JP2018529086A - パイプ非破壊検査装置 - Google Patents

パイプ非破壊検査装置 Download PDF

Info

Publication number
JP2018529086A
JP2018529086A JP2018506279A JP2018506279A JP2018529086A JP 2018529086 A JP2018529086 A JP 2018529086A JP 2018506279 A JP2018506279 A JP 2018506279A JP 2018506279 A JP2018506279 A JP 2018506279A JP 2018529086 A JP2018529086 A JP 2018529086A
Authority
JP
Japan
Prior art keywords
pipe
nondestructive inspection
unit
leg
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018506279A
Other languages
English (en)
Other versions
JP6523553B2 (ja
Inventor
スン・ウク・パク
テ・ヨン・キム
ホ・ジュン・イ
ギ・ベク・キム
ジョン・ピル・キム
Original Assignee
サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150138472A external-priority patent/KR20170039402A/ko
Application filed by サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド filed Critical サムスン・ヘヴィー・インダストリーズ・カンパニー・リミテッド
Publication of JP2018529086A publication Critical patent/JP2018529086A/ja
Application granted granted Critical
Publication of JP6523553B2 publication Critical patent/JP6523553B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • F16L55/30Constructional aspects of the propulsion means, e.g. towed by cables
    • F16L55/32Constructional aspects of the propulsion means, e.g. towed by cables being self-contained
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Robotics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Manipulator (AREA)

Abstract

パイプ非破壊検査装置を提供する。パイプ非破壊検査装置は、ボディ部と、前記ボディ部の外側に展開され、展開された末端に備えられた脚輪をパイプの内壁に密着させて推進力を発生させる走行部と、前記パイプの内部を監視する監視部と、前記監視結果に応じて、前記ボディ部が前記パイプの円周に沿って回転するように前記走行部を制御する走行制御装置と、前記ボディ部に設置され、前記パイプの非破壊検査のための放射線源を末端側に有するフィーディングチューブをガイドするガイドチューブと、前記ガイドチューブを前記ボディ部に対して第1方向に移動させる第1チューブ駆動部とを含む。

