WO2017051913A1 - 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用 - Google Patents

細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用 Download PDF

Info

Publication number
WO2017051913A1
WO2017051913A1 PCT/JP2016/078126 JP2016078126W WO2017051913A1 WO 2017051913 A1 WO2017051913 A1 WO 2017051913A1 JP 2016078126 W JP2016078126 W JP 2016078126W WO 2017051913 A1 WO2017051913 A1 WO 2017051913A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
substrate
diol
unit
cell
Prior art date
Application number
PCT/JP2016/078126
Other languages
English (en)
French (fr)
Inventor
晴菜 安藤
慎 飯田
泰典 山口
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2017540938A priority Critical patent/JP6739758B2/ja
Priority to US15/760,000 priority patent/US11149249B2/en
Priority to EP16848701.5A priority patent/EP3354720B1/en
Publication of WO2017051913A1 publication Critical patent/WO2017051913A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers

Definitions

  • the present invention relates to a cell culture substrate and a cell culture method using the same, and more specifically, a cell culture that is suitably used for the growth and proliferation of cells used in fields such as medicine, regenerative medicine, and biochemistry. And a cell culture method using the same.
  • cell culture technology is a basic technology in the fields of medicine, regenerative medicine, biochemistry, and the like.
  • Cell culture technology is used in the fields of medicine and biochemistry to develop pharmaceuticals and elucidate pathological mechanisms.
  • cell culture techniques include embryonic stem cells (embryonic stem cells: ES cells), induced pluripotent stem cells (induced pluripotent stem cells: iPS cells), skin, organs, and dental bones. It is used for the culture of functional tissue cells.
  • Such cell culture is usually cultivated together with a nutrient solution in a certain container.
  • the cells are roughly divided into two, according to their properties, floating cells that are cultured in a suspended state in the culture solution and adherent cells that are cultured while attached to the container.
  • Many animal cells are adherent cells that adhere to a substance and have an adhesion dependency, and generally cannot survive for a long time in a floating state in vitro. Therefore, the culture of adherent cells requires a substrate as a substance for the cells to adhere.
  • a substrate used for culturing such adherent cells
  • a dish, a multi-dish, a microplate, a flask and the like are generally used as a substrate (substrate for cell culture) used for culturing such adherent cells.
  • the substrate for cell culture is required to be transparent for observing cells and the inside in addition to the mechanical strength necessary for maintaining the shape.
  • polystyrene is generally used as the resin used for the cell culture substrate.
  • adherent cells are unlikely to adhere to a polystyrene molded body that has not been surface-treated, although it varies depending on the type of cells and medium components in culture.
  • what gave the hydrophilicity to the surface of a polystyrene molded body by giving a low temperature plasma process, a corona discharge process, etc. is marketed. These instruments are widely used for culturing adherent cells.
  • the cell adhesion of cells is coated with an animal-derived extracellular matrix such as gelatin and collagen, an animal-derived adhesion factor such as fibronectin and laminin, and a polymer such as poly-L-lysine on the culture surface of the polystyrene molding. , Can increase the proliferation.
  • an animal-derived extracellular matrix such as gelatin and collagen
  • an animal-derived adhesion factor such as fibronectin and laminin
  • a polymer such as poly-L-lysine on the culture surface of the polystyrene molding.
  • gelatin can be coated by adding a gelatin solution to the culture surface of a polystyrene container to completely cover the culture surface, leaving it at room temperature for 1 hour or more, and then discarding the gelatin solution (for example, non-patented).
  • a gelatin solution for example, non-patented.
  • Reference 1 It is known that applying gelatin coating or collagen coating improves cell adhesion and proliferation, and products in which a polystyrene container is coated with gelatin or collagen are commercially available.
  • examples of the support for the cell culture substrate include glass, polypropylene, polyester, polymethylmethacrylate, and the like in addition to the above-described polystyrene (see, for example, Patent Documents 3, 4, and 5). .
  • the base material using a support made of polystyrene depending on the type of cell, cell adhesion on these base materials is insufficient, or proliferation is observed, but the proliferation is insufficient, Cell proliferation may be poor. In particular, this is particularly noticeable in primary culture in which cells collected from a living body are cultured for the first time.
  • a base material using a support other than polystyrene needs to be coated for cell adhesion in order to use it. Moreover, since a coating process is required, the cost increases.
  • gelatin used as a cell culture substrate shown in Non-Patent Document 1 is manufactured using, for example, bovine or porcine skin as a raw material.
  • BSE bovine spongiform encephalopathy
  • foot-and-mouth disease it is difficult to use gelatin and collagen derived from animals when considering medicine and regenerative medicine.
  • disposal of used gelatin solutions, collagen solutions, and containers coated with gelatin or collagen requires consideration of measures for leakage to the environment, making it difficult to use. ing.
  • the polylysine disclosed in Patent Document 2 is produced by fermentation by bacteria or chemical synthesis, and therefore does not contain animal-derived components and is easy to use in medicine and regenerative medicine. It is easy to dispose of the used container.
  • polylysine is unstable, when a container is coated with polylysine, the effect of polylysine is inactivated after 2 weeks of storage at room temperature and 1 month even at 4 ° C. Also, due to this instability, culture devices coated with polylysine cannot be sterilized. Therefore, when trying to market a culture device pre-coated with polylysine, it is necessary to coat polylysine in a sterile environment, and storage management after coating is difficult. There is also a cost problem.
  • An object of the present invention is to provide a cell culture substrate capable of growing adherent cells at an excellent level without coating treatment.
  • the present inventors have found that cells can be grown at an excellent level by using a polyester resin containing a diol unit having a cyclic acetal skeleton as a cell culture substrate.
  • the present invention has been completed.
  • the diol unit having a cyclic acetal skeleton has the general formula (1) (Wherein R 1 and R 2 are each independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and 6 to 10 carbon atoms) A hydrocarbon group selected from the group consisting of aromatic hydrocarbon groups.)
  • a diol represented by the general formula (2) (Wherein R 1 is as defined above, R 3 is an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an alicyclic hydrocarbon group having 3 to 10 carbon atoms, and 6 to 10 carbon atoms) Represents a hydrocarbon group selected from the group consisting of aromatic hydrocarbon groups of A diol unit derived from at least one diol selected from diols represented by: [1] The cell culture substrate according to [1].
  • the diol unit having a cyclic acetal skeleton is derived from 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane. Or a diol unit derived from 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane, The cell culture substrate according to [1] or [2].
  • the diol unit further includes other diol units other than the diol unit having a cyclic acetal skeleton,
  • the other diol unit is a diol unit derived from one or more diols selected from the group consisting of ethylene glycol, diethylene glycol, trimethylene glycol, 1,4-butanediol and 1,4-cyclohexanedimethanol.
  • the substrate for cell culture according to any one of [3].
  • the dicarboxylic acid unit is selected from the group consisting of terephthalic acid, isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid and 2,7-naphthalenedicarboxylic acid. It is a dicarboxylic acid unit derived from more than one kind of dicarboxylic acid, [1] The cell culture substrate according to any one of [4].
  • the cell culture substrate is a surface-treated substrate; [1] The cell culture substrate according to any one of [7]. [9] [1] to the cell culture substrate according to any one of [8], Cell culture vessel. [10] Having a step of culturing cells on a substrate comprising a polyester resin, comprising a dicarboxylic acid unit and a diol unit; 1 to 80 mol% of the diol units are diol units having a cyclic acetal skeleton. Cell culture method. [11] The step of culturing the cells is a step of culturing the cells seeded on the substrate. [10] The cell culture method according to [10].
  • the cell culture substrate is a surface-treated substrate; [10] The cell culture method according to [11]. [13] The cell is an adherent cell; [10] The cell culture method according to any one of [12]. [14] Use as a substrate in cell culture,
  • the base material includes a polyester resin including a dicarboxylic acid unit and a diol unit, 1 to 80 mol% of the diol units are diol units having a cyclic acetal skeleton. Use as a substrate. It is about.
  • the cell culture substrate according to the present invention can proliferate adherent cells at an excellent level without coating.
  • Example 5 It is the photograph at the time of evaluating the cell growth state in Example 5. It is the photograph at the time of evaluating the cell growth state in Example 6. 6 is a photograph when the cell growth state in Comparative Example 1 was evaluated. It is a photograph at the time of evaluating the cell growth state in Comparative Example 2. It is a photograph at the time of evaluating the cell growth state in Comparative Example 3.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiment is an exemplification for explaining the present invention, and is not intended to limit the present invention to the following embodiment.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the cell culture substrate of the present embodiment includes a polyester resin containing a dicarboxylic acid unit and a diol unit.
  • the polyester resin hereinafter, also referred to as “polyester resin of the present embodiment”
  • 1 to 80 mol% of the diol units are diol units having a cyclic acetal skeleton.
  • the cell culture substrate of this embodiment contains a polyester resin containing 1 to 80 mol% of a diol unit having a cyclic acetal skeleton, so that adherent cells can be grown at an excellent level. This is presumed that the structural part of the diol unit having a cyclic acetal skeleton is excellent in affinity with adherent cells, thereby improving the adherence to cells and contributing to the proliferation of cells.
