는 생략될 수도 있다. 예컨대, 몸체부(110)의 휠부에 전방향 휠(옴니휠 또는 메카넘휠)이 구비되어 있어 몸체부(110)의 롤각을 조절할 수 있는 경우, 몸체부(110)의 수평 상태를 제어할 수 있으며, 이러한 경우 제1 튜브 구동부(150) 만으로도 가이드 튜브(140)의 말단 측에 노출된 방사선 소스(S)를 파이프(10)의 중심축 상에 위치시킬 수 있다.
이하, 전방향 휠 특히, 메카넘휠이 구비된 파이프 비파괴 검사 장치를 자세히 설명하기로 한다.
도 11은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 사시도이고, 도 12는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 좌측 측면도이며, 도 13은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치의 우측 측면도이다.
도 11 내지 도 13을 참조하면, 파이프 비파괴 검사 장치(101)는 몸체부(111), 주행부(310, 320, 330, 340), 폭 조절부(210, 220), 감시부(410, 420, 430), 위치 변위 센서(510, 520) 및 주행 제어 장치(600)를 포함하여 구성된다.
도시되어 있지는 않으나, 파이프 비파괴 검사 장치(101)는 전술한 가이드 튜브(140), 제1 튜브 구동부(150), 위치 인식부(160), 피딩 장치(170), 제2 튜브 구동부(180) 및 검사 제어 장치를 구비할 수 있다. 즉, 파이프 비파괴 검사 장치(101)는 방사선 소스를 이용하여 파이프(10)에 형성된 용접부(120)의 결함 여부를 판정할 수 있는 것이다. 또한, 파이프 비파괴 검사 장치(101)는 전술한 롤각 측정부를 구비하여 몸체부(111)의 롤각을 측정할 수도 있다. 한편, 가이드 튜브(140), 제1 튜브 구동부(150), 위치 인식부(160), 피딩 장치(170), 검사 제어 장치 및 롤각 측정부에 대한 설명은 전술하였으므로 자세한 설명은 생략하기로 한다.
몸체부(111)는 주행부(310, 320, 330, 340), 폭 조절부(210, 220) 및 감시부(410, 420, 430)를 지지하는 역할을 수행한다. 몸체부(111)는 하나 이상의 프레임이 서로 연결되어 구성될 수 있다.
주행부(310, 320, 330, 340)는 몸체부(111)의 외측으로 전개되고, 전개된 말단에 구비된 바퀴를 파이프(10)의 내벽에 밀착시켜 추진력을 발생시키는 역할을 수행한다.
본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)는 파이프(10)의 내부를 주행하는 장치이다. 따라서, 파이프(10)의 내부에서 파이프 비파괴 검사 장치(101)가 자세를 유지할 수 있도록 하기 위하여 몸체부(111)의 반대쪽 양측 각각에 주행부(310, 320, 330, 340)가 구비되는 것이 바람직하다. 몸체부(111)의 양측으로 주행부(310, 320, 330, 340)가 전개되고 각 주행부(310, 320, 330, 340)의 말단에 구비된 바퀴가 파이프(10)의 내벽에 밀착할 수 있다.
또한, 주행부(310, 320, 330, 340)가 구비된 몸체부(111)의 일측에는 주행 방향 즉, 파이프(10)의 장축에 평행한 2개 이상의 주행부(310, 320, 330, 340)가 구비될 수 있다.
도 12 및 도 13은 몸체부(111)의 상측 및 하측에 2개의 주행부(310, 320, 330, 340)가 각각 구비된 것을 도시하고 있다. 이하, 몸체부(111)의 양측은 몸체부(111)의 상측 및 하측을 의미하는 것으로 한다. 또한, 도 12의 좌측 및 도 13의 우측이 몸체부(111)의 전면이고, 도 12의 우측 및 도 13의 좌측이 몸체부(111)의 후면을 나타낸다.
4개의 주행부(310, 320, 330, 340) 말단에 구비된 4개의 바퀴가 파이프(10)의 내벽에 밀착함에 따라, 파이프 비파괴 검사 장치(101)는 파이프(10)의 내부에서 자세를 유지할 수 있게 된다.
복수의 주행부(310, 320, 330, 340) 각각은 폭 조절 기어(311, 321, 331, 341), 제 1 레그(313, 323, 333, 343), 제 2 레그(312, 322, 332, 342), 바퀴(314, 324, 334, 344) 및 구동부(315, 325, 335, 345)를 포함할 수 있다.
폭 조절 기어(311, 321, 331, 341)는 몸체부(111)에 결합되고, 결합 부분을 기준으로 회전할 수 있다. 폭 조절 기어(311, 321, 331, 341)에는 제 2 레그(312, 322, 332, 342)가 연결될 수 있다. 또한, 폭 조절 기어(311, 321, 331, 341)는 폭 조절부(210, 220)에 구비된 수평 기어와 기어 결합하여, 제 2 레그(312, 322, 332, 342)를 회전시키는 역할을 수행한다.
몸체부(111)의 양측에 구비된 주행부(310, 320, 330, 340)의 제 2 레그(312, 322, 332, 342)가 회전함에 따라 양측 바퀴(314, 324, 334, 344)간의 폭이 조절될 수 있다. 양측 바퀴(314, 324, 334, 344)간의 폭 조절에 대한 자세한 설명은 도 14를 통하여 후술하기로 한다.
제 1 레그(313, 323, 333, 343)는 바퀴(314, 324, 334, 344)를 지지하는 역할을 수행한다. 제 1 레그(313, 323, 333, 343)와 제 2 레그(312, 322, 332, 342)는 각각의 일부가 중첩되는데, 제 1 레그(313, 323, 333, 343) 및 제 2 레그(312, 322, 332, 342)의 중첩 간격이 조절됨에 따라 몸체부(111)에 대한 바퀴(314, 324, 334, 344)의 거리가 조절될 수 있다. 몸체부(111)에 대한 바퀴(314, 324, 334, 344)의 거리 조절에 대한 자세한 설명은 도 15를 통하여 후술하기로 한다.
바퀴(314, 324, 334, 344)는 파이프(10)의 내벽에 밀착하여 추진력을 발생시키는 역할을 수행한다. 바퀴(314, 324, 334, 344)와 파이프(10)의 내벽간의 마찰력으로 파이프 비파괴 검사 장치(101)가 이동하는 것이다.
본 발명의 실시예에 따른 바퀴(314, 324, 334, 344)는 메카넘 휠(mecanum wheel)을 포함한다. 이에 따라, 각 주행부(310, 320, 330, 340)에 구비된 바퀴(314, 324, 334, 344)의 회전 방향을 제어함으로써, 파이프 비파괴 검사 장치(101)를 전진 이동시키거나 후진 이동시킬 수 있으며, 파이프(10)의 원주를 따라 회전시키는 것도 가능하게 된다.