Description

本発明は、パイプ非破壊検査装置に係り、より詳しくは、パイプの内部を走行しながら放射線源をパイプの外周縁に設置された放射線フィルムに発生させるパイプ非破壊検査装置に関する。
パイプ溶接後に溶接品質を確認するために、非破壊検査が行われる。非破壊検査の一例として、パイプの溶接面の周囲に沿って放射線フィルムを配置し、パイプの内部に放射線源を挿入して、放射線フィルムに放射線が検出されるか否かによって溶接状態を確認する。放射線源の距離の二乗に反比例して放射線検出量が減少するので、溶接欠陥部分を正確に判断するためには、放射線源をパイプの中心軸上に位置させる必要がある。パイプが曲管である場合には、放射線源をパイプの中心軸上に正確に位置させ難く、これにより非破壊検査の測定精度が低くなることがある。
本発明が解決しようとする課題は、曲管において放射線源をパイプの中心軸上に位置させて非破壊検査の測定精度を高めることができるパイプ非破壊検査装置を提供することにある。
本発明の課題は上述した課題に制限されず、上述していない別の課題は以降の記載から当業者に明確に理解できるだろう。
上記の課題を解決するために、本発明のパイプ非破壊検査装置の一態様(aspect)は、ボディ部と、前記ボディ部の外側に展開され、展開された末端に備えられた脚輪をパイプの内壁に密着させて推進力を発生させる走行部と、前記パイプの内部を監視する監視部と、前記監視結果に応じて、前記ボディ部が前記パイプの円周に沿って回転するように前記走行部を制御する走行制御装置と、前記ボディ部に設置され、前記パイプの非破壊検査のための放射線源を末端側に有するフィーディングチューブをガイドするガイドチューブと、前記ガイドチューブを前記ボディ部に対して第1方向に移動させる第1チューブ駆動部とを含む。
ここで、前記ボディ部の反対側の両側それぞれに走行部が備えられ、前記ボディ部の一側には走行方向に平行な2つ以上の走行部が備えられる。
また、前記走行制御装置は、前記パイプの形状に対応するように、前記複数の走行部それぞれに備えられた脚輪の回転速度を制御する。
また、前記複数の走行部それぞれは、備えられた脚輪を支持する第1レッグ、及び前記第1レッグと一部が重なり合う第2レッグを含み、前記第1レッグ及び前記第2レッグの重畳間隔が調節されることにより、前記ボディ部に対する前記脚輪の距離が調節される。
また、前記ボディ部と前記複数の走行部それぞれに備えられた脚輪との距離は、独立して調節される。
また、前記走行制御装置は、前記監視結果に基づいて、移動方向の前方に障害物が存在するか或いはパイプの内壁の陥没部分が存在する場合、前記ボディ部が前記パイプの円周に沿って回転するように前記走行部を制御する。
また、前記パイプ非破壊検査装置は、前記ボディ部の反対側の両側それぞれに走行部が備えられ、前記ボディ部の反対側の両側それぞれに備えられた走行部の脚輪間の幅を調節する幅調節部をさらに含む。
また、前記幅調節部は、前記走行部の脚輪が前記パイプの内壁を押す力が一定に維持されるように、前記ボディ部の反対側の両側それぞれに備えられた走行部の脚輪間の幅を調節する。
また、前記パイプの内部における前記パイプ非破壊検査装置の位置を判断する位置変位センサーをさらに含み、前記走行制御装置は、前記判断された前記パイプの内部における前記パイプ非破壊検査装置の位置を参照して、前記ボディ部の中心が前記パイプの中心軸に一致するように前記走行部を制御する。
また、前記パイプ非破壊検査装置は、前記ガイドチューブの末端側に露出した前記放射線源が前記パイプの中心軸上に位置するようにする前記ガイドチューブの回動角度を算出し、算出した回動角度に応じて前記第1チューブ駆動部を制御する検査制御装置をさらに含む。
また、前記パイプ非破壊検査装置は、前記ボディ部の前記パイプ内における位置を認識するための位置認識部をさらに含み、前記検査制御装置は、前記ボディ部の位置及び前記パイプの設計情報に基づいて前記ガイドチューブの回動角度を算出する。
また、前記パイプ非破壊検査装置の少なくとも一部が前記パイプの曲管内に位置する場合、前記検査制御装置は、前記ボディ部の位置、前記パイプの内径、及び前記曲管の曲率に基づいて前記ガイドチューブの回動角度を算出する。
また、前記パイプ非破壊検査装置は、前記パイプの溶接部側の外周縁に沿って設置される放射線フィルムをさらに含み、前記検査制御装置は、前記放射線源が前記放射線フィルムの中心部に位置するように前記第1チューブ駆動部を制御する。
また、前記パイプ非破壊検査装置は、前記フィーディングチューブを前記ガイドチューブ内に挿入させて前記フィーディングチューブの放射線源を前記ガイドチューブの末端側へ移送するフィーディング装置をさらに含む。
また、前記フィーディング装置は、前記フィーディングチューブの外周面のギア部に結合されたフィーディングギア部材と、前記フィーディングギア部材を駆動する駆動部材とを含む。
また、前記パイプ非破壊検査装置は、前記ガイドチューブを前記ボディ部に対して前記第1方向と垂直な第2方向に移動させる第2チューブ駆動部をさらに含む。
また、前記パイプ非破壊検査装置は、前記ボディ部のロール角を測定するロール角測定部と、前記ボディ部の位置、前記ボディ部のロール角及び前記パイプの設計情報に基づいて、前記放射線源が前記パイプの中心軸上に位置するようにする前記ガイドチューブの前記第1方向への第1回動角度及び前記第2方向への第2回動角度を算出し、前記第1回動角度に応じて前記第1チューブ駆動部を制御し、前記第2回動角度に応じて前記第2チューブ駆動部を制御する検査制御装置をさらに含む。
その他の実施形態の具体的な事項は、詳細な説明及び図面に含まれている。
本発明の一実施形態に係るパイプ非破壊検査装置100の側面図である。 本発明の一実施形態に係るパイプ非破壊検査装置100の平面図である。 本発明の一実施形態に係るパイプ非破壊検査装置100の正面図である。 図1の「B」部を拡大して示す斜視図である。 図1の「C」部を拡大して示す斜視図である。 本発明の一実施形態に係るパイプ非破壊検査装置の動作及び作用効果を説明するための図である。 本発明の他の実施形態に係るパイプ非破壊検査装置を説明するための図であって、図1の「C」部に相応する部分を示す斜視図である。 図7の実施形態に係るパイプ非破壊検査装置の動作及び作用効果を説明するための平面図である。 図7の実施形態に係るパイプ非破壊検査装置の動作及び作用効果を説明するための平面図である。 図9のD−D’線及びE−E’線に沿った断面図である。 本発明の他の実施形態に係るパイプ非破壊検査装置の斜視図である。 本発明の他の実施形態に係るパイプ非破壊検査装置の左側側面図である。 本発明の他の実施形態に係るパイプ非破壊検査装置の右側側面図である。 本発明の実施形態に係る脚輪間の幅の調節を示す図である。 本発明の実施形態に係る脚輪の長さの調節を示す図である。 本発明の他の実施形態に係る制御装置を示すブロック図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部を走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置が、直径の変更されるパイプの内部を走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置が、直径の変更されるパイプの内部を走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置が曲率区間の含まれているパイプの内部を走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの円周に沿って回転することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部で回転した後に走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部で回転した後に走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部で回転した後に走行することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部における中心位置を判断することを示す図である。 本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部における中心位置を補正することを示す図である。
以下、添付図面を参照して本発明の好適な実施形態を詳細に説明する。
本発明の利点、特徴、及びそれらを達成する方法は、添付図面と共に詳細に後述されている実施形態を参照すると明確になるだろう。しかし、本発明は、以下で開示する実施形態に限定されるものではなく、互いに異なる多様な形態で実現される。但し、本実施形態は、単に本発明の開示を完全たるものにし、本発明の属する技術分野における通常の知識を有する者に発明の範疇を完全に知らせるために提供されるものである。そして、本発明は、請求項の範疇によってのみ定められる。明細書全体にわたり、同一の参照符号は同一の構成要素を指す。
別途の定義がない限り、本発明で使用される全ての用語(技術及び科学的用語を含む)は、本発明の属する技術分野における通常の知識を有する者に共通に理解できる意味で使用できるのである。また、一般に使用される辞書に定義されている用語は、特に定義されていない限り、理想的または過度に解釈されない。
図1は本発明の一実施形態に係るパイプ非破壊検査装置100の側面図、図2は本発明の一実施形態に係るパイプ非破壊検査装置100の平面図、図3は本発明の一実施形態に係るパイプ非破壊検査装置100の正面図である。
図1乃至図3を参照すると、パイプ非破壊検査装置100は、パイプ10の内部を走行しながら、パイプ10の溶接部12の外周縁に沿って設置された放射線フィルム20に向かって放射線源を発生させる。放射線フィルム20から放射線が検出されなければ、パイプ10の溶接部12に欠陥がないと判定される。放射線フィルム20から放射線が検出されれば、パイプ10の溶接部12に欠陥があると判定され、作業者は、放射線が検出された放射線フィルム20の位置に基づいて溶接欠陥位置を把握して該当溶接欠陥位置に対して追加溶接を行う。
パイプ非破壊検査装置100は、ボディ部110、ホイール部120、駆動部130、ガイドチューブ140、第1チューブ駆動部150、位置認識部160、フィーディング装置170及び検査制御装置(図示せず)を含むことができる。
ボディ部110は、パイプ10の中心軸上に位置してパイプ10の内部を走行する。ボディ部110には、ホイール部120、駆動部130、ガイドチューブ140、第1チューブ駆動部150、位置認識部160及びフィーディング装置170が設置される。
ホイール部120は、ボディ部110をパイプ10の内面に支持する。一実施形態において、ホイール部120は走行ホイール121と調節装置122を含むことができる。図示されている例において、走行ホイール121は、ボディ部110の上部と下部にそれぞれ2つずつ、合計4個が設置されているが、走行ホイール121の設置数及び位置は多様に変更できる。