  • the cell culture substrate of the present embodiment it is safe because it does not contain a coating containing animal-derived components. Furthermore, since the base material is not coated, the management of the base material is easy.
  • the diol unit having a cyclic acetal skeleton is derived from at least one diol selected from the diol represented by the following general formula (1) and the diol represented by (2) (hereinafter also referred to as “compound”).
  • a diol unit is preferable from the viewpoint of container molding, such as resin strength, transparency, and processability.
  • R 1 , R 2 and R 3 are each independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms and an alicyclic hydrocarbon having 3 to 10 carbon atoms. And a hydrocarbon group selected from the group consisting of an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • the compounds represented by the general formulas (1) and (2) may be used singly as diols derived from the diol unit having the cyclic acetal skeleton, but may be used in combination.
  • the compounds represented by the general formulas (1) and (2) are 3,9-bis (1,1-dimethyl-2-hydroxylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane. (Hereinafter sometimes referred to as “spiroglycol”), and 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane (hereinafter referred to as “dioxane glycol”). Is preferable from the viewpoints of availability, moldability, and the like.
  • the diol unit having a cyclic acetal skeleton is preferably 1 to 80 mol%, and preferably 5 to 60 mol% in the total diol units. More preferably, it is 20 to 50 mol%.
  • the diol unit having a cyclic acetal skeleton is 1 mol% or more, the cell adhesion tends to be more sufficiently expressed, and when it is 80 mol% or less, the crystallinity of the polyester resin does not become too high, It is excellent in transparency and tends to suppress the obstacle to cell observation.
  • all diol units include diol units other than the diol units having a cyclic acetal skeleton (hereinafter also referred to as “other diol units”). By including other diol units, it tends to be excellent in structural properties such as flexibility and moldability.
  • diol units are not particularly limited.
  • ethylene glycol, trimethylene glycol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6- Aliphatic diols such as hexanediol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, and dineopentyl glycol; polyether diols such as polyethylene glycol, polypropylene glycol, and polybutylene glycol; glycerin, trimethylolpropane, and ditrile Trihydric or higher polyhydric alcohols such as methylolpropane, pentaerythritol and dipentaerythritol; 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, , 2-decahydronaphthalene diethanol, 1,3-decahydronaphthalene diethanol
  • Alicyclic diols 4,4 ′-(1-methylethylidene) bisphenol, methylene bisphenol (bisphenol F), 4,4′-cyclohexylidene bisphenol (bisphenol Z), 4,4′-sulfonyl bisphenol (bisphenol) S) bisphenols; alkylene oxide adducts of the above bisphenols; aromatic dihydroxy compounds such as hydroquinone, resorcin, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylbenzophenone And alkylene oxide adducts of the above-mentioned aromatic hydroxy compounds.
  • aromatic dihydroxy compounds such as hydroquinone, resorcin, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenylbenzophenone And alkylene oxide adducts of the above-menti
  • the polyester resin of the present embodiment is made of ethylene glycol, diethylene glycol, trimethylene glycol, 1,4-butanediol or 1,4-cyclohexane. It is preferable to further include a diol unit derived from dimethanol, and more preferable to include a diol unit derived from ethylene glycol.
  • the diol unit illustrated can also be used individually by 1 type, and can also use multiple types together.
  • the dicarboxylic acid unit is not particularly limited.
  • terephthalic acid isophthalic acid, phthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid, biphenyl
  • Aromatic carboxylic acids such as dicarboxylic acid and tetralindicarboxylic acid; succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, decalindicarboxylic acid, norbornane dicarboxylic acid
  • Examples thereof include aliphatic dicarboxylic acids such as tricyclodecane dicarboxylic acid and pentacyclododecane dicarboxylic acid, and esterified products thereof.
  • the polyester resin of the present embodiment is a dicarboxylic acid unit derived from an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid or the like.
  • the dicarboxylic acid illustrated can also be used individually by 1 type, and can also use multiple types together.
  • the cell culture substrate used in the present embodiment includes other polyester resins that are substantially free of diol units having a cyclic acetal skeleton in the diol units (hereinafter also referred to as “other polyester resins”) and polyester resins. It may further contain other resins. These resins are not particularly limited.
  • polyester resins not containing a diol unit having a cyclic acetal skeleton such as 4-cyclohexane
  • substantially free of diol units having a cyclic acetal skeleton means that the diol units having a cyclic acetal skeleton are less than 1 mol% in all diol units.
  • other polyester resins include those that do not contain any diol units having a cyclic acetal skeleton.
  • the cell culture substrate of this embodiment comprises at least one resin selected from the group consisting of other polyester resins, polycarbonate resins, acrylic resins, polystyrene resins, and polymethyl methacrylate-styrene resins. Further can be included.
  • the other polyester resin is made of polyethylene terephthalate, polybutylene terephthalate, and isophthalic acid-modified polyethylene terephthalate.
  • polyester resins and resins other than polyester resins can be used alone or in combination of two or more.
  • the cell culture substrate production method of the present embodiment includes, for example, a step of polymerizing a polyester resin by polymerizing dicarboxylic acid and a diol having a cyclic acetal skeleton (polymerization step), and molding the polyester resin to form a substrate. (Step of forming).
  • a step of polymerizing a polyester resin by polymerizing dicarboxylic acid and a diol having a cyclic acetal skeleton (polymerization step)
  • molding the polyester resin to form a substrate (Step of forming).
  • the polymerization step is not particularly limited as long as it can polymerize dicarboxylic acid and diol containing 1,4-cyclohexanedimethanol, and conventionally known methods can be applied.
  • a melt polymerization method such as a transesterification method or a direct esterification method or a solution polymerization method can be used.
  • the transesterification catalyst esterification catalyst, etherification inhibitor, polymerization catalyst used in the polymerization, various stabilizers such as a heat stabilizer and a light stabilizer, polymerization regulators and the like, conventionally known ones can be used.
  • transesterification catalyst examples include compounds such as manganese, cobalt, zinc, titanium, and calcium.
  • esterification catalyst examples include compounds such as manganese, cobalt, zinc, titanium, and calcium, and further etherification inhibitors. Examples include amine compounds.
  • Examples of the polymerization catalyst include compounds such as germanium, antimony, tin, and titanium.
  • Examples of the heat stabilizer include various phosphorus compounds such as phosphoric acid, phosphorous acid, and phenylphosphonic acid.
  • additives such as antistatic agents, lubricants, antioxidants, mold release agents, and molding aids may be added in the polymerization step.
  • the addition method is not particularly limited, a method of adding a polymerization reaction of a resin in the presence of an additive or the like, or a method of adding an additive or the like to a molten resin before being extracted from a polymerization apparatus in a polymerization step, A method of dry blending additives after pelletizing the resin, a method of melting and kneading the dry blended product with an extruder etc., and a method of adding additives to the melted resin using an extruder etc. are adopted.
  • the addition method is not particularly limited, a method of adding a polymerization reaction of a resin in the presence of an additive or the like, or a method of adding an additive or the like to a molten resin before being extracted from a polymerization apparatus in a polymerization step, A method of dry blending additives after pelletizing the resin, a
  • the shape of the cell culture substrate used in the present embodiment is not particularly limited as long as it is used for culture, such as a dish, a microplate, or a flask.
  • the substrate for cell culture used in the present embodiment may be composed of the polyester resin of the present embodiment uniformly or substantially uniformly as a whole, but at least a surface on which cells are attached (hereinafter referred to as “cell culture surface”).
  • the polyester resin of this embodiment may be exposed, and may be mixed with other resins, or may be a resin, glass, metal, or the like of a different structure.
  • the cell culture device of this embodiment includes the cell culture substrate of this embodiment.
  • the cell culture device may be composed of the cell culture substrate of the present embodiment, and the polyester resin of the present embodiment is formed into a film and attached to a culture device made of different types of resin, glass, metal, or the like.
  • a cell culture substrate may be provided.
  • the cell culture substrate used in the present embodiment may be used by forming the polyester resin of the present embodiment into a net-like, spherical, thread-like, or tubular shape, and putting it in a container made of different types of resin, glass, or metal. Good.
  • the cell culture substrate of the present embodiment is preferably a surface-treated substrate from the viewpoint of growing at a superior level.
  • the substrate can be surface treated before seeding the cells.
  • the surface treatment method may be a method well known to those skilled in the art, for example, treatment with ⁇ -ray, plasma treatment, electron beam, ultraviolet ray, ethylene oxide gas (EOG), alcohol, hydrogen peroxide, hypochlorous acid, It can be treated with agents such as surfactants, antibiotics, acids and alkalis.
  • the surface treatment is preferably performed with ⁇ rays, plasma, and ultraviolet rays from the viewpoint of growing cells at a higher level, and more preferably with ultraviolet rays.
  • the intensity of ultraviolet rays and the irradiation time are correlated and cannot be defined unconditionally.
  • the irradiation time is preferably 1 to 180 minutes.
