WO2017051816A1 - ビア充填基板並びにその製造方法及び前駆体 - Google Patents

ビア充填基板並びにその製造方法及び前駆体 Download PDF

Info

Publication number
WO2017051816A1
WO2017051816A1 PCT/JP2016/077805 JP2016077805W WO2017051816A1 WO 2017051816 A1 WO2017051816 A1 WO 2017051816A1 JP 2016077805 W JP2016077805 W JP 2016077805W WO 2017051816 A1 WO2017051816 A1 WO 2017051816A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
substrate
metal film
layer
paste
Prior art date
Application number
PCT/JP2016/077805
Other languages
English (en)
French (fr)
Inventor
修 豆崎
耀広 林
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to US15/761,288 priority Critical patent/US10517178B2/en
Priority to CN201680055559.1A priority patent/CN108141966A/zh
Priority to KR1020187007947A priority patent/KR102082838B1/ko
Publication of WO2017051816A1 publication Critical patent/WO2017051816A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0094Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4076Through-connections; Vertical interconnect access [VIA] connections by thin-film techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1338Chemical vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4061Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in inorganic insulating substrates

Definitions

  • the present invention relates to a front / back conductive substrate (via-filled substrate) used in various electronic devices, a manufacturing method thereof, and a precursor.
  • Patent Document 1 discloses a method of forming an Au plating layer as a metal layer on the inner wall portion of the through hole of the insulating substrate. A method of completely filling a substantially drum-shaped through-hole formed at a predetermined position of a conductive substrate with a plated metal is disclosed.
  • a method of filling a through-hole with a conductive paste (conductive paste) composed of metal powder and a curable resin and curing to obtain a filled via but the conductive material contains a resin. Therefore, since the conductivity is low and it is limited by the heat resistance of the resin, the heat resistance of the substrate is also low.
  • a conductive paste conductive paste
  • this method is excellent in simplicity, and the resin component is evaporated and decomposed by firing, so that it has high conductivity, thermal conductivity, and heat resistance.
  • a gap or a void may exist between the filled conductor (conductive via part) and the wall surface of the hole. The cause of the generation of these gaps and voids can be presumed to be partly due to shrinkage due to solvent removal (drying) of the conductive paste filled in the holes and shrinkage due to sintering of the metal powder during high-temperature firing.
  • Patent Document 3 includes Cu powder, glass powder, and an organic vehicle, and has a volume change rate due to firing.
  • a Cu conductor paste having a content of 8% or less is disclosed
  • Patent Document 4 discloses conductive metal particles containing Ag as a main component and containing metal powder and metal nanoparticles, and glass and / or inorganic oxide.
  • blended in paste is between a filling conductor (conductive via part) and a hole wall surface by the melt flow during baking. It exists at the interface, and forms a bonding layer to express adhesion and fills in gaps and part of voids.
  • the ratio of the glass component is limited, it is difficult to fill all gaps and voids. Since such gaps and voids existing along the wall surface are easily connected to each other along the wall surface, the air-tightness and non-permeability (characteristic that liquid does not enter) of the via-filled substrate are impaired.
  • Patent Document 5 an active metal oxide layer is formed on the inner wall surface of the via, and a conductor layer made of the active metal is further formed on the inner side of the oxide layer.
  • a method for improving the adhesion and adhesion with a wall surface is disclosed.
  • Patent Document 5 does not disclose details of the conductive paste for forming the conductive via part, and does not verify the hermeticity or impermeability of the via-filled substrate.
  • an object of the present invention is to provide a via-filled substrate that can suppress the generation of voids and gaps, and a manufacturing method and precursor thereof.
  • Another object of the present invention is to provide a via-filled substrate that is excellent in airtightness (gas barrier property), non-permeability, conductivity, heat resistance, heat dissipation, reliability, and can be applied to wet processes such as plating, and a method for manufacturing the same. And providing a precursor.
  • the inventors have found that the volume change rate before and after firing is ⁇ 10 to after forming a metal film containing an active metal on the hole wall of the insulating substrate having holes.
  • the present invention was completed by discovering that voids and gaps in the via-filled substrate can be suppressed by filling 20% of the conductor paste into the hole in which the metal film is formed and firing.
  • an active metal layer containing at least one active metal selected from the group consisting of Ti, Zr, Nb, Ta, Cr, Mn and Al or an alloy containing the active metal on the hole wall surface May be formed.
  • a non-permeable layer containing at least one metal selected from the group consisting of Mo, W, Ni, Pd and Pt or an alloy containing this metal may be further formed on the obtained active metal layer.
  • a bonding layer containing a metal that is the same as or alloyable with the metal contained in the conductor paste may be formed on the outermost surface that contacts the conductor paste.
  • the metal film may be formed by physical vapor deposition.
  • the conductor paste includes metal particles and an organic vehicle, the metal particles include small metal particles having a particle size of less than 1 ⁇ m and large metal particles having a particle size of 1 to 50 ⁇ m, and the proportion of the organic vehicle is the entire paste. It may be 40% by volume or less.
  • the metal particles may be at least one metal selected from the group consisting of Cu, Ag, Ni, Au, Pt, and Al or an alloy containing the metal.
  • the metal small particles may include metal nanoparticles having a particle size of 100 nm or less.
  • the conductive paste preferably does not contain a glass component.
  • the insulating substrate may be a ceramic substrate, a glass substrate, a silicon substrate, or an enamel substrate.
  • the present invention includes an insulating substrate having a hole, a metal film containing an active metal formed on the wall surface of the hole, and a volume change before and after firing filled in the hole in which the metal film is formed. Also included is a via-filled substrate precursor having a conductor paste with a rate of -10 to 20%.
  • an insulating substrate having a hole, a metal film containing an active metal formed on the wall surface of the hole, and a conductive material formed by a conductor filled in the hole in which the metal film is formed.
  • At least one active metal selected from the group consisting of Ti, Zr, Nb, Ta, Cr, Mn, and Al or an alloy containing the active metal, and the non-permeable layer is formed on the active metal layer.
  • the insulating substrate may include a metal oxide
  • the active metal layer may include a layer formed of an active metal oxide on the hole wall surface side.
  • the metal film is formed using a conductor paste having a volume change rate of -10 to 20% before and after firing. Since the holes are filled and baked, generation of voids and gaps in the via-filled substrate can be suppressed. Therefore, the obtained via-filled substrate is excellent in airtightness (gas barrier property), non-permeability, conductivity, heat resistance, heat dissipation, and reliability, and can be applied to a wet process such as plating.
  • the method for manufacturing a via-filled substrate according to the present invention includes a metal film forming step of forming a metal film containing an active metal on a hole wall surface (a wall surface or an inner wall surface constituting a hole) of an insulating substrate having holes, before and after firing.
  • Metal film forming process As the metal film, a metal layer containing an active metal is formed on the hole wall surface, and usually the active metal layer is formed on the hole wall surface.
  • the conductor paste filled in the hole can significantly improve the wettability of the hole wall surface and greatly reduce the generation of voids and gaps.
  • the adhesion between the conductive via portion and the insulating substrate is improved, and a stronger via filling can be achieved.
  • the active metal may be any metal that reacts with a component of the insulating substrate or a metal that can form a compound with the component, and examples thereof include Ti, Zr, Nb, Ta, Cr, Mn, and Al. These active metals can be used alone or in combination of two or more kinds, and may be an alloy in which two or more kinds are combined.
  • active metals including Ti, Zr, and Cr are preferable, and these active metal simple substances are generally used.
  • the active metal has a simple film structure (especially without forming a non-transparent layer), so that the generation of voids and gaps can be suppressed without deteriorating the electrical characteristics of the conductive via portion.
  • It may be an alloy with a barrier metal (in particular, Mo or W) constituting the non-permeable layer.
  • the ratio of the barrier metal is 200 parts by mass or less with respect to 100 parts by mass of the active metal, for example, 1 to 150 parts by mass, preferably 5 to 150 parts by mass, and more preferably. Is about 10 to 100 parts by mass. If the ratio of the barrier metal is too large, the adhesion between the hole wall surface of the insulating substrate and the metal film may be lowered.
  • the active metal layer only needs to contain an active metal, and may be, for example, an active metal compound, but is usually an active metal simple substance, an alloy of active metals, or an alloy of an active metal and a barrier metal.
  • an active metal compound a compound (for example, TiH 2 , ZrH 2, etc.) from which an active metal is easily generated by heating is preferable.
  • the average thickness of the active metal layer is, for example, 0.005 ⁇ m or more, for example, 0.005 to 1.0 ⁇ m, preferably 0.01 to 0.5 ⁇ m, more preferably 0.05 to 0.3 ⁇ m (particularly 0.08). About 0.2 ⁇ m). If the thickness of the active metal layer is too thin, sufficient adhesion to the substrate cannot be obtained, and the metal film may be peeled off from the hole wall surface, resulting in the generation of voids and gaps. On the other hand, if the thickness of the active metal layer is too thick, the conductivity of the filling portion may be impaired, and it is disadvantageous in terms of cost.
  • the non-permeable layer serves as a barrier layer to prevent mutual diffusion between the active metal during firing and the conductive metal filled in the hole.
  • the non-permeable layer serves as a barrier layer to prevent mutual diffusion between the active metal during firing and the conductive metal filled in the hole.
  • Decrease in electrical characteristics due to diffusion of active metal into conductive via part and decrease in adhesion due to diffusion and alloying of conductive metal into active metal layer can be suppressed.
  • Hole of active metal layer due to diffusion and alloying Peeling from the wall surface can be prevented more reliably.
  • the barrier metal is not particularly limited as long as it has the above-described barrier properties, and examples thereof include Mo, W, Ni, Pd, and Pt. These barrier metals can be used alone or in combination of two or more kinds, and may be an alloy in which two or more kinds are combined.
  • barrier metals Pd and Pt are preferable, and these barrier metals alone are generally used.
  • the non-permeable layer only needs to contain a barrier metal, and may be, for example, a barrier metal compound, but is usually a single barrier metal or an alloy of barrier metals.
  • the average thickness of the non-permeable layer is, for example, 0.01 ⁇ m or more, for example, 0.01 to 0.5 ⁇ m, preferably 0.05 to 0.3 ⁇ m, and more preferably about 0.1 to 0.2 ⁇ m. If the thickness of the non-transmissive layer is too thin, the effect of the active metal layer may be reduced, or the adhesion between the conductive via part and the hole part may be reduced. If the thickness of the non-permeable layer is too thick, it is disadvantageous in terms of cost.
  • the bonding layer containing a metal that is the same as or alloyable with the metal contained in the conductor paste on the outermost surface in contact with the conductor paste.
  • the bonding layer may be laminated on the active metal layer or may be formed on the non-transmissive layer.
  • the metal of the non-transmissive layer is a metal having the properties of the bonding layer
  • the non-transmissive layer can also serve as the bonding layer.
  • the metal that forms the bonding layer is a metal that is different from the metal that forms the layer in contact with the bonding layer (non-transparent layer or active metal layer) and can be the same as or alloyable with the metal contained in the conductor paste (bonding).
  • Metal examples thereof include Pd, Pt, Au, Ag, Cu, Ni, and Al. These bonding metals can be used singly or in combination of two or more, and may be an alloy in which two or more are combined.
  • a preferable joining metal may be, for example, a metal containing Au, Ag, Cu, Ni, or Al, and these simple metals are generally used.
  • These bonding metals are highly conductive metals that are usually used as filled conductors, especially when they are the same as the metals contained in the conductor paste, because they can improve wettability and adhesion, It is dense and can adhere firmly.
  • the joining layer only needs to contain a joining metal.
  • the joining layer may be a joining metal compound, but is usually a joining metal simple substance or an alloy of joining metals.
  • the average thickness of the bonding layer is, for example, 0.01 ⁇ m or more, for example, 0.01 to 0.5 ⁇ m, preferably 0.05 to 0.2 ⁇ m, and more preferably about 0.08 to 0.15 ⁇ m. If the thickness of the bonding layer is too thin, the effect of forming the bonding layer may be reduced.
  • the average thickness of the entire metal film is, for example, 0.05 ⁇ m or more, for example, 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m, more preferably 0.15 to 0.5 ⁇ m (particularly 0.2 to 0.4 ⁇ m).
  • a physical vapor deposition method PVD method
  • a chemical vapor deposition method CVD method
  • a physical vapor deposition method is preferable because a metal film can be easily formed.
  • physical vapor deposition include vacuum vapor deposition, flash vapor deposition, electron beam vapor deposition, ion beam vapor deposition, sputtering, ion plating, molecular beam epitaxy, and laser ablation.
