WO2017049964A1 - 无筛网式智能纳米研磨系统 - Google Patents

无筛网式智能纳米研磨系统 Download PDF

Info

Publication number
WO2017049964A1
WO2017049964A1 PCT/CN2016/085436 CN2016085436W WO2017049964A1 WO 2017049964 A1 WO2017049964 A1 WO 2017049964A1 CN 2016085436 W CN2016085436 W CN 2016085436W WO 2017049964 A1 WO2017049964 A1 WO 2017049964A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
rotor
hollow shaft
screenless
intelligent nano
Prior art date
Application number
PCT/CN2016/085436
Other languages
English (en)
French (fr)
Inventor
雷立猛
Original Assignee
广东派勒智能纳米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东派勒智能纳米科技股份有限公司 filed Critical 广东派勒智能纳米科技股份有限公司
Publication of WO2017049964A1 publication Critical patent/WO2017049964A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/02Disintegrating by mills having rotary beater elements ; Hammer mills with horizontal rotor shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating

Definitions

  • the invention relates to the field of solid-liquid separation technology in the grinding of advanced materials and wet nanotechnology, in particular to a screenless intelligent nano-grinding system for wet nano-grinding using microspheres.
  • a large number of separation device technologies are used in the powder industry such as pharmaceuticals, inkjet inks, chip polishing fluids, cell disruption, cosmetics, inkjet inks, ceramic inkjets, metal nanomaterials, plastic materials, special nano-aviation materials, and ceramic materials.
  • the separation device is a device for the separation of gas solids or liquid solids or gas liquid systems.
  • the working principle is that the rotary motion caused by the tangential introduction of the airflow separates the solid particles or droplets having a large centrifugal force from the outer wall surface.
  • the performance of the separation devices in these industries in China is generally low, resulting in inefficient and high consumption.
  • circulating fluidized bed boilers in coal-fired power plants are widely used in coal-fired power plants in China, and dynamics in dynamic classification wheel separation devices and wet horizontal sand mills in dry fluidized bed airflow mills.
  • the separation device of the classifying wheel plays a key role.
  • separation device devices operating at high temperatures, high pressures, high rotational speeds and high flow rates present significant disadvantages to the stability and possible operation of the separation devices.
  • the traditional separation technology cannot solve the problem of secondary enthalpy of the powder at all, and the separation efficiency is low.
  • the performance of the separation device affects the efficiency of the equipment and the true nanometer fineness of the product, affecting the wear and dust removal of the downstream equipment, energy conservation and environmental protection. Therefore, improving the performance of the separation device has become an urgent problem to be solved.
  • Pellet's PHN Honor 150, MORPH KDP Nova ⁇ Nano Sanding The barriers of the machine broke through the boundary, completely breaking the monopoly pattern of foreign manufacturers on Chinese technology, filling in the technical blank of the domestic super large nano sand mill, and verifying the technical superiority over imported products.
  • an object of the present invention is to provide a screenless intelligent nano-grinding system which has high separation efficiency, is stable, and can use a small grinding medium.
  • a screenless intelligent nano-grinding system comprising a horizontally arranged grinding cavity and a grinding rotor disposed in the grinding cavity, one end of a rotating discharge hollow shaft extending into the grinding cavity
  • the rotating hollow shaft is mounted with a rotating separating device driven by the rotating shaft.
  • the material in the grinding chamber is impacted by the grinding rotor and the grinding medium and flows to the outer periphery of the rotating separating device, and is ground under the centrifugal force of the rotating separating device.
  • the medium and the larger particles after grinding are turned to the outside of the rotary separation device.
  • the smaller particles of the material enter the rotary separation device under the action of the feed pressure against the centrifugal force, and then flow from the rotary separation device into the discharge hollow shaft, and then pass through.
  • the rotary joint flows into the vertically set sedimentation filtration relay vessel, and finally the overflowed finished slurry product is collected from the sedimentation filtration relay container by the principle of fluid dynamics specific gravity.
  • a rotating spindle extends into the other end of the grinding chamber, and the grinding rotor is mounted on the spindle and is rotated by the spindle.
  • the grinding rotor is a plurality of grinding discs which are mounted on the main shaft on the main shaft at intervals, and a dynamic classifying wheel hollow rotor DCA (Dynamic Classifier Accelerator) is mounted at the end of the main shaft extending section, and the rotary separating device Extend into the hollow wheel of the classifying wheel.
  • DCA Dynamic Classifier Accelerator
  • the grinding rotor is a multi-channel dynamic grading wheel hollow grinding rotor, and the grinding rotor main body peripheral wall is provided with a plurality of energy-saving high-strength rods, and the rotating separating device extends into the hollow grinding rotor.
  • the rotary separation device comprises a separation cylinder, a cavity is formed inside the cylinder, the cylinder is closed at both axial ends, and the discharge hollow shaft is axially inserted into the cavity of the cylinder, and the cavity is out
  • the inner cavity of the hollow shaft is connected, and a vortex groove is opened inward from the outer wall of the cylinder, and the vortex groove communicates with the cavity of the cylinder.
  • the projection of the vortex groove in a radial plane is helical.
  • one side of the column body is provided with a set of end caps disposed on the hollow shaft of the hollow discharge, and the peripheral wall of the end cap extends a flange near a side of the column body, and the flange is tightly sleeved on the outer peripheral wall of the column. .
  • the discharge hollow shaft is connected to the feed pipe through a rotary joint, and the feed pipe is inserted into the container from the top end of the settling filter transfer container.