  • the cell culturing method of this embodiment includes a step of culturing cells (a culturing step) on a base material containing a polyester resin containing a dicarboxylic acid unit and a diol unit.
  • a polyester resin containing a dicarboxylic acid unit and a diol unit.
  • 1 to 100 mol% of the diol units are diol units derived from 1,4-cyclohexanedimethanol.
  • the culture step is preferably a step of culturing the cells seeded on the cell culture substrate of the present embodiment.
  • the cell culture substrate is preferably the surface-treated substrate described above.
  • the cell is preferably an adherent cell from the viewpoint of more reliably achieving the effects of the present invention.
  • the cell culture substrate of the present embodiment is used for a wide range of cells, particularly adherent cells, and examples thereof include cells such as animals, insects, plants, and fungi, yeasts and bacteria, but are not particularly limited. Absent.
  • animal cell origin include mammals such as humans, monkeys, African green monkeys, mice, rats, Chinese hamsters, guinea pigs, dogs, cats, pigs, sheep, cows, birds such as chickens, amphibians such as frogs, newts and salamanders.
  • Fish such as zebrafish, medaka, eel, goldfish, tilapia and minnow, but not limited thereto.
  • the cells used for culturing in the cell culture substrate of the present embodiment may be fibroblasts or mesenchymal stem cells, which are short-term cultured cells cultured from human or animal tissues, and established strains. It may be a cell.
  • fibroblasts or mesenchymal stem cells which are short-term cultured cells cultured from human or animal tissues, and established strains. It may be a cell.
  • mammalian fibroblasts are preferable, and human fibroblasts and mouse fibroblasts used as feeder cells for the growth of ES cells and iPS cells are particularly preferable.
  • HeLa cell line human cervical cancer cell
  • Vero cell line African green monkey normal kidney cell
  • 3T3 cell line mouse fetal fibroblast
  • PMEF cell mouse embryo fibroblast
  • CHO cells Choinese hamster ovary-derived cells
  • MDCK canine kidney-derived cells
  • the cell seeding amount, the culture time, the culture temperature, the culture medium, etc. for culturing the cells are not particularly limited, and may be according to the usual conditions.
  • the use as a base material of this embodiment is a use as a base material in cell culture.
  • the base material contains the polyester resin containing a dicarboxylic acid unit and a diol unit. Further, 1 to 80 mol% of the diol units are diol units having a cyclic acetal skeleton.
  • PET Polyethylene terephthalate
  • UNIPET RT553C Polyethylene terephthalate
  • Spiroglycol-modified PET Polyyester 1: Mitsubishi Gas Chemical Co., Ltd., trade name: ALTERSTER S4500 (45 mol% of ethylene glycol, which is a diol component of polyethylene terephthalate resin, is replaced with spiroglycol).
  • Dioxane glycol-modified PET Polyyester 2: produced by the same method as polyester D described in Examples of JP-A-2014-205773.
  • Polystyrene dish untreated dish (no surface treatment): AGC Techno Glass Co., Ltd., IWAKI brand, diameter 60 mm, product code: 1010-060.
  • Polystyrene dish tissue culture dish (adhesive cell surface-treated): AGC Techno Glass Co., Ltd., IWAKI brand, diameter 60 mm, product code: 3010-060.
  • Polystyrene dish (collagen Type 1 coat (derived from pig)): AGC Techno Glass Co., Ltd., IWAKI brand, diameter 60 mm, product code: 4010-010.
  • Reference Example 1 Substrate preparation method for cell culture
  • polyester 1, polyester 2, and polyester 3 a disk-shaped injection molded body having a diameter of 50 mm and a height of 3 mm was obtained using an injection molding machine (model: SE130DU) manufactured by Sumitomo Heavy Industries.
  • the injection-molded product was used in (5) a polystyrene dish (non-treated dish (no surface treatment)).
  • Vaseline was applied to the lower part of the dish, and polystyrene, polystyrene subjected to surface treatment for adherent cells, and polystyrene subjected to collagen coating were described in (5), (6) and (7), respectively.
  • the dish was used as it was.
  • Reference Example 2 Cell culture method
  • Cells were seeded on the cell culture substrate prepared in Reference Example 1 at 3,000 cells / cm 2 and 10% FBS and antibiotics (100 ⁇ g / mL kanamycin, 50 units / mL penicillin, 50 ⁇ g / mL streptomycin). ) was added to DMEM medium (manufactured by gibco) for 3 days at 37 ° C. in an atmosphere of 5% CO 2 .
  • Reference Example 3 Cell growth state evaluation method
  • the culture solution was removed from the dish cultured in Reference Example 2, and after washing with DPBS (+), 4.5 mL of DMEM medium and 0.5 mL of alamarBlue solution (manufactured by Life Technologies) were added. After allowing to stand for a predetermined time in an atmosphere of 5% CO 2 at 37 ° C. under light-shielding conditions, the absorbance of the medium was measured.
  • the monitor wavelength was set to 573 nm
  • the reference wavelength was set to 605 nm
  • the value obtained by subtracting the absorbance at the reference wavelength from the absorbance at the monitor wavelength was used as the color development value for evaluation of the cell growth state.
  • the value in (6) polystyrene dish tissue culture dish (surface treatment for adherent cells) shown in Comparative Example 2 described later is 100%. The relative value was evaluated.
  • Example 1 (Culture of human skin fibroblasts using spiroglycol-modified polyester resin) (2) Using spiroglycol-modified PET (polyester 1) as a raw material for cell culture, a cell culture substrate is produced according to Reference Example 1 and cultured using human fibroblasts as cells according to Reference Example 2. went. As a result of evaluating the cell growth state according to Reference Example 3, Table 1 shows the results compared with the case of using the tissue culture dish made at the same time.
  • Example 2 (Culture of PMEF cells using spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 1, except that mouse embryonic fibroblasts (Millipore, PMEF cells) were used as the cells.
  • Example 3 (Culture of PMEF cells using dioxane-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 2 except that (3) dioxane glycol-modified PET (polyester 2) is used as a raw material for the cell culture substrate.
  • Example 4 (NDCA, culture of human skin fibroblasts using spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 1 except that (4) NDCA and spiroglycol-modified PET (polyester 3) are used as the raw material for the cell culture substrate.
  • Example 5 (Culture of human skin fibroblasts using UV-irradiated spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 1 except that the cell culture substrate was irradiated with 1.8 mW / cm 2 ultraviolet rays for 20 minutes before cell seeding.
  • FIG. 1 shows a photograph when the cell growth state is evaluated.
  • the apparatus used when taking a photograph is shown below. Hereinafter, the same apparatus was used when taking photographs.
  • Example 6 (Culture of human skin fibroblasts using UV-irradiated NDCA and spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 4 except that the cell culture substrate was irradiated with 1.8 mW / cm 2 ultraviolet rays for 20 minutes before cell seeding.
  • FIG. 2 shows a photograph when the cell growth state is evaluated.
  • Example 7 (Culture of human dermal fibroblasts using plasma-treated spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 1 except that the cell culture substrate was subjected to oxygen plasma treatment (100 W, 30 seconds) before cell seeding.
  • Example 8 (Culture of human skin fibroblasts using spiroglycol-modified polyester resin irradiated with plasma and ⁇ -ray) Table 1 shows the results obtained in the same manner as in Example 1 except that the cell culture substrate was subjected to oxygen plasma treatment (100 W, 30 seconds) and irradiated with 25 kGy of ⁇ rays before cell seeding.
  • Example 9 (Culture of human skin fibroblasts using plasma-treated NDCA and spiroglycol-modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 4 except that the cell culture substrate was subjected to oxygen plasma treatment (100 W, 30 seconds) before cell seeding.
  • Example 10 (Plasma treatment and ⁇ -irradiation NDCA, human skin fibroblast culture using spiroglycol modified polyester resin) Table 1 shows the results obtained in the same manner as in Example 4 except that the cell culture substrate was subjected to oxygen plasma treatment (100 W, 30 seconds) and irradiated with 25 kGy of ⁇ rays before cell seeding.
  • Comparative Example 1 (Culture of human skin fibroblasts using untreated polystyrene resin) Table 2 shows the results obtained in the same manner as in Example 1 except that (5) a polystyrene dish (untreated dish (no surface treatment)) was used as the cell culture substrate.
  • FIG. 3 shows a photograph when the cell growth state is evaluated.
  • Comparative Example 2 (Culture of human skin fibroblasts using polystyrene resin for tissue culture) Table 2 shows the results obtained in the same manner as in Example 1 except that (6) a polystyrene dish (tissue culture dish (surface treatment for adherent cells)) was used as the cell culture substrate.
  • FIG. 4 shows a photograph when the cell growth state is evaluated.
  • Comparative Example 3 (Culture of human skin fibroblasts using collagen-coated polystyrene resin) Table 2 shows the results obtained in the same manner as in Example 1 except that (7) a polystyrene dish (collagen Type 1 coat (derived from pig)) was used as the cell culture substrate.
  • FIG. 5 shows a photograph when the cell growth state is evaluated.
  • Comparative Example 4 (Culture of human skin fibroblasts using PET resin) Table 2 shows the results obtained in the same manner as in Example 1 except that (1) polyethylene terephthalate (PET) is used as the cell culture substrate.
  • PET polyethylene terephthalate
  • Comparative Example 5 (Culture of human skin fibroblasts using UV-irradiated PET resin) Table 2 shows the results obtained in the same manner as in Example 5 except that (1) polyethylene terephthalate (PET) is used as the cell culture substrate.
  • PET polyethylene terephthalate
  • Examples 1 to 10 all have a cell growth state that is at least as good as that of Comparative Example 2, and is equivalent to or higher than that of Comparative Example 3 in which a collagen coat that is an animal-derived component is applied.
  • the cell culture substrate according to the present invention is capable of growing adherent cells at an excellent level without being coated, and is safe because it does not contain a coating containing animal-derived components. Since the base material is not coated, the management of the base material is easy, and the industrial significance of the present invention is great.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含み、そのジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である細胞培養用基材、を提供する。