調節装置122は、各走行ホイール121とボディ部110との間隔を調節する。調節装置122は、パイプ10の内径に応じて走行ホイール121とボディ部110との間隔を調節することができる。調節装置122は、油圧シリンダーやモーターなどにより各走行ホイール121の位置を調節することができる。
調節装置122は、各走行ホイール121がパイプ10の中心軸から同じ距離上に配置されるように、走行ホイール121の位置をパイプ10の半径方向に調節することができる。これにより、ボディ部110は、ホイール部120によってパイプ10の中心軸上に位置する。
ホイール部120は、走行ホイール121をパイプ10の内面に加圧するバネなどの緩衝装置を備えることもできる。駆動部130は、ホイール部120を駆動してボディ部110をパイプ10に沿って走行させる。駆動部130としては、走行ホイール121を回転駆動する駆動モーターが提供できる。
フィーディングチューブTは、末端側にパイプ10の非破壊検査のための放射線源Sを備える。放射線源Sは、X線、γ線、β線などの放射線を発生することができる。
ガイドチューブ140は、ボディ部110の前方側に設置され、フィーディングチューブTをガイドする。放射線源Sは、フィーディング装置170によってガイドチューブ140の末端側へ供給される。
図4は図1の「B」部を拡大して示す斜視図である。図4を参照すると、フィーディング装置170は、フィーディングチューブTをガイドチューブ140内に挿入させてフィーディングチューブTの放射線源Sをガイドチューブ140の末端側へ移送することができる。フィーディング装置170は、ボディ部110の後方側に備えられた支持板171、支持板171に設置されたモーターハウジング172、モーターハウジング172内に設置された駆動モーター173(駆動部材)、駆動モーター173の駆動軸に連結されて回転するフィーディングギア部材174、及びフィーディングチューブTが挿入されるようにモーターハウジング172の一側に形成された結合部176を含む。
モーターハウジング172内には、フィーディングチューブTが挿入される挿入管175が設けられる。
挿入管175には開放部が設けられ、開放部を介して、フィーディングチューブTの外面に設けられたギア部にフィーディングギア部材174がギア結合される。駆動モーター173の駆動の際に、フィーディングチューブTは、ボディ部110のガイド管を介してボディ部110の前方側へ移動し、ガイドチューブ140に挿入される。これにより、フィーディングチューブTの末端側に備えられた放射線源Sがガイドチューブ140の先端側を介して露出する。
再び図1乃至図3を参照すると、位置認識部160は、ボディ部110のパイプ10内での位置を認識するために提供される。図示されている例において、位置認識部160は、ガイドチューブ140の末端部の下面に設置されているが、位置認識部160の設置位置はこれに限定されない。一実施形態において、位置認識部160としてはカメラと映像処理部が提供できる。例えば、映像処理部は、カメラによって撮影されたパイプ10の内部の映像から溶接面を認識し、パイプ10内でのボディ部110の位置を認識することができる。他の実施形態において、位置認識部160は、ホイール部120に提供されたエンコーダなどの手段によってボディ部110の移動距離を測定したり、その他の方式でボディ部110の位置を認識したりすることができる。
第1チューブ駆動部150は、ガイドチューブ140をボディ部110に対して第1方向に回動させる。一実施形態において、第1方向はボディ部110の横方向であり得る。
図5は図1の「C」部を拡大して示す斜視図である。図1乃至図3と図5を参照すると、第1チューブ駆動部150は、ボディ部110の前面側に設けられた支持板151、支持板151に固定された駆動ハウジング152、駆動ハウジング152に設置された駆動モーター153、駆動モーター153の駆動軸に結合された駆動プーリー154、ベルト155を介して駆動プーリー154に結合された従動プーリー156、従動プーリー156に結合されて回動し、ガイドチューブ140の一側に結合された回転アーム157、回転アーム157とガイドチューブ140とを連結する連結部材158、及び連結部材158をガイドチューブ140に固定させる固定部材159を含む。
再び図1乃至図3を参照すると、検査制御装置(図示せず)は、ガイドチューブ140の末端側に露出した放射線源Sがパイプ10の中心軸上に位置するようにするガイドチューブ140の回動角度を算出し、算出した回動角度に応じて第1チューブ駆動部150を制御する。これにより、駆動モーター153が駆動し、駆動プーリー154によって従動プーリー156が回転して回転アーム157が回転することにより、ガイドチューブ140が従動プーリー156の中心軸を基準に左右方向に回動する。
検査制御装置は、ボディ部110の位置及びパイプ10の設計情報に基づいてガイドチューブ140の回動角度を算出することができる。図6は本発明の一実施形態に係るパイプ非破壊検査装置の動作及び作用効果を説明するための図である。図6を参照すると、ボディ部110はパイプ10の中心軸上に沿って移動するが、非破壊検査の特性上、放射線源Sはボディ部110の重心に位置することができず、ボディ部110から外部へ露出しなければならないため、非破壊検査装置100の少なくとも一部が曲管に位置した場合、第1チューブ駆動部150によってガイドチューブ140が回動していない状態で、放射線源Sは図6の破線で示されているようにパイプ10の中心軸から離脱する。このような場合、放射線源Sからの距離の二乗に反比例して放射線検出量が減少するため、放射線源Sに近い放射線フィルムからより強い放射線が検出され、放射線源Sから遠い放射線フィルムから弱い放射線が検出されるので、溶接欠陥部分を正確に測定することができないことがある。
本実施形態によれば、ボディ部110の位置及びパイプ10の設計情報(例えば、パイプの内径、曲管の曲率など)に応じて第1チューブ駆動部150を駆動して、図6の実線と矢印で示されているようにガイドチューブ140を回動させ、これにより放射線源Sがパイプ10の中心軸(放射線フィルムの中心部)に位置するようにして、非破壊検査の測定精度を向上させることができる。ガイドチューブ140の如くフィーディングチューブTが屈曲できるように、フィーディングチューブTは柔軟性材質からなってもよい。
図示されている例において、第1チューブ駆動部150は、ガイドチューブ140を回動させるように構成されているが、第1チューブ駆動部150としては、ガイドチューブ140を第1方向(ボディ部の横方向)に直線的に駆動する機構装置が提供でき、放射線源Sがパイプ10の中心軸上に位置するようにガイドチューブ140を移動させるものであれば制限されずに使用できる。
図7は本発明の他の実施形態に係るパイプ非破壊検査装置を説明するための図であって、図1の「C」部に相応する部分を示す斜視図である。図7の実施形態を説明するにあたり、先立って説明した実施形態と同一または相応する構成要素については、重複する説明を省略することができる。パイプ非破壊検査装置100は、ロール角測定部(図示せず)と第2チューブ駆動部180をさらに備えることができる。
ロール角測定部は、ボディ部110に設置されてボディ部110のロール角を測定する。ロール角はボディ部110がパイプ10の中心軸を中心に回転した角度であり得る。一実施形態において、ロール角測定部としては、角速度センサー、地磁気センサー、または慣性測定ユニット(IMU;Inertial Measuring Unit)などの手段が提供できる。
第2チューブ駆動部180は、ガイドチューブ140をボディ部110に対して第1方向(ボディ部の横方向)と垂直な第2方向(ボディ部の縦方向)に回動させることができる。一実施形態において、第2チューブ駆動部180としては、支持板151に設置され、駆動ハウジング152をボディ部110の縦方向に回動させる駆動モーターが提供できるが、ガイドチューブ140をボディ部110の縦方向に移動させることができるものであれば、第2チューブ駆動部180の機構的な構造は特に制限されない。第2チューブ駆動部180の駆動モーターの駆動によって、ガイドチューブ140はボディ部の縦方向に回動する。
検査制御装置は、ボディ部110の位置、ボディ部110のロール角及びパイプ10の設計情報に基づいて、放射線源Sがパイプ10の中心軸上に位置するようにするガイドチューブ140の第1方向への第1回動角度及び第2方向への第2回動角度を算出することができる。検査制御装置は、第1回動角度に応じて第1チューブ駆動部150を制御し、第2回動角度に応じて第2チューブ駆動部180を制御することができる。
図8及び図9は図7の実施形態に係るパイプ非破壊検査装置の動作及び作用効果を説明するための平面図であり、図10は図9のD−D’線及びE−E’線に沿った断面図である。まず、図8を参照すると、ボディ部110は、図2に示されている場合に比べて90°だけ傾いた状態でパイプ10を走行している。図8の実施形態において、検査制御装置は第1チューブ駆動部150ではなく第2チューブ駆動部180を駆動して、ガイドチューブ140をボディ部110の縦方向に回動させ、これにより放射線源Sが放射線フィルム30の中心部に位置するようにして、非破壊検査の測定精度を向上させる。
図9及び図10を参照すると、ボディ部110は、図2に示されている場合に比べて90°よりも小さい角度で傾いた状態でパイプ10を走行している。図10において、図面符号10aは図9のD−D’線に沿ったパイプの断面を示し、図面符号10bは図9のE−E’線に沿ったパイプの断面を示す。ガイドチューブ140が回動していない状態で、ボディ部110の中心はパイプ10の中心点C1上に位置するが、放射線源Sは放射線フィルム40の中心点C2から距離Lだけ離隔している。
検査制御装置は、放射線源Sが放射線フィルム40の中心点C2に位置するように、第1チューブ駆動部150を駆動してガイドチューブ140を第1方向に第1回動角度だけ回動させて放射線源Sをボディ部110の横方向にL1だけ移動させ、第2チューブ駆動部180を第2方向に駆動してガイドチューブ140を第2回動角度だけ回動させて放射線源Sをボディ部110の縦方向にL2だけ移動させる。これにより、放射線源Sが放射線フィルム40の中心部に位置するので、非破壊検査の測定精度が向上する。
図示されている例において、第2チューブ駆動部180は、ガイドチューブ140を回動させるように構成されているが、第2チューブ駆動部180としては、ガイドチューブ140を第2方向(ボディ部の縦方向)に直線的に駆動する機構装置が提供でき、放射線源Sがパイプ10の中心軸上に位置するようにガイドチューブ140を移動させるものであれば特に制限されずに使用できる。
ボディ部110が傾いていない状態でパイプ10の内部を走行することができる場合には、第2チューブ駆動部180は省略されてもよい。例えば、ボディ部110のホイール部に全方向ホイール(オムニホイールまたはメカナムホイール)が備えられており、ボディ部110のロール角を調節することができる場合には、ボディ部110の水平状態を制御することができる。このような場合、第1チューブ駆動部150だけでもガイドチューブ140の末端側に露出した放射線源Sをパイプ10の中心軸上に位置させることができる。