구동부(315, 325, 335, 345)는 구동력을 발생시켜 바퀴(314, 324, 334, 344)를 회전시키는 역할을 수행한다. 주행 제어 장치(600)의 제어 신호에 따라 각 구동부(315, 325, 335, 345)는 바퀴(314, 324, 334, 344)의 회전 방향 및 회전 속도를 조절할 수 있다.
폭 조절부(210, 220)는 몸체부(111)의 반대쪽 양측 각각에 구비된 주행부(310, 320, 330, 340)의 바퀴(314, 324, 334, 344)간의 폭을 조절하는 역할을 수행한다. 도 12 및 도 13에 도시된 바와 같이, 몸체부(111)의 상측 및 하측에 각각 2개의 주행부(310, 320, 330, 340)가 구비되는데, 폭 조절부(210, 220)는 몸체부(111)의 전면 또는 후면의 양측 바퀴(314, 324, 334, 344)간의 폭을 조절할 수 있다.
폭 조절부(210, 220)는 몸체부(111)의 좌측 및 우측에 각각 구비될 수 있다. 도 12에 도시된 바와 같이, 몸체부(111)의 좌측에 구비된 폭 조절부(210)는 몸체부(111)의 후면 양측에 구비된 바퀴(314, 324, 334, 344)간의 폭을 조절할 수 있다. 이와 마찬가지로, 도 13에 도시된 바와 같이, 몸체부(111)의 우측에 구비된 폭 조절부(220)는 몸체부(111)의 전면 양측에 구비된 바퀴(314, 324, 334, 344)간의 폭을 조절할 수 있다.
폭 조절부(210, 220)는 실린더(211, 221), 피스톤(212, 222) 및 기어부(213, 223)를 포함하여 구성된다. 실린더(211, 221)는 내부에서 압력을 발생시켜 피스톤(212, 222)을 밀거나 당길 수 있다. 실린더(211, 221)가 미는 힘을 발생함에 따라 외부로 노출된 피스톤(212, 222)의 길이가 길어지고, 실린더(211, 221)가 당기는 힘을 발생함에 따라 외부로 노출된 피스톤(212, 222)의 길이가 짧아질 수 있다.
피스톤(212, 222)의 말단에는 기어부(213, 223)가 연결된다. 기어부(213, 223)는 피스톤(212, 222)의 이동에 따라 몸체부(111)의 전면 및 후면을 연결하는 방향으로 수평 이동할 수 있다. 기어부(213, 223)의 상측 및 하측에는 수평 기어가 구비된다. 수평 기어는 주행부(310, 320, 330, 340)의 폭 조절 기어(311, 321, 331, 341)와 기어 결합될 수 있다. 수평 기어가 수평 이동함에 따라 폭 조절 기어(311, 321, 331, 341)가 몸체부(111)를 기준으로 회전하게 된다. 폭 조절 기어(311, 321, 331, 341)가 회전함에 따라 폭 조절 기어(311, 321, 331, 341)에 연결된 제 2 레그(312, 322, 332, 342)도 몸체부(111)를 기준으로 회전하게 되고, 이에 따라 몸체부(111)를 기준으로 양측 바퀴(314, 324, 334, 344)간 간격이 조절된다.
감시부(410, 420, 430)는 파이프(10)의 내부를 감시하는 역할을 수행한다. 구체적으로, 감시부는 주행 방향의 전면 및 후면을 감시할 수 있다. 이를 위하여, 몸체부(111)에는 전면 및 후면을 감시하는 감시부(410, 420)가 각각 구비될 수 있다.
또한, 전방에 존재하는 장애물, 파이프 내벽의 함몰 부분 또는 관심 지점에 대한 세부적인 감시를 위하여 전방의 측면을 감시하는 감시부(430)가 구비될 수도 있다.
카메라와 같은 영상 촬상 장치가 감시부(410, 420, 430)의 역할을 수행할 수 있다. 또한, 감시부(410, 420, 430)에는 전방의 시야 확보를 위한 광을 조사하는 광원이 포함될 수도 있다.
위치 변위 센서(510, 520)는 파이프 내부에서의 파이프 비파괴 검사 장치(101)의 위치를 감지하는 역할을 수행한다. 예를 들어, 위치 변위 센서(510, 520)는 파이프 내부에서의 몸체부(111)의 위치를 감지할 수 있다.
본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)는 그 중심이 파이프(10)의 중심축을 따라 주행을 수행하는 것이 바람직하다. 파이프 비파괴 검사 장치(101)의 중심이 파이프(10)의 중심축에서 벗어난 경우 주행부(310, 320, 330, 340) 또는 폭 조절부(210, 220)에 불필요한 부하가 가해질 수 있는 것이다.
한편, 중력 또는 기타 다양한 요인으로 인하여 파이프 비파괴 검사 장치(101)의 중심이 파이프(10)의 중심축에서 벗어날 수 있다.
위치 변위 센서(510, 520)는 파이프 내벽과의 거리를 판단할 수 있다. 예를 들어, 위치 변위 센서(510, 520)는 레이저를 파이프 내벽으로 조사하고, 반사된 광을 이용하여 파이프 내벽과의 거리를 판단할 수 있다. 2개의 위치 변위 센서(510, 520)는 서로 반대 방향으로 레이저를 조사할 수 있는데, 각 위치 변위 센서(510, 520)에 의하여 감지된 거리를 참조하여 파이프 비파괴 검사 장치(101)의 중심이 파이프(10)의 중심축에 일치되는지를 판단할 수 있게 된다.
감지된 거리를 이용하여 파이프 비파괴 검사 장치(101)의 중심과 파이프(10)의 중심축이 일치하는지 여부를 판단하는 것은 주행 제어 장치(600)에 의하여 수행될 수 있다.
또한, 주행 제어 장치(600)는 감시부(410, 420, 430)의 감시 결과에 따라 몸체부(111)가 파이프(10)의 원주를 따라 회전하도록 주행부(310, 320, 330, 340)를 제어하는 역할을 수행한다. 전술한 바와 같이, 본 발명의 바퀴(314, 324, 334, 344)는 메카넘 휠일 수 있고, 그 회전 방향에 따라 몸체부(111)의 전진, 후진 및 회전이 가능하다. 주행 제어 장치(600)는 각 주행부(310, 320, 330, 340)를 제어하여 몸체부(111)가 파이프(10)의 원주를 따라 회전하도록 바퀴(314, 324, 334, 344)의 회전 방향을 결정할 수 있다.
또한, 주행 제어 장치(600)는 주행부(310, 320, 330, 340), 폭 조절부(210, 220) 및 감시부(410, 420, 430)에 대한 전반적인 제어를 수행할 수 있다.
도 14는 본 발명의 실시예에 따른 바퀴간 폭 조절을 나타낸 도면이다.
도 14를 참조하면, 기어부(213)의 수평 이동에 의하여 몸체부(111)의 양측에 구비된 바퀴(314, 324)간의 폭이 조절될 수 있다.