Description

細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用
 本発明は、細胞培養用基材およびそれを用いた細胞培養方法などに関し、より詳細には、医学、再生医療、生化学などの分野で用いられる細胞の生育、増殖に好適に用いられる細胞培養用基材およびそれを用いた細胞培養方法などに関する。
 これまでに、マウス、サル、霊長類などの動物の細胞培養技術は様々な態様の物が検討されている。とりわけ、医学、再生医療、生化学などの分野において、細胞培養技術は基本技術である。細胞培養技術は、医学や生化学の分野では医薬品の開発や病態メカニズムの解明などに用いられる。また、細胞培養技術は、再生医療の分野においては胚性幹細胞(Embryonic Stem Cell:ES細胞)、人工多能性幹細胞(induced Pluripotent Stem Cell:iPS細胞)の培養や分化、皮膚や臓器、歯骨などの機能性組織細胞の培養などに用いられている。
 このような細胞培養は、通常、一定の容器の中で栄養成分である培養液と共に培養される。
 細胞は、その性状から、培養液の中で浮遊した状態で培養される浮遊性細胞と、容器に付着した状態で培養される付着性細胞に大きく2分される。動物細胞の多くは、物質に付着して生育される接着依存性を有する付着性細胞であり、一般に生体外の浮遊状態では長期間生存することができない。したがって、付着性細胞の培養には、細胞が付着するための物質として基材が必要とされる。
 そのような付着性細胞の培養に用いられる基材(細胞培養用基材)として、ディッシュ、マルチディッシュ、マイクロプレート、フラスコなどが一般的である。細胞培養用基材としては、形状を保つのに必要な機械強度に加え、細胞や内部の観察のために透明であることが求められる。
 培養における細胞の種類や培地成分により異なるが、一般的に、細胞培養用基材に用いられる樹脂として、表面処理をしていない樹脂は付着性細胞が付着しにくいことが知られており、特にポリメチルペンテン、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ABS樹脂などは細胞が付着しにくいことが知られている(例えば、特許文献1参照)。
 ここで細胞培養用基材に用いられる樹脂として、ポリスチレンが一般的である。ただし、細胞培養基材にポリスチレンを用いたとしても、培養における細胞の種類や培地成分により異なるが、付着性細胞は、表面処理をしていないポリスチレン成形体に付着しにくい。そこで、ポリスチレン成形体の表面に低温プラズマ処理、コロナ放電処理などを施し、親水性を付与したものが市販されている。これらの器具は、付着性細胞の培養に広く使用されている。
 そこで、ゼラチン、コラーゲンなどの動物由来の細胞外マトリックスや、ファイブロネクチン、ラミニンなどの動物由来の接着因子、ポリ-L-リジンなどのポリマーをポリスチレン成形体の培養面にコートし、細胞の接着性、増殖性を高めることができる。
 たとえば、ポリスチレン製容器の培養面にゼラチン溶液を加えて培養面を完全に覆うようにし、室温で1時間以上放置した後、ゼラチン溶液を捨てることで、ゼラチンコートすることができる(例えば、非特許文献1参照)。ゼラチンコートやコラーゲンコートを施すことで、細胞の接着性、増殖性が高まることが知られており、ポリスチレン製の容器にゼラチンやコラーゲンでコートした製品が市販されている。
 また、ポリ-L-リジンやポリ-D-リジンなどのポリリジンを容器の培養面にコートすることで細胞の接着性が高くなることが知られており、特に神経細胞の培養に適している(例えば、特許文献2参照)。
 一方、細胞培養用基材の支持体としては、上述したポリスチレン製以外にガラス製、ポリプロピレン製、ポリエステル製、ポリメチルメタクリレート製なども例示されている(例えば、特許文献3、4、5参照)。
国際公開番号WO2010/044417号公報 特表2007-504823号公報 特開平5-276923号公報 特開2013-116130号公報 特開2008-104411号公報
羊土社、2012年3月20日発行「実験医学別冊 目的別で選べる細胞培養プロトコール」中村幸夫編:p191
 しかしながら、ポリスチレン製の支持体を用いた基材は、細胞の種類によっては、これらの基材上では細胞の付着が不十分であったり、増殖は認められるもののその増殖が不十分であったり、細胞の増殖形態が悪かったりする場合がある。特に、一般的に、生体から採取した細胞を初めて培養する初代培養においてはそれが顕著である。
 また、ポリスチレン製以外の支持体を用いた基材は、それを用いるために細胞接着用のコート処理が必要である。また、コート処理が必要となるため、コストが高くなる。
 他にも、たとえば非特許文献1に示される細胞培養用基材となるゼラチンは、たとえばウシあるいはブタの皮膚を原料として製造される。しかしながら、近年、牛海綿状脳症(BSE)や口蹄疫などの問題により、医学や再生医療などを考慮する場合には動物由来であるゼラチンやコラーゲンの使用が困難になる。さらに、生化学分野などであっても、使用済みゼラチン溶液やコラーゲン溶液、ゼラチンやコラーゲンコートされた容器の廃棄には、環境への漏出措置を考慮する必要があるため、使用が困難となってきている。
 一方、特許文献2に示されるポリリジンは、細菌による発酵または化学合成で製造されるため、動物由来成分を含まず、医学や再生医療に用いることが容易であるとともに、使用済みポリリジン溶液やポリリジンコートされた容器の廃棄も容易である。しかし、ポリリジンは不安定であるため、ポリリジンで容器をコートした場合、ポリリジンの効果は室温保存で2週間、4℃でも1か月で失活する。また、この不安定さにより、ポリリジンでコートした培養器具を滅菌することもできない。したがって、ポリリジンをあらかじめコートした培養器具を市販しようとした場合、無菌環境下でポリリジンをコートしなければならないとともに、コート後の保存管理も難しい。また、コストの問題もある。
 本発明の目的は、コート処理せずに、付着性細胞を優れた水準で増殖させることができる細胞培養用基材を提供することにある。
 本発明者らは、上記課題に鑑み鋭意研究した結果、環状アセタール骨格を有するジオール単位を含むポリエステル樹脂を細胞培養基材として用いることで、細胞を優れた水準で増殖させることができることを見出し、本発明の完成に至った。
 すなわち、本発明は、
[1]
 ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含み、
 前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
 細胞培養用基材。
[2]
 前記環状アセタール骨格を有するジオール単位が、一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、RおよびRはそれぞれ独立して、炭素数が1~10の脂肪族炭化水素基、炭素数が3~10の脂環式炭化水素基、及び炭素数が6~10の芳香族炭化水素基からなる群から選ばれる炭化水素基を示す。)
で表されるジオール、および一般式(2)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは前記と同様であり、Rは炭素数が1~10の脂肪族炭化水素基、炭素数が3~10の脂環式炭化水素基、及び炭素数が6~10の芳香族炭化水素基からなる群から選ばれる炭化水素基を表す)
で表されるジオールから選ばれる少なくとも一つのジオールに由来するジオール単位である、
 [1]に記載の細胞培養用基材。
[3]
 前記環状アセタール骨格を有するジオール単位が、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンに由来するジオール単位、または5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサンに由来するジオール単位である、
 [1]または[2]に記載の細胞培養用基材。
[4]
 前記ジオール単位が環状アセタール骨格を有するジオール単位以外のその他のジオール単位をさらに含み、
 前記その他のジオール単位が、エチレングリコール、ジエチレングリコール、トリメチレングリコール、1,4-ブタンジオールおよび1,4-シクロヘキサンジメタノールからなる群から選ばれる1種以上のジオールに由来するジオール単位である、
 [1]~[3]のいずれかに記載の細胞培養用基材。
[5]
 前記ジカルボン酸単位が、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸および2,7-ナフタレンジカルボン酸からなる群から選ばれる1種以上のジカルボン酸に由来するジカルボン酸単位である、
 [1]~[4]のいずれかに記載の細胞培養用基材。
[6]
 ジオール単位中に前記環状アセタール骨格を有するジオール単位を実質的に含まないその他のポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂およびポリメチルメタクリレート-スチレン樹脂からなる群から選ばれる少なくとも1種以上の樹脂をさらに含む、
 [1]~[5]のいずれかに記載の細胞培養用基材。
[7]
 前記その他のポリエステル樹脂をさらに含み、
 前記その他のポリエステル樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸変性ポリエチレンテレフタレートおよび1,4-シクロヘキサンジメタノール変性ポリエチレンテレフタレートからなる群から選ばれる少なくとも1種以上の樹脂である、
 [6]に記載の細胞培養用基材。
[8]
 前記細胞培養用基材が、表面処理された基材である、
 [1]~[7]のいずれかに記載の細胞培養用基材。
[9]
 [1]~[8]のいずれかに記載の細胞培養用基材を備える、
 細胞培養用容器。
[10]
 ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含む基材上で細胞を培養する工程を有し、
 前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
 細胞培養方法。
[11]
 前記細胞を培養する工程が、前記基材上に播種された前記細胞を培養する工程である、
 [10]に記載の細胞培養方法。
[12]
 前記細胞培養用基材が、表面処理された基材である、
 [10]または[11]に記載の細胞培養方法。
[13]
 前記細胞が、付着性細胞である、
 [10]~[12]のいずれかに記載の細胞培養方法。
[14]
 細胞の培養における基材としての使用であって、
 前記基材は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含み、
 前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
 基材としての使用。
に関するものである。
 本発明に係る細胞培養用基材によれば、コート処理せずに、付着性細胞を優れた水準で増殖させることができる。
実施例5における細胞生育状態を評価した際の写真である。 実施例6における細胞生育状態を評価した際の写真である。 比較例1における細胞生育状態を評価した際の写真である。 比較例2における細胞生育状態を評価した際の写真である。 比較例3における細胞生育状態を評価した際の写真である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の実施の形態に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
<細胞培養用基材>
 本実施形態の細胞培養用基材(以下、単に「基材」ともいう。)は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含む。そのポリエステル樹脂(以下、「本実施形態のポリエステル樹脂」ともいう。)において、ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である。