  • the sputtering method and the ion plating method are preferable, and the sputtering method is particularly preferable because it has high physical energy and can improve the adhesion between the formed metal film and the insulating substrate.
  • the sputtering method can be used under conventional conditions.
  • the material constituting the insulating substrate that forms such a metal film in the hole portion is required to have heat resistance because it undergoes a firing process.
  • it may be an organic material such as engineering plastic, it is usually an inorganic material (inorganic material).
  • the inorganic material examples include ceramics ⁇ metal oxide (quartz, alumina or aluminum oxide, zirconia, sapphire, ferrite, titania or titanium oxide, zinc oxide, niobium oxide, mullite, beryllia, etc.), silicon oxide (silicon dioxide, etc.).
  • ceramics ⁇ metal oxide quartz, alumina or aluminum oxide, zirconia, sapphire, ferrite, titania or titanium oxide, zinc oxide, niobium oxide, mullite, beryllia, etc.
  • silicon oxide silicon dioxide, etc.
  • Metal nitride (aluminum nitride, titanium nitride, etc.), silicon nitride, boron nitride, carbon nitride, metal carbide (titanium carbide, tungsten carbide, etc.), silicon carbide, boron carbide, metal boride (titanium boride, zirconium boride) Metal double oxide [metal titanate (barium titanate, strontium titanate, lead titanate, niobium titanate, calcium titanate, magnesium titanate, etc.), zirconate metal salt (barium zirconate, zirconate, etc.) Calcium, lead zirconate, etc.) Etc. ⁇ , glass (soda glass, borosilicate glass, crown glass, barium-containing glass, strontium-containing glass, boron-containing glass, low alkali glass, alkali-free glass, crystallized transparent glass, silica glass, quartz glass, heat-resistant glass Etc
  • the insulating substrate may be a heat resistant substrate such as a ceramic substrate, a glass substrate, a silicon substrate, or an enamel substrate.
  • a heat resistant substrate such as a ceramic substrate, a glass substrate, a silicon substrate, or an enamel substrate.
  • ceramic substrates such as alumina substrates, aluminum nitride substrates, and silicon nitride substrates are preferable.
  • the hole wall surface of the insulating substrate is oxidized (surface oxidation treatment, for example, discharge treatment (corona discharge treatment, glow discharge, etc.), acid treatment (chromic acid treatment, etc.), ultraviolet irradiation treatment, wrinkle treatment, etc.)
  • surface treatment such as treatment (solvent treatment, sandblast treatment, etc.) may be performed.
  • the average thickness of the insulating substrate may be appropriately selected depending on the application, for example, 0.01 to 10 mm, preferably 0.05 to 5 mm, more preferably 0.1 to 1 mm (particularly 0.2 to 0.8 mm). ) Degree.
  • the insulating substrate has holes (usually a plurality of holes) for filling the conductive vias, which are usually through holes, but may be non-through holes.
  • the cross-sectional shape parallel to the substrate surface direction of the hole is not particularly limited, and may be a polygonal shape (triangular shape, quadrangular shape, hexagonal shape, etc.), etc., but is usually circular or elliptical, Shape is preferred.
  • the average hole diameter of the holes is, for example, 0.05 to 10 mm, preferably 0.08 to 5 mm, and more preferably about 0.1 to 1 mm.
  • the formation method of the hole is not particularly limited, and a known method such as a laser method, a blast method, an ultrasonic method, a grinding method, or a drill method can be appropriately used.
  • the insulating substrate in which the metal film is formed on the hole wall surface may be subjected to an annealing process in which the metal film is heated in an inert gas atmosphere as a pre-process of the filling process.
  • the annealing step is not an essential step, but depending on the type of the metal film, the insulating substrate is baked at a high temperature by performing a filling step and a baking step to be described later without passing through the annealing step.
  • the metal of the conductive paste and the metal film are alloyed during firing, and the metal film is taken into the conductive via part and disappears, so that the adhesion between the conductive via part and the insulating substrate is reduced, or the joint part is There is a risk of voids.
  • the active metal of the metal film reacts preferentially with the hole wall surface of the insulating substrate rather than alloying with the metal of the conductor paste, forming a strong metal film on the hole wall surface
  • adhesion is improved and alloying with different metals in the metal film also occurs.
  • alloying between the metal component of the metal film and the metal of the conductor paste during firing of the conductor paste can be suppressed, and adhesion can be improved and the formation of voids at the interface can be more reliably prevented.
  • the heating temperature in the annealing process is 400 ° C. or higher and the melting point of the lowest melting metal among all the metal species constituting the metal film and the melting point of the alloy constituting the metal film, whichever is lower than the lower melting point. Any temperature can be used and can be selected according to the metal species.
  • the specific heating temperature is, for example, about 400 to 1500 ° C., preferably about 500 to 1200 ° C., more preferably about 600 to 1100 ° C. (especially 700 to 1000 ° C.). If the heating temperature is too low, the effect of improving the adhesion between the metal film and the hole wall surface may be reduced. If the heating temperature is too high, the metal component will melt and move, and the uniformity of the metal film may decrease. Part of the substrate may be exposed.
  • the heating time may be, for example, 1 minute or longer, for example, 1 minute to 1 hour, preferably 3 to 30 minutes, more preferably about 5 to 20 minutes. If the heating time is too short, the effect of improving the adhesion between the metal film and the hole wall surface may be reduced.
  • the annealing process may be performed in an active gas atmosphere such as in the air.
  • the active metal is not oxidized, and the metal film can be efficiently formed to improve the adhesion with the conductive via portion. It is preferable to carry out in an active gas atmosphere (for example, nitrogen gas, argon gas, helium gas, etc.).
  • the conductor paste may contain metal particles.
  • metal particles may contain metal particles.
  • Cu, Ag, Ni, Au, Pt, Al etc. are mentioned. These metals can be used alone or in combination of two or more kinds, and may be an alloy in which two or more kinds are combined.
  • Cu or Ag is preferable from the viewpoint of conductivity, reliability, economy, and the like.
  • the average particle diameter (center particle diameter) of the metal particles is about 100 ⁇ m or less (particularly 50 ⁇ m or less), for example, 0.001 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m, and more preferably about 0.1 to 10 ⁇ m. . If the average particle size is too large, close filling of the holes may be difficult.
  • the metal particles can improve the metal content in the paste and can improve the density and conductivity of the conductive via part, so that small metal particles with a particle size of less than 1 ⁇ m (for example, 1 nm to less than 1 ⁇ m) and a particle size of 1 to 50 ⁇ m. It is preferable to contain large metal particles.
  • the average particle size (center particle size) of the small metal particles can be selected from a range of about 0.01 to 0.9 ⁇ m (particularly 0.1 to 0.8 ⁇ m).
  • the average particle size of the small metal particles is, for example, 0.1 to 0.95 ⁇ m, preferably 0.3 to 0.9 ⁇ m, and more preferably 0.4 to 0.85 ⁇ m. Degree.
  • the average particle diameter of the metal small particles is, for example, about 0.1 to 0.8 ⁇ m, preferably about 0.1 to 0.5 ⁇ m, more preferably about 0.1 to 0.3 ⁇ m. is there. If the average particle size of the small metal particles is too small, the viscosity of the conductor paste may increase and handling may be difficult, and if it is too large, the effect of improving the denseness may be reduced.
  • the metal small particles preferably contain metal nanoparticles having a particle size of 100 nm or less from the viewpoint that the metal content in the paste can be further improved and a conductive via portion having higher density can be formed.
  • the average particle diameter (center particle diameter) of the metal nanoparticles is, for example, about 5 to 80 nm, preferably 10 to 60 nm, more preferably about 15 to 45 nm (particularly 20 to 40 nm). If the average particle size of the metal nanoparticles is too small, the handleability may be difficult, and if it is too large, the effect of improving the density of the conductive via portion may be reduced.
  • the metal nanoparticles may be metal colloid particles containing a protective colloid (a carboxylic acid such as acetic acid or a polymer dispersant).
  • a protective colloid a carboxylic acid such as acetic acid or a polymer dispersant
  • the metal colloidal particles include, for example, Japanese Patent Application Laid-Open No. 2010-202943, Japanese Patent Application Laid-Open No. 2010-229544, Japanese Patent Application Laid-Open No. 2011-77177, Japanese Patent Application Laid-Open No. 2011-93297, Japan Metal colloidal particles described in JP 2011-94233 A and the like can be used.
  • the proportion of the metal nanoparticles may be 0 to 90% by mass relative to the whole metal small particles, for example, 5 to 90% by mass, preferably 10 to 80% by mass, more preferably 20 to 70% by mass (particularly 30 to 60% by mass). If the proportion of metal nanoparticles is too large, the amount of organic matter such as protective colloids incidentally increases, which may increase the sintering shrinkage of the conductor paste.
  • the average particle size (center particle size) of the large metal particles can be selected from a range of about 1.5 to 30 ⁇ m (particularly 2 to 10 ⁇ m).
  • the average particle size of the large metal particles is, for example, about 2 to 30 ⁇ m, preferably about 3 to 20 ⁇ m, and more preferably about 5 to 10 ⁇ m.
  • the average particle size of the large metal particles is, for example, 1.2 to 20 ⁇ m, preferably 1.5 to 10 ⁇ m, and more preferably about 2 to 5 ⁇ m. If the average particle size of the large metal particles is too small, the sintering shrinkage of the conductor paste may increase, and if it is too large, the filling property of the conductive via portion may decrease.
  • the volume ratio is the same as the mass ratio, so it may be blended on a mass basis, but when using two or more types of metal particles having different specific gravity, , Each blending volume may be blended in terms of mass.
  • the particle size of the metal particles As a method for measuring the particle size of the metal particles, it can be measured by a laser diffraction / scattering particle size distribution measuring device or a transmission electron microscope (TEM), and in detail, it can be measured by the method described in the examples described later.
  • TEM transmission electron microscope
  • the conductor paste may further contain an organic vehicle.
  • the organic vehicle includes an organic binder, a dispersion medium (organic solvent), and the like. Note that protective colloids (such as carboxylic acids and polymer dispersants) contained in the above-described metal colloid particles are also included in the organic vehicle.
  • the organic vehicle may be a combination of an organic binder and a dispersion medium.
  • organic binders examples include thermoplastic resins (olefin resins, vinyl resins, acrylic resins, styrene resins, polyether resins, polyester resins, polyamide resins, cellulose derivatives, etc.), thermosetting resins ( Thermosetting acrylic resin, epoxy resin, phenol resin, unsaturated polyester resin, polyurethane resin, etc.). These organic binders can be used alone or in combination of two or more.
  • acrylic resins polymethyl methacrylate, polybutyl methacrylate, etc.
  • cellulose derivatives nitrocellulose, ethyl cellulose, butyl cellulose, cellulose acetate, etc.
  • polyethers polyoxymethylene, etc.
  • polyvinyls Polybutadiene, polyisoprene, etc.
  • poly (meth) acrylic acid C 1-10 alkyl esters such as poly (meth) methyl acrylate and poly (meth) butyl butyl are preferred from the viewpoint of thermal decomposability and the like. .
  • dispersion medium examples include aromatic hydrocarbons (such as paraxylene), esters (such as ethyl lactate), ketones (such as isophorone), amides (such as dimethylformamide), and aliphatic alcohols (octanol, decanol, diacetone).
  • aromatic hydrocarbons such as paraxylene
  • esters such as ethyl lactate
  • ketones such as isophorone
  • amides such as dimethylformamide
  • aliphatic alcohols octanol, decanol, diacetone
  • cellosolves methyl cellosolve, ethyl cellosolve, etc.
  • cellosolve acetates ethyl cellosolve acetate, butyl cellosolve acetate, etc.
  • carbitols carbitol, methyl carbitol, ethyl carbitol, etc.
  • carbitol acetates Ethyl carbitol acetate, butyl carbitol acetate, etc.
  • aliphatic polyhydric alcohols ethylene glycol, diethylene glycol, dipropylene glycol, butanediol, pentanediol, Ethylene glycol, glycerin, etc.
  • alicyclic alcohols for example, cycloalkanols, such as cyclohexanol; And aromatic carboxylic acid esters (dibutyl phthalate, dioctyl phthalate, etc.), nitrogen-containing heterocyclic
  • dispersion media can be used alone or in combination of two or more.
  • aliphatic polyhydric alcohols such as pentanediol and alicyclic alcohols such as terpineol are preferred from the viewpoint of paste fluidity and filling properties.
  • the ratio of the organic binder is, for example, 1 to 200 parts by weight, preferably 5 to 100 parts by weight, and more preferably about 10 to 50 parts by weight with respect to 100 parts by weight of the dispersion medium. is there.
  • the volume ratio of the organic vehicle may be 40% by volume or less (particularly 36% by volume or less) with respect to the entire paste, for example, 10 to 40% by volume, preferably 15 to 38% by volume, more preferably 20 to 37%. It is about volume% (especially 25 to 36 volume%). If the volume ratio of the organic vehicle is too large, the shrinkage rate of the conductor paste due to drying or baking after filling increases, and voids or gaps may be generated.
  • the conductor paste may further contain an inorganic binder.
  • the inorganic binder include low-melting glass such as borosilicate glass, zinc borosilicate glass, bismuth glass, and lead glass. These inorganic binders can be used alone or in combination of two or more. Among these inorganic binders, borosilicate glass or zinc borosilicate glass is preferable from the viewpoint of durability against plating.
  • the mass ratio of the inorganic binder is 10% by mass or less with respect to the whole paste, for example, 0.1 to 10% by mass, preferably 0.2 to 5% by mass, more preferably about 0.3 to 1% by mass. is there.
