WO2017051591A1 - ギヤ伝動装置 - Google Patents

ギヤ伝動装置 Download PDF

Info

Publication number
WO2017051591A1
WO2017051591A1 PCT/JP2016/070534 JP2016070534W WO2017051591A1 WO 2017051591 A1 WO2017051591 A1 WO 2017051591A1 JP 2016070534 W JP2016070534 W JP 2016070534W WO 2017051591 A1 WO2017051591 A1 WO 2017051591A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
tooth
driven gear
drive
driven
Prior art date
Application number
PCT/JP2016/070534
Other languages
English (en)
French (fr)
Inventor
辻本勝弘
山口真矢
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201680049843.8A priority Critical patent/CN108138911B/zh
Priority to US15/753,798 priority patent/US10598253B2/en
Priority to JP2017541456A priority patent/JP6521080B2/ja
Priority to EP16848381.6A priority patent/EP3354931B1/en
Publication of WO2017051591A1 publication Critical patent/WO2017051591A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling

Definitions

  • the present invention relates to a gear transmission that transmits the rotation of an input-side gear to a driven gear.
  • Patent Document 1 discloses a technology having an inconstant-velocity face gear and a pinion gear that meshes with the same.
  • the pinion gear is driven by an electric motor, and the inconstant speed face gear is interlocked with the steering mechanism of the steering system.
  • the pressure angle between the inconstant speed face gear and the pinion gear is configured to be smaller in the area requiring larger torque as compared with the area in which the smaller torque acts.
  • steering gear characteristics are also realized by variously changing the distance from the gear center to the region where the tooth surface is formed.
  • Patent Document 2 discloses a technique of operating a clutch device by an input gear driven by an electric motor and a face gear meshing with the input gear.
  • the face gear is fan-shaped and teeth are formed only in the region corresponding to the arc of the fan.
  • Patent Document 2 one end of a rod for operating a clutch device is supported by a face gear, whereby the on / off of the clutch device is realized along with the swing of the face gear.
  • Patent Document 2 when the input gear is driven by the electric motor and the face gear is rotated, even if the load reaches the maximum value, the surface pressure between the tooth surfaces of the input gear and the face gear is Each tooth is designed not to exceed a predetermined value. Moreover, although what makes a pressure angle small like patent document 1 raises efficiency, it was difficult to manufacture and it was difficult to implement
  • the gear transmission be compact.
  • the size of the teeth not originally subjected to a large load increases, which leads to a reduction in size and leads to a weight increase. .
  • a feature of the present invention includes a drive gear, and a driven gear meshed with the drive gear, having a rotatable angle of less than 360 degrees, and having a plurality of regions in which the drive load changes according to the rotation angle.
  • the tooth widths included in the plurality of regions are different in the tooth width.
  • the teeth of the drive gear are meshed with the teeth with the larger tooth width among the teeth of the plurality of regions where the drive load changes. Also, the contact area between the tooth surfaces can be enlarged. As a result, an increase in contact pressure between the tooth surfaces is suppressed even at high loads, so that the durability is improved and the friction loss is also suppressed.
  • the teeth of the drive gear mesh with the smaller one of the plurality of regions where the drive load changes, and the width of the teeth is smaller. It is possible to reduce the meshing resistance.
  • the consumption energy of the actuator is not excessively increased in a high load application situation, and the start torque of the actuator for driving and rotating the drive gear is reduced to improve the starting characteristic in a low load application situation. It becomes possible. Therefore, the gear transmission having the drive gear and the driven gear meshing with the drive gear can be configured to operate in a small size and smoothly.
  • a feature of the present invention is a drive gear, and a driven gear having a plurality of regions in which a rotatable angle is 360 degrees while meshing with the drive gear and in which the drive load changes in accordance with the rotation angle.
  • the tooth portions of the driven gear the tooth widths included in the plurality of regions are made different.
  • the gear transmission having the drive gear and the driven gear meshing with the drive gear can be configured to operate in a small size and smoothly.
  • the tooth width of the tooth portion formed on the driven gear may be set in proportion to the rotation angle of the driven gear.
  • an outer end may be formed along a circumference centered on the axial center of the driven gear.
  • the inner end may be formed along a circumference centered on the axial center of the driven gear.
  • the outer diameter of the driven gear is enlarged, not only the tooth width of the tooth portion in the expanded region but also the tooth thickness can be expanded, so that the durability of the driven gear can be improved.
  • the drive gear may be a pinion gear and the driven gear may be a face gear.
  • the drive gear is a pinion gear and the driven gear is a face gear, it is possible to obtain a large reduction ratio while downsizing the apparatus.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG. It is the IV-IV sectional view taken on the line of FIG.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG.
  • FIG. 6 is a cross-sectional view taken along line VI-VI of FIG.
  • It is a perspective view of a driven gear. It is a side view showing a clutch mechanism and a transmission in a transmission state. It is a side view which shows the clutch mechanism and transmission of a disconnection state.
  • It is a top view of the gear transmission of another embodiment (a). It is a top view of the gear transmission of another embodiment (e). It is a perspective view of the driven gear of another embodiment (e).
  • Embodiment Embodiment As shown in FIGS. 1 to 7, a fan-shaped face gear G1 rotatable in a predetermined angle range of less than 360 degrees about a first axis X1 (a driven gear An example) and a pinion gear G2 (an example of a drive gear) rotatable about a second shaft core X2 at a position different from the first shaft core X1 mesh with each other to constitute a gear transmission.
  • the gear transmission 100 is provided in a transmission system that drives the face gear G1 in a reduced speed by driving and rotating the pinion gear G2 with an actuator such as an electric motor.
  • the face gear G1 has a support hole 2 formed at the rocking center of the fan-shaped gear main body 1 centering on the first axis X1, and the tooth portion forming area A corresponding to the arc of the fan in the gear main body 1 A plurality of teeth 5 are formed.
  • the face gear G1 is swingably supported around the first axis X1.
  • the face gear G1 is assumed to be manufactured by forging or press processing, but it is also possible to manufacture a plurality of tooth portions 5 by cutting a material or by resin molding using a mold good.
  • the pinion gear G2 is configured as a helical gear type pinion gear integrally formed with two thread-like gear portions 11 (tooth portions of the pinion gear G2) in a screw shape with respect to the shaft 10, and rotatably supported around the second axis X2. Be done.
  • the fan-shaped gear main body 1 is formed with an arc-shaped outer peripheral portion (a region corresponding to a portion of the arc of the fan) along a circumference centered on the first axial center X1.
  • a tooth portion forming region is formed along the outer peripheral portion A is formed.
  • a plurality of tooth portions 5 protruding in the direction along the first axis X1 are formed.
  • each of the plurality of teeth 5 is formed with a tooth tip 5a, a tooth surface 5b, and a tooth bottom 5c along a tooth-muscle curve. Further, each tip 5a is disposed on a virtual plane of a posture orthogonal to the first axis X1.
  • a concave space S recessed in a direction along the first axial center X1 from the tooth bottom 5c of the tooth portion 5 is formed in a region closer to the first axial center X1 than the tooth portion forming region A .
  • this concave space S By forming this concave space S, a portion of the gear portion 11 of the pinion gear G2 that protrudes inward (in the direction of the first axis X1) from the tooth portion formation region A of the face gear G1, and the face gear G1. Interference with the component members (basically, the gear main body 1) is suppressed.
  • arrangement of a bearing for supporting a projecting portion (inner end portion) in the direction of the first axis X1 in the gear portion 11 of the pinion gear G2 is facilitated. .
  • the protrusion amounts of the plurality of tooth portions 5 formed in the tooth portion forming area A are set equal. That is, each of the plurality of tooth tips 5 a and each of the plurality of tooth bases 5 c are formed at the same height with reference to the bottom surface described above.
  • the tooth portion forming area A is formed so as to be surrounded by an outer edge portion Aa along the outer peripheral edge of the face gear G1 and an inner edge portion Ab disposed in the direction of the first axis X1.
  • the outer edge portion Aa is disposed on a circular arc along a circumference centered on the first axis X1, but the inner edge portion Ab is formed as a curve not centered on the first axis X1.
  • the radially outer end is disposed on a circular arc centered on the first axis X1, and both ends in the direction of the streaks of the tooth 5
  • the radial inner end of the portion is disposed on a curve not centered on the first axis X1.
  • the distance Da between the inner edge portion Ab and the outer edge portion Aa at one end in the circumferential direction centering on the first axial center X1 is taken as a reference
  • the curve of the inner edge portion Ab is set such that the distance Db between the inner edge portion Ab and the outer edge portion Aa at the other end in the circumferential direction is expanded.
  • the tooth width is larger, the position of the inner end face facing the direction of the first axis X1 (the position of the inner edge portion Ab) protrudes in the direction of the first axis X1.