 本実施形態の細胞培養用基材によれば、細胞を優れた水準で増殖させることができる。この要因は、次のように推察される(ただし、要因はこれに限定されない。)。本実施形態の細胞培養用基材は、環状アセタール骨格を有するジオール単位を1~80モル%含むポリエステル樹脂を含むことにより、付着性細胞を優れた水準で増殖させることができる。これは、環状アセタール骨格を有するジオール単位の構造部分が、付着性細胞との親和性に優れることで細胞に対する付着性が向上し、細胞の増殖性に寄与していると推察される。
 また、本実施形態の細胞培養用基材によれば、動物由来成分を含むコーティングを含まないため、安全である。さらに、基材がコート処理されていないため、基材の管理が容易である。
 環状アセタール骨格を有するジオール単位は、下記の一般式(1)で表されるジオールおよび(2)で表されるジオール(以下、「化合物」ともいう。)から選ばれる少なくとも一つのジオールに由来するジオール単位であることが、樹脂の強度や透明性、加工性など容器成形の観点から好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 一般式(1)及び(2)において、R、RおよびRはそれぞれ独立して、炭素数が1~10の脂肪族炭化水素基、炭素数が3~10の脂環式炭化水素基、及び炭素数が6~10の芳香族炭化水素基からなる群から選ばれる炭化水素基を示す。
 一般式(1)および(2)であらわされる化合物は、それぞれ上記環状アセタール骨格を有するジオール単位に由来するジオールとして各々単独で使用してもよいが、両者を混合して使用することもできる。
 一般式(1)および(2)であらわされる化合物は、3,9-ビス(1,1-ジメチル-2-ヒドロキシルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(以下、「スピログリコール」ということがある)、および、5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサン(以下、「ジオキサングリコール」ということがある)が、入手容易性、成形性などの観点から好ましい。
 本実施形態の細胞培養用基材に含まれるポリエステル樹脂において、環状アセタール骨格を有するジオール単位は、全ジオール単位中の1~80モル%であることが好ましく、5~60モル%であることがより好ましく、さらに好ましくは20~50モル%である。環状アセタール骨格を有するジオール単位が1モル%以上であることにより、細胞接着性がより十分に発現する傾向にあり、80モル%以下であることにより、ポリエステル樹脂の結晶性が高くなりすぎず、透明性に優れ、細胞観察への支障を抑制できる傾向にある。すなわち、本実施形態のポリエステル樹脂は、全ジオール単位は環状アセタール骨格を有するジオール単位以外のジオール単位(以下、「その他のジオール単位」ともいう。)を含むことが好ましい。その他のジオール単位を含むことにより、柔軟性、成形性など構造体としての特性に優れるものとなる傾向にある。
 その他のジオール単位としては特に制限はされないが、例えば、エチレングリコール、トリメチレングリコール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジネオペンチルグリコール等の脂肪族ジオール類;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテルジオール類;グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の3価以上の多価アルコール類;1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、イソソルビド、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、ペンタシクロドデカンジメタノール等の脂環族ジオール類;4,4’-(1-メチルエチリデン)ビスフェノール、メチレンビスフェノール(ビスフェノールF)、4,4’-シクロヘキシリデンビスフェノール(ビスフェノールZ)、4,4’-スルホニルビスフェノール(ビスフェノールS)等のビスフェノール類;上記ビスフェノール類のアルキレンオキシド付加物;ヒドロキノン、レゾルシン、4,4’―ジヒドロキシビフェニル、4,4’―ジヒドロキシジフェニルエーテル、4,4’―ジヒドロキシジフェニルベンゾフェノン等の芳香族ジヒドロキシ化合物;及び上記芳香族時ヒドロキシ化合物のアルキレンオキシド付加物が挙げられる。
 本実施形態の細胞培養用基材の機械的性能、経済性等の観点から、本実施形態のポリエステル樹脂は、エチレングリコール、ジエチレングリコール、トリメチレングリコール、1,4-ブタンジオールまたは1,4-シクロヘキサンジメタノールに由来するジオール単位をさらに含むことが好ましく、エチレングリコールに由来するジオール単位を含むことがより好ましい。例示したジオール単位は1種を単独で使用することもでき、複数種を併用することもできる。
 本実施形態の細胞培養用基材に含まれるポリエステル樹脂において、ジカルボン酸単位としては、特に制限はされないが、例えば、テレフタル酸、イソフタル酸、フタル酸、2-メチルテレフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族カルボン酸;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸等の脂肪族ジカルボン酸及びそれらのエステル化物が挙げられる。
 本実施形態の細胞培養用基材の機械的性能、経済性等の観点から、本実施形態のポリエステル樹脂は、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸に由来するジカルボン酸単位を含むことが好ましく、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸または2,7-ナフタレンジカルボン酸に由来するジカルボン酸単位を含むことがより好ましい。例示したジカルボン酸は1種を単独で使用することもでき、複数種を併用することもできる。
 本実施形態で用いる細胞培養用基材には、ジオール単位中に環状アセタール骨格を有するジオール単位を実質的に含まないその他のポリエステル樹脂(以下、「その他のポリエステル樹脂」ともいう。)やポリエステル樹脂以外の樹脂をさらに含んでいてもよい。これらの樹脂としては、特に制限はされないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸変性PET、1,4-シクロヘキサンジメタノール変性PET、ポリプロピレンテレフタレート、ポリエチレンナフタレート、ポリテトラメチルシクロブタンー1,4-シクロヘキサンジメタチルテレフタレート、ポリ1,4-シクロヘキサンジメルテレフタレート、ポリアリレート、液晶ポリエステル等の環状アセタール骨格を有するジオール単位を含まないポリエステル樹脂類、ポリカーボネート樹脂類、ポリメチルメタクリレート、ポリアクリロニトリル樹脂、ポリスチレン樹脂、ポリメチルメタクリレート-スチレン樹脂、ポリエチレン、ポリプロピレン、環状ポリオレフィン等のポリオレフィン樹脂、ポリイミド樹脂、ナイロン樹脂が挙げられる。ここで、「環状アセタール骨格を有するジオール単位を実質的に含まない」とは、全ジオール単位中に環状アセタール骨格を有するジオール単位が1モル%未満であることを意味する。当然に、その他のポリエステル樹脂には、環状アセタール骨格を有するジオール単位を全く含まないものも含まれる。
 細胞接着の観点から、本実施形態の細胞培養用基材は、その他のポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂およびポリメチルメタクリレート-スチレン樹脂からなる群から選ばれる少なくとも1種以上の樹脂をさらに含むことができる。
 本実施形態の細胞培養用基材は、その他のポリエステル樹脂をさらに含む場合には、透明性や相溶性の観点から、その他のポリエステル樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびイソフタル酸変性ポリエチレンテレフタレートからなる群から選ばれる1種以上の樹脂であると好ましい。
 例示したその他のポリエステル樹脂やポリエステル樹脂以外の樹脂は1種を単独で使用することもでき、複数種を併用することもできる。
<細胞培養用基材の製造方法>
 本実施形態の細胞培養用基材の製造方法は、例えば、ジカルボン酸と環状アセタール骨格を有するジオールとを重合してポリエステル樹脂を重合する工程(重合工程)と、ポリエステル樹脂を成形して基材を得る工程(成形工程)とを有する。本実施形態の細胞培養用基材の製造方法によれば、基材の製造におけるコーティング工程が必要とされないため、基材の製造及び管理が容易である。
 重合工程は、ジカルボン酸と1,4-シクロヘキサンジメタノールを含むジオールとを重合するものであれば特に制限はなく、従来公知の方法を適用することができる。例えばエステル交換法、直接エステル化法等の溶融重合法または溶液重合法を挙げることができる。エステル交換触媒、エステル化触媒、エーテル化防止剤、また重合に用いる重合触媒、熱安定剤、光安定剤等の各種安定剤、重合調整剤等も従来公知のものを用いることができる。
 上記エステル交換触媒としては、例えば、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物、またエステル化触媒としては、例えば、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物、さらにエーテル化防止剤としては、例えば、アミン化合物が挙げられる。
 上記重合触媒としては、例えば、ゲルマニウム、アンチモン、スズ、チタン等の化合物が例示される。また熱安定剤としては、例えば、リン酸、亜リン酸、フェニルホスホン酸等の各種リン化合物が挙げられる。
 さらに、重合工程において、耐電防止剤、滑剤、酸化防止剤、離型剤などの各種添加剤、成形助剤を添加してもよい。添加方法は特に限定されないが、樹脂の重合反応を添加剤等の存在下で行い含有させる方法、または重合工程において重合装置から抜き出しを行う前の溶融状態の樹脂に添加剤等を添加する方法、樹脂をペレット化した後に添加剤等をドライブレンドする方法、更にそのドライブレンドしたものを押出機等で溶融混練する方法、押出機等を用いて溶融した樹脂に添加剤を添加する方法が採用される。
 本実施形態で用いる細胞培養用基材の形状は、ディッシュ、マイクロプレート、フラスコなど、培養に用いるものであれば特に制限されない。
 本実施形態で用いる細胞培養用基材は、全体を均一またはほぼ均一に本実施形態のポリエステル樹脂から構成してもよいが、少なくとも細胞を付着させて培養する面(以下、「細胞培養面」ともいう。)に本実施形態のポリエステル樹脂が露出していればよく、他の樹脂と混合したり、他の構造部が異なる種類の樹脂やガラス、金属などであってもよい。
 本実施形態の細胞培養器は、本実施形態の細胞培養用基材を備える。細胞培養器は、本実施形態の細胞培養用基材で構成されていてもよく、本実施形態のポリエステル樹脂を膜状に成形し、異なる種類の樹脂やガラス、金属などからなる培養器に貼りつけた細胞培養用基材を備えていてもよい。
 また、本実施形態で用いる細胞培養用基材は、本実施形態のポリエステル樹脂を網状や球形や糸状、管状に成形し、異なる種類の樹脂やガラス、金属からなる容器に投入して用いてもよい。
 本実施形態の細胞培養用基材は、より優れた水準で増殖させる観点から表面処理された基材であると好ましい。基材は、細胞を播種する前に表面処理を施すことができる。表面処理の方法は当業者に周知の方法でよく、たとえばγ線、プラズマ処理、電子線、紫外線、エチレンオキサイドガス(EOG)で処理することや、アルコール、過酸化水素水、次亜塩素酸類、界面活性剤、抗生物質、酸、アルカリなどの薬剤を用いて処理することができる。
 これらの中でも、表面処理は、γ線、プラズマ、及び紫外線で処理することが、より優れた水準で細胞を増殖させる観点から好ましく、紫外線で処理することがより好ましい。紫外線による表面処理を施す場合、紫外線の強度と照射時間は相関関係にあるため一概に規定することはできないが、たとえば紫外線の強度が0.1~2.0mW/cmである場合、紫外線の照射時間は1~180分であるのが好ましい。