실린더(211)에 의한 압력에 의하여 피스톤(212) 및 피스톤(212)에 연결된 기어부(213)가 수평 이동하게 된다. 기어부(213)의 상측 및 하측에는 수평 기어가 구비되는데, 수평 기어는 주행부(310, 320)의 폭 조절 기어(311, 321)와 기어 결합되어 있다. 이에, 수평 기어가 수평 이동함에 따라 폭 조절 기어(311, 321)는 몸체부(111)와의 연결 부분을 기준으로 회전한다.
또한, 폭 조절 기어(311, 321)는 주행부(310, 320)의 제 2 레그(312, 322)와 연결되는데, 폭 조절 기어(311, 321)가 회전함에 따라 제 2 레그(312, 322)도 몸체부(111)를 기준으로 회전한다. 제 2 레그(312, 322)는 제 1 레그(313, 323)에 연결되어 있고, 제 1 레그(313, 323)의 말단에 바퀴(314, 324)가 구비된다. 결국, 폭 조절 기어(311, 321)의 회전에 의하여 주행부(310, 320) 전체가 몸체부(111)의 연결 지점을 기준으로 회전하게 된다.
도시된 바와 같이, 상측 및 하측에 구비된 주행부(310, 320)는 몸체부(111)와의 연결 부분에서 비스듬하게 전개되어 있고, 몸체부(111)를 기준으로 대칭적으로 배치되어 있다.
따라서, 주행부(310, 320)의 회전에 의하여 몸체부(111)와 바퀴(314, 324)간의 거리가 달라지게 되며, 결국 양측 바퀴(314, 324)간의 폭이 조절된다.
폭 조절부(210, 220)는 주행부(310, 320)의 바퀴(314, 324)가 파이프(10)의 내벽을 미는 힘이 일정하게 유지되도록 몸체부(111)의 반대쪽 양측 각각에 구비된 주행부(310, 320)의 바퀴(314, 324)간의 폭을 조절할 수 있다. 다시 말해, 폭 조절부(210, 220)는 파이프(10)의 내부 지름에 대응되도록 몸체부(111)의 반대쪽 양측 각각에 구비된 주행부(310, 320)의 바퀴(314, 324)간의 폭을 조절할 수 있다.
바퀴(314, 324)가 파이프(10)의 내벽을 미는 힘이 강한 경우 폭 조절부(210, 220)는 양측 바퀴(314, 324)간 폭을 감소시키고, 바퀴(314, 324)가 파이프(10)의 내벽을 미는 힘이 약한 경우 폭 조절부(210, 220)는 양측 바퀴(314, 324)간 폭을 증가시킬 수 있다.
또는, 폭 조절부(210, 220)는 감시부(410, 420, 430)에 의하여 감시된 결과를 참조하여 양측 바퀴(314, 324)간 폭을 조절할 수도 있다. 즉, 감시부(410, 420, 430)에 의하여 감시된 결과에 따라 파이프(10)의 내부 지름이 결정되고, 폭 조절부(210, 220)는 결정된 파이프(10)의 내부 지름에 대응되도록 양측 바퀴(314, 324)간 폭을 미리 조절하는 것이다. 감시부(410, 420, 430)의 감시 결과를 참조한 파이프(10)의 내부 지름 결정은 주행 제어 장치(600)에 의하여 수행될 수 있다.
폭 조절부(210, 220)에 의하여 양측 바퀴(314, 324)간 폭이 조절됨에 따라 각 바퀴(314, 324)가 파이프(10)의 내벽을 미는 힘이 균일하게 유지될 수 있게 된다.
한편, 도 14는 몸체부(111)의 좌측에 구비된 폭 조절부(210)에 의하여 후면 양측 바퀴(314, 324)의 폭이 조절되는 것을 도시하고 있으나, 몸체부(111)의 우측에 구비된 폭 조절부(220)에 의한 전면 양측 바퀴(334, 344)의 폭도 이와 유사하게 조절될 수 있다.
도 15는 본 발명의 실시예에 따른 바퀴의 길이 조절을 나타낸 도면이다.
도 15를 참조하면, 제 1 레그(313) 및 제 2 레그(312)의 중첩 정도에 따라 몸체부(111)와 바퀴(314)간 거리가 달라질 수 있다.
제 1 레그(313)의 말단에는 바퀴(314)가 구비되고, 제 2 레그(312)는 몸체부(111)에 회전 가능하도록 연결된다. 또한, 제 1 레그(313)와 제 2 레그(312)는 각각의 일부가 중첩되는데, 그 중첩 정도에 따라 몸체부(111)와 바퀴(314)간 거리가 달라진다. 즉, 제 1 레그(313)와 제 2 레그(312)간 중첩 거리가 길어지면 몸체부(111)와 바퀴(314)간 거리가 짧아지고, 제 1 레그(313)와 제 2 레그(312)간 중첩 거리가 짧아지면 몸체부(111)와 바퀴(314)간 거리가 길어지는 것이다.
제 1 레그(313, 323, 333, 343)와 제 2 레그(312, 322, 332, 342)간의 중첩 정도는 능동적으로 수행될 수 있고, 수동적으로 수행될 수도 있다.
예를 들어, 사용자는 직접 제 2 레그(312, 322, 332, 342)에 대한 제 1 레그(313, 323, 333, 343)의 길이를 조절할 수도 있다. 파이프(10)의 내부에 배치된 파이프 비파괴 검사 장치(101)의 자세를 미세 조절하기 위하여 사용자는 각 제 2 레그(312, 322, 332, 342)에 대한 제 1 레그(313, 323, 333, 343)의 길이를 조절할 수 있는 것이다.
파이프 비파괴 검사 장치(101)의 자세를 미세 조절하는 별도의 구동부(미도시)가 구비되어 제 2 레그(312, 322, 332, 342)에 대한 제 1 레그(313, 323, 333, 343)의 길이를 조절할 수도 있다.
한편, 바퀴(314, 324, 334, 344)에 가해지는 압력에 따라 각 주행부(310, 320, 330, 340)별로 제 2 레그(312, 322, 332, 342)에 대한 제 1 레그(313, 323, 333, 343)의 길이가 조절될 수 있다. 예를 들어, 파이프(10)의 내벽에 존재하는 장애물이 특정 바퀴에 압력을 가하는 경우 해당 압력에 의하여 제 1 레그(313, 323, 333, 343)와 제 2 레그(312, 322, 332, 342)간의 중첩 길이가 길어질 수 있는 것이다.
이 때, 장애물에 의한 압력이 제거되는 경우 제 1 레그(313, 323, 333, 343)와 제 2 레그(312, 322, 332, 342)간 중첩 길이는 원래 상태로 복귀될 수 있다. 이를 위하여, 제 1 레그(313, 323, 333, 343)와 제 2 레그(312, 322, 332, 342)간의 중첩 길이를 유지시키는 탄성 수단(미도시)이 구비될 수 있다. 탄성 수단은 장애물이 가하는 충격 또는 압력을 완화시켜 몸체부(111)에 전달하는 역할을 수행하는 것으로 이해될 수 있다.