  • the adhesion between the conductive via portion and the hole wall surface of the insulating substrate can be improved without containing an inorganic binder. Therefore, it is preferable that the conductive paste does not contain an inorganic binder (particularly a glass component) from the viewpoint that the conductivity of the conductive via portion can be improved.
  • the conductive paste containing metal particles is usually bonded to the hole wall surface of an insulating substrate such as a ceramic substrate by a compounded glass component.
  • the metal that is firmly bonded to the hole wall surface to the substrate is used. Since the film (active metal layer) is formed, the conductive paste is bonded to the metal film on the wall surface by metal bonding, so that no glass component is required. When the glass component is not included, the metal content in the via filling portion increases, and the denseness, conductivity, and heat dissipation can be improved.
  • the conductor paste has a small volume change rate before and after firing, and the sintered conductor is firmly bonded to the hole wall surface without any gap. Therefore, the entire conductive via portion obtained by firing this paste is uniform and airtight.
  • the volume change rate before and after firing is, for example, about ⁇ 10 to 20%, preferably ⁇ 5 to 15%, and more preferably about 0 to 10%. If the volume change rate is too large in the negative (minus) direction (minus and the absolute value is too large), voids or gaps may be generated due to shrinkage during firing. On the other hand, if the volume change rate is too large in the positive (plus) direction, a large void may be formed after firing, or the denseness of the filled via portion may be lowered, and the barrier property may be lowered.
  • volume change rate is negative
  • the conductor paste in the present invention is 10% or less even if shrinkage, rather it is expanded (a volume change rate is positive). It is characterized by being a compounding formula that works well.
  • the pattern film thickness before and after firing can be calculated by measuring with a stylus-type film thickness meter, and can be measured in detail by the method described in the examples described later.
  • Examples of the method of filling the conductor paste into the hole include printing methods such as screen printing, inkjet printing, intaglio printing (eg, gravure printing), offset printing, intaglio offset printing, flexographic printing, and the like. And direct press-fitting methods such as a roll press-fitting method, a squeegee press-fitting method, and a press-fitting method. Of these methods, the screen printing method and the like are preferable.
  • the heating temperature can be selected according to the type of the dispersion medium, and is, for example, about 80 to 300 ° C, preferably about 100 to 250 ° C, and more preferably about 120 to 200 ° C.
  • the heating time is, for example, about 1 to 60 minutes, preferably about 5 to 40 minutes, and more preferably about 10 to 30 minutes.
  • the dried conductor paste (especially the conductor paste containing Cu particles) may be directly subjected to the firing step, but may be heat-treated before firing in order to suppress thermal sintering shrinkage during firing.
  • the heat treatment temperature before firing may be 180 ° C. or higher, for example, 180 to 500 ° C., preferably 190 to 300 ° C., more preferably about 200 to 250 ° C.
  • the heat treatment time is, for example, about 10 minutes to 3 hours, preferably about 30 minutes to 2 hours, and more preferably about 1 to 1.5 hours.
  • the firing temperature may be equal to or higher than the sintering temperature of the metal particles in the conductive paste.
  • the calcination temperature may be, for example, 500 ° C. or higher, for example, 500 to 1500 ° C., preferably 550 to 1200 ° C., more preferably about 600 to 1000 ° C.
  • the firing time is, for example, about 10 minutes to 3 hours, preferably about 20 minutes to 3 hours, and more preferably about 30 minutes to 2 hours.
  • the firing atmosphere can be selected according to the type of metal particles, and the noble metal particles such as Ag are not particularly limited and may be in the air, but the metal particles such as Cu are usually inert gas.
  • the atmosphere for example, nitrogen gas, argon gas, helium gas, etc. is preferable.
  • the via-filled substrate of the present invention is a via-filled substrate obtained by the above manufacturing method and electrically conducting both surfaces of the insulating substrate. Specifically, the via-filled substrate is formed on the insulating substrate having a hole and the hole wall surface. And a conductive via portion formed of a conductor filled in the hole portion in which the metal film is formed.
  • the metal film may include an active metal layer, but preferably includes an active metal layer, a non-permeable layer and / or a bonding layer.
  • the active metal layer includes at least one active metal selected from the group consisting of Ti, Zr, Nb, Ta, Cr, Mn, and Al, or an alloy containing the active metal, and usually the active metal alone or It is made of an alloy.
  • This active metal layer may have a layer formed of an active metal oxide on the hole wall surface side. For example, when the insulating substrate is formed of a metal oxide, the active metal layer is formed by firing. An active metal oxide layer formed on the wall surface side of the hole may be used.
  • the non-permeable layer includes at least one metal selected from the group consisting of Mo, W, Ni, Pd, and Pt or an alloy containing the metal, and is usually formed of a single element or alloy of these active metals. .
  • the joining layer contains a metal that is the same as or can be alloyed with the metal contained in the conductor paste, and is usually formed of such a single metal.
  • the via-filled substrate precursor of the present invention is an intermediate before the firing step, specifically, an insulating substrate having a hole, a metal film containing an active metal formed on the hole wall surface, A conductive paste that fills the hole in which the metal film is formed and has a volume change rate of -10 to 20% before and after firing.
  • the airtightness of the conductive via part was evaluated with a helium leak detector (“UL200” manufactured by LEYBOLD). Specifically, after setting the measurement substrate on the jig, evacuating until the inlet pressure of the measuring machine reaches 5 Pa, and after applying the He pressure (0.1 MPa) for 30 seconds when the inlet pressure reaches 5 Pa. The amount of leakage was measured and evaluated according to the following criteria.
  • Leak amount is less than 1 ⁇ 10 ⁇ 11 Pa ⁇ m 3 / sec
  • Leak amount is 1 ⁇ 10 ⁇ 11 to 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec
  • the leak amount exceeds 1 ⁇ 10 ⁇ 9 Pa ⁇ m 3 / sec.
  • Method film thickness The average thickness of 5 points was measured with a fluorescent X-ray film thickness meter.
  • the adhesion between filled conductor and insulating substrate Since it is difficult to directly measure the adhesion between the filled conductor inside the via and the hole wall surface, the adhesion was evaluated by the following method. That is, the adhesion between the filled conductor and the insulating substrate was evaluated using the metal film simultaneously formed on the surface of the insulating substrate in the process of forming the metal film on the hole wall surface of the insulating substrate as a measurement site. When the insulating substrate with a metal film was annealed, it was subjected to the adhesion evaluation after annealing.
  • a conductor paste of 2 mm ⁇ 2 mm ⁇ 0.03 mmt (thickness) was formed by screen printing a conductor paste on a metal film formed on the surface of the insulating substrate. Then, firing was performed under predetermined conditions, and a stud pin having a tip area of 1 mm 2 was vertically joined to the generated 2 mm ⁇ 2 mm fired film by solder to obtain a test piece.
  • the test piece (fired substrate) was fixed, the stud pin was gripped by the chuck part of the tensile tester, pulled vertically upward at a rising speed of 33 mm / min, and the breaking load when the fired film peeled from the insulating substrate was measured. .
  • the adhesive strength was computed using the following formula from the measured value of the obtained fracture load, and the fracture area of a baked film. The measured value was an average of 6 points.
  • Adhesive strength (MPa) Fracture load (kgf) / Fracture area (mm 2 ) ⁇ 9.8 (N / kgf).
  • Average particle diameter of metal particles The average particle size of Cu particles and Ag particles was measured with a laser diffraction / scattering particle size distribution measuring device, and the average particle size of Ag nanoparticles was measured with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • volume change rate of conductor paste The volume change rate before and after firing the conductor paste was calculated by measuring the pattern film thickness before and after firing with a stylus thickness meter. Specifically, a conductor is obtained by using a 250-mesh screen plate on the surface of a 96% alumina substrate (manufactured by Nikko Corporation), printing a conductor paste in a 5 mm ⁇ 5 mm pattern, and heating at 120 ° C. for 20 minutes. The organic solvent in the paste was removed to obtain a dry film. The film thickness of this dry film was measured with a stylus type film thickness meter ("Dektak 6m" manufactured by Beco) and used as the film thickness before firing.
  • a stylus type film thickness meter (“Dektak 6m" manufactured by Beco)
  • a copper paste it can be baked as it is, but in some cases, after treatment in air using a continuous drying furnace at various heat treatment temperatures for 60 minutes, under a nitrogen atmosphere using a continuous baking furnace. And firing at a peak temperature of 900 ° C.
  • the holding time under the peak temperature was 10 minutes.
  • the residence time of the substrate from the firing furnace inlet to the outlet was 60 minutes.
  • heat treatment before firing is unnecessary, but since the volume change rate varies depending on the firing temperature, the firing temperature can be changed as necessary. Note that, similarly to the firing of the copper paste, the holding time at a predetermined peak temperature was 10 minutes, and the residence time in the firing furnace was 60 minutes.
  • the thickness of the pattern after firing was measured with a stylus-type film thickness meter, and the volume change rate (%) was determined by comparing the film thickness values before and after firing according to the following formula. If the volume change rate (%) is a negative value, it indicates that the volume is decreasing (shrinking). Conversely, if the volume change rate (%) is a positive value, the volume is increasing. Indicates.
  • Volume change rate (%) [(film thickness after firing ⁇ film thickness before firing) / film thickness before firing] ⁇ 100.
  • the 240 ° C. heat-treated product of Cu paste 1 had a large volume change rate in the positive direction
  • Cu paste 4 paste that was not heat-treated before firing
  • thermogravimetric apparatus TG / DTA, “EXSTAR6000” manufactured by Seiko Instruments Inc.
  • the content was 3 parts by mass with respect to 100 parts by mass of silver.
  • the measurement by TG / DTA was performed under the condition that the sample was heated from 30 ° C. to 550 ° C. at a rate of 10 ° C. per minute, and the content of the protective colloid was calculated from the mass decrease at this time.
  • the 850 ° C. fired product of Ag paste 4 and the 600 ° C. fired product of Ag paste 5 had a volume change rate of ⁇ 10% or less and contracted greatly.
  • Examples 1 to 37 and Comparative Examples 1 to 16 (Preparation of substrate) A 96% alumina substrate (made by Nikko Corporation) having a size of 50 mm ⁇ 50 mm ⁇ 0.5 mmt was prepared. A large number of through holes [through holes (vias)] having a hole diameter of 0.2 mm were formed on the alumina substrate by laser.
  • a metal material such as active metal is applied to the surface of the alumina substrate and the inner wall surface of the through-hole using a sputtering apparatus (“E-200S” manufactured by Canon Anelva Co., Ltd.) with a voltage of 200 W, an argon gas of 0.5 Pa, Sputtering was performed under the condition of 200 ° C. heating.
  • Tables 3 to 6 show the metal material types used and the average thickness of the formed film. When using multiple types of metal materials, the sputtering work was performed in order.
  • the metal species of Example 16 is an alloy of Ti and W.
  • the through-hole substrate was set on an adsorption table of a screen printer (manufactured by Micro Tech Co., Ltd.), and a medicine wrapping paper was installed under the substrate to prevent the metal paste (Cu paste or Ag paste) from flowing out.
  • the metal paste was placed directly on the surface of the substrate and printed and filled.
  • the fired substrate was polished on both sides by 0.1 mm by lapping and then the surface roughness Ra was reduced to 0.05 ⁇ m or less by mirror polishing.
  • Tables 3 to 6 show the evaluation results of the obtained via-filled substrates.
  • Comparative Example 3 the glass component blended in the paste was in direct contact with the substrate wall surface of the hole, and exhibited adhesion due to the binder effect of the glass component. In these comparative examples, there is no metal layer that is stably adhered to the substrate wall surface in the hole. Therefore, when the conductive paste is fired, the wettability between the filling metal and the substrate wall surface is reduced, and the space between the filling metal and the wall surface is reduced.
  • the conductive via part was formed in the metal film including the active metal layer using the Ag paste whose volume change rate before and after firing was ⁇ 10 to 20%. A dense conductive via portion without voids or gaps was formed, and good airtightness was obtained.
  • Comparative Examples 11 and 12 using an Ag paste whose volume change rate was too large in the negative direction voids and gaps were generated, and the airtightness was low.
  • Comparative Examples 13 to 16 having no active metal layer voids and gaps were generated, and the airtightness was low.
  • Examples 38-39 As a result of producing and evaluating via-filled substrates in the same manner as in Examples 1 and 25 except that an aluminum nitride substrate (manufactured by MARUWA, thermal conductivity 170 W / m ⁇ K) was used instead of the 96% alumina substrate, The evaluation was the same as in Examples 1 and 25.
  • an aluminum nitride substrate manufactured by MARUWA, thermal conductivity 170 W / m ⁇ K
  • the via-filled substrate of the present invention can be used for circuit boards, electronic components, semiconductor package boards, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Conductive Materials (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本発明は、孔部を有する絶縁性基板の孔部壁面に活性金属を含む金属膜を形成する金属膜形成工程、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填する充填工程、導体ペーストが充填された絶縁性基板を焼成する焼成工程を含むビア充填基板の製造方法に関する。