<細胞培養方法>
 本実施形態の細胞培養方法は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含む基材上で細胞を培養する工程(培養工程)を有する。そのポリエステル樹脂において、ジオール単位中1~100モル%が1,4-シクロヘキサンジメタノールに由来するジオール単位である。
 培養工程は、本実施形態の細胞培養用基材上に播種された細胞を培養する工程とすることが好ましい。
 培養工程において、細胞培養用基材は、上述した表面処理された基材であることが好ましい。
 培養工程において、細胞は、本発明の作用効果をより確実に奏する観点から付着性細胞であると好ましい。
 本実施形態の細胞培養用基材は、幅広い細胞、特に付着性細胞に使われ、たとえば、動物、昆虫、植物、菌類等の細胞、酵母や細菌類が挙げられるが、特に限定されるものではない。動物細胞の由来として例えば、ヒト、サル、アフリカミドリザル、マウス、ラット、チャイニーズハムスター、モルモット、イヌ、ネコ、ブタ、ヒツジ、ウシ等の哺乳類や、ニワトリなどの鳥類、カエル、イモリ、サンショウウオなどの両生類、ゼブラフィッシュ、メダカ、ウナギ、金魚、ティラピア、ミノウなどの魚類が挙げられるが、特に限定されるものではない。
 本実施形態の細胞培養用基材で培養に用いる細胞は、ヒトや動物の組織から培養された短期培養細胞である線維芽細胞や間葉系幹細胞であってもよく、また、樹立された株化細胞であってもよい。短期培養細胞としては、哺乳動物の線維芽細胞が好ましく、ヒトの線維芽細胞や、ES細胞やiPS細胞の生育にフィーダー細胞として用いるマウスの線維芽細胞が特に好ましい。株化細胞としては、HeLa細胞株(ヒト子宮頸部癌細胞)、Vero細胞株(アフリカミドリザル正常腎細胞)、3T3細胞株(マウス胎仔線維芽細胞)、PMEF細胞(マウス胚線維芽細胞)、CHO細胞(チャイニーズハムスター卵巣由来細胞)、MDCK(イヌ腎由来細胞)等が挙げられるが、特に限定されるものではない。細胞を培養するための細胞播種量、培養時間、培養温度、培地等は特に限定されるものではなく、通常行われる条件に従えばよい。
 本実施形態の基材としての使用は、細胞の培養における基材としての使用である。また、その基材は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含む。さらに、そのジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である。
 次に、本実施形態を実施例および比較例をもってより具体的に説明する。ただし、本実施形態はこれらの実施例および比較例によって何ら制限されるものではない。
 本実施例及び比較例で使用した原料を以下に示す。
(1)ポリエチレンテレフタレート(PET):日本ユニペット(株)製、商品名:UNIPET RT553C。
(2)スピログリコール変性PET(ポリエステル1):三菱ガス化学(株)製、商品名:ALTESTER S4500(ポリエチレンテレフタレート樹脂のジオール成分であるエチレングリコールの45モル%をスピログリコールで置換)。
(3)ジオキサングリコール変性PET(ポリエステル2):特開2014-205773号実施例記載のポリエステルDと同様の方法で製造。(ポリエチレンテレフタレート系樹脂のジオール成分であるエチレングリコールの30モル%をジオキサングリコールで置換)。
(4)NDCA、スピログリコール変性PET(ポリエステル3):特開2014-205773号実施例記載のポリエステルDと同様の方法で製造。(ポリエチレンテレフタレート系樹脂のジオール成分であるエチレングリコールの30モル%をスピログリコールで置換し、ジカルボン酸成分であるテレフタル酸の50モル%を2,6-ナフタレンジカルボン酸で置換)。
(5)ポリスチレン製ディッシュ(無処理ディッシュ(表面処理なし)):AGCテクノグラス(株)製、IWAKIブランド、径60mm、品種コード:1010-060。
(6)ポリスチレン製ディッシュ(組織培養用ディッシュ(付着性細胞用表面処理済み)):AGCテクノグラス(株)製、IWAKIブランド、径60mm、品種コード:3010-060。
(7)ポリスチレン製ディッシュ(コラーゲンType1コート(ブタ由来)):AGCテクノグラス(株)製、IWAKIブランド、径60mm、品種コード:4010-010。
参考例1(細胞培養用基材調製方法)
 PET、ポリエステル1、ポリエステル2、ポリエステル3については、住友重機械工業製射出成形機(型式:SE130DU)を用いて径50mm、高さ3mmの円盤状の射出成形体を得た。これらPET、ポリエステル1、ポリエステル2、ポリエステル3については、射出成形体を(5)ポリスチレン製ディッシュ(無処理ディッシュ(表面処理なし)に設置して用いた。射出成形体の底部に少量の滅菌済みワセリンを塗布することでディッシュ下部に接着させた。ポリスチレン、付着性細胞用表面処理を行ったポリスチレン、コラーゲンコート処理を行ったポリスチレンについては、それぞれ(5)、(6)、(7)に記載のディッシュをそのまま用いた。
参考例2(細胞培養方法)
 参考例1で調製した細胞培養用基材に3,000細胞/cmとなるように細胞を播種し、10%FBSおよび抗生物質(100μg/mLカナマイシン、50ユニット/mLペニシリン、50μg/mLストレプトマイシン)を添加したDMEM培地(gibco製)を培地として5%CO大気下、37℃にて3日間培養を行った。
参考例3(細胞生育状態評価方法)
 細胞の生育は、alamarBlue試験にて評価した。参考例2で培養したディッシュから培養液を除去し、DPBS(+)で洗浄後、DMEM培地4.5mLとalamarBlue溶液(ライフテクノロジーズ製)0.5mLを添加した。5%CO大気下、37℃、遮光条件下にて所定時間静置後、培地の吸光度を測定した。モニター波長を573nm、リファレンス波長を605nmとし、モニター波長の吸光度からリファレンス波長の吸光度を減じた値を発色値として細胞生育状態の評価に用いた。細胞の種類や生育状況、継代数による影響なく評価するため、後述の比較例2に示す(6)ポリスチレン製ディッシュ(組織培養用ディッシュ(付着性細胞用表面処理済み))での値を100%とした相対値で評価した。
実施例1
(スピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材の原料として(2)スピログリコール変性PET(ポリエステル1)を用いて参考例1に従って細胞培養用基材を製造し、参考例2に従って細胞にヒト線維芽細胞を用いて培養を行った。参考例3に従って細胞生育状態を評価した結果、同時に実施したポリスチレン製組織培養用ディッシュを用いた場合と比較した結果を表1に示す。
実施例2
(スピログリコール変性ポリエステル樹脂を用いたPMEF細胞の培養)
 細胞にマウス胚性線維芽細胞(ミリポア製、PMEF細胞)を用いる他は、実施例1と同様に実施した結果を表1に示す。
実施例3
(ジオキサン変性ポリエステル樹脂を用いたPMEF細胞の培養)
 細胞培養用基材の原料として(3)ジオキサングリコール変性PET(ポリエステル2)を用いる他は、実施例2と同様に実施した結果を表1に示す。
実施例4
(NDCA、スピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材の原料として(4)NDCA、スピログリコール変性PET(ポリエステル3)を用いる他は、実施例1と同様に実施した結果を表1に示す。
実施例5
(紫外線照射したスピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材を1.8mW/cmの紫外線で20分間照射した他は実施例1と同様に実施した結果を表1に示す。また、図1に、細胞生育状態を評価した際の写真を示す。なお、下記に写真を撮影する際に用いた装置を示す。以下、写真を撮影する際は同様の装置を用いた。
・倒立位相差顕微鏡(Nikon TE200)
・写真撮影装置(Nikon DS-L1)
実施例6
(紫外線照射したNDCA,スピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材を1.8mW/cmの紫外線で20分間照射した他は実施例4と同様に実施した結果を表1に示す。また、図2に、細胞生育状態を評価した際の写真を示す。
実施例7
(プラズマ処理したスピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材に酸素プラズマ処理(100W、30秒)を施た他は実施例1と同様に実施した結果を表1に示す。
実施例8
(プラズマ処理およびγ線照射したスピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材に酸素プラズマ処理(100W、30秒)を施し、25kGyのγ線を照射した他は実施例1と同様に実施した結果を表1に示す。
実施例9
(プラズマ処理したNDCA,スピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材に酸素プラズマ処理(100W、30秒)を施した他は実施例4と同様に実施した結果を表1に示す。
実施例10
(プラズマ処理およびγ線照射NDCA,スピログリコール変性ポリエステル樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞播種前に細胞培養用基材に酸素プラズマ処理(100W、30秒)を施し、25kGyのγ線を照射した他は実施例4と同様に実施した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000007
比較例1
(無処理ポリスチレン樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材に(5)ポリスチレン製ディッシュ(無処理ディッシュ(表面処理なし))を用いる他は実施例1と同様に行った結果を表2に示す。また、図3に、細胞生育状態を評価した際の写真を示す。
比較例2
(組織培養用ポリスチレン樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材に(6)ポリスチレン製ディッシュ(組織培養用ディッシュ(付着性細胞用表面処理済み))を用いる他は実施例1と同様に行った結果を表2に示す。また、図4に、細胞生育状態を評価した際の写真を示す。
比較例3
(コラーゲンコートポリスチレン樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材に(7)ポリスチレン製ディッシュ(コラーゲンType1コート(ブタ由来))を用いる他は実施例1と同様に行った結果を表2に示す。また、図5に、細胞生育状態を評価した際の写真を示す。
比較例4
(PET樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材に(1)ポリエチレンテレフタレート(PET)を用いる他は実施例1と同様に行った結果を表2に示す。
比較例5
(紫外線照射PET樹脂を用いたヒト皮膚線維芽細胞の培養)
 細胞培養用基材に(1)ポリエチレンテレフタレート(PET)を用いる他は実施例5と同様に行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例1~10はいずれも、少なくとも比較例2と比べて細胞生育状態が良好であり、さらに動物由来成分であるコラーゲンコートを行った比較例3と比べても同等以上である。
 本出願は、2015年9月25日に日本国特許庁へ出願された日本特許出願(特願2015-187846号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明に係る細胞培養用基材は、コート処理せずに、付着性細胞を優れた水準で増殖させることができ、また、動物由来成分を含むコーティングを含まないため、安全であり、さらに、基材がコート処理されていないため、基材の管理が容易であることから、本発明の工業的意義は大きい。