以下、全方向ホイール、特にメカナムホイールを有するパイプ非破壊検査装置を詳細に説明する。
図11は本発明の他の実施形態に係るパイプ非破壊検査装置の斜視図、図12は本発明の他の実施形態に係るパイプ非破壊検査装置の左側側面図、図13は本発明の他の実施形態に係るパイプ非破壊検査装置の右側側面図である。
図11乃至図13を参照すると、パイプ非破壊検査装置101は、ボディ部111、走行部310、320、330、340、幅調節部210、220、監視部410、420、430、位置変位センサー510、520、及び走行制御装置600を含んで構成される。
図示してはいないが、パイプ非破壊検査装置101は、前述したガイドチューブ140、第1チューブ駆動部150、位置認識部160、フィーディング装置170、第2チューブ駆動部180及び検査制御装置を備えることができる。すなわち、パイプ非破壊検査装置101は、放射線源を用いて、パイプ10に形成された溶接部120の欠陥有無を判定することができる。また、パイプ非破壊検査装置101は、前述したロール角測定部を備えてボディ部111のロール角を測定することもできる。一方、ガイドチューブ140、第1チューブ駆動部50、位置認識部160、フィーディング装置170、検査制御装置及びロール角測定部についての説明は前述したので、詳細な説明は省略する。
ボディ部111は、走行部310、320、330、340、幅調節部210、220及び監視部410、420、430を支持する役割を果たす。ボディ部111は一つ以上のフレームが互いに連結されて構成できる。
走行部310、320、330、340は、ボディ部111の外側に展開され、展開された末端に備えられた脚輪をパイプ10の内壁に密着させて推進力を発生させる役割を果たす。
本発明の実施形態に係るパイプ非破壊検査装置101はパイプ10の内部を走行する装置である。したがって、パイプ10の内部でパイプ非破壊検査装置101が姿勢を維持することができるようにするために、ボディ部111の反対側の両側それぞれに走行部310、320、330、340が備えられることが好ましい。ボディ部111の両側に走行部310、320、330、340が展開され、各走行部310、320、330、340の末端に備えられた脚輪がパイプ10の内壁に密着できる。
また、走行部310、320、330、340が備えられたボディ部111の一側には、走行方向、すなわち、パイプ10の長軸に平行な2つ以上の走行部310、320、330、340が備えられ得る。
図12及び図13はボディ部111の上側及び下側に2つの走行部310、320、330、340がそれぞれ備えられたことを示している。以下、ボディ部111の両側はボディ部111の上側及び下側を意味するものとする。また、図12の左側及び図13の右側がボディ部111の前面を示し、図12の右側及び図13の左側がボディ部111の後面を示す。
4つの走行部310、320、330、340の末端に備えられた4つの脚輪がパイプ10の内壁に密着することにより、パイプ非破壊検査装置101は、パイプ10の内部で姿勢を維持することができる。
複数の走行部310、320、330、340それぞれは、幅調節ギア311、321、331、341、第1レッグ313、323、333、343、第2レッグ312、322、332、342、脚輪314、324、334、344及び駆動部315、325、335、345を含むことができる。
幅調節ギア311、321、331、341は、ボディ部111に結合され、結合部分を基準として回転することができる。幅調節ギア311、321、331、341には第2レッグ312、322、332、342が連結できる。また、幅調節ギア311、321、331、341は、幅調節部210、220に備えられた水平ギアにギア結合して、第2レッグ312、322、332、342を回転させる役割を果たす。
ボディ部111の両側に備えられた走行部310、320、330、340の第2レッグ312、322、332、342が回転することにより、両側の脚輪314、324、334、344間の幅が調節できる。両側の脚輪314、324、334、344間の幅の調節についての詳細については、図14を参照して後述する。
第1レッグ313、323、333、343は、脚輪314、324、334、344を支持する役割を果たす。第1レッグ313、323、333、343と第2レッグ312、322、332、342とは、それぞれの一部が重畳するが、第1レッグ313、323、333、343と第2レッグ312、322、332、342との重畳間隔が調節されることにより、ボディ部111に対する脚輪314、324、334、344の距離が調節できる。ボディ部111に対する脚輪314、324、334、344の距離調節についての詳細は、図15を参照して後述する。
脚輪314、324、334、344は、パイプ10の内壁に密着して推進力を発生させる役割を果たす。脚輪314、324、334、344とパイプ10の内壁との摩擦力によってパイプ非破壊検査装置101が移動するのである。
本発明の実施形態に係る脚輪314、324、334、344は、メカナムホイール(mecanum wheel)を含む。これにより、各走行部310、320、330、340に備えられた脚輪314、324、334、344の回転方向を制御することにより、パイプ非破壊検査装置101を前進移動または後退移動させることができ、パイプ10の円周に沿って回転させることもできる。
駆動部315、325、335、345は、駆動力を発生させて脚輪314、324、334、344を回転させる役割を果たす。走行制御装置600の制御信号に基づいて、各駆動部315、325、335、345は脚輪314、324、334、344の回転方向及び回転速度を調節することができる。
幅調節部210、220は、ボディ部111の反対側の両側それぞれに備えられた走行部310、320、330、340の脚輪314、324、334、344間の幅を調節する役割を果たす。図12及び図13に示されているように、ボディ部111の上側及び下側にそれぞれ2つの走行部310、320、330、340が備えられるが、幅調節部210、220は、ボディ部111の前面または後面の両側の脚輪314、324、334、344間の幅を調節することができる。
幅調節部210、220は、ボディ部111の左側及び右側にそれぞれ備えられ得る。図12に示されているように、ボディ部111の左側に備えられた幅調節部210は、ボディ部111の後面の両側に備えられた脚輪314、324、334、344間の幅を調節することができる。これと同様に、図13に示されているように、ボディ部111の右側に備えられた幅調節部220は、ボディ部111の前面の両側に備えられた脚輪314、324、334、344間の幅を調節することができる。
幅調節部210、220は、シリンダー211、221、ピストン212、222及びギア部213、223を含んで構成される。シリンダー211、221は、内部で圧力を発生させてピストン212、222を押したり引いたりすることができる。シリンダー211、221が押す力を発生することにより、外部に露出したピストン212、222の長さが長くなり、シリンダー211、221が引く力を発生することにより、外部に露出したピストン212、222の長さが短くなることができる。
ピストン212、222の末端にはギア部213、223が連結される。ギア部213、223は、ピストン212、222の移動に伴ってボディ部111の前面及び後面を連結する方向に水平移動することができる。ギア部213、223の上側及び下側には水平ギアが備えられる。水平ギアは走行部310、320、330、340の幅調節ギア311、321、331、341にギア結合できる。水平ギアが水平移動することにより、幅調節ギア311、321、331、341がボディ部111を基準に回転する。幅調節ギア311、321、331、341が回転することにより、幅調節ギア311、321、331、341に連結された第2レッグ312、322、332、342もボディ部111を基準に回転し、これによりボディ部111を基準に両側の脚輪314、324、334、344間の間隔が調節される。
監視部410、420、430は、パイプ10の内部を監視する役割を果たす。具体的に、監視部は走行方向の前面及び後面を監視することができる。このために、ボディ部111には、前面及び後面を監視する監視部410、420がそれぞれ備えられ得る。
また、前方に存在する障害物、パイプの内壁の陥没部分または関心ポイントに対する詳細な監視のために、前方の側面を監視する監視部430が備えられてもよい。
カメラなどの映像撮像装置が監視部410、420、430の役割を果たすことができる。また、監視部410、420、430には、前方の視界確保のための光を照射する光源が含まれてもよい。
位置変位センサー510、520は、パイプの内部におけるパイプ非破壊検査装置101の位置を感知する役割を果たす。例えば、位置変位センサー510、520は、パイプの内部におけるボディ部111の位置を感知することができる。
本発明の実施形態に係るパイプ非破壊検査装置101は、その中心がパイプ10の中心軸に沿って走行を行うことが好ましい。パイプ非破壊検査装置101の中心がパイプ10の中心軸から外れた場合、走行部310、320、330、340または幅調節部210、220に不要な負荷がかかるおそれがある。
一方、重力またはその他の様々な要因により、パイプ非破壊検査装置101の中心がパイプ10の中心軸から外れることがある。
位置変位センサー510、520はパイプ内壁との距離を判断することができる。例えば、位置変位センサー510、520は、レーザーをパイプの内壁に照射し、反射された光を用いてパイプ内壁との距離を判断することができる。2つの位置変位センサー510、520は、互いに反対方向にレーザーを照射することができるが、各位置変位センサー510、520によって感知された距離を参照して、パイプ非破壊検査装置101の中心がパイプ10の中心軸に一致するか否かを判断することができる。
感知された距離を用いて、パイプ非破壊検査装置101の中心とパイプ10の中心軸とが一致するか否かを判断することは、走行制御装置600によって行われ得る。
また、走行制御装置600は、監視部410、420、430の監視結果に基づいて、ボディ部111がパイプ10の円周に沿って回転するように走行部310、320、330、340を制御する役割を果たす。前述したように、本発明の脚輪314、324、334、344は、メカナムホイールであってもよく、その回転方向に応じてボディ部111の前進、後進及び回転が可能である。走行制御装置600は、各走行部310、320、330、340を制御して、ボディ部111がパイプ10の円周に沿って回転するように脚輪314、324、334、344の回転方向を決定することができる。
また、走行制御装置600は、走行部310、320、330、340、幅調節部210、220及び監視部410、420、430に対する全般的な制御を行うことができる。
図14は本発明の実施形態に係る脚輪間の幅の調節を示す図である。