Description

ビア充填基板並びにその製造方法及び前駆体
 本発明は、各種の電子機器に使用される表裏導通基板(ビア充填基板)並びにその製造方法及び前駆体に関する。
 従来から、電子基板は、機能部品の配置や配線回路の形成に使用されている。近年、電子機器又は部品の小型化、高機能化及び集積化のために、絶縁性基板に貫通孔(ビア)を形成し、貫通孔内に導電材料を設けて基板両面を電気的に導通させる用途が増加している。基板両面を電気的に導通する方法として、特許文献1には、絶縁性基板の貫通孔の内壁部に金属層としてAuメッキ層を形成する方法が開示されており、特許文献2には、絶縁性基板の所定位置に形成された略鼓状の透孔をメッキ金属で完全に充填する方法が開示されている。
 しかし、これらの方法では、環境負荷の大きいメッキ工程が必要であるため、工程が複雑であり、経済性も低い。
 また、貫通孔に金属粉及び硬化性樹脂で構成される導体ペースト(導電性ペースト)を充填し、硬化して充填ビアを得る方法も知られているが、導電材料に樹脂が含有しているため、導電性が低く、樹脂の耐熱性によって制限されるため、基板の耐熱性も低い。
 さらに、貫通孔に金属粉、無機バインダー及び樹脂で構成される導体ペーストを充填し、金属の焼結温度以上に加熱して金属粉を焼結して導電性の充填ビアを得る方法も知られており、この方法は、簡便性に優れるとともに、樹脂成分は焼成により蒸発、分解されるため、導電性、熱伝導性及び耐熱性も高い。しかし、ビアに導体ペーストを充填した後に焼成して得られるビア充填基板には、充填導体(導電ビア部)と孔部の壁面との間に隙間やボイドが存在する場合がある。これらの隙間やボイドの発生原因としては、孔に充填した導体ペーストの溶媒除去(乾燥)による収縮や、高温焼成時の金属粉の焼結による収縮が原因の一部と推定できる。
 充填導体と壁面との間に隙間が存在すると、少なくとも以下の3点の課題が生じる虞がある。
(1)基板表面に充填部を跨って導電膜(電極、配線など)を形成した場合、隙間の存在により導電膜が切れて導電性能の低下や断線を招く虞がある。
(2)壁面に存在する隙間が壁面に沿ってお互いに繋がり、充填部の気密性や半田バリア性などの非透過性の確保ができなくなる虞がある(例えば、気密性や半田バリア性が要求される用途)。
(3)ビア充填基板が後工程としてメッキなどの湿式工程を経る場合、薬液などが隙間内に浸入し、ビア部の破裂、表面膜のフクレ、変色等の不具合を起こす虞がある。
 そこで、導体ペーストを用いた方法において、焼成時の焼結収縮を抑制できる導体ペーストが提案されており、特許文献3には、Cu粉末、ガラス粉末及び有機ビヒクルを含み、かつ焼成による体積変化率が8%以下であるCu導体ペーストが開示されており、特許文献4には、Agを主成分とし、金属粉及び金属ナノ粒子を含有する導電性金属粒子と、ガラス及び/又は無機酸化物と、有機ビヒクルとを含有し、かつ600℃で焼成後の体積変化率が-5~+10%の範囲である導体ペーストが開示されている。これらの導体ペーストを用いると、表面平滑性を向上でき、さらに充填部と基板との密着力も向上できる。
 しかし、これらの導体ペーストを使用した場合でも、隙間やボイドの発生を完全に無くすことは困難である。即ち、前記(1)~(3)の課題を完全に解決するには至らない。これらの隙間、ボイドの発生原因としては、CuやAgなどの高導電性金属は、性質上セラミックス基板との濡れ性が低く、焼成条件下ではセラミックス基板(孔部壁面)を濡らすことができないため、たとえ焼成時の焼結収縮が小さい導体ペーストを用いても、焼結金属と基板壁面間に連続した接合界面層の形成は難しい。言い換えれば、焼結後に充填された導体(導電ビア部)と孔部壁面との間に隙間やボイドが生じやすい。また、特許文献3及び特許文献4で開示されている導体ペーストでは、ペースト中に配合されているガラス成分が、焼成中の溶融流動により充填導体(導電ビア部)と孔部壁面との間の界面に存在し、接合層を形成して密着力を発現するとともに隙間やボイドの一部を埋めている。しかし、ガラス成分の割合が制限されるため、全ての隙間やボイドを埋めるのは困難である。このような壁面に沿って存在する隙間やボイドは、壁面に沿って相互に繋がりやすいため、ビア充填基板の気密性や非浸透性(液体が浸入しない特性)を損なうことに繋がる。
 また、これらの導体ペーストでは、ガラス成分が必須であるため、高度に緻密性、導電性、放熱性を向上できない。
 また、特許文献5には、ビアの内側壁面に、活性金属の酸化物層を形成し、さらにこの酸化物層の内側に前記活性金属からなる導体層を形成し、内側のビア導体と、ビア壁面との接着力及び密着力を向上させる方法が開示されている。
 しかし、この方法でも、導電ビア部と孔部壁面との間の隙間の発生を高度に抑制するのは困難である。即ち、導電ビア部を形成するための導体ペーストの焼結収縮が大きければ、導電ビア部(導体層も含めた導電ビア部)とビア壁面との密着力よりも収縮応力が上回り、導電ビア部(導体層も含めた導電ビア部)がビア壁面から剥がれて隙間が形成し、その結果、ビア充填基板の気密性や非浸透性が損なわれる。また、特許文献5では導電ビア部を形成するための導体ペーストの詳細は開示されておらず、ビア充填基板の気密性や非浸透性については検証されていない。
日本国特開平5-308182号公報 日本国特開2006-203112号公報 日本国特開2010-108917号公報 日本国特開2011-77177号公報 日本国特開2009-59744号公報
 従って、本発明の目的は、ボイドや隙間の発生を抑制できるビア充填基板並びにその製造方法及び前駆体を提供することにある。
 本発明の他の目的は、気密性(ガスバリア性)、非浸透性、導電性、耐熱性、放熱性、信頼性に優れ、メッキなどの湿式工程にも対応可能なビア充填基板並びにその製造方法及び前駆体を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討の結果、孔部を有する絶縁性基板の孔部壁面に活性金属を含む金属膜を形成した後、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填して焼成することにより、ビア充填基板のボイドや隙間の発生を抑制できることを見出し、本発明を完成した。
 すなわち、本発明のビア充填基板の製造方法は、孔部を有する絶縁性基板の孔部壁面に活性金属を含む金属膜を形成する金属膜形成工程、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填する充填工程、導体ペーストが充填された絶縁性基板を焼成する焼成工程を含む。前記金属膜形成工程において、孔部壁面に、Ti、Zr、Nb、Ta、Cr、Mn及びAlからなる群より選択された少なくとも1種の活性金属又はこの活性金属を含む合金を含む活性金属層を形成してもよい。また、得られた活性金属層の上に、Mo、W、Ni、Pd及びPtからなる群より選択された少なくとも1種の金属又はこの金属を含む合金を含む非透過層をさらに形成してもよい。前記金属膜形成工程において、導体ペーストと接触する最表面に、導体ペーストに含まれる金属と同一又は合金化可能な金属を含む接合層を形成してもよい。前記金属膜形成工程において、物理蒸着法で金属膜を形成してもよい。本発明の製造方法は、前記充填工程の前工程として、不活性ガス雰囲気中で、400℃以上、且つ金属膜を構成する全ての金属種の中で最も低融点の金属の融点、及び金属膜を構成する合金の融点のいずれか低い方の融点以下の温度で金属膜(基板)を加熱するアニール工程をさらに含んでいてもよい。前記導体ペーストは、金属粒子及び有機ビヒクルを含み、前記金属粒子が、粒径1μm未満の金属小粒子と粒径1~50μmの金属大粒子とを含み、かつ前記有機ビヒクルの割合が、ペースト全体に対して40体積%以下であってもよい。前記金属粒子は、Cu、Ag、Ni、Au、Pt及びAlからなる群より選択された少なくとも1種の金属又はこの金属を含む合金であってもよい。前記金属小粒子は、粒径100nm以下の金属ナノ粒子を含んでいてもよい。前記導体ペーストはガラス成分を含まないのが好ましい。前記絶縁性基板は、セラミックス基板、ガラス基板、シリコン基板又はほうろう基板であってもよい。
 本発明には、孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填され、かつ焼成前後の体積変化率が-10~20%である導体ペーストとを有するビア充填基板前駆体も含まれる。
 本発明には、孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填された導体で形成された導電ビア部とを有するビア充填基板であって、前記金属膜が、活性金属層と、非透過層及び/又は接合層とを含み、前記活性金属層が、前記絶縁性基板の孔部壁面に形成され、Ti、Zr、Nb、Ta、Cr、Mn及びAlからなる群より選択された少なくとも1種の活性金属又はこの活性金属を含む合金を含み、前記非透過層が、前記活性金属層の上に形成され、Mo、W、Ni、Pd及びPtからなる群より選択された少なくとも1種の金属又はこの金属を含む合金を含み、かつ前記接合層が、導電ビア部と接触する最表面に形成され、前記導体ビア部に含まれる金属と同一又は合金化可能な金属を含むビア充填基板も含まれる。本発明のビア充填基板において、前記絶縁性基板は金属酸化物を含み、かつ活性金属層は、孔部壁面側に活性金属の酸化物で形成された層を有していてもよい。
 本発明では、孔部を有する絶縁性基板の孔部壁面に活性金属を含む金属膜を形成した後、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填して焼成されるため、ビア充填基板のボイドや隙間の発生を抑制できる。そのため、得られたビア充填基板は、気密性(ガスバリア性)、非浸透性、導電性、耐熱性、放熱性、信頼性に優れ、メッキなどの湿式工程にも対応できる。
 [ビア充填基板の製造方法]
 本発明のビア充填基板の製造方法は、孔部を有する絶縁性基板の孔部壁面(孔部を構成する壁面又は内壁面)に活性金属を含む金属膜を形成する金属膜形成工程、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填する充填工程、導体ペーストが充填された絶縁性基板を焼成する焼成工程を含む。
 (金属膜形成工程)
 金属膜形成工程において、金属膜としては、活性金属を含む金属層を孔部壁面に形成し、通常、活性金属層を孔壁面に形成する。本発明では、孔部壁面に活性金属を含む金属層を形成することにより、孔部に充填された導体ペーストは孔部壁面に対する濡れ性を著しく向上してボイドや隙間の発生を大きく低減できるとともに、導電ビア部と絶縁性基板との間の密着性も向上し、より強固なビア充填ができる。
 活性金属としては、絶縁性基板の構成成分と反応する金属や前記構成成分と化合物を形成できる金属であればよく、例えば、Ti、Zr、Nb、Ta、Cr、Mn、Alなどが挙げられる。これらの活性金属は、単独で又は二種以上組み合わせて使用でき、二種以上を組み合わせた合金であってもよい。
 これらの活性金属のうち、Ti、Zr、Crを含む活性金属が好ましく、通常、これらの活性金属単体が汎用される。
 さらに、活性金属は、簡便な膜構造であっても(特に、非透過層を形成することなく)、導電ビア部の電気特性を低下させずにボイドや隙間の発生を抑制できる点から、後述する非透過層を構成するバリア性金属(特に、Mo又はW)との合金であってもよい。活性金属とバリア性金属との合金において、バリア性金属の割合は、活性金属100質量部に対して200質量部以下であり、例えば1~150質量部、好ましくは5~150質量部、さらに好ましくは10~100質量部程度である。バリア性金属の割合が多すぎると、絶縁性基板の孔部壁面と金属膜との密着性が低下する虞がある。
 活性金属層は、活性金属を含んでいればよく、例えば、活性金属化合物であってもよいが、通常、活性金属単体、活性金属同士の合金、活性金属とバリア性金属との合金である。活性金属化合物としては、加熱により容易に活性金属が生成する化合物(例えば、TiH、ZrHなど)が好ましい。