  • the upper side wall of the sedimentation filtration relay container is provided with a product outlet, and the lower part is further provided with a discharge opening, a cleaning port and the like.
  • a control valve is installed at the bottom end of the settling filter transfer container for relieving pressure and discharging the grinding medium.
  • the grinding system used in the present invention completely abandons the structure of the existing screen type separating device, and the separating device generates a strong centrifugal force at a high speed rotation to throw the grinding medium, that is, the grinding beads and the larger particles.
  • separating the coarse and fine materials from the grinding medium to prevent the beads from entering the discharge hollow shaft from the vortex groove; and the fine material meeting the particle size requirement overcomes the centrifugal force and enters the discharge hollow shaft from the vortex groove under the action of the feed pressure to realize one separation;
  • the smaller granules flowing out of the discharge hollow shaft are conveyed to the vertical sedimentation filtration relay vessel, and during the settlement of the sedimentation filtration intermediate vessel,
  • the principle of specific gravity of fluid mechanics and the principle of solid-liquid separation, the grinding medium, that is, the grinding beads, is large in size and the solid particles are precipitated at the bottom of the transfer container, and the liquid slurry of smaller particles overflows from the transfer container to the upper part of the side wall of the
  • Figure 1 is a schematic view showing the structure of a preferred embodiment of the present invention.
  • Figure 2 is a schematic view showing the structure of another preferred mode of the present invention.
  • Figure 3 is a schematic illustration of a rotary separation apparatus of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • the following drawings detail the screenless intelligent nano-grinding system (PHN Honor) of the present invention, which comprises a horizontally arranged grinding chamber 1 and a grinding rotor 2 disposed in the grinding chamber, and a rotating discharge hollow shaft 3 is extended at one end.
  • the rotating hollow shaft is mounted with a rotating separating device 4 driven by the rotating shaft.
  • the material in the grinding chamber is impacted by the grinding rotor and the grinding medium and flows to the periphery of the rotating separating device, and the centrifugal force in the rotating separating device Under the action, the grinding medium and the larger particles of the ground material are turned to the outside of the rotary separation device.
  • the smaller particles of the material enter the rotary separation device under the action of the feed pressure, and then flow into the discharge hollow from the rotary separation device.
  • the shaft is then passed through a double-face mechanically sealed rotary joint 5 into a vertically disposed settling filtration intermediate vessel 6, and finally the overflowed finished slurry product is collected from the settling filter transfer vessel by means of the fluid dynamics material specific gravity principle. It can be seen that the present invention realizes one separation by the rotary separation device, and then performs secondary separation by the sedimentation filtration transfer container, thereby obtaining a smaller particle product.
  • a rotating main shaft 7 extends into the other end of the grinding chamber, and the grinding rotor is mounted on the main shaft and is rotated by the main shaft.
  • the separating device and the grinding rotor are distributed on both ends of the grinding chamber. This allows the material to travel longer in the grinding chamber for adequate grinding.
  • the grinding rotor may be a plurality of the grinding discs which are installed on the main shaft at intervals.
  • the grinding disc is an abrasive element, and may be a turbine rotor accelerator using a DSE-Accelerator design element, and the grinding disc is reasonably ground.
  • the cavity eccentric disc design is the result of a large number of experimental data, and is arranged in a certain order of fluid mechanics, so that the entire grinding chamber is radially stressed, and the large-area eccentric disc generates high-density grinding energy, and the grinding medium generates uniform energy on the material. balance.
  • the structure of the grinding element can be various, such as a triple eccentric shape, a turbine disk, an elliptical shape or a circular shape; and a dynamic classifier hollow rotor DCA (Dynamic Classifier Accelerator) 21 is installed at the end of the spindle extending section.
  • the rotary separating device extends into the hollow rotor of the classifying wheel to realize disc grinding.
  • the grinding is converted into a multi-channel dynamic grading wheel hollow grinding rotor disposed in the grinding chamber, and the peripheral wall of the rotor body is designed with several Zeta-ECM (Zeta-EConoMize) energy-saving high strength.
  • the rod is inserted into the rod-type hollow grinding rotor to realize rod-type grinding; this can greatly improve the applicability of the grinding system.
  • the rotary separation device 4 of the present invention comprises a separation cylinder 41 disposed in a stepped wheel hollow rotor or a rod pin type hollow grinding rotor, and a cavity 411 is formed inside the cylinder body, and the cylinder body is axially The two ends are closed, and the discharge hollow shaft 42 is axially inserted into the cavity, and the cavity communicates with the inner cavity 421 of the discharge hollow shaft; the cavity can pass through a plurality of discharge holes 422 disposed on the discharge hollow shaft and The inner cavity of the discharge hollow shaft is connected; a vortex groove 412 is opened inward from the outer wall of the column, and the vortex groove communicates with the cavity.
  • the material When the material is ground in the grinding zone of the grinding chamber by the grinding medium, it accumulates in the separation zone under the pressure of the grinding chamber, and the material in the separation zone enters the cavity of the cylinder from the vortex groove, and then enters the cavity through the discharge hole.
  • the inner cavity of the hollow shaft is discharged, thereby realizing dynamic separation shaft discharge, improving separation efficiency and product quality.