図14を参照すると、ギア部213の水平移動によって、ボディ部111の両側に備えられた脚輪314、324間の幅が調節できる。
シリンダー211による圧力によって、ピストン212、及びピストン212に連結されたギア部213が水平移動する。ギア部213の上側及び下側には水平ギアが備えられるが、水平ギアは走行部310、320の幅調節ギア311、32にギア結合されている。このため、水平ギアが水平移動することにより、幅調節ギア311、321はボディ部111との連結部分を基準に回転する。
また、幅調節ギア311、321は、走行部310、320の第2レッグ312、322に連結されるが、幅調節ギア311、321が回転することにより、第2レッグ312、322もボディ部111を基準に回転する。第2レッグ312、322は、第1レッグ313、323に連結されており、第1レッグ313、323の末端に脚輪314、324が備えられる。結局、幅調節ギア311、321の回転によって走行部310、320全体がボディ部111の連結ポイントを基準に回転する。
図示の如く、上側及び下側に備えられた走行部310、320は、ボディ部111との連結部分で斜めに展開されており、ボディ部111を基準に対称的に配置されている。
したがって、走行部310、320の回転によってボディ部111と脚輪314、324との距離が変わり、最終的には両側の脚輪314、324間の幅が調節される。
幅調節部210、220は、走行部310、320の脚輪314、324がパイプ10の内壁を押す力が一定に維持されるようにボディ部111の反対側の両側それぞれに備えられた走行部310、320の脚輪314、324間の幅を調節することができる。言い換えれば、幅調節部210、220は、パイプ10の内径に対応するようにボディ部111の反対側の両側それぞれに備えられた走行部310、320の脚輪314、324間の幅を調節することができる。
脚輪314、324がパイプ10の内壁を押す力が強い場合、幅調節部210、220は両側の脚輪314、324間の幅を減少させ、脚輪314、324がパイプ10の内壁を押す力が弱い場合、幅調節部210、220は両側の脚輪314、324間の幅を増加させることができる。
または、幅調節部210、220は、監視部410、420、430によって監視された結果を参照して、両側の脚輪314、324間の幅を調節することもできる。すなわち、監視部410、420、430によって監視された結果に基づいて、パイプ10の内径が決定され、幅調節部210、220は、決定されたパイプ10の内径に対応するように両側の脚輪314、324間の幅を予め調節する。監視部410、420、430の監視結果を参照したパイプ10の内径の決定は走行制御装置600によって実行できる。
幅調節部210、220によって両側の脚輪314、324間の幅が調節されることにより、各脚輪314、324がパイプ10の内壁を押す力が均一に維持され得る。
一方、図14はボディ部111の左側に備えられた幅調節部210によって後面の両側の脚輪314、324間の幅が調節されることを示しているが、ボディ部111の右側に備えられた幅調節部220による前面の両側の脚輪334、344間の幅もこれと同様に調節できる。
図15は本発明の実施形態に係る脚輪の長さの調節を示す図である。
図15を参照すると、第1レッグ313と第2レッグ312との重畳程度に応じて、ボディ部111と脚輪314との距離が変わり得る。
第1レッグ313の末端には脚輪314が備えられ、第2レッグ312はボディ部111に回転可能に連結される。また、第1レッグ313と第2レッグ312とはそれぞれの一部が重畳するが、その重畳程度に応じてボディ部111と脚輪314との距離が変わる。すなわち、第1レッグ313と第2レッグ312との重畳距離が長くなると、ボディ部111と脚輪314との距離が短くなり、第1レッグ313と第2レッグ312との重畳距離が短くなると、ボディ部111と脚輪314との距離が長くなる。
第1レッグ313、323、333、343と第2レッグ312、322、332、342との重畳程度は能動的に行われてもよく、受動的に行われてもよい。
たとえば、ユーザーは、直接、第2レッグ312、322、332、342に対する第1レッグ313、323、333、343の長さを調節することもできる。パイプ10の内部に配置されたパイプ非破壊検査装置101の姿勢を微細調節するために、ユーザーは各第2レッグ312、322、332、342に対する第1レッグ313、323、333、343の長さを調節することができる。
パイプ非破壊検査装置101の姿勢を微細調節する別途の駆動部(図示せず)が備えられ、第2レッグ312、322、332、342に対する第1レッグ313、323、333、343の長さを調節することもできる。
一方、脚輪314、324、334、344に加わる圧力に応じて、各走行部310、320、330、340別に、第2レッグ312、322、332、342に対する第1レッグ313、323、333、343の長さが調節できる。例えば、パイプ10の内壁に存在する障害物が特定の脚輪に圧力を加える場合、該当圧力によって、第1レッグ313、323、333、343と第2レッグ312、322、332、342との重畳長さが長くなることができる。
このとき、障害物による圧力が除去される場合、第1レッグ313、323、333、343と第2レッグ312、322、332、342との重畳長さは元の状態に復帰することができる。このため、第1レッグ313、323、333、343と第2レッグ312、322、332、342との重畳長さを維持させる弾性手段(図示せず)が備えられ得る。弾性手段は、障害物が加える衝撃または圧力を緩和させてボディ部111に伝達する役割を果たすものと理解できる。
図15はボディ部111の後面の上側に備えられた走行部310の長さの調節を示しているが、残りの走行部320、330、340もこれと同様の長さ調節動作を行うことができる。このとき、ボディ部111と複数の走行部310、320、330、340それぞれに備えられた脚輪314、324、334、344との距離は独立して調節できる。これにより、各脚輪314、324、334、344に発生した衝撃が、各第1レッグ313、323、333、343及び第2レッグ312、322、332、342によって緩衝できる。
図16は本発明の他の実施形態に係る走行制御装置を示すブロック図である。
図16を参照すると、走行制御装置600は、入力部610、保存部620、制御部630及び出力部640を含んで構成される。
入力部610は、監視部410、420、430によって監視された結果の入力を受ける役割を果たす。また、本発明の実施形態に係るパイプ非破壊検査装置101には、監視部410、420、430だけでなく、重力方向を感知する、或いは脚輪314、324、334、344がパイプ10の内壁を押す力などを感知する様々なセンサーが備えられ得る。このため、入力部610は、パイプ非破壊検査装置101に備えられた様々なセンサーの感知結果を受信する役割を果たすこともできる。
また、本発明の実施形態に係るパイプ非破壊検査装置101は、ユーザーによる手動操縦が可能である。これにより、入力部610はユーザーのコマンドの入力を受けることができる。
入力部610は、有線または無線の通信方式で監視部410、420、430、センサーまたはユーザーから感知情報またはコマンドなどの入力情報の入力を受けることができる。
制御部630は、入力部610から伝達された入力情報を参照して、パイプ非破壊検査装置101に対する全般的な制御を行う。
例えば、制御部630は、位置変位センサー510、520から伝達された距離情報を用いて、ボディ部111の中心がパイプ10の中心軸に一致するように走行部310、320、330、340を制御することができる。走行部310、320、330、340に備えられた脚輪314、324、334、344がメカナムホイールであるので、パイプ非破壊検査装置101は、パイプ10の中心軸に対して垂直方向に移動してその中心をパイプ10の中心軸に一致させることができる。
また、制御部630は、監視部410、420、430の監視結果を参照して、ボディ部111がパイプ10の円周に沿って回転するように走行部310、320、330、340を制御することができる。監視部410、420、430の監視結果に基づいて、移動方向の前方に障害物が存在するか或いはパイプの内壁の陥没部分が存在する場合、制御部630は、ボディ部111がパイプ10の円周に沿って回転するように走行部310、320、330、340を制御する。
制御部630は、障害物または陥没部分の大きさや位置などを考慮して、パイプ10の円周に沿って回転するボディ部111の回転角度を決定することができる。制御部630は、パイプ非破壊検査装置101が障害物または陥没部分を回避して走行することができるようにするために、ボディ部111を回転させることができる。但し、障害物または陥没部分の大きさが十分に小さい場合、制御部630はボディ部111の回転なしに走行するようにすることもできる。
また、制御部630は、両側の脚輪314、324、334、344がパイプ10の内壁を押す力を参照して、両側の脚輪314、324、334、344間の幅が変更されるように幅調節部210、220を制御することができる。脚輪314、324、334、344がパイプ10の内壁を押す力が強い場合、制御部630は、両側の脚輪314、324、334、344間の幅が減少するように幅調節部210、220を制御することができる。これと同様に、脚輪314、324、334、344がパイプ10の内壁を押す力が弱い場合、制御部630は、両側の脚輪314、324、334、344間の幅が増加するように幅調節部210、220を制御することができる。
また、制御部630は、パイプ10の形状に対応するように、複数の走行部310、320、330、340それぞれに備えられた脚輪314、324、334、344の回転速度を制御することができる。走行前方のパイプ10に屈曲がある状態ですべての脚輪314、324、334、344の回転速度が同じであれば、一部の脚輪にスリップが発生するおそれがある。このため、制御部630は、監視部410、420、430または他のセンサーから入力された入力情報を参照して、パイプ10の形状に対応するように各脚輪314、324、334、344の回転速度を制御することができる。
また、制御部630は、監視部410、420、430及びその他のセンサー(図示せず)を制御することができる。例えば、制御部630は監視部410、420、430及びセンサーの動作有無を制御することができる。
制御部630は走行部310、320、330、340、幅調節部210、220、監視部410、420、430及びその他のセンサー(図示せず)を制御するための制御コマンドを生成し、生成された制御コマンドは出力部640によって出力できる。出力部640によって出力された制御コマンドが各モジュールに伝達されることにより、該当モジュールは対応する動作を行う。