 活性金属層の平均厚みは、例えば0.005μm以上であり、例えば0.005~1.0μm、好ましくは0.01~0.5μm、さらに好ましくは0.05~0.3μm(特に0.08~0.2μm)程度である。活性金属層の厚みが薄過ぎると、基板との密着力が充分に得られず金属膜が孔部壁面から剥がれ、ボイドや隙間が発生する虞がある。一方、活性金属層の厚みが厚過ぎると、充填部の導電性が損なわれる虞があるとともに、コスト的に不利である。
 金属膜形成工程では、前記活性金属層の上にさらにバリア性金属を含む非透過層(バリア層)を形成するのが好ましい。本発明では、前記活性金属層の上に非透過層を積層することにより、非透過層がバリア層として焼成時の活性金属と孔部に充填された導電性金属との相互拡散を防止し、活性金属の導電ビア部内部への拡散による電気特性の低下と、導電性金属の活性金属層への拡散及び合金化による密着性の低下を抑制でき、拡散及び合金化による活性金属層の孔部壁面からの剥離をより確実に防止できる。
 バリア性金属としては、前述のバリア性を有していれば特に限定されず、例えば、Mo、W、Ni、Pd、Ptなどが挙げられる。これらのバリア性金属は、単独で又は二種以上組み合わせて使用でき、二種以上を組み合わせた合金であってもよい。
 これらのバリア性金属のうち、Pd、Ptが好ましく、通常、これらのバリア性金属単体が汎用される。
 非透過層は、バリア性金属を含んでいればよく、例えば、バリア性金属化合物であってもよいが、通常、バリア性金属単体、バリア性金属同士の合金である。
 非透過層の平均厚みは、例えば0.01μm以上であり、例えば0.01~0.5μm、好ましくは0.05~0.3μm、さらに好ましくは0.1~0.2μm程度である。非透過層の厚みが薄過ぎると、活性金属層の効果が低下したり、導電ビア部と孔部との密着性が低下する虞がある。非透過層の厚みが厚すぎると、コスト的に不利になる。
 金属膜形成工程では、導体ペーストと接触する最表面に、導体ペーストに含まれる金属と同一又は合金化可能な金属を含む接合層を形成するのが好ましい。接合層は、例えば、活性金属層の上に積層してもよく、非透過層の上に形成してもよい。非透過層の金属が接合層の性質をも持つ金属である場合は、非透過層は接合層を兼ねることができる。本発明では、最表面に接合層を積層することにより、絶縁性基板の孔部に充填される導体ペーストと金属膜とを、ボイドを形成せず高い密着性でより確実に接合できる。
 接合層を形成する金属は、接合層と接触する層(非透過層又は活性金属層)を形成する金属と異なる金属であり、かつ導体ペーストに含まれる金属と同一又は合金化可能な金属(接合用金属)であればよく、例えば、Pd、Pt、Au、Ag、Cu、Ni、Alなどが挙げられる。これらの接合用金属は、単独で又は二種以上組み合わせて使用でき、二種以上を組み合わせた合金であってもよい。
 これらの接合用金属のうち、導体ペーストに含まれる金属と同一の金属が好ましい。好ましい接合用金属は、例えば、Au、Ag、Cu、Ni、Alを含む金属であってもよく、通常、これらの金属単体が汎用される。これらの接合用金属は、充填導体として通常使用される高導電性金属であり、特に、導体ペーストに含まれる金属と同一である場合、濡れ性及び密着性を向上できるため、絶縁性基板とより緻密で強固に密着できる。
 接合層は、接合用金属を含んでいればよく、例えば、接合用金属化合物であってもよいが、通常、接合用金属単体、接合用金属同士の合金である。
 接合層の平均厚みは、例えば0.01μm以上であり、例えば0.01~0.5μm、好ましくは0.05~0.2μm、さらに好ましくは0.08~0.15μm程度である。接合層の厚みが薄過ぎると、接合層を形成する効果が低下する虞がある。
 金属膜全体の平均厚みは、例えば0.05μm以上であり、例えば0.05~2μm、好ましくは0.1~1μm、さらに好ましくは0.15~0.5μm(特に0.2~0.4μm)程度である。
 これらの金属膜の形成方法としては、物理蒸着法(PVD法)、化学蒸着法(CVD法)などを利用できるが、容易に金属膜を形成できる点から、物理蒸着法が好ましい。物理蒸着法としては、例えば、真空蒸着法、フラッシュ蒸着法、電子ビーム蒸着法、イオンビーム蒸着法、スパッタリング法、イオンプレーティング法、分子線エピタキシー法、レーザーアブレーション法などが挙げられる。これらのうち、物理的なエネルギーが高く、形成された金属膜と絶縁性基板との間の密着力を向上できる点から、スパッタリング法、イオンプレーティング法が好ましく、スパッタリング法が特に好ましい。スパッタリング法は、慣用の条件で利用できる。
 孔部にこのような金属膜を形成する絶縁性基板を構成する材質は、焼成工程を経るため、耐熱性が要求される。エンジニアリングプラスチックなどの有機材料であってもよいが、通常、無機材料(無機素材)である。
 無機材料としては、例えば、セラミックス{金属酸化物(石英、アルミナ又は酸化アルミニウム、ジルコニア、サファイア、フェライト、チタニア又は酸化チタン、酸化亜鉛、酸化ニオブ、ムライト、ベリリアなど)、酸化ケイ素(二酸化ケイ素など)、金属窒化物(窒化アルミニウム、窒化チタンなど)、窒化ケイ素、窒化ホウ素、窒化炭素、金属炭化物(炭化チタン、炭化タングステンなど)、炭化ケイ素、炭化ホウ素、金属ホウ化物(ホウ化チタン、ホウ化ジルコニウムなど)、金属複酸化物[チタン酸金属塩(チタン酸バリウム、チタン酸ストロンチウム、チタン酸鉛、チタン酸ニオブ、チタン酸カルシウム、チタン酸マグネシウムなど)、ジルコン酸金属塩(ジルコン酸バリウム、ジルコン酸カルシウム、ジルコン酸鉛など)など]など}、ガラス類(ソーダガラス、ホウケイ酸ガラス、クラウンガラス、バリウム含有ガラス、ストロンチウム含有ガラス、ホウ素含有ガラス、低アルカリガラス、無アルカリガラス、結晶化透明ガラス、シリカガラス、石英ガラス、耐熱ガラスなど)、ケイ素類(半導体ケイ素など)などが挙げられる。無機材料は、これらの無機材料と金属との複合材料(例えば、ほうろうなど)であってもよい。
 絶縁性基板は、例えば、セラミックス基板、ガラス基板、シリコン基板、ほうろう基板などの耐熱性基板であってもよい。これらのう耐熱性基板のうち、アルミナ基板、窒化アルミニウム基板、窒化ケイ素基板などのセラミックス基板が好ましい。
 絶縁性基板の孔部壁面は、酸化処理[表面酸化処理、例えば、放電処理(コロナ放電処理、グロー放電など)、酸処理(クロム酸処理など)、紫外線照射処理、焔処理など]、表面凹凸処理(溶剤処理、サンドブラスト処理など)などの表面処理がされていてもよい。
 絶縁性基板の平均厚みは、用途に応じて適宜選択すればよく、例えば0.01~10mm、好ましくは0.05~5mm、さらに好ましくは0.1~1mm(特に0.2~0.8mm)程度であってもよい。
 絶縁性基板には、導電ビア部を充填するための孔部(通常、複数の孔部)が形成されており、この孔部は通常は貫通孔であるが、非貫通孔であってもよい。孔部の基板面方向に平行な断面形状は、特に限定されず、多角形状(三角形状、四角形状や六角形状など)などであってもよいが、通常、円形状又は楕円形状であり、円形状が好ましい。
 孔部の平均孔径は、例えば0.05~10mm、好ましくは0.08~5mm、さらに好ましくは0.1~1mm程度である。
 孔部の形成方法は、特に限定するものではなく、レーザー法、ブラスト法、超音波法、研削法、ドリル法などの公知な方法を適宜使用できる。
 (アニール工程)
 孔部壁面に金属膜を形成した絶縁性基板は、充填工程の前工程として、不活性ガス雰囲気中で金属膜を加熱するアニール工程に供してもよい。本発明の製造方法では、アニール工程は、必須の工程ではないが、金属膜の種類によっては、アニール工程を経ることなく、後述する充填工程及び焼成工程に供して前記絶縁性基板を高温で焼成すると、焼成時に導体ペーストの金属と金属膜とが合金化し、金属膜が導電ビア部に取り込まれて消失することにより、導電ビア部と絶縁性基板との密着力が低下したり、接合部にボイドが生じたりする虞がある。一方、アニール工程に供することにより、金属膜の活性金属は導体ペーストの金属との合金化よりも、絶縁性基板の孔部壁面と優先的に反応し、孔部壁面に強固な金属膜を形成して密着力が向上するとともに、金属膜中の異なる金属との合金化も起こる。その結果、導体ペースト焼成時の金属膜の金属成分と導体ペーストの金属との合金化を抑制でき、密着力を向上するとともに界面部のボイドの生成をより確実に防げる。
 アニール工程における加熱温度は、400℃以上、且つ金属膜を構成する全ての金属種の中で最も低融点の金属の融点、及び金属膜を構成する合金の融点のいずれか低い方の融点以下の温度であればよく、金属種に応じて選択できる。具体的な加熱温度は、例えば400~1500℃、好ましくは500~1200℃、さらに好ましくは600~1100℃(特に700~1000℃)程度である。加熱温度が低すぎると、金属膜と孔部壁面との密着力を向上する効果が小さくなる虞があり、高すぎると、金属成分が溶融移動して金属膜の均一性が低下したり、壁面素地の一部が露出する虞がある。
 加熱時間は、例えば1分以上であってもよく、例えば1分~1時間、好ましくは3~30分、さらに好ましくは5~20分程度である。加熱時間が短すぎると、金属膜と孔部壁面との密着力を向上する効果が小さくなる虞がある。
 アニール工程は、空気中などの活性ガス雰囲気下で行ってもよいが、活性金属が酸化せず金属膜を効率よく形成して導電ビア部との密着性を向上できる点から、真空中や不活性ガス(例えば、窒素ガス、アルゴンガス、ヘリウムガスなど)雰囲気中で行うのが好ましい。
 (充填工程)
 充填工程において、導体ペースト(金属ペースト又は導電性ペースト)は金属粒子を含んでよい。金属粒子を構成する金属としては、導電性を有する金属であれば、特に限定されないが、例えば、Cu、Ag、Ni、Au、Pt、Alなどが挙げられる。これらの金属は、単独で又は二種以上組み合わせて使用でき、二種以上を組み合わせた合金であってもよい。これらのうち、導電性、信頼性、経済性などの点から、Cu又はAgが好ましい。
 金属粒子の平均粒径(中心粒径)は、100μm以下(特に50μm以下)程度であり、例えば0.001~50μm、好ましくは0.01~20μm、さらに好ましくは0.1~10μm程度である。平均粒径が大きすぎると、孔部への緊密な充填が困難となる虞がある。
 金属粒子は、ペースト中の金属含有量を向上でき、導電ビア部の緻密性及び導電性を向上できる点から、粒径1μm未満(例えば1nm以上1μm未満)の金属小粒子と粒径1~50μmの金属大粒子とを含むのが好ましい。
 金属小粒子の平均粒径(中心粒径)は0.01~0.9μm(特に0.1~0.8μm)程度の範囲から選択できる。特に、金属小粒子がCu粒子である場合、金属小粒子の平均粒径は、例えば0.1~0.95μm、好ましくは0.3~0.9μm、さらに好ましくは0.4~0.85μm程度である。金属小粒子がAg粒子である場合、金属小粒子の平均粒径は、例えば0.1~0.8μm、好ましくは0.1~0.5μm、さらに好ましくは0.1~0.3μm程度である。金属小粒子の平均粒径が小さすぎると、導体ペーストの粘度が上昇して取り扱い性が困難となる虞があり、大きすぎると、緻密性向上効果が低下する虞がある。
 金属小粒子は、ペースト中の金属含有量を一層向上でき、より高い緻密性を有する導電ビア部を形成できる点から、粒径100nm以下の金属ナノ粒子を含むのが好ましい。金属ナノ粒子の平均粒径(中心粒径)は、例えば5~80nm、好ましくは10~60nm、さらに好ましくは15~45nm(特に20~40nm)程度である。金属ナノ粒子の平均粒径が小さすぎると、取り扱い性が困難となる虞があり、大きすぎると、導電ビア部の緻密性を向上する効果が小さくなる虞がある。
 金属ナノ粒子は、保護コロイド(酢酸などのカルボン酸や高分子分散剤など)を含む金属コロイド粒子であってもよい。金属コロイド粒子としては、例えば、日本国特開2010-202943号公報、日本国特開2010-229544号公報、日本国特開2011-77177号公報、日本国特開2011-93297号公報、日本国特開2011-94233号公報などに記載の金属コロイド粒子などを利用できる。