  • the hollow shaft of the discharge is driven by the driving device to drive the separation cylinder to rotate at a high speed.
  • the liquid slurry particles distributed from the inside to the outside of the separation cylinder are small to large, and the smaller liquid is located inside. The slurry flows from the cavity into the discharge hollow shaft against centrifugal force.
  • the separating device of the invention can use a relatively small grinding medium, is not affected by the bead diameter of the bead and the size of the filter gap, and can achieve the purpose of large discharge flow rate and high production efficiency; therefore, the use of the point
  • the off-device device can again fully utilize the small-diameter grinding medium that is eliminated after the traditional sand mill is used, thereby avoiding unnecessary waste and achieving the purpose of energy saving and environmental protection.
  • the projection of the vortex groove on the radial plane is in the form of a spiral or a bell mouth, which can reduce the separation energy consumption;
  • the delivery pipe is provided with a flow control valve for controlling the flow rate of the discharge;
  • a tube is inserted into the container from the top of the settling filter transfer container.
  • the spiral vortex groove makes the material have no pulsation in the vortex groove, and the separation is continuous and stable; at the same time, the rotating vortex groove forms a vortex vortex, which can generate strong centrifugal force, so that the grinding beads and the coarser particles are The material is thrown outwards and cannot enter the vortex.
  • the spiral direction of the vortex groove should be consistent with the rotation direction of the cylinder, so as to ensure the separation efficiency and achieve the purpose of energy saving.
  • the discharge of the invention is smooth and unobstructed, preventing the viscous material from staying in the cavity for a long time and causing problems such as over-temperature, discoloration, emulsification, etc., and the invention especially relates to heat-sensitive materials, nano-scale materials and tablets.
  • the grinding and dispersing effect of the powdery material and the acicular powder material is better.
  • the length of the vortex groove extending in the axial direction is equal to the length of the cavity in the axial direction, and the length of the vortex groove extending axially is as long as possible, which can make most of the axis of the cylinder There are gaps in the direction to speed up the discharge speed; wherein the circumferential width of the vortex groove can be determined according to the quality requirements of the product and the range of the rotation speed, and the spiral groove length design can be designed according to the mechanical properties of the fluid and the separation efficiency.
  • the cylinder 41 of the separating device of the present invention comprises two semi-columns, and the two semi-cylinders can be connected by bolts, and can also be connected by snapping or other connection; the two sides of the two cylinders are respectively provided with a semi-vortex
  • the trough and the two halves of the vortex groove constitute the vortex groove; that is to say, the vortex groove can be divided into two symmetrical halves, and each half cylinder is provided with a half vortex groove, but the two half cylinders are closed on the back side to prevent the cavity from being inside.
  • the material flows back to the grinding bucket.
  • the column body of the invention adopts a split structure, which is not only convenient for installation and disassembly, but also convenient for cleaning and maintenance.
  • the back side of the half cylinder is axially provided with a stepped hole 413, and the back side of the other half of the cylinder is axially opened with a through hole 414, and the discharge hollow shaft passes through the through hole in turn.
  • a cavity whose end abuts against the stepped surface of the stepped hole, thereby improving the mounting performance of the discharge hollow shaft and the cylinder; the end of the discharge hollow shaft is closed, and the screw 43 screwed into the stepped hole The end is fastened to the back side of the half cylinder; making the transmission smoother.
  • a set of end caps 44 disposed on the hollow shaft of the discharge, the peripheral wall of the end cap extending a flange 441 on a side close to the cylinder, the flange being tightly sleeved on the back side of the other half cylinder
  • the outer peripheral wall simultaneously abuts the side surface of the end cap against the end surface of the cylinder, so that not only the connection of the cylinder, the end cover and the discharge hollow shaft is more stable, but also the cylinder cavity is more sealed; during the implementation, the hollow passage
  • the key 45 drives the end cover and the cylinder to rotate, so that the transmission of the two semi-cylinders is more balanced and stable.
  • the cylinder, the end cover, the gland and the like of the invention can be made of ceramic materials, and the processing and the process are simple.
  • the discharge hollow shaft 3 is connected with a feed pipe 8 through a rotary joint 5, and the feed pipe is inserted into the sedimentation filter transfer container from the top end of the sedimentation filter transfer container 6 to make the material flow from top to bottom;
  • the large particle material settles at the bottom of the barrel, while the smaller particle material floats on the upper part of the sedimentation filtration intermediate container and can flow out from the product outlet 61 of the upper side wall, thereby achieving secondary separation.
  • the system is ground, for example, when the machine is turned on, a part of the larger particles and the beads pass through the vortex groove of the rotary separation device to enter the discharge hollow shaft, and the larger particle material or the bead is settled by the sedimentation filtration transfer container. At the bottom, it does not affect the quality of the product.
  • the invention also installs a control valve 62 at the bottom end of the sedimentation filtration intermediate container, which can discharge larger particles of material and beads which are settled at the bottom for convenient use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Crushing And Grinding (AREA)
  • Centrifugal Separators (AREA)