  • the face gear G1 is provided in the transmission system in which the drive load changes as it rotates toward the arrow F, and the teeth 5 correspond to a plurality of areas in the face gear G1 in which the drive load changes.
  • the tooth widths of the teeth are different. Further, as the load increases, the width of the teeth 5 in contact with the gear portion 11 of the pinion gear G2 is set to be wider.
  • the operation target whose spring biasing force increases as the pull operation amount increases and the gear main body 1 of the face gear G1 are linked by a rod or the like, and the face gear G1 rotates in the direction of arrow F Assuming that the operation rod is pulled against the biasing force, the load increases with the increase of the rotation amount of the face gear G1 in the direction of the arrow F.
  • the shape of the tooth forming area A is such that the distance between the outer edge Aa and the inner edge Ab of the tooth forming area A increases (the tooth width increases) toward the upstream side of the arrow F. Is set.
  • the values of the interval Da and the interval Db are determined by the configuration of the gear transmission mechanism and the size of the load.
  • a gear transmission mechanism configured to have a constant width of the tooth portion forming area A (the interval Da and the interval Db become equal) will be considered as a comparison configuration.
  • the surface pressure between the tooth 5 of the face gear G1 and the gear 11 of the pinion gear increases, and this surface pressure
  • the meshing resistance also increases and the friction loss also increases. This not only reduces the transmission efficiency but also leads to an increase in the capacity of the electric motor or the like that drives the pinion gear G2.
  • the curve of the inner edge portion Ab does not necessarily have to be formed into a strictly calculated curve, and may be a curve of an ellipse or a part of a parabola, and an arc having a radius smaller than the radius of the outer edge Aa, the first axis It may be drawn at an axial center position different from that of the core X1.
  • FIGS. 8 and 9 show a configuration in which the clutch mechanism C is operated by the gear transmission 100 as an application example in which the face gear G1 is provided in the transmission system in which the drive load changes.
  • the face gear G1 is rotatably supported via a gear support shaft 16 with respect to a frame of a vehicle or apparatus.
  • the tooth portion 5 of the face gear G1 and the gear portion 11 of the pinion gear G2 mesh with each other, and the driving force of an electric motor (not shown) is transmitted to the shaft 10 of the pinion gear G2.
  • the clutch mechanism C has a drive disk 21 integrally rotating with the drive shaft 20 and a driven disk 24 provided on a sleeve 23 integrally rotating with the output shaft 22 coaxially arranged with the transmission axis Y.
  • a drive disk 21 integrally rotating with the drive shaft 20
  • a driven disk 24 provided on a sleeve 23 integrally rotating with the output shaft 22 coaxially arranged with the transmission axis Y.
  • the sleeve 23 is supported for free torque transmission to the output shaft 22 and movably along the transmission axis Y.
  • a spring 25 is provided between the output shaft 22 and the sleeve 23 to press the driven disc 24 against the drive disc 21. From this configuration, as shown in FIG. 8, the clutch mechanism C is maintained in the transmission state (inset state) by the biasing force of the spring 25. Further, by separating the driven disk 24 from the drive disk 21 against the biasing force of the spring 25, as shown in FIG. 9, the clutch mechanism C is set in the disconnection state (the disconnection state).
  • An operating arm 26 for intermittently operating the clutch mechanism C is pivotally supported by a support shaft 27 with respect to a frame of an apparatus or the like.
  • a pair of fork portions 26a disposed at a position for holding the sleeve 23 is formed at the operation end position of the operation arm 26, and an engagement pin 28 is provided on each of the opposing surfaces of each fork portion 26a. ing.
  • the pair of engagement pins 28 engage with engagement grooves 23 a formed on the outer periphery of the sleeve 23.
  • the face gear G1 and the operating arm 26 are linked by the operating rod 30.
  • the operating rod 30 forms an operating end 30 a at one end by bending the both ends, and forms an operating end 30 b at the other end.
  • the operating end 30 a is engaged with the gear main body 1 of the fan-shaped face gear G 1, and the operating end 30 b is engaged with the operating arm 26.
  • the electric motor drives the pinion gear G2 to rotate the face gear G1 in the direction of the arrow F.
  • the rotational force of the face gear G1 acts on the operation end of the operation arm 26 via the operation rod 30, and the operation arm 26 swings about the support shaft 27.
  • the driven disk 24 is shifted along with the transmission axis Y together with the sleeve 23 against the biasing force of the spring 25 and separated from the drive disk 21. Thereby, the transmission of the driving force is interrupted.
  • the width of the teeth 5 in contact with the gear 11 of the pinion gear G2 is set to be wider. That is, the distance between the outer edge portion Aa and the inner edge portion Ab of the tooth portion forming area A increases (the tooth width increases) toward the upstream side of the arrow F.
  • the increase in the surface pressure between the tooth surfaces is suppressed to improve the durability, the friction loss is suppressed, the wear is suppressed, and the heat generation is also suppressed.
  • the present invention may be configured as follows in addition to the above-described embodiment (the components having the same functions as the embodiment are assigned the same reference numerals and symbols as the embodiment).
  • the tooth portion forming region A has an arc-shaped inner edge portion Ab along the circumference centered on the first axis X1 on the inner peripheral side, and the first axis X1 as the center It forms in the area
  • the inner end of the two ends in the direction of the tooth streak of the tooth portion 5 is disposed on a circular arc centered on the first axis X1, and the outer side of the both ends in the direction of the tooth streak of the tooth 5
  • the end portion of is disposed on a curve not centered on the first axis X1.
  • the tooth thickness is increased in the region where the tooth width is expanded, so that the strength of the tooth portion can be increased and the durability of the device can be improved.
  • the tooth portion forming area A is an outer edge portion Aa which is a curve not centered on the first axis X1 as shown in another embodiment (a), and the first axis X1 as shown in the embodiment It may be formed so that it may be surrounded by inner edge part Ab formed as a curve which does not center on.
  • the tooth area formation area A may be configured to expand the tooth width stepwise by combining the area of the predetermined tooth width and the area where the tooth width is expanded. That is, the plurality of tooth portions 5 of the face gear G1 are continuously arranged in the outer peripheral region of the face gear G1 with a predetermined tooth width and those different from the tooth width.
  • a gear may be formed by forming a tooth portion consisting of a flat tooth on the outer periphery as the face gear G1 and a pinion gear G2 having a tooth portion consisting of a flat tooth so as to mesh with the tooth portion of the face gear G1.
  • the rotatable angle of the face gear G1 is set to less than 360 degrees, and the tooth width of the region of the face gear G1 where high load acts is enlarged.
  • the driven gear G1 is formed by forming the tooth portion 5 formed of a flat tooth in an arc portion of the face gear G1 supported swingably around the first axial center X1. It is conceivable to configure the drive gear G2 so as to be configured to mesh with the teeth 5. Even in this configuration, the energy consumption of the actuator for driving and rotating the drive gear G2 is not excessively increased in a situation where a high load is applied, and the actuator for driving and rotating the drive gear G2 in a situation where a low load is applied. It is also possible to reduce the starting torque of to improve the starting characteristics.
  • the face gear G1 as a driven gear is configured to have a tooth portion in a region of 360 degrees centered on the first axis X1.
  • the outer edge portion Aa of the tooth portion forming area A is circular along a circumference centered on the first axis X1
  • the inner edge portion Ab of the tooth portion forming area A is eccentric from the first axis X1. It is set in a circle centered on.
  • each of the plurality of tooth portions 5 is formed along the tooth-muscle curve with tooth tips 5a, tooth surfaces 5b, and tooth bases 5c. Further, each tooth tip 5a is disposed on a virtual plane of a posture orthogonal to the first axis X1, and a concave space S is formed which is further recessed in the direction along the first axis X1 from the tooth bottom 5c of the tooth portion 5. Be done. Further, a portion where the distance between the inner edge portion Ab and the outer edge portion Aa in the tooth width direction is the narrowest is taken as an interval Da, and the widest portion is shown as an interval Db.
  • the pinion gear G2 (drive gear)
  • the pinion gear G2 can be engaged in a region where the tooth width is small at a rotational angle at which a small load acts.
  • the projection amounts of the plurality of teeth 5 formed in the teeth forming area A are set equal.
  • the relationship between the rotation angle centered on the first axial center X1 and the tooth width is set to a constant ratio.
  • the face gear G1 is, for example, circular with the inner edge Ab of the tooth forming area A centered on the first axis X1, and the outer edge Aa of the tooth forming area A is the first. It may be set as a circle along a circumference centered on a position eccentric from the axis X1. Further, the outer edge portion Aa and the inner edge portion Ab do not have to be formed in a circular shape, and may be formed in, for example, an elliptical shape or a shape combining a circular shape and a quadratic curve.
  • the present invention can be applied to a gear transmission in which an output-side gear rotates within an angle range of less than 360 degrees with respect to rotation of an input-side gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)
  • Transmission Devices (AREA)
  • Gears, Cams (AREA)