 金属ナノ粒子の割合は、金属小粒子全体に対して0~90質量%であってもよく、例えば5~90質量%、好ましくは10~80質量%、さらに好ましくは20~70質量%(特に30~60質量%)程度である。金属ナノ粒子の割合が多すぎると、付帯的に含有する保護コロイドなどの有機物も多くなり、導体ペーストの焼結収縮が大きくなる虞がある。
 金属大粒子の平均粒径(中心粒径)は1.5~30μm(特に2~10μm)程度の範囲から選択できる。特に、金属大粒子がCu粒子である場合、金属大粒子の平均粒径は、例えば2~30μm、好ましくは3~20μm、さらに好ましくは5~10μm程度である。金属大粒子がAg粒子である場合、金属大粒子の平均粒径は、例えば1.2~20μm、好ましくは1.5~10μm、さらに好ましくは2~5μm程度である。金属大粒子の平均粒径が小さすぎると、導体ペーストの焼結収縮が大きくなる虞があり、大きすぎると、導電ビア部の充填性が低下する虞がある。
 金属小粒子と金属大粒子との配合比は、体積比として、金属小粒子/金属大粒子=10/90~50/50程度の範囲から選択でき、例えば15/85~45/55、好ましくは20/80~40/60、さらに好ましくは25/75~35/65程度である。金属小粒子が金属ナノ粒子を含む場合、両者の配合比は、体積比として、例えば、金属小粒子/金属大粒子=20/80~70/30、好ましくは30/70~60/40、さらに好ましくは40/60~60/40程度である。なお、導体ペーストに用いる金属粒子の材質が1種類の場合は、体積比は質量比と同じであるため質量ベースで配合すればよいが、比重の異なる2種以上の金属粒子を使用する場合は、それぞれの配合体積を質量に換算して配合すればよい。
 金属粒子の粒径の測定方法としては、レーザー回折散乱式粒度分布測定装置や透過型電子顕微鏡(TEM)で測定でき、詳しくは後述する実施例に記載の方法で測定できる。
 導体ペーストは、さらに有機ビヒクルを含んでよい。有機ビヒクルには、有機バインダー、分散媒(有機溶媒)などが含まれる。なお、前述の金属コロイド粒子に含まれる保護コロイド(カルボン酸や高分子分散剤など)も有機ビヒクルに含まれる。有機ビヒクルは、有機バインダーと分散媒との組み合わせであってもよい。
 有機バインダーとしては、例えば、熱可塑性樹脂(オレフィン系樹脂、ビニル系樹脂、アクリル系樹脂、スチレン系樹脂、ポリエーテル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体など)、熱硬化性樹脂(熱硬化性アクリル系樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル系樹脂、ポリウレタン系樹脂など)などが挙げられる。これらの有機バインダーは、単独で又は二種以上組み合わせて使用できる。これらの有機バインダーのうち、アクリル系樹脂(ポリメチルメタクリレート、ポリブチルメタクリレートなど)、セルロース誘導体(ニトロセルロース、エチルセルロース、ブチルセルロース、酢酸セルロースなど)、ポリエーテル類(ポリオキシメチレンなど)、ポリビニル類(ポリブタジエン、ポリイソプレンなど)などが汎用され、熱分解性などの点から、ポリ(メタ)アクリル酸メチルやポリ(メタ)アクリル酸ブチルなどのポリ(メタ)アクリル酸C1-10アルキルエステルが好ましい。
 分散媒としては、例えば、芳香族炭化水素(パラキシレンなど)、エステル類(乳酸エチルなど)、ケトン類(イソホロンなど)、アミド類(ジメチルホルムアミドなど)、脂肪族アルコール(オクタノール、デカノール、ジアセトンアルコールなど)、セロソルブ類(メチルセロソルブ、エチルセロソルブなど)、セロソルブアセテート類(エチルセロソルブアセテート、ブチルセロソルブアセテートなど)、カルビトール類(カルビトール、メチルカルビトール、エチルカルビトールなど)、カルビトールアセテート類(エチルカルビトールアセテート、ブチルカルビトールアセテートなど)、脂肪族多価アルコール類(エチレングリコール、ジエチレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、トリエチレングリコール、グリセリンなど)、脂環族アルコール類[例えば、シクロヘキサノールなどのシクロアルカノール類;テルピネオール、ジヒドロテルピネオールなどのテルペンアルコール類(モノテルペンアルコールなど)など]、芳香族アルコール類(メタクレゾールなど)、芳香族カルボン酸エステル類(ジブチルフタレート、ジオクチルフタレートなど)、窒素含有複素環化合物(ジメチルイミダゾール、ジメチルイミダゾリジノンなど)などが挙げられる。これらの分散媒は、単独で又は二種以上組み合わせて使用できる。これらの分散媒のうち、ペーストの流動性や充填性など点から、ペンタンジオールなどの脂肪族多価アルコール、テルピネオールなどの脂環族アルコールが好ましい。
 有機バインダーと分散媒とを組み合わせる場合、有機バインダーの割合は、分散媒100質量部に対して、例えば1~200質量部、好ましくは5~100質量部、さらに好ましくは10~50質量部程度である。
 有機ビヒクルの体積割合は、ペースト全体に対して40体積%以下(特に36体積%以下)であってもよく、例えば10~40体積%、好ましくは15~38体積%、さらに好ましくは20~37体積%(特に25~36体積%)程度である。有機ビヒクルの体積割合が大きすぎると、充填後の乾燥や焼成による導体ペーストの収縮率が大きくなり、ボイドや隙間が発生する虞がある。
 導体ペーストは、さらに無機バインダーを含んでいてもよい。無機バインダーとしては、例えば、ホウケイ酸系ガラス、ホウケイ酸亜鉛系ガラス、ビスマス系ガラス、鉛系ガラスなどの低融点ガラスなどが挙げられる。これらの無機バインダーは、単独で又は二種以上組み合わせて使用できる。これらの無機バインダーのうち、メッキ処理に対する耐久性などの点から、ホウケイ酸系ガラス又はホウケイ酸亜鉛系ガラスが好ましい。
 無機バインダーの質量割合は、ペースト全体に対して10質量%以下であり、例えば0.1~10質量%、好ましくは0.2~5質量%、さらに好ましくは0.3~1質量%程度である。本発明では、無機バインダーを含んでいなくても、導電ビア部と絶縁性基板の孔部壁面との密着性を向上できる。そのため、導電ビア部の導電性を向上できる点から、導体ペーストは、無機バインダー(特にガラス成分)を含まないのが好ましい。金属粒子を含む導体ペーストは、通常、配合されるガラス成分により、セラミックス基板などの絶縁性基板の孔部壁面と接合するが、本発明では、孔部壁面に基板と強固に接合している金属膜(活性金属層)が形成されているため、導体ペーストは金属結合により壁面の金属膜と結合するため、ガラス成分が不要となる。ガラス成分を含まないと、ビア充填部の金属含有量が高くなり、緻密性、導電性、放熱性を向上できる。
 導体ペーストは、焼成前後の体積変化率が小さく、且つ焼結後の導体は孔部壁面と隙間なく強固に接合する。そのため、このペーストを焼成して得られる導電ビア部全体が均一であり、気密性が高い。焼成前後の体積変化率は、例えば-10~20%、好ましくは-5~15%、さらに好ましくは0~10%程度である。体積変化率が負(マイナス)の方向に大きすぎると(マイナスであり、かつ絶対値が大きすぎると)、焼成時の収縮によりボイドや隙間が生じる虞がある。一方、体積変化率が正(プラス)の方向に大きすぎると、焼成後に大きなボイドが生じたり、充填ビア部の緻密性が低下し、バリア性が低下する虞がある。なお、汎用の導体ペーストでは大きな体積収縮(体積変化率がマイナス)が生じるのに対して、本発明における導体ペーストでは収縮しても10%以下であり、むしろ膨張気味(体積変化率がプラス)に働く配合処方であるのが特徴である。体積変化率の測定方法としては、焼成前後のパターン膜厚みを触針式膜厚計で測定して算出でき、詳しくは後述する実施例に記載の方法で測定できる。
 導体ペーストの孔部への充填方法は、例えば、スクリーン印刷法、インクジェット印刷法、凹版印刷法(例えば、グラビア印刷法など)、オフセット印刷法、凹版オフセット印刷法、フレキソ印刷法などの印刷方法や、ロール圧入法、スギージ圧入法、プレス圧入法などの直接圧入法などが挙げられる。これらの方法のうち、スクリーン印刷法などが好ましい。
 充填後は、自然乾燥してもよいが、加熱して乾燥してもよい。加熱温度は、分散媒の種類に応じて選択でき、例えば80~300℃、好ましくは100~250℃、さらに好ましくは120~200℃程度である。加熱時間は、例えば1~60分、好ましくは5~40分、さらに好ましくは10~30分程度である。
 乾燥した導体ペースト(特にCu粒子を含む導体ペースト)は、そのまま焼成工程に供してもよいが、焼成時の熱焼結収縮を抑制するため、焼成前に熱処理してもよい。焼成前の熱処理温度は180℃以上であってもよく、例えば180~500℃、好ましくは190~300℃、さらに好ましくは200~250℃程度である。熱処理時間は、例えば10分~3時間、好ましくは30分~2時間、さらに好ましくは1~1.5時間程度である。
 (焼成工程)
 焼成工程において、焼成温度は、導電性ペースト中の金属粒子の焼結温度以上であればよい。焼成温度は、例えば、500℃以上であってもよく、例えば500~1500℃、好ましくは550~1200℃、さらに好ましくは600~1000℃程度である。焼成時間は、例えば10分~3時間、好ましくは20分~3時間、さらに好ましくは30分~2時間程度である。
 なお、焼成の雰囲気は、金属粒子の種類に応じて選択でき、Agなどの貴金属粒子は、特に限定されず、空気中であってもよいが、Cuなどの金属粒子は、通常、不活性ガス(例えば、窒素ガス、アルゴンガス、ヘリウムガスなど)雰囲気中が好ましい。
 [ビア充填基板及びその前駆体]
 本発明のビア充填基板は、前記製造方法によって得られ、絶縁性基板の両面を電気的に導通させるビア充填基板であり、詳しくは、孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填された導体で形成された導電ビア部とを有する。前記金属膜は、活性金属層を含んでいればよいが、活性金属層と、非透過層及び/又は接合層とを含むのが好ましい。
 前記活性金属層は、Ti、Zr、Nb、Ta、Cr、Mn及びAlからなる群より選択された少なくとも1種の活性金属又はこの活性金属を含む合金を含み、通常、これらの活性金属単体又は合金で形成されている。この活性金属層は、孔部壁面側に活性金属の酸化物で形成された層を有していてもよく、例えば、絶縁性基板が金属酸化物で形成されている場合、焼成により活性金属層の孔部壁面側に形成された活性金属酸化物層であってもよい。
 前記非透過層は、Mo、W、Ni、Pd及びPtからなる群より選択された少なくとも1種の金属又はこの金属を含む合金を含み、通常、これらの活性金属単体又は合金で形成されている。
 前記接合層は、導体ペーストに含まれる金属と同一又は合金化可能な金属を含み、通常、このような金属単体で形成されている。
 本発明のビア充填基板前駆体は、焼成工程前の中間体であり、具体的には、孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填され、かつ焼成前後の体積変化率が-10~20%である導体ペーストとを有する。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、以下の例において、評価試験の測定方法及び導体ペーストの調製方法を以下に示す。
 [気密性]
 導電ビア部の気密性をヘリウムリークディテクター(LEYBOLD社製「UL200」)にて評価した。詳しくは、測定基板を治具にセットし、測定機のインレット圧が5Paになるまで真空引きを行い、インレット圧が5Paに到達した時点でHe加圧(0.1MPa)を30秒間行った後、リーク量を測定して、以下の基準で評価した。
  A:リーク量が1×10-11Pa・m/sec未満
  B:リーク量が1×10-11~1×10-9Pa・m/sec
  C:リーク量が1×10-9Pa・m/secを超える。