Claims (14)

  1.  ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含み、
     前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
     細胞培養用基材。
  2.  前記環状アセタール骨格を有するジオール単位が、一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRはそれぞれ独立して、炭素数が1~10の脂肪族炭化水素基、炭素数が3~10の脂環式炭化水素基、及び炭素数が6~10の芳香族炭化水素基からなる群から選ばれる炭化水素基を示す。)
    で表されるジオール、および一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは前記と同様であり、Rは炭素数が1~10の脂肪族炭化水素基、炭素数が3~10の脂環式炭化水素基、及び炭素数が6~10の芳香族炭化水素基からなる群から選ばれる炭化水素基を表す)
    で表されるジオールから選ばれる少なくとも一つのジオールに由来するジオール単位である、
     請求項1に記載の細胞培養用基材。
  3.  前記環状アセタール骨格を有するジオール単位が、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンに由来するジオール単位、または5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサンに由来するジオール単位である、
     請求項1または2に記載の細胞培養用基材。
  4.  前記ジオール単位が環状アセタール骨格を有するジオール単位以外のその他のジオール単位をさらに含み、
     前記その他のジオール単位が、エチレングリコール、ジエチレングリコール、トリメチレングリコール、1,4-ブタンジオールおよび1,4-シクロヘキサンジメタノールからなる群から選ばれる1種以上のジオールに由来するジオール単位である、
     請求項1~3のいずれか一項に記載の細胞培養用基材。
  5.  前記ジカルボン酸単位が、テレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸および2,7-ナフタレンジカルボン酸からなる群から選ばれる1種以上のジカルボン酸に由来するジカルボン酸単位である、
     請求項1~4のいずれか一項に記載の細胞培養用基材。
  6.  ジオール単位中に前記環状アセタール骨格を有するジオール単位を実質的に含まないその他のポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂およびポリメチルメタクリレート-スチレン樹脂からなる群から選ばれる少なくとも1種以上の樹脂をさらに含む、
     請求項1~5のいずれか一項に記載の細胞培養用基材。
  7.  前記その他のポリエステル樹脂をさらに含み、
     前記その他のポリエステル樹脂が、ポリエチレンテレフタレート、ポリブチレンテレフタレート、イソフタル酸変性ポリエチレンテレフタレートおよび1,4-シクロヘキサンジメタノール変性ポリエチレンテレフタレートからなる群から選ばれる少なくとも1種以上の樹脂である、
     請求項6に記載の細胞培養用基材。
  8.  前記細胞培養用基材が、表面処理された基材である、
     請求項1~7のいずれか一項に記載の細胞培養用基材。
  9.  請求項1~8のいずれか一項に記載の細胞培養用基材を備える、
     細胞培養用容器。
  10.  ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含む基材上で細胞を培養する工程を有し、
     前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
     細胞培養方法。
  11.  前記細胞を培養する工程が、前記基材上に播種された前記細胞を培養する工程である、
     請求項10に記載の細胞培養方法。
  12.  前記細胞培養用基材が、表面処理された基材である、
     請求項10または11に記載の細胞培養方法。
  13.  前記細胞が、付着性細胞である、
     請求項10~12のいずれか一項に記載の細胞培養方法。
  14.  細胞の培養における基材としての使用であって、
     前記基材は、ジカルボン酸単位とジオール単位とを含む、ポリエステル樹脂を含み、
     前記ジオール単位中1~80モル%が環状アセタール骨格を有するジオール単位である、
     基材としての使用。
PCT/JP2016/078126 2015-09-25 2016-09-23 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用 WO2017051913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017540938A JP6739758B2 (ja) 2015-09-25 2016-09-23 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用
US15/760,000 US11149249B2 (en) 2015-09-25 2016-09-23 Base material for cell culture and cell culture method using same, cell culture container, and use as base material
EP16848701.5A EP3354720B1 (en) 2015-09-25 2016-09-23 Use of a substrate for cell culture, cell culture method using same and cell culture vessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187846 2015-09-25
JP2015187846 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051913A1 true WO2017051913A1 (ja) 2017-03-30