Abstract

一种无筛网式纳米研磨系统,该系统包括研磨腔(1)和研磨转子(2),出料空心轴(3)一端伸入研磨腔(1),出料空心轴(3)上安装旋转分离装置(4),研磨腔(1)内的物料通过研磨转子(2)研磨后流向旋转分离装置(4)周围,在旋转分离装置(4)的离心力作用下,研磨腔内较大颗粒的物料及磨珠甩向旋转分离装置(4)外,较小颗粒的物料在进料压力作用下克服离心力进入旋转分离装置(4)、出料空心轴(3)、沉降过滤中转容器(6)。本系统的分离装置旋转时产生强大的离心力把研磨介质即磨珠及较大颗粒的物料向外抛甩;而细小颗粒的物料在进料压力作用下克服离心力从涡槽进入出料空心轴、沉降过滤中转容器,从而得到更小颗粒的产品。

Description

无筛网式智能纳米研磨系统 技术领域
本发明涉及先进材料及湿法纳米技术研磨时的固液分离技术领域,特别涉及一种采用微型球体进行湿法纳米研磨的无筛网式智能纳米研磨系统。
背景技术
我国的燃煤发电、水泥、粉末冶金、石油天然气、化工、食品、钛酸锂、磷酸铁锂、石墨稀、纳米硅、染料、油漆、油墨、阻燃剂、光电业TFTLCD﹑Jet ink﹑磁性材料﹑保健品﹑生物制药和细胞破碎﹑氧化物﹑电子产业﹑光电产业﹑医药生化产业﹑化纤产业﹑建材产业﹑金属产业﹑肥皂、皮革、电子陶瓷、导电浆料、胶印油墨、纺织品、生物制药、喷绘油墨、芯片抛光液、细胞破碎、化妆品、喷墨墨水、陶瓷喷墨、金属纳米材料、塑料材料、特种纳米航空材料、陶瓷材料等粉体行业都采用了大量的分离装置技术。分离装置是用于气固体系或者液固体或者气液系的分离的一种装置。工作原理为靠气流切向引入造成的旋转运动,使具有较大离心力的固体颗粒或液滴甩向外壁面分开。
然而,由于对分离装置的内部流动规律没有正确的认识,使得我国上述这些行业的分离装置性能普遍低下,造成了低效、高耗的局面。例如燃煤电厂中的循环流化床锅炉,在我国燃煤电厂中应用得非常普遍,而在干法之流化床气流磨中动态分级轮之分离装置和湿法卧式砂磨机中动态分级轮之分离装置起着关键性的作用。尤其是在高温、高压、高转速和高流量下运行的分离装置装置,这给分离装置的稳定和可能运行带来极大的不利因素。此外,传统分离技术根本不能解决粉体的二次挟带等问题,使得分离效率低下。分离装置的性能好坏影响到设备效率和产品的真正的纳米颗粒细度,影响到下游设备的磨损、除尘和节能环保等。因此,提升分离装置装置的性能成为了亟待解决的问题。派勒公司的PHN Honor 150、MORPH KDP新星·纳米砂磨 机的壁垒破界,彻底打破了国外厂家对中国技术的垄断格局,填写了国内超大型纳米砂磨机的技术空白,经验证技术性超越进口产品。如今该研磨设备已经成功应用于新能源电池(北方奥钛、红四方、力神电池)、先进材料(冠豪高新、顺络电子、硅宝科技、嘉必优生物)、陶瓷喷墨(道氏技术、国瓷材料)等行业!派勒公司的Lei.iMO Smart gM 3000升有色金属矿超大型容量砂磨机《雷·智能易磨》的研发销售,将会成为未来三年企业转折的重要拐点,这个产品将会使得黄金、铂金、铜矿等有色金属矿的回收率提高十几个点,目前该种技术、设备被德国、日本、澳大利亚垄断禁止向中国出口。如果未来三年能够销售几十台,营利过亿已经是最低目标。开启中国智能易磨全新概念。公司从营销模式突破,打破单机销售思维,打造全球纳米研磨技术整体工作站方案集成供应商。
发明内容
针对上述技术问题,本发明的目的在于提供一种分离效率高、稳定且可以用较小研磨介质的无筛网式智能纳米研磨系统。
本发明解决上述技术问题所采用的技术方案为:无筛网式智能纳米研磨系统,包括水平设置的研磨腔和设置在研磨腔内的研磨转子,一旋转的出料空心轴一端伸入研磨腔,所述出料空心轴上安装有由其带动转动的旋转分离装置,研磨腔内的物料通过研磨转子和研磨介质撞击研磨后流向旋转分离装置外周围,在旋转分离装置的离心力作用下,研磨介质及研磨后的较大颗粒的物料甩向旋转分离装置外,研磨后较小颗粒的物料在进料压力作用下克服离心力进入旋转分离装置,再从旋转分离装置流入出料空心轴,然后通过旋转接头流入竖直设置的沉降过滤中转容器内,最后借助流体力学之物料比重原理,从该沉降过滤中转容器收集溢出的成品浆料产品。
作为优选,一旋转的主轴伸入研磨腔另一端,所述研磨转子安装在该主轴上,且由该主轴带动转动。