 [連続緻密層の有無]
 導電ビア部と絶縁性基板の孔部壁面との接合状態を、1000倍の光学顕微鏡で観察し、以下の基準で評価した。
  S:壁面との接合面に「A」評価より分厚い連続した緻密な金属膜が存在する
  A:壁面との接合面に連続した緻密な金属膜が存在する
  B:概ね連続した緻密金属膜があるが、一部が切れていたり、ボイドが存在する
  C:連続した緻密な金属膜が存在しない。
 [金属膜の厚み]
 蛍光X線膜厚計により、5点の平均厚みを測定した。
 [充填導体と絶縁性基板との密着性]
 ビア内部の充填導体と孔部壁面との密着力の直接的な測定が困難であるため、以下の方法で密着力を評価した。即ち、絶縁性基板の孔部壁面に金属膜を形成する過程で絶縁性基板表面にも同時に形成される金属膜を測定部位として、充填導体と絶縁性基板との密着性を評価した。なお、金属膜付き絶縁性基板をアニール処理する場合は、アニール処理してから密着力評価に供した。
 具体的には、絶縁性基板表面に形成した金属膜上に、導体ペーストをスクリーン印刷して2mm×2mm×0.03mmt(厚み)の導体パターンを形成した。そして、所定の条件で焼成を行い、生成した2mm×2mmの焼成膜に対して、先端部面積1mmのスタッドピンをハンダにより垂直に接合し、試験片とした。その試験片(焼成基板)を固定し、引張試験機のチャック部でスタッドピンを掴み、上昇速度33mm/分で垂直上方へ引っ張り、焼成膜が絶縁性基板から剥離する時の破壊荷重を測定した。そして、得られた破壊荷重の測定値と、焼成膜の破壊面積から、下記式を用いて密着強度を算出した。なお、測定値は6点の平均とした。
  密着強度(MPa)=破壊荷重(kgf)/破壊面積(mm)×9.8(N/kgf)。
 [金属粒子の平均粒径]
 Cu粒子及びAg粒子の平均粒径は、レーザー回折散乱式粒度分布測定装置で測定し、Agナノ粒子の平均粒径は、透過型電子顕微鏡(TEM)で測定した。
 [導体ペーストの体積変化率]
 導体ペーストの焼成前後の体積変化率は、焼成前後のパターン膜厚みを触針式膜厚計で測定して算出した。詳しくは、96%アルミナ基板(ニッコー(株)製)の表面に250メッシュのスクリーン版を用い、導体ペーストを5mm×5mmのパターン形状にスクリーン印刷し、120℃で20分間加熱することによって、導体ペースト中の有機溶媒を除去し乾燥膜を得た。この乾燥膜の膜厚を触針式膜厚計(ビーコ社製「Dektak6m」)で測定し、焼成前膜厚とした。次に、銅ペーストの場合は、そのまま焼成することもできるが、場合によっては各種の熱処理温度下で連続乾燥炉を用いて空気中で60分処理した後、連続焼成炉を用いて窒素雰囲気下、ピーク温度900℃の条件下で焼成した。ピーク温度下での保持時間は10分間であった。焼成炉の投入口から出口までの基板の滞留時間は60分であった。一方、銀ペーストの場合は焼成前の熱処理が不要であるが、焼成温度により体積変化率が異なるため、必要に応じて焼成温度を変えることが出来る。なお、銅ペーストの焼成と同様、所定のピーク温度での保持時間は10分間、焼成炉での滞留時間は60分であった。焼成後のパターンの厚みを触針式膜厚計で測定し、下記式で焼成前後の膜厚値を比較して、体積変化率(%)を求めた。体積変化率(%)がマイナスの数値であると、体積は減少(収縮)していることを示し、逆に体積変化率(%)がプラスの数値であると、体積は増加していることを示す。
  体積変化率(%)=[(焼成後膜厚-焼成前膜厚)/焼成前膜厚]×100。
 [Cuペーストの調製方法]
 (原料)
 中心粒径(D50)7μmのCu粒子:三井金属鉱業(株)製
 中心粒径(D50)0.8μmのCu粒子:三井金属鉱業(株)製
 ガラス粒子A:平均粒径3μmのホウケイ酸亜鉛系ガラス粉末、軟化点565℃
 有機ビヒクルA:有機バインダーであるアクリル樹脂と、有機溶媒であるカルビトール及びテルピネオールの混合溶媒(質量比1:1)とを、有機バインダー:有機溶媒=1:2の質量比で混合した混合物。
 (Cuペーストの調製例)
 表1に示す組成で各成分を配合し、ミキサーにより混合した後、三本ロールで均一に混練することによって、導体ペースト(Cuペースト)を調製し、900℃で焼成前後の体積変化率を測定した。さらに、焼成前に各種の温度で熱処理した場合の体積変化率も測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 調製したCuペーストのうち、Cuペースト1の240℃熱処理品は体積変化率がプラス方向に大きく、Cuペースト4(焼成前に熱処理していないペースト)は体積変化率がマイナス方向に大きかった。
 [Agペーストの調製方法]
 (原料)
 中心粒径(D50)2.5μmのAg粒子:三井金属鉱業(株)製
 中心粒径(D50)0.25μmのAg粒子:三井金属鉱業(株)製
 ガラス粒子B:ビスマス系ガラス(Bi-ZnO-B)、ビスマス含有量は酸化ビスマス換算で81質量%、軟化点460℃
 有機ビヒクルB:エチルセルロース樹脂10重量%含有のカルビトール溶液
 有機ビヒクルC:ペンタンジオール
 なお、中心粒径(D50)30nmのAgナノ粒子は、以下の方法で調製した。
 硝酸銀66.8g、酢酸(和光純薬工業(株)製)10g、高分子分散剤(ビックケミー社製「ディスパービック190」、親水性ユニットであるポリエチレンオキサイド鎖と疎水性ユニットであるアルキル基とを有する両親媒性分散剤、溶媒:水、不揮発成分40質量%、酸価10mgKOH/g、アミン価0)2gを、イオン交換水1000gに投入し、激しく撹拌した。これに2-ジメチルアミノエタノール(和光純薬工業(株)製)100gを加えた後、70℃で2時間加熱撹拌した。この反応物を高速遠心分離器((株)コクサン製「H-200 SERIES」)を用い、7000rpmで1時間遠心分離し、保護コロイドにより保護された銀ナノ粒子が凝集した沈殿物を回収した。透過型電子顕微鏡(TEM)による測定によれば、得られた銀ナノ粒子の中心粒子径は30nmであった。
 また、保護コロイドの含有量を、熱重量測定装置(TG/DTA、セイコーインスツルメンツ(株)製「EXSTAR6000」)で測定したところ、銀100質量部に対して3質量部の含有率であった。尚、TG/DTAによる測定は、1分間に10℃の速さで30℃から550℃まで試料を昇温させる条件で行ない、このときの質量減少から保護コロイドの含有量を算出した。
 (Agペーストの調製例)
 表2に示す組成で各成分を配合し、ミキサーにより混合した後、三本ロールで均一に混練することによって、導体ペースト(Agペースト)を調製し、表2に示す温度で焼成した前後の体積変化率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 調製したAgペーストのうち、Agペースト4の850℃焼成品及びAgペースト5の600℃焼成品は、体積変化率が-10%以下であり、大きく収縮した。
 実施例1~37及び比較例1~16
 (基板の準備)
 サイズが50mm×50mm×0.5mmtの96%アルミナ基板(ニッコー(株)製)を準備した。アルミナ基板にはレーザーにより孔径φ0.2mmのスルーホール[貫通孔(ビア)]を多数個形成した。
 (孔部壁面への金属膜の形成)
 活性金属などの金属材料を、アルミナ基板の表面及びスルーホールの内側壁面に、スパッタリング装置(キヤノンアネルバ(株)製「E-200S」)を用いて、電圧200W、アルゴンガス0.5Pa、基板の加熱200℃の条件でスパッタリングした。使用した金属材料種及び形成された膜の平均厚みを表3~6に示す。複数種の金属材料を使用する場合は、順番にスパッタリング作業を行った。なお、実施例16の金属種はTiとWとの合金である。
 (アニール処理)
 アニール処理を行う場合は、スパッタリングにより金属膜を形成した後、アルミナ基板を窒素雰囲気の連続焼成炉に投入し、ピーク温度900℃で10分間保持する条件でアニール処理を行った(焼成炉中の基板のin-out時間は60分)。
 (金属ペーストによるビア充填)
 スルーホール基板をスクリーン印刷機(マイクロ・テック(株)製)の吸着テーブル上にセットし、基板の下に金属ペースト(Cuペースト又はAgペースト)の流れ出しを防止するために薬包紙を設置した。金属ペーストを直接基板の表面に載せ、印刷充填を行った。
 (乾燥)
 充填後の基板を120℃の送風乾燥機で20分間乾燥した。
 (焼成前熱処理)
 Cuペーストにおいては、表3~5の「熱処理温度」欄に示す温度で、連続乾燥炉で空気中1時間熱処理を行い、焼成時の焼結体積変化率を調整した。
 (焼成)
 Cuペーストの場合は窒素雰囲気下、Agペーストの場合は大気下で、in-out時間60分、表3~6に示すピーク温度、保持時間10分の条件で焼成を行った。Agペーストの場合は、焼成温度の調整により導体ペーストの焼成体積変化率を調整した。
 (ラップ研磨)
 焼成後の基板を、ラップ研磨により両面各0.1mmを研磨した後、鏡面研磨により表面粗さRaを0.05μm以下にした。
 得られたビア充填基板の評価結果を表3~6に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3の結果から明らかなように、焼成前後の体積変化率が-10~20%であるCuペーストを用いて、活性金属層を含む金属膜に導電ビア部を形成すると、ボイドや隙間のない緻密で、且つ良好な気密性のある導電ビア部が形成された。特に、実施例1と2、5と6、及び9と10とをそれぞれ比較した結果から明らかなように、焼成前にアニール処理を施すことにより、孔壁面との接合が緻密になり、密着力がさらに向上した。また、バリア層の上にさらに接合層としてCu膜を設けた実施例5、6は、より良好な密着力が得られた。一方、バリア層を有しない実施例12~15は、密着力が低かった。
 表4の結果から明らかなように、活性金属層を有さないビア充填基板では、ボイドや隙間が発生し、気密性が低かった。また、充填導体と基板との間の密着力も、比較例3以外は低かった。比較例3は、ペースト中に配合しているガラス成分が直接孔の基板壁面に接触し、ガラス成分のバインダー効果により密着性を発揮した。これらの比較例は、孔内の基板壁面に安定に密着した金属層が存在しないため、導体ペーストを焼成する時、充填金属と基板壁面との濡れ性が低下し、充填金属と壁面との間に隙間やボイドが生じ易く、気密性が低下したためである。比較例5~7は、壁面にPd膜を形成したが、Pdは活性金属ではなくセラミックス基板と反応しないため、焼成時に充填導体との合金化により容易に基板壁面から剥がれ、濡れ性向上の効果が維持できない。
 表5の結果から明らかなように、導体ペーストの焼結体積変化率が-10%~+20%の範囲では、良好な結果が得られた。しかし、焼結体積変化率がマイナス方向に大きすぎたり、プラス方向に大きすぎるCuペーストを用いた比較例8~10では、密着力は低くないものの、ボイドや隙間が発生し、良好な気密性が得られなかった。
 表6の結果から明らかなように、焼成前後の体積変化率が-10~20%であるAgペーストを用いて、活性金属層を含む金属膜に導電ビア部を形成した実施例25~37では、ボイドや隙間のない緻密な導電ビア部が形成され、良好な気密性が得られた。一方、体積変化率がマイナス方向に大きすぎるAgペーストを用いた比較例11及び12では、ボイドや隙間が発生し、気密性が低かった。さらに、活性金属層を有さない比較例13~16でも、ボイドや隙間が発生し、気密性が低かった。
 実施例38~39
 96%アルミナ基板の代わりに窒化アルミニウム基板((株)MARUWA製、熱伝導率170W/m・K)を用いる以外は実施例1及び25と同様にしてビア充填基板を製造し、評価した結果、実施例1及び25と同一の評価であった。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2015年9月24日出願の日本特許出願2015-187367に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のビア充填基板は、回路基板、電子部品、半導体パッケージの基板などに利用できる。