Family

ID=58386103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078126 WO2017051913A1 (ja) 2015-09-25 2016-09-23 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用

Country Status (4)

Country Link
US (1) US11149249B2 (ja)
EP (1) EP3354720B1 (ja)
JP (1) JP6739758B2 (ja)
WO (1) WO2017051913A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230710A1 (ja) * 2021-04-26 2022-11-03 三菱瓦斯化学株式会社 ポリエステル樹脂

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020203769A1 (ja) * 2019-03-29 2020-10-08
WO2021010242A1 (ja) * 2019-07-17 2021-01-21 三菱瓦斯化学株式会社 ポリエステル樹脂、並びに、当該ポリエステル樹脂を含む成形体、延伸フィルム及びボトル
CN115491307B (zh) * 2022-10-27 2024-01-23 同腾新创(苏州)科技有限公司 一种细胞和基因治疗中用于细胞培养的pet膜及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205773A (ja) * 2013-04-12 2014-10-30 三菱瓦斯化学株式会社 射出成形体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635482A (en) * 1989-08-14 1997-06-03 The Regents Of The University Of California Synthetic compounds and compositions with enhanced cell binding
JPH05276923A (ja) 1991-02-28 1993-10-26 W R Grace & Co 細胞培養用基材およびその製造方法
JP4196154B2 (ja) * 2001-12-19 2008-12-17 三菱瓦斯化学株式会社 多層シート
KR100868156B1 (ko) * 2001-12-21 2008-11-12 미츠비시 가스 가가쿠 가부시키가이샤 폴리에스테르 수지 조성물
US20040029266A1 (en) * 2002-08-09 2004-02-12 Emilio Barbera-Guillem Cell and tissue culture device
US20050058687A1 (en) 2003-09-12 2005-03-17 Becton, Dickinson And Company Covalently attached collagen VI for cell attachment and proliferation
WO2007125894A1 (ja) * 2006-04-26 2007-11-08 Toyo Gosei Co., Ltd. 細胞培養容器の製造方法
JP2008104411A (ja) 2006-10-26 2008-05-08 Fujifilm Corp 細胞培養用基板
US20080299601A1 (en) * 2007-03-15 2008-12-04 Invitrogen Corporation Adhering Surfaces
GB0717516D0 (en) * 2007-09-07 2007-10-17 Imp Innovations Ltd Bioactive nanocomposite material
US9598668B2 (en) 2008-10-14 2017-03-21 Cellseed Inc. Temperature-responsive cell culture substrate and method for producing the same
US20100255447A1 (en) * 2009-04-07 2010-10-07 University Of Arkansas Advanced bio-compatible polymer surface coatings for implants and tissue engineering scaffolds
US20120052049A1 (en) * 2010-08-31 2012-03-01 Renovocyte, LLC Systemic, Allogenic Stem Cell Therapies For Treatment of Diseases in Animals
CN105164249A (zh) * 2012-07-13 2015-12-16 米纳瓦生物技术公司 用于诱导细胞至较不成熟状态的方法
JP5752164B2 (ja) 2013-03-18 2015-07-22 大日本印刷株式会社 細胞培養支持体とその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205773A (ja) * 2013-04-12 2014-10-30 三菱瓦斯化学株式会社 射出成形体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FALCO ERIN E. ET AL.: "Recent Developments in Cyclic Acetal Biomaterials for Tissue Engineering Applications", PHARMACEUTICAL RESEARCH, vol. 25, no. 10, 2008, pages 2348 - 2356, XP019613186, ISSN: 0724-8741 *
JAPU CRISTINA ET AL.: "Bio-based poly (hexamethylene terephthalate)copolyesters containing cyclic acetalized tartrate units", POLYMER, vol. 54, 2013, pages 1573 - 1582, XP028984184, ISSN: 0032-3861 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230710A1 (ja) * 2021-04-26 2022-11-03 三菱瓦斯化学株式会社 ポリエステル樹脂

Also Published As

Publication number Publication date
JPWO2017051913A1 (ja) 2018-07-26
US20180265838A1 (en) 2018-09-20
EP3354720B1 (en) 2021-12-15
EP3354720A4 (en) 2019-05-15
US11149249B2 (en) 2021-10-19
EP3354720A1 (en) 2018-08-01
JP6739758B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
WO2017051913A1 (ja) 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用
Baran et al. Surface modification of 3D printed PLA objects by fused deposition modeling: a review
Agostinacchio et al. In situ 3D printing: opportunities with silk inks
Gregory et al. Polyhydroxyalkanoates and their advances for biomedical applications
Perez et al. Utilizing core–shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering
JP5013584B2 (ja) 軟骨細胞の培養方法および軟骨細胞
Pisani et al. Shape-memory polymers hallmarks and their biomedical applications in the form of nanofibers
Shin et al. Modulation of spreading, proliferation, and differentiation of human mesenchymal stem cells on gelatin-immobilized poly (l-lactide-co-ϵ-caprolactone) substrates
Cao et al. Mesenchymal stem cells loaded on 3D-printed gradient poly (ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering
Gao et al. Bioinspired design of polycaprolactone composite nanofibers as artificial bone extracellular matrix for bone regeneration application
Shanmugasundaram et al. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis
Lee et al. Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering
Pokrywczynska et al. Is the poly (L-Lactide-Co–Caprolactone) nanofibrous membrane suitable for urinary bladder regeneration?
US20130172985A1 (en) Crosslinked hydrogels and methods of making and using thereof
Goonoo et al. Improved multicellular response, biomimetic mineralization, angiogenesis, and reduced foreign body response of modified polydioxanone scaffolds for skeletal tissue regeneration
JP2014226088A (ja) 光および加水分解性架橋剤、光および加水分解性ゲル、細胞培養器具、細胞配列・分別装置、細胞配列方法、細胞分別方法、並びに、組織体形成方法
El-Ghazali et al. Characterization and biocompatibility evaluation of artificial blood vessels prepared from pristine poly (Ethylene-glycol-co-1, 4-cyclohexane dimethylene-co-isosorbide terephthalate), poly (1, 4 cyclohexane di-methylene-co-isosorbide terephthalate) nanofibers and their blended composition
Hsieh et al. Osteochondral regeneration induced by TGF-β loaded photo cross-linked hyaluronic acid hydrogel infiltrated in fused deposition-manufactured composite scaffold of hydroxyapatite and poly (ethylene glycol)-block-poly (ε-caprolactone)
Geevarghese et al. Biodegradable and non-biodegradable biomaterials and their effect on cell differentiation
WO2017051912A1 (ja) 細胞培養用基材およびそれを用いた細胞培養方法、細胞培養器、並びに基材としての使用
EP3875572A1 (en) Polylactide cell culture containers and use in cell culture without surface modification
Lyu et al. Hierarchical ZnO nanotube/graphene oxide nanostructures endow pure Zn implant with synergistic bactericidal activity and osteogenicity
Kandi et al. Fabrication and characterization of customized tubular scaffolds for tracheal tissue engineering by using solvent based 3D printing on predefined template
Bae et al. Effect of titanium implants coated with radiation-crosslinked collagen on stability and osseointegration in rat tibia
Park et al. Static and dynamic biomaterial engineering for cell modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848701

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540938

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016848701

Country of ref document: EP