도 15는 몸체부(111)의 후면 상측에 구비된 주행부(310)의 길이 조절을 도시하고 있으나, 나머지 주행부(320, 330, 340)도 이와 유사한 길이 조절 동작을 수행할 수 있다. 이 때, 몸체부(111)와 복수의 주행부(310, 320, 330, 340) 각각에 구비된 바퀴(314, 324, 334, 344)간의 거리는 독립적으로 조절될 수 있다. 이에 따라, 각 바퀴(314, 324, 334, 344)에서 발생된 충격이 각 제 1 레그(313, 323, 333, 343) 및 제 2 레그(312, 322, 332, 342)에 의하여 완충될 수 있게 된다.
도 16은 본 발명의 다른 실시예에 따른 주행 제어 장치를 나타낸 블록도이다.
도 16을 참조하면, 주행 제어 장치(600)는 입력부(610), 저장부(620), 제어부(630) 및 출력부(640)를 포함하여 구성된다.
입력부(610)는 감시부(410, 420, 430)에 의하여 감시된 결과를 입력받는 역할을 수행한다. 또한, 본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)에는 감시부(410, 420, 430)뿐만 아니라 중력 방향을 감지하거나 바퀴(314, 324, 334, 344)가 파이프(10)의 내벽을 미는 힘 등을 감지하는 다양한 센서가 구비될 수 있다. 이에, 입력부(610)는 파이프 비파괴 검사 장치(101)에 구비된 다양한 센서의 감지 결과를 수신하는 역할을 수행할 수도 있다.
또한, 본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)는 사용자에 의한 수동 조종이 가능하다. 이에, 입력부(610)는 사용자 명령을 입력받을 수 있다.
입력부(610)는 유선 또는 무선의 통신 방식으로 감시부(410, 420, 430), 센서 또는 사용자로부터 감지 정보 또는 명령과 같은 입력 정보를 입력받을 수 있다.
제어부(630)는 입력부(610)로부터 전달된 입력 정보를 참조하여 파이프 비파괴 검사 장치(101)에 대한 전반적인 제어를 수행한다.
예를 들어, 제어부(630)는 위치 변위 센서(510, 520)로부터 전달된 거리 정보를 이용하여 몸체부(111)의 중심이 파이프(10)의 중심축에 일치되도록 주행부(310, 320, 330, 340)를 제어할 수 있다. 주행부(310, 320, 330, 340)에 구비된 바퀴(314, 324, 334, 344)가 메카넘 휠임에 따라 파이프 비파괴 검사 장치(101)는 파이프(10)의 중심축에 대하여 수직 방향으로 이동하여 그 중심을 파이프(10)의 중심축에 일치시킬 수 있다.
또한, 제어부(630)는 감시부(410, 420, 430)의 감시 결과를 참조하여 몸체부(111)가 파이프(10)의 원주를 따라 회전하도록 주행부(310, 320, 330, 340)를 제어할 수 있다. 감시부(410, 420, 430)의 감시 결과에 따라 이동 방향의 전방에 장애물이 존재하거나, 파이프 내벽의 함몰 부분이 존재하는 경우 제어부(630)는 몸체부(111)가 파이프(10)의 원주를 따라 회전하도록 주행부(310, 320, 330, 340)를 제어하는 것이다.
제어부(630)는 장애물 또는 함몰 부분의 크기 및 위치 등을 고려하여 파이프(10)의 원주를 따라 회전할 몸체부(111)의 회전 각도를 결정할 수 있다. 제어부(630)는 파이프 비파괴 검사 장치(101)가 장애물 또는 함몰 부분을 회피하여 주행할 수 있도록 하기 위하여 몸체부(111)를 회전시킬 수 있다. 다만, 장애물 또는 함몰 부분의 크기가 충분히 작은 경우 제어부(630)는 몸체부(111)의 회전 없이 주행하도록 할 수도 있다.
또한, 제어부(630)는 양측 바퀴(314, 324, 334, 344)가 파이프(10)의 내벽을 미는 힘을 참조하여 양측 바퀴(314, 324, 334, 344)간 폭이 변경되도록 폭 조절부(210, 220)를 제어할 수 있다. 바퀴(314, 324, 334, 344)가 파이프(10)의 내벽을 미는 힘이 강한 경우 제어부(630)는 양측 바퀴(314, 324, 334, 344)간 폭이 감소되도록 폭 조절부(210, 220)를 제어할 수 있다. 이와 마찬가지로, 바퀴(314, 324, 334, 344)가 파이프(10)의 내벽을 미는 힘이 약한 경우 제어부(630)는 양측 바퀴(314, 324, 334, 344)간 폭이 증가되도록 폭 조절부(210, 220)를 제어할 수 있다.
또한, 제어부(630)는 파이프(10)의 형태에 대응되도록 복수의 주행부(310, 320, 330, 340) 각각에 구비된 바퀴(314, 324, 334, 344)의 회전 속도를 제어할 수 있다. 주행 전방의 파이프(10)에 굴곡이 있는 상태에서 모든 바퀴(314, 324, 334, 344)의 회전 속도가 동일한 경우 일부 바퀴에 슬립이 발생할 수 있다. 이에, 제어부(630)는 감시부(410, 420, 430) 또는 다른 센서로부터 입력된 입력 정보를 참조하여 파이프(10)의 형태에 대응되도록 각 바퀴(314, 324, 334, 344)의 회전 속도를 제어할 수 있다.
또한, 제어부(630)는 감시부(410, 420, 430) 및 기타 센서(미도시)를 제어할 수 있다. 예를 들어, 제어부(630)는 감시부(410, 420, 430) 및 센서의 동작 여부를 제어할 수 있다.
제어부(630)는 주행부(310, 320, 330, 340), 폭 조절부(210, 220), 감시부(410, 420, 430) 및 기타 센서(미도시)를 제어하기 위한 제어 명령을 생성하고, 생성된 제어 명령은 출력부(640)에 의하여 출력될 수 있다. 출력부(640)에 의하여 출력된 제어 명령이 각 모듈에게 전달됨에 따라 해당 모듈은 대응하는 동작을 수행하게 된다.
저장부(620)는 입력부(610)를 통하여 입력된 입력 정보 및 출력부(640)를 통하여 출력되는 제어 명령을 임시 또는 영구적으로 저장하는 역할을 수행한다. 입력부(610)를 통하여 입력된 정보는 제어부(630)에 의한 제어에 사용될 뿐만 아니라 관측 용도로 이용될 수도 있다. 예를 들어, 파이프(10)를 주행하면서 감지된 정보들은 차후에 사용자에게 전달되고, 사용자는 해당 정보를 통하여 파이프(10)의 내부 상태 등을 판단할 수 있는 것이다. 또는, 파이프(10)를 주행하면서 감지된 정보들은 출력부(640)를 통하여 실시간으로 사용자에게 전달될 수도 있다.