保存部620は、入力部610を介して入力された入力情報及び出力部640を介して出力される制御コマンドを一時的または永続的に保存する役割を果たす。入力部610を介して入力された情報は、制御部630による制御に使用されるだけでなく、観測用途にも使用できる。例えば、パイプ10を走行しながら感知された情報は追ってユーザーに伝達され、ユーザーは該当情報を介してパイプ10の内部状態などを判断することができる。または、パイプ10を走行しながら感知された情報は、出力部640を介してリアルタイムでユーザーに伝達されることも可能である。
また、保存部620は、予め設定されたユーザーコマンドを保存することができる。制御部630は、保存部620に保存されたユーザーコマンドを参照して、自動的に対応する動作が行われるように各モジュールを制御することができる。
以下、図17乃至図26を参照して、パイプの内部を移動するパイプ非破壊検査装置の走行様相を説明する。説明の便宜のために、図17乃至図26ではパイプ非破壊検査装置の詳細な構成要素の図面符号は省略する。省略された図面符号に対応する構成要素は、図12、図13及び図16に示されているのと同一である。
図17は本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部を走行することを示す図である。
図17を参照すると、パイプ非破壊検査装置101はパイプ10の内部を走行することができる。パイプ10の内部を走行しながら、パイプ非破壊検査装置101は、備えられた監視部410、420、430及びセンサーなどを用いてパイプ内部の状態情報を収集することができる。また、パイプ非破壊検査装置101は、放射線源を用いて、パイプ10に形成された溶接部120の欠陥有無を判定することもできる。
図17は直径が一定なパイプ10を示しているが、各脚輪がパイプの内壁を押す力は均一に維持できる。幅調節部210、220は、各脚輪が均一な力でパイプの内壁を押すことができるように、両側の脚輪間の幅を調節することができる。各脚輪が均一な力でパイプの内壁を押しながら走行することにより、パイプ非破壊検査装置101はより安定した姿勢で走行することができる。
図18及び図19は本発明の他の実施形態に係るパイプ非破壊検査装置が直径の変更されるパイプの内部を走行することを示す図である。
図18を参照すると、パイプ非破壊検査装置101は、漸次直径が増加するパイプ10を走行することができる。本発明の実施形態に係るパイプ非破壊検査装置101は、2つの幅調節部210、220を備えている。2つの幅調節部210、220のうち、いずれか一方は前面の両側の脚輪間の幅を調節し、もう一方は後面の両側の脚輪間の幅を調節する。
2つの幅調節部210、220が前面の両側の脚輪間の幅及び後面の両側の脚輪間の幅を独立して調節することにより、漸次直径が変更されるパイプ10をパイプ非破壊検査装置101が走行しても、各脚輪がパイプの内壁を押す力は均一に形成できる。
このため、漸次直径が変更されるパイプ10の内部でも、パイプ非破壊検査装置101は安定した姿勢で走行することができる。
一方、パイプ10の直径があまり大きい理由により、幅調節部210、220によって幅を調節しても、対応する脚輪が十分な力でパイプの内壁を押すことができないこともある。このような場合、対応する脚輪の第2レッグに対する第1レッグの長さが調節されることにより、脚輪がパイプの内壁を押す力を補うこともできる。
図19を参照すると、パイプ非破壊検査装置101は、互いに異なる直径の区間10a、10b、10cを有するパイプ10の内部を走行することができる。
前述したように、2つの幅調節部210、220が前面の両側の脚輪間の幅及び後面の両側の脚輪間の幅を独立して調節することにより、直径の変更されるパイプ10a、10b、10cでパイプ非破壊検査装置101が走行しても、各脚輪がパイプの内壁を押す力は均一に形成できる。
または、本発明の他の実施形態によれば、制御部630が走行経路上の前方状態を参照して幅調節部210、220を制御することもできる。
10a区間を走行しているパイプ非破壊検査装置101の制御部630は、監視部410、430によって監視された結果を参照して、前方にある10b区間の直径が変更されることを認識することができる。このため、パイプ非破壊検査装置101が10b区間に進入し次第、制御部630は幅調節部210、220を制御することにより、両側の脚輪間の幅が増加するように調節することができる。このとき、制御部630は、前面の両側の脚輪間の幅が増加した後に後面の両側の脚輪間の幅が増加するように、幅調節部210、220を制御することができる。
これと同様に、10b区間を走行しているパイプ非破壊検査装置101の制御部630は、監視部410、430によって監視された結果を参照して、前方にある10c区間の直径が変更されることを認識することができる。このため、パイプ非破壊検査装置101が10c区間に進入し次第、制御部630は幅調節部210、220を制御することにより、両側の脚輪間の幅が減少するように調節することができる。このとき、制御部630は、前面の両側の脚輪間の幅が減少した後に後面の両側の脚輪間の幅が減少するように、幅調節部210、220を制御することができる。
図20は本発明の他の実施形態に係るパイプ非破壊検査装置が曲率区間の含まれているパイプの内部を走行することを示す図である。
図20を参照すると、パイプ非破壊検査装置101はパイプ10の曲率区間を走行することができる。一方、図示の如く、パイプ非破壊検査装置101が走行する場合、曲率の内側にあるパイプの内壁に接した脚輪の回転数と、曲率の外側にあるパイプの内壁に接した脚輪の回転数とは互いに異なる。
したがって、曲率区間で全ての脚輪の回転速度を同一にする場合、スリップが発生してパイプ非破壊検査装置101の姿勢が不安定になるおそれがある。
このため、制御部630は、曲率区間でも安定した走行が可能であるように、各脚輪の回転速度を制御することができる。例えば、制御部630は、曲率の内側にあるパイプの内壁に接した脚輪の回転速度が減少し、曲率の外側にあるパイプの内壁に接した脚輪の回転速度が増加するように、各走行部310、320、330、340を制御することができる。
移動距離に対応するように各脚輪の回転速度が調節されることにより、パイプ非破壊検査装置101は、より安定した姿勢で走行することができる。
図21は本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの円周に沿って回転することを示す図である。
図21を参照すると、パイプ非破壊検査装置101は、パイプ10の内部で円周に沿って回転することができる。本発明の実施形態に係る脚輪は、メカナムホイールであり得るが、制御部630は、各走行部310、320、330、340に備えられた脚輪の回転方向を制御して、パイプ非破壊検査装置101がパイプ10の円周に沿って回転するようにすることができる。
制御部630は、パイプ非破壊検査装置101の回転方向、回転角度及び回転速度などを制御することができる。
図22乃至図24は本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部で回転した後に走行することを示す図である。
図22を参照すると、パイプ非破壊検査装置101は、パイプ10の曲率区間を走行することができる。各脚輪の回転速度の制御が可能な場合、図20に示すような走行が可能である。しかし、各脚輪の回転速度の制御が可能でない状態で図20に示されているように走行すると、パイプ非破壊検査装置101の姿勢が不安定になるおそれがある。
このため、本発明の実施形態に係るパイプ非破壊検査装置101は、パイプ10の外周に沿って回転した後に曲率区間を走行することができる。
図22に示されているように走行する場合、曲率区間で両側の脚輪が走行しなければならない距離は同一になる。このため、各脚輪が同じ回転速度で回転しても、スリップなしで安定した走行が可能になる。
図23を参照すると、パイプ非破壊検査装置101は、前方にパイプの内壁の陥没部分がある場合、パイプの内壁の外周に沿って回転した後に走行を持続することができる。
図23で初期の姿勢をそのまま維持して走行する場合、一側の脚輪が陥没部分に陥るおそれがある。これを防止するために、監視部410、430による監視結果に基づいて、制御部630は、前方に陥没部分が存在すると判断される場合、走行部310、320、330、340を制御して、パイプ非破壊検査装置101がパイプの内壁の外周に沿って回転するようにすることができる。
図24を参照すると、パイプ非破壊検査装置101は、前方に障害物OBがある場合、パイプの内壁の外周に沿って回転した後に走行を持続することができる。
図24で初期の姿勢をそのまま維持して走行する場合、一側の脚輪が障害物OBにひっかかるおそれがある。これを防止するために、監視部410、430による監視結果に基づいて、制御部630は前方に障害物OBが存在すると判断される場合、走行部310、320、330、340を制御して、パイプ非破壊検査装置101がパイプの内壁の外周に沿って回転するようにすることができる。
図25は本発明の他の実施形態に係るパイプ非破壊検査装置がパイプの内部での中心位置を判断することを示す図であり、図26は本発明の一実施形態に係るパイプ非破壊検査装置がパイプの内部で中心位置を補正することを示す図である。
図25を参照すると、位置変位センサー510、520はパイプ内でのパイプ非破壊検査装置の位置を判断することができる。
2つの位置変位センサー510、520がパイプ非破壊検査装置101に備えられ得るが、各位置変位センサー510、520は、パイプの内壁にレーザーを照射し、反射された光を用いてパイプとの距離を判断することができる。
位置変位センサー510、520によって感知された距離情報は走行制御装置に伝達され、走行制御装置は伝達された情報を参照してパイプの中心軸PCに対するパイプ非破壊検査装置101の位置を判断することができる。
走行制御装置は、パイプ非破壊検査装置101の中心RCがパイプの中心軸PCに一致するように走行部310、320、330、340を制御することができる。走行部310、320、330、340の脚輪がメカナムホイールであるので、パイプ非破壊検査装置はパイプの中心軸PCに垂直な方向に移動することができる。このため、パイプ非破壊検査装置101の中心RCとパイプの中心軸PCとが一致することができる。
以上、添付図面を参照して本発明の実施形態を説明したが、本発明の属する技術分野における通常の知識を有する者は、本発明がその技術的思想や必須の特徴を変更せずに他の具体的な形態に実施できることを理解することができるだろう。したがって、以上で記述した実施形態は、すべての面で例示的なもので、限定的なものではないと理解すべきである。
10 パイプ
12 溶接部
20 放射線フィルム
30 放射線フィルム
32 幅調節ギア
40 放射線フィルム
50 第1チューブ駆動部
100 パイプ非破壊検査装置
110 ボディ部
120 ホイール部
130 駆動部
140 ガイドチューブ
150 第1チューブ駆動部
160 位置認識部
170 フィーディング装置
180 第2チューブ駆動部
210 幅調節部
220 幅調節部
310 走行部
320 走行部
330 走行部
335 駆動部
340 走行部
410 監視部
420 監視部
430 監視部
510 位置変位センサー
520 位置変位センサー