Abstract

【解決手段】駆動ギヤG2と、これに噛み合う従動ギヤG1とを備え、従動ギヤG1が回転角度に応じて駆動負荷が変化する複数の領域を有し、この複数の領域に含まれる歯部5の歯幅を異ならせている。

Description

ギヤ伝動装置
 本発明は、入力側のギヤの回転を従動ギヤに伝えるギヤ伝動装置に関する。
 上記のように構成されたギヤ伝動装置として特許文献1には、不等速フェースギヤと、これに噛合するピニオンギヤとを有した技術が示されている。この技術はピニオンギヤを電動モータで駆動するものであり、不等速フェースギヤを転舵システムの転舵機構に連動させている。
 この特許文献1の転舵システムでは、不等速フェースギヤとピニオンギヤとの圧力角が、小さいトルクが作用する領域と比較して大きいトルクを必要とする領域において小さくなるように構成されている。また、不等速フェースギヤでは、ギヤ中心から歯面が形成される領域までの距離を様々に変えることにより、ステアリングギヤ特性を実現するようにも構成されている。
 特許文献2には、電動モータで駆動される入力ギヤと、これに噛合するフェースギヤとによりクラッチ装置を操作する技術が示されている。フェースギヤは扇状に形成され、扇の弧に対応する領域だけに歯部が形成されている。
 この特許文献2では、クラッチ装置を操作するロッドの一端を、フェースギヤで支持することにより、フェースギヤの揺動に伴いクラッチ装置の入り切りを実現している。
特開2014‐169745号公報 特開2015‐148258号公報
 入力側のギヤの回転に対して出力側のギヤが360度未満の角度の範囲内で回転するギヤ伝動装置において、出力側のギヤの回転角の変化に伴い負荷が変化するものでは、この負荷の上昇に伴い、ギヤの面圧も上昇するため、摩擦ロスを招くものであった。また、負荷の上昇に伴いギヤの面圧が上昇するものでは、摩擦が上昇して操作抵抗が増大し、ギヤの摩耗を招きやすく、発熱も招く不都合に繋がるものであった。
 例えば、特許文献2のように、電動モータで入力ギヤを駆動し、フェースギヤを回転させるものでは、負荷が最大値に達した場合でも、入力ギヤとフェースギヤとの歯面同士の面圧が所定値を超えないように各々の歯部が設計される。また、特許文献1のように圧力角を小さくするものは効率を高めるものであるが、製造が困難で、コストの上昇を招くことから実現し難いものであった。
 しかしながら、ギヤ伝動装置は小型であることが望ましい。これに対して最大負荷に耐えるように全ての歯部が設計されるものでは、本来大きい負荷が作用しない歯部のサイズが大きくなり、小型化が抑制され、重量化にも繋がるものであった。
 このような理由から、駆動ギヤと、この駆動ギヤに噛み合う従動ギヤとを有するギヤ伝動装置を小型で円滑に作動するように構成することが求められる。
 本発明の特徴は、駆動ギヤと、当該駆動ギヤに噛み合い、回転可能な角度が360度未満であって、回転角度に応じて駆動負荷が変化する複数の領域を有する従動ギヤと、を備え、前記従動ギヤの歯部のうち、前記複数の領域に含まれる歯部毎に歯幅を異ならせている点にある。
 この構成によると、従動ギヤの回転に伴い駆動負荷が増大した場合には、駆動負荷が変化する複数の領域の歯部のうち、歯幅が大きいものに対して駆動ギヤの歯部を噛合させ、歯面同士の接触面積の拡大も可能となる。これにより、高負荷でも歯面同士の面圧の上昇が抑制されるため耐久性が向上し、摩擦ロスも抑制される。これとは逆に、従動ギヤに作用する負荷が低減する場合には、駆動負荷が変化する複数の領域のうち、歯幅が小さいものに対して駆動ギヤの歯部が噛合することになり、噛み合い抵抗を小さくすることが可能となる。
 これにより、高負荷が作用する状況ではアクチュエータの消費エネルギーを過剰に増大させず、低負荷が作用する状況では、駆動ギヤを駆動回転するアクチュエータの始動トルクを低減して始動特性を向上させることも可能となる。
 従って、駆動ギヤと、この駆動ギヤに噛み合う従動ギヤとを有するギヤ伝動装置を小型で円滑に作動するように構成できた。
 また、本発明の特徴は、駆動ギヤと、当該駆動ギヤに噛み合い、回転可能な角度が360度の領域であって、回転角度に応じて駆動負荷が変化する複数の領域を有する従動ギヤと、を備え、前記従動ギヤの歯部のうち、前記複数の領域に含まれる歯部毎に歯幅を異ならせている点にある。
 この構成によると、軸芯を中心とする360度の領域において駆動負荷が変化する対象を従動ギヤで駆動する場合には、大きい負荷が作用する回転角では、従動ギヤのうち歯幅が大きい領域に駆動ギヤを噛合させることで、高負荷でも歯面同士の面圧の上昇を抑制して耐久性の向上が可能となる。これとは逆に、小さい負荷が作用する回転角では、従動ギヤのうち歯幅が小さい領域に駆動ギヤを噛合させることで噛み合い抵抗を小さくすることが可能となる。
 これにより、高負荷が作用する状況ではアクチュエータの消費エネルギーを過剰に増大させず、低負荷が作用する状況では、駆動ギヤを駆動回転するアクチュエータの始動トルクを低減して始動特性を向上させることも可能となる。
 従って、駆動ギヤと、この駆動ギヤに噛み合う従動ギヤとを有するギヤ伝動装置を小型で円滑に作動するように構成できた。
 他の構成として、前記従動ギヤに形成される歯部の歯幅が、当該従動ギヤの回転角度に比例する関係で設定されても良い。
 例えば、バネで付勢された駆動対象をバネの付勢力に抗して変位させる構成を想定すると、バネの付勢力が増大する方向に駆動対象を変位させる場合には、変位量に比例して駆動負荷が増大する。このことから、本構成では、軸芯を中心にした回転角に比例する関係で負荷が変化する対象を駆動する場合にも、駆動負荷の値に拘わらず歯面同士の面圧を一定に維持して無理のない駆動を実現する。