또한, 저장부(620)는 사전에 설정된 사용자 명령을 저장할 수 있다. 제어부(630)는 저장부(620)에 저장된 사용자 명령을 참조하여 자동으로 대응하는 동작이 수행되도록 각 모듈을 제어할 수 있다.
이하, 도 17 내지 도 26을 통하여 파이프 내부를 이동하는 파이프 비파괴 검사 장치의 주행 양상을 설명하기로 한다. 설명의 편의를 위하여 도 17 내지 도 26에서는 파이프 비파괴 검사 장치의 세부적인 구성요소의 도면부호는 생략하기로 한다. 생략된 도면부호에 대응하는 구성요소는 도 12, 도 13 및 도 16에 도시된 것과 같다.
도 17은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 17을 참조하면, 파이프 비파괴 검사 장치(101)는 파이프(10)의 내부를 주행할 수 있다. 파이프(10)의 내부를 주행하면서 파이프 비파괴 검사 장치(101)는 구비된 감시부(410, 420, 430) 및 센서 등을 이용하여 파이프 내부의 상태 정보를 수집할 수 있다. 또한, 파이프 비파괴 검사 장치(101)는 방사선 소스를 이용하여 파이프(10)에 형성된 용접부(120)의 결함 여부를 판정할 수도 있다.
도 17은 지름이 일정한 파이프(10)을 도시하고 있는데, 각 바퀴가 파이프 내벽을 미는 힘은 균일하게 유지될 수 있다. 폭 조절부(210, 220)는 각 바퀴가 균일한 힘으로 파이프 내벽을 밀 수 있도록 양측 바퀴간의 폭을 조절할 수 있다. 각 바퀴가 균일한 힘으로 파이프 내벽을 밀면서 주행함에 따라 파이프 비파괴 검사 장치(101)는 보다 안정적인 자세로 주행할 수 있게 된다.
도 18 및 도 19는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 지름이 변경되는 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 18을 참조하면, 파이프 비파괴 검사 장치(101)는 점차 지름이 증가하는 파이프(10)을 주행할 수 있다. 본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)는 2개의 폭 조절부(210, 220)를 구비하고 있다. 2개의 폭 조절부(210, 220) 중 하나는 전면 양측 바퀴의 폭을 조절하고, 나머지 하나는 후면 양측 바퀴의 폭을 조절한다.
2개의 폭 조절부(210, 220)가 전면 양측 바퀴의 폭 및 후면 양측 바퀴의 폭을 독립적으로 조절함에 따라 점차 지름이 변경되는 파이프(10)에서 파이프 비파괴 검사 장치(101)가 주행하더라도 각 바퀴가 파이프 내벽을 미는 힘은 균일하게 형성될 수 있다.
이에, 점차 지름이 변경되는 파이프(10)의 내부에서도 파이프 비파괴 검사 장치(101)는 안정적인 자세로 주행할 수 있게 된다.
한편, 파이프(10)의 지름이 지나치게 큰 이유로 인하여 폭 조절부(210, 220)에 의하여 폭을 조절하더라도 대응하는 바퀴가 충분한 힘으로 파이프 내벽을 밀 수 없을 수도 있다. 이러한 경우 대응하는 바퀴의 제 2 레그에 대한 제 1 레그의 길이가 조절됨으로써 바퀴가 파이프 내벽을 미는 힘을 보충할 수도 있다.
도 19를 참조하면, 파이프 비파괴 검사 장치(101)는 서로 다른 지름 구간(10a, 10b, 10c)을 갖는 파이프(10)의 내부를 주행할 수 있다.
전술한 바와 같이, 2개의 폭 조절부(210, 220)가 전면 양측 바퀴의 폭 및 후면 양측 바퀴의 폭을 독립적으로 조절함에 따라 지름이 변경되는 파이프(10a, 10b, 10c)에서 파이프 비파괴 검사 장치(101)가 주행하더라도 각 바퀴가 파이프 내벽을 미는 힘은 균일하게 형성될 수 있다.
또는, 본 발명의 다른 실시예에 따르면 제어부(630)가 주행 경로상의 전방 상태를 참조하여 폭 조절부(210, 220)를 제어할 수도 있다.
10a 구간을 주행 중인 파이프 비파괴 검사 장치(101)의 제어부(630)는 감시부(410, 430)에 의하여 감시된 결과를 참조하여 전방에 있는 10b 구간의 지름이 변경됨을 인식할 수 있다. 이에, 파이프 비파괴 검사 장치(101)가 10b 구간에 진입하자마자 제어부(630)는 폭 조절부(210, 220)를 제어하여 양측 바퀴의 폭이 증가하도록 조절할 수 있다. 이 때, 제어부(630)는 전면 양측의 바퀴 폭이 증가한 이후에 후면 양측의 바퀴 폭이 증가하도록 폭 조절부(210, 220)를 제어할 수 있다.
이와 마찬가지로, 10b 구간을 주행 중인 파이프 비파괴 검사 장치(101)의 제어부(630)는 감시부(410, 430)에 의하여 감시된 결과를 참조하여 전방에 있는 10c 구간의 지름이 변경됨을 인식할 수 있다. 이에, 파이프 비파괴 검사 장치(101)가 10c 구간에 진입하자마자 제어부(630)는 폭 조절부(210, 220)를 제어하여 양측 바퀴의 폭이 감소되도록 조절할 수 있다. 이 때, 제어부(630)는 전면 양측의 바퀴 폭이 감소된 이후에 후면 양측의 바퀴 폭이 감소되도록 폭 조절부(210, 220)를 제어할 수 있다.
도 20은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 곡률 구간이 포함된 파이프의 내부를 주행하는 것을 나타낸 도면이다.
도 20을 참조하면, 파이프 비파괴 검사 장치(101)는 파이프(10)의 곡률 구간을 주행할 수 있다. 한편, 도시된 바와 같이 파이프 비파괴 검사 장치(101)가 주행하는 경우 곡률의 안쪽에 있는 파이프 내벽에 접한 바퀴의 회전수와 곡률의 바깥쪽에 있는 파이프 내벽에 접한 바퀴의 회전수는 달라진다.
따라서, 곡률 구간에서 모든 바퀴의 회전 속도를 동일하게 하는 경우 슬립이 발생하여 파이프 비파괴 검사 장치(101)의 자세가 불안정해질 수 있다.
이에, 제어부(630)는 곡률 구간에서도 안정적인 주행이 가능하도록 각 바퀴의 회전 속도를 제어할 수 있다. 예를 들어, 제어부(630)는 곡률의 안쪽에 있는 파이프 내벽에 접한 바퀴의 회전 속도가 감소하고, 곡률의 바깥쪽에 있는 파이프 내벽에 접한 바퀴의 회전 속도가 증가하도록 각 주행부(310, 320, 330, 340)를 제어할 수 있다.