作为优选,所述研磨转子为数个间隔安装在主轴上的所述主轴上的磨盘,所述主轴伸入段的末端安装有动态分级轮空心转子DCA(Dynamic Classifier Accelerator),所述旋转分离装置装置伸入该分级轮空心转子内。
作为优选,所述研磨转子为多通道动态分级轮空心研磨转子,该研磨转子主体周壁设有数个节能性高强度棒销,所述旋转分离装置伸入该空心研磨转子内。
作为优选,所述旋转分离装置包括分离柱体,柱体内部形成有空腔,该柱体轴向两端封闭,所述出料空心轴轴向插入柱体的空腔,该空腔与出料空心轴的内腔连通,从柱体外壁向内开设有涡槽,该涡槽与所述柱体的空腔连通。
作为优选,所述涡槽在径向平面上的投影呈螺旋状。
作为优选,所述柱体一侧设置有一套设在所述空心出料空心轴上的端盖,该端盖周壁在靠近柱体一侧延伸有凸缘,该凸缘紧套于柱体外周壁。
作为优选,所述出料空心轴通过旋转接头连接有输料管,该输料管从所述沉降过滤中转容器顶端插入该容器内。
作为优选,所述沉降过滤中转容器上部侧壁开设有产品出口,下部还开有排料口和清洗口等。
作为优选,所述沉降过滤中转容器底端安装有控制阀,用于泄压和排放研磨介质。
从以上技术方案可知,本发明采用的研磨系统完全摒弃了现有筛网式分离装置的结构,分离装置在高速旋转时产生强大的离心力把研磨介质即磨珠及较大颗粒的物料向外抛甩,使粗细物料和研磨介质分离,避免磨珠从涡槽进入出料空心轴;而细小符合粒度要求的物料在进料压力作用下克服离心力从涡槽进入出料空心轴,实现一次分离;从出料空心轴流出的较小颗粒的物料输送至竖直的沉降过滤中转容器,在沉降过滤中转容器沉降过程中,通过 流体力学之比重原理及固液分离原理,研磨介质即磨珠由于比重大且为固体颗粒被沉淀于中转容器底部,而更小颗粒的液体浆料从中转容器内溢出流向该容器侧壁上部的产品出口,实现二次分离,从而得到更小颗粒的液体浆料产品。本研磨系统不仅实现了高产量,而且在切割点的精度上保持了卓越的性能。
附图说明
图1是本发明一种优选方式的结构示意图。
图2是本发明另一种优选方式的结构示意图。
图3是本发明中旋转分离装置的示意图。
图4是图3中A-A剖视图。
具体实施方式
下面附图详细介绍本发明的无筛网式智能纳米研磨系统(PHN Honor),其包括水平设置的研磨腔1和设置在研磨腔内的研磨转子2,一旋转的出料空心轴3一端伸入研磨腔,所述出料空心轴上安装有由其带动转动的旋转分离装置4,研磨腔内的物料通过研磨转子和研磨介质撞击研磨后流向旋转分离装置外周围,在旋转分离装置的离心力作用下,研磨介质及研磨后的较大颗粒的物料甩向旋转分离装置外,研磨后较小颗粒的物料在进料压力作用下克服离心力进入旋转分离装置,再从旋转分离装置流入出料空心轴,然后通过双端面机械密封式旋转接头5流入竖直设置的沉降过滤中转容器6内,最后借助流体力学之物料策略比重原理,从该沉降过滤中转容器收集溢出的成品浆料产品。可见,本发明通过旋转分离装置实现一次分离,再通过沉降过滤中转容器进行二次分离,可获得更小颗粒的产品。
在本发明中,一旋转的主轴7伸入研磨腔另一端,所述研磨转子安装在该主轴上,且由该主轴带动转动,这种分离装置与研磨转子分布在研磨腔的两端的设计,使得物料在研磨腔内行程更长,以便充分研磨。
作为一种优选方式,如图1所示,研磨转子可为数个间隔安装在主轴上的所述的磨盘,磨盘是研磨元件,可为采用DSE-Accelerator设计元素的涡轮转子加速器,磨盘合理的研磨腔偏心盘式设计,是大量实验数据的结果,并按一定流体力学顺序排列,使整个研磨腔体径向受力,大面积偏心盘产生高密度研磨能量,研磨介质在物料上产生均匀的能量平衡。研磨元件的结构形式可为多种,如三偏心形、涡轮盘、椭圆形或圆形等;在所述主轴伸入段的末端安装有动态分级轮空心转子DCA(Dynamic Classifier Accelerator)21,所述旋转分离装置伸入该分级轮空心转子内,实现盘式研磨。
作为另一种优选方式,如图2所示,研磨转为设置在研磨腔内的多通道动态分级轮空心研磨转子,该转子主体周壁设计数个Zeta-ECM(Zeta-EConoMize)节能性高强度棒销,所述旋转分离装置伸入该棒销式空心研磨转子内,实现棒销式研磨;这样可大大提高本研磨系统的适用性。