 他の構成として、前記従動ギヤの夫々の歯部の歯筋方向の両端部のうち、外側の端部が前記従動ギヤの軸芯を中心とした円周に沿って形成されても良い。
 これによると、従動ギヤの外径を拡大することなく、従動ギヤの複数の歯部の歯幅の設定が可能となり、一層の小型化が実現する。
 他の構成として、前記従動ギヤの夫々の歯部の歯筋方向の両端部のうち、内側の端部が前記従動ギヤの軸芯を中心とした円周に沿って形成されても良い。
 これによると、従動ギヤの外径が拡大するものの、拡大した領域の歯部の歯幅だけでなく、歯厚も拡大できるため、従動ギヤの耐久性を向上させることが可能となる。
 他の構成として、前記駆動ギヤがピニオンギアであり、前記従動ギヤがフェースギヤであっても良い。
 このように駆動ギヤがピニオンギヤで構成され、従動ギヤがフェースギヤで構成される装置では、装置を小型化しつつ、大きい減速比を得ることも可能となる。
低負荷状態でのギヤ伝動装置の平面図である。 高負荷状態でのギヤ伝動装置の平面図である。 図1のIII-III線断面図である。 図1のIV-IV線断面図である。 図2のV-V線断面図である。 図2のVI-VI線断面図である。 従動ギヤの斜視図である。 伝動状態のクラッチ機構と伝動装置とを示す側面図である。 遮断状態のクラッチ機構と伝動装置とを示す側面図である。 別実施形態(a)のギヤ伝動装置の平面図である。 別実施形態(e)のギヤ伝動装置の平面図である。 別実施形態(e)の従動ギヤの斜視図である。
 以下、本発明の実施形態を図面に基づいて説明する。
〔ギヤ伝動装置の基本構成〕実施形態実施形態
 図1~図7に示すように、第1軸芯X1を中心に360度未満の所定角度範囲で回転自在な扇状のフェースギヤG1(従動ギヤの一例)と、第1軸芯X1と食い違う位置の第2軸芯X2を中心に回転自在なピニオンギヤG2(駆動ギヤの一例)とを互いに噛み合わせてギヤ伝動装置が構成されている。
 このギヤ伝動装置100は、ピニオンギヤG2を電動モータ等のアクチュエータで駆動回転することにより、フェースギヤG1を減速駆動する伝動系に備えられるものである。
 フェースギヤG1は、第1軸芯X1を中心とする扇状のギヤ本体1の揺動中心に支持孔2が形成されると共に、ギヤ本体1において扇の弧に対応する歯部形成領域Aに対して複数の歯部5を形成している。
 このギヤ伝動装置100では、支持孔2に支持軸を挿通することによりフェースギヤG1が第1軸芯X1を中心に揺動自在に支持されている。尚、支持孔2に対して出力軸を挿通する状態でギヤ本体1に連結固定し、出力軸を介して揺動力を取り出すように構成することも可能である。
 フェースギヤG1は、鍛造やプレス加工により製造されるものを想定しているが、素材の切削により複数の歯部5が製造されるものや、金型を用いた樹脂成形により製造されるものでも良い。
 ピニオンギヤG2は、シャフト10に対してネジ状となる2条のギヤ部11(ピニオンギヤG2の歯部)を一体形成したヘリカルギヤ型のピニオンギヤとして構成され、第2軸芯X2を中心に回転自在に支持される。
〔従動ギヤの歯部〕
 扇状のギヤ本体1は、第1軸芯X1を中心とする円周に沿う円弧状の外周部(扇の弧の部分に対応する領域)が形成され、この外周部に沿って歯部形成領域Aが形成されている。歯部形成領域Aには第1軸芯X1に沿う方向に突出する複数の歯部5が形成されている。
 複数の歯部5の各々は、図5、図7に示すように、歯先5aと、歯面5bと、歯底5cとが歯筋曲線に沿って形成される。また、各々の歯先5aは第1軸芯X1に直交する姿勢の仮想平面上に配置される。
 ギヤ本体1において、歯部形成領域Aより第1軸芯X1に近い領域には、歯部5の歯底5cより更に第1軸芯X1に沿う方向に窪む凹状空間Sが形成されている。
 この凹状空間Sが形成されることにより、ピニオンギヤG2のギヤ部11のうち、フェースギヤG1の歯部形成領域Aより内側に(第1軸芯X1の方向に)突出する部分と、フェースギヤG1の構成部材(基本的にはギヤ本体1)との干渉が抑制される。尚、凹状空間Sが形成されることにより、例えば、ピニオンギヤG2のギヤ部11のうち第1軸芯X1の方向への突出部分(内端部)を支持するための軸受の配置を容易にする。
 また、ギヤ本体1のうち凹状空間Sを形成する底面を基準にして、歯部形成領域Aに形成される複数の歯部5の突出量は等しく設定されている。つまり、前述した底面を基準にして複数の歯先5aのそれぞれ、複数の歯底5cのそれぞれは等しい高さに形成されている。
 歯部形成領域Aは、フェースギヤG1の外周縁に沿う外縁部Aaと、これより第1軸芯X1の方向に配置される内縁部Abとで取り囲まれるように形成されている。外縁部Aaは、第1軸芯X1を中心とする円周に沿う円弧上に配置されるものであるが、内縁部Abは、第1軸芯X1を中心としないカーブとして形成されている。具体的には、歯部5の歯筋方向での両端部のうち径方向外側の端部が第1軸芯X1を中心とする円弧上に配置され、歯部5の歯筋方向での両端部のうち径方向内側の端部が第1軸芯X1を中心としないカーブ上に配置される。
 このように歯部形成領域Aの形状が設定されることにより、第1軸芯X1を中心とする周方向での一方の端部における、内縁部Abと外縁部Aaとの間隔Daを基準とすると、周方向での他方の端部における内縁部Abと外縁部Aaとの間隔Dbが拡大するように、内縁部Abのカーブが設定される。これにより、歯幅が大きいものほど、第1軸芯X1の方向に面する内端面の位置(内縁部Abの位置)が、第1軸芯X1の方向に張り出すことになる。