이동 거리에 대응되도록 각 바퀴의 회전 속도가 조절됨에 따라 파이프 비파괴 검사 장치(101)는 보다 안정적인 자세로 주행할 수 있게 된다.
도 21은 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 원주를 따라 회전하는 것을 나타낸 도면이다.
도 21을 참조하면, 파이프 비파괴 검사 장치(101)는 파이프(10)의 내부에서 원주를 따라 회전할 수 있다. 본 발명의 실시예에 따른 바퀴는 메카넘 휠일 수 있는데, 제어부(630)는 각 주행부(310, 320, 330, 340)에 구비된 바퀴의 회전 방향을 제어하여 파이프 비파괴 검사 장치(101)가 파이프(10)의 원주를 따라 회전하도록 할 수 있다.
제어부(630)는 파이프 비파괴 검사 장치(101)의 회전 방향, 회전 각도 및 회전 속도 등을 제어할 수 있다.
도 22 내지 도 24는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프의 내부에서 회전한 이후에 주행하는 것을 나타낸 도면이다.
도 22를 참조하면, 파이프 비파괴 검사 장치(101)는 파이프(10)의 곡률 구간을 주행할 수 있다. 각 바퀴의 회전 속도 제어가 가능한 경우 도 20에 도시된 바와 같은 주행이 가능하다. 그러나, 각 바퀴의 회전 속도가 가능하지 않은 상태에서 도 20에 도시된 것과 주행하면 파이프 비파괴 검사 장치(101)의 자세가 불안정해질 수 있다.
이에, 본 발명의 실시예에 따른 파이프 비파괴 검사 장치(101)는 파이프(10)의 외주를 따라 회전한 이후에 곡률 구간을 주행할 수 있다.
도 22에 도시된 바와 같이 주행하는 경우 곡률 구간에서 양측 바퀴가 주행하여야 하는 거리는 동일하게 된다. 이에, 각 바퀴가 동일한 회전 속도로 회전하더라도 슬립 없이 안정적인 주행이 가능하게 된다.
도 23을 참조하면, 파이프 비파괴 검사 장치(101)는 전방에 파이프 내벽의 함몰 부분이 있는 경우 파이프 내벽의 외주를 따라 회전한 이후에 주행을 지속할 수 있다.
도 23에서 초기의 자세를 그대로 유지하여 주행하는 경우 일측 바퀴가 함몰 부분에 빠질 수 있다. 이를 방지하기 위하여, 감시부(410, 430)에 의한 감시 결과를 기초로 제어부(630)는 전방에 함몰 부분이 존재하는 것으로 판단되는 경우 주행부(310, 320, 330, 340)를 제어하여 파이프 비파괴 검사 장치(101)가 파이프 내벽의 외주를 따라 회전하도록 할 수 있다.
도 24를 참조하면, 파이프 비파괴 검사 장치(101)는 전방에 장애물(OB)이 있는 경우 파이프 내벽의 외주를 따라 회전한 이후에 주행을 지속할 수 있다.
도 24에서 초기의 자세를 그대로 유지하여 주행하는 경우 일측 바퀴가 장애물(OB)에 걸릴 수 있다. 이를 방지하기 위하여, 감시부(410, 430)에 의한 감시 결과를 기초로 제어부(630)는 전방에 장애물(OB)이 존재하는 것으로 판단되는 경우 주행부(310, 320, 330, 340)를 제어하여 파이프 비파괴 검사 장치(101)가 파이프 내벽의 외주를 따라 회전하도록 할 수 있다.
도 25는 본 발명의 다른 실시예에 따른 파이프 비파괴 검사 장치가 파이프 내부에서의 중심 위치를 판단하는 것을 나타낸 도면이고, 도 26은 본 발명의 일 실시예에 따른 파이프 비파괴 검사 장치가 파이프 내부에서 중심 위치를 보정하는 것을 나타낸 도면이다.
도 25를 참조하면, 위치 변위 센서(510, 520)는 파이프 내부에서의 파이프 비파괴 검사 장치의 위치를 판단할 수 있다.
2개의 위치 변위 센서(510, 520)가 파이프 비파괴 검사 장치(101)에 구비될 수 있는데, 각 위치 변위 센서(510, 520)는 파이프 내벽으로 레이저를 조사하고, 반사된 광을 이용하여 파이프와의 거리를 판단할 수 있다.
위치 변위 센서(510, 520)에 의하여 감지된 거리 정보는 주행 제어 장치로 전달되고, 주행 제어 장치는 전달된 정보를 참조하여 파이프의 중심축(PC)에 대한 파이프 비파괴 검사 장치(101)의 위치를 판단할 수 있다.
그리하여, 주행 제어 장치는 파이프 비파괴 검사 장치(101)의 중심(RC)이 파이프의 중심축(PC)에 일치되도록 주행부(310, 320, 330, 340)를 제어할 수 있다. 주행부(310, 320, 330, 340)의 바퀴가 메카넘 휠임에 따라 파이프 비파괴 검사 장치는 파이프의 중심축(PC)에 수직한 방향으로 이동할 수 있다. 이에, 파이프 비파괴 검사 장치(101)의 중심(RC)와 파이프의 중심축(PC)이 일치될 수 있게 된다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (17)

  1. 몸체부;
    상기 몸체부의 외측으로 전개되고, 전개된 말단에 구비된 바퀴를 파이프의 내벽에 밀착시켜 추진력을 발생시키는 주행부;
    상기 파이프의 내부를 감시하는 감시부;
    상기 감시 결과에 따라 상기 몸체부가 상기 파이프의 원주를 따라 회전하도록 상기 주행부를 제어하는 주행 제어 장치;
    상기 몸체부에 설치되고, 상기 파이프의 비파괴 검사를 위한 방사선 소스를 말단 측에 갖는 피딩 튜브를 가이드하는 가이드 튜브; 및
    상기 가이드 튜브를 상기 몸체부에 대해 제1 방향으로 이동시키는 제1 튜브 구동부를 포함하는 파이프 비파괴 검사 장치.
  2. 제1 항에 있어서,
    상기 몸체부의 반대쪽 양측 각각에 주행부가 구비되고,
    상기 몸체부의 일측에는 주행 방향에 평행한 2개 이상의 주행부가 구비되는 파이프 비파괴 검사 장치.
  3. 제2 항에 있어서,
    상기 주행 제어 장치는 상기 파이프의 형태에 대응되도록 상기 복수의 주행부 각각에 구비된 바퀴의 회전 속도를 제어하는 파이프 비파괴 검사 장치.
  4. 제1 항에 있어서,
    상기 복수의 주행부 각각은 구비된 바퀴를 지지하는 제 1 레그; 및
    상기 제 1 레그와 일부가 중첩되는 제 2 레그를 포함하되,
    상기 제 1 레그 및 상기 제 2 레그의 중첩 간격이 조절됨에 따라 상기 몸체부에 대한 상기 구비된 바퀴의 거리가 조절되는 파이프 비파괴 검사 장치.