如图3、图4所示,本发明的旋转分离装置4包括设置在分级轮空心转子或棒销式空心研磨转子内的分离柱体41,柱体内部形成有空腔411,柱体轴向两端封闭,出料空心轴42轴向插入所述空腔,该空腔与出料空心轴的内腔421连通;空腔可通过设置在出料空心轴上的数个出料孔422与出料空心轴的内腔连通;从柱体外壁向内开设有一涡槽412,该涡槽与所述空腔连通。当物料在研磨腔的研磨区内经研磨介质研磨后,在研磨腔内压力的作用下聚集在分离区,分离区的物料从涡槽进入柱体的空腔,然后从空腔通过出料孔进入出料空心轴内腔,从而实现动态分离轴出料,提高分离效率和产品质量。在工作过程中,出料空心轴在驱动装置的驱动下,带动分离柱体高速转动,在分离柱体周围由内到外分布的液体浆料颗粒由小至大,位于内侧的较小的液体浆料克服离心力从空腔流入出料空心轴。
本发明的分离装置可以使用比较小的研磨介质,不受磨珠珠径及滤网间隙大小的影响,可以达到出料流量大、生产效率高的目的;因此,采用本分 离装置装置可再次充分使用传统砂磨机使用后淘汰的小直径的研磨介质,避免了不必要的浪费,达到了节能环保的目的。本发明中,所述涡槽在径向平面上的投影呈螺旋状或喇叭口形式,这样可降低分离能耗;该输料管带有安装流量控制阀,可控制出料的流量;输料管从所述沉降过滤中转容器顶端插入该容器内。具体来说,螺旋状的涡槽使得物料在涡槽内没有脉动性,且分离连续、平稳;同时,旋转的涡槽形成漩涡涡式,可产生强大的离心力,使磨珠及较粗颗粒的物料向外抛甩而不能进入涡槽。在实施过程中,涡槽螺旋方向应与柱体旋转方向一致,这样才能保证分离效率,达到节能的目的。在动态离心的作用下,本发明的出料通畅无阻,防止粘稠物料长时间滞留在腔体内研磨而出现超温、变色、乳化等问题,本发明尤其对热敏材料、纳米级材料、片状粉体材料、针状粉体材料的研磨和分散效果更佳。
在实施过程中,涡槽在轴向方向延伸的长度与与所述空腔在轴向方向的长度相等,且涡槽轴向延伸的长度尽可能长,这可使得柱体的绝大部分轴向方向均具有缝隙,以加快出料速度;其中,涡槽周向宽度可根据产品的质量要求及旋转速度范围确定,而涡槽螺旋长度设计可根据流体的力学性能、分离效率等设计。在本发明分离装置的柱体41包括两半柱体,两个半柱体之间可采用螺栓连接,也可采用卡接或其他的连接方式;两半柱体相邻侧均开设有半涡槽,两半涡槽组成所述涡槽;也就是说涡槽可分为对称的两半,每一半柱体上设置一半涡槽,但两半柱体背向侧均封闭,防止空腔内的物料流回研磨桶。本发明的柱体采用分体式结构,不仅方便安装拆卸,而且方便清洗、保养。在实施过程中,一半柱体的背向侧沿轴向开设有台阶孔413,另一半柱体的背向侧沿轴向开设有通孔414,所述出料空心轴依次穿过通孔、空腔,其端部抵靠在所述台阶孔的台阶面上,这样提高出料空心轴与柱体的安装性能;出料空心轴所述端部封闭,钉入台阶孔的螺钉43将该端部与所述一半柱体的背向侧紧固;使得传动更加平稳。在所述另一半柱体的背向侧 设置有一套设在所述出料空心轴上的端盖44,该端盖周壁在靠近柱体一侧延伸有凸缘441,该凸缘紧套于所述另一半柱体的背向侧的外周壁,同时将端盖的侧面抵紧柱体的端面,这样不仅使得柱体、端盖、出料空心轴连接更加稳固,而且使柱体空腔更加密封;在实施过程中所述空心通过键45带动所述端盖和柱体转动,保证两个半柱体的传动更加平衡、平稳。本发明的柱体、端盖、压盖等可采用陶瓷材料制成,加工方面、工艺简单。
在实施过程中,出料空心轴3通过旋转接头5连接有输料管8,输料管从沉降过滤中转容器6顶端插入沉降过滤中转容器内,使物料从上往下流;在沉降过滤中转容器内,由于重力的作用,大颗粒的物料沉降在桶底,而更小颗粒的物料则浮在沉降过滤中转容器上部,并可从上部侧壁的产品出口61流出,从而实现二次分离。采用本系统研磨时,如在开机时,一部分较大颗粒的物料和磨珠通过旋转分离装置的涡槽进入出料空心轴,则经过沉降过滤中转容器可将较大颗粒的物料或磨珠沉降在底部,不会影响产品的质量。本发明还在沉降过滤中转容器底端安装控制阀62,可将沉降在底部的较大颗粒的物料和磨珠排出,方便下次使用。
上述实施方式仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明精神和范围的情况下,还可以作出各种变化和变型,因此所有等同的技术方案也应属于本发明的范畴。