 つまり、フェースギヤG1は、矢印Fに向けて回転するほど、駆動負荷が変動する伝動系に備えられるものであり、フェースギヤG1のうち駆動負荷が変動する複数の領域に対応して歯部5の歯幅を異ならせている。また、負荷が増大するほど、歯部5がピニオンギヤG2のギヤ部11に接触する歯幅が拡大するように設定されている。
 例えば、引き操作量が増大するほどバネ付勢力が増大する操作対象と、フェースギヤG1のギヤ本体1とをロッド等で連係し、フェースギヤG1が矢印Fの方向に回転することで、バネの付勢力に抗して操作ロッドを引き操作するものを想定すると、矢印Fの方向へのフェースギヤG1の回転量の増大に伴い、負荷が増大する。
 この想定に対応できるように、矢印Fの上流側ほど歯部形成領域Aの外縁部Aaと内縁部Abとの間隔が拡大(歯幅が拡大する)するように、歯部形成領域Aの形状を設定しているのである。尚、間隔Daと間隔Dbとの値は、ギヤ伝動機構の構成と、負荷の大きさとから決まる。
〔伝動形態〕
 ここで、歯部形成領域Aの幅一定となる(間隔Daと間隔Dbとが等しくなる)ように構成したギヤ伝動機構を比較構成として考えてみる。この比較構成では、フェースギヤG1の回転量の増大に伴い負荷が増大した場合には、フェースギヤG1の歯部5とピニオンギヤのギヤ部11との間での面圧が上昇し、この面圧の上昇に伴い、噛み合い抵抗も増大し摩擦ロスも増大する。このことは、伝動効率が低下するだけでなく、ピニオンギヤG2を駆動する電動モータ等の容量の増大にも繋がるものであった。
 これに対して図1、図2に示すように間隔Daと間隔Dbとを設定したギヤ伝動装置100では、ピニオンギヤG2の駆動によりフェースギヤG1を矢印Fの方向に駆動を開始した場合には、この駆動の初期にはピニオンギヤG2のギヤ部11が噛合するフェースギヤG1の歯部5の歯幅が小さく、噛み合い抵抗も小さい。これにより、ピニオンギヤG2を駆動回転する電動モータ等の始動トルクを低減して始動特性を向上させる。
 この後に、ピニオンギヤG2の回転に伴いフェースギヤG1の回転量が増大するほどピニオンギヤG2のギヤ部11が噛合するフェースギヤG1の歯部5の歯幅が拡大し、ギヤ部11と歯部5との面同士の接触面積が拡大し、面圧の上昇を抑制するため、耐久性が向上し、摩擦ロスが抑制され、摩耗が抑制され、発熱も抑制される。しかも、ピニオンギヤG2を駆動回転する電動モータ等の消費電力が過剰に上昇する不都合も抑制される。
 特に、この構成では、扇状のギヤ本体1の円弧状の外周部が第1軸芯X1を中心に形成されているため、フェースギヤG1の大型化が抑制される。
 フェースギヤG1に作用する負荷が増大した場合に、この増大に比例してフェースギヤG1の歯部5と、ピニオンギヤG2のギヤ部11とが接触する面積を増大させることで歯部5とギヤ部11との間で作用する面圧を一定にする歯幅を得るように、内縁部Abのカーブの形状を設定することが理想である。しかしながら、内縁部Abのカーブは必ずしも厳密に計算されたカーブに形成する必要はなく、楕円や放物線の一部の曲線であって良く、外縁部Aaの半径より小さい半径の円弧を、第1軸芯X1と異なる軸芯位置で描いたものであっても良い。
〔ギヤ伝動装置の利用例〕
 図8、図9には、フェースギヤG1を、駆動負荷が変動する伝動系に備えた利用例としてギヤ伝動装置100でクラッチ機構Cを操作する構成を示している。
 この利用例では、車両や装置等のフレームに対してギヤ支軸16を介して回転自在にフェースギヤG1が支持されている。フェースギヤG1の歯部5とピニオンギヤG2のギヤ部11とが互いに噛合し、ピニオンギヤG2のシャフト10には不図示の電動モータの駆動力が伝えられる。
 クラッチ機構Cは、駆動軸20と一体回転する駆動ディスク21と、出力軸22と一体回転するスリーブ23に備えた従動ディスク24とを伝動軸芯Yと同軸芯上に配置している。特に、出力軸22に形成したスプライン部に対し、スリーブ23が嵌合することにより、スリーブ23が出力軸22に対してトルク伝達自在に、且つ伝動軸芯Yに沿って移動自在に支持されている。
 出力軸22とスリーブ23との間には、従動ディスク24を駆動ディスク21に圧接させるバネ25を備えている。この構成から、クラッチ機構Cは、図8に示すように、バネ25の付勢力により伝動状態(入り状態)に維持される。また、バネ25の付勢力に抗して従動ディスク24を駆動ディスク21から離間させることにより、図9に示すように、クラッチ機構Cは、遮断状態(切り状態)に設定される。
 クラッチ機構Cを断続操作する操作アーム26が、装置等のフレームに対して支軸27により揺動自在に支持されている。この操作アーム26の作動端位置には、スリーブ23を抱き込む位置に配置される一対のフォーク部26aを形成しており、各々のフォーク部26aの対向する面の各々に係合ピン28を備えている。この一対の係合ピン28は、スリーブ23には外周に形成された係合溝23aに係合する。
 また、フェースギヤG1と操作アーム26とを操作ロッド30で連係している。操作ロッド30は、両端部を折り曲げることで一方の端部に作動端30aを形成し、他方の端部に操作端30bを形成している。そして、作動端30aを扇状のフェースギヤG1のギヤ本体1に係合し、操作端30bを操作アーム26に係合している。
 この構成では、図8に示すようにクラッチ機構Cが伝動状態にある場合には、フェースギヤG1の歯部形成領域Aのうち、歯幅が小さい領域にピニオンギヤG2のギヤ部11が噛み合う。また、この伝動状態では、バネ25の付勢力により駆動ディスク21に従動ディスク24が圧接し、駆動軸20の駆動力が出力軸22に伝えられる。