  5. 제4 항에 있어서,
    상기 몸체부와 상기 복수의 주행부 각각에 구비된 바퀴간의 거리는 독립적으로 조절되는 파이프 비파괴 검사 장치.
  6. 제1 항에 있어서,
    상기 주행 제어 장치는 상기 감시 결과에 따라 이동 방향의 전방에 장애물이 존재하거나, 파이프 내벽의 함몰 부분이 존재하는 경우 상기 몸체부가 상기 파이프의 원주를 따라 회전하도록 상기 주행부를 제어하는 파이프 비파괴 검사 장치.
  7. 제1 항에 있어서,
    상기 몸체부의 반대쪽 양측 각각에 주행부가 구비되고,
    상기 몸체부의 반대쪽 양측 각각에 구비된 주행부의 바퀴간의 폭을 조절하는 폭 조절부를 더 포함하는 파이프 비파괴 검사 장치.
  8. 제7 항에 있어서,
    상기 폭 조절부는 상기 주행부의 바퀴가 상기 파이프의 내벽을 미는 힘이 일정하게 유지되도록 상기 몸체부의 반대쪽 양측 각각에 구비된 주행부의 바퀴간의 폭을 조절하는 파이프 비파괴 검사 장치.
  9. 제1 항에 있어서,
    상기 파이프의 내부에서의 상기 파이프 비파괴 검사 장치의 위치를 판단하는 위치 변위 센서를 더 포함하고,
    상기 주행 제어 장치는 상기 판단된 상기 파이프의 내부에서의 상기 파이프 비파괴 검사 장치의 위치를 참조하여 상기 몸체부의 중심이 상기 파이프의 중심축에 일치되도록 상기 주행부를 제어하는 파이프 비파괴 검사 장치.
  10. 제1 항에 있어서,
    상기 가이드 튜브의 말단 측에 노출된 상기 방사선 소스가 상기 파이프의 중심축 상에 위치되도록 하는 상기 가이드 튜브의 회동 각도를 산출하고, 산출한 회동 각도에 따라 상기 제1 튜브 구동부를 제어하는 검사 제어 장치를 더 포함하는 파이프 비파괴 검사 장치.
  11. 제10 항에 있어서,
    상기 몸체부의 상기 파이프 내에서의 위치를 인식하기 위한 위치 인식부를 더 포함하고,
    상기 검사 제어 장치는 상기 몸체부의 위치 및 상기 파이프의 설계 정보에 기초하여 상기 가이드 튜브의 회동 각도를 산출하는 파이프 비파괴 검사 장치.
  12. 제10 항에 있어서,
    상기 파이프 비파괴 검사 장치의 적어도 일부가 상기 파이프의 곡관 내에 위치하는 경우, 상기 검사 제어 장치는 상기 몸체부의 위치, 상기 파이프의 내경, 및 상기 곡관의 곡률에 기초하여 상기 가이드 튜브의 회동 각도를 산출하는 파이프 비파괴 검사 장치.
  13. 제10 항에 있어서,
    상기 파이프의 용접부 측의 외주연을 따라 설치되는 방사선 필름을 더 포함하고,
    상기 검사 제어 장치는 상기 방사선 소스가 상기 방사선 필름의 중심부에 위치하도록 상기 제1 튜브 구동부를 제어하는 파이프 비파괴 검사 장치.
  14. 제1 항에 있어서,
    상기 피딩 튜브를 상기 가이드 튜브 내에 삽입시켜 상기 피딩 튜브의 방사선 소스를 상기 가이드 튜브의 말단 측으로 이송하는 피딩 장치를 더 포함하는 파이프 비파괴 검사 장치.
  15. 제14 항에 있어서,
    상기 피딩 장치는,
    상기 피딩 튜브의 외주면에 형성된 기어부와 결합된 피딩기어부재; 및
    상기 피딩기어부재를 구동하는 구동부재를 포함하는 파이프 비파괴 검사 장치.
  16. 제1 항에 있어서,
    상기 가이드 튜브를 상기 몸체부에 대해 상기 제1 방향과 수직인 제2 방향으로 이동시키는 제2 튜브 구동부를 더 포함하는 파이프 비파괴 검사 장치.
  17. 제16 항에 있어서,
    상기 몸체부의 롤각을 측정하는 롤각 측정부; 및
    상기 몸체부의 위치, 상기 몸체부의 롤각 및 상기 파이프의 설계 정보에 기초하여, 상기 방사선 소스가 상기 파이프의 중심축 상에 위치되도록 하는 상기 가이드 튜브의 상기 제1 방향으로의 제1 회동 각도 및 상기 제2 방향으로의 제2 회동 각도를 산출하고, 상기 제1 회동 각도에 따라 상기 제1 튜브 구동부를 제어하고, 상기 제2 회동 각도에 따라 상기 제2 튜브 구동부를 제어하는 검사 제어 장치를 더 포함하는 파이프 비파괴 검사 장치.