Claims (17)

  1. ボディ部と、
    前記ボディ部の外側に展開され、展開された末端に備えられた脚輪をパイプの内壁に密着させて推進力を発生させる走行部と、
    前記パイプの内部を監視する監視部と、
    前記監視結果に応じて、前記ボディ部が前記パイプの円周に沿って回転するように前記走行部を制御する走行制御装置と、
    前記ボディ部に設置され、前記パイプの非破壊検査のための放射線源を末端側に有するフィーディングチューブをガイドするガイドチューブと、
    前記ガイドチューブを前記ボディ部に対して第1方向に移動させる第1チューブ駆動部とを含む、パイプ非破壊検査装置。
  2. 前記ボディ部の反対側の両側それぞれに走行部が備えられ、
    前記ボディ部の一側には走行方向に平行な2つ以上の走行部が備えられる、請求項1に記載のパイプ非破壊検査装置。
  3. 前記走行制御装置は、前記パイプの形状に対応するように、前記複数の走行部それぞれに備えられた脚輪の回転速度を制御する、請求項2に記載のパイプ非破壊検査装置。
  4. 前記複数の走行部それぞれは、備えられた脚輪を支持する第1レッグ、及び前記第1レッグと一部が重なり合う第2レッグを含み、前記第1レッグと前記第2レッグとの重畳間隔が調節されることにより、前記ボディ部に対する前記脚輪の距離が調節される、請求項1に記載のパイプ非破壊検査装置。
  5. 前記ボディ部と前記複数の走行部それぞれに備えられた脚輪との距離は独立して調節される、請求項4に記載のパイプ非破壊検査装置。
  6. 前記走行制御装置は、前記監視結果に基づいて、移動方向の前方に障害物が存在するか或いはパイプの内壁の陥没部分が存在する場合、前記ボディ部が前記パイプの円周に沿って回転するように前記走行部を制御する、請求項1に記載のパイプ非破壊検査装置。
  7. 前記ボディ部の反対側の両側それぞれに走行部を備え、
    前記ボディ部の反対側の両側それぞれに備えられた走行部の脚輪間の幅を調節する幅調節部をさらに含む、請求項1に記載のパイプ非破壊検査装置。
  8. 前記幅調節部は、前記走行部の脚輪が前記パイプの内壁を押す力が一定に維持されるように、前記ボディ部の反対側の両側それぞれに備えられた走行部の脚輪間の幅を調節する、請求項7に記載のパイプ非破壊検査装置。
  9. 前記パイプの内部における前記パイプ非破壊検査装置の位置を判断する位置変位センサーをさらに含み、
    前記走行制御装置は、前記判断された前記パイプの内部における前記パイプ非破壊検査装置の位置を参照して、前記ボディ部の中心が前記パイプの中心軸に一致するように前記走行部を制御する、請求項1に記載のパイプ非破壊検査装置。
  10. 前記ガイドチューブの末端側に露出した前記放射線源が前記パイプの中心軸上に位置するようにする前記ガイドチューブの回動角度を算出し、算出した回動角度に応じて前記第1チューブ駆動部を制御する検査制御装置をさらに含む、請求項1に記載のパイプ非破壊検査装置。
  11. 前記ボディ部の前記パイプ内における位置を認識するための位置認識部をさらに含み、
    前記検査制御装置は、前記ボディ部の位置及び前記パイプの設計情報に基づいて前記ガイドチューブの回動角度を算出する、請求項10に記載のパイプ非破壊検査装置。
  12. 前記パイプ非破壊検査装置の少なくとも一部が前記パイプの曲管内に位置する場合、前記検査制御装置は、前記ボディ部の位置、前記パイプの内径、及び前記曲管の曲率に基づいて前記ガイドチューブの回動角度を算出する、請求項10に記載のパイプ非破壊検査装置。
  13. 前記パイプの溶接部側の外周縁に沿って設置される放射線フィルムをさらに含み、
    前記検査制御装置は、前記放射線源が前記放射線フィルムの中心部に位置するように前記第1チューブ駆動部を制御する、請求項10に記載のパイプ非破壊検査装置。
  14. 前記フィーディングチューブを前記ガイドチューブ内に挿入させて前記フィーディングチューブの放射線源を前記ガイドチューブの末端側へ移送するフィーディング装置をさらに含む、請求項1に記載のパイプ非破壊検査装置。
  15. 前記フィーディング装置は、
    前記フィーディングチューブの外周面のギア部に結合されたフィーディングギア部材と、
    前記フィーディングギア部材を駆動する駆動部材とを含む、請求項14に記載のパイプ非破壊検査装置。
  16. 前記ガイドチューブを前記ボディ部に対して前記第1方向と垂直な第2方向に移動させる第2チューブ駆動部をさらに含む、請求項1に記載のパイプ非破壊検査装置。
  17. 前記ボディ部のロール角を測定するロール角測定部と、
    前記ボディ部の位置、前記ボディ部のロール角及び前記パイプの設計情報に基づいて、前記放射線源が前記パイプの中心軸上に位置するようにする前記ガイドチューブの前記第1方向への第1回動角度及び前記第2方向への第2回動角度を算出し、前記第1回動角度に応じて前記第1チューブ駆動部を制御し、前記第2回動角度に応じて前記第2チューブ駆動部を制御する検査制御装置をさらに含む、請求項16に記載のパイプ非破壊検査装置。
JP2018506279A 2015-09-25 2016-09-23 パイプ非破壊検査装置 Active JP6523553B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020150136072 2015-09-25
KR10-2015-0136072 2015-09-25
KR10-2015-0138472 2015-10-01
KR1020150138472A KR20170039402A (ko) 2015-10-01 2015-10-01 이동 로봇
PCT/KR2016/010656 WO2017052265A1 (ko) 2015-09-25 2016-09-23 파이프 비파괴 검사 장치