 そして、クラッチ機構Cを遮断状態に操作する場合には、電動モータでピニオンギヤG2を駆動して、フェースギヤG1を矢印Fの方向に回転させる。この回転に伴いフェースギヤG1の回転力が操作ロッド30を介して操作アーム26の操作端部に作用し、操作アーム26は支軸27を中心に揺動する。この揺動により、バネ25の付勢力に抗してスリーブ23とともに従動ディスク24が伝動軸芯Yに沿ってシフトし、駆動ディスク21から離間させる。これにより駆動力の伝達が遮断される。
 この構成では、負荷が増大するほど、歯部5がピニオンギヤG2のギヤ部11に接触する歯幅が拡大するように設定されている。つまり、矢印Fの上流側ほど歯部形成領域Aの外縁部Aaと内縁部Abとの間隔が拡大(歯幅が拡大する)する。その結果、歯面同士の面圧の上昇を抑制して耐久性が向上し、摩擦ロスを抑制し、摩耗を抑制し、発熱も抑制する。
〔別実施形態〕
 本発明は、上記した実施形態以外に以下のように構成しても良い(実施形態と同じ機能を有するものには、実施形態と共通の番号、符号を付している)。
(a)図10に示すように、歯部形成領域Aを、内周側で第1軸芯X1を中心とする円周に沿う円弧状の内縁部Abと、第1軸芯X1を中心としないカーブとなる外縁部Aaとで取り囲まれる領域に形成する。つまり、フェースギヤG1が矢印Fの方向に回転した場合に、ピニオンギヤG2が噛合する歯幅が、外側に拡大するように構成する。これにより、歯部5の歯筋方向での両端部のうち内側の端部が第1軸芯X1を中心とする円弧上に配置され、歯部5の歯筋方向での両端部のうち外側の端部が第1軸芯X1を中心としないカーブ上に配置される。
 このように構成することにより、歯幅が拡大した領域では歯厚が拡大するため、歯部の強度を高め、装置の耐久性を向上させることも可能となる。
(b)歯部形成領域Aを、別実施形態(a)に示されるように第1軸芯X1を中心としないカーブとなる外縁部Aaと、実施形態に示されるように第1軸芯X1を中心としないカーブとして形成される内縁部Abとで取り囲まれるように形成しても良い。
(c)歯部形成領域Aを、所定の歯幅の領域と、これより歯幅拡大する領域とを組み合わせることで歯幅が段階的に拡大するように構成しても良い。つまり、フェースギヤG1の複数の歯部5を、所定の歯幅のものと、この歯幅と異なるものとを、フェースギヤG1の外周領域に連続的に配置することになる。
(d)フェースギヤG1として外周に平歯で成る歯部を形成し、フェースギヤG1の歯部に噛合するように平歯で成る歯部を有するピニオンギヤG2とで伝動装置を構成しても良い。この構成では、フェースギヤG1の回転可能な角度が360度未満に設定され、フェースギヤG1の複数の歯部のうち高負荷が作用する領域のものの歯幅を拡大するように構成される。
 この構成の具体例として、実施形態と同様に第1軸芯X1を中心に揺動自在に支持されるフェースギヤG1の円弧部分に平歯で成る歯部5を形成することで従動ギヤG1を構成し、この歯部5に噛合するように駆動ギヤG2を構成するものが考えられる。このように構成されたものでも、高負荷が作用する状況では駆動ギヤG2を駆動回転するアクチュエータの消費エネルギーを過剰に増大させず、低負荷が作用する状況では、駆動ギヤG2を駆動回転するアクチュエータの始動トルクを低減して始動特性を向上させることも可能にする。
(e)図11、図12に示すように、従動ギヤとしてのフェースギヤG1を、第1軸芯X1を中心とする360度の領域に歯部を備えて構成する。この構成では、歯部形成領域Aの外縁部Aaが第1軸芯X1を中心とする円周に沿う円形であり、歯部形成領域Aの内縁部Abが第1軸芯X1から偏心する位置を中心とする円形に設定されている。
 特に、このフェースギヤG1でも、複数の歯部5の各々は、歯先5aと、歯面5bと、歯底5cとが歯筋曲線に沿って形成されている。また、各々の歯先5aは第1軸芯X1に直交する姿勢の仮想平面上に配置され、歯部5の歯底5cより更に第1軸芯X1に沿う方向に窪む凹状空間Sが形成される。また、内縁部Abと外縁部Aaとの歯幅方向での距離が最も狭い部位を間隔Daとしており、最も広い部位を間隔Dbとして示している。
 これにより、例えば、第1軸芯X1を中心とする360度の領域において駆動負荷が変化する対象を駆動する場合でも、大きい負荷が作用する回転角で歯幅が大きい領域にピニオンギヤG2(駆動ギヤ)を噛合させ、小さい負荷が作用する回転角で歯幅が小さい領域にピニオンギヤG2を噛合させることが可能となる。噛合関係を設定することにより、例えば、駆動対象が1回転する際に負荷が変化するものであっても摩擦ロスを抑制し、噛み合い抵抗を軽減することが可能となる。
 この別実施形態(e)に示すフェースギヤG1でも、ギヤ本体1のうち凹状空間Sを形成する底面を基準にして、歯部形成領域Aに形成される複数の歯部5の突出量(歯先5aから歯底5cまでの高さ)は等しく設定されている。また、このフェースギヤG1でも、第1軸芯X1を中心とする回転角と、歯幅との関係が一定の比率に設定されている。
 この別実施形態(e)では、フェースギヤG1が、例えば、歯部形成領域Aの内縁部Abが第1軸芯X1を中心とする円形で、歯部形成領域Aの外縁部Aaが第1軸芯X1から偏心する位置を中心とする円周に沿う円形に設定しても良い。また、外縁部Aaと内縁部Abとが円形に形成される必要はなく、例えば、楕円状や、円形と二次曲線とを組み合わせた形状に形成されるものであっても良い。
 本発明は、入力側のギヤの回転に対して、出力側のギヤが360度未満の角度の範囲内で回転するギヤ伝動装置に利用することができる。
1     ギヤ本体
5     歯部
A     歯部形成領域
G1    従動ギヤ(フェースギヤ)
G2    駆動ギヤ(ピニオンギヤ)
X1    軸芯(第1軸芯)