Claims (14)

  1.  孔部を有する絶縁性基板の孔部壁面に活性金属を含む金属膜を形成する金属膜形成工程、焼成前後の体積変化率が-10~20%である導体ペーストを、金属膜を形成した孔部に充填する充填工程、導体ペーストが充填された絶縁性基板を焼成する焼成工程を含むビア充填基板の製造方法。
  2.  金属膜形成工程において、孔部壁面に、Ti、Zr、Nb、Ta、Cr、Mn及びAlからなる群より選択された少なくとも1種の活性金属又はこの活性金属を含む合金を含む活性金属層を形成する請求項1に記載の製造方法。
  3.  金属膜形成工程において、活性金属層の上に、Mo、W、Ni、Pd及びPtからなる群より選択された少なくとも1種の金属又はこの金属を含む合金を含む非透過層をさらに形成する請求項2に記載の製造方法。
  4.  金属膜形成工程において、導体ペーストと接触する最表面に、導体ペーストに含まれる金属と同一又は合金化可能な金属を含む接合層を形成する請求項1~3のいずれか一項に記載の製造方法。
  5.  金属膜形成工程において、物理蒸着法で金属膜を形成する請求項1~4のいずれか一項に記載の製造方法。
  6.  充填工程の前工程として、不活性ガス雰囲気中で、400℃以上、且つ金属膜を構成する全ての金属種の中で最も低融点の金属の融点、及び金属膜を構成する合金の融点のいずれか低い方の融点以下の温度で金属膜を加熱するアニール工程をさらに含む請求項1~5のいずれか一項に記載の製造方法。
  7.  導体ペーストが、金属粒子及び有機ビヒクルを含み、前記金属粒子が、粒径1μm未満の金属小粒子と粒径1~50μmの金属大粒子とを含み、かつ前記有機ビヒクルの割合が、ペースト全体に対して40体積%以下である請求項1~6のいずれか一項に記載の製造方法。
  8.  金属粒子が、Cu、Ag、Ni、Au、Pt及びAlからなる群より選択された少なくとも1種の金属又はこの金属を含む合金である請求項7記載の製造方法。
  9.  金属小粒子が、粒径100nm以下の金属ナノ粒子を含む請求項7又は8記載の製造方法。
  10.  導体ペーストがガラス成分を含まない請求項1~9のいずれか一項に記載の製造方法。
  11.  絶縁性基板が、セラミックス基板、ガラス基板、シリコン基板又はほうろう基板である請求項1~10のいずれか一項に記載の製造方法。
  12.  孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填され、かつ焼成前後の体積変化率が-10~20%である導体ペーストとを有するビア充填基板前駆体。
  13.  孔部を有する絶縁性基板と、前記孔部壁面に形成された活性金属を含む金属膜と、この金属膜が形成された前記孔部に充填された導体で形成された導電ビア部とを有するビア充填基板であって、前記金属膜が、活性金属層と、非透過層及び/又は接合層とを含み、
     前記活性金属層が、前記絶縁性基板の孔部壁面に形成され、Ti、Zr、Nb、Ta、Cr、Mn及びAlからなる群より選択された少なくとも1種の活性金属又はこの活性金属を含む合金を含み、
     前記非透過層が、前記活性金属層の上に形成され、Mo、W、Ni、Pd及びPtからなる群より選択された少なくとも1種の金属又はこの金属を含む合金を含み、かつ
     前記接合層が、導電ビア部と接触する最表面に形成され、前記導電ビア部に含まれる金属と同一又は合金化可能な金属を含むビア充填基板。
  14.  絶縁性基板が金属酸化物を含み、かつ活性金属層が、孔部壁面側に活性金属の酸化物で形成された層を有する請求項13記載のビア充填基板。
PCT/JP2016/077805 2015-09-24 2016-09-21 ビア充填基板並びにその製造方法及び前駆体 WO2017051816A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/761,288 US10517178B2 (en) 2015-09-24 2016-09-21 Via fill substrate, production method therefor, and precursor therefor
CN201680055559.1A CN108141966A (zh) 2015-09-24 2016-09-21 通孔填充基板及其制造方法以及前体
KR1020187007947A KR102082838B1 (ko) 2015-09-24 2016-09-21 비아 충전 기판과 그 제조 방법 및 전구체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187367 2015-09-24
JP2015187367A JP6541530B2 (ja) 2015-09-24 2015-09-24 ビア充填基板並びにその製造方法及び前駆体

Publications (1)

Publication Number Publication Date
WO2017051816A1 true WO2017051816A1 (ja) 2017-03-30

Family

ID=58386782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077805 WO2017051816A1 (ja) 2015-09-24 2016-09-21 ビア充填基板並びにその製造方法及び前駆体

Country Status (6)

Country Link
US (1) US10517178B2 (ja)
JP (1) JP6541530B2 (ja)
KR (1) KR102082838B1 (ja)
CN (1) CN108141966A (ja)
TW (1) TWI624203B (ja)
WO (1) WO2017051816A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381731B1 (ja) * 2017-04-25 2018-08-29 株式会社マテリアル・コンセプト 銅電極を有する電子部品

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623941B2 (ja) * 2016-06-09 2019-12-25 株式会社デンソー 多層基板の製造方法
US10120111B2 (en) * 2016-12-14 2018-11-06 Google Llc Thin ceramic imaging screen for camera systems
US10763165B2 (en) * 2017-04-18 2020-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Conductive powder formation method, device for forming conductive powder, and method of forming semiconductor device
US11152294B2 (en) * 2018-04-09 2021-10-19 Corning Incorporated Hermetic metallized via with improved reliability
KR20210127188A (ko) 2019-02-21 2021-10-21 코닝 인코포레이티드 구리-금속화된 쓰루 홀을 갖는 유리 또는 유리 세라믹 물품 및 이를 제조하기 위한 공정
KR102211998B1 (ko) * 2019-04-10 2021-02-04 주식회사 디아이티 상이한 열팽창 계수를 갖는 상하면을 구비한 다층 세라믹 기판 및 그의 제조 방법
CN114929926A (zh) * 2020-02-28 2022-08-19 株式会社岛津制作所 带金属膜的物体
CN114080868A (zh) * 2020-06-05 2022-02-22 三之星机带株式会社 通孔填充基板的制造方法以及导电糊的套装
CN112018030A (zh) * 2020-08-11 2020-12-01 安徽蓝讯通信技术有限公司 一种基板通孔的填充方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327508A (ja) * 2003-04-22 2004-11-18 Hitachi Ltd 金属ビアホールを有する回路基板の製造方法及び回路基板
JP2009059744A (ja) * 2007-08-30 2009-03-19 Kyocera Corp 配線基板およびその製造方法
JP2011077177A (ja) * 2009-09-29 2011-04-14 Mitsuboshi Belting Ltd 穴埋め用導体ペースト、導体穴埋め基板、導体穴埋め基板の製造方法、回路基板、電子部品、半導体パッケージ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308182A (ja) 1992-04-01 1993-11-19 Nec Corp 膜回路基板の製造方法
US7892974B2 (en) * 2000-04-11 2011-02-22 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
TW200507218A (en) 2003-03-31 2005-02-16 North Corp Layout circuit substrate, manufacturing method of layout circuit substrate, and circuit module
US20050085084A1 (en) * 2003-10-16 2005-04-21 Chang Edward Y. Method of fabricating copper metallization on backside of gallium arsenide devices
JP4455352B2 (ja) 2005-01-24 2010-04-21 立山科学工業株式会社 電子素子用基板の製造方法
JP4805621B2 (ja) * 2005-07-07 2011-11-02 株式会社ノリタケカンパニーリミテド 導電性ペースト
JP5014642B2 (ja) * 2006-02-16 2012-08-29 株式会社トクヤマ リード内蔵メタライズドセラミックス基板およびパッケージ
FR2928934B1 (fr) * 2008-03-20 2011-08-05 Total France Lubrifiant marin
JP5379609B2 (ja) 2008-09-30 2013-12-25 三ツ星ベルト株式会社 スルーホール充填用銅導体ペースト、銅導体スルーホール充填基板の製造方法、銅導体スルーホール充填基板、回路基板、電子部品、半導体パッケージ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327508A (ja) * 2003-04-22 2004-11-18 Hitachi Ltd 金属ビアホールを有する回路基板の製造方法及び回路基板
JP2009059744A (ja) * 2007-08-30 2009-03-19 Kyocera Corp 配線基板およびその製造方法
JP2011077177A (ja) * 2009-09-29 2011-04-14 Mitsuboshi Belting Ltd 穴埋め用導体ペースト、導体穴埋め基板、導体穴埋め基板の製造方法、回路基板、電子部品、半導体パッケージ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6381731B1 (ja) * 2017-04-25 2018-08-29 株式会社マテリアル・コンセプト 銅電極を有する電子部品
JP2018185930A (ja) * 2017-04-25 2018-11-22 株式会社マテリアル・コンセプト 銅電極を有する電子部品

Also Published As

Publication number Publication date
US20180249581A1 (en) 2018-08-30
KR102082838B1 (ko) 2020-02-28
TWI624203B (zh) 2018-05-11
TW201722233A (zh) 2017-06-16
JP6541530B2 (ja) 2019-07-10
US10517178B2 (en) 2019-12-24
JP2017063109A (ja) 2017-03-30
CN108141966A (zh) 2018-06-08
KR20180043320A (ko) 2018-04-27

Similar Documents

Publication Publication Date Title
WO2017051816A1 (ja) ビア充填基板並びにその製造方法及び前駆体
JP5492191B2 (ja) メタライズド基板を製造する方法、メタライズド基板
JP6244405B2 (ja) 配線パターンを形成するための組成物
CN113632217A (zh) 氮化硅基板、氮化硅-金属复合体、氮化硅电路基板及半导体封装件
JP3629783B2 (ja) 回路基板
JP2014156393A (ja) 無電解ニッケルおよび金めっきするための銀ペースト組成物
JP5767435B2 (ja) 穴埋め用導体ペースト、導体穴埋め基板、導体穴埋め基板の製造方法、回路基板、電子部品、半導体パッケージ
JP6774898B2 (ja) 貫通電極を有する両面配線基板及びその製造方法
JP5819751B2 (ja) 導電性積層体並びにその製造方法及び前駆体
JP6936040B2 (ja) メタライズ基板及びその製造方法
EP3203514A1 (en) SUBSTRATE FOR POWER MODULE WITH Ag UNDERLAYER AND POWER MODULE
WO2021245912A1 (ja) ビア充填基板の製造方法および導電ペーストのキット
JP2022013766A (ja) ビア充填基板
TW201831433A (zh) 陶瓷電路板及其製造方法
JP2009143766A (ja) メタライズド基板およびその製造方法
JP2004175599A (ja) 金属化層を有するセラミックス焼結体の製造方法
JPH10279377A (ja) メタライズ組成物およびそれを用いた窒化アルミニウム基板の製造方法
JP2022031197A (ja) ビア充填基板の製造方法および導電ペーストのキット
JP4126588B2 (ja) 金属化層を有する窒化アルミニウム焼結体及びその製造方法
JP2019165155A (ja) 窒化アルミニウム回路基板及びその製造方法
JP2004014597A (ja) 金属化層を有する窒化アルミニウム焼結体の製造方法
JP2004175600A (ja) 金属化層を有する窒化アルミニウム焼結体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848604

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15761288

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187007947

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848604

Country of ref document: EP

Kind code of ref document: A1