Claims (10)

  1. 无筛网式智能纳米研磨系统,包括水平设置的研磨腔和设置在研磨腔内的研磨转子,一旋转的出料空心轴一端伸入研磨腔,其特征在于:所述出料空心轴上安装有由其带动转动的旋转分离装置,研磨腔内的物料通过研磨转子和研磨介质撞击研磨后流向旋转分离装置外周围,在旋转分离装置的离心力作用下,研磨介质及研磨后的较大颗粒的物料甩向旋转分离装置外,研磨后的较小颗粒的物料在进料压力作用下克服离心力进入旋转分离装置,再从旋转分离装置流入出料空心轴,然后通过旋转接头流入竖直设置的沉降过滤中转容器内,最后从该沉降过滤中转容器收集溢出的成品浆料产品。
  2. 根据权利要求1所述无筛网式智能纳米研磨系统,其特征在于:一旋转的主轴伸入研磨腔另一端,所述研磨转子安装在该主轴上,且由该主轴带动转动。
  3. 根据权利要求2所述无筛网式智能纳米研磨系统,其特征在于:所述研磨转子为数个间隔安装在主轴上的磨盘,在所述主轴伸入段的末端安装有分级轮空心转子,所述旋转分离装置伸入该分级轮空心转子内。
  4. 根据权利要求2所述无筛网式智能纳米研磨系统,其特征在于:所述研磨转子为多通道动态分级轮空心研磨转子,该研磨转子主体周壁设有数个节能性高强度棒销,所述旋转分离装置伸入该空心研磨转子内。
  5. 根据权利要求1至4中任意一项所述无筛网式智能纳米研磨系统,其特征在于:所述旋转分离装置包括分离柱体,柱体内部形成有空腔,该柱体轴向两端封闭,所述出料空心轴轴向插入柱体的空腔,该空腔与出料空心轴的内腔连通,从柱体外壁向内开设有涡槽,该涡槽与所述柱体的空腔连通。
  6. 根据权利要求5所述无筛网式智能纳米研磨系统,其特征在于:所述涡槽在径向平面上的投影呈螺旋状。
  7. 根据权利要求5所述无筛网式智能纳米研磨系统,其特征在于:所述柱体一侧设置有一套设在所述出料空心轴上的端盖,该端盖周壁在靠近柱体一侧延伸有凸缘,该凸缘紧套于柱体外周壁。
  8. 根据权利要求1所述无筛网式智能纳米研磨系统,其特征在于:所述 出料空心轴通过双端面机械密封式旋转接头连接有输料管,该输料管从所述沉降过滤中转容器顶端插入该容器内。
  9. 根据权利要求8所述无筛网式智能纳米研磨系统,其特征在于:所述沉降过滤中转容器侧壁开设有产品出口。
  10. 根据权利要求9所述无筛网式智能纳米研磨系统,其特征在于:所述沉降过滤中转容器底端安装有控制阀。
PCT/CN2016/085436 2015-09-22 2016-06-12 无筛网式智能纳米研磨系统 WO2017049964A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510608433.XA CN105396650A (zh) 2015-09-22 2015-09-22 无筛网式智能纳米研磨系统
CN201510608433.X 2015-09-22

Publications (1)

Publication Number Publication Date
WO2017049964A1 true WO2017049964A1 (zh) 2017-03-30

Family

ID=55462598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085436 WO2017049964A1 (zh) 2015-09-22 2016-06-12 无筛网式智能纳米研磨系统

Country Status (2)