PCT/KR2016/010656 2015-09-25 2016-09-23 파이프 비파괴 검사 장치 WO2017052265A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201800728PA SG11201800728PA (en) 2015-09-25 2016-09-23 Non-destructive pipe inspection apparatus
CN201680048478.9A CN107923564B (zh) 2015-09-25 2016-09-23 非破坏性管道检查装置
JP2018506279A JP6523553B2 (ja) 2015-09-25 2016-09-23 パイプ非破壊検査装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0136072 2015-09-25
KR1020150136072 2015-09-25
KR10-2015-0138472 2015-10-01
KR1020150138472A KR20170039402A (ko) 2015-10-01 2015-10-01 이동 로봇

Publications (1)

Publication Number Publication Date
WO2017052265A1 true WO2017052265A1 (ko) 2017-03-30

Family

ID=58386588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010656 WO2017052265A1 (ko) 2015-09-25 2016-09-23 파이프 비파괴 검사 장치

Country Status (4)

Country Link
JP (1) JP6523553B2 (ko)
CN (1) CN107923564B (ko)
SG (1) SG11201800728PA (ko)
WO (1) WO2017052265A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533885A (zh) * 2018-04-27 2018-09-14 国网浙江省电力有限公司信息通信分公司 一种智慧巡检移动终端
CN110260094A (zh) * 2019-05-30 2019-09-20 国网浙江宁波市鄞州区供电有限公司 行走式管道长度测量装置
CN111060592A (zh) * 2019-12-11 2020-04-24 宁波明峰检验检测研究院股份有限公司 基于射线检测的自动扫查装置及其在管道内的行径方法
CN112178356A (zh) * 2020-09-30 2021-01-05 安徽赛安安全设备有限责任公司 一种管道内部气体检测装置
CN113464768A (zh) * 2021-06-29 2021-10-01 国网黑龙江省电力有限公司电力科学研究院 一种锅炉用于运行期金属管道无损检测机器人
CN114414630A (zh) * 2022-03-29 2022-04-29 东营市特种设备检验研究院 一种石油化工生产用工业锅炉检测装置及检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374655A (zh) * 2018-09-27 2019-02-22 北海智联投资有限公司 一种定向x射线机专用爬行辅助调整设备
CN109374654A (zh) * 2018-09-27 2019-02-22 北海智联投资有限公司 一种周向x射线机专用爬行辅助调整设备
WO2020234786A1 (en) * 2019-05-23 2020-11-26 Sensima Inspection Sàrl Rotatable inspection device for defect detection
CN114669883A (zh) * 2022-04-12 2022-06-28 武汉飞能达激光技术有限公司 一种用于身管内壁的激光毛化方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006795A (ja) * 1998-06-24 2000-01-11 Hitachi Zosen Corp 管内走行ロボット
KR200436664Y1 (ko) * 2007-04-16 2007-09-18 유영검사 주식회사 비파괴검사에서의 방사선사고방지를 위한 방사선방출부 정위치구동장치
KR100855521B1 (ko) * 2007-02-27 2008-09-01 주식회사 두배시스템 배관 내부 검사용 이동로봇
KR20100034478A (ko) * 2008-09-24 2010-04-01 주식회사 디섹 배관 방사선 촬영을 위한 방사성동위원소 센터링장치
KR101383855B1 (ko) * 2013-10-29 2014-04-10 (주)로터스지이오 반전방식 uv 경화 관로 보수용 uv광 발생장치 및 이를 이용한 관로 보수공법
KR101506093B1 (ko) * 2013-10-28 2015-03-26 가천대학교 산학협력단 하수도관 평판형 관측 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553718U (ko) * 1978-06-22 1980-01-11
US4467212A (en) * 1981-05-11 1984-08-21 Olcott Donald J Radioactive source pigtail inspection apparatus and method
JPH0687857U (ja) * 1993-06-01 1994-12-22 石川島播磨重工業株式会社 配管内検査具位置決め装置
KR101244361B1 (ko) * 2013-01-04 2013-03-18 주식회사 가우스 파이프 청소 로봇
JP2014166806A (ja) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd 管内走行装置及び管内検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000006795A (ja) * 1998-06-24 2000-01-11 Hitachi Zosen Corp 管内走行ロボット
KR100855521B1 (ko) * 2007-02-27 2008-09-01 주식회사 두배시스템 배관 내부 검사용 이동로봇
KR200436664Y1 (ko) * 2007-04-16 2007-09-18 유영검사 주식회사 비파괴검사에서의 방사선사고방지를 위한 방사선방출부 정위치구동장치
KR20100034478A (ko) * 2008-09-24 2010-04-01 주식회사 디섹 배관 방사선 촬영을 위한 방사성동위원소 센터링장치
KR101506093B1 (ko) * 2013-10-28 2015-03-26 가천대학교 산학협력단 하수도관 평판형 관측 장치
KR101383855B1 (ko) * 2013-10-29 2014-04-10 (주)로터스지이오 반전방식 uv 경화 관로 보수용 uv광 발생장치 및 이를 이용한 관로 보수공법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533885A (zh) * 2018-04-27 2018-09-14 国网浙江省电力有限公司信息通信分公司 一种智慧巡检移动终端
CN110260094A (zh) * 2019-05-30 2019-09-20 国网浙江宁波市鄞州区供电有限公司 行走式管道长度测量装置
CN111060592A (zh) * 2019-12-11 2020-04-24 宁波明峰检验检测研究院股份有限公司 基于射线检测的自动扫查装置及其在管道内的行径方法
CN112178356A (zh) * 2020-09-30 2021-01-05 安徽赛安安全设备有限责任公司 一种管道内部气体检测装置
CN113464768A (zh) * 2021-06-29 2021-10-01 国网黑龙江省电力有限公司电力科学研究院 一种锅炉用于运行期金属管道无损检测机器人
CN114414630A (zh) * 2022-03-29 2022-04-29 东营市特种设备检验研究院 一种石油化工生产用工业锅炉检测装置及检测方法

Also Published As

Publication number Publication date
SG11201800728PA (en) 2018-02-27
JP2018529086A (ja) 2018-10-04
CN107923564B (zh) 2020-06-16
JP6523553B2 (ja) 2019-06-05
CN107923564A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2017052265A1 (ko) 파이프 비파괴 검사 장치
WO2018008808A1 (ko) 개별구동 자주식 대차 및 관성항법장치를 구비한 터널 검사 시스템
WO2016200185A1 (ko) 3차원 스캐닝 시스템 및 이를 위한 라인레이저 정렬용 표적기구
WO2017200303A2 (ko) 이동 로봇 및 그 제어방법
WO2017039171A1 (ko) 레이저 가공장치 및 레이저 가공방법
WO2019054675A1 (ko) 로봇청소기 및 그 제어방법
KR101519410B1 (ko) 배전선로 점검장치
JP2001249007A5 (ko)
WO1993006467A3 (fr) Procede et dispositif d'inspection du verre
WO2012150846A2 (ko) 벽 등반 인쇄 방법 및 시스템
WO2018038334A1 (ko) 틸팅 스테이지 시스템
WO2021158009A1 (ko) 추종 장치, 이를 포함하는 추종 시스템 및 추종 장치의 추종 방법
HRP20221234T1 (hr) Automatsko kalibriranje sustava za lasersku obradu uz pomoć integriranog telecentričnog optičkog detektora s ograničenim stupnjevima slobode
WO2015147371A1 (ko) 차량의 위치 보정 장치 및 방법과 이를 이용한 차량 위치 보정 시스템 및 무인 운행이 가능한 차량
WO2016129924A1 (ko) 비제한적 구동형 마킹 시스템 및 그 마킹 방법
JP2845611B2 (ja) 舗装構造探査車
WO2017039082A1 (en) Cleaning apparatus and cleaning method using same
JPH0695804B2 (ja) 架空ケ−ブル点検装置
WO2022080575A1 (ko) 적외선 센서 및 자이로스코프 센서를 구비하는 지능형 관로 검사 로봇을 포함하는 관로 검사 시스템
WO2003085391A1 (fr) Technique d'inspection aux rayons x d'un pneumatique et appareil a cet effet
JP2869740B2 (ja) 高架橋点検装置
WO2017171153A1 (ko) 편광판 검사 방법 및 편광판 검사 장치
WO2019172689A1 (ko) 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
WO2019151613A1 (ko) 엑스선 영상장치
WO2018101623A1 (ko) 광단층 영상을 이용한 비초점 광음향 영상 왜곡 보정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848990

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201800728P

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2018506279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25-07-2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16848990

Country of ref document: EP

Kind code of ref document: A1