Claims (6)

  1.  駆動ギヤと、
     当該駆動ギヤに噛み合い、回転可能な角度が360度未満であって、回転角度に応じて駆動負荷が変化する複数の領域を有する従動ギヤと、を備え、
     前記従動ギヤの歯部のうち、前記複数の領域に含まれる歯部毎に歯幅を異ならせてあるギヤ伝動装置。
  2.  駆動ギヤと、
     当該駆動ギヤに噛み合い、回転可能な角度が360度の領域であって、回転角度に応じて駆動負荷が変化する複数の領域を有する従動ギヤと、を備え、
     前記従動ギヤの歯部のうち、前記複数の領域に含まれる歯部毎に歯幅を異ならせてあるギヤ伝動装置。
  3.  前記従動ギヤに形成される歯部の歯幅が、当該従動ギヤの回転角度に比例する関係で設定されている請求項1又は2に記載のギヤ伝動装置。
  4.  前記従動ギヤの夫々の歯部の歯筋方向の両端部のうち、外側の端部が前記従動ギヤの軸芯を中心とした円周に沿って形成されている請求項1~3のいずれか一項に記載のギヤ伝動装置。
  5.  前記従動ギヤの夫々の歯部の歯筋方向の両端部のうち、内側の端部が前記従動ギヤの軸芯を中心とした円周に沿って形成されている請求項1~3のいずれか一項に記載のギヤ伝動装置。
  6.  前記駆動ギヤがピニオンギアであり、前記従動ギヤがフェースギヤである請求項1~4のいずれか一項に記載のギヤ伝動装置。
PCT/JP2016/070534 2015-09-24 2016-07-12 ギヤ伝動装置 WO2017051591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680049843.8A CN108138911B (zh) 2015-09-24 2016-07-12 齿轮传动装置
US15/753,798 US10598253B2 (en) 2015-09-24 2016-07-12 Gear transmission device
JP2017541456A JP6521080B2 (ja) 2015-09-24 2016-07-12 ギヤ伝動装置
EP16848381.6A EP3354931B1 (en) 2015-09-24 2016-07-12 Gear transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-187232 2015-09-24
JP2015187232 2015-09-24