Publications (2)

Publication Number Publication Date
JP2018529086A true JP2018529086A (ja) 2018-10-04
JP6523553B2 JP6523553B2 (ja) 2019-06-05

Family

ID=58386588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018506279A Active JP6523553B2 (ja) 2015-09-25 2016-09-23 パイプ非破壊検査装置

Country Status (4)

Country Link
JP (1) JP6523553B2 (ja)
CN (1) CN107923564B (ja)
SG (1) SG11201800728PA (ja)
WO (1) WO2017052265A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108533885A (zh) * 2018-04-27 2018-09-14 国网浙江省电力有限公司信息通信分公司 一种智慧巡检移动终端
CN109374654A (zh) * 2018-09-27 2019-02-22 北海智联投资有限公司 一种周向x射线机专用爬行辅助调整设备
CN109374655A (zh) * 2018-09-27 2019-02-22 北海智联投资有限公司 一种定向x射线机专用爬行辅助调整设备
WO2020234786A1 (en) * 2019-05-23 2020-11-26 Sensima Inspection Sàrl Rotatable inspection device for defect detection
CN110260094B (zh) * 2019-05-30 2024-07-02 国网浙江宁波市鄞州区供电有限公司 行走式管道长度测量装置
CN111120775B (zh) * 2019-11-29 2024-05-14 沈阳工业大学 一种主动旋转避障式管道机器人
CN111060592B (zh) * 2019-12-11 2022-07-12 宁波明峰检验检测研究院股份有限公司 基于射线检测的自动扫查装置及其在管道内的行径方法
CN112178356A (zh) * 2020-09-30 2021-01-05 安徽赛安安全设备有限责任公司 一种管道内部气体检测装置
CN113464768A (zh) * 2021-06-29 2021-10-01 国网黑龙江省电力有限公司电力科学研究院 一种锅炉用于运行期金属管道无损检测机器人
CN114414630A (zh) * 2022-03-29 2022-04-29 东营市特种设备检验研究院 一种石油化工生产用工业锅炉检测装置及检测方法
CN114669883A (zh) * 2022-04-12 2022-06-28 武汉飞能达激光技术有限公司 一种用于身管内壁的激光毛化方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553718U (ja) * 1978-06-22 1980-01-11
US4467212A (en) * 1981-05-11 1984-08-21 Olcott Donald J Radioactive source pigtail inspection apparatus and method
JPH0687857U (ja) * 1993-06-01 1994-12-22 石川島播磨重工業株式会社 配管内検査具位置決め装置
JP2000006795A (ja) * 1998-06-24 2000-01-11 Hitachi Zosen Corp 管内走行ロボット
KR200436664Y1 (ko) * 2007-04-16 2007-09-18 유영검사 주식회사 비파괴검사에서의 방사선사고방지를 위한 방사선방출부 정위치구동장치
JP2014166806A (ja) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd 管内走行装置及び管内検査装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855521B1 (ko) * 2007-02-27 2008-09-01 주식회사 두배시스템 배관 내부 검사용 이동로봇
KR100997320B1 (ko) * 2008-09-24 2010-11-29 주식회사 디섹 배관 방사선 촬영을 위한 방사성동위원소 센터링장치
KR101244361B1 (ko) * 2013-01-04 2013-03-18 주식회사 가우스 파이프 청소 로봇
KR101506093B1 (ko) * 2013-10-28 2015-03-26 가천대학교 산학협력단 하수도관 평판형 관측 장치
KR101383855B1 (ko) * 2013-10-29 2014-04-10 (주)로터스지이오 반전방식 uv 경화 관로 보수용 uv광 발생장치 및 이를 이용한 관로 보수공법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553718U (ja) * 1978-06-22 1980-01-11
US4467212A (en) * 1981-05-11 1984-08-21 Olcott Donald J Radioactive source pigtail inspection apparatus and method
JPH0687857U (ja) * 1993-06-01 1994-12-22 石川島播磨重工業株式会社 配管内検査具位置決め装置
JP2000006795A (ja) * 1998-06-24 2000-01-11 Hitachi Zosen Corp 管内走行ロボット
KR200436664Y1 (ko) * 2007-04-16 2007-09-18 유영검사 주식회사 비파괴검사에서의 방사선사고방지를 위한 방사선방출부 정위치구동장치
JP2014166806A (ja) * 2013-02-28 2014-09-11 Mitsubishi Heavy Ind Ltd 管内走行装置及び管内検査装置

Also Published As

Publication number Publication date
SG11201800728PA (en) 2018-02-27
CN107923564A (zh) 2018-04-17
CN107923564B (zh) 2020-06-16
WO2017052265A1 (ko) 2017-03-30
JP6523553B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6523553B2 (ja) パイプ非破壊検査装置
KR101814635B1 (ko) 파이프 비파괴 검사 장치
US20110198075A1 (en) In-pipe work device
KR101628253B1 (ko) 초음파 탐지 장치
JP5574861B2 (ja) 配管減肉測定装置
KR102083129B1 (ko) 자기 위치 추종 기능을 가진 배관 내부 검사용 주행체
KR20170039402A (ko) 이동 로봇
JP2015001501A (ja) 非破壊検査システム及び非破壊検査用移動体
JP2006234525A (ja) 管内調査装置
KR101311357B1 (ko) 레이저 프로파일러를 이용한 하수관의 내부 탐사장치
JP2019138755A (ja) 管内走行装置
KR101525217B1 (ko) 용접선 추종이 가능한 자율 주행식 강관 용접장치
KR101080976B1 (ko) 관로 조사용 자주차
JP2016094094A (ja) 車両床下検査装置
JPH0616949B2 (ja) 管内溶接位置測定装置
JP5740283B2 (ja) 配管厚測定装置
JP2007263578A (ja) 管内検査装置
JP3022076B2 (ja) 遠隔操縦車両用ケーブル状態制御装置
JP2023107345A (ja) 超音波探傷装置及び超音波探傷方法
KR20220075796A (ko) 배관검사로봇 및 이의 동작방법
JP2017037056A (ja) 管内面検査装置および管内面検査方法
KR102558911B1 (ko) 연삭 로봇
KR102465998B1 (ko) 추락방지 기능이 구비된 관로 탐색장치
TWI785882B (zh) 水平壓入機
KR102361184B1 (ko) 풍력 블레이드 접합면 검사 플랫폼 장치 및 검사 장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6523553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250