Country Link
CN (1) CN105396650A (zh)
WO (1) WO2017049964A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617851A (zh) * 2019-12-25 2020-09-04 博亿(深圳)工业科技有限公司 应用于湿法研磨的分离装置
CN112742552A (zh) * 2020-12-22 2021-05-04 安徽儒特实业有限公司 一种用于煤粉精细研磨设备
CN114029108A (zh) * 2021-10-28 2022-02-11 陈方应 一种中药制备研磨装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105396650A (zh) * 2015-09-22 2016-03-16 广州派勒机械设备有限公司 无筛网式智能纳米研磨系统
CN107824321B (zh) * 2017-12-08 2024-04-16 韶关市超微磨机设备有限公司 一种用于胶体磨的液体分级器
CN108283970A (zh) * 2018-03-30 2018-07-17 同济大学 一种离心分离装置及珠磨机
CN110193408A (zh) * 2019-05-21 2019-09-03 东莞市琅菱机械有限公司 一种立式离心分离出料研磨系统
CN112958227A (zh) * 2021-03-14 2021-06-15 上海琥崧智能科技股份有限公司 一种用于研磨机离心研磨装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028892A (ja) * 1996-07-18 1998-02-03 Tokin Corp 分散粉砕機
CN101385989A (zh) * 2007-09-13 2009-03-18 耐驰粉磨技术有限责任公司 搅拌式球磨机
RU2368422C2 (ru) * 2006-11-06 2009-09-27 Олег Акимович Свистельник Двухситная бутара барабанной мельницы
CN101757966A (zh) * 2010-01-11 2010-06-30 雷立猛 纳米级大流量棒销式砂磨机
CN102872936A (zh) * 2012-09-26 2013-01-16 广州派勒机械设备有限公司 纳米级动态分离式研磨机
CN203030337U (zh) * 2012-12-26 2013-07-03 广州派勒机械设备有限公司 一种动态分离出料式研磨机
CN103657802A (zh) * 2013-12-31 2014-03-26 占天义 搅拌式研磨装置
CN203972044U (zh) * 2013-12-19 2014-12-03 占天义 搅拌式研磨分离器及研磨装置
CN204582694U (zh) * 2015-02-06 2015-08-26 深圳市长园嘉彩环境材料有限公司 一种自沉降去渣过滤器
CN204996494U (zh) * 2015-09-22 2016-01-27 广州派勒机械设备有限公司 无筛网式智能纳米研磨系统
CN105396650A (zh) * 2015-09-22 2016-03-16 广州派勒机械设备有限公司 无筛网式智能纳米研磨系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201596542U (zh) * 2009-12-29 2010-10-06 雷立猛 盘式砂磨机的动态离心出料系统
CN201880571U (zh) * 2010-10-26 2011-06-29 雷立猛 砂磨机双端面机械密封冷却系统
KR200470180Y1 (ko) * 2011-12-15 2013-12-03 최병석 필터부의 마모가 방지되는 볼밀분산장치
CN204134695U (zh) * 2014-08-15 2015-02-04 广州派勒机械设备有限公司 全尺寸动态分离纳米砂磨机
CN204134696U (zh) * 2014-08-15 2015-02-04 广州派勒机械设备有限公司 高性能超级流量纳米砂磨机
CN204503227U (zh) * 2015-02-28 2015-07-29 寻乌县恒源科技开发有限公司 循环研磨的球磨机
CN204638288U (zh) * 2015-03-03 2015-09-16 德国派勒精研磨技术有限公司 卧式砂磨机
CN104741176B (zh) * 2015-03-03 2018-04-27 广东派勒智能纳米科技股份有限公司 棒销式纳米砂磨机
CN104888900B (zh) * 2015-06-10 2019-11-01 博亿(深圳)工业科技有限公司 新型分散研磨装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028892A (ja) * 1996-07-18 1998-02-03 Tokin Corp 分散粉砕機
RU2368422C2 (ru) * 2006-11-06 2009-09-27 Олег Акимович Свистельник Двухситная бутара барабанной мельницы
CN101385989A (zh) * 2007-09-13 2009-03-18 耐驰粉磨技术有限责任公司 搅拌式球磨机
CN101757966A (zh) * 2010-01-11 2010-06-30 雷立猛 纳米级大流量棒销式砂磨机
CN102872936A (zh) * 2012-09-26 2013-01-16 广州派勒机械设备有限公司 纳米级动态分离式研磨机
CN203030337U (zh) * 2012-12-26 2013-07-03 广州派勒机械设备有限公司 一种动态分离出料式研磨机
CN203972044U (zh) * 2013-12-19 2014-12-03 占天义 搅拌式研磨分离器及研磨装置
CN103657802A (zh) * 2013-12-31 2014-03-26 占天义 搅拌式研磨装置
CN204582694U (zh) * 2015-02-06 2015-08-26 深圳市长园嘉彩环境材料有限公司 一种自沉降去渣过滤器
CN204996494U (zh) * 2015-09-22 2016-01-27 广州派勒机械设备有限公司 无筛网式智能纳米研磨系统
CN105396650A (zh) * 2015-09-22 2016-03-16 广州派勒机械设备有限公司 无筛网式智能纳米研磨系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617851A (zh) * 2019-12-25 2020-09-04 博亿(深圳)工业科技有限公司 应用于湿法研磨的分离装置
CN112742552A (zh) * 2020-12-22 2021-05-04 安徽儒特实业有限公司 一种用于煤粉精细研磨设备
CN112742552B (zh) * 2020-12-22 2022-01-14 安徽儒特实业有限公司 一种用于煤粉精细研磨设备
CN114029108A (zh) * 2021-10-28 2022-02-11 陈方应 一种中药制备研磨装置

Also Published As

Publication number Publication date
CN105396650A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2017049964A1 (zh) 无筛网式智能纳米研磨系统
WO2017000757A1 (zh) 具有双重分离系统的超级砂磨机
CN105536957B (zh) 一种叶轮及超细粉磨机、超细粉磨系统
WO2007097042A1 (ja) 遠心式空気分級機
CN102245309A (zh) 磨机
CN104001606A (zh) 一种蜂巢磨
KR20200068671A (ko) 분체 처리 장치
CN106076510B (zh) 内置式动态离心分离装置
CN203253480U (zh) 二氧化硅粉碎机
CN203935891U (zh) 一种蜂巢磨
CN204996494U (zh) 无筛网式智能纳米研磨系统
CN103639119B (zh) 微米级节能型双叶轮超细分级机
CN202070406U (zh) 一种卧式螺旋卸料沉降离心机
CN213494068U (zh) 一种双循环立式砂磨机
CN112090520A (zh) 一种双循环立式砂磨机
CN204017905U (zh) 研磨机的新型增强研磨装置
CN104226426B (zh) 全尺寸动态分离纳米砂磨机
CN105214790B (zh) 智能纳米动态离心旋转分离装置
CN204953022U (zh) 智能纳米动态离心旋转分离装置
CN201791674U (zh) 膨润土用气流分级机
CN201783351U (zh) 一种改进的离心式纳米珠磨机
CN205109768U (zh) 一种新型油漆粒子分离砂磨机
CN203599074U (zh) 微米级节能型双叶轮超细分级机
CN208390149U (zh) 一种分级出料砂磨机
CN203899672U (zh) 超细立式辊磨

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847846

Country of ref document: EP

Kind code of ref document: A1