Publications (1)

Publication Number Publication Date
WO2017051591A1 true WO2017051591A1 (ja) 2017-03-30

Family

ID=58385989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070534 WO2017051591A1 (ja) 2015-09-24 2016-07-12 ギヤ伝動装置

Country Status (5)

Country Link
US (1) US10598253B2 (ja)
EP (1) EP3354931B1 (ja)
JP (1) JP6521080B2 (ja)
CN (1) CN108138911B (ja)
WO (1) WO2017051591A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033090A (zh) * 2017-08-16 2020-04-17 索尤若驱动有限及两合公司 齿轮、用于制造齿轮的设备和用于制造齿轮的齿部的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020101362A1 (de) 2020-01-21 2021-07-22 Kiekert Aktiengesellschaft Stellantrieb für kraftfahrzeugtechnische Anwendungen
WO2024017429A1 (de) * 2022-03-29 2024-01-25 Kiekert Aktiengesellschaft Antriebseinheit für kraftfahrzeugtechnische anwendungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282644U (ja) * 1975-12-19 1977-06-20
JPH0610652U (ja) * 1992-07-15 1994-02-10 エヌオーケー株式会社 ギ ヤ
JP2013143808A (ja) * 2012-01-10 2013-07-22 Denso Corp 電動アクチュエータ
JP2014169745A (ja) * 2013-03-04 2014-09-18 Nissan Motor Co Ltd 交差軸歯車伝動機構およびこれを用いた車輪転舵装置
JP2015068394A (ja) * 2013-09-27 2015-04-13 アイシン精機株式会社 ギア装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1230462A (ja) * 1957-10-01 1960-09-15
JPS616052U (ja) * 1984-06-19 1986-01-14 日産ディーゼル工業株式会社 自動変速機のシフト機構
JPH10186480A (ja) * 1996-12-20 1998-07-14 Fuji Photo Optical Co Ltd カメラの連動機構
US6128969A (en) * 1998-05-12 2000-10-10 Board Of Trustees Of The University Of Illinois Hybrid gear drive
CN203248657U (zh) * 2013-05-13 2013-10-23 浙江大学 一种具有斐波那契螺旋线齿形的斜齿圆柱齿轮
JP6221793B2 (ja) * 2014-02-05 2017-11-01 アイシン精機株式会社 運動変換装置およびクラッチアクチュエータ
JP6256237B2 (ja) * 2014-07-23 2018-01-10 アイシン精機株式会社 ギア装置
JP6455387B2 (ja) * 2015-10-09 2019-01-23 アイシン精機株式会社 ギヤ伝動装置
DE102017211803A1 (de) * 2017-07-11 2019-01-17 Zf Friedrichshafen Ag Hochübersetzendes Winkelgetriebe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282644U (ja) * 1975-12-19 1977-06-20
JPH0610652U (ja) * 1992-07-15 1994-02-10 エヌオーケー株式会社 ギ ヤ
JP2013143808A (ja) * 2012-01-10 2013-07-22 Denso Corp 電動アクチュエータ
JP2014169745A (ja) * 2013-03-04 2014-09-18 Nissan Motor Co Ltd 交差軸歯車伝動機構およびこれを用いた車輪転舵装置
JP2015068394A (ja) * 2013-09-27 2015-04-13 アイシン精機株式会社 ギア装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033090A (zh) * 2017-08-16 2020-04-17 索尤若驱动有限及两合公司 齿轮、用于制造齿轮的设备和用于制造齿轮的齿部的方法

Also Published As

Publication number Publication date
US10598253B2 (en) 2020-03-24
EP3354931A4 (en) 2018-12-05
JPWO2017051591A1 (ja) 2018-07-12
JP6521080B2 (ja) 2019-05-29
CN108138911B (zh) 2021-02-05
EP3354931A1 (en) 2018-08-01
EP3354931B1 (en) 2021-06-09
US20180238422A1 (en) 2018-08-23
CN108138911A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
JP5798946B2 (ja) 電動パワーステアリング装置、及びそれに用いられる軸連結器
JP5131353B2 (ja) 無段変速機
JP6521080B2 (ja) ギヤ伝動装置
JP5691793B2 (ja) シートリクライニング装置
JP6218356B2 (ja) 変速機用同期装置
JP6117991B2 (ja) トロイダル無段変速機
BRPI1001025A2 (pt) dispositivo de deslocamento adaptado para uma transmissão
JP5885031B2 (ja) 車両用動力伝達装置
CN104105905A (zh) 剪式齿轮
EP3381743A1 (en) Seat reclining device
JP5993078B1 (ja) 減速機
WO2012153541A1 (ja) 変速機のシフト操作部材
JP5885032B2 (ja) 車両用動力伝達装置
JP7399062B2 (ja) シートリクライニング装置とシートリクライニング装置の製造方法
JP6252227B2 (ja) トロイダル型無段変速機
KR20210074594A (ko) 시프트 바이 와이어 시스템용 액추에이터
WO2014034763A1 (ja) 動力伝達装置及びクラッチ装置及び駆動装置
JP2010038184A (ja) 変速機
JP6040608B2 (ja) 波動歯車装置
JP6213840B2 (ja) 車両用動力伝達装置
JP2013167344A (ja) トロイダル型無段変速機
JP4816467B2 (ja) クラッチ装置
JP6848786B2 (ja) クラッチ装置、モータ装置、及び、ワイパモータ
JP2016211708A5 (ja)
JP2017002946A (ja) 摩擦ローラ式減速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